]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/kern_exec.c
xnu-4903.241.1.tar.gz
[apple/xnu.git] / bsd / kern / kern_exec.c
1 /*
2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Mach Operating System
31 * Copyright (c) 1987 Carnegie-Mellon University
32 * All rights reserved. The CMU software License Agreement specifies
33 * the terms and conditions for use and redistribution.
34 */
35
36 /*-
37 * Copyright (c) 1982, 1986, 1991, 1993
38 * The Regents of the University of California. All rights reserved.
39 * (c) UNIX System Laboratories, Inc.
40 * All or some portions of this file are derived from material licensed
41 * to the University of California by American Telephone and Telegraph
42 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
43 * the permission of UNIX System Laboratories, Inc.
44 *
45 * Redistribution and use in source and binary forms, with or without
46 * modification, are permitted provided that the following conditions
47 * are met:
48 * 1. Redistributions of source code must retain the above copyright
49 * notice, this list of conditions and the following disclaimer.
50 * 2. Redistributions in binary form must reproduce the above copyright
51 * notice, this list of conditions and the following disclaimer in the
52 * documentation and/or other materials provided with the distribution.
53 * 3. All advertising materials mentioning features or use of this software
54 * must display the following acknowledgement:
55 * This product includes software developed by the University of
56 * California, Berkeley and its contributors.
57 * 4. Neither the name of the University nor the names of its contributors
58 * may be used to endorse or promote products derived from this software
59 * without specific prior written permission.
60 *
61 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
62 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
63 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
64 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
65 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
66 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
67 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
68 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
69 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
70 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * SUCH DAMAGE.
72 *
73 * from: @(#)kern_exec.c 8.1 (Berkeley) 6/10/93
74 */
75 /*
76 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
77 * support for mandatory and extensible security protections. This notice
78 * is included in support of clause 2.2 (b) of the Apple Public License,
79 * Version 2.0.
80 */
81 #include <machine/reg.h>
82 #include <machine/cpu_capabilities.h>
83
84 #include <sys/param.h>
85 #include <sys/systm.h>
86 #include <sys/filedesc.h>
87 #include <sys/kernel.h>
88 #include <sys/proc_internal.h>
89 #include <sys/kauth.h>
90 #include <sys/user.h>
91 #include <sys/socketvar.h>
92 #include <sys/malloc.h>
93 #include <sys/namei.h>
94 #include <sys/mount_internal.h>
95 #include <sys/vnode_internal.h>
96 #include <sys/file_internal.h>
97 #include <sys/stat.h>
98 #include <sys/uio_internal.h>
99 #include <sys/acct.h>
100 #include <sys/exec.h>
101 #include <sys/kdebug.h>
102 #include <sys/signal.h>
103 #include <sys/aio_kern.h>
104 #include <sys/sysproto.h>
105 #include <sys/persona.h>
106 #include <sys/reason.h>
107 #if SYSV_SHM
108 #include <sys/shm_internal.h> /* shmexec() */
109 #endif
110 #include <sys/ubc_internal.h> /* ubc_map() */
111 #include <sys/spawn.h>
112 #include <sys/spawn_internal.h>
113 #include <sys/process_policy.h>
114 #include <sys/codesign.h>
115 #include <sys/random.h>
116 #include <crypto/sha1.h>
117
118 #include <libkern/libkern.h>
119
120 #include <security/audit/audit.h>
121
122 #include <ipc/ipc_types.h>
123
124 #include <mach/mach_types.h>
125 #include <mach/port.h>
126 #include <mach/task.h>
127 #include <mach/task_access.h>
128 #include <mach/thread_act.h>
129 #include <mach/vm_map.h>
130 #include <mach/mach_vm.h>
131 #include <mach/vm_param.h>
132
133 #include <kern/sched_prim.h> /* thread_wakeup() */
134 #include <kern/affinity.h>
135 #include <kern/assert.h>
136 #include <kern/task.h>
137 #include <kern/coalition.h>
138 #include <kern/policy_internal.h>
139 #include <kern/kalloc.h>
140
141 #include <os/log.h>
142
143 #if CONFIG_MACF
144 #include <security/mac_framework.h>
145 #include <security/mac_mach_internal.h>
146 #endif
147
148 #include <vm/vm_map.h>
149 #include <vm/vm_kern.h>
150 #include <vm/vm_protos.h>
151 #include <vm/vm_kern.h>
152 #include <vm/vm_fault.h>
153 #include <vm/vm_pageout.h>
154
155 #include <kdp/kdp_dyld.h>
156
157 #include <machine/pal_routines.h>
158
159 #include <pexpert/pexpert.h>
160
161 #if CONFIG_MEMORYSTATUS
162 #include <sys/kern_memorystatus.h>
163 #endif
164
165 extern boolean_t vm_darkwake_mode;
166
167 #if CONFIG_DTRACE
168 /* Do not include dtrace.h, it redefines kmem_[alloc/free] */
169 extern void dtrace_proc_exec(proc_t);
170 extern void (*dtrace_proc_waitfor_exec_ptr)(proc_t);
171
172 /*
173 * Since dtrace_proc_waitfor_exec_ptr can be added/removed in dtrace_subr.c,
174 * we will store its value before actually calling it.
175 */
176 static void (*dtrace_proc_waitfor_hook)(proc_t) = NULL;
177
178 #include <sys/dtrace_ptss.h>
179 #endif
180
181 /* support for child creation in exec after vfork */
182 thread_t fork_create_child(task_t parent_task,
183 coalition_t *parent_coalition,
184 proc_t child_proc,
185 int inherit_memory,
186 int is_64bit_addr,
187 int is_64bit_data,
188 int in_exec);
189 void vfork_exit(proc_t p, int rv);
190 extern void proc_apply_task_networkbg_internal(proc_t, thread_t);
191 extern void task_set_did_exec_flag(task_t task);
192 extern void task_clear_exec_copy_flag(task_t task);
193 proc_t proc_exec_switch_task(proc_t p, task_t old_task, task_t new_task, thread_t new_thread);
194 boolean_t task_is_active(task_t);
195 boolean_t thread_is_active(thread_t thread);
196 void thread_copy_resource_info(thread_t dst_thread, thread_t src_thread);
197 void *ipc_importance_exec_switch_task(task_t old_task, task_t new_task);
198 extern void ipc_importance_release(void *elem);
199
200 /*
201 * Mach things for which prototypes are unavailable from Mach headers
202 */
203 void ipc_task_reset(
204 task_t task);
205 void ipc_thread_reset(
206 thread_t thread);
207 kern_return_t ipc_object_copyin(
208 ipc_space_t space,
209 mach_port_name_t name,
210 mach_msg_type_name_t msgt_name,
211 ipc_object_t *objectp);
212 void ipc_port_release_send(ipc_port_t);
213
214 #if DEVELOPMENT || DEBUG
215 void task_importance_update_owner_info(task_t);
216 #endif
217
218 extern struct savearea *get_user_regs(thread_t);
219
220 __attribute__((noinline)) int __EXEC_WAITING_ON_TASKGATED_CODE_SIGNATURE_UPCALL__(mach_port_t task_access_port, int32_t new_pid);
221
222 #include <kern/thread.h>
223 #include <kern/task.h>
224 #include <kern/ast.h>
225 #include <kern/mach_loader.h>
226 #include <kern/mach_fat.h>
227 #include <mach-o/fat.h>
228 #include <mach-o/loader.h>
229 #include <machine/vmparam.h>
230 #include <sys/imgact.h>
231
232 #include <sys/sdt.h>
233
234
235 /*
236 * EAI_ITERLIMIT The maximum number of times to iterate an image
237 * activator in exec_activate_image() before treating
238 * it as malformed/corrupt.
239 */
240 #define EAI_ITERLIMIT 3
241
242 /*
243 * For #! interpreter parsing
244 */
245 #define IS_WHITESPACE(ch) ((ch == ' ') || (ch == '\t'))
246 #define IS_EOL(ch) ((ch == '#') || (ch == '\n'))
247
248 extern vm_map_t bsd_pageable_map;
249 extern const struct fileops vnops;
250
251 #define USER_ADDR_ALIGN(addr, val) \
252 ( ( (user_addr_t)(addr) + (val) - 1) \
253 & ~((val) - 1) )
254
255 /* Platform Code Exec Logging */
256 static int platform_exec_logging = 0;
257
258 SYSCTL_DECL(_security_mac);
259
260 SYSCTL_INT(_security_mac, OID_AUTO, platform_exec_logging, CTLFLAG_RW, &platform_exec_logging, 0,
261 "log cdhashes for all platform binary executions");
262
263 static os_log_t peLog = OS_LOG_DEFAULT;
264
265 struct image_params; /* Forward */
266 static int exec_activate_image(struct image_params *imgp);
267 static int exec_copyout_strings(struct image_params *imgp, user_addr_t *stackp);
268 static int load_return_to_errno(load_return_t lrtn);
269 static int execargs_alloc(struct image_params *imgp);
270 static int execargs_free(struct image_params *imgp);
271 static int exec_check_permissions(struct image_params *imgp);
272 static int exec_extract_strings(struct image_params *imgp);
273 static int exec_add_apple_strings(struct image_params *imgp, const load_result_t *load_result);
274 static int exec_handle_sugid(struct image_params *imgp);
275 static int sugid_scripts = 0;
276 SYSCTL_INT (_kern, OID_AUTO, sugid_scripts, CTLFLAG_RW | CTLFLAG_LOCKED, &sugid_scripts, 0, "");
277 static kern_return_t create_unix_stack(vm_map_t map, load_result_t* load_result, proc_t p);
278 static int copyoutptr(user_addr_t ua, user_addr_t ptr, int ptr_size);
279 static void exec_resettextvp(proc_t, struct image_params *);
280 static int check_for_signature(proc_t, struct image_params *);
281 static void exec_prefault_data(proc_t, struct image_params *, load_result_t *);
282 static errno_t exec_handle_port_actions(struct image_params *imgp, boolean_t * portwatch_present, ipc_port_t * portwatch_ports);
283 static errno_t exec_handle_spawnattr_policy(proc_t p, int psa_apptype, uint64_t psa_qos_clamp, uint64_t psa_darwin_role,
284 ipc_port_t * portwatch_ports, int portwatch_count);
285
286 /*
287 * exec_add_user_string
288 *
289 * Add the requested string to the string space area.
290 *
291 * Parameters; struct image_params * image parameter block
292 * user_addr_t string to add to strings area
293 * int segment from which string comes
294 * boolean_t TRUE if string contributes to NCARGS
295 *
296 * Returns: 0 Success
297 * !0 Failure errno from copyinstr()
298 *
299 * Implicit returns:
300 * (imgp->ip_strendp) updated location of next add, if any
301 * (imgp->ip_strspace) updated byte count of space remaining
302 * (imgp->ip_argspace) updated byte count of space in NCARGS
303 */
304 static int
305 exec_add_user_string(struct image_params *imgp, user_addr_t str, int seg, boolean_t is_ncargs)
306 {
307 int error = 0;
308
309 do {
310 size_t len = 0;
311 int space;
312
313 if (is_ncargs)
314 space = imgp->ip_argspace; /* by definition smaller than ip_strspace */
315 else
316 space = imgp->ip_strspace;
317
318 if (space <= 0) {
319 error = E2BIG;
320 break;
321 }
322
323 if (!UIO_SEG_IS_USER_SPACE(seg)) {
324 char *kstr = CAST_DOWN(char *,str); /* SAFE */
325 error = copystr(kstr, imgp->ip_strendp, space, &len);
326 } else {
327 error = copyinstr(str, imgp->ip_strendp, space, &len);
328 }
329
330 imgp->ip_strendp += len;
331 imgp->ip_strspace -= len;
332 if (is_ncargs)
333 imgp->ip_argspace -= len;
334
335 } while (error == ENAMETOOLONG);
336
337 return error;
338 }
339
340 /*
341 * dyld is now passed the executable path as a getenv-like variable
342 * in the same fashion as the stack_guard and malloc_entropy keys.
343 */
344 #define EXECUTABLE_KEY "executable_path="
345
346 /*
347 * exec_save_path
348 *
349 * To support new app package launching for Mac OS X, the dyld needs the
350 * first argument to execve() stored on the user stack.
351 *
352 * Save the executable path name at the bottom of the strings area and set
353 * the argument vector pointer to the location following that to indicate
354 * the start of the argument and environment tuples, setting the remaining
355 * string space count to the size of the string area minus the path length.
356 *
357 * Parameters; struct image_params * image parameter block
358 * char * path used to invoke program
359 * int segment from which path comes
360 *
361 * Returns: int 0 Success
362 * EFAULT Bad address
363 * copy[in]str:EFAULT Bad address
364 * copy[in]str:ENAMETOOLONG Filename too long
365 *
366 * Implicit returns:
367 * (imgp->ip_strings) saved path
368 * (imgp->ip_strspace) space remaining in ip_strings
369 * (imgp->ip_strendp) start of remaining copy area
370 * (imgp->ip_argspace) space remaining of NCARGS
371 * (imgp->ip_applec) Initial applev[0]
372 *
373 * Note: We have to do this before the initial namei() since in the
374 * path contains symbolic links, namei() will overwrite the
375 * original path buffer contents. If the last symbolic link
376 * resolved was a relative pathname, we would lose the original
377 * "path", which could be an absolute pathname. This might be
378 * unacceptable for dyld.
379 */
380 static int
381 exec_save_path(struct image_params *imgp, user_addr_t path, int seg, const char **excpath)
382 {
383 int error;
384 size_t len;
385 char *kpath;
386
387 // imgp->ip_strings can come out of a cache, so we need to obliterate the
388 // old path.
389 memset(imgp->ip_strings, '\0', strlen(EXECUTABLE_KEY) + MAXPATHLEN);
390
391 len = MIN(MAXPATHLEN, imgp->ip_strspace);
392
393 switch(seg) {
394 case UIO_USERSPACE32:
395 case UIO_USERSPACE64: /* Same for copyin()... */
396 error = copyinstr(path, imgp->ip_strings + strlen(EXECUTABLE_KEY), len, &len);
397 break;
398 case UIO_SYSSPACE:
399 kpath = CAST_DOWN(char *,path); /* SAFE */
400 error = copystr(kpath, imgp->ip_strings + strlen(EXECUTABLE_KEY), len, &len);
401 break;
402 default:
403 error = EFAULT;
404 break;
405 }
406
407 if (!error) {
408 bcopy(EXECUTABLE_KEY, imgp->ip_strings, strlen(EXECUTABLE_KEY));
409 len += strlen(EXECUTABLE_KEY);
410
411 imgp->ip_strendp += len;
412 imgp->ip_strspace -= len;
413
414 if (excpath) {
415 *excpath = imgp->ip_strings + strlen(EXECUTABLE_KEY);
416 }
417 }
418
419 return(error);
420 }
421
422 /*
423 * exec_reset_save_path
424 *
425 * If we detect a shell script, we need to reset the string area
426 * state so that the interpreter can be saved onto the stack.
427
428 * Parameters; struct image_params * image parameter block
429 *
430 * Returns: int 0 Success
431 *
432 * Implicit returns:
433 * (imgp->ip_strings) saved path
434 * (imgp->ip_strspace) space remaining in ip_strings
435 * (imgp->ip_strendp) start of remaining copy area
436 * (imgp->ip_argspace) space remaining of NCARGS
437 *
438 */
439 static int
440 exec_reset_save_path(struct image_params *imgp)
441 {
442 imgp->ip_strendp = imgp->ip_strings;
443 imgp->ip_argspace = NCARGS;
444 imgp->ip_strspace = ( NCARGS + PAGE_SIZE );
445
446 return (0);
447 }
448
449 /*
450 * exec_shell_imgact
451 *
452 * Image activator for interpreter scripts. If the image begins with
453 * the characters "#!", then it is an interpreter script. Verify the
454 * length of the script line indicating the interpreter is not in
455 * excess of the maximum allowed size. If this is the case, then
456 * break out the arguments, if any, which are separated by white
457 * space, and copy them into the argument save area as if they were
458 * provided on the command line before all other arguments. The line
459 * ends when we encounter a comment character ('#') or newline.
460 *
461 * Parameters; struct image_params * image parameter block
462 *
463 * Returns: -1 not an interpreter (keep looking)
464 * -3 Success: interpreter: relookup
465 * >0 Failure: interpreter: error number
466 *
467 * A return value other than -1 indicates subsequent image activators should
468 * not be given the opportunity to attempt to activate the image.
469 */
470 static int
471 exec_shell_imgact(struct image_params *imgp)
472 {
473 char *vdata = imgp->ip_vdata;
474 char *ihp;
475 char *line_startp, *line_endp;
476 char *interp;
477
478 /*
479 * Make sure it's a shell script. If we've already redirected
480 * from an interpreted file once, don't do it again.
481 */
482 if (vdata[0] != '#' ||
483 vdata[1] != '!' ||
484 (imgp->ip_flags & IMGPF_INTERPRET) != 0) {
485 return (-1);
486 }
487
488 if (imgp->ip_origcputype != 0) {
489 /* Fat header previously matched, don't allow shell script inside */
490 return (-1);
491 }
492
493 imgp->ip_flags |= IMGPF_INTERPRET;
494 imgp->ip_interp_sugid_fd = -1;
495 imgp->ip_interp_buffer[0] = '\0';
496
497 /* Check to see if SUGID scripts are permitted. If they aren't then
498 * clear the SUGID bits.
499 * imgp->ip_vattr is known to be valid.
500 */
501 if (sugid_scripts == 0) {
502 imgp->ip_origvattr->va_mode &= ~(VSUID | VSGID);
503 }
504
505 /* Try to find the first non-whitespace character */
506 for( ihp = &vdata[2]; ihp < &vdata[IMG_SHSIZE]; ihp++ ) {
507 if (IS_EOL(*ihp)) {
508 /* Did not find interpreter, "#!\n" */
509 return (ENOEXEC);
510 } else if (IS_WHITESPACE(*ihp)) {
511 /* Whitespace, like "#! /bin/sh\n", keep going. */
512 } else {
513 /* Found start of interpreter */
514 break;
515 }
516 }
517
518 if (ihp == &vdata[IMG_SHSIZE]) {
519 /* All whitespace, like "#! " */
520 return (ENOEXEC);
521 }
522
523 line_startp = ihp;
524
525 /* Try to find the end of the interpreter+args string */
526 for ( ; ihp < &vdata[IMG_SHSIZE]; ihp++ ) {
527 if (IS_EOL(*ihp)) {
528 /* Got it */
529 break;
530 } else {
531 /* Still part of interpreter or args */
532 }
533 }
534
535 if (ihp == &vdata[IMG_SHSIZE]) {
536 /* A long line, like "#! blah blah blah" without end */
537 return (ENOEXEC);
538 }
539
540 /* Backtrack until we find the last non-whitespace */
541 while (IS_EOL(*ihp) || IS_WHITESPACE(*ihp)) {
542 ihp--;
543 }
544
545 /* The character after the last non-whitespace is our logical end of line */
546 line_endp = ihp + 1;
547
548 /*
549 * Now we have pointers to the usable part of:
550 *
551 * "#! /usr/bin/int first second third \n"
552 * ^ line_startp ^ line_endp
553 */
554
555 /* copy the interpreter name */
556 interp = imgp->ip_interp_buffer;
557 for ( ihp = line_startp; (ihp < line_endp) && !IS_WHITESPACE(*ihp); ihp++)
558 *interp++ = *ihp;
559 *interp = '\0';
560
561 exec_reset_save_path(imgp);
562 exec_save_path(imgp, CAST_USER_ADDR_T(imgp->ip_interp_buffer),
563 UIO_SYSSPACE, NULL);
564
565 /* Copy the entire interpreter + args for later processing into argv[] */
566 interp = imgp->ip_interp_buffer;
567 for ( ihp = line_startp; (ihp < line_endp); ihp++)
568 *interp++ = *ihp;
569 *interp = '\0';
570
571 #if !SECURE_KERNEL
572 /*
573 * If we have an SUID or SGID script, create a file descriptor
574 * from the vnode and pass /dev/fd/%d instead of the actual
575 * path name so that the script does not get opened twice
576 */
577 if (imgp->ip_origvattr->va_mode & (VSUID | VSGID)) {
578 proc_t p;
579 struct fileproc *fp;
580 int fd;
581 int error;
582
583 p = vfs_context_proc(imgp->ip_vfs_context);
584 error = falloc(p, &fp, &fd, imgp->ip_vfs_context);
585 if (error)
586 return(error);
587
588 fp->f_fglob->fg_flag = FREAD;
589 fp->f_fglob->fg_ops = &vnops;
590 fp->f_fglob->fg_data = (caddr_t)imgp->ip_vp;
591
592 proc_fdlock(p);
593 procfdtbl_releasefd(p, fd, NULL);
594 fp_drop(p, fd, fp, 1);
595 proc_fdunlock(p);
596 vnode_ref(imgp->ip_vp);
597
598 imgp->ip_interp_sugid_fd = fd;
599 }
600 #endif
601
602 return (-3);
603 }
604
605
606
607 /*
608 * exec_fat_imgact
609 *
610 * Image activator for fat 1.0 binaries. If the binary is fat, then we
611 * need to select an image from it internally, and make that the image
612 * we are going to attempt to execute. At present, this consists of
613 * reloading the first page for the image with a first page from the
614 * offset location indicated by the fat header.
615 *
616 * Parameters; struct image_params * image parameter block
617 *
618 * Returns: -1 not a fat binary (keep looking)
619 * -2 Success: encapsulated binary: reread
620 * >0 Failure: error number
621 *
622 * Important: This image activator is byte order neutral.
623 *
624 * Note: A return value other than -1 indicates subsequent image
625 * activators should not be given the opportunity to attempt
626 * to activate the image.
627 *
628 * If we find an encapsulated binary, we make no assertions
629 * about its validity; instead, we leave that up to a rescan
630 * for an activator to claim it, and, if it is claimed by one,
631 * that activator is responsible for determining validity.
632 */
633 static int
634 exec_fat_imgact(struct image_params *imgp)
635 {
636 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
637 kauth_cred_t cred = kauth_cred_proc_ref(p);
638 struct fat_header *fat_header = (struct fat_header *)imgp->ip_vdata;
639 struct _posix_spawnattr *psa = NULL;
640 struct fat_arch fat_arch;
641 int resid, error;
642 load_return_t lret;
643
644 if (imgp->ip_origcputype != 0) {
645 /* Fat header previously matched, don't allow another fat file inside */
646 error = -1; /* not claimed */
647 goto bad;
648 }
649
650 /* Make sure it's a fat binary */
651 if (OSSwapBigToHostInt32(fat_header->magic) != FAT_MAGIC) {
652 error = -1; /* not claimed */
653 goto bad;
654 }
655
656 /* imgp->ip_vdata has PAGE_SIZE, zerofilled if the file is smaller */
657 lret = fatfile_validate_fatarches((vm_offset_t)fat_header, PAGE_SIZE);
658 if (lret != LOAD_SUCCESS) {
659 error = load_return_to_errno(lret);
660 goto bad;
661 }
662
663 /* If posix_spawn binprefs exist, respect those prefs. */
664 psa = (struct _posix_spawnattr *) imgp->ip_px_sa;
665 if (psa != NULL && psa->psa_binprefs[0] != 0) {
666 uint32_t pr = 0;
667
668 /* Check each preference listed against all arches in header */
669 for (pr = 0; pr < NBINPREFS; pr++) {
670 cpu_type_t pref = psa->psa_binprefs[pr];
671 if (pref == 0) {
672 /* No suitable arch in the pref list */
673 error = EBADARCH;
674 goto bad;
675 }
676
677 if (pref == CPU_TYPE_ANY) {
678 /* Fall through to regular grading */
679 goto regular_grading;
680 }
681
682 lret = fatfile_getbestarch_for_cputype(pref,
683 (vm_offset_t)fat_header,
684 PAGE_SIZE,
685 &fat_arch);
686 if (lret == LOAD_SUCCESS) {
687 goto use_arch;
688 }
689 }
690
691 /* Requested binary preference was not honored */
692 error = EBADEXEC;
693 goto bad;
694 }
695
696 regular_grading:
697 /* Look up our preferred architecture in the fat file. */
698 lret = fatfile_getbestarch((vm_offset_t)fat_header,
699 PAGE_SIZE,
700 &fat_arch);
701 if (lret != LOAD_SUCCESS) {
702 error = load_return_to_errno(lret);
703 goto bad;
704 }
705
706 use_arch:
707 /* Read the Mach-O header out of fat_arch */
708 error = vn_rdwr(UIO_READ, imgp->ip_vp, imgp->ip_vdata,
709 PAGE_SIZE, fat_arch.offset,
710 UIO_SYSSPACE, (IO_UNIT|IO_NODELOCKED),
711 cred, &resid, p);
712 if (error) {
713 goto bad;
714 }
715
716 if (resid) {
717 memset(imgp->ip_vdata + (PAGE_SIZE - resid), 0x0, resid);
718 }
719
720 /* Success. Indicate we have identified an encapsulated binary */
721 error = -2;
722 imgp->ip_arch_offset = (user_size_t)fat_arch.offset;
723 imgp->ip_arch_size = (user_size_t)fat_arch.size;
724 imgp->ip_origcputype = fat_arch.cputype;
725 imgp->ip_origcpusubtype = fat_arch.cpusubtype;
726
727 bad:
728 kauth_cred_unref(&cred);
729 return (error);
730 }
731
732 static int
733 activate_exec_state(task_t task, proc_t p, thread_t thread, load_result_t *result)
734 {
735 int ret;
736
737 task_set_dyld_info(task, MACH_VM_MIN_ADDRESS, 0);
738 task_set_64bit(task, result->is_64bit_addr, result->is_64bit_data);
739 if (result->is_64bit_addr) {
740 OSBitOrAtomic(P_LP64, &p->p_flag);
741 } else {
742 OSBitAndAtomic(~((uint32_t)P_LP64), &p->p_flag);
743 }
744
745 ret = thread_state_initialize(thread);
746 if (ret != KERN_SUCCESS) {
747 return ret;
748 }
749
750 if (result->threadstate) {
751 uint32_t *ts = result->threadstate;
752 uint32_t total_size = result->threadstate_sz;
753
754 while (total_size > 0) {
755 uint32_t flavor = *ts++;
756 uint32_t size = *ts++;
757
758 ret = thread_setstatus(thread, flavor, (thread_state_t)ts, size);
759 if (ret) {
760 return ret;
761 }
762 ts += size;
763 total_size -= (size + 2) * sizeof(uint32_t);
764 }
765 }
766
767 thread_setentrypoint(thread, result->entry_point);
768
769 return KERN_SUCCESS;
770 }
771
772
773 /*
774 * Set p->p_comm and p->p_name to the name passed to exec
775 */
776 static void
777 set_proc_name(struct image_params *imgp, proc_t p)
778 {
779 int p_name_len = sizeof(p->p_name) - 1;
780
781 if (imgp->ip_ndp->ni_cnd.cn_namelen > p_name_len) {
782 imgp->ip_ndp->ni_cnd.cn_namelen = p_name_len;
783 }
784
785 bcopy((caddr_t)imgp->ip_ndp->ni_cnd.cn_nameptr, (caddr_t)p->p_name,
786 (unsigned)imgp->ip_ndp->ni_cnd.cn_namelen);
787 p->p_name[imgp->ip_ndp->ni_cnd.cn_namelen] = '\0';
788
789 if (imgp->ip_ndp->ni_cnd.cn_namelen > MAXCOMLEN) {
790 imgp->ip_ndp->ni_cnd.cn_namelen = MAXCOMLEN;
791 }
792
793 bcopy((caddr_t)imgp->ip_ndp->ni_cnd.cn_nameptr, (caddr_t)p->p_comm,
794 (unsigned)imgp->ip_ndp->ni_cnd.cn_namelen);
795 p->p_comm[imgp->ip_ndp->ni_cnd.cn_namelen] = '\0';
796 }
797
798 static uint64_t get_va_fsid(struct vnode_attr *vap)
799 {
800 if (VATTR_IS_SUPPORTED(vap, va_fsid64)) {
801 return *(uint64_t *)&vap->va_fsid64;
802 } else {
803 return vap->va_fsid;
804 }
805 }
806
807 /*
808 * exec_mach_imgact
809 *
810 * Image activator for mach-o 1.0 binaries.
811 *
812 * Parameters; struct image_params * image parameter block
813 *
814 * Returns: -1 not a fat binary (keep looking)
815 * -2 Success: encapsulated binary: reread
816 * >0 Failure: error number
817 * EBADARCH Mach-o binary, but with an unrecognized
818 * architecture
819 * ENOMEM No memory for child process after -
820 * can only happen after vfork()
821 *
822 * Important: This image activator is NOT byte order neutral.
823 *
824 * Note: A return value other than -1 indicates subsequent image
825 * activators should not be given the opportunity to attempt
826 * to activate the image.
827 *
828 * TODO: More gracefully handle failures after vfork
829 */
830 static int
831 exec_mach_imgact(struct image_params *imgp)
832 {
833 struct mach_header *mach_header = (struct mach_header *)imgp->ip_vdata;
834 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
835 int error = 0;
836 task_t task;
837 task_t new_task = NULL; /* protected by vfexec */
838 thread_t thread;
839 struct uthread *uthread;
840 vm_map_t old_map = VM_MAP_NULL;
841 vm_map_t map = VM_MAP_NULL;
842 load_return_t lret;
843 load_result_t load_result = {};
844 struct _posix_spawnattr *psa = NULL;
845 int spawn = (imgp->ip_flags & IMGPF_SPAWN);
846 int vfexec = (imgp->ip_flags & IMGPF_VFORK_EXEC);
847 int exec = (imgp->ip_flags & IMGPF_EXEC);
848 os_reason_t exec_failure_reason = OS_REASON_NULL;
849
850 /*
851 * make sure it's a Mach-O 1.0 or Mach-O 2.0 binary; the difference
852 * is a reserved field on the end, so for the most part, we can
853 * treat them as if they were identical. Reverse-endian Mach-O
854 * binaries are recognized but not compatible.
855 */
856 if ((mach_header->magic == MH_CIGAM) ||
857 (mach_header->magic == MH_CIGAM_64)) {
858 error = EBADARCH;
859 goto bad;
860 }
861
862 if ((mach_header->magic != MH_MAGIC) &&
863 (mach_header->magic != MH_MAGIC_64)) {
864 error = -1;
865 goto bad;
866 }
867
868 if (mach_header->filetype != MH_EXECUTE) {
869 error = -1;
870 goto bad;
871 }
872
873 if (imgp->ip_origcputype != 0) {
874 /* Fat header previously had an idea about this thin file */
875 if (imgp->ip_origcputype != mach_header->cputype ||
876 imgp->ip_origcpusubtype != mach_header->cpusubtype) {
877 error = EBADARCH;
878 goto bad;
879 }
880 } else {
881 imgp->ip_origcputype = mach_header->cputype;
882 imgp->ip_origcpusubtype = mach_header->cpusubtype;
883 }
884
885 task = current_task();
886 thread = current_thread();
887 uthread = get_bsdthread_info(thread);
888
889 if ((mach_header->cputype & CPU_ARCH_ABI64) == CPU_ARCH_ABI64) {
890 imgp->ip_flags |= IMGPF_IS_64BIT_ADDR | IMGPF_IS_64BIT_DATA;
891 }
892
893 /* If posix_spawn binprefs exist, respect those prefs. */
894 psa = (struct _posix_spawnattr *) imgp->ip_px_sa;
895 if (psa != NULL && psa->psa_binprefs[0] != 0) {
896 int pr = 0;
897 for (pr = 0; pr < NBINPREFS; pr++) {
898 cpu_type_t pref = psa->psa_binprefs[pr];
899 if (pref == 0) {
900 /* No suitable arch in the pref list */
901 error = EBADARCH;
902 goto bad;
903 }
904
905 if (pref == CPU_TYPE_ANY) {
906 /* Jump to regular grading */
907 goto grade;
908 }
909
910 if (pref == imgp->ip_origcputype) {
911 /* We have a match! */
912 goto grade;
913 }
914 }
915 error = EBADARCH;
916 goto bad;
917 }
918 grade:
919 if (!grade_binary(imgp->ip_origcputype, imgp->ip_origcpusubtype & ~CPU_SUBTYPE_MASK)) {
920 error = EBADARCH;
921 goto bad;
922 }
923
924
925
926 /* Copy in arguments/environment from the old process */
927 error = exec_extract_strings(imgp);
928 if (error)
929 goto bad;
930
931 AUDIT_ARG(argv, imgp->ip_startargv, imgp->ip_argc,
932 imgp->ip_endargv - imgp->ip_startargv);
933 AUDIT_ARG(envv, imgp->ip_endargv, imgp->ip_envc,
934 imgp->ip_endenvv - imgp->ip_endargv);
935
936 /*
937 * We are being called to activate an image subsequent to a vfork()
938 * operation; in this case, we know that our task, thread, and
939 * uthread are actually those of our parent, and our proc, which we
940 * obtained indirectly from the image_params vfs_context_t, is the
941 * new child process.
942 */
943 if (vfexec) {
944 imgp->ip_new_thread = fork_create_child(task,
945 NULL,
946 p,
947 FALSE,
948 (imgp->ip_flags & IMGPF_IS_64BIT_ADDR),
949 (imgp->ip_flags & IMGPF_IS_64BIT_DATA),
950 FALSE);
951 /* task and thread ref returned, will be released in __mac_execve */
952 if (imgp->ip_new_thread == NULL) {
953 error = ENOMEM;
954 goto bad;
955 }
956 }
957
958
959 /* reset local idea of thread, uthread, task */
960 thread = imgp->ip_new_thread;
961 uthread = get_bsdthread_info(thread);
962 task = new_task = get_threadtask(thread);
963
964 /*
965 * Load the Mach-O file.
966 *
967 * NOTE: An error after this point indicates we have potentially
968 * destroyed or overwritten some process state while attempting an
969 * execve() following a vfork(), which is an unrecoverable condition.
970 * We send the new process an immediate SIGKILL to avoid it executing
971 * any instructions in the mutated address space. For true spawns,
972 * this is not the case, and "too late" is still not too late to
973 * return an error code to the parent process.
974 */
975
976 /*
977 * Actually load the image file we previously decided to load.
978 */
979 lret = load_machfile(imgp, mach_header, thread, &map, &load_result);
980 if (lret != LOAD_SUCCESS) {
981 error = load_return_to_errno(lret);
982
983 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
984 p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_BAD_MACHO, 0, 0);
985 if (lret == LOAD_BADMACHO_UPX) {
986 /* set anything that might be useful in the crash report */
987 set_proc_name(imgp, p);
988
989 exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_UPX);
990 exec_failure_reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT;
991 exec_failure_reason->osr_flags |= OS_REASON_FLAG_CONSISTENT_FAILURE;
992 } else if (lret == LOAD_BADARCH_X86) {
993 /* set anything that might be useful in the crash report */
994 set_proc_name(imgp, p);
995
996 exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_NO32EXEC);
997 exec_failure_reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT;
998 exec_failure_reason->osr_flags |= OS_REASON_FLAG_CONSISTENT_FAILURE;
999 } else {
1000 exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_BAD_MACHO);
1001 }
1002
1003 goto badtoolate;
1004 }
1005
1006 proc_lock(p);
1007 p->p_cputype = imgp->ip_origcputype;
1008 p->p_cpusubtype = imgp->ip_origcpusubtype;
1009 proc_unlock(p);
1010
1011 vm_map_set_user_wire_limit(map, p->p_rlimit[RLIMIT_MEMLOCK].rlim_cur);
1012
1013 /*
1014 * Set code-signing flags if this binary is signed, or if parent has
1015 * requested them on exec.
1016 */
1017 if (load_result.csflags & CS_VALID) {
1018 imgp->ip_csflags |= load_result.csflags &
1019 (CS_VALID|CS_SIGNED|CS_DEV_CODE|
1020 CS_HARD|CS_KILL|CS_RESTRICT|CS_ENFORCEMENT|CS_REQUIRE_LV|
1021 CS_FORCED_LV|CS_ENTITLEMENTS_VALIDATED|CS_DYLD_PLATFORM|CS_RUNTIME|
1022 CS_ENTITLEMENT_FLAGS|
1023 CS_EXEC_SET_HARD|CS_EXEC_SET_KILL|CS_EXEC_SET_ENFORCEMENT);
1024 } else {
1025 imgp->ip_csflags &= ~CS_VALID;
1026 }
1027
1028 if (p->p_csflags & CS_EXEC_SET_HARD)
1029 imgp->ip_csflags |= CS_HARD;
1030 if (p->p_csflags & CS_EXEC_SET_KILL)
1031 imgp->ip_csflags |= CS_KILL;
1032 if (p->p_csflags & CS_EXEC_SET_ENFORCEMENT)
1033 imgp->ip_csflags |= CS_ENFORCEMENT;
1034 if (p->p_csflags & CS_EXEC_INHERIT_SIP) {
1035 if (p->p_csflags & CS_INSTALLER)
1036 imgp->ip_csflags |= CS_INSTALLER;
1037 if (p->p_csflags & CS_DATAVAULT_CONTROLLER)
1038 imgp->ip_csflags |= CS_DATAVAULT_CONTROLLER;
1039 if (p->p_csflags & CS_NVRAM_UNRESTRICTED)
1040 imgp->ip_csflags |= CS_NVRAM_UNRESTRICTED;
1041 }
1042
1043 /*
1044 * Set up the system reserved areas in the new address space.
1045 */
1046 int cpu_subtype;
1047 cpu_subtype = 0; /* all cpu_subtypes use the same shared region */
1048 vm_map_exec(map, task, load_result.is_64bit_addr, (void *)p->p_fd->fd_rdir, cpu_type(), cpu_subtype);
1049
1050 /*
1051 * Close file descriptors which specify close-on-exec.
1052 */
1053 fdexec(p, psa != NULL ? psa->psa_flags : 0, exec);
1054
1055 /*
1056 * deal with set[ug]id.
1057 */
1058 error = exec_handle_sugid(imgp);
1059 if (error) {
1060 vm_map_deallocate(map);
1061
1062 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
1063 p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_SUGID_FAILURE, 0, 0);
1064 exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_SUGID_FAILURE);
1065 goto badtoolate;
1066 }
1067
1068 /*
1069 * Commit to new map.
1070 *
1071 * Swap the new map for the old for target task, which consumes
1072 * our new map reference but each leaves us responsible for the
1073 * old_map reference. That lets us get off the pmap associated
1074 * with it, and then we can release it.
1075 *
1076 * The map needs to be set on the target task which is different
1077 * than current task, thus swap_task_map is used instead of
1078 * vm_map_switch.
1079 */
1080 old_map = swap_task_map(task, thread, map);
1081 vm_map_deallocate(old_map);
1082 old_map = NULL;
1083
1084 lret = activate_exec_state(task, p, thread, &load_result);
1085 if (lret != KERN_SUCCESS) {
1086
1087 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
1088 p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_ACTV_THREADSTATE, 0, 0);
1089 exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_ACTV_THREADSTATE);
1090 goto badtoolate;
1091 }
1092
1093 /*
1094 * deal with voucher on exec-calling thread.
1095 */
1096 if (imgp->ip_new_thread == NULL)
1097 thread_set_mach_voucher(current_thread(), IPC_VOUCHER_NULL);
1098
1099 /* Make sure we won't interrupt ourself signalling a partial process */
1100 if (!vfexec && !spawn && (p->p_lflag & P_LTRACED))
1101 psignal(p, SIGTRAP);
1102
1103 if (load_result.unixproc &&
1104 create_unix_stack(get_task_map(task),
1105 &load_result,
1106 p) != KERN_SUCCESS) {
1107 error = load_return_to_errno(LOAD_NOSPACE);
1108
1109 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
1110 p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_STACK_ALLOC, 0, 0);
1111 exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_STACK_ALLOC);
1112 goto badtoolate;
1113 }
1114
1115 error = exec_add_apple_strings(imgp, &load_result);
1116 if (error) {
1117
1118 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
1119 p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_APPLE_STRING_INIT, 0, 0);
1120 exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_APPLE_STRING_INIT);
1121 goto badtoolate;
1122 }
1123
1124 /* Switch to target task's map to copy out strings */
1125 old_map = vm_map_switch(get_task_map(task));
1126
1127 if (load_result.unixproc) {
1128 user_addr_t ap;
1129
1130 /*
1131 * Copy the strings area out into the new process address
1132 * space.
1133 */
1134 ap = p->user_stack;
1135 error = exec_copyout_strings(imgp, &ap);
1136 if (error) {
1137 vm_map_switch(old_map);
1138
1139 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
1140 p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_COPYOUT_STRINGS, 0, 0);
1141 exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_COPYOUT_STRINGS);
1142 goto badtoolate;
1143 }
1144 /* Set the stack */
1145 thread_setuserstack(thread, ap);
1146 }
1147
1148 if (load_result.dynlinker) {
1149 uint64_t ap;
1150 int new_ptr_size = (imgp->ip_flags & IMGPF_IS_64BIT_ADDR) ? 8 : 4;
1151
1152 /* Adjust the stack */
1153 ap = thread_adjuserstack(thread, -new_ptr_size);
1154 error = copyoutptr(load_result.mach_header, ap, new_ptr_size);
1155
1156 if (error) {
1157 vm_map_switch(old_map);
1158
1159 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
1160 p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_COPYOUT_DYNLINKER, 0, 0);
1161 exec_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_COPYOUT_DYNLINKER);
1162 goto badtoolate;
1163 }
1164 task_set_dyld_info(task, load_result.all_image_info_addr,
1165 load_result.all_image_info_size);
1166 }
1167
1168 /* Avoid immediate VM faults back into kernel */
1169 exec_prefault_data(p, imgp, &load_result);
1170
1171 vm_map_switch(old_map);
1172
1173 /* Stop profiling */
1174 stopprofclock(p);
1175
1176 /*
1177 * Reset signal state.
1178 */
1179 execsigs(p, thread);
1180
1181 /*
1182 * need to cancel async IO requests that can be cancelled and wait for those
1183 * already active. MAY BLOCK!
1184 */
1185 _aio_exec( p );
1186
1187 #if SYSV_SHM
1188 /* FIXME: Till vmspace inherit is fixed: */
1189 if (!vfexec && p->vm_shm)
1190 shmexec(p);
1191 #endif
1192 #if SYSV_SEM
1193 /* Clean up the semaphores */
1194 semexit(p);
1195 #endif
1196
1197 /*
1198 * Remember file name for accounting.
1199 */
1200 p->p_acflag &= ~AFORK;
1201
1202 set_proc_name(imgp, p);
1203
1204 #if CONFIG_SECLUDED_MEMORY
1205 if (secluded_for_apps &&
1206 load_result.platform_binary) {
1207 if (strncmp(p->p_name,
1208 "Camera",
1209 sizeof (p->p_name)) == 0) {
1210 task_set_could_use_secluded_mem(task, TRUE);
1211 } else {
1212 task_set_could_use_secluded_mem(task, FALSE);
1213 }
1214 if (strncmp(p->p_name,
1215 "mediaserverd",
1216 sizeof (p->p_name)) == 0) {
1217 task_set_could_also_use_secluded_mem(task, TRUE);
1218 }
1219 }
1220 #endif /* CONFIG_SECLUDED_MEMORY */
1221
1222 #if __arm64__
1223 if (load_result.legacy_footprint) {
1224 task_set_legacy_footprint(task, TRUE);
1225 }
1226 #endif /* __arm64__ */
1227
1228 pal_dbg_set_task_name(task);
1229
1230 /*
1231 * The load result will have already been munged by AMFI to include the
1232 * platform binary flag if boot-args dictated it (AMFI will mark anything
1233 * that doesn't go through the upcall path as a platform binary if its
1234 * enforcement is disabled).
1235 */
1236 if (load_result.platform_binary) {
1237 if (cs_debug) {
1238 printf("setting platform binary on task: pid = %d\n", p->p_pid);
1239 }
1240
1241 /*
1242 * We must use 'task' here because the proc's task has not yet been
1243 * switched to the new one.
1244 */
1245 task_set_platform_binary(task, TRUE);
1246 } else {
1247 if (cs_debug) {
1248 printf("clearing platform binary on task: pid = %d\n", p->p_pid);
1249 }
1250
1251 task_set_platform_binary(task, FALSE);
1252 }
1253
1254 #if DEVELOPMENT || DEBUG
1255 /*
1256 * Update the pid an proc name for importance base if any
1257 */
1258 task_importance_update_owner_info(task);
1259 #endif
1260
1261 memcpy(&p->p_uuid[0], &load_result.uuid[0], sizeof(p->p_uuid));
1262
1263 #if CONFIG_DTRACE
1264 dtrace_proc_exec(p);
1265 #endif
1266
1267 if (kdebug_enable) {
1268 long args[4] = {};
1269
1270 uintptr_t fsid = 0, fileid = 0;
1271 if (imgp->ip_vattr) {
1272 uint64_t fsid64 = get_va_fsid(imgp->ip_vattr);
1273 fsid = fsid64;
1274 fileid = imgp->ip_vattr->va_fileid;
1275 // check for (unexpected) overflow and trace zero in that case
1276 if (fsid != fsid64 || fileid != imgp->ip_vattr->va_fileid) {
1277 fsid = fileid = 0;
1278 }
1279 }
1280 KERNEL_DEBUG_CONSTANT_IST1(TRACE_DATA_EXEC, p->p_pid, fsid, fileid, 0,
1281 (uintptr_t)thread_tid(thread));
1282
1283 /*
1284 * Collect the pathname for tracing
1285 */
1286 kdbg_trace_string(p, &args[0], &args[1], &args[2], &args[3]);
1287 KERNEL_DEBUG_CONSTANT_IST1(TRACE_STRING_EXEC, args[0], args[1],
1288 args[2], args[3], (uintptr_t)thread_tid(thread));
1289 }
1290
1291 /*
1292 * If posix_spawned with the START_SUSPENDED flag, stop the
1293 * process before it runs.
1294 */
1295 if (imgp->ip_px_sa != NULL) {
1296 psa = (struct _posix_spawnattr *) imgp->ip_px_sa;
1297 if (psa->psa_flags & POSIX_SPAWN_START_SUSPENDED) {
1298 proc_lock(p);
1299 p->p_stat = SSTOP;
1300 proc_unlock(p);
1301 (void) task_suspend_internal(task);
1302 }
1303 }
1304
1305 /*
1306 * mark as execed, wakeup the process that vforked (if any) and tell
1307 * it that it now has its own resources back
1308 */
1309 OSBitOrAtomic(P_EXEC, &p->p_flag);
1310 proc_resetregister(p);
1311 if (p->p_pptr && (p->p_lflag & P_LPPWAIT)) {
1312 proc_lock(p);
1313 p->p_lflag &= ~P_LPPWAIT;
1314 proc_unlock(p);
1315 wakeup((caddr_t)p->p_pptr);
1316 }
1317
1318 /*
1319 * Pay for our earlier safety; deliver the delayed signals from
1320 * the incomplete vfexec process now that it's complete.
1321 */
1322 if (vfexec && (p->p_lflag & P_LTRACED)) {
1323 psignal_vfork(p, new_task, thread, SIGTRAP);
1324 }
1325
1326 goto done;
1327
1328 badtoolate:
1329 /* Don't allow child process to execute any instructions */
1330 if (!spawn) {
1331 if (vfexec) {
1332 assert(exec_failure_reason != OS_REASON_NULL);
1333 psignal_vfork_with_reason(p, new_task, thread, SIGKILL, exec_failure_reason);
1334 exec_failure_reason = OS_REASON_NULL;
1335 } else {
1336 assert(exec_failure_reason != OS_REASON_NULL);
1337 psignal_with_reason(p, SIGKILL, exec_failure_reason);
1338 exec_failure_reason = OS_REASON_NULL;
1339
1340 if (exec) {
1341 /* Terminate the exec copy task */
1342 task_terminate_internal(task);
1343 }
1344 }
1345
1346 /* We can't stop this system call at this point, so just pretend we succeeded */
1347 error = 0;
1348 } else {
1349 os_reason_free(exec_failure_reason);
1350 exec_failure_reason = OS_REASON_NULL;
1351 }
1352
1353 done:
1354 if (load_result.threadstate) {
1355 kfree(load_result.threadstate, load_result.threadstate_sz);
1356 load_result.threadstate = NULL;
1357 }
1358
1359 bad:
1360 /* If we hit this, we likely would have leaked an exit reason */
1361 assert(exec_failure_reason == OS_REASON_NULL);
1362 return(error);
1363 }
1364
1365
1366
1367
1368 /*
1369 * Our image activator table; this is the table of the image types we are
1370 * capable of loading. We list them in order of preference to ensure the
1371 * fastest image load speed.
1372 *
1373 * XXX hardcoded, for now; should use linker sets
1374 */
1375 struct execsw {
1376 int (*ex_imgact)(struct image_params *);
1377 const char *ex_name;
1378 } execsw[] = {
1379 { exec_mach_imgact, "Mach-o Binary" },
1380 { exec_fat_imgact, "Fat Binary" },
1381 { exec_shell_imgact, "Interpreter Script" },
1382 { NULL, NULL}
1383 };
1384
1385
1386 /*
1387 * exec_activate_image
1388 *
1389 * Description: Iterate through the available image activators, and activate
1390 * the image associated with the imgp structure. We start with
1391 * the activator for Mach-o binaries followed by that for Fat binaries
1392 * for Interpreter scripts.
1393 *
1394 * Parameters: struct image_params * Image parameter block
1395 *
1396 * Returns: 0 Success
1397 * EBADEXEC The executable is corrupt/unknown
1398 * execargs_alloc:EINVAL Invalid argument
1399 * execargs_alloc:EACCES Permission denied
1400 * execargs_alloc:EINTR Interrupted function
1401 * execargs_alloc:ENOMEM Not enough space
1402 * exec_save_path:EFAULT Bad address
1403 * exec_save_path:ENAMETOOLONG Filename too long
1404 * exec_check_permissions:EACCES Permission denied
1405 * exec_check_permissions:ENOEXEC Executable file format error
1406 * exec_check_permissions:ETXTBSY Text file busy [misuse of error code]
1407 * exec_check_permissions:???
1408 * namei:???
1409 * vn_rdwr:??? [anything vn_rdwr can return]
1410 * <ex_imgact>:??? [anything an imgact can return]
1411 * EDEADLK Process is being terminated
1412 */
1413 static int
1414 exec_activate_image(struct image_params *imgp)
1415 {
1416 struct nameidata *ndp = NULL;
1417 const char *excpath;
1418 int error;
1419 int resid;
1420 int once = 1; /* save SGUID-ness for interpreted files */
1421 int i;
1422 int itercount = 0;
1423 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
1424
1425 error = execargs_alloc(imgp);
1426 if (error)
1427 goto bad_notrans;
1428
1429 error = exec_save_path(imgp, imgp->ip_user_fname, imgp->ip_seg, &excpath);
1430 if (error) {
1431 goto bad_notrans;
1432 }
1433
1434 /* Use excpath, which contains the copyin-ed exec path */
1435 DTRACE_PROC1(exec, uintptr_t, excpath);
1436
1437 MALLOC(ndp, struct nameidata *, sizeof(*ndp), M_TEMP, M_WAITOK | M_ZERO);
1438 if (ndp == NULL) {
1439 error = ENOMEM;
1440 goto bad_notrans;
1441 }
1442
1443 NDINIT(ndp, LOOKUP, OP_LOOKUP, FOLLOW | LOCKLEAF | AUDITVNPATH1,
1444 UIO_SYSSPACE, CAST_USER_ADDR_T(excpath), imgp->ip_vfs_context);
1445
1446 again:
1447 error = namei(ndp);
1448 if (error)
1449 goto bad_notrans;
1450 imgp->ip_ndp = ndp; /* successful namei(); call nameidone() later */
1451 imgp->ip_vp = ndp->ni_vp; /* if set, need to vnode_put() at some point */
1452
1453 /*
1454 * Before we start the transition from binary A to binary B, make
1455 * sure another thread hasn't started exiting the process. We grab
1456 * the proc lock to check p_lflag initially, and the transition
1457 * mechanism ensures that the value doesn't change after we release
1458 * the lock.
1459 */
1460 proc_lock(p);
1461 if (p->p_lflag & P_LEXIT) {
1462 error = EDEADLK;
1463 proc_unlock(p);
1464 goto bad_notrans;
1465 }
1466 error = proc_transstart(p, 1, 0);
1467 proc_unlock(p);
1468 if (error)
1469 goto bad_notrans;
1470
1471 error = exec_check_permissions(imgp);
1472 if (error)
1473 goto bad;
1474
1475 /* Copy; avoid invocation of an interpreter overwriting the original */
1476 if (once) {
1477 once = 0;
1478 *imgp->ip_origvattr = *imgp->ip_vattr;
1479 }
1480
1481 error = vn_rdwr(UIO_READ, imgp->ip_vp, imgp->ip_vdata, PAGE_SIZE, 0,
1482 UIO_SYSSPACE, IO_NODELOCKED,
1483 vfs_context_ucred(imgp->ip_vfs_context),
1484 &resid, vfs_context_proc(imgp->ip_vfs_context));
1485 if (error)
1486 goto bad;
1487
1488 if (resid) {
1489 memset(imgp->ip_vdata + (PAGE_SIZE - resid), 0x0, resid);
1490 }
1491
1492 encapsulated_binary:
1493 /* Limit the number of iterations we will attempt on each binary */
1494 if (++itercount > EAI_ITERLIMIT) {
1495 error = EBADEXEC;
1496 goto bad;
1497 }
1498 error = -1;
1499 for(i = 0; error == -1 && execsw[i].ex_imgact != NULL; i++) {
1500
1501 error = (*execsw[i].ex_imgact)(imgp);
1502
1503 switch (error) {
1504 /* case -1: not claimed: continue */
1505 case -2: /* Encapsulated binary, imgp->ip_XXX set for next iteration */
1506 goto encapsulated_binary;
1507
1508 case -3: /* Interpreter */
1509 #if CONFIG_MACF
1510 /*
1511 * Copy the script label for later use. Note that
1512 * the label can be different when the script is
1513 * actually read by the interpreter.
1514 */
1515 if (imgp->ip_scriptlabelp)
1516 mac_vnode_label_free(imgp->ip_scriptlabelp);
1517 imgp->ip_scriptlabelp = mac_vnode_label_alloc();
1518 if (imgp->ip_scriptlabelp == NULL) {
1519 error = ENOMEM;
1520 break;
1521 }
1522 mac_vnode_label_copy(imgp->ip_vp->v_label,
1523 imgp->ip_scriptlabelp);
1524
1525 /*
1526 * Take a ref of the script vnode for later use.
1527 */
1528 if (imgp->ip_scriptvp)
1529 vnode_put(imgp->ip_scriptvp);
1530 if (vnode_getwithref(imgp->ip_vp) == 0)
1531 imgp->ip_scriptvp = imgp->ip_vp;
1532 #endif
1533
1534 nameidone(ndp);
1535
1536 vnode_put(imgp->ip_vp);
1537 imgp->ip_vp = NULL; /* already put */
1538 imgp->ip_ndp = NULL; /* already nameidone */
1539
1540 /* Use excpath, which exec_shell_imgact reset to the interpreter */
1541 NDINIT(ndp, LOOKUP, OP_LOOKUP, FOLLOW | LOCKLEAF,
1542 UIO_SYSSPACE, CAST_USER_ADDR_T(excpath), imgp->ip_vfs_context);
1543
1544 proc_transend(p, 0);
1545 goto again;
1546
1547 default:
1548 break;
1549 }
1550 }
1551
1552 if (error == 0) {
1553 if (imgp->ip_flags & IMGPF_INTERPRET && ndp->ni_vp) {
1554 AUDIT_ARG(vnpath, ndp->ni_vp, ARG_VNODE2);
1555 }
1556
1557 /*
1558 * Call out to allow 3rd party notification of exec.
1559 * Ignore result of kauth_authorize_fileop call.
1560 */
1561 if (kauth_authorize_fileop_has_listeners()) {
1562 kauth_authorize_fileop(vfs_context_ucred(imgp->ip_vfs_context),
1563 KAUTH_FILEOP_EXEC,
1564 (uintptr_t)ndp->ni_vp, 0);
1565 }
1566 }
1567 bad:
1568 proc_transend(p, 0);
1569
1570 bad_notrans:
1571 if (imgp->ip_strings)
1572 execargs_free(imgp);
1573 if (imgp->ip_ndp)
1574 nameidone(imgp->ip_ndp);
1575 if (ndp)
1576 FREE(ndp, M_TEMP);
1577
1578 return (error);
1579 }
1580
1581
1582 /*
1583 * exec_handle_spawnattr_policy
1584 *
1585 * Description: Decode and apply the posix_spawn apptype, qos clamp, and watchport ports to the task.
1586 *
1587 * Parameters: proc_t p process to apply attributes to
1588 * int psa_apptype posix spawn attribute apptype
1589 *
1590 * Returns: 0 Success
1591 */
1592 static errno_t
1593 exec_handle_spawnattr_policy(proc_t p, int psa_apptype, uint64_t psa_qos_clamp, uint64_t psa_darwin_role,
1594 ipc_port_t * portwatch_ports, int portwatch_count)
1595 {
1596 int apptype = TASK_APPTYPE_NONE;
1597 int qos_clamp = THREAD_QOS_UNSPECIFIED;
1598 int role = TASK_UNSPECIFIED;
1599
1600 if ((psa_apptype & POSIX_SPAWN_PROC_TYPE_MASK) != 0) {
1601 int proctype = psa_apptype & POSIX_SPAWN_PROC_TYPE_MASK;
1602
1603 switch(proctype) {
1604 case POSIX_SPAWN_PROC_TYPE_DAEMON_INTERACTIVE:
1605 apptype = TASK_APPTYPE_DAEMON_INTERACTIVE;
1606 break;
1607 case POSIX_SPAWN_PROC_TYPE_DAEMON_STANDARD:
1608 apptype = TASK_APPTYPE_DAEMON_STANDARD;
1609 break;
1610 case POSIX_SPAWN_PROC_TYPE_DAEMON_ADAPTIVE:
1611 apptype = TASK_APPTYPE_DAEMON_ADAPTIVE;
1612 break;
1613 case POSIX_SPAWN_PROC_TYPE_DAEMON_BACKGROUND:
1614 apptype = TASK_APPTYPE_DAEMON_BACKGROUND;
1615 break;
1616 case POSIX_SPAWN_PROC_TYPE_APP_DEFAULT:
1617 apptype = TASK_APPTYPE_APP_DEFAULT;
1618 break;
1619 #if !CONFIG_EMBEDDED
1620 case POSIX_SPAWN_PROC_TYPE_APP_TAL:
1621 apptype = TASK_APPTYPE_APP_TAL;
1622 break;
1623 #endif /* !CONFIG_EMBEDDED */
1624 default:
1625 apptype = TASK_APPTYPE_NONE;
1626 /* TODO: Should an invalid value here fail the spawn? */
1627 break;
1628 }
1629 }
1630
1631 if (psa_qos_clamp != POSIX_SPAWN_PROC_CLAMP_NONE) {
1632 switch (psa_qos_clamp) {
1633 case POSIX_SPAWN_PROC_CLAMP_UTILITY:
1634 qos_clamp = THREAD_QOS_UTILITY;
1635 break;
1636 case POSIX_SPAWN_PROC_CLAMP_BACKGROUND:
1637 qos_clamp = THREAD_QOS_BACKGROUND;
1638 break;
1639 case POSIX_SPAWN_PROC_CLAMP_MAINTENANCE:
1640 qos_clamp = THREAD_QOS_MAINTENANCE;
1641 break;
1642 default:
1643 qos_clamp = THREAD_QOS_UNSPECIFIED;
1644 /* TODO: Should an invalid value here fail the spawn? */
1645 break;
1646 }
1647 }
1648
1649 if (psa_darwin_role != PRIO_DARWIN_ROLE_DEFAULT) {
1650 proc_darwin_role_to_task_role(psa_darwin_role, &role);
1651 }
1652
1653 if (apptype != TASK_APPTYPE_NONE ||
1654 qos_clamp != THREAD_QOS_UNSPECIFIED ||
1655 role != TASK_UNSPECIFIED) {
1656 proc_set_task_spawnpolicy(p->task, apptype, qos_clamp, role,
1657 portwatch_ports, portwatch_count);
1658 }
1659
1660 return (0);
1661 }
1662
1663
1664 /*
1665 * exec_handle_port_actions
1666 *
1667 * Description: Go through the _posix_port_actions_t contents,
1668 * calling task_set_special_port, task_set_exception_ports
1669 * and/or audit_session_spawnjoin for the current task.
1670 *
1671 * Parameters: struct image_params * Image parameter block
1672 *
1673 * Returns: 0 Success
1674 * EINVAL Failure
1675 * ENOTSUP Illegal posix_spawn attr flag was set
1676 */
1677 static errno_t
1678 exec_handle_port_actions(struct image_params *imgp, boolean_t * portwatch_present,
1679 ipc_port_t * portwatch_ports)
1680 {
1681 _posix_spawn_port_actions_t pacts = imgp->ip_px_spa;
1682 #if CONFIG_AUDIT
1683 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
1684 #endif
1685 _ps_port_action_t *act = NULL;
1686 task_t task = get_threadtask(imgp->ip_new_thread);
1687 ipc_port_t port = NULL;
1688 errno_t ret = 0;
1689 int i;
1690 kern_return_t kr;
1691
1692 *portwatch_present = FALSE;
1693
1694 for (i = 0; i < pacts->pspa_count; i++) {
1695 act = &pacts->pspa_actions[i];
1696
1697 if (MACH_PORT_VALID(act->new_port)) {
1698 kr = ipc_object_copyin(get_task_ipcspace(current_task()),
1699 act->new_port, MACH_MSG_TYPE_COPY_SEND,
1700 (ipc_object_t *) &port);
1701
1702 if (kr != KERN_SUCCESS) {
1703 ret = EINVAL;
1704 goto done;
1705 }
1706 } else {
1707 /* it's NULL or DEAD */
1708 port = CAST_MACH_NAME_TO_PORT(act->new_port);
1709 }
1710
1711 switch (act->port_type) {
1712 case PSPA_SPECIAL:
1713 kr = task_set_special_port(task, act->which, port);
1714
1715 if (kr != KERN_SUCCESS)
1716 ret = EINVAL;
1717 break;
1718
1719 case PSPA_EXCEPTION:
1720 kr = task_set_exception_ports(task, act->mask, port,
1721 act->behavior, act->flavor);
1722 if (kr != KERN_SUCCESS)
1723 ret = EINVAL;
1724 break;
1725 #if CONFIG_AUDIT
1726 case PSPA_AU_SESSION:
1727 ret = audit_session_spawnjoin(p, task, port);
1728 if (ret) {
1729 /* audit_session_spawnjoin() has already dropped the reference in case of error. */
1730 goto done;
1731 }
1732
1733 break;
1734 #endif
1735 case PSPA_IMP_WATCHPORTS:
1736 if (portwatch_ports != NULL && IPC_PORT_VALID(port)) {
1737 *portwatch_present = TRUE;
1738 /* hold on to this till end of spawn */
1739 portwatch_ports[i] = port;
1740 } else {
1741 ipc_port_release_send(port);
1742 }
1743
1744 break;
1745 default:
1746 ret = EINVAL;
1747 break;
1748 }
1749
1750 if (ret) {
1751 /* action failed, so release port resources */
1752 ipc_port_release_send(port);
1753 break;
1754 }
1755 }
1756
1757 done:
1758 if (0 != ret)
1759 DTRACE_PROC1(spawn__port__failure, mach_port_name_t, act->new_port);
1760 return (ret);
1761 }
1762
1763 /*
1764 * exec_handle_file_actions
1765 *
1766 * Description: Go through the _posix_file_actions_t contents applying the
1767 * open, close, and dup2 operations to the open file table for
1768 * the current process.
1769 *
1770 * Parameters: struct image_params * Image parameter block
1771 *
1772 * Returns: 0 Success
1773 * ???
1774 *
1775 * Note: Actions are applied in the order specified, with the credential
1776 * of the parent process. This is done to permit the parent
1777 * process to utilize POSIX_SPAWN_RESETIDS to drop privilege in
1778 * the child following operations the child may in fact not be
1779 * normally permitted to perform.
1780 */
1781 static int
1782 exec_handle_file_actions(struct image_params *imgp, short psa_flags)
1783 {
1784 int error = 0;
1785 int action;
1786 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
1787 _posix_spawn_file_actions_t px_sfap = imgp->ip_px_sfa;
1788 int ival[2]; /* dummy retval for system calls) */
1789
1790 for (action = 0; action < px_sfap->psfa_act_count; action++) {
1791 _psfa_action_t *psfa = &px_sfap->psfa_act_acts[ action];
1792
1793 switch(psfa->psfaa_type) {
1794 case PSFA_OPEN: {
1795 /*
1796 * Open is different, in that it requires the use of
1797 * a path argument, which is normally copied in from
1798 * user space; because of this, we have to support an
1799 * open from kernel space that passes an address space
1800 * context of UIO_SYSSPACE, and casts the address
1801 * argument to a user_addr_t.
1802 */
1803 char *bufp = NULL;
1804 struct vnode_attr *vap;
1805 struct nameidata *ndp;
1806 int mode = psfa->psfaa_openargs.psfao_mode;
1807 struct dup2_args dup2a;
1808 struct close_nocancel_args ca;
1809 int origfd;
1810
1811 MALLOC(bufp, char *, sizeof(*vap) + sizeof(*ndp), M_TEMP, M_WAITOK | M_ZERO);
1812 if (bufp == NULL) {
1813 error = ENOMEM;
1814 break;
1815 }
1816
1817 vap = (struct vnode_attr *) bufp;
1818 ndp = (struct nameidata *) (bufp + sizeof(*vap));
1819
1820 VATTR_INIT(vap);
1821 /* Mask off all but regular access permissions */
1822 mode = ((mode &~ p->p_fd->fd_cmask) & ALLPERMS) & ~S_ISTXT;
1823 VATTR_SET(vap, va_mode, mode & ACCESSPERMS);
1824
1825 NDINIT(ndp, LOOKUP, OP_OPEN, FOLLOW | AUDITVNPATH1, UIO_SYSSPACE,
1826 CAST_USER_ADDR_T(psfa->psfaa_openargs.psfao_path),
1827 imgp->ip_vfs_context);
1828
1829 error = open1(imgp->ip_vfs_context,
1830 ndp,
1831 psfa->psfaa_openargs.psfao_oflag,
1832 vap,
1833 fileproc_alloc_init, NULL,
1834 ival);
1835
1836 FREE(bufp, M_TEMP);
1837
1838 /*
1839 * If there's an error, or we get the right fd by
1840 * accident, then drop out here. This is easier than
1841 * reworking all the open code to preallocate fd
1842 * slots, and internally taking one as an argument.
1843 */
1844 if (error || ival[0] == psfa->psfaa_filedes)
1845 break;
1846
1847 origfd = ival[0];
1848 /*
1849 * If we didn't fall out from an error, we ended up
1850 * with the wrong fd; so now we've got to try to dup2
1851 * it to the right one.
1852 */
1853 dup2a.from = origfd;
1854 dup2a.to = psfa->psfaa_filedes;
1855
1856 /*
1857 * The dup2() system call implementation sets
1858 * ival to newfd in the success case, but we
1859 * can ignore that, since if we didn't get the
1860 * fd we wanted, the error will stop us.
1861 */
1862 error = dup2(p, &dup2a, ival);
1863 if (error)
1864 break;
1865
1866 /*
1867 * Finally, close the original fd.
1868 */
1869 ca.fd = origfd;
1870
1871 error = close_nocancel(p, &ca, ival);
1872 }
1873 break;
1874
1875 case PSFA_DUP2: {
1876 struct dup2_args dup2a;
1877
1878 dup2a.from = psfa->psfaa_filedes;
1879 dup2a.to = psfa->psfaa_openargs.psfao_oflag;
1880
1881 /*
1882 * The dup2() system call implementation sets
1883 * ival to newfd in the success case, but we
1884 * can ignore that, since if we didn't get the
1885 * fd we wanted, the error will stop us.
1886 */
1887 error = dup2(p, &dup2a, ival);
1888 }
1889 break;
1890
1891 case PSFA_CLOSE: {
1892 struct close_nocancel_args ca;
1893
1894 ca.fd = psfa->psfaa_filedes;
1895
1896 error = close_nocancel(p, &ca, ival);
1897 }
1898 break;
1899
1900 case PSFA_INHERIT: {
1901 struct fcntl_nocancel_args fcntla;
1902
1903 /*
1904 * Check to see if the descriptor exists, and
1905 * ensure it's -not- marked as close-on-exec.
1906 *
1907 * Attempting to "inherit" a guarded fd will
1908 * result in a error.
1909 */
1910 fcntla.fd = psfa->psfaa_filedes;
1911 fcntla.cmd = F_GETFD;
1912 if ((error = fcntl_nocancel(p, &fcntla, ival)) != 0)
1913 break;
1914
1915 if ((ival[0] & FD_CLOEXEC) == FD_CLOEXEC) {
1916 fcntla.fd = psfa->psfaa_filedes;
1917 fcntla.cmd = F_SETFD;
1918 fcntla.arg = ival[0] & ~FD_CLOEXEC;
1919 error = fcntl_nocancel(p, &fcntla, ival);
1920 }
1921
1922 }
1923 break;
1924
1925 default:
1926 error = EINVAL;
1927 break;
1928 }
1929
1930 /* All file actions failures are considered fatal, per POSIX */
1931
1932 if (error) {
1933 if (PSFA_OPEN == psfa->psfaa_type) {
1934 DTRACE_PROC1(spawn__open__failure, uintptr_t,
1935 psfa->psfaa_openargs.psfao_path);
1936 } else {
1937 DTRACE_PROC1(spawn__fd__failure, int, psfa->psfaa_filedes);
1938 }
1939 break;
1940 }
1941 }
1942
1943 if (error != 0 || (psa_flags & POSIX_SPAWN_CLOEXEC_DEFAULT) == 0)
1944 return (error);
1945
1946 /*
1947 * If POSIX_SPAWN_CLOEXEC_DEFAULT is set, behave (during
1948 * this spawn only) as if "close on exec" is the default
1949 * disposition of all pre-existing file descriptors. In this case,
1950 * the list of file descriptors mentioned in the file actions
1951 * are the only ones that can be inherited, so mark them now.
1952 *
1953 * The actual closing part comes later, in fdexec().
1954 */
1955 proc_fdlock(p);
1956 for (action = 0; action < px_sfap->psfa_act_count; action++) {
1957 _psfa_action_t *psfa = &px_sfap->psfa_act_acts[action];
1958 int fd = psfa->psfaa_filedes;
1959
1960 switch (psfa->psfaa_type) {
1961 case PSFA_DUP2:
1962 fd = psfa->psfaa_openargs.psfao_oflag;
1963 /*FALLTHROUGH*/
1964 case PSFA_OPEN:
1965 case PSFA_INHERIT:
1966 *fdflags(p, fd) |= UF_INHERIT;
1967 break;
1968
1969 case PSFA_CLOSE:
1970 break;
1971 }
1972 }
1973 proc_fdunlock(p);
1974
1975 return (0);
1976 }
1977
1978 #if CONFIG_MACF
1979 /*
1980 * exec_spawnattr_getmacpolicyinfo
1981 */
1982 void *
1983 exec_spawnattr_getmacpolicyinfo(const void *macextensions, const char *policyname, size_t *lenp)
1984 {
1985 const struct _posix_spawn_mac_policy_extensions *psmx = macextensions;
1986 int i;
1987
1988 if (psmx == NULL)
1989 return NULL;
1990
1991 for (i = 0; i < psmx->psmx_count; i++) {
1992 const _ps_mac_policy_extension_t *extension = &psmx->psmx_extensions[i];
1993 if (strncmp(extension->policyname, policyname, sizeof(extension->policyname)) == 0) {
1994 if (lenp != NULL)
1995 *lenp = extension->datalen;
1996 return extension->datap;
1997 }
1998 }
1999
2000 if (lenp != NULL)
2001 *lenp = 0;
2002 return NULL;
2003 }
2004
2005 static int
2006 spawn_copyin_macpolicyinfo(const struct user__posix_spawn_args_desc *px_args, _posix_spawn_mac_policy_extensions_t *psmxp)
2007 {
2008 _posix_spawn_mac_policy_extensions_t psmx = NULL;
2009 int error = 0;
2010 int copycnt = 0;
2011 int i = 0;
2012
2013 *psmxp = NULL;
2014
2015 if (px_args->mac_extensions_size < PS_MAC_EXTENSIONS_SIZE(1) ||
2016 px_args->mac_extensions_size > PAGE_SIZE) {
2017 error = EINVAL;
2018 goto bad;
2019 }
2020
2021 MALLOC(psmx, _posix_spawn_mac_policy_extensions_t, px_args->mac_extensions_size, M_TEMP, M_WAITOK);
2022 if ((error = copyin(px_args->mac_extensions, psmx, px_args->mac_extensions_size)) != 0)
2023 goto bad;
2024
2025 size_t extsize = PS_MAC_EXTENSIONS_SIZE(psmx->psmx_count);
2026 if (extsize == 0 || extsize > px_args->mac_extensions_size) {
2027 error = EINVAL;
2028 goto bad;
2029 }
2030
2031 for (i = 0; i < psmx->psmx_count; i++) {
2032 _ps_mac_policy_extension_t *extension = &psmx->psmx_extensions[i];
2033 if (extension->datalen == 0 || extension->datalen > PAGE_SIZE) {
2034 error = EINVAL;
2035 goto bad;
2036 }
2037 }
2038
2039 for (copycnt = 0; copycnt < psmx->psmx_count; copycnt++) {
2040 _ps_mac_policy_extension_t *extension = &psmx->psmx_extensions[copycnt];
2041 void *data = NULL;
2042
2043 MALLOC(data, void *, extension->datalen, M_TEMP, M_WAITOK);
2044 if ((error = copyin(extension->data, data, extension->datalen)) != 0) {
2045 FREE(data, M_TEMP);
2046 goto bad;
2047 }
2048 extension->datap = data;
2049 }
2050
2051 *psmxp = psmx;
2052 return 0;
2053
2054 bad:
2055 if (psmx != NULL) {
2056 for (i = 0; i < copycnt; i++)
2057 FREE(psmx->psmx_extensions[i].datap, M_TEMP);
2058 FREE(psmx, M_TEMP);
2059 }
2060 return error;
2061 }
2062
2063 static void
2064 spawn_free_macpolicyinfo(_posix_spawn_mac_policy_extensions_t psmx)
2065 {
2066 int i;
2067
2068 if (psmx == NULL)
2069 return;
2070 for (i = 0; i < psmx->psmx_count; i++)
2071 FREE(psmx->psmx_extensions[i].datap, M_TEMP);
2072 FREE(psmx, M_TEMP);
2073 }
2074 #endif /* CONFIG_MACF */
2075
2076 #if CONFIG_COALITIONS
2077 static inline void spawn_coalitions_release_all(coalition_t coal[COALITION_NUM_TYPES])
2078 {
2079 for (int c = 0; c < COALITION_NUM_TYPES; c++) {
2080 if (coal[c]) {
2081 coalition_remove_active(coal[c]);
2082 coalition_release(coal[c]);
2083 }
2084 }
2085 }
2086 #endif
2087
2088 #if CONFIG_PERSONAS
2089 static int spawn_validate_persona(struct _posix_spawn_persona_info *px_persona)
2090 {
2091 int error = 0;
2092 struct persona *persona = NULL;
2093 int verify = px_persona->pspi_flags & POSIX_SPAWN_PERSONA_FLAGS_VERIFY;
2094
2095 /*
2096 * TODO: rdar://problem/19981151
2097 * Add entitlement check!
2098 */
2099 if (!kauth_cred_issuser(kauth_cred_get()))
2100 return EPERM;
2101
2102 persona = persona_lookup(px_persona->pspi_id);
2103 if (!persona) {
2104 error = ESRCH;
2105 goto out;
2106 }
2107
2108 if (verify) {
2109 if (px_persona->pspi_flags & POSIX_SPAWN_PERSONA_UID) {
2110 if (px_persona->pspi_uid != persona_get_uid(persona)) {
2111 error = EINVAL;
2112 goto out;
2113 }
2114 }
2115 if (px_persona->pspi_flags & POSIX_SPAWN_PERSONA_GID) {
2116 if (px_persona->pspi_gid != persona_get_gid(persona)) {
2117 error = EINVAL;
2118 goto out;
2119 }
2120 }
2121 if (px_persona->pspi_flags & POSIX_SPAWN_PERSONA_GROUPS) {
2122 unsigned ngroups = 0;
2123 gid_t groups[NGROUPS_MAX];
2124
2125 if (persona_get_groups(persona, &ngroups, groups,
2126 px_persona->pspi_ngroups) != 0) {
2127 error = EINVAL;
2128 goto out;
2129 }
2130 if (ngroups != px_persona->pspi_ngroups) {
2131 error = EINVAL;
2132 goto out;
2133 }
2134 while (ngroups--) {
2135 if (px_persona->pspi_groups[ngroups] != groups[ngroups]) {
2136 error = EINVAL;
2137 goto out;
2138 }
2139 }
2140 if (px_persona->pspi_gmuid != persona_get_gmuid(persona)) {
2141 error = EINVAL;
2142 goto out;
2143 }
2144 }
2145 }
2146
2147 out:
2148 if (persona)
2149 persona_put(persona);
2150
2151 return error;
2152 }
2153
2154 static int spawn_persona_adopt(proc_t p, struct _posix_spawn_persona_info *px_persona)
2155 {
2156 int ret;
2157 kauth_cred_t cred;
2158 struct persona *persona = NULL;
2159 int override = !!(px_persona->pspi_flags & POSIX_SPAWN_PERSONA_FLAGS_OVERRIDE);
2160
2161 if (!override)
2162 return persona_proc_adopt_id(p, px_persona->pspi_id, NULL);
2163
2164 /*
2165 * we want to spawn into the given persona, but we want to override
2166 * the kauth with a different UID/GID combo
2167 */
2168 persona = persona_lookup(px_persona->pspi_id);
2169 if (!persona)
2170 return ESRCH;
2171
2172 cred = persona_get_cred(persona);
2173 if (!cred) {
2174 ret = EINVAL;
2175 goto out;
2176 }
2177
2178 if (px_persona->pspi_flags & POSIX_SPAWN_PERSONA_UID) {
2179 cred = kauth_cred_setresuid(cred,
2180 px_persona->pspi_uid,
2181 px_persona->pspi_uid,
2182 px_persona->pspi_uid,
2183 KAUTH_UID_NONE);
2184 }
2185
2186 if (px_persona->pspi_flags & POSIX_SPAWN_PERSONA_GID) {
2187 cred = kauth_cred_setresgid(cred,
2188 px_persona->pspi_gid,
2189 px_persona->pspi_gid,
2190 px_persona->pspi_gid);
2191 }
2192
2193 if (px_persona->pspi_flags & POSIX_SPAWN_PERSONA_GROUPS) {
2194 cred = kauth_cred_setgroups(cred,
2195 px_persona->pspi_groups,
2196 px_persona->pspi_ngroups,
2197 px_persona->pspi_gmuid);
2198 }
2199
2200 ret = persona_proc_adopt(p, persona, cred);
2201
2202 out:
2203 persona_put(persona);
2204 return ret;
2205 }
2206 #endif
2207
2208 /*
2209 * posix_spawn
2210 *
2211 * Parameters: uap->pid Pointer to pid return area
2212 * uap->fname File name to exec
2213 * uap->argp Argument list
2214 * uap->envp Environment list
2215 *
2216 * Returns: 0 Success
2217 * EINVAL Invalid argument
2218 * ENOTSUP Not supported
2219 * ENOEXEC Executable file format error
2220 * exec_activate_image:EINVAL Invalid argument
2221 * exec_activate_image:EACCES Permission denied
2222 * exec_activate_image:EINTR Interrupted function
2223 * exec_activate_image:ENOMEM Not enough space
2224 * exec_activate_image:EFAULT Bad address
2225 * exec_activate_image:ENAMETOOLONG Filename too long
2226 * exec_activate_image:ENOEXEC Executable file format error
2227 * exec_activate_image:ETXTBSY Text file busy [misuse of error code]
2228 * exec_activate_image:EBADEXEC The executable is corrupt/unknown
2229 * exec_activate_image:???
2230 * mac_execve_enter:???
2231 *
2232 * TODO: Expect to need __mac_posix_spawn() at some point...
2233 * Handle posix_spawnattr_t
2234 * Handle posix_spawn_file_actions_t
2235 */
2236 int
2237 posix_spawn(proc_t ap, struct posix_spawn_args *uap, int32_t *retval)
2238 {
2239 proc_t p = ap; /* quiet bogus GCC vfork() warning */
2240 user_addr_t pid = uap->pid;
2241 int ival[2]; /* dummy retval for setpgid() */
2242 char *bufp = NULL;
2243 struct image_params *imgp;
2244 struct vnode_attr *vap;
2245 struct vnode_attr *origvap;
2246 struct uthread *uthread = 0; /* compiler complains if not set to 0*/
2247 int error, sig;
2248 int is_64 = IS_64BIT_PROCESS(p);
2249 struct vfs_context context;
2250 struct user__posix_spawn_args_desc px_args;
2251 struct _posix_spawnattr px_sa;
2252 _posix_spawn_file_actions_t px_sfap = NULL;
2253 _posix_spawn_port_actions_t px_spap = NULL;
2254 struct __kern_sigaction vec;
2255 boolean_t spawn_no_exec = FALSE;
2256 boolean_t proc_transit_set = TRUE;
2257 boolean_t exec_done = FALSE;
2258 int portwatch_count = 0;
2259 ipc_port_t * portwatch_ports = NULL;
2260 vm_size_t px_sa_offset = offsetof(struct _posix_spawnattr, psa_ports);
2261 task_t old_task = current_task();
2262 task_t new_task = NULL;
2263 boolean_t should_release_proc_ref = FALSE;
2264 void *inherit = NULL;
2265 #if CONFIG_PERSONAS
2266 struct _posix_spawn_persona_info *px_persona = NULL;
2267 #endif
2268
2269 /*
2270 * Allocate a big chunk for locals instead of using stack since these
2271 * structures are pretty big.
2272 */
2273 MALLOC(bufp, char *, (sizeof(*imgp) + sizeof(*vap) + sizeof(*origvap)), M_TEMP, M_WAITOK | M_ZERO);
2274 imgp = (struct image_params *) bufp;
2275 if (bufp == NULL) {
2276 error = ENOMEM;
2277 goto bad;
2278 }
2279 vap = (struct vnode_attr *) (bufp + sizeof(*imgp));
2280 origvap = (struct vnode_attr *) (bufp + sizeof(*imgp) + sizeof(*vap));
2281
2282 /* Initialize the common data in the image_params structure */
2283 imgp->ip_user_fname = uap->path;
2284 imgp->ip_user_argv = uap->argv;
2285 imgp->ip_user_envv = uap->envp;
2286 imgp->ip_vattr = vap;
2287 imgp->ip_origvattr = origvap;
2288 imgp->ip_vfs_context = &context;
2289 imgp->ip_flags = (is_64 ? IMGPF_WAS_64BIT_ADDR : IMGPF_NONE);
2290 imgp->ip_seg = (is_64 ? UIO_USERSPACE64 : UIO_USERSPACE32);
2291 imgp->ip_mac_return = 0;
2292 imgp->ip_px_persona = NULL;
2293 imgp->ip_cs_error = OS_REASON_NULL;
2294
2295 if (uap->adesc != USER_ADDR_NULL) {
2296 if(is_64) {
2297 error = copyin(uap->adesc, &px_args, sizeof(px_args));
2298 } else {
2299 struct user32__posix_spawn_args_desc px_args32;
2300
2301 error = copyin(uap->adesc, &px_args32, sizeof(px_args32));
2302
2303 /*
2304 * Convert arguments descriptor from external 32 bit
2305 * representation to internal 64 bit representation
2306 */
2307 px_args.attr_size = px_args32.attr_size;
2308 px_args.attrp = CAST_USER_ADDR_T(px_args32.attrp);
2309 px_args.file_actions_size = px_args32.file_actions_size;
2310 px_args.file_actions = CAST_USER_ADDR_T(px_args32.file_actions);
2311 px_args.port_actions_size = px_args32.port_actions_size;
2312 px_args.port_actions = CAST_USER_ADDR_T(px_args32.port_actions);
2313 px_args.mac_extensions_size = px_args32.mac_extensions_size;
2314 px_args.mac_extensions = CAST_USER_ADDR_T(px_args32.mac_extensions);
2315 px_args.coal_info_size = px_args32.coal_info_size;
2316 px_args.coal_info = CAST_USER_ADDR_T(px_args32.coal_info);
2317 px_args.persona_info_size = px_args32.persona_info_size;
2318 px_args.persona_info = CAST_USER_ADDR_T(px_args32.persona_info);
2319 }
2320 if (error)
2321 goto bad;
2322
2323 if (px_args.attr_size != 0) {
2324 /*
2325 * We are not copying the port_actions pointer,
2326 * because we already have it from px_args.
2327 * This is a bit fragile: <rdar://problem/16427422>
2328 */
2329
2330 if ((error = copyin(px_args.attrp, &px_sa, px_sa_offset)) != 0) {
2331 goto bad;
2332 }
2333
2334 bzero( (void *)( (unsigned long) &px_sa + px_sa_offset), sizeof(px_sa) - px_sa_offset );
2335
2336 imgp->ip_px_sa = &px_sa;
2337 }
2338 if (px_args.file_actions_size != 0) {
2339 /* Limit file_actions to allowed number of open files */
2340 int maxfa = (p->p_limit ? p->p_rlimit[RLIMIT_NOFILE].rlim_cur : NOFILE);
2341 size_t maxfa_size = PSF_ACTIONS_SIZE(maxfa);
2342 if (px_args.file_actions_size < PSF_ACTIONS_SIZE(1) ||
2343 maxfa_size == 0 || px_args.file_actions_size > maxfa_size) {
2344 error = EINVAL;
2345 goto bad;
2346 }
2347 MALLOC(px_sfap, _posix_spawn_file_actions_t, px_args.file_actions_size, M_TEMP, M_WAITOK);
2348 if (px_sfap == NULL) {
2349 error = ENOMEM;
2350 goto bad;
2351 }
2352 imgp->ip_px_sfa = px_sfap;
2353
2354 if ((error = copyin(px_args.file_actions, px_sfap,
2355 px_args.file_actions_size)) != 0)
2356 goto bad;
2357
2358 /* Verify that the action count matches the struct size */
2359 size_t psfsize = PSF_ACTIONS_SIZE(px_sfap->psfa_act_count);
2360 if (psfsize == 0 || psfsize != px_args.file_actions_size) {
2361 error = EINVAL;
2362 goto bad;
2363 }
2364 }
2365 if (px_args.port_actions_size != 0) {
2366 /* Limit port_actions to one page of data */
2367 if (px_args.port_actions_size < PS_PORT_ACTIONS_SIZE(1) ||
2368 px_args.port_actions_size > PAGE_SIZE) {
2369 error = EINVAL;
2370 goto bad;
2371 }
2372
2373 MALLOC(px_spap, _posix_spawn_port_actions_t,
2374 px_args.port_actions_size, M_TEMP, M_WAITOK);
2375 if (px_spap == NULL) {
2376 error = ENOMEM;
2377 goto bad;
2378 }
2379 imgp->ip_px_spa = px_spap;
2380
2381 if ((error = copyin(px_args.port_actions, px_spap,
2382 px_args.port_actions_size)) != 0)
2383 goto bad;
2384
2385 /* Verify that the action count matches the struct size */
2386 size_t pasize = PS_PORT_ACTIONS_SIZE(px_spap->pspa_count);
2387 if (pasize == 0 || pasize != px_args.port_actions_size) {
2388 error = EINVAL;
2389 goto bad;
2390 }
2391 }
2392 #if CONFIG_PERSONAS
2393 /* copy in the persona info */
2394 if (px_args.persona_info_size != 0 && px_args.persona_info != 0) {
2395 /* for now, we need the exact same struct in user space */
2396 if (px_args.persona_info_size != sizeof(*px_persona)) {
2397 error = ERANGE;
2398 goto bad;
2399 }
2400
2401 MALLOC(px_persona, struct _posix_spawn_persona_info *, px_args.persona_info_size, M_TEMP, M_WAITOK|M_ZERO);
2402 if (px_persona == NULL) {
2403 error = ENOMEM;
2404 goto bad;
2405 }
2406 imgp->ip_px_persona = px_persona;
2407
2408 if ((error = copyin(px_args.persona_info, px_persona,
2409 px_args.persona_info_size)) != 0)
2410 goto bad;
2411 if ((error = spawn_validate_persona(px_persona)) != 0)
2412 goto bad;
2413 }
2414 #endif
2415 #if CONFIG_MACF
2416 if (px_args.mac_extensions_size != 0) {
2417 if ((error = spawn_copyin_macpolicyinfo(&px_args, (_posix_spawn_mac_policy_extensions_t *)&imgp->ip_px_smpx)) != 0)
2418 goto bad;
2419 }
2420 #endif /* CONFIG_MACF */
2421 }
2422
2423 /* set uthread to parent */
2424 uthread = get_bsdthread_info(current_thread());
2425
2426 /*
2427 * <rdar://6640530>; this does not result in a behaviour change
2428 * relative to Leopard, so there should not be any existing code
2429 * which depends on it.
2430 */
2431 if (uthread->uu_flag & UT_VFORK) {
2432 error = EINVAL;
2433 goto bad;
2434 }
2435
2436 /*
2437 * If we don't have the extension flag that turns "posix_spawn()"
2438 * into "execve() with options", then we will be creating a new
2439 * process which does not inherit memory from the parent process,
2440 * which is one of the most expensive things about using fork()
2441 * and execve().
2442 */
2443 if (imgp->ip_px_sa == NULL || !(px_sa.psa_flags & POSIX_SPAWN_SETEXEC)){
2444
2445 /* Set the new task's coalition, if it is requested. */
2446 coalition_t coal[COALITION_NUM_TYPES] = { COALITION_NULL };
2447 #if CONFIG_COALITIONS
2448 int i, ncoals;
2449 kern_return_t kr = KERN_SUCCESS;
2450 struct _posix_spawn_coalition_info coal_info;
2451 int coal_role[COALITION_NUM_TYPES];
2452
2453 if (imgp->ip_px_sa == NULL || !px_args.coal_info)
2454 goto do_fork1;
2455
2456 memset(&coal_info, 0, sizeof(coal_info));
2457
2458 if (px_args.coal_info_size > sizeof(coal_info))
2459 px_args.coal_info_size = sizeof(coal_info);
2460 error = copyin(px_args.coal_info,
2461 &coal_info, px_args.coal_info_size);
2462 if (error != 0)
2463 goto bad;
2464
2465 ncoals = 0;
2466 for (i = 0; i < COALITION_NUM_TYPES; i++) {
2467 uint64_t cid = coal_info.psci_info[i].psci_id;
2468 if (cid != 0) {
2469 /*
2470 * don't allow tasks which are not in a
2471 * privileged coalition to spawn processes
2472 * into coalitions other than their own
2473 */
2474 if (!task_is_in_privileged_coalition(p->task, i)) {
2475 coal_dbg("ERROR: %d not in privilegd "
2476 "coalition of type %d",
2477 p->p_pid, i);
2478 spawn_coalitions_release_all(coal);
2479 error = EPERM;
2480 goto bad;
2481 }
2482
2483 coal_dbg("searching for coalition id:%llu", cid);
2484 /*
2485 * take a reference and activation on the
2486 * coalition to guard against free-while-spawn
2487 * races
2488 */
2489 coal[i] = coalition_find_and_activate_by_id(cid);
2490 if (coal[i] == COALITION_NULL) {
2491 coal_dbg("could not find coalition id:%llu "
2492 "(perhaps it has been terminated or reaped)", cid);
2493 /*
2494 * release any other coalition's we
2495 * may have a reference to
2496 */
2497 spawn_coalitions_release_all(coal);
2498 error = ESRCH;
2499 goto bad;
2500 }
2501 if (coalition_type(coal[i]) != i) {
2502 coal_dbg("coalition with id:%lld is not of type:%d"
2503 " (it's type:%d)", cid, i, coalition_type(coal[i]));
2504 error = ESRCH;
2505 goto bad;
2506 }
2507 coal_role[i] = coal_info.psci_info[i].psci_role;
2508 ncoals++;
2509 }
2510 }
2511 if (ncoals < COALITION_NUM_TYPES) {
2512 /*
2513 * If the user is attempting to spawn into a subset of
2514 * the known coalition types, then make sure they have
2515 * _at_least_ specified a resource coalition. If not,
2516 * the following fork1() call will implicitly force an
2517 * inheritance from 'p' and won't actually spawn the
2518 * new task into the coalitions the user specified.
2519 * (also the call to coalitions_set_roles will panic)
2520 */
2521 if (coal[COALITION_TYPE_RESOURCE] == COALITION_NULL) {
2522 spawn_coalitions_release_all(coal);
2523 error = EINVAL;
2524 goto bad;
2525 }
2526 }
2527 do_fork1:
2528 #endif /* CONFIG_COALITIONS */
2529
2530 /*
2531 * note that this will implicitly inherit the
2532 * caller's persona (if it exists)
2533 */
2534 error = fork1(p, &imgp->ip_new_thread, PROC_CREATE_SPAWN, coal);
2535 /* returns a thread and task reference */
2536
2537 if (error == 0) {
2538 new_task = get_threadtask(imgp->ip_new_thread);
2539 }
2540 #if CONFIG_COALITIONS
2541 /* set the roles of this task within each given coalition */
2542 if (error == 0) {
2543 kr = coalitions_set_roles(coal, new_task, coal_role);
2544 if (kr != KERN_SUCCESS)
2545 error = EINVAL;
2546 if (kdebug_debugid_enabled(MACHDBG_CODE(DBG_MACH_COALITION,
2547 MACH_COALITION_ADOPT))) {
2548 for (i = 0; i < COALITION_NUM_TYPES; i++) {
2549 if (coal[i] != COALITION_NULL) {
2550 /*
2551 * On 32-bit targets, uniqueid
2552 * will get truncated to 32 bits
2553 */
2554 KDBG_RELEASE(MACHDBG_CODE(
2555 DBG_MACH_COALITION,
2556 MACH_COALITION_ADOPT),
2557 coalition_id(coal[i]),
2558 get_task_uniqueid(new_task));
2559 }
2560 }
2561 }
2562 }
2563
2564 /* drop our references and activations - fork1() now holds them */
2565 spawn_coalitions_release_all(coal);
2566 #endif /* CONFIG_COALITIONS */
2567 if (error != 0) {
2568 goto bad;
2569 }
2570 imgp->ip_flags |= IMGPF_SPAWN; /* spawn w/o exec */
2571 spawn_no_exec = TRUE; /* used in later tests */
2572
2573 #if CONFIG_PERSONAS
2574 /*
2575 * If the parent isn't in a persona (launchd), and
2576 * hasn't specified a new persona for the process,
2577 * then we'll put the process into the system persona
2578 *
2579 * TODO: this will have to be re-worked because as of
2580 * now, without any launchd adoption, the resulting
2581 * xpcproxy process will not have sufficient
2582 * privileges to setuid/gid.
2583 */
2584 #if 0
2585 if (!proc_has_persona(p) && imgp->ip_px_persona == NULL) {
2586 MALLOC(px_persona, struct _posix_spawn_persona_info *,
2587 sizeof(*px_persona), M_TEMP, M_WAITOK|M_ZERO);
2588 if (px_persona == NULL) {
2589 error = ENOMEM;
2590 goto bad;
2591 }
2592 px_persona->pspi_id = persona_get_id(g_system_persona);
2593 imgp->ip_px_persona = px_persona;
2594 }
2595 #endif /* 0 */
2596 #endif /* CONFIG_PERSONAS */
2597 } else {
2598 /*
2599 * For execve case, create a new task and thread
2600 * which points to current_proc. The current_proc will point
2601 * to the new task after image activation and proc ref drain.
2602 *
2603 * proc (current_proc) <----- old_task (current_task)
2604 * ^ | ^
2605 * | | |
2606 * | ----------------------------------
2607 * |
2608 * --------- new_task (task marked as TF_EXEC_COPY)
2609 *
2610 * After image activation, the proc will point to the new task
2611 * and would look like following.
2612 *
2613 * proc (current_proc) <----- old_task (current_task, marked as TPF_DID_EXEC)
2614 * ^ |
2615 * | |
2616 * | ----------> new_task
2617 * | |
2618 * -----------------
2619 *
2620 * During exec any transition from new_task -> proc is fine, but don't allow
2621 * transition from proc->task, since it will modify old_task.
2622 */
2623 imgp->ip_new_thread = fork_create_child(old_task,
2624 NULL,
2625 p,
2626 FALSE,
2627 p->p_flag & P_LP64,
2628 task_get_64bit_data(old_task),
2629 TRUE);
2630 /* task and thread ref returned by fork_create_child */
2631 if (imgp->ip_new_thread == NULL) {
2632 error = ENOMEM;
2633 goto bad;
2634 }
2635
2636 new_task = get_threadtask(imgp->ip_new_thread);
2637 imgp->ip_flags |= IMGPF_EXEC;
2638 }
2639
2640 if (spawn_no_exec) {
2641 p = (proc_t)get_bsdthreadtask_info(imgp->ip_new_thread);
2642
2643 /*
2644 * We had to wait until this point before firing the
2645 * proc:::create probe, otherwise p would not point to the
2646 * child process.
2647 */
2648 DTRACE_PROC1(create, proc_t, p);
2649 }
2650 assert(p != NULL);
2651
2652 context.vc_thread = imgp->ip_new_thread;
2653 context.vc_ucred = p->p_ucred; /* XXX must NOT be kauth_cred_get() */
2654
2655 /*
2656 * Post fdcopy(), pre exec_handle_sugid() - this is where we want
2657 * to handle the file_actions. Since vfork() also ends up setting
2658 * us into the parent process group, and saved off the signal flags,
2659 * this is also where we want to handle the spawn flags.
2660 */
2661
2662 /* Has spawn file actions? */
2663 if (imgp->ip_px_sfa != NULL) {
2664 /*
2665 * The POSIX_SPAWN_CLOEXEC_DEFAULT flag
2666 * is handled in exec_handle_file_actions().
2667 */
2668 if ((error = exec_handle_file_actions(imgp,
2669 imgp->ip_px_sa != NULL ? px_sa.psa_flags : 0)) != 0)
2670 goto bad;
2671 }
2672
2673 /* Has spawn port actions? */
2674 if (imgp->ip_px_spa != NULL) {
2675 boolean_t is_adaptive = FALSE;
2676 boolean_t portwatch_present = FALSE;
2677
2678 /* Will this process become adaptive? The apptype isn't ready yet, so we can't look there. */
2679 if (imgp->ip_px_sa != NULL && px_sa.psa_apptype == POSIX_SPAWN_PROC_TYPE_DAEMON_ADAPTIVE)
2680 is_adaptive = TRUE;
2681
2682 /*
2683 * portwatch only:
2684 * Allocate a place to store the ports we want to bind to the new task
2685 * We can't bind them until after the apptype is set.
2686 */
2687 if (px_spap->pspa_count != 0 && is_adaptive) {
2688 portwatch_count = px_spap->pspa_count;
2689 MALLOC(portwatch_ports, ipc_port_t *, (sizeof(ipc_port_t) * portwatch_count), M_TEMP, M_WAITOK | M_ZERO);
2690 } else {
2691 portwatch_ports = NULL;
2692 }
2693
2694 if ((error = exec_handle_port_actions(imgp, &portwatch_present, portwatch_ports)) != 0)
2695 goto bad;
2696
2697 if (portwatch_present == FALSE && portwatch_ports != NULL) {
2698 FREE(portwatch_ports, M_TEMP);
2699 portwatch_ports = NULL;
2700 portwatch_count = 0;
2701 }
2702 }
2703
2704 /* Has spawn attr? */
2705 if (imgp->ip_px_sa != NULL) {
2706 /*
2707 * Set the process group ID of the child process; this has
2708 * to happen before the image activation.
2709 */
2710 if (px_sa.psa_flags & POSIX_SPAWN_SETPGROUP) {
2711 struct setpgid_args spga;
2712 spga.pid = p->p_pid;
2713 spga.pgid = px_sa.psa_pgroup;
2714 /*
2715 * Effectively, call setpgid() system call; works
2716 * because there are no pointer arguments.
2717 */
2718 if((error = setpgid(p, &spga, ival)) != 0)
2719 goto bad;
2720 }
2721
2722 /*
2723 * Reset UID/GID to parent's RUID/RGID; This works only
2724 * because the operation occurs *after* the vfork() and
2725 * before the call to exec_handle_sugid() by the image
2726 * activator called from exec_activate_image(). POSIX
2727 * requires that any setuid/setgid bits on the process
2728 * image will take precedence over the spawn attributes
2729 * (re)setting them.
2730 *
2731 * Modifications to p_ucred must be guarded using the
2732 * proc's ucred lock. This prevents others from accessing
2733 * a garbage credential.
2734 */
2735 while (px_sa.psa_flags & POSIX_SPAWN_RESETIDS) {
2736 kauth_cred_t my_cred = kauth_cred_proc_ref(p);
2737 kauth_cred_t my_new_cred = kauth_cred_setuidgid(my_cred, kauth_cred_getruid(my_cred), kauth_cred_getrgid(my_cred));
2738
2739 if (my_cred == my_new_cred) {
2740 kauth_cred_unref(&my_cred);
2741 break;
2742 }
2743
2744 /* update cred on proc */
2745 proc_ucred_lock(p);
2746
2747 if (p->p_ucred != my_cred) {
2748 proc_ucred_unlock(p);
2749 kauth_cred_unref(&my_new_cred);
2750 continue;
2751 }
2752
2753 /* donate cred reference on my_new_cred to p->p_ucred */
2754 p->p_ucred = my_new_cred;
2755 PROC_UPDATE_CREDS_ONPROC(p);
2756 proc_ucred_unlock(p);
2757
2758 /* drop additional reference that was taken on the previous cred */
2759 kauth_cred_unref(&my_cred);
2760 }
2761
2762 #if CONFIG_PERSONAS
2763 if (spawn_no_exec && imgp->ip_px_persona != NULL) {
2764 /*
2765 * If we were asked to spawn a process into a new persona,
2766 * do the credential switch now (which may override the UID/GID
2767 * inherit done just above). It's important to do this switch
2768 * before image activation both for reasons stated above, and
2769 * to ensure that the new persona has access to the image/file
2770 * being executed.
2771 */
2772 error = spawn_persona_adopt(p, imgp->ip_px_persona);
2773 if (error != 0)
2774 goto bad;
2775 }
2776 #endif /* CONFIG_PERSONAS */
2777 #if !SECURE_KERNEL
2778 /*
2779 * Disable ASLR for the spawned process.
2780 *
2781 * But only do so if we are not embedded + RELEASE.
2782 * While embedded allows for a boot-arg (-disable_aslr)
2783 * to deal with this (which itself is only honored on
2784 * DEVELOPMENT or DEBUG builds of xnu), it is often
2785 * useful or necessary to disable ASLR on a per-process
2786 * basis for unit testing and debugging.
2787 */
2788 if (px_sa.psa_flags & _POSIX_SPAWN_DISABLE_ASLR)
2789 OSBitOrAtomic(P_DISABLE_ASLR, &p->p_flag);
2790 #endif /* !SECURE_KERNEL */
2791
2792 /* Randomize high bits of ASLR slide */
2793 if (px_sa.psa_flags & _POSIX_SPAWN_HIGH_BITS_ASLR)
2794 imgp->ip_flags |= IMGPF_HIGH_BITS_ASLR;
2795
2796 /*
2797 * Forcibly disallow execution from data pages for the spawned process
2798 * even if it would otherwise be permitted by the architecture default.
2799 */
2800 if (px_sa.psa_flags & _POSIX_SPAWN_ALLOW_DATA_EXEC)
2801 imgp->ip_flags |= IMGPF_ALLOW_DATA_EXEC;
2802 }
2803
2804 /*
2805 * Disable ASLR during image activation. This occurs either if the
2806 * _POSIX_SPAWN_DISABLE_ASLR attribute was found above or if
2807 * P_DISABLE_ASLR was inherited from the parent process.
2808 */
2809 if (p->p_flag & P_DISABLE_ASLR)
2810 imgp->ip_flags |= IMGPF_DISABLE_ASLR;
2811
2812 /*
2813 * Clear transition flag so we won't hang if exec_activate_image() causes
2814 * an automount (and launchd does a proc sysctl to service it).
2815 *
2816 * <rdar://problem/6848672>, <rdar://problem/5959568>.
2817 */
2818 if (spawn_no_exec) {
2819 proc_transend(p, 0);
2820 proc_transit_set = 0;
2821 }
2822
2823 #if MAC_SPAWN /* XXX */
2824 if (uap->mac_p != USER_ADDR_NULL) {
2825 error = mac_execve_enter(uap->mac_p, imgp);
2826 if (error)
2827 goto bad;
2828 }
2829 #endif
2830
2831 /*
2832 * Activate the image
2833 */
2834 error = exec_activate_image(imgp);
2835
2836 if (error == 0 && !spawn_no_exec) {
2837 p = proc_exec_switch_task(p, old_task, new_task, imgp->ip_new_thread);
2838 /* proc ref returned */
2839 should_release_proc_ref = TRUE;
2840
2841 /*
2842 * Need to transfer pending watch port boosts to the new task while still making
2843 * sure that the old task remains in the importance linkage. Create an importance
2844 * linkage from old task to new task, then switch the task importance base
2845 * of old task and new task. After the switch the port watch boost will be
2846 * boosting the new task and new task will be donating importance to old task.
2847 */
2848 inherit = ipc_importance_exec_switch_task(old_task, new_task);
2849 }
2850
2851 if (error == 0) {
2852 /* process completed the exec */
2853 exec_done = TRUE;
2854 } else if (error == -1) {
2855 /* Image not claimed by any activator? */
2856 error = ENOEXEC;
2857 }
2858
2859 /*
2860 * If we have a spawn attr, and it contains signal related flags,
2861 * the we need to process them in the "context" of the new child
2862 * process, so we have to process it following image activation,
2863 * prior to making the thread runnable in user space. This is
2864 * necessitated by some signal information being per-thread rather
2865 * than per-process, and we don't have the new allocation in hand
2866 * until after the image is activated.
2867 */
2868 if (!error && imgp->ip_px_sa != NULL) {
2869 thread_t child_thread = imgp->ip_new_thread;
2870 uthread_t child_uthread = get_bsdthread_info(child_thread);
2871
2872 /*
2873 * Mask a list of signals, instead of them being unmasked, if
2874 * they were unmasked in the parent; note that some signals
2875 * are not maskable.
2876 */
2877 if (px_sa.psa_flags & POSIX_SPAWN_SETSIGMASK)
2878 child_uthread->uu_sigmask = (px_sa.psa_sigmask & ~sigcantmask);
2879 /*
2880 * Default a list of signals instead of ignoring them, if
2881 * they were ignored in the parent. Note that we pass
2882 * spawn_no_exec to setsigvec() to indicate that we called
2883 * fork1() and therefore do not need to call proc_signalstart()
2884 * internally.
2885 */
2886 if (px_sa.psa_flags & POSIX_SPAWN_SETSIGDEF) {
2887 vec.sa_handler = SIG_DFL;
2888 vec.sa_tramp = 0;
2889 vec.sa_mask = 0;
2890 vec.sa_flags = 0;
2891 for (sig = 1; sig < NSIG; sig++)
2892 if (px_sa.psa_sigdefault & (1 << (sig-1))) {
2893 error = setsigvec(p, child_thread, sig, &vec, spawn_no_exec);
2894 }
2895 }
2896
2897 /*
2898 * Activate the CPU usage monitor, if requested. This is done via a task-wide, per-thread CPU
2899 * usage limit, which will generate a resource exceeded exception if any one thread exceeds the
2900 * limit.
2901 *
2902 * Userland gives us interval in seconds, and the kernel SPI expects nanoseconds.
2903 */
2904 if (px_sa.psa_cpumonitor_percent != 0) {
2905 /*
2906 * Always treat a CPU monitor activation coming from spawn as entitled. Requiring
2907 * an entitlement to configure the monitor a certain way seems silly, since
2908 * whomever is turning it on could just as easily choose not to do so.
2909 */
2910 error = proc_set_task_ruse_cpu(p->task,
2911 TASK_POLICY_RESOURCE_ATTRIBUTE_NOTIFY_EXC,
2912 px_sa.psa_cpumonitor_percent,
2913 px_sa.psa_cpumonitor_interval * NSEC_PER_SEC,
2914 0, TRUE);
2915 }
2916 }
2917
2918 bad:
2919
2920 if (error == 0) {
2921 /* reset delay idle sleep status if set */
2922 #if !CONFIG_EMBEDDED
2923 if ((p->p_flag & P_DELAYIDLESLEEP) == P_DELAYIDLESLEEP)
2924 OSBitAndAtomic(~((uint32_t)P_DELAYIDLESLEEP), &p->p_flag);
2925 #endif /* !CONFIG_EMBEDDED */
2926 /* upon successful spawn, re/set the proc control state */
2927 if (imgp->ip_px_sa != NULL) {
2928 switch (px_sa.psa_pcontrol) {
2929 case POSIX_SPAWN_PCONTROL_THROTTLE:
2930 p->p_pcaction = P_PCTHROTTLE;
2931 break;
2932 case POSIX_SPAWN_PCONTROL_SUSPEND:
2933 p->p_pcaction = P_PCSUSP;
2934 break;
2935 case POSIX_SPAWN_PCONTROL_KILL:
2936 p->p_pcaction = P_PCKILL;
2937 break;
2938 case POSIX_SPAWN_PCONTROL_NONE:
2939 default:
2940 p->p_pcaction = 0;
2941 break;
2942 };
2943 }
2944 exec_resettextvp(p, imgp);
2945
2946 #if CONFIG_MEMORYSTATUS
2947 /* Has jetsam attributes? */
2948 if (imgp->ip_px_sa != NULL && (px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_SET)) {
2949 /*
2950 * With 2-level high-water-mark support, POSIX_SPAWN_JETSAM_HIWATER_BACKGROUND is no
2951 * longer relevant, as background limits are described via the inactive limit slots.
2952 *
2953 * That said, however, if the POSIX_SPAWN_JETSAM_HIWATER_BACKGROUND is passed in,
2954 * we attempt to mimic previous behavior by forcing the BG limit data into the
2955 * inactive/non-fatal mode and force the active slots to hold system_wide/fatal mode.
2956 */
2957 if (px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_HIWATER_BACKGROUND) {
2958 memorystatus_update(p, px_sa.psa_priority, 0,
2959 (px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_USE_EFFECTIVE_PRIORITY),
2960 TRUE,
2961 -1, TRUE,
2962 px_sa.psa_memlimit_inactive, FALSE);
2963 } else {
2964 memorystatus_update(p, px_sa.psa_priority, 0,
2965 (px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_USE_EFFECTIVE_PRIORITY),
2966 TRUE,
2967 px_sa.psa_memlimit_active,
2968 (px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_MEMLIMIT_ACTIVE_FATAL),
2969 px_sa.psa_memlimit_inactive,
2970 (px_sa.psa_jetsam_flags & POSIX_SPAWN_JETSAM_MEMLIMIT_INACTIVE_FATAL));
2971 }
2972
2973 }
2974 #endif /* CONFIG_MEMORYSTATUS */
2975 if (imgp->ip_px_sa != NULL && px_sa.psa_thread_limit > 0) {
2976 task_set_thread_limit(new_task, (uint16_t)px_sa.psa_thread_limit);
2977 }
2978 }
2979
2980 /*
2981 * If we successfully called fork1(), we always need to do this;
2982 * we identify this case by noting the IMGPF_SPAWN flag. This is
2983 * because we come back from that call with signals blocked in the
2984 * child, and we have to unblock them, but we want to wait until
2985 * after we've performed any spawn actions. This has to happen
2986 * before check_for_signature(), which uses psignal.
2987 */
2988 if (spawn_no_exec) {
2989 if (proc_transit_set)
2990 proc_transend(p, 0);
2991
2992 /*
2993 * Drop the signal lock on the child which was taken on our
2994 * behalf by forkproc()/cloneproc() to prevent signals being
2995 * received by the child in a partially constructed state.
2996 */
2997 proc_signalend(p, 0);
2998
2999 /* flag the 'fork' has occurred */
3000 proc_knote(p->p_pptr, NOTE_FORK | p->p_pid);
3001 }
3002
3003 /* flag exec has occurred, notify only if it has not failed due to FP Key error */
3004 if (!error && ((p->p_lflag & P_LTERM_DECRYPTFAIL) == 0))
3005 proc_knote(p, NOTE_EXEC);
3006
3007
3008 if (error == 0) {
3009 /*
3010 * We need to initialize the bank context behind the protection of
3011 * the proc_trans lock to prevent a race with exit. We can't do this during
3012 * exec_activate_image because task_bank_init checks entitlements that
3013 * aren't loaded until subsequent calls (including exec_resettextvp).
3014 */
3015 error = proc_transstart(p, 0, 0);
3016
3017 if (error == 0) {
3018 task_bank_init(new_task);
3019 proc_transend(p, 0);
3020 }
3021 }
3022
3023 /* Inherit task role from old task to new task for exec */
3024 if (error == 0 && !spawn_no_exec) {
3025 proc_inherit_task_role(new_task, old_task);
3026 }
3027
3028 /*
3029 * Apply the spawnattr policy, apptype (which primes the task for importance donation),
3030 * and bind any portwatch ports to the new task.
3031 * This must be done after the exec so that the child's thread is ready,
3032 * and after the in transit state has been released, because priority is
3033 * dropped here so we need to be prepared for a potentially long preemption interval
3034 *
3035 * TODO: Consider splitting this up into separate phases
3036 */
3037 if (error == 0 && imgp->ip_px_sa != NULL) {
3038 struct _posix_spawnattr *psa = (struct _posix_spawnattr *) imgp->ip_px_sa;
3039
3040 exec_handle_spawnattr_policy(p, psa->psa_apptype, psa->psa_qos_clamp, psa->psa_darwin_role,
3041 portwatch_ports, portwatch_count);
3042 }
3043
3044 /*
3045 * Apply the requested maximum address.
3046 */
3047 if (error == 0 && imgp->ip_px_sa != NULL) {
3048 struct _posix_spawnattr *psa = (struct _posix_spawnattr *) imgp->ip_px_sa;
3049
3050 if (psa->psa_max_addr) {
3051 vm_map_set_max_addr(get_task_map(new_task), psa->psa_max_addr);
3052 }
3053 }
3054
3055 if (error == 0) {
3056 /* Apply the main thread qos */
3057 thread_t main_thread = imgp->ip_new_thread;
3058 task_set_main_thread_qos(new_task, main_thread);
3059
3060 #if CONFIG_MACF
3061 /*
3062 * Processes with the MAP_JIT entitlement are permitted to have
3063 * a jumbo-size map.
3064 */
3065 if (mac_proc_check_map_anon(p, 0, 0, 0, MAP_JIT, NULL) == 0) {
3066 vm_map_set_jumbo(get_task_map(new_task));
3067 }
3068 #endif /* CONFIG_MACF */
3069 }
3070
3071 /*
3072 * Release any ports we kept around for binding to the new task
3073 * We need to release the rights even if the posix_spawn has failed.
3074 */
3075 if (portwatch_ports != NULL) {
3076 for (int i = 0; i < portwatch_count; i++) {
3077 ipc_port_t port = NULL;
3078 if ((port = portwatch_ports[i]) != NULL) {
3079 ipc_port_release_send(port);
3080 }
3081 }
3082 FREE(portwatch_ports, M_TEMP);
3083 portwatch_ports = NULL;
3084 portwatch_count = 0;
3085 }
3086
3087 /*
3088 * We have to delay operations which might throw a signal until after
3089 * the signals have been unblocked; however, we want that to happen
3090 * after exec_resettextvp() so that the textvp is correct when they
3091 * fire.
3092 */
3093 if (error == 0) {
3094 error = check_for_signature(p, imgp);
3095
3096 /*
3097 * Pay for our earlier safety; deliver the delayed signals from
3098 * the incomplete spawn process now that it's complete.
3099 */
3100 if (imgp != NULL && spawn_no_exec && (p->p_lflag & P_LTRACED)) {
3101 psignal_vfork(p, p->task, imgp->ip_new_thread, SIGTRAP);
3102 }
3103
3104 if (error == 0 && !spawn_no_exec)
3105 KDBG(BSDDBG_CODE(DBG_BSD_PROC,BSD_PROC_EXEC),
3106 p->p_pid);
3107 }
3108
3109
3110 if (imgp != NULL) {
3111 if (imgp->ip_vp)
3112 vnode_put(imgp->ip_vp);
3113 if (imgp->ip_scriptvp)
3114 vnode_put(imgp->ip_scriptvp);
3115 if (imgp->ip_strings)
3116 execargs_free(imgp);
3117 if (imgp->ip_px_sfa != NULL)
3118 FREE(imgp->ip_px_sfa, M_TEMP);
3119 if (imgp->ip_px_spa != NULL)
3120 FREE(imgp->ip_px_spa, M_TEMP);
3121 #if CONFIG_PERSONAS
3122 if (imgp->ip_px_persona != NULL)
3123 FREE(imgp->ip_px_persona, M_TEMP);
3124 #endif
3125 #if CONFIG_MACF
3126 if (imgp->ip_px_smpx != NULL)
3127 spawn_free_macpolicyinfo(imgp->ip_px_smpx);
3128 if (imgp->ip_execlabelp)
3129 mac_cred_label_free(imgp->ip_execlabelp);
3130 if (imgp->ip_scriptlabelp)
3131 mac_vnode_label_free(imgp->ip_scriptlabelp);
3132 if (imgp->ip_cs_error != OS_REASON_NULL) {
3133 os_reason_free(imgp->ip_cs_error);
3134 imgp->ip_cs_error = OS_REASON_NULL;
3135 }
3136 #endif
3137 }
3138
3139 #if CONFIG_DTRACE
3140 if (spawn_no_exec) {
3141 /*
3142 * In the original DTrace reference implementation,
3143 * posix_spawn() was a libc routine that just
3144 * did vfork(2) then exec(2). Thus the proc::: probes
3145 * are very fork/exec oriented. The details of this
3146 * in-kernel implementation of posix_spawn() is different
3147 * (while producing the same process-observable effects)
3148 * particularly w.r.t. errors, and which thread/process
3149 * is constructing what on behalf of whom.
3150 */
3151 if (error) {
3152 DTRACE_PROC1(spawn__failure, int, error);
3153 } else {
3154 DTRACE_PROC(spawn__success);
3155 /*
3156 * Some DTrace scripts, e.g. newproc.d in
3157 * /usr/bin, rely on the the 'exec-success'
3158 * probe being fired in the child after the
3159 * new process image has been constructed
3160 * in order to determine the associated pid.
3161 *
3162 * So, even though the parent built the image
3163 * here, for compatibility, mark the new thread
3164 * so 'exec-success' fires on it as it leaves
3165 * the kernel.
3166 */
3167 dtrace_thread_didexec(imgp->ip_new_thread);
3168 }
3169 } else {
3170 if (error) {
3171 DTRACE_PROC1(exec__failure, int, error);
3172 } else {
3173 dtrace_thread_didexec(imgp->ip_new_thread);
3174 }
3175 }
3176
3177 if ((dtrace_proc_waitfor_hook = dtrace_proc_waitfor_exec_ptr) != NULL) {
3178 (*dtrace_proc_waitfor_hook)(p);
3179 }
3180 #endif
3181
3182 #if CONFIG_AUDIT
3183 if (!error && AUDIT_ENABLED() && p) {
3184 /* Add the CDHash of the new process to the audit record */
3185 uint8_t *cdhash = cs_get_cdhash(p);
3186 if (cdhash) {
3187 AUDIT_ARG(data, cdhash, sizeof(uint8_t), CS_CDHASH_LEN);
3188 }
3189 }
3190 #endif
3191
3192 /*
3193 * clear bsd_info from old task if it did exec.
3194 */
3195 if (task_did_exec(old_task)) {
3196 set_bsdtask_info(old_task, NULL);
3197 }
3198
3199 /* clear bsd_info from new task and terminate it if exec failed */
3200 if (new_task != NULL && task_is_exec_copy(new_task)) {
3201 set_bsdtask_info(new_task, NULL);
3202 task_terminate_internal(new_task);
3203 }
3204
3205 /* Return to both the parent and the child? */
3206 if (imgp != NULL && spawn_no_exec) {
3207 /*
3208 * If the parent wants the pid, copy it out
3209 */
3210 if (pid != USER_ADDR_NULL)
3211 (void)suword(pid, p->p_pid);
3212 retval[0] = error;
3213
3214 /*
3215 * If we had an error, perform an internal reap ; this is
3216 * entirely safe, as we have a real process backing us.
3217 */
3218 if (error) {
3219 proc_list_lock();
3220 p->p_listflag |= P_LIST_DEADPARENT;
3221 proc_list_unlock();
3222 proc_lock(p);
3223 /* make sure no one else has killed it off... */
3224 if (p->p_stat != SZOMB && p->exit_thread == NULL) {
3225 p->exit_thread = current_thread();
3226 proc_unlock(p);
3227 exit1(p, 1, (int *)NULL);
3228 } else {
3229 /* someone is doing it for us; just skip it */
3230 proc_unlock(p);
3231 }
3232 }
3233 }
3234
3235 /*
3236 * Do not terminate the current task, if proc_exec_switch_task did not
3237 * switch the tasks, terminating the current task without the switch would
3238 * result in loosing the SIGKILL status.
3239 */
3240 if (task_did_exec(old_task)) {
3241 /* Terminate the current task, since exec will start in new task */
3242 task_terminate_internal(old_task);
3243 }
3244
3245 /* Release the thread ref returned by fork_create_child/fork1 */
3246 if (imgp != NULL && imgp->ip_new_thread) {
3247 /* wake up the new thread */
3248 task_clear_return_wait(get_threadtask(imgp->ip_new_thread));
3249 thread_deallocate(imgp->ip_new_thread);
3250 imgp->ip_new_thread = NULL;
3251 }
3252
3253 /* Release the ref returned by fork_create_child/fork1 */
3254 if (new_task) {
3255 task_deallocate(new_task);
3256 new_task = NULL;
3257 }
3258
3259 if (should_release_proc_ref) {
3260 proc_rele(p);
3261 }
3262
3263 if (bufp != NULL) {
3264 FREE(bufp, M_TEMP);
3265 }
3266
3267 if (inherit != NULL) {
3268 ipc_importance_release(inherit);
3269 }
3270
3271 return(error);
3272 }
3273
3274 /*
3275 * proc_exec_switch_task
3276 *
3277 * Parameters: p proc
3278 * old_task task before exec
3279 * new_task task after exec
3280 * new_thread thread in new task
3281 *
3282 * Returns: proc.
3283 *
3284 * Note: The function will switch the task pointer of proc
3285 * from old task to new task. The switch needs to happen
3286 * after draining all proc refs and inside a proc translock.
3287 * In the case of failure to switch the task, which might happen
3288 * if the process received a SIGKILL or jetsam killed it, it will make
3289 * sure that the new tasks terminates. User proc ref returned
3290 * to caller.
3291 *
3292 * This function is called after point of no return, in the case
3293 * failure to switch, it will terminate the new task and swallow the
3294 * error and let the terminated process complete exec and die.
3295 */
3296 proc_t
3297 proc_exec_switch_task(proc_t p, task_t old_task, task_t new_task, thread_t new_thread)
3298 {
3299 int error = 0;
3300 boolean_t task_active;
3301 boolean_t proc_active;
3302 boolean_t thread_active;
3303 thread_t old_thread = current_thread();
3304
3305 /*
3306 * Switch the task pointer of proc to new task.
3307 * Before switching the task, wait for proc_refdrain.
3308 * After the switch happens, the proc can disappear,
3309 * take a ref before it disappears. Waiting for
3310 * proc_refdrain in exec will block all other threads
3311 * trying to take a proc ref, boost the current thread
3312 * to avoid priority inversion.
3313 */
3314 thread_set_exec_promotion(old_thread);
3315 p = proc_refdrain_with_refwait(p, TRUE);
3316 /* extra proc ref returned to the caller */
3317
3318 assert(get_threadtask(new_thread) == new_task);
3319 task_active = task_is_active(new_task);
3320
3321 /* Take the proc_translock to change the task ptr */
3322 proc_lock(p);
3323 proc_active = !(p->p_lflag & P_LEXIT);
3324
3325 /* Check if the current thread is not aborted due to SIGKILL */
3326 thread_active = thread_is_active(old_thread);
3327
3328 /*
3329 * Do not switch the task if the new task or proc is already terminated
3330 * as a result of error in exec past point of no return
3331 */
3332 if (proc_active && task_active && thread_active) {
3333 error = proc_transstart(p, 1, 0);
3334 if (error == 0) {
3335 uthread_t new_uthread = get_bsdthread_info(new_thread);
3336 uthread_t old_uthread = get_bsdthread_info(current_thread());
3337
3338 /*
3339 * bsd_info of old_task will get cleared in execve and posix_spawn
3340 * after firing exec-success/error dtrace probe.
3341 */
3342 p->task = new_task;
3343
3344 /* Clear dispatchqueue and workloop ast offset */
3345 p->p_dispatchqueue_offset = 0;
3346 p->p_dispatchqueue_serialno_offset = 0;
3347 p->p_return_to_kernel_offset = 0;
3348
3349 /* Copy the signal state, dtrace state and set bsd ast on new thread */
3350 act_set_astbsd(new_thread);
3351 new_uthread->uu_siglist = old_uthread->uu_siglist;
3352 new_uthread->uu_sigwait = old_uthread->uu_sigwait;
3353 new_uthread->uu_sigmask = old_uthread->uu_sigmask;
3354 new_uthread->uu_oldmask = old_uthread->uu_oldmask;
3355 new_uthread->uu_vforkmask = old_uthread->uu_vforkmask;
3356 new_uthread->uu_exit_reason = old_uthread->uu_exit_reason;
3357 #if CONFIG_DTRACE
3358 new_uthread->t_dtrace_sig = old_uthread->t_dtrace_sig;
3359 new_uthread->t_dtrace_stop = old_uthread->t_dtrace_stop;
3360 new_uthread->t_dtrace_resumepid = old_uthread->t_dtrace_resumepid;
3361 assert(new_uthread->t_dtrace_scratch == NULL);
3362 new_uthread->t_dtrace_scratch = old_uthread->t_dtrace_scratch;
3363
3364 old_uthread->t_dtrace_sig = 0;
3365 old_uthread->t_dtrace_stop = 0;
3366 old_uthread->t_dtrace_resumepid = 0;
3367 old_uthread->t_dtrace_scratch = NULL;
3368 #endif
3369 /* Copy the resource accounting info */
3370 thread_copy_resource_info(new_thread, current_thread());
3371
3372 /* Clear the exit reason and signal state on old thread */
3373 old_uthread->uu_exit_reason = NULL;
3374 old_uthread->uu_siglist = 0;
3375
3376 /* Add the new uthread to proc uthlist and remove the old one */
3377 TAILQ_INSERT_TAIL(&p->p_uthlist, new_uthread, uu_list);
3378 TAILQ_REMOVE(&p->p_uthlist, old_uthread, uu_list);
3379
3380 task_set_did_exec_flag(old_task);
3381 task_clear_exec_copy_flag(new_task);
3382
3383 task_copy_fields_for_exec(new_task, old_task);
3384
3385 proc_transend(p, 1);
3386 }
3387 }
3388
3389 proc_unlock(p);
3390 proc_refwake(p);
3391 thread_clear_exec_promotion(old_thread);
3392
3393 if (error != 0 || !task_active || !proc_active || !thread_active) {
3394 task_terminate_internal(new_task);
3395 }
3396
3397 return p;
3398 }
3399
3400 /*
3401 * execve
3402 *
3403 * Parameters: uap->fname File name to exec
3404 * uap->argp Argument list
3405 * uap->envp Environment list
3406 *
3407 * Returns: 0 Success
3408 * __mac_execve:EINVAL Invalid argument
3409 * __mac_execve:ENOTSUP Invalid argument
3410 * __mac_execve:EACCES Permission denied
3411 * __mac_execve:EINTR Interrupted function
3412 * __mac_execve:ENOMEM Not enough space
3413 * __mac_execve:EFAULT Bad address
3414 * __mac_execve:ENAMETOOLONG Filename too long
3415 * __mac_execve:ENOEXEC Executable file format error
3416 * __mac_execve:ETXTBSY Text file busy [misuse of error code]
3417 * __mac_execve:???
3418 *
3419 * TODO: Dynamic linker header address on stack is copied via suword()
3420 */
3421 /* ARGSUSED */
3422 int
3423 execve(proc_t p, struct execve_args *uap, int32_t *retval)
3424 {
3425 struct __mac_execve_args muap;
3426 int err;
3427
3428 memoryshot(VM_EXECVE, DBG_FUNC_NONE);
3429
3430 muap.fname = uap->fname;
3431 muap.argp = uap->argp;
3432 muap.envp = uap->envp;
3433 muap.mac_p = USER_ADDR_NULL;
3434 err = __mac_execve(p, &muap, retval);
3435
3436 return(err);
3437 }
3438
3439 /*
3440 * __mac_execve
3441 *
3442 * Parameters: uap->fname File name to exec
3443 * uap->argp Argument list
3444 * uap->envp Environment list
3445 * uap->mac_p MAC label supplied by caller
3446 *
3447 * Returns: 0 Success
3448 * EINVAL Invalid argument
3449 * ENOTSUP Not supported
3450 * ENOEXEC Executable file format error
3451 * exec_activate_image:EINVAL Invalid argument
3452 * exec_activate_image:EACCES Permission denied
3453 * exec_activate_image:EINTR Interrupted function
3454 * exec_activate_image:ENOMEM Not enough space
3455 * exec_activate_image:EFAULT Bad address
3456 * exec_activate_image:ENAMETOOLONG Filename too long
3457 * exec_activate_image:ENOEXEC Executable file format error
3458 * exec_activate_image:ETXTBSY Text file busy [misuse of error code]
3459 * exec_activate_image:EBADEXEC The executable is corrupt/unknown
3460 * exec_activate_image:???
3461 * mac_execve_enter:???
3462 *
3463 * TODO: Dynamic linker header address on stack is copied via suword()
3464 */
3465 int
3466 __mac_execve(proc_t p, struct __mac_execve_args *uap, int32_t *retval)
3467 {
3468 char *bufp = NULL;
3469 struct image_params *imgp;
3470 struct vnode_attr *vap;
3471 struct vnode_attr *origvap;
3472 int error;
3473 int is_64 = IS_64BIT_PROCESS(p);
3474 struct vfs_context context;
3475 struct uthread *uthread;
3476 task_t old_task = current_task();
3477 task_t new_task = NULL;
3478 boolean_t should_release_proc_ref = FALSE;
3479 boolean_t exec_done = FALSE;
3480 boolean_t in_vfexec = FALSE;
3481 void *inherit = NULL;
3482
3483 context.vc_thread = current_thread();
3484 context.vc_ucred = kauth_cred_proc_ref(p); /* XXX must NOT be kauth_cred_get() */
3485
3486 /* Allocate a big chunk for locals instead of using stack since these
3487 * structures a pretty big.
3488 */
3489 MALLOC(bufp, char *, (sizeof(*imgp) + sizeof(*vap) + sizeof(*origvap)), M_TEMP, M_WAITOK | M_ZERO);
3490 imgp = (struct image_params *) bufp;
3491 if (bufp == NULL) {
3492 error = ENOMEM;
3493 goto exit_with_error;
3494 }
3495 vap = (struct vnode_attr *) (bufp + sizeof(*imgp));
3496 origvap = (struct vnode_attr *) (bufp + sizeof(*imgp) + sizeof(*vap));
3497
3498 /* Initialize the common data in the image_params structure */
3499 imgp->ip_user_fname = uap->fname;
3500 imgp->ip_user_argv = uap->argp;
3501 imgp->ip_user_envv = uap->envp;
3502 imgp->ip_vattr = vap;
3503 imgp->ip_origvattr = origvap;
3504 imgp->ip_vfs_context = &context;
3505 imgp->ip_flags = (is_64 ? IMGPF_WAS_64BIT_ADDR : IMGPF_NONE) | ((p->p_flag & P_DISABLE_ASLR) ? IMGPF_DISABLE_ASLR : IMGPF_NONE);
3506 imgp->ip_seg = (is_64 ? UIO_USERSPACE64 : UIO_USERSPACE32);
3507 imgp->ip_mac_return = 0;
3508 imgp->ip_cs_error = OS_REASON_NULL;
3509
3510 #if CONFIG_MACF
3511 if (uap->mac_p != USER_ADDR_NULL) {
3512 error = mac_execve_enter(uap->mac_p, imgp);
3513 if (error) {
3514 kauth_cred_unref(&context.vc_ucred);
3515 goto exit_with_error;
3516 }
3517 }
3518 #endif
3519 uthread = get_bsdthread_info(current_thread());
3520 if (uthread->uu_flag & UT_VFORK) {
3521 imgp->ip_flags |= IMGPF_VFORK_EXEC;
3522 in_vfexec = TRUE;
3523 } else {
3524 imgp->ip_flags |= IMGPF_EXEC;
3525
3526 /*
3527 * For execve case, create a new task and thread
3528 * which points to current_proc. The current_proc will point
3529 * to the new task after image activation and proc ref drain.
3530 *
3531 * proc (current_proc) <----- old_task (current_task)
3532 * ^ | ^
3533 * | | |
3534 * | ----------------------------------
3535 * |
3536 * --------- new_task (task marked as TF_EXEC_COPY)
3537 *
3538 * After image activation, the proc will point to the new task
3539 * and would look like following.
3540 *
3541 * proc (current_proc) <----- old_task (current_task, marked as TPF_DID_EXEC)
3542 * ^ |
3543 * | |
3544 * | ----------> new_task
3545 * | |
3546 * -----------------
3547 *
3548 * During exec any transition from new_task -> proc is fine, but don't allow
3549 * transition from proc->task, since it will modify old_task.
3550 */
3551 imgp->ip_new_thread = fork_create_child(old_task,
3552 NULL,
3553 p,
3554 FALSE,
3555 p->p_flag & P_LP64,
3556 task_get_64bit_data(old_task),
3557 TRUE);
3558 /* task and thread ref returned by fork_create_child */
3559 if (imgp->ip_new_thread == NULL) {
3560 error = ENOMEM;
3561 goto exit_with_error;
3562 }
3563
3564 new_task = get_threadtask(imgp->ip_new_thread);
3565 context.vc_thread = imgp->ip_new_thread;
3566 }
3567
3568 error = exec_activate_image(imgp);
3569 /* thread and task ref returned for vfexec case */
3570
3571 if (imgp->ip_new_thread != NULL) {
3572 /*
3573 * task reference might be returned by exec_activate_image
3574 * for vfexec.
3575 */
3576 new_task = get_threadtask(imgp->ip_new_thread);
3577 }
3578
3579 if (!error && !in_vfexec) {
3580 p = proc_exec_switch_task(p, old_task, new_task, imgp->ip_new_thread);
3581 /* proc ref returned */
3582 should_release_proc_ref = TRUE;
3583
3584 /*
3585 * Need to transfer pending watch port boosts to the new task while still making
3586 * sure that the old task remains in the importance linkage. Create an importance
3587 * linkage from old task to new task, then switch the task importance base
3588 * of old task and new task. After the switch the port watch boost will be
3589 * boosting the new task and new task will be donating importance to old task.
3590 */
3591 inherit = ipc_importance_exec_switch_task(old_task, new_task);
3592 }
3593
3594 kauth_cred_unref(&context.vc_ucred);
3595
3596 /* Image not claimed by any activator? */
3597 if (error == -1)
3598 error = ENOEXEC;
3599
3600 if (!error) {
3601 exec_done = TRUE;
3602 assert(imgp->ip_new_thread != NULL);
3603
3604 exec_resettextvp(p, imgp);
3605 error = check_for_signature(p, imgp);
3606 }
3607
3608 /* flag exec has occurred, notify only if it has not failed due to FP Key error */
3609 if (exec_done && ((p->p_lflag & P_LTERM_DECRYPTFAIL) == 0))
3610 proc_knote(p, NOTE_EXEC);
3611
3612 if (imgp->ip_vp != NULLVP)
3613 vnode_put(imgp->ip_vp);
3614 if (imgp->ip_scriptvp != NULLVP)
3615 vnode_put(imgp->ip_scriptvp);
3616 if (imgp->ip_strings)
3617 execargs_free(imgp);
3618 #if CONFIG_MACF
3619 if (imgp->ip_execlabelp)
3620 mac_cred_label_free(imgp->ip_execlabelp);
3621 if (imgp->ip_scriptlabelp)
3622 mac_vnode_label_free(imgp->ip_scriptlabelp);
3623 #endif
3624 if (imgp->ip_cs_error != OS_REASON_NULL) {
3625 os_reason_free(imgp->ip_cs_error);
3626 imgp->ip_cs_error = OS_REASON_NULL;
3627 }
3628
3629 if (!error) {
3630 /*
3631 * We need to initialize the bank context behind the protection of
3632 * the proc_trans lock to prevent a race with exit. We can't do this during
3633 * exec_activate_image because task_bank_init checks entitlements that
3634 * aren't loaded until subsequent calls (including exec_resettextvp).
3635 */
3636 error = proc_transstart(p, 0, 0);
3637 }
3638
3639 if (!error) {
3640 task_bank_init(new_task);
3641 proc_transend(p, 0);
3642
3643 /* Sever any extant thread affinity */
3644 thread_affinity_exec(current_thread());
3645
3646 /* Inherit task role from old task to new task for exec */
3647 if (!in_vfexec) {
3648 proc_inherit_task_role(new_task, old_task);
3649 }
3650
3651 thread_t main_thread = imgp->ip_new_thread;
3652
3653 task_set_main_thread_qos(new_task, main_thread);
3654
3655 #if CONFIG_MACF
3656 /*
3657 * Processes with the MAP_JIT entitlement are permitted to have
3658 * a jumbo-size map.
3659 */
3660 if (mac_proc_check_map_anon(p, 0, 0, 0, MAP_JIT, NULL) == 0) {
3661 vm_map_set_jumbo(get_task_map(new_task));
3662 }
3663 #endif /* CONFIG_MACF */
3664
3665 if (vm_darkwake_mode == TRUE) {
3666 /*
3667 * This process is being launched when the system
3668 * is in darkwake. So mark it specially. This will
3669 * cause all its pages to be entered in the background Q.
3670 */
3671 task_set_darkwake_mode(new_task, vm_darkwake_mode);
3672 }
3673
3674 #if CONFIG_DTRACE
3675 dtrace_thread_didexec(imgp->ip_new_thread);
3676
3677 if ((dtrace_proc_waitfor_hook = dtrace_proc_waitfor_exec_ptr) != NULL)
3678 (*dtrace_proc_waitfor_hook)(p);
3679 #endif
3680
3681 #if CONFIG_AUDIT
3682 if (!error && AUDIT_ENABLED() && p) {
3683 /* Add the CDHash of the new process to the audit record */
3684 uint8_t *cdhash = cs_get_cdhash(p);
3685 if (cdhash) {
3686 AUDIT_ARG(data, cdhash, sizeof(uint8_t), CS_CDHASH_LEN);
3687 }
3688 }
3689 #endif
3690
3691 if (in_vfexec) {
3692 vfork_return(p, retval, p->p_pid);
3693 }
3694 } else {
3695 DTRACE_PROC1(exec__failure, int, error);
3696 }
3697
3698 exit_with_error:
3699
3700 /*
3701 * clear bsd_info from old task if it did exec.
3702 */
3703 if (task_did_exec(old_task)) {
3704 set_bsdtask_info(old_task, NULL);
3705 }
3706
3707 /* clear bsd_info from new task and terminate it if exec failed */
3708 if (new_task != NULL && task_is_exec_copy(new_task)) {
3709 set_bsdtask_info(new_task, NULL);
3710 task_terminate_internal(new_task);
3711 }
3712
3713 if (imgp != NULL) {
3714 /*
3715 * Do not terminate the current task, if proc_exec_switch_task did not
3716 * switch the tasks, terminating the current task without the switch would
3717 * result in loosing the SIGKILL status.
3718 */
3719 if (task_did_exec(old_task)) {
3720 /* Terminate the current task, since exec will start in new task */
3721 task_terminate_internal(old_task);
3722 }
3723
3724 /* Release the thread ref returned by fork_create_child */
3725 if (imgp->ip_new_thread) {
3726 /* wake up the new exec thread */
3727 task_clear_return_wait(get_threadtask(imgp->ip_new_thread));
3728 thread_deallocate(imgp->ip_new_thread);
3729 imgp->ip_new_thread = NULL;
3730 }
3731 }
3732
3733 /* Release the ref returned by fork_create_child */
3734 if (new_task) {
3735 task_deallocate(new_task);
3736 new_task = NULL;
3737 }
3738
3739 if (should_release_proc_ref) {
3740 proc_rele(p);
3741 }
3742
3743 if (bufp != NULL) {
3744 FREE(bufp, M_TEMP);
3745 }
3746
3747 if (inherit != NULL) {
3748 ipc_importance_release(inherit);
3749 }
3750
3751 return(error);
3752 }
3753
3754
3755 /*
3756 * copyinptr
3757 *
3758 * Description: Copy a pointer in from user space to a user_addr_t in kernel
3759 * space, based on 32/64 bitness of the user space
3760 *
3761 * Parameters: froma User space address
3762 * toptr Address of kernel space user_addr_t
3763 * ptr_size 4/8, based on 'froma' address space
3764 *
3765 * Returns: 0 Success
3766 * EFAULT Bad 'froma'
3767 *
3768 * Implicit returns:
3769 * *ptr_size Modified
3770 */
3771 static int
3772 copyinptr(user_addr_t froma, user_addr_t *toptr, int ptr_size)
3773 {
3774 int error;
3775
3776 if (ptr_size == 4) {
3777 /* 64 bit value containing 32 bit address */
3778 unsigned int i;
3779
3780 error = copyin(froma, &i, 4);
3781 *toptr = CAST_USER_ADDR_T(i); /* SAFE */
3782 } else {
3783 error = copyin(froma, toptr, 8);
3784 }
3785 return (error);
3786 }
3787
3788
3789 /*
3790 * copyoutptr
3791 *
3792 * Description: Copy a pointer out from a user_addr_t in kernel space to
3793 * user space, based on 32/64 bitness of the user space
3794 *
3795 * Parameters: ua User space address to copy to
3796 * ptr Address of kernel space user_addr_t
3797 * ptr_size 4/8, based on 'ua' address space
3798 *
3799 * Returns: 0 Success
3800 * EFAULT Bad 'ua'
3801 *
3802 */
3803 static int
3804 copyoutptr(user_addr_t ua, user_addr_t ptr, int ptr_size)
3805 {
3806 int error;
3807
3808 if (ptr_size == 4) {
3809 /* 64 bit value containing 32 bit address */
3810 unsigned int i = CAST_DOWN_EXPLICIT(unsigned int,ua); /* SAFE */
3811
3812 error = copyout(&i, ptr, 4);
3813 } else {
3814 error = copyout(&ua, ptr, 8);
3815 }
3816 return (error);
3817 }
3818
3819
3820 /*
3821 * exec_copyout_strings
3822 *
3823 * Copy out the strings segment to user space. The strings segment is put
3824 * on a preinitialized stack frame.
3825 *
3826 * Parameters: struct image_params * the image parameter block
3827 * int * a pointer to the stack offset variable
3828 *
3829 * Returns: 0 Success
3830 * !0 Faiure: errno
3831 *
3832 * Implicit returns:
3833 * (*stackp) The stack offset, modified
3834 *
3835 * Note: The strings segment layout is backward, from the beginning
3836 * of the top of the stack to consume the minimal amount of
3837 * space possible; the returned stack pointer points to the
3838 * end of the area consumed (stacks grow downward).
3839 *
3840 * argc is an int; arg[i] are pointers; env[i] are pointers;
3841 * the 0's are (void *)NULL's
3842 *
3843 * The stack frame layout is:
3844 *
3845 * +-------------+ <- p->user_stack
3846 * | 16b |
3847 * +-------------+
3848 * | STRING AREA |
3849 * | : |
3850 * | : |
3851 * | : |
3852 * +- -- -- -- --+
3853 * | PATH AREA |
3854 * +-------------+
3855 * | 0 |
3856 * +-------------+
3857 * | applev[n] |
3858 * +-------------+
3859 * :
3860 * :
3861 * +-------------+
3862 * | applev[1] |
3863 * +-------------+
3864 * | exec_path / |
3865 * | applev[0] |
3866 * +-------------+
3867 * | 0 |
3868 * +-------------+
3869 * | env[n] |
3870 * +-------------+
3871 * :
3872 * :
3873 * +-------------+
3874 * | env[0] |
3875 * +-------------+
3876 * | 0 |
3877 * +-------------+
3878 * | arg[argc-1] |
3879 * +-------------+
3880 * :
3881 * :
3882 * +-------------+
3883 * | arg[0] |
3884 * +-------------+
3885 * | argc |
3886 * sp-> +-------------+
3887 *
3888 * Although technically a part of the STRING AREA, we treat the PATH AREA as
3889 * a separate entity. This allows us to align the beginning of the PATH AREA
3890 * to a pointer boundary so that the exec_path, env[i], and argv[i] pointers
3891 * which preceed it on the stack are properly aligned.
3892 */
3893
3894 static int
3895 exec_copyout_strings(struct image_params *imgp, user_addr_t *stackp)
3896 {
3897 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
3898 int ptr_size = (imgp->ip_flags & IMGPF_IS_64BIT_ADDR) ? 8 : 4;
3899 int ptr_area_size;
3900 void *ptr_buffer_start, *ptr_buffer;
3901 int string_size;
3902
3903 user_addr_t string_area; /* *argv[], *env[] */
3904 user_addr_t ptr_area; /* argv[], env[], applev[] */
3905 user_addr_t argc_area; /* argc */
3906 user_addr_t stack;
3907 int error;
3908
3909 unsigned i;
3910 struct copyout_desc {
3911 char *start_string;
3912 int count;
3913 #if CONFIG_DTRACE
3914 user_addr_t *dtrace_cookie;
3915 #endif
3916 boolean_t null_term;
3917 } descriptors[] = {
3918 {
3919 .start_string = imgp->ip_startargv,
3920 .count = imgp->ip_argc,
3921 #if CONFIG_DTRACE
3922 .dtrace_cookie = &p->p_dtrace_argv,
3923 #endif
3924 .null_term = TRUE
3925 },
3926 {
3927 .start_string = imgp->ip_endargv,
3928 .count = imgp->ip_envc,
3929 #if CONFIG_DTRACE
3930 .dtrace_cookie = &p->p_dtrace_envp,
3931 #endif
3932 .null_term = TRUE
3933 },
3934 {
3935 .start_string = imgp->ip_strings,
3936 .count = 1,
3937 #if CONFIG_DTRACE
3938 .dtrace_cookie = NULL,
3939 #endif
3940 .null_term = FALSE
3941 },
3942 {
3943 .start_string = imgp->ip_endenvv,
3944 .count = imgp->ip_applec - 1, /* exec_path handled above */
3945 #if CONFIG_DTRACE
3946 .dtrace_cookie = NULL,
3947 #endif
3948 .null_term = TRUE
3949 }
3950 };
3951
3952 stack = *stackp;
3953
3954 /*
3955 * All previous contributors to the string area
3956 * should have aligned their sub-area
3957 */
3958 if (imgp->ip_strspace % ptr_size != 0) {
3959 error = EINVAL;
3960 goto bad;
3961 }
3962
3963 /* Grow the stack down for the strings we've been building up */
3964 string_size = imgp->ip_strendp - imgp->ip_strings;
3965 stack -= string_size;
3966 string_area = stack;
3967
3968 /*
3969 * Need room for one pointer for each string, plus
3970 * one for the NULLs terminating the argv, envv, and apple areas.
3971 */
3972 ptr_area_size = (imgp->ip_argc + imgp->ip_envc + imgp->ip_applec + 3) * ptr_size;
3973 stack -= ptr_area_size;
3974 ptr_area = stack;
3975
3976 /* We'll construct all the pointer arrays in our string buffer,
3977 * which we already know is aligned properly, and ip_argspace
3978 * was used to verify we have enough space.
3979 */
3980 ptr_buffer_start = ptr_buffer = (void *)imgp->ip_strendp;
3981
3982 /*
3983 * Need room for pointer-aligned argc slot.
3984 */
3985 stack -= ptr_size;
3986 argc_area = stack;
3987
3988 /*
3989 * Record the size of the arguments area so that sysctl_procargs()
3990 * can return the argument area without having to parse the arguments.
3991 */
3992 proc_lock(p);
3993 p->p_argc = imgp->ip_argc;
3994 p->p_argslen = (int)(*stackp - string_area);
3995 proc_unlock(p);
3996
3997 /* Return the initial stack address: the location of argc */
3998 *stackp = stack;
3999
4000 /*
4001 * Copy out the entire strings area.
4002 */
4003 error = copyout(imgp->ip_strings, string_area,
4004 string_size);
4005 if (error)
4006 goto bad;
4007
4008 for (i = 0; i < sizeof(descriptors)/sizeof(descriptors[0]); i++) {
4009 char *cur_string = descriptors[i].start_string;
4010 int j;
4011
4012 #if CONFIG_DTRACE
4013 if (descriptors[i].dtrace_cookie) {
4014 proc_lock(p);
4015 *descriptors[i].dtrace_cookie = ptr_area + ((uintptr_t)ptr_buffer - (uintptr_t)ptr_buffer_start); /* dtrace convenience */
4016 proc_unlock(p);
4017 }
4018 #endif /* CONFIG_DTRACE */
4019
4020 /*
4021 * For each segment (argv, envv, applev), copy as many pointers as requested
4022 * to our pointer buffer.
4023 */
4024 for (j = 0; j < descriptors[i].count; j++) {
4025 user_addr_t cur_address = string_area + (cur_string - imgp->ip_strings);
4026
4027 /* Copy out the pointer to the current string. Alignment has been verified */
4028 if (ptr_size == 8) {
4029 *(uint64_t *)ptr_buffer = (uint64_t)cur_address;
4030 } else {
4031 *(uint32_t *)ptr_buffer = (uint32_t)cur_address;
4032 }
4033
4034 ptr_buffer = (void *)((uintptr_t)ptr_buffer + ptr_size);
4035 cur_string += strlen(cur_string) + 1; /* Only a NUL between strings in the same area */
4036 }
4037
4038 if (descriptors[i].null_term) {
4039 if (ptr_size == 8) {
4040 *(uint64_t *)ptr_buffer = 0ULL;
4041 } else {
4042 *(uint32_t *)ptr_buffer = 0;
4043 }
4044
4045 ptr_buffer = (void *)((uintptr_t)ptr_buffer + ptr_size);
4046 }
4047 }
4048
4049 /*
4050 * Copy out all our pointer arrays in bulk.
4051 */
4052 error = copyout(ptr_buffer_start, ptr_area,
4053 ptr_area_size);
4054 if (error)
4055 goto bad;
4056
4057 /* argc (int32, stored in a ptr_size area) */
4058 error = copyoutptr((user_addr_t)imgp->ip_argc, argc_area, ptr_size);
4059 if (error)
4060 goto bad;
4061
4062 bad:
4063 return(error);
4064 }
4065
4066
4067 /*
4068 * exec_extract_strings
4069 *
4070 * Copy arguments and environment from user space into work area; we may
4071 * have already copied some early arguments into the work area, and if
4072 * so, any arguments opied in are appended to those already there.
4073 * This function is the primary manipulator of ip_argspace, since
4074 * these are the arguments the client of execve(2) knows about. After
4075 * each argv[]/envv[] string is copied, we charge the string length
4076 * and argv[]/envv[] pointer slot to ip_argspace, so that we can
4077 * full preflight the arg list size.
4078 *
4079 * Parameters: struct image_params * the image parameter block
4080 *
4081 * Returns: 0 Success
4082 * !0 Failure: errno
4083 *
4084 * Implicit returns;
4085 * (imgp->ip_argc) Count of arguments, updated
4086 * (imgp->ip_envc) Count of environment strings, updated
4087 * (imgp->ip_argspace) Count of remaining of NCARGS
4088 * (imgp->ip_interp_buffer) Interpreter and args (mutated in place)
4089 *
4090 *
4091 * Note: The argument and environment vectors are user space pointers
4092 * to arrays of user space pointers.
4093 */
4094 static int
4095 exec_extract_strings(struct image_params *imgp)
4096 {
4097 int error = 0;
4098 int ptr_size = (imgp->ip_flags & IMGPF_WAS_64BIT_ADDR) ? 8 : 4;
4099 int new_ptr_size = (imgp->ip_flags & IMGPF_IS_64BIT_ADDR) ? 8 : 4;
4100 user_addr_t argv = imgp->ip_user_argv;
4101 user_addr_t envv = imgp->ip_user_envv;
4102
4103 /*
4104 * Adjust space reserved for the path name by however much padding it
4105 * needs. Doing this here since we didn't know if this would be a 32-
4106 * or 64-bit process back in exec_save_path.
4107 */
4108 while (imgp->ip_strspace % new_ptr_size != 0) {
4109 *imgp->ip_strendp++ = '\0';
4110 imgp->ip_strspace--;
4111 /* imgp->ip_argspace--; not counted towards exec args total */
4112 }
4113
4114 /*
4115 * From now on, we start attributing string space to ip_argspace
4116 */
4117 imgp->ip_startargv = imgp->ip_strendp;
4118 imgp->ip_argc = 0;
4119
4120 if((imgp->ip_flags & IMGPF_INTERPRET) != 0) {
4121 user_addr_t arg;
4122 char *argstart, *ch;
4123
4124 /* First, the arguments in the "#!" string are tokenized and extracted. */
4125 argstart = imgp->ip_interp_buffer;
4126 while (argstart) {
4127 ch = argstart;
4128 while (*ch && !IS_WHITESPACE(*ch)) {
4129 ch++;
4130 }
4131
4132 if (*ch == '\0') {
4133 /* last argument, no need to NUL-terminate */
4134 error = exec_add_user_string(imgp, CAST_USER_ADDR_T(argstart), UIO_SYSSPACE, TRUE);
4135 argstart = NULL;
4136 } else {
4137 /* NUL-terminate */
4138 *ch = '\0';
4139 error = exec_add_user_string(imgp, CAST_USER_ADDR_T(argstart), UIO_SYSSPACE, TRUE);
4140
4141 /*
4142 * Find the next string. We know spaces at the end of the string have already
4143 * been stripped.
4144 */
4145 argstart = ch + 1;
4146 while (IS_WHITESPACE(*argstart)) {
4147 argstart++;
4148 }
4149 }
4150
4151 /* Error-check, regardless of whether this is the last interpreter arg or not */
4152 if (error)
4153 goto bad;
4154 if (imgp->ip_argspace < new_ptr_size) {
4155 error = E2BIG;
4156 goto bad;
4157 }
4158 imgp->ip_argspace -= new_ptr_size; /* to hold argv[] entry */
4159 imgp->ip_argc++;
4160 }
4161
4162 if (argv != 0LL) {
4163 /*
4164 * If we are running an interpreter, replace the av[0] that was
4165 * passed to execve() with the path name that was
4166 * passed to execve() for interpreters which do not use the PATH
4167 * to locate their script arguments.
4168 */
4169 error = copyinptr(argv, &arg, ptr_size);
4170 if (error)
4171 goto bad;
4172 if (arg != 0LL) {
4173 argv += ptr_size; /* consume without using */
4174 }
4175 }
4176
4177 if (imgp->ip_interp_sugid_fd != -1) {
4178 char temp[19]; /* "/dev/fd/" + 10 digits + NUL */
4179 snprintf(temp, sizeof(temp), "/dev/fd/%d", imgp->ip_interp_sugid_fd);
4180 error = exec_add_user_string(imgp, CAST_USER_ADDR_T(temp), UIO_SYSSPACE, TRUE);
4181 } else {
4182 error = exec_add_user_string(imgp, imgp->ip_user_fname, imgp->ip_seg, TRUE);
4183 }
4184
4185 if (error)
4186 goto bad;
4187 if (imgp->ip_argspace < new_ptr_size) {
4188 error = E2BIG;
4189 goto bad;
4190 }
4191 imgp->ip_argspace -= new_ptr_size; /* to hold argv[] entry */
4192 imgp->ip_argc++;
4193 }
4194
4195 while (argv != 0LL) {
4196 user_addr_t arg;
4197
4198 error = copyinptr(argv, &arg, ptr_size);
4199 if (error)
4200 goto bad;
4201
4202 if (arg == 0LL) {
4203 break;
4204 }
4205
4206 argv += ptr_size;
4207
4208 /*
4209 * av[n...] = arg[n]
4210 */
4211 error = exec_add_user_string(imgp, arg, imgp->ip_seg, TRUE);
4212 if (error)
4213 goto bad;
4214 if (imgp->ip_argspace < new_ptr_size) {
4215 error = E2BIG;
4216 goto bad;
4217 }
4218 imgp->ip_argspace -= new_ptr_size; /* to hold argv[] entry */
4219 imgp->ip_argc++;
4220 }
4221
4222 /* Save space for argv[] NULL terminator */
4223 if (imgp->ip_argspace < new_ptr_size) {
4224 error = E2BIG;
4225 goto bad;
4226 }
4227 imgp->ip_argspace -= new_ptr_size;
4228
4229 /* Note where the args ends and env begins. */
4230 imgp->ip_endargv = imgp->ip_strendp;
4231 imgp->ip_envc = 0;
4232
4233 /* Now, get the environment */
4234 while (envv != 0LL) {
4235 user_addr_t env;
4236
4237 error = copyinptr(envv, &env, ptr_size);
4238 if (error)
4239 goto bad;
4240
4241 envv += ptr_size;
4242 if (env == 0LL) {
4243 break;
4244 }
4245 /*
4246 * av[n...] = env[n]
4247 */
4248 error = exec_add_user_string(imgp, env, imgp->ip_seg, TRUE);
4249 if (error)
4250 goto bad;
4251 if (imgp->ip_argspace < new_ptr_size) {
4252 error = E2BIG;
4253 goto bad;
4254 }
4255 imgp->ip_argspace -= new_ptr_size; /* to hold envv[] entry */
4256 imgp->ip_envc++;
4257 }
4258
4259 /* Save space for envv[] NULL terminator */
4260 if (imgp->ip_argspace < new_ptr_size) {
4261 error = E2BIG;
4262 goto bad;
4263 }
4264 imgp->ip_argspace -= new_ptr_size;
4265
4266 /* Align the tail of the combined argv+envv area */
4267 while (imgp->ip_strspace % new_ptr_size != 0) {
4268 if (imgp->ip_argspace < 1) {
4269 error = E2BIG;
4270 goto bad;
4271 }
4272 *imgp->ip_strendp++ = '\0';
4273 imgp->ip_strspace--;
4274 imgp->ip_argspace--;
4275 }
4276
4277 /* Note where the envv ends and applev begins. */
4278 imgp->ip_endenvv = imgp->ip_strendp;
4279
4280 /*
4281 * From now on, we are no longer charging argument
4282 * space to ip_argspace.
4283 */
4284
4285 bad:
4286 return error;
4287 }
4288
4289 /*
4290 * Libc has an 8-element array set up for stack guard values. It only fills
4291 * in one of those entries, and both gcc and llvm seem to use only a single
4292 * 8-byte guard. Until somebody needs more than an 8-byte guard value, don't
4293 * do the work to construct them.
4294 */
4295 #define GUARD_VALUES 1
4296 #define GUARD_KEY "stack_guard="
4297
4298 /*
4299 * System malloc needs some entropy when it is initialized.
4300 */
4301 #define ENTROPY_VALUES 2
4302 #define ENTROPY_KEY "malloc_entropy="
4303
4304 /*
4305 * libplatform needs a random pointer-obfuscation value when it is initialized.
4306 */
4307 #define PTR_MUNGE_VALUES 1
4308 #define PTR_MUNGE_KEY "ptr_munge="
4309
4310 /*
4311 * System malloc engages nanozone for UIAPP.
4312 */
4313 #define NANO_ENGAGE_KEY "MallocNanoZone=1"
4314
4315 #define PFZ_KEY "pfz="
4316 extern user32_addr_t commpage_text32_location;
4317 extern user64_addr_t commpage_text64_location;
4318
4319 #define MAIN_STACK_VALUES 4
4320 #define MAIN_STACK_KEY "main_stack="
4321
4322 #define FSID_KEY "executable_file="
4323 #define DYLD_FSID_KEY "dyld_file="
4324 #define CDHASH_KEY "executable_cdhash="
4325
4326 #define FSID_MAX_STRING "0x1234567890abcdef,0x1234567890abcdef"
4327
4328 #define HEX_STR_LEN 18 // 64-bit hex value "0x0123456701234567"
4329
4330 static int
4331 exec_add_entropy_key(struct image_params *imgp,
4332 const char *key,
4333 int values,
4334 boolean_t embedNUL)
4335 {
4336 const int limit = 8;
4337 uint64_t entropy[limit];
4338 char str[strlen(key) + (HEX_STR_LEN + 1) * limit + 1];
4339 if (values > limit) {
4340 values = limit;
4341 }
4342
4343 read_random(entropy, sizeof(entropy[0]) * values);
4344
4345 if (embedNUL) {
4346 entropy[0] &= ~(0xffull << 8);
4347 }
4348
4349 int len = snprintf(str, sizeof(str), "%s0x%llx", key, entropy[0]);
4350 int remaining = sizeof(str) - len;
4351 for (int i = 1; i < values && remaining > 0; ++i) {
4352 int start = sizeof(str) - remaining;
4353 len = snprintf(&str[start], remaining, ",0x%llx", entropy[i]);
4354 remaining -= len;
4355 }
4356
4357 return exec_add_user_string(imgp, CAST_USER_ADDR_T(str), UIO_SYSSPACE, FALSE);
4358 }
4359
4360 /*
4361 * Build up the contents of the apple[] string vector
4362 */
4363 static int
4364 exec_add_apple_strings(struct image_params *imgp,
4365 const load_result_t *load_result)
4366 {
4367 int error;
4368 int img_ptr_size = (imgp->ip_flags & IMGPF_IS_64BIT_ADDR) ? 8 : 4;
4369
4370 /* exec_save_path stored the first string */
4371 imgp->ip_applec = 1;
4372
4373 /* adding the pfz string */
4374 {
4375 char pfz_string[strlen(PFZ_KEY) + HEX_STR_LEN + 1];
4376
4377 if (img_ptr_size == 8) {
4378 snprintf(pfz_string, sizeof(pfz_string), PFZ_KEY "0x%llx", commpage_text64_location);
4379 } else {
4380 snprintf(pfz_string, sizeof(pfz_string), PFZ_KEY "0x%x", commpage_text32_location);
4381 }
4382 error = exec_add_user_string(imgp, CAST_USER_ADDR_T(pfz_string), UIO_SYSSPACE, FALSE);
4383 if (error) {
4384 goto bad;
4385 }
4386 imgp->ip_applec++;
4387 }
4388
4389 /* adding the NANO_ENGAGE_KEY key */
4390 if (imgp->ip_px_sa) {
4391 int proc_flags = (((struct _posix_spawnattr *) imgp->ip_px_sa)->psa_flags);
4392
4393 if ((proc_flags & _POSIX_SPAWN_NANO_ALLOCATOR) == _POSIX_SPAWN_NANO_ALLOCATOR) {
4394 const char *nano_string = NANO_ENGAGE_KEY;
4395 error = exec_add_user_string(imgp, CAST_USER_ADDR_T(nano_string), UIO_SYSSPACE, FALSE);
4396 if (error){
4397 goto bad;
4398 }
4399 imgp->ip_applec++;
4400 }
4401 }
4402
4403 /*
4404 * Supply libc with a collection of random values to use when
4405 * implementing -fstack-protector.
4406 *
4407 * (The first random string always contains an embedded NUL so that
4408 * __stack_chk_guard also protects against C string vulnerabilities)
4409 */
4410 error = exec_add_entropy_key(imgp, GUARD_KEY, GUARD_VALUES, TRUE);
4411 if (error) {
4412 goto bad;
4413 }
4414 imgp->ip_applec++;
4415
4416 /*
4417 * Supply libc with entropy for system malloc.
4418 */
4419 error = exec_add_entropy_key(imgp, ENTROPY_KEY, ENTROPY_VALUES, FALSE);
4420 if (error) {
4421 goto bad;
4422 }
4423 imgp->ip_applec++;
4424
4425 /*
4426 * Supply libpthread & libplatform with a random value to use for pointer
4427 * obfuscation.
4428 */
4429 error = exec_add_entropy_key(imgp, PTR_MUNGE_KEY, PTR_MUNGE_VALUES, FALSE);
4430 if (error) {
4431 goto bad;
4432 }
4433 imgp->ip_applec++;
4434
4435 /*
4436 * Add MAIN_STACK_KEY: Supplies the address and size of the main thread's
4437 * stack if it was allocated by the kernel.
4438 *
4439 * The guard page is not included in this stack size as libpthread
4440 * expects to add it back in after receiving this value.
4441 */
4442 if (load_result->unixproc) {
4443 char stack_string[strlen(MAIN_STACK_KEY) + (HEX_STR_LEN + 1) * MAIN_STACK_VALUES + 1];
4444 snprintf(stack_string, sizeof(stack_string),
4445 MAIN_STACK_KEY "0x%llx,0x%llx,0x%llx,0x%llx",
4446 (uint64_t)load_result->user_stack,
4447 (uint64_t)load_result->user_stack_size,
4448 (uint64_t)load_result->user_stack_alloc,
4449 (uint64_t)load_result->user_stack_alloc_size);
4450 error = exec_add_user_string(imgp, CAST_USER_ADDR_T(stack_string), UIO_SYSSPACE, FALSE);
4451 if (error) {
4452 goto bad;
4453 }
4454 imgp->ip_applec++;
4455 }
4456
4457 if (imgp->ip_vattr) {
4458 uint64_t fsid = get_va_fsid(imgp->ip_vattr);
4459 uint64_t fsobjid = imgp->ip_vattr->va_fileid;
4460
4461 char fsid_string[strlen(FSID_KEY) + strlen(FSID_MAX_STRING) + 1];
4462 snprintf(fsid_string, sizeof(fsid_string),
4463 FSID_KEY "0x%llx,0x%llx", fsid, fsobjid);
4464 error = exec_add_user_string(imgp, CAST_USER_ADDR_T(fsid_string), UIO_SYSSPACE, FALSE);
4465 if (error) {
4466 goto bad;
4467 }
4468 imgp->ip_applec++;
4469 }
4470
4471 if (imgp->ip_dyld_fsid || imgp->ip_dyld_fsobjid ) {
4472 char fsid_string[strlen(DYLD_FSID_KEY) + strlen(FSID_MAX_STRING) + 1];
4473 snprintf(fsid_string, sizeof(fsid_string),
4474 DYLD_FSID_KEY "0x%llx,0x%llx", imgp->ip_dyld_fsid, imgp->ip_dyld_fsobjid);
4475 error = exec_add_user_string(imgp, CAST_USER_ADDR_T(fsid_string), UIO_SYSSPACE, FALSE);
4476 if (error) {
4477 goto bad;
4478 }
4479 imgp->ip_applec++;
4480 }
4481
4482 uint8_t cdhash[SHA1_RESULTLEN];
4483 int cdhash_errror = ubc_cs_getcdhash(imgp->ip_vp, imgp->ip_arch_offset, cdhash);
4484 if (cdhash_errror == 0) {
4485 char hash_string[strlen(CDHASH_KEY) + 2*SHA1_RESULTLEN + 1];
4486 strncpy(hash_string, CDHASH_KEY, sizeof(hash_string));
4487 char *p = hash_string + sizeof(CDHASH_KEY) - 1;
4488 for (int i = 0; i < SHA1_RESULTLEN; i++) {
4489 snprintf(p, 3, "%02x", (int) cdhash[i]);
4490 p += 2;
4491 }
4492 error = exec_add_user_string(imgp, CAST_USER_ADDR_T(hash_string), UIO_SYSSPACE, FALSE);
4493 if (error) {
4494 goto bad;
4495 }
4496 imgp->ip_applec++;
4497 }
4498
4499 /* Align the tail of the combined applev area */
4500 while (imgp->ip_strspace % img_ptr_size != 0) {
4501 *imgp->ip_strendp++ = '\0';
4502 imgp->ip_strspace--;
4503 }
4504
4505 bad:
4506 return error;
4507 }
4508
4509 #define unix_stack_size(p) (p->p_rlimit[RLIMIT_STACK].rlim_cur)
4510
4511 /*
4512 * exec_check_permissions
4513 *
4514 * Description: Verify that the file that is being attempted to be executed
4515 * is in fact allowed to be executed based on it POSIX file
4516 * permissions and other access control criteria
4517 *
4518 * Parameters: struct image_params * the image parameter block
4519 *
4520 * Returns: 0 Success
4521 * EACCES Permission denied
4522 * ENOEXEC Executable file format error
4523 * ETXTBSY Text file busy [misuse of error code]
4524 * vnode_getattr:???
4525 * vnode_authorize:???
4526 */
4527 static int
4528 exec_check_permissions(struct image_params *imgp)
4529 {
4530 struct vnode *vp = imgp->ip_vp;
4531 struct vnode_attr *vap = imgp->ip_vattr;
4532 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
4533 int error;
4534 kauth_action_t action;
4535
4536 /* Only allow execution of regular files */
4537 if (!vnode_isreg(vp))
4538 return (EACCES);
4539
4540 /* Get the file attributes that we will be using here and elsewhere */
4541 VATTR_INIT(vap);
4542 VATTR_WANTED(vap, va_uid);
4543 VATTR_WANTED(vap, va_gid);
4544 VATTR_WANTED(vap, va_mode);
4545 VATTR_WANTED(vap, va_fsid);
4546 VATTR_WANTED(vap, va_fsid64);
4547 VATTR_WANTED(vap, va_fileid);
4548 VATTR_WANTED(vap, va_data_size);
4549 if ((error = vnode_getattr(vp, vap, imgp->ip_vfs_context)) != 0)
4550 return (error);
4551
4552 /*
4553 * Ensure that at least one execute bit is on - otherwise root
4554 * will always succeed, and we don't want to happen unless the
4555 * file really is executable.
4556 */
4557 if (!vfs_authopaque(vnode_mount(vp)) && ((vap->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) == 0))
4558 return (EACCES);
4559
4560 /* Disallow zero length files */
4561 if (vap->va_data_size == 0)
4562 return (ENOEXEC);
4563
4564 imgp->ip_arch_offset = (user_size_t)0;
4565 imgp->ip_arch_size = vap->va_data_size;
4566
4567 /* Disable setuid-ness for traced programs or if MNT_NOSUID */
4568 if ((vp->v_mount->mnt_flag & MNT_NOSUID) || (p->p_lflag & P_LTRACED))
4569 vap->va_mode &= ~(VSUID | VSGID);
4570
4571 /*
4572 * Disable _POSIX_SPAWN_ALLOW_DATA_EXEC and _POSIX_SPAWN_DISABLE_ASLR
4573 * flags for setuid/setgid binaries.
4574 */
4575 if (vap->va_mode & (VSUID | VSGID))
4576 imgp->ip_flags &= ~(IMGPF_ALLOW_DATA_EXEC | IMGPF_DISABLE_ASLR);
4577
4578 #if CONFIG_MACF
4579 error = mac_vnode_check_exec(imgp->ip_vfs_context, vp, imgp);
4580 if (error)
4581 return (error);
4582 #endif
4583
4584 /* Check for execute permission */
4585 action = KAUTH_VNODE_EXECUTE;
4586 /* Traced images must also be readable */
4587 if (p->p_lflag & P_LTRACED)
4588 action |= KAUTH_VNODE_READ_DATA;
4589 if ((error = vnode_authorize(vp, NULL, action, imgp->ip_vfs_context)) != 0)
4590 return (error);
4591
4592 #if 0
4593 /* Don't let it run if anyone had it open for writing */
4594 vnode_lock(vp);
4595 if (vp->v_writecount) {
4596 panic("going to return ETXTBSY %x", vp);
4597 vnode_unlock(vp);
4598 return (ETXTBSY);
4599 }
4600 vnode_unlock(vp);
4601 #endif
4602
4603
4604 /* XXX May want to indicate to underlying FS that vnode is open */
4605
4606 return (error);
4607 }
4608
4609
4610 /*
4611 * exec_handle_sugid
4612 *
4613 * Initially clear the P_SUGID in the process flags; if an SUGID process is
4614 * exec'ing a non-SUGID image, then this is the point of no return.
4615 *
4616 * If the image being activated is SUGID, then replace the credential with a
4617 * copy, disable tracing (unless the tracing process is root), reset the
4618 * mach task port to revoke it, set the P_SUGID bit,
4619 *
4620 * If the saved user and group ID will be changing, then make sure it happens
4621 * to a new credential, rather than a shared one.
4622 *
4623 * Set the security token (this is probably obsolete, given that the token
4624 * should not technically be separate from the credential itself).
4625 *
4626 * Parameters: struct image_params * the image parameter block
4627 *
4628 * Returns: void No failure indication
4629 *
4630 * Implicit returns:
4631 * <process credential> Potentially modified/replaced
4632 * <task port> Potentially revoked
4633 * <process flags> P_SUGID bit potentially modified
4634 * <security token> Potentially modified
4635 */
4636 static int
4637 exec_handle_sugid(struct image_params *imgp)
4638 {
4639 proc_t p = vfs_context_proc(imgp->ip_vfs_context);
4640 kauth_cred_t cred = vfs_context_ucred(imgp->ip_vfs_context);
4641 kauth_cred_t my_cred, my_new_cred;
4642 int i;
4643 int leave_sugid_clear = 0;
4644 int mac_reset_ipc = 0;
4645 int error = 0;
4646 task_t task = NULL;
4647 #if CONFIG_MACF
4648 int mac_transition, disjoint_cred = 0;
4649 int label_update_return = 0;
4650
4651 /*
4652 * Determine whether a call to update the MAC label will result in the
4653 * credential changing.
4654 *
4655 * Note: MAC policies which do not actually end up modifying
4656 * the label subsequently are strongly encouraged to
4657 * return 0 for this check, since a non-zero answer will
4658 * slow down the exec fast path for normal binaries.
4659 */
4660 mac_transition = mac_cred_check_label_update_execve(
4661 imgp->ip_vfs_context,
4662 imgp->ip_vp,
4663 imgp->ip_arch_offset,
4664 imgp->ip_scriptvp,
4665 imgp->ip_scriptlabelp,
4666 imgp->ip_execlabelp,
4667 p,
4668 imgp->ip_px_smpx);
4669 #endif
4670
4671 OSBitAndAtomic(~((uint32_t)P_SUGID), &p->p_flag);
4672
4673 /*
4674 * Order of the following is important; group checks must go last,
4675 * as we use the success of the 'ismember' check combined with the
4676 * failure of the explicit match to indicate that we will be setting
4677 * the egid of the process even though the new process did not
4678 * require VSUID/VSGID bits in order for it to set the new group as
4679 * its egid.
4680 *
4681 * Note: Technically, by this we are implying a call to
4682 * setegid() in the new process, rather than implying
4683 * it used its VSGID bit to set the effective group,
4684 * even though there is no code in that process to make
4685 * such a call.
4686 */
4687 if (((imgp->ip_origvattr->va_mode & VSUID) != 0 &&
4688 kauth_cred_getuid(cred) != imgp->ip_origvattr->va_uid) ||
4689 ((imgp->ip_origvattr->va_mode & VSGID) != 0 &&
4690 ((kauth_cred_ismember_gid(cred, imgp->ip_origvattr->va_gid, &leave_sugid_clear) || !leave_sugid_clear) ||
4691 (kauth_cred_getgid(cred) != imgp->ip_origvattr->va_gid)))) {
4692
4693 #if CONFIG_MACF
4694 /* label for MAC transition and neither VSUID nor VSGID */
4695 handle_mac_transition:
4696 #endif
4697
4698 #if !SECURE_KERNEL
4699 /*
4700 * Replace the credential with a copy of itself if euid or
4701 * egid change.
4702 *
4703 * Note: setuid binaries will automatically opt out of
4704 * group resolver participation as a side effect
4705 * of this operation. This is an intentional
4706 * part of the security model, which requires a
4707 * participating credential be established by
4708 * escalating privilege, setting up all other
4709 * aspects of the credential including whether
4710 * or not to participate in external group
4711 * membership resolution, then dropping their
4712 * effective privilege to that of the desired
4713 * final credential state.
4714 *
4715 * Modifications to p_ucred must be guarded using the
4716 * proc's ucred lock. This prevents others from accessing
4717 * a garbage credential.
4718 */
4719 while (imgp->ip_origvattr->va_mode & VSUID) {
4720 my_cred = kauth_cred_proc_ref(p);
4721 my_new_cred = kauth_cred_setresuid(my_cred, KAUTH_UID_NONE, imgp->ip_origvattr->va_uid, imgp->ip_origvattr->va_uid, KAUTH_UID_NONE);
4722
4723 if (my_new_cred == my_cred) {
4724 kauth_cred_unref(&my_cred);
4725 break;
4726 }
4727
4728 /* update cred on proc */
4729 proc_ucred_lock(p);
4730
4731 if (p->p_ucred != my_cred) {
4732 proc_ucred_unlock(p);
4733 kauth_cred_unref(&my_new_cred);
4734 continue;
4735 }
4736
4737 /* donate cred reference on my_new_cred to p->p_ucred */
4738 p->p_ucred = my_new_cred;
4739 PROC_UPDATE_CREDS_ONPROC(p);
4740 proc_ucred_unlock(p);
4741
4742 /* drop additional reference that was taken on the previous cred */
4743 kauth_cred_unref(&my_cred);
4744
4745 break;
4746 }
4747
4748 while (imgp->ip_origvattr->va_mode & VSGID) {
4749 my_cred = kauth_cred_proc_ref(p);
4750 my_new_cred = kauth_cred_setresgid(my_cred, KAUTH_GID_NONE, imgp->ip_origvattr->va_gid, imgp->ip_origvattr->va_gid);
4751
4752 if (my_new_cred == my_cred) {
4753 kauth_cred_unref(&my_cred);
4754 break;
4755 }
4756
4757 /* update cred on proc */
4758 proc_ucred_lock(p);
4759
4760 if (p->p_ucred != my_cred) {
4761 proc_ucred_unlock(p);
4762 kauth_cred_unref(&my_new_cred);
4763 continue;
4764 }
4765
4766 /* donate cred reference on my_new_cred to p->p_ucred */
4767 p->p_ucred = my_new_cred;
4768 PROC_UPDATE_CREDS_ONPROC(p);
4769 proc_ucred_unlock(p);
4770
4771 /* drop additional reference that was taken on the previous cred */
4772 kauth_cred_unref(&my_cred);
4773
4774 break;
4775 }
4776 #endif /* !SECURE_KERNEL */
4777
4778 #if CONFIG_MACF
4779 /*
4780 * If a policy has indicated that it will transition the label,
4781 * before making the call into the MAC policies, get a new
4782 * duplicate credential, so they can modify it without
4783 * modifying any others sharing it.
4784 */
4785 if (mac_transition) {
4786 /*
4787 * This hook may generate upcalls that require
4788 * importance donation from the kernel.
4789 * (23925818)
4790 */
4791 thread_t thread = current_thread();
4792 thread_enable_send_importance(thread, TRUE);
4793 kauth_proc_label_update_execve(p,
4794 imgp->ip_vfs_context,
4795 imgp->ip_vp,
4796 imgp->ip_arch_offset,
4797 imgp->ip_scriptvp,
4798 imgp->ip_scriptlabelp,
4799 imgp->ip_execlabelp,
4800 &imgp->ip_csflags,
4801 imgp->ip_px_smpx,
4802 &disjoint_cred, /* will be non zero if disjoint */
4803 &label_update_return);
4804 thread_enable_send_importance(thread, FALSE);
4805
4806 if (disjoint_cred) {
4807 /*
4808 * If updating the MAC label resulted in a
4809 * disjoint credential, flag that we need to
4810 * set the P_SUGID bit. This protects
4811 * against debuggers being attached by an
4812 * insufficiently privileged process onto the
4813 * result of a transition to a more privileged
4814 * credential.
4815 */
4816 leave_sugid_clear = 0;
4817 }
4818
4819 imgp->ip_mac_return = label_update_return;
4820 }
4821
4822 mac_reset_ipc = mac_proc_check_inherit_ipc_ports(p, p->p_textvp, p->p_textoff, imgp->ip_vp, imgp->ip_arch_offset, imgp->ip_scriptvp);
4823
4824 #endif /* CONFIG_MACF */
4825
4826 /*
4827 * If 'leave_sugid_clear' is non-zero, then we passed the
4828 * VSUID and MACF checks, and successfully determined that
4829 * the previous cred was a member of the VSGID group, but
4830 * that it was not the default at the time of the execve,
4831 * and that the post-labelling credential was not disjoint.
4832 * So we don't set the P_SUGID or reset mach ports and fds
4833 * on the basis of simply running this code.
4834 */
4835 if (mac_reset_ipc || !leave_sugid_clear) {
4836 /*
4837 * Have mach reset the task and thread ports.
4838 * We don't want anyone who had the ports before
4839 * a setuid exec to be able to access/control the
4840 * task/thread after.
4841 */
4842 ipc_task_reset((imgp->ip_new_thread != NULL) ?
4843 get_threadtask(imgp->ip_new_thread) : p->task);
4844 ipc_thread_reset((imgp->ip_new_thread != NULL) ?
4845 imgp->ip_new_thread : current_thread());
4846 }
4847
4848 if (!leave_sugid_clear) {
4849 /*
4850 * Flag the process as setuid.
4851 */
4852 OSBitOrAtomic(P_SUGID, &p->p_flag);
4853
4854 /*
4855 * Radar 2261856; setuid security hole fix
4856 * XXX For setuid processes, attempt to ensure that
4857 * stdin, stdout, and stderr are already allocated.
4858 * We do not want userland to accidentally allocate
4859 * descriptors in this range which has implied meaning
4860 * to libc.
4861 */
4862 for (i = 0; i < 3; i++) {
4863
4864 if (p->p_fd->fd_ofiles[i] != NULL)
4865 continue;
4866
4867 /*
4868 * Do the kernel equivalent of
4869 *
4870 * if i == 0
4871 * (void) open("/dev/null", O_RDONLY);
4872 * else
4873 * (void) open("/dev/null", O_WRONLY);
4874 */
4875
4876 struct fileproc *fp;
4877 int indx;
4878 int flag;
4879 struct nameidata *ndp = NULL;
4880
4881 if (i == 0)
4882 flag = FREAD;
4883 else
4884 flag = FWRITE;
4885
4886 if ((error = falloc(p,
4887 &fp, &indx, imgp->ip_vfs_context)) != 0)
4888 continue;
4889
4890 MALLOC(ndp, struct nameidata *, sizeof(*ndp), M_TEMP, M_WAITOK | M_ZERO);
4891 if (ndp == NULL) {
4892 fp_free(p, indx, fp);
4893 error = ENOMEM;
4894 break;
4895 }
4896
4897 NDINIT(ndp, LOOKUP, OP_OPEN, FOLLOW, UIO_SYSSPACE,
4898 CAST_USER_ADDR_T("/dev/null"),
4899 imgp->ip_vfs_context);
4900
4901 if ((error = vn_open(ndp, flag, 0)) != 0) {
4902 fp_free(p, indx, fp);
4903 FREE(ndp, M_TEMP);
4904 break;
4905 }
4906
4907 struct fileglob *fg = fp->f_fglob;
4908
4909 fg->fg_flag = flag;
4910 fg->fg_ops = &vnops;
4911 fg->fg_data = ndp->ni_vp;
4912
4913 vnode_put(ndp->ni_vp);
4914
4915 proc_fdlock(p);
4916 procfdtbl_releasefd(p, indx, NULL);
4917 fp_drop(p, indx, fp, 1);
4918 proc_fdunlock(p);
4919
4920 FREE(ndp, M_TEMP);
4921 }
4922 }
4923 }
4924 #if CONFIG_MACF
4925 else {
4926 /*
4927 * We are here because we were told that the MAC label will
4928 * be transitioned, and the binary is not VSUID or VSGID; to
4929 * deal with this case, we could either duplicate a lot of
4930 * code, or we can indicate we want to default the P_SUGID
4931 * bit clear and jump back up.
4932 */
4933 if (mac_transition) {
4934 leave_sugid_clear = 1;
4935 goto handle_mac_transition;
4936 }
4937 }
4938
4939 #endif /* CONFIG_MACF */
4940
4941 /*
4942 * Implement the semantic where the effective user and group become
4943 * the saved user and group in exec'ed programs.
4944 *
4945 * Modifications to p_ucred must be guarded using the
4946 * proc's ucred lock. This prevents others from accessing
4947 * a garbage credential.
4948 */
4949 for (;;) {
4950 my_cred = kauth_cred_proc_ref(p);
4951 my_new_cred = kauth_cred_setsvuidgid(my_cred, kauth_cred_getuid(my_cred), kauth_cred_getgid(my_cred));
4952
4953 if (my_new_cred == my_cred) {
4954 kauth_cred_unref(&my_cred);
4955 break;
4956 }
4957
4958 /* update cred on proc */
4959 proc_ucred_lock(p);
4960
4961 if (p->p_ucred != my_cred) {
4962 proc_ucred_unlock(p);
4963 kauth_cred_unref(&my_new_cred);
4964 continue;
4965 }
4966
4967 /* donate cred reference on my_new_cred to p->p_ucred */
4968 p->p_ucred = my_new_cred;
4969 PROC_UPDATE_CREDS_ONPROC(p);
4970 proc_ucred_unlock(p);
4971
4972 /* drop additional reference that was taken on the previous cred */
4973 kauth_cred_unref(&my_cred);
4974
4975 break;
4976 }
4977
4978
4979 /* Update the process' identity version and set the security token */
4980 p->p_idversion++;
4981
4982 if (imgp->ip_new_thread != NULL) {
4983 task = get_threadtask(imgp->ip_new_thread);
4984 } else {
4985 task = p->task;
4986 }
4987 set_security_token_task_internal(p, task);
4988
4989 return(error);
4990 }
4991
4992
4993 /*
4994 * create_unix_stack
4995 *
4996 * Description: Set the user stack address for the process to the provided
4997 * address. If a custom stack was not set as a result of the
4998 * load process (i.e. as specified by the image file for the
4999 * executable), then allocate the stack in the provided map and
5000 * set up appropriate guard pages for enforcing administrative
5001 * limits on stack growth, if they end up being needed.
5002 *
5003 * Parameters: p Process to set stack on
5004 * load_result Information from mach-o load commands
5005 * map Address map in which to allocate the new stack
5006 *
5007 * Returns: KERN_SUCCESS Stack successfully created
5008 * !KERN_SUCCESS Mach failure code
5009 */
5010 static kern_return_t
5011 create_unix_stack(vm_map_t map, load_result_t* load_result,
5012 proc_t p)
5013 {
5014 mach_vm_size_t size, prot_size;
5015 mach_vm_offset_t addr, prot_addr;
5016 kern_return_t kr;
5017
5018 mach_vm_address_t user_stack = load_result->user_stack;
5019
5020 proc_lock(p);
5021 p->user_stack = user_stack;
5022 proc_unlock(p);
5023
5024 if (load_result->user_stack_alloc_size > 0) {
5025 /*
5026 * Allocate enough space for the maximum stack size we
5027 * will ever authorize and an extra page to act as
5028 * a guard page for stack overflows. For default stacks,
5029 * vm_initial_limit_stack takes care of the extra guard page.
5030 * Otherwise we must allocate it ourselves.
5031 */
5032 if (mach_vm_round_page_overflow(load_result->user_stack_alloc_size, &size)) {
5033 return KERN_INVALID_ARGUMENT;
5034 }
5035 addr = mach_vm_trunc_page(load_result->user_stack - size);
5036 kr = mach_vm_allocate_kernel(map, &addr, size,
5037 VM_FLAGS_FIXED, VM_MEMORY_STACK);
5038 if (kr != KERN_SUCCESS) {
5039 // Can't allocate at default location, try anywhere
5040 addr = 0;
5041 kr = mach_vm_allocate_kernel(map, &addr, size,
5042 VM_FLAGS_ANYWHERE, VM_MEMORY_STACK);
5043 if (kr != KERN_SUCCESS) {
5044 return kr;
5045 }
5046
5047 user_stack = addr + size;
5048 load_result->user_stack = user_stack;
5049
5050 proc_lock(p);
5051 p->user_stack = user_stack;
5052 proc_unlock(p);
5053 }
5054
5055 load_result->user_stack_alloc = addr;
5056
5057 /*
5058 * And prevent access to what's above the current stack
5059 * size limit for this process.
5060 */
5061 if (load_result->user_stack_size == 0) {
5062 load_result->user_stack_size = unix_stack_size(p);
5063 prot_size = mach_vm_trunc_page(size - load_result->user_stack_size);
5064 } else {
5065 prot_size = PAGE_SIZE;
5066 }
5067
5068 prot_addr = addr;
5069 kr = mach_vm_protect(map,
5070 prot_addr,
5071 prot_size,
5072 FALSE,
5073 VM_PROT_NONE);
5074 if (kr != KERN_SUCCESS) {
5075 (void)mach_vm_deallocate(map, addr, size);
5076 return kr;
5077 }
5078 }
5079
5080 return KERN_SUCCESS;
5081 }
5082
5083 #include <sys/reboot.h>
5084
5085 /*
5086 * load_init_program_at_path
5087 *
5088 * Description: Load the "init" program; in most cases, this will be "launchd"
5089 *
5090 * Parameters: p Process to call execve() to create
5091 * the "init" program
5092 * scratch_addr Page in p, scratch space
5093 * path NULL terminated path
5094 *
5095 * Returns: KERN_SUCCESS Success
5096 * !KERN_SUCCESS See execve/mac_execve for error codes
5097 *
5098 * Notes: The process that is passed in is the first manufactured
5099 * process on the system, and gets here via bsd_ast() firing
5100 * for the first time. This is done to ensure that bsd_init()
5101 * has run to completion.
5102 *
5103 * The address map of the first manufactured process matches the
5104 * word width of the kernel. Once the self-exec completes, the
5105 * initproc might be different.
5106 */
5107 static int
5108 load_init_program_at_path(proc_t p, user_addr_t scratch_addr, const char* path)
5109 {
5110 int retval[2];
5111 int error;
5112 struct execve_args init_exec_args;
5113 user_addr_t argv0 = USER_ADDR_NULL, argv1 = USER_ADDR_NULL;
5114
5115 /*
5116 * Validate inputs and pre-conditions
5117 */
5118 assert(p);
5119 assert(scratch_addr);
5120 assert(path);
5121
5122 /*
5123 * Copy out program name.
5124 */
5125 size_t path_length = strlen(path) + 1;
5126 argv0 = scratch_addr;
5127 error = copyout(path, argv0, path_length);
5128 if (error)
5129 return error;
5130
5131 scratch_addr = USER_ADDR_ALIGN(scratch_addr + path_length, sizeof(user_addr_t));
5132
5133 /*
5134 * Put out first (and only) argument, similarly.
5135 * Assumes everything fits in a page as allocated above.
5136 */
5137 if (boothowto & RB_SINGLE) {
5138 const char *init_args = "-s";
5139 size_t init_args_length = strlen(init_args)+1;
5140
5141 argv1 = scratch_addr;
5142 error = copyout(init_args, argv1, init_args_length);
5143 if (error)
5144 return error;
5145
5146 scratch_addr = USER_ADDR_ALIGN(scratch_addr + init_args_length, sizeof(user_addr_t));
5147 }
5148
5149 if (proc_is64bit(p)) {
5150 user64_addr_t argv64bit[3] = {};
5151
5152 argv64bit[0] = argv0;
5153 argv64bit[1] = argv1;
5154 argv64bit[2] = USER_ADDR_NULL;
5155
5156 error = copyout(argv64bit, scratch_addr, sizeof(argv64bit));
5157 if (error)
5158 return error;
5159 } else {
5160 user32_addr_t argv32bit[3] = {};
5161
5162 argv32bit[0] = (user32_addr_t)argv0;
5163 argv32bit[1] = (user32_addr_t)argv1;
5164 argv32bit[2] = USER_ADDR_NULL;
5165
5166 error = copyout(argv32bit, scratch_addr, sizeof(argv32bit));
5167 if (error)
5168 return error;
5169 }
5170
5171 /*
5172 * Set up argument block for fake call to execve.
5173 */
5174 init_exec_args.fname = argv0;
5175 init_exec_args.argp = scratch_addr;
5176 init_exec_args.envp = USER_ADDR_NULL;
5177
5178 /*
5179 * So that init task is set with uid,gid 0 token
5180 */
5181 set_security_token(p);
5182
5183 return execve(p, &init_exec_args, retval);
5184 }
5185
5186 static const char * init_programs[] = {
5187 #if DEBUG
5188 "/usr/local/sbin/launchd.debug",
5189 #endif
5190 #if DEVELOPMENT || DEBUG
5191 "/usr/local/sbin/launchd.development",
5192 #endif
5193 "/sbin/launchd",
5194 };
5195
5196 /*
5197 * load_init_program
5198 *
5199 * Description: Load the "init" program; in most cases, this will be "launchd"
5200 *
5201 * Parameters: p Process to call execve() to create
5202 * the "init" program
5203 *
5204 * Returns: (void)
5205 *
5206 * Notes: The process that is passed in is the first manufactured
5207 * process on the system, and gets here via bsd_ast() firing
5208 * for the first time. This is done to ensure that bsd_init()
5209 * has run to completion.
5210 *
5211 * In DEBUG & DEVELOPMENT builds, the launchdsuffix boot-arg
5212 * may be used to select a specific launchd executable. As with
5213 * the kcsuffix boot-arg, setting launchdsuffix to "" or "release"
5214 * will force /sbin/launchd to be selected.
5215 *
5216 * Search order by build:
5217 *
5218 * DEBUG DEVELOPMENT RELEASE PATH
5219 * ----------------------------------------------------------------------------------
5220 * 1 1 NA /usr/local/sbin/launchd.$LAUNCHDSUFFIX
5221 * 2 NA NA /usr/local/sbin/launchd.debug
5222 * 3 2 NA /usr/local/sbin/launchd.development
5223 * 4 3 1 /sbin/launchd
5224 */
5225 void
5226 load_init_program(proc_t p)
5227 {
5228 uint32_t i;
5229 int error;
5230 vm_map_t map = current_map();
5231 mach_vm_offset_t scratch_addr = 0;
5232 mach_vm_size_t map_page_size = vm_map_page_size(map);
5233
5234 (void) mach_vm_allocate_kernel(map, &scratch_addr, map_page_size, VM_FLAGS_ANYWHERE, VM_KERN_MEMORY_NONE);
5235 #if CONFIG_MEMORYSTATUS
5236 (void) memorystatus_init_at_boot_snapshot();
5237 #endif /* CONFIG_MEMORYSTATUS */
5238
5239 #if DEBUG || DEVELOPMENT
5240 /* Check for boot-arg suffix first */
5241 char launchd_suffix[64];
5242 if (PE_parse_boot_argn("launchdsuffix", launchd_suffix, sizeof(launchd_suffix))) {
5243 char launchd_path[128];
5244 boolean_t is_release_suffix = ((launchd_suffix[0] == 0) ||
5245 (strcmp(launchd_suffix, "release") == 0));
5246
5247 if (is_release_suffix) {
5248 printf("load_init_program: attempting to load /sbin/launchd\n");
5249 error = load_init_program_at_path(p, (user_addr_t)scratch_addr, "/sbin/launchd");
5250 if (!error)
5251 return;
5252
5253 panic("Process 1 exec of launchd.release failed, errno %d", error);
5254 } else {
5255 strlcpy(launchd_path, "/usr/local/sbin/launchd.", sizeof(launchd_path));
5256 strlcat(launchd_path, launchd_suffix, sizeof(launchd_path));
5257
5258 printf("load_init_program: attempting to load %s\n", launchd_path);
5259 error = load_init_program_at_path(p, (user_addr_t)scratch_addr, launchd_path);
5260 if (!error) {
5261 return;
5262 } else {
5263 printf("load_init_program: failed loading %s: errno %d\n", launchd_path, error);
5264 }
5265 }
5266 }
5267 #endif
5268
5269 error = ENOENT;
5270 for (i = 0; i < sizeof(init_programs)/sizeof(init_programs[0]); i++) {
5271 printf("load_init_program: attempting to load %s\n", init_programs[i]);
5272 error = load_init_program_at_path(p, (user_addr_t)scratch_addr, init_programs[i]);
5273 if (!error) {
5274 return;
5275 } else {
5276 printf("load_init_program: failed loading %s: errno %d\n", init_programs[i], error);
5277 }
5278 }
5279
5280 panic("Process 1 exec of %s failed, errno %d", ((i == 0) ? "<null>" : init_programs[i-1]), error);
5281 }
5282
5283 /*
5284 * load_return_to_errno
5285 *
5286 * Description: Convert a load_return_t (Mach error) to an errno (BSD error)
5287 *
5288 * Parameters: lrtn Mach error number
5289 *
5290 * Returns: (int) BSD error number
5291 * 0 Success
5292 * EBADARCH Bad architecture
5293 * EBADMACHO Bad Mach object file
5294 * ESHLIBVERS Bad shared library version
5295 * ENOMEM Out of memory/resource shortage
5296 * EACCES Access denied
5297 * ENOENT Entry not found (usually "file does
5298 * does not exist")
5299 * EIO An I/O error occurred
5300 * EBADEXEC The executable is corrupt/unknown
5301 */
5302 static int
5303 load_return_to_errno(load_return_t lrtn)
5304 {
5305 switch (lrtn) {
5306 case LOAD_SUCCESS:
5307 return 0;
5308 case LOAD_BADARCH:
5309 case LOAD_BADARCH_X86:
5310 return EBADARCH;
5311 case LOAD_BADMACHO:
5312 case LOAD_BADMACHO_UPX:
5313 return EBADMACHO;
5314 case LOAD_SHLIB:
5315 return ESHLIBVERS;
5316 case LOAD_NOSPACE:
5317 case LOAD_RESOURCE:
5318 return ENOMEM;
5319 case LOAD_PROTECT:
5320 return EACCES;
5321 case LOAD_ENOENT:
5322 return ENOENT;
5323 case LOAD_IOERROR:
5324 return EIO;
5325 case LOAD_FAILURE:
5326 case LOAD_DECRYPTFAIL:
5327 default:
5328 return EBADEXEC;
5329 }
5330 }
5331
5332 #include <mach/mach_types.h>
5333 #include <mach/vm_prot.h>
5334 #include <mach/semaphore.h>
5335 #include <mach/sync_policy.h>
5336 #include <kern/clock.h>
5337 #include <mach/kern_return.h>
5338
5339 /*
5340 * execargs_alloc
5341 *
5342 * Description: Allocate the block of memory used by the execve arguments.
5343 * At the same time, we allocate a page so that we can read in
5344 * the first page of the image.
5345 *
5346 * Parameters: struct image_params * the image parameter block
5347 *
5348 * Returns: 0 Success
5349 * EINVAL Invalid argument
5350 * EACCES Permission denied
5351 * EINTR Interrupted function
5352 * ENOMEM Not enough space
5353 *
5354 * Notes: This is a temporary allocation into the kernel address space
5355 * to enable us to copy arguments in from user space. This is
5356 * necessitated by not mapping the process calling execve() into
5357 * the kernel address space during the execve() system call.
5358 *
5359 * We assemble the argument and environment, etc., into this
5360 * region before copying it as a single block into the child
5361 * process address space (at the top or bottom of the stack,
5362 * depending on which way the stack grows; see the function
5363 * exec_copyout_strings() for details).
5364 *
5365 * This ends up with a second (possibly unnecessary) copy compared
5366 * with assembing the data directly into the child address space,
5367 * instead, but since we cannot be guaranteed that the parent has
5368 * not modified its environment, we can't really know that it's
5369 * really a block there as well.
5370 */
5371
5372
5373 static int execargs_waiters = 0;
5374 lck_mtx_t *execargs_cache_lock;
5375
5376 static void
5377 execargs_lock_lock(void) {
5378 lck_mtx_lock_spin(execargs_cache_lock);
5379 }
5380
5381 static void
5382 execargs_lock_unlock(void) {
5383 lck_mtx_unlock(execargs_cache_lock);
5384 }
5385
5386 static wait_result_t
5387 execargs_lock_sleep(void) {
5388 return(lck_mtx_sleep(execargs_cache_lock, LCK_SLEEP_DEFAULT, &execargs_free_count, THREAD_INTERRUPTIBLE));
5389 }
5390
5391 static kern_return_t
5392 execargs_purgeable_allocate(char **execarg_address) {
5393 kern_return_t kr = vm_allocate_kernel(bsd_pageable_map, (vm_offset_t *)execarg_address, BSD_PAGEABLE_SIZE_PER_EXEC, VM_FLAGS_ANYWHERE | VM_FLAGS_PURGABLE, VM_KERN_MEMORY_NONE);
5394 assert(kr == KERN_SUCCESS);
5395 return kr;
5396 }
5397
5398 static kern_return_t
5399 execargs_purgeable_reference(void *execarg_address) {
5400 int state = VM_PURGABLE_NONVOLATILE;
5401 kern_return_t kr = vm_purgable_control(bsd_pageable_map, (vm_offset_t) execarg_address, VM_PURGABLE_SET_STATE, &state);
5402
5403 assert(kr == KERN_SUCCESS);
5404 return kr;
5405 }
5406
5407 static kern_return_t
5408 execargs_purgeable_volatilize(void *execarg_address) {
5409 int state = VM_PURGABLE_VOLATILE | VM_PURGABLE_ORDERING_OBSOLETE;
5410 kern_return_t kr;
5411 kr = vm_purgable_control(bsd_pageable_map, (vm_offset_t) execarg_address, VM_PURGABLE_SET_STATE, &state);
5412
5413 assert(kr == KERN_SUCCESS);
5414
5415 return kr;
5416 }
5417
5418 static void
5419 execargs_wakeup_waiters(void) {
5420 thread_wakeup(&execargs_free_count);
5421 }
5422
5423 static int
5424 execargs_alloc(struct image_params *imgp)
5425 {
5426 kern_return_t kret;
5427 wait_result_t res;
5428 int i, cache_index = -1;
5429
5430 execargs_lock_lock();
5431
5432 while (execargs_free_count == 0) {
5433 execargs_waiters++;
5434 res = execargs_lock_sleep();
5435 execargs_waiters--;
5436 if (res != THREAD_AWAKENED) {
5437 execargs_lock_unlock();
5438 return (EINTR);
5439 }
5440 }
5441
5442 execargs_free_count--;
5443
5444 for (i = 0; i < execargs_cache_size; i++) {
5445 vm_offset_t element = execargs_cache[i];
5446 if (element) {
5447 cache_index = i;
5448 imgp->ip_strings = (char *)(execargs_cache[i]);
5449 execargs_cache[i] = 0;
5450 break;
5451 }
5452 }
5453
5454 assert(execargs_free_count >= 0);
5455
5456 execargs_lock_unlock();
5457
5458 if (cache_index == -1) {
5459 kret = execargs_purgeable_allocate(&imgp->ip_strings);
5460 }
5461 else
5462 kret = execargs_purgeable_reference(imgp->ip_strings);
5463
5464 assert(kret == KERN_SUCCESS);
5465 if (kret != KERN_SUCCESS) {
5466 return (ENOMEM);
5467 }
5468
5469 /* last page used to read in file headers */
5470 imgp->ip_vdata = imgp->ip_strings + ( NCARGS + PAGE_SIZE );
5471 imgp->ip_strendp = imgp->ip_strings;
5472 imgp->ip_argspace = NCARGS;
5473 imgp->ip_strspace = ( NCARGS + PAGE_SIZE );
5474
5475 return (0);
5476 }
5477
5478 /*
5479 * execargs_free
5480 *
5481 * Description: Free the block of memory used by the execve arguments and the
5482 * first page of the executable by a previous call to the function
5483 * execargs_alloc().
5484 *
5485 * Parameters: struct image_params * the image parameter block
5486 *
5487 * Returns: 0 Success
5488 * EINVAL Invalid argument
5489 * EINTR Oeration interrupted
5490 */
5491 static int
5492 execargs_free(struct image_params *imgp)
5493 {
5494 kern_return_t kret;
5495 int i;
5496 boolean_t needs_wakeup = FALSE;
5497
5498 kret = execargs_purgeable_volatilize(imgp->ip_strings);
5499
5500 execargs_lock_lock();
5501 execargs_free_count++;
5502
5503 for (i = 0; i < execargs_cache_size; i++) {
5504 vm_offset_t element = execargs_cache[i];
5505 if (element == 0) {
5506 execargs_cache[i] = (vm_offset_t) imgp->ip_strings;
5507 imgp->ip_strings = NULL;
5508 break;
5509 }
5510 }
5511
5512 assert(imgp->ip_strings == NULL);
5513
5514 if (execargs_waiters > 0)
5515 needs_wakeup = TRUE;
5516
5517 execargs_lock_unlock();
5518
5519 if (needs_wakeup == TRUE)
5520 execargs_wakeup_waiters();
5521
5522 return ((kret == KERN_SUCCESS ? 0 : EINVAL));
5523 }
5524
5525 static void
5526 exec_resettextvp(proc_t p, struct image_params *imgp)
5527 {
5528 vnode_t vp;
5529 off_t offset;
5530 vnode_t tvp = p->p_textvp;
5531 int ret;
5532
5533 vp = imgp->ip_vp;
5534 offset = imgp->ip_arch_offset;
5535
5536 if (vp == NULLVP)
5537 panic("exec_resettextvp: expected valid vp");
5538
5539 ret = vnode_ref(vp);
5540 proc_lock(p);
5541 if (ret == 0) {
5542 p->p_textvp = vp;
5543 p->p_textoff = offset;
5544 } else {
5545 p->p_textvp = NULLVP; /* this is paranoia */
5546 p->p_textoff = 0;
5547 }
5548 proc_unlock(p);
5549
5550 if ( tvp != NULLVP) {
5551 if (vnode_getwithref(tvp) == 0) {
5552 vnode_rele(tvp);
5553 vnode_put(tvp);
5554 }
5555 }
5556
5557 }
5558
5559 // Includes the 0-byte (therefore "SIZE" instead of "LEN").
5560 static const size_t CS_CDHASH_STRING_SIZE = CS_CDHASH_LEN * 2 + 1;
5561
5562 static void cdhash_to_string(char str[CS_CDHASH_STRING_SIZE], uint8_t const * const cdhash) {
5563 static char const nibble[] = "0123456789abcdef";
5564
5565 /* Apparently still the safest way to get a hex representation
5566 * of binary data.
5567 * xnu's printf routines have %*D/%20D in theory, but "not really", see:
5568 * <rdar://problem/33328859> confusion around %*D/%nD in printf
5569 */
5570 for (int i = 0; i < CS_CDHASH_LEN; ++i) {
5571 str[i*2] = nibble[(cdhash[i] & 0xf0) >> 4];
5572 str[i*2+1] = nibble[cdhash[i] & 0x0f];
5573 }
5574 str[CS_CDHASH_STRING_SIZE - 1] = 0;
5575 }
5576
5577 /*
5578 * __EXEC_WAITING_ON_TASKGATED_CODE_SIGNATURE_UPCALL__
5579 *
5580 * Description: Waits for the userspace daemon to respond to the request
5581 * we made. Function declared non inline to be visible in
5582 * stackshots and spindumps as well as debugging.
5583 */
5584 __attribute__((noinline)) int
5585 __EXEC_WAITING_ON_TASKGATED_CODE_SIGNATURE_UPCALL__(mach_port_t task_access_port, int32_t new_pid)
5586 {
5587 return find_code_signature(task_access_port, new_pid);
5588 }
5589
5590 static int
5591 check_for_signature(proc_t p, struct image_params *imgp)
5592 {
5593 mach_port_t port = NULL;
5594 kern_return_t kr = KERN_FAILURE;
5595 int error = EACCES;
5596 boolean_t unexpected_failure = FALSE;
5597 struct cs_blob *csb;
5598 boolean_t require_success = FALSE;
5599 int spawn = (imgp->ip_flags & IMGPF_SPAWN);
5600 int vfexec = (imgp->ip_flags & IMGPF_VFORK_EXEC);
5601 os_reason_t signature_failure_reason = OS_REASON_NULL;
5602
5603 /*
5604 * Override inherited code signing flags with the
5605 * ones for the process that is being successfully
5606 * loaded
5607 */
5608 proc_lock(p);
5609 p->p_csflags = imgp->ip_csflags;
5610 proc_unlock(p);
5611
5612 /* Set the switch_protect flag on the map */
5613 if(p->p_csflags & (CS_HARD|CS_KILL)) {
5614 vm_map_switch_protect(get_task_map(p->task), TRUE);
5615 }
5616
5617 /*
5618 * image activation may be failed due to policy
5619 * which is unexpected but security framework does not
5620 * approve of exec, kill and return immediately.
5621 */
5622 if (imgp->ip_mac_return != 0) {
5623
5624 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
5625 p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_SECURITY_POLICY, 0, 0);
5626 signature_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_SECURITY_POLICY);
5627 error = imgp->ip_mac_return;
5628 unexpected_failure = TRUE;
5629 goto done;
5630 }
5631
5632 if (imgp->ip_cs_error != OS_REASON_NULL) {
5633 signature_failure_reason = imgp->ip_cs_error;
5634 imgp->ip_cs_error = OS_REASON_NULL;
5635 error = EACCES;
5636 goto done;
5637 }
5638
5639 /* If the code signature came through the image activation path, we skip the
5640 * taskgated / externally attached path. */
5641 if (imgp->ip_csflags & CS_SIGNED) {
5642 error = 0;
5643 goto done;
5644 }
5645
5646 /* The rest of the code is for signatures that either already have been externally
5647 * attached (likely, but not necessarily by a previous run through the taskgated
5648 * path), or that will now be attached by taskgated. */
5649
5650 kr = task_get_task_access_port(p->task, &port);
5651 if (KERN_SUCCESS != kr || !IPC_PORT_VALID(port)) {
5652 error = 0;
5653 if (require_success) {
5654 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
5655 p->p_pid, OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_TASK_ACCESS_PORT, 0, 0);
5656 signature_failure_reason = os_reason_create(OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_TASK_ACCESS_PORT);
5657 error = EACCES;
5658 }
5659 goto done;
5660 }
5661
5662 /*
5663 * taskgated returns KERN_SUCCESS if it has completed its work
5664 * and the exec should continue, KERN_FAILURE if the exec should
5665 * fail, or it may error out with different error code in an
5666 * event of mig failure (e.g. process was signalled during the
5667 * rpc call, taskgated died, mig server died etc.).
5668 */
5669
5670 kr = __EXEC_WAITING_ON_TASKGATED_CODE_SIGNATURE_UPCALL__(port, p->p_pid);
5671 switch (kr) {
5672 case KERN_SUCCESS:
5673 error = 0;
5674 break;
5675 case KERN_FAILURE:
5676 error = EACCES;
5677
5678 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
5679 p->p_pid, OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_TASKGATED_INVALID_SIG, 0, 0);
5680 signature_failure_reason = os_reason_create(OS_REASON_CODESIGNING, CODESIGNING_EXIT_REASON_TASKGATED_INVALID_SIG);
5681 goto done;
5682 default:
5683 error = EACCES;
5684
5685 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_PROC, BSD_PROC_EXITREASON_CREATE) | DBG_FUNC_NONE,
5686 p->p_pid, OS_REASON_EXEC, EXEC_EXIT_REASON_TASKGATED_OTHER, 0, 0);
5687 signature_failure_reason = os_reason_create(OS_REASON_EXEC, EXEC_EXIT_REASON_TASKGATED_OTHER);
5688 unexpected_failure = TRUE;
5689 goto done;
5690 }
5691
5692 /* Only do this if exec_resettextvp() did not fail */
5693 if (p->p_textvp != NULLVP) {
5694 csb = ubc_cs_blob_get(p->p_textvp, -1, p->p_textoff);
5695
5696 if (csb != NULL) {
5697 /* As the enforcement we can do here is very limited, we only allow things that
5698 * are the only reason why this code path still exists:
5699 * Adhoc signed non-platform binaries without special cs_flags and without any
5700 * entitlements (unrestricted ones still pass AMFI). */
5701 if (
5702 /* Revalidate the blob if necessary through bumped generation count. */
5703 (ubc_cs_generation_check(p->p_textvp) == 0 ||
5704 ubc_cs_blob_revalidate(p->p_textvp, csb, imgp, 0) == 0) &&
5705 /* Only CS_ADHOC, no CS_KILL, CS_HARD etc. */
5706 (csb->csb_flags & CS_ALLOWED_MACHO) == CS_ADHOC &&
5707 /* If it has a CMS blob, it's not adhoc. The CS_ADHOC flag can lie. */
5708 csblob_find_blob_bytes((const uint8_t *)csb->csb_mem_kaddr, csb->csb_mem_size,
5709 CSSLOT_SIGNATURESLOT,
5710 CSMAGIC_BLOBWRAPPER) == NULL &&
5711 /* It could still be in a trust cache (unlikely with CS_ADHOC), or a magic path. */
5712 csb->csb_platform_binary == 0 &&
5713 /* No entitlements, not even unrestricted ones. */
5714 csb->csb_entitlements_blob == NULL) {
5715
5716 proc_lock(p);
5717 p->p_csflags |= CS_SIGNED | CS_VALID;
5718 proc_unlock(p);
5719
5720 } else {
5721 uint8_t cdhash[CS_CDHASH_LEN];
5722 char cdhash_string[CS_CDHASH_STRING_SIZE];
5723 proc_getcdhash(p, cdhash);
5724 cdhash_to_string(cdhash_string, cdhash);
5725 printf("ignoring detached code signature on '%s' with cdhash '%s' "
5726 "because it is invalid, or not a simple adhoc signature.\n",
5727 p->p_name, cdhash_string);
5728 }
5729
5730 }
5731 }
5732
5733 done:
5734 if (0 == error) {
5735 /* The process's code signature related properties are
5736 * fully set up, so this is an opportune moment to log
5737 * platform binary execution, if desired. */
5738 if (platform_exec_logging != 0 && csproc_get_platform_binary(p)) {
5739 uint8_t cdhash[CS_CDHASH_LEN];
5740 char cdhash_string[CS_CDHASH_STRING_SIZE];
5741 proc_getcdhash(p, cdhash);
5742 cdhash_to_string(cdhash_string, cdhash);
5743
5744 os_log(peLog, "CS Platform Exec Logging: Executing platform signed binary "
5745 "'%s' with cdhash %s\n", p->p_name, cdhash_string);
5746 }
5747 } else {
5748 if (!unexpected_failure)
5749 p->p_csflags |= CS_KILLED;
5750 /* make very sure execution fails */
5751 if (vfexec || spawn) {
5752 assert(signature_failure_reason != OS_REASON_NULL);
5753 psignal_vfork_with_reason(p, p->task, imgp->ip_new_thread,
5754 SIGKILL, signature_failure_reason);
5755 signature_failure_reason = OS_REASON_NULL;
5756 error = 0;
5757 } else {
5758 assert(signature_failure_reason != OS_REASON_NULL);
5759 psignal_with_reason(p, SIGKILL, signature_failure_reason);
5760 signature_failure_reason = OS_REASON_NULL;
5761 }
5762 }
5763
5764 /* If we hit this, we likely would have leaked an exit reason */
5765 assert(signature_failure_reason == OS_REASON_NULL);
5766 return error;
5767 }
5768
5769 /*
5770 * Typically as soon as we start executing this process, the
5771 * first instruction will trigger a VM fault to bring the text
5772 * pages (as executable) into the address space, followed soon
5773 * thereafter by dyld data structures (for dynamic executable).
5774 * To optimize this, as well as improve support for hardware
5775 * debuggers that can only access resident pages present
5776 * in the process' page tables, we prefault some pages if
5777 * possible. Errors are non-fatal.
5778 */
5779 static void exec_prefault_data(proc_t p __unused, struct image_params *imgp, load_result_t *load_result)
5780 {
5781 int ret;
5782 size_t expected_all_image_infos_size;
5783
5784 /*
5785 * Prefault executable or dyld entry point.
5786 */
5787 vm_fault(current_map(),
5788 vm_map_trunc_page(load_result->entry_point,
5789 vm_map_page_mask(current_map())),
5790 VM_PROT_READ | VM_PROT_EXECUTE,
5791 FALSE, VM_KERN_MEMORY_NONE,
5792 THREAD_UNINT, NULL, 0);
5793
5794 if (imgp->ip_flags & IMGPF_IS_64BIT_ADDR) {
5795 expected_all_image_infos_size = sizeof(struct user64_dyld_all_image_infos);
5796 } else {
5797 expected_all_image_infos_size = sizeof(struct user32_dyld_all_image_infos);
5798 }
5799
5800 /* Decode dyld anchor structure from <mach-o/dyld_images.h> */
5801 if (load_result->dynlinker &&
5802 load_result->all_image_info_addr &&
5803 load_result->all_image_info_size >= expected_all_image_infos_size) {
5804 union {
5805 struct user64_dyld_all_image_infos infos64;
5806 struct user32_dyld_all_image_infos infos32;
5807 } all_image_infos;
5808
5809 /*
5810 * Pre-fault to avoid copyin() going through the trap handler
5811 * and recovery path.
5812 */
5813 vm_fault(current_map(),
5814 vm_map_trunc_page(load_result->all_image_info_addr,
5815 vm_map_page_mask(current_map())),
5816 VM_PROT_READ | VM_PROT_WRITE,
5817 FALSE, VM_KERN_MEMORY_NONE,
5818 THREAD_UNINT, NULL, 0);
5819 if ((load_result->all_image_info_addr & PAGE_MASK) + expected_all_image_infos_size > PAGE_SIZE) {
5820 /* all_image_infos straddles a page */
5821 vm_fault(current_map(),
5822 vm_map_trunc_page(load_result->all_image_info_addr + expected_all_image_infos_size - 1,
5823 vm_map_page_mask(current_map())),
5824 VM_PROT_READ | VM_PROT_WRITE,
5825 FALSE, VM_KERN_MEMORY_NONE,
5826 THREAD_UNINT, NULL, 0);
5827 }
5828
5829 ret = copyin(load_result->all_image_info_addr,
5830 &all_image_infos,
5831 expected_all_image_infos_size);
5832 if (ret == 0 && all_image_infos.infos32.version >= DYLD_ALL_IMAGE_INFOS_ADDRESS_MINIMUM_VERSION) {
5833
5834 user_addr_t notification_address;
5835 user_addr_t dyld_image_address;
5836 user_addr_t dyld_version_address;
5837 user_addr_t dyld_all_image_infos_address;
5838 user_addr_t dyld_slide_amount;
5839
5840 if (imgp->ip_flags & IMGPF_IS_64BIT_ADDR) {
5841 notification_address = all_image_infos.infos64.notification;
5842 dyld_image_address = all_image_infos.infos64.dyldImageLoadAddress;
5843 dyld_version_address = all_image_infos.infos64.dyldVersion;
5844 dyld_all_image_infos_address = all_image_infos.infos64.dyldAllImageInfosAddress;
5845 } else {
5846 notification_address = all_image_infos.infos32.notification;
5847 dyld_image_address = all_image_infos.infos32.dyldImageLoadAddress;
5848 dyld_version_address = all_image_infos.infos32.dyldVersion;
5849 dyld_all_image_infos_address = all_image_infos.infos32.dyldAllImageInfosAddress;
5850 }
5851
5852 /*
5853 * dyld statically sets up the all_image_infos in its Mach-O
5854 * binary at static link time, with pointers relative to its default
5855 * load address. Since ASLR might slide dyld before its first
5856 * instruction is executed, "dyld_slide_amount" tells us how far
5857 * dyld was loaded compared to its default expected load address.
5858 * All other pointers into dyld's image should be adjusted by this
5859 * amount. At some point later, dyld will fix up pointers to take
5860 * into account the slide, at which point the all_image_infos_address
5861 * field in the structure will match the runtime load address, and
5862 * "dyld_slide_amount" will be 0, if we were to consult it again.
5863 */
5864
5865 dyld_slide_amount = load_result->all_image_info_addr - dyld_all_image_infos_address;
5866
5867 #if 0
5868 kprintf("exec_prefault: 0x%016llx 0x%08x 0x%016llx 0x%016llx 0x%016llx 0x%016llx\n",
5869 (uint64_t)load_result->all_image_info_addr,
5870 all_image_infos.infos32.version,
5871 (uint64_t)notification_address,
5872 (uint64_t)dyld_image_address,
5873 (uint64_t)dyld_version_address,
5874 (uint64_t)dyld_all_image_infos_address);
5875 #endif
5876
5877 vm_fault(current_map(),
5878 vm_map_trunc_page(notification_address + dyld_slide_amount,
5879 vm_map_page_mask(current_map())),
5880 VM_PROT_READ | VM_PROT_EXECUTE,
5881 FALSE, VM_KERN_MEMORY_NONE,
5882 THREAD_UNINT, NULL, 0);
5883 vm_fault(current_map(),
5884 vm_map_trunc_page(dyld_image_address + dyld_slide_amount,
5885 vm_map_page_mask(current_map())),
5886 VM_PROT_READ | VM_PROT_EXECUTE,
5887 FALSE, VM_KERN_MEMORY_NONE,
5888 THREAD_UNINT, NULL, 0);
5889 vm_fault(current_map(),
5890 vm_map_trunc_page(dyld_version_address + dyld_slide_amount,
5891 vm_map_page_mask(current_map())),
5892 VM_PROT_READ,
5893 FALSE, VM_KERN_MEMORY_NONE,
5894 THREAD_UNINT, NULL, 0);
5895 vm_fault(current_map(),
5896 vm_map_trunc_page(dyld_all_image_infos_address + dyld_slide_amount,
5897 vm_map_page_mask(current_map())),
5898 VM_PROT_READ | VM_PROT_WRITE,
5899 FALSE, VM_KERN_MEMORY_NONE,
5900 THREAD_UNINT, NULL, 0);
5901 }
5902 }
5903 }