2 * Copyright (c) 2000-2016 Apple Inc. All rights reserved.
4 * @Apple_LICENSE_HEADER_START@
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
20 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
23 #include <sys/errno.h>
24 #include <sys/param.h>
25 #include <sys/systm.h>
26 #include <sys/proc_internal.h>
28 #include <sys/sysctl.h>
29 #include <sys/kdebug.h>
30 #include <sys/kauth.h>
31 #include <sys/ktrace.h>
32 #include <sys/sysproto.h>
33 #include <sys/bsdtask_info.h>
34 #include <sys/random.h>
36 #include <mach/clock_types.h>
37 #include <mach/mach_types.h>
38 #include <mach/mach_time.h>
39 #include <mach/mach_vm.h>
40 #include <machine/machine_routines.h>
42 #include <mach/machine.h>
43 #include <mach/vm_map.h>
45 #if defined(__i386__) || defined(__x86_64__)
46 #include <i386/rtclock_protos.h>
48 #include <i386/machine_routines.h>
52 #include <kern/clock.h>
54 #include <kern/thread.h>
55 #include <kern/task.h>
56 #include <kern/debug.h>
57 #include <kern/kalloc.h>
58 #include <kern/cpu_data.h>
59 #include <kern/assert.h>
60 #include <kern/telemetry.h>
61 #include <kern/sched_prim.h>
62 #include <vm/vm_kern.h>
64 #include <kperf/kperf.h>
65 #include <pexpert/device_tree.h>
67 #include <sys/malloc.h>
68 #include <sys/mcache.h>
70 #include <sys/vnode.h>
71 #include <sys/vnode_internal.h>
72 #include <sys/fcntl.h>
73 #include <sys/file_internal.h>
75 #include <sys/param.h> /* for isset() */
77 #include <mach/mach_host.h> /* for host_info() */
78 #include <libkern/OSAtomic.h>
80 #include <machine/pal_routines.h>
81 #include <machine/atomic.h>
86 * https://coreoswiki.apple.com/wiki/pages/U6z3i0q9/Consistent_Logging_Implementers_Guide.html
88 * IOP(s) are auxiliary cores that want to participate in kdebug event logging.
89 * They are registered dynamically. Each is assigned a cpu_id at registration.
91 * NOTE: IOP trace events may not use the same clock hardware as "normal"
92 * cpus. There is an effort made to synchronize the IOP timebase with the
93 * AP, but it should be understood that there may be discrepancies.
95 * Once registered, an IOP is permanent, it cannot be unloaded/unregistered.
96 * The current implementation depends on this for thread safety.
98 * New registrations occur by allocating an kd_iop struct and assigning
99 * a provisional cpu_id of list_head->cpu_id + 1. Then a CAS to claim the
100 * list_head pointer resolves any races.
102 * You may safely walk the kd_iops list at any time, without holding locks.
104 * When allocating buffers, the current kd_iops head is captured. Any operations
105 * that depend on the buffer state (such as flushing IOP traces on reads,
106 * etc.) should use the captured list head. This will allow registrations to
107 * take place while trace is in use.
110 typedef struct kd_iop
{
111 kd_callback_t callback
;
113 uint64_t last_timestamp
; /* Prevent timer rollback */
117 static kd_iop_t
* kd_iops
= NULL
;
122 * A typefilter is a 8KB bitmap that is used to selectively filter events
123 * being recorded. It is able to individually address every class & subclass.
125 * There is a shared typefilter in the kernel which is lazily allocated. Once
126 * allocated, the shared typefilter is never deallocated. The shared typefilter
127 * is also mapped on demand into userspace processes that invoke kdebug_trace
128 * API from Libsyscall. When mapped into a userspace process, the memory is
129 * read only, and does not have a fixed address.
131 * It is a requirement that the kernel's shared typefilter always pass DBG_TRACE
132 * events. This is enforced automatically, by having the needed bits set any
133 * time the shared typefilter is mutated.
136 typedef uint8_t* typefilter_t
;
138 static typefilter_t kdbg_typefilter
;
139 static mach_port_t kdbg_typefilter_memory_entry
;
142 * There are 3 combinations of page sizes:
148 * The typefilter is exactly 8KB. In the first two scenarios, we would like
149 * to use 2 pages exactly; in the third scenario we must make certain that
150 * a full page is allocated so we do not inadvertantly share 8KB of random
151 * data to userspace. The round_page_32 macro rounds to kernel page size.
153 #define TYPEFILTER_ALLOC_SIZE MAX(round_page_32(KDBG_TYPEFILTER_BITMAP_SIZE), KDBG_TYPEFILTER_BITMAP_SIZE)
155 static typefilter_t
typefilter_create(void)
158 if (KERN_SUCCESS
== kmem_alloc(kernel_map
, (vm_offset_t
*)&tf
, TYPEFILTER_ALLOC_SIZE
, VM_KERN_MEMORY_DIAG
)) {
159 memset(&tf
[KDBG_TYPEFILTER_BITMAP_SIZE
], 0, TYPEFILTER_ALLOC_SIZE
- KDBG_TYPEFILTER_BITMAP_SIZE
);
165 static void typefilter_deallocate(typefilter_t tf
)
168 assert(tf
!= kdbg_typefilter
);
169 kmem_free(kernel_map
, (vm_offset_t
)tf
, TYPEFILTER_ALLOC_SIZE
);
172 static void typefilter_copy(typefilter_t dst
, typefilter_t src
)
176 memcpy(dst
, src
, KDBG_TYPEFILTER_BITMAP_SIZE
);
179 static void typefilter_reject_all(typefilter_t tf
)
182 memset(tf
, 0, KDBG_TYPEFILTER_BITMAP_SIZE
);
185 static void typefilter_allow_all(typefilter_t tf
)
188 memset(tf
, ~0, KDBG_TYPEFILTER_BITMAP_SIZE
);
191 static void typefilter_allow_class(typefilter_t tf
, uint8_t class)
194 const uint32_t BYTES_PER_CLASS
= 256 / 8; // 256 subclasses, 1 bit each
195 memset(&tf
[class * BYTES_PER_CLASS
], 0xFF, BYTES_PER_CLASS
);
198 static void typefilter_allow_csc(typefilter_t tf
, uint16_t csc
)
204 static bool typefilter_is_debugid_allowed(typefilter_t tf
, uint32_t id
)
207 return isset(tf
, KDBG_EXTRACT_CSC(id
));
210 static mach_port_t
typefilter_create_memory_entry(typefilter_t tf
)
214 mach_port_t memory_entry
= MACH_PORT_NULL
;
215 memory_object_size_t size
= TYPEFILTER_ALLOC_SIZE
;
217 mach_make_memory_entry_64(kernel_map
,
219 (memory_object_offset_t
)tf
,
227 static int kdbg_copyin_typefilter(user_addr_t addr
, size_t size
);
228 static void kdbg_enable_typefilter(void);
229 static void kdbg_disable_typefilter(void);
232 * External prototypes
235 void task_act_iterate_wth_args(task_t
, void(*)(thread_t
, void *), void *);
236 int cpu_number(void); /* XXX <machine/...> include path broken */
237 void commpage_update_kdebug_state(void); /* XXX sign */
239 extern int log_leaks
;
242 * This flag is for testing purposes only -- it's highly experimental and tools
243 * have not been updated to support it.
245 static bool kdbg_continuous_time
= false;
247 static inline uint64_t
250 if (kdbg_continuous_time
) {
251 return mach_continuous_time();
253 return mach_absolute_time();
257 static int kdbg_debug
= 0;
259 #if KDEBUG_MOJO_TRACE
260 #include <sys/kdebugevents.h>
261 static void kdebug_serial_print( /* forward */
262 uint32_t, uint32_t, uint64_t,
263 uintptr_t, uintptr_t, uintptr_t, uintptr_t, uintptr_t);
266 int kdbg_control(int *, u_int
, user_addr_t
, size_t *);
268 static int kdbg_read(user_addr_t
, size_t *, vnode_t
, vfs_context_t
, uint32_t);
269 static int kdbg_readcpumap(user_addr_t
, size_t *);
270 static int kdbg_readthrmap_v3(user_addr_t
, size_t, int);
271 static int kdbg_readcurthrmap(user_addr_t
, size_t *);
272 static int kdbg_setreg(kd_regtype
*);
273 static int kdbg_setpidex(kd_regtype
*);
274 static int kdbg_setpid(kd_regtype
*);
275 static void kdbg_thrmap_init(void);
276 static int kdbg_reinit(boolean_t
);
277 static int kdbg_bootstrap(boolean_t
);
278 static int kdbg_test(size_t flavor
);
280 static int kdbg_write_v1_header(boolean_t write_thread_map
, vnode_t vp
, vfs_context_t ctx
);
281 static int kdbg_write_thread_map(vnode_t vp
, vfs_context_t ctx
);
282 static int kdbg_copyout_thread_map(user_addr_t buffer
, size_t *buffer_size
);
283 static void kdbg_clear_thread_map(void);
285 static boolean_t
kdbg_wait(uint64_t timeout_ms
, boolean_t locked_wait
);
286 static void kdbg_wakeup(void);
288 int kdbg_cpumap_init_internal(kd_iop_t
* iops
, uint32_t cpu_count
,
289 uint8_t** cpumap
, uint32_t* cpumap_size
);
291 static kd_threadmap
*kdbg_thrmap_init_internal(unsigned int count
,
292 unsigned int *mapsize
,
293 unsigned int *mapcount
);
295 static boolean_t
kdebug_current_proc_enabled(uint32_t debugid
);
296 static errno_t
kdebug_check_trace_string(uint32_t debugid
, uint64_t str_id
);
298 int kdbg_write_v3_header(user_addr_t
, size_t *, int);
299 int kdbg_write_v3_chunk_header(user_addr_t buffer
, uint32_t tag
,
300 uint32_t sub_tag
, uint64_t length
,
301 vnode_t vp
, vfs_context_t ctx
);
303 user_addr_t
kdbg_write_v3_event_chunk_header(user_addr_t buffer
, uint32_t tag
,
304 uint64_t length
, vnode_t vp
,
309 static int create_buffers(boolean_t
);
310 static void delete_buffers(void);
312 extern int tasks_count
;
313 extern int threads_count
;
314 extern void IOSleep(int);
316 /* trace enable status */
317 unsigned int kdebug_enable
= 0;
319 /* A static buffer to record events prior to the start of regular logging */
321 #define KD_EARLY_BUFFER_SIZE (16 * 1024)
322 #define KD_EARLY_BUFFER_NBUFS (KD_EARLY_BUFFER_SIZE / sizeof(kd_buf))
325 * On embedded, the space for this is carved out by osfmk/arm/data.s -- clang
326 * has problems aligning to greater than 4K.
328 extern kd_buf kd_early_buffer
[KD_EARLY_BUFFER_NBUFS
];
329 #else /* CONFIG_EMBEDDED */
330 __attribute__((aligned(KD_EARLY_BUFFER_SIZE
)))
331 static kd_buf kd_early_buffer
[KD_EARLY_BUFFER_NBUFS
];
332 #endif /* !CONFIG_EMBEDDED */
334 static unsigned int kd_early_index
= 0;
335 static bool kd_early_overflow
= false;
336 static bool kd_early_done
= false;
338 #define SLOW_NOLOG 0x01
339 #define SLOW_CHECKS 0x02
341 #define EVENTS_PER_STORAGE_UNIT 2048
342 #define MIN_STORAGE_UNITS_PER_CPU 4
344 #define POINTER_FROM_KDS_PTR(x) (&kd_bufs[x.buffer_index].kdsb_addr[x.offset])
348 uint32_t buffer_index
:21;
355 union kds_ptr kds_next
;
356 uint32_t kds_bufindx
;
358 uint32_t kds_readlast
;
359 boolean_t kds_lostevents
;
360 uint64_t kds_timestamp
;
362 kd_buf kds_records
[EVENTS_PER_STORAGE_UNIT
];
365 #define MAX_BUFFER_SIZE (1024 * 1024 * 128)
366 #define N_STORAGE_UNITS_PER_BUFFER (MAX_BUFFER_SIZE / sizeof(struct kd_storage))
367 static_assert(N_STORAGE_UNITS_PER_BUFFER
<= 0x7ff,
368 "shoudn't overflow kds_ptr.offset");
370 struct kd_storage_buffers
{
371 struct kd_storage
*kdsb_addr
;
375 #define KDS_PTR_NULL 0xffffffff
376 struct kd_storage_buffers
*kd_bufs
= NULL
;
377 int n_storage_units
= 0;
378 unsigned int n_storage_buffers
= 0;
379 int n_storage_threshold
= 0;
384 union kds_ptr kd_list_head
;
385 union kds_ptr kd_list_tail
;
386 boolean_t kd_lostevents
;
388 uint64_t kd_prev_timebase
;
390 } __attribute__(( aligned(MAX_CPU_CACHE_LINE_SIZE
) ));
394 * In principle, this control block can be shared in DRAM with other
395 * coprocessors and runtimes, for configuring what tracing is enabled.
397 struct kd_ctrl_page_t
{
398 union kds_ptr kds_free_list
;
402 uint32_t kdebug_flags
;
403 uint32_t kdebug_slowcheck
;
404 uint64_t oldest_time
;
406 * The number of kd_bufinfo structs allocated may not match the current
407 * number of active cpus. We capture the iops list head at initialization
408 * which we could use to calculate the number of cpus we allocated data for,
409 * unless it happens to be null. To avoid that case, we explicitly also
410 * capture a cpu count.
412 kd_iop_t
* kdebug_iops
;
413 uint32_t kdebug_cpus
;
415 .kds_free_list
= {.raw
= KDS_PTR_NULL
},
416 .kdebug_slowcheck
= SLOW_NOLOG
,
422 struct kd_bufinfo
*kdbip
= NULL
;
424 #define KDCOPYBUF_COUNT 8192
425 #define KDCOPYBUF_SIZE (KDCOPYBUF_COUNT * sizeof(kd_buf))
427 #define PAGE_4KB 4096
428 #define PAGE_16KB 16384
430 kd_buf
*kdcopybuf
= NULL
;
432 unsigned int nkdbufs
= 0;
433 unsigned int kdlog_beg
=0;
434 unsigned int kdlog_end
=0;
435 unsigned int kdlog_value1
=0;
436 unsigned int kdlog_value2
=0;
437 unsigned int kdlog_value3
=0;
438 unsigned int kdlog_value4
=0;
440 static lck_spin_t
* kdw_spin_lock
;
441 static lck_spin_t
* kds_spin_lock
;
443 kd_threadmap
*kd_mapptr
= 0;
444 unsigned int kd_mapsize
= 0;
445 unsigned int kd_mapcount
= 0;
447 off_t RAW_file_offset
= 0;
448 int RAW_file_written
= 0;
450 #define RAW_FLUSH_SIZE (2 * 1024 * 1024)
453 * A globally increasing counter for identifying strings in trace. Starts at
454 * 1 because 0 is a reserved return value.
456 __attribute__((aligned(MAX_CPU_CACHE_LINE_SIZE
)))
457 static uint64_t g_curr_str_id
= 1;
459 #define STR_ID_SIG_OFFSET (48)
460 #define STR_ID_MASK ((1ULL << STR_ID_SIG_OFFSET) - 1)
461 #define STR_ID_SIG_MASK (~STR_ID_MASK)
464 * A bit pattern for identifying string IDs generated by
465 * kdebug_trace_string(2).
467 static uint64_t g_str_id_signature
= (0x70acULL
<< STR_ID_SIG_OFFSET
);
469 #define INTERRUPT 0x01050000
470 #define MACH_vmfault 0x01300008
471 #define BSC_SysCall 0x040c0000
472 #define MACH_SysCall 0x010c0000
474 /* task to string structure */
477 task_t task
; /* from procs task */
478 pid_t pid
; /* from procs p_pid */
479 char task_comm
[20]; /* from procs p_comm */
482 typedef struct tts tts_t
;
486 kd_threadmap
*map
; /* pointer to the map buffer */
492 typedef struct krt krt_t
;
495 kdbg_cpu_count(boolean_t early_trace
)
499 return ml_get_cpu_count();
505 host_basic_info_data_t hinfo
;
506 mach_msg_type_number_t count
= HOST_BASIC_INFO_COUNT
;
507 host_info((host_t
)1 /* BSD_HOST */, HOST_BASIC_INFO
, (host_info_t
)&hinfo
, &count
);
508 assert(hinfo
.logical_cpu_max
> 0);
509 return hinfo
.logical_cpu_max
;
515 kdbg_iop_list_is_valid(kd_iop_t
* iop
)
518 /* Is list sorted by cpu_id? */
519 kd_iop_t
* temp
= iop
;
521 assert(!temp
->next
|| temp
->next
->cpu_id
== temp
->cpu_id
- 1);
522 assert(temp
->next
|| (temp
->cpu_id
== kdbg_cpu_count(FALSE
) || temp
->cpu_id
== kdbg_cpu_count(TRUE
)));
523 } while ((temp
= temp
->next
));
525 /* Does each entry have a function and a name? */
528 assert(temp
->callback
.func
);
529 assert(strlen(temp
->callback
.iop_name
) < sizeof(temp
->callback
.iop_name
));
530 } while ((temp
= temp
->next
));
537 kdbg_iop_list_contains_cpu_id(kd_iop_t
* list
, uint32_t cpu_id
)
540 if (list
->cpu_id
== cpu_id
)
547 #endif /* CONFIG_EMBEDDED */
548 #endif /* MACH_ASSERT */
551 kdbg_iop_list_callback(kd_iop_t
* iop
, kd_callback_type type
, void* arg
)
554 iop
->callback
.func(iop
->callback
.context
, type
, arg
);
560 kdbg_set_tracing_enabled(boolean_t enabled
, uint32_t trace_type
)
562 int s
= ml_set_interrupts_enabled(FALSE
);
563 lck_spin_lock(kds_spin_lock
);
566 * The oldest valid time is now; reject old events from IOPs.
568 kd_ctrl_page
.oldest_time
= kdbg_timestamp();
569 kdebug_enable
|= trace_type
;
570 kd_ctrl_page
.kdebug_slowcheck
&= ~SLOW_NOLOG
;
571 kd_ctrl_page
.enabled
= 1;
572 commpage_update_kdebug_state();
574 kdebug_enable
&= ~(KDEBUG_ENABLE_TRACE
|KDEBUG_ENABLE_PPT
);
575 kd_ctrl_page
.kdebug_slowcheck
|= SLOW_NOLOG
;
576 kd_ctrl_page
.enabled
= 0;
577 commpage_update_kdebug_state();
579 lck_spin_unlock(kds_spin_lock
);
580 ml_set_interrupts_enabled(s
);
583 kdbg_iop_list_callback(kd_ctrl_page
.kdebug_iops
, KD_CALLBACK_KDEBUG_ENABLED
, NULL
);
586 * If you do not flush the IOP trace buffers, they can linger
587 * for a considerable period; consider code which disables and
588 * deallocates without a final sync flush.
590 kdbg_iop_list_callback(kd_ctrl_page
.kdebug_iops
, KD_CALLBACK_KDEBUG_DISABLED
, NULL
);
591 kdbg_iop_list_callback(kd_ctrl_page
.kdebug_iops
, KD_CALLBACK_SYNC_FLUSH
, NULL
);
596 kdbg_set_flags(int slowflag
, int enableflag
, boolean_t enabled
)
598 int s
= ml_set_interrupts_enabled(FALSE
);
599 lck_spin_lock(kds_spin_lock
);
602 kd_ctrl_page
.kdebug_slowcheck
|= slowflag
;
603 kdebug_enable
|= enableflag
;
605 kd_ctrl_page
.kdebug_slowcheck
&= ~slowflag
;
606 kdebug_enable
&= ~enableflag
;
609 lck_spin_unlock(kds_spin_lock
);
610 ml_set_interrupts_enabled(s
);
614 * Disable wrapping and return true if trace wrapped, false otherwise.
617 disable_wrap(uint32_t *old_slowcheck
, uint32_t *old_flags
)
620 int s
= ml_set_interrupts_enabled(FALSE
);
621 lck_spin_lock(kds_spin_lock
);
623 *old_slowcheck
= kd_ctrl_page
.kdebug_slowcheck
;
624 *old_flags
= kd_ctrl_page
.kdebug_flags
;
626 wrapped
= kd_ctrl_page
.kdebug_flags
& KDBG_WRAPPED
;
627 kd_ctrl_page
.kdebug_flags
&= ~KDBG_WRAPPED
;
628 kd_ctrl_page
.kdebug_flags
|= KDBG_NOWRAP
;
630 lck_spin_unlock(kds_spin_lock
);
631 ml_set_interrupts_enabled(s
);
637 enable_wrap(uint32_t old_slowcheck
)
639 int s
= ml_set_interrupts_enabled(FALSE
);
640 lck_spin_lock(kds_spin_lock
);
642 kd_ctrl_page
.kdebug_flags
&= ~KDBG_NOWRAP
;
644 if ( !(old_slowcheck
& SLOW_NOLOG
))
645 kd_ctrl_page
.kdebug_slowcheck
&= ~SLOW_NOLOG
;
647 lck_spin_unlock(kds_spin_lock
);
648 ml_set_interrupts_enabled(s
);
652 create_buffers(boolean_t early_trace
)
655 unsigned int p_buffer_size
;
656 unsigned int f_buffer_size
;
657 unsigned int f_buffers
;
661 * For the duration of this allocation, trace code will only reference
662 * kdebug_iops. Any iops registered after this enabling will not be
663 * messaged until the buffers are reallocated.
665 * TLDR; Must read kd_iops once and only once!
667 kd_ctrl_page
.kdebug_iops
= kd_iops
;
670 assert(kdbg_iop_list_is_valid(kd_ctrl_page
.kdebug_iops
));
674 * If the list is valid, it is sorted, newest -> oldest. Each iop entry
675 * has a cpu_id of "the older entry + 1", so the highest cpu_id will
676 * be the list head + 1.
679 kd_ctrl_page
.kdebug_cpus
= kd_ctrl_page
.kdebug_iops
? kd_ctrl_page
.kdebug_iops
->cpu_id
+ 1 : kdbg_cpu_count(early_trace
);
681 if (kmem_alloc(kernel_map
, (vm_offset_t
*)&kdbip
, sizeof(struct kd_bufinfo
) * kd_ctrl_page
.kdebug_cpus
, VM_KERN_MEMORY_DIAG
) != KERN_SUCCESS
) {
686 if (nkdbufs
< (kd_ctrl_page
.kdebug_cpus
* EVENTS_PER_STORAGE_UNIT
* MIN_STORAGE_UNITS_PER_CPU
))
687 n_storage_units
= kd_ctrl_page
.kdebug_cpus
* MIN_STORAGE_UNITS_PER_CPU
;
689 n_storage_units
= nkdbufs
/ EVENTS_PER_STORAGE_UNIT
;
691 nkdbufs
= n_storage_units
* EVENTS_PER_STORAGE_UNIT
;
693 f_buffers
= n_storage_units
/ N_STORAGE_UNITS_PER_BUFFER
;
694 n_storage_buffers
= f_buffers
;
696 f_buffer_size
= N_STORAGE_UNITS_PER_BUFFER
* sizeof(struct kd_storage
);
697 p_buffer_size
= (n_storage_units
% N_STORAGE_UNITS_PER_BUFFER
) * sizeof(struct kd_storage
);
704 if (kdcopybuf
== 0) {
705 if (kmem_alloc(kernel_map
, (vm_offset_t
*)&kdcopybuf
, (vm_size_t
)KDCOPYBUF_SIZE
, VM_KERN_MEMORY_DIAG
) != KERN_SUCCESS
) {
710 if (kmem_alloc(kernel_map
, (vm_offset_t
*)&kd_bufs
, (vm_size_t
)(n_storage_buffers
* sizeof(struct kd_storage_buffers
)), VM_KERN_MEMORY_DIAG
) != KERN_SUCCESS
) {
714 bzero(kd_bufs
, n_storage_buffers
* sizeof(struct kd_storage_buffers
));
716 for (i
= 0; i
< f_buffers
; i
++) {
717 if (kmem_alloc(kernel_map
, (vm_offset_t
*)&kd_bufs
[i
].kdsb_addr
, (vm_size_t
)f_buffer_size
, VM_KERN_MEMORY_DIAG
) != KERN_SUCCESS
) {
721 bzero(kd_bufs
[i
].kdsb_addr
, f_buffer_size
);
723 kd_bufs
[i
].kdsb_size
= f_buffer_size
;
726 if (kmem_alloc(kernel_map
, (vm_offset_t
*)&kd_bufs
[i
].kdsb_addr
, (vm_size_t
)p_buffer_size
, VM_KERN_MEMORY_DIAG
) != KERN_SUCCESS
) {
730 bzero(kd_bufs
[i
].kdsb_addr
, p_buffer_size
);
732 kd_bufs
[i
].kdsb_size
= p_buffer_size
;
736 for (i
= 0; i
< n_storage_buffers
; i
++) {
737 struct kd_storage
*kds
;
741 n_elements
= kd_bufs
[i
].kdsb_size
/ sizeof(struct kd_storage
);
742 kds
= kd_bufs
[i
].kdsb_addr
;
744 for (n
= 0; n
< n_elements
; n
++) {
745 kds
[n
].kds_next
.buffer_index
= kd_ctrl_page
.kds_free_list
.buffer_index
;
746 kds
[n
].kds_next
.offset
= kd_ctrl_page
.kds_free_list
.offset
;
748 kd_ctrl_page
.kds_free_list
.buffer_index
= i
;
749 kd_ctrl_page
.kds_free_list
.offset
= n
;
751 n_storage_units
+= n_elements
;
754 bzero((char *)kdbip
, sizeof(struct kd_bufinfo
) * kd_ctrl_page
.kdebug_cpus
);
756 for (i
= 0; i
< kd_ctrl_page
.kdebug_cpus
; i
++) {
757 kdbip
[i
].kd_list_head
.raw
= KDS_PTR_NULL
;
758 kdbip
[i
].kd_list_tail
.raw
= KDS_PTR_NULL
;
759 kdbip
[i
].kd_lostevents
= FALSE
;
760 kdbip
[i
].num_bufs
= 0;
763 kd_ctrl_page
.kdebug_flags
|= KDBG_BUFINIT
;
765 kd_ctrl_page
.kds_inuse_count
= 0;
766 n_storage_threshold
= n_storage_units
/ 2;
780 for (i
= 0; i
< n_storage_buffers
; i
++) {
781 if (kd_bufs
[i
].kdsb_addr
) {
782 kmem_free(kernel_map
, (vm_offset_t
)kd_bufs
[i
].kdsb_addr
, (vm_size_t
)kd_bufs
[i
].kdsb_size
);
785 kmem_free(kernel_map
, (vm_offset_t
)kd_bufs
, (vm_size_t
)(n_storage_buffers
* sizeof(struct kd_storage_buffers
)));
788 n_storage_buffers
= 0;
791 kmem_free(kernel_map
, (vm_offset_t
)kdcopybuf
, KDCOPYBUF_SIZE
);
795 kd_ctrl_page
.kds_free_list
.raw
= KDS_PTR_NULL
;
798 kmem_free(kernel_map
, (vm_offset_t
)kdbip
, sizeof(struct kd_bufinfo
) * kd_ctrl_page
.kdebug_cpus
);
802 kd_ctrl_page
.kdebug_iops
= NULL
;
803 kd_ctrl_page
.kdebug_cpus
= 0;
804 kd_ctrl_page
.kdebug_flags
&= ~KDBG_BUFINIT
;
808 release_storage_unit(int cpu
, uint32_t kdsp_raw
)
811 struct kd_storage
*kdsp_actual
;
812 struct kd_bufinfo
*kdbp
;
817 s
= ml_set_interrupts_enabled(FALSE
);
818 lck_spin_lock(kds_spin_lock
);
822 if (kdsp
.raw
== kdbp
->kd_list_head
.raw
) {
824 * it's possible for the storage unit pointed to
825 * by kdsp to have already been stolen... so
826 * check to see if it's still the head of the list
827 * now that we're behind the lock that protects
828 * adding and removing from the queue...
829 * since we only ever release and steal units from
830 * that position, if it's no longer the head
831 * we having nothing to do in this context
833 kdsp_actual
= POINTER_FROM_KDS_PTR(kdsp
);
834 kdbp
->kd_list_head
= kdsp_actual
->kds_next
;
836 kdsp_actual
->kds_next
= kd_ctrl_page
.kds_free_list
;
837 kd_ctrl_page
.kds_free_list
= kdsp
;
839 kd_ctrl_page
.kds_inuse_count
--;
841 lck_spin_unlock(kds_spin_lock
);
842 ml_set_interrupts_enabled(s
);
847 allocate_storage_unit(int cpu
)
850 struct kd_storage
*kdsp_actual
, *kdsp_next_actual
;
851 struct kd_bufinfo
*kdbp
, *kdbp_vict
, *kdbp_try
;
852 uint64_t oldest_ts
, ts
;
853 boolean_t retval
= TRUE
;
856 s
= ml_set_interrupts_enabled(FALSE
);
857 lck_spin_lock(kds_spin_lock
);
861 /* If someone beat us to the allocate, return success */
862 if (kdbp
->kd_list_tail
.raw
!= KDS_PTR_NULL
) {
863 kdsp_actual
= POINTER_FROM_KDS_PTR(kdbp
->kd_list_tail
);
865 if (kdsp_actual
->kds_bufindx
< EVENTS_PER_STORAGE_UNIT
)
869 if ((kdsp
= kd_ctrl_page
.kds_free_list
).raw
!= KDS_PTR_NULL
) {
871 * If there's a free page, grab it from the free list.
873 kdsp_actual
= POINTER_FROM_KDS_PTR(kdsp
);
874 kd_ctrl_page
.kds_free_list
= kdsp_actual
->kds_next
;
876 kd_ctrl_page
.kds_inuse_count
++;
879 * Otherwise, we're going to lose events and repurpose the oldest
880 * storage unit we can find.
882 if (kd_ctrl_page
.kdebug_flags
& KDBG_NOWRAP
) {
883 kd_ctrl_page
.kdebug_slowcheck
|= SLOW_NOLOG
;
884 kdbp
->kd_lostevents
= TRUE
;
889 oldest_ts
= UINT64_MAX
;
891 for (kdbp_try
= &kdbip
[0]; kdbp_try
< &kdbip
[kd_ctrl_page
.kdebug_cpus
]; kdbp_try
++) {
893 if (kdbp_try
->kd_list_head
.raw
== KDS_PTR_NULL
) {
895 * no storage unit to steal
900 kdsp_actual
= POINTER_FROM_KDS_PTR(kdbp_try
->kd_list_head
);
902 if (kdsp_actual
->kds_bufcnt
< EVENTS_PER_STORAGE_UNIT
) {
904 * make sure we don't steal the storage unit
905 * being actively recorded to... need to
906 * move on because we don't want an out-of-order
907 * set of events showing up later
913 * When wrapping, steal the storage unit with the
914 * earliest timestamp on its last event, instead of the
915 * earliest timestamp on the first event. This allows a
916 * storage unit with more recent events to be preserved,
917 * even if the storage unit contains events that are
918 * older than those found in other CPUs.
920 ts
= kdbg_get_timestamp(&kdsp_actual
->kds_records
[EVENTS_PER_STORAGE_UNIT
- 1]);
921 if (ts
< oldest_ts
) {
923 kdbp_vict
= kdbp_try
;
926 if (kdbp_vict
== NULL
) {
928 kd_ctrl_page
.enabled
= 0;
929 commpage_update_kdebug_state();
933 kdsp
= kdbp_vict
->kd_list_head
;
934 kdsp_actual
= POINTER_FROM_KDS_PTR(kdsp
);
935 kdbp_vict
->kd_list_head
= kdsp_actual
->kds_next
;
937 if (kdbp_vict
->kd_list_head
.raw
!= KDS_PTR_NULL
) {
938 kdsp_next_actual
= POINTER_FROM_KDS_PTR(kdbp_vict
->kd_list_head
);
939 kdsp_next_actual
->kds_lostevents
= TRUE
;
941 kdbp_vict
->kd_lostevents
= TRUE
;
943 if (kd_ctrl_page
.oldest_time
< oldest_ts
) {
944 kd_ctrl_page
.oldest_time
= oldest_ts
;
946 kd_ctrl_page
.kdebug_flags
|= KDBG_WRAPPED
;
948 kdsp_actual
->kds_timestamp
= kdbg_timestamp();
949 kdsp_actual
->kds_next
.raw
= KDS_PTR_NULL
;
950 kdsp_actual
->kds_bufcnt
= 0;
951 kdsp_actual
->kds_readlast
= 0;
953 kdsp_actual
->kds_lostevents
= kdbp
->kd_lostevents
;
954 kdbp
->kd_lostevents
= FALSE
;
955 kdsp_actual
->kds_bufindx
= 0;
957 if (kdbp
->kd_list_head
.raw
== KDS_PTR_NULL
)
958 kdbp
->kd_list_head
= kdsp
;
960 POINTER_FROM_KDS_PTR(kdbp
->kd_list_tail
)->kds_next
= kdsp
;
961 kdbp
->kd_list_tail
= kdsp
;
963 lck_spin_unlock(kds_spin_lock
);
964 ml_set_interrupts_enabled(s
);
970 kernel_debug_register_callback(kd_callback_t callback
)
973 if (kmem_alloc(kernel_map
, (vm_offset_t
*)&iop
, sizeof(kd_iop_t
), VM_KERN_MEMORY_DIAG
) == KERN_SUCCESS
) {
974 memcpy(&iop
->callback
, &callback
, sizeof(kd_callback_t
));
977 * <rdar://problem/13351477> Some IOP clients are not providing a name.
982 boolean_t is_valid_name
= FALSE
;
983 for (uint32_t length
=0; length
<sizeof(callback
.iop_name
); ++length
) {
984 /* This is roughly isprintable(c) */
985 if (callback
.iop_name
[length
] > 0x20 && callback
.iop_name
[length
] < 0x7F)
987 if (callback
.iop_name
[length
] == 0) {
989 is_valid_name
= TRUE
;
994 if (!is_valid_name
) {
995 strlcpy(iop
->callback
.iop_name
, "IOP-???", sizeof(iop
->callback
.iop_name
));
999 iop
->last_timestamp
= 0;
1003 * We use two pieces of state, the old list head
1004 * pointer, and the value of old_list_head->cpu_id.
1005 * If we read kd_iops more than once, it can change
1008 * TLDR; Must not read kd_iops more than once per loop.
1010 iop
->next
= kd_iops
;
1011 iop
->cpu_id
= iop
->next
? (iop
->next
->cpu_id
+1) : kdbg_cpu_count(FALSE
);
1014 * Header says OSCompareAndSwapPtr has a memory barrier
1016 } while (!OSCompareAndSwapPtr(iop
->next
, iop
, (void* volatile*)&kd_iops
));
1038 struct kd_bufinfo
*kdbp
;
1039 struct kd_storage
*kdsp_actual
;
1040 union kds_ptr kds_raw
;
1042 if (kd_ctrl_page
.kdebug_slowcheck
) {
1044 if ( (kd_ctrl_page
.kdebug_slowcheck
& SLOW_NOLOG
) || !(kdebug_enable
& (KDEBUG_ENABLE_TRACE
|KDEBUG_ENABLE_PPT
)))
1047 if (kd_ctrl_page
.kdebug_flags
& KDBG_TYPEFILTER_CHECK
) {
1048 if (typefilter_is_debugid_allowed(kdbg_typefilter
, debugid
))
1052 else if (kd_ctrl_page
.kdebug_flags
& KDBG_RANGECHECK
) {
1053 if (debugid
>= kdlog_beg
&& debugid
<= kdlog_end
)
1057 else if (kd_ctrl_page
.kdebug_flags
& KDBG_VALCHECK
) {
1058 if ((debugid
& KDBG_EVENTID_MASK
) != kdlog_value1
&&
1059 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value2
&&
1060 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value3
&&
1061 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value4
)
1067 if (timestamp
< kd_ctrl_page
.oldest_time
) {
1073 * When start_kern_tracing is called by the kernel to trace very
1074 * early kernel events, it saves data to a secondary buffer until
1075 * it is possible to initialize ktrace, and then dumps the events
1076 * into the ktrace buffer using this method. In this case, iops will
1077 * be NULL, and the coreid will be zero. It is not possible to have
1078 * a valid IOP coreid of zero, so pass if both iops is NULL and coreid
1081 assert(kdbg_iop_list_contains_cpu_id(kd_ctrl_page
.kdebug_iops
, coreid
) || (kd_ctrl_page
.kdebug_iops
== NULL
&& coreid
== 0));
1084 disable_preemption();
1086 if (kd_ctrl_page
.enabled
== 0)
1089 kdbp
= &kdbip
[coreid
];
1090 timestamp
&= KDBG_TIMESTAMP_MASK
;
1092 #if KDEBUG_MOJO_TRACE
1093 if (kdebug_enable
& KDEBUG_ENABLE_SERIAL
)
1094 kdebug_serial_print(coreid
, debugid
, timestamp
,
1095 arg1
, arg2
, arg3
, arg4
, threadid
);
1099 kds_raw
= kdbp
->kd_list_tail
;
1101 if (kds_raw
.raw
!= KDS_PTR_NULL
) {
1102 kdsp_actual
= POINTER_FROM_KDS_PTR(kds_raw
);
1103 bindx
= kdsp_actual
->kds_bufindx
;
1106 bindx
= EVENTS_PER_STORAGE_UNIT
;
1109 if (kdsp_actual
== NULL
|| bindx
>= EVENTS_PER_STORAGE_UNIT
) {
1110 if (allocate_storage_unit(coreid
) == FALSE
) {
1112 * this can only happen if wrapping
1119 if ( !OSCompareAndSwap(bindx
, bindx
+ 1, &kdsp_actual
->kds_bufindx
))
1122 // IOP entries can be allocated before xnu allocates and inits the buffer
1123 if (timestamp
< kdsp_actual
->kds_timestamp
)
1124 kdsp_actual
->kds_timestamp
= timestamp
;
1126 kd
= &kdsp_actual
->kds_records
[bindx
];
1128 kd
->debugid
= debugid
;
1133 kd
->arg5
= threadid
;
1135 kdbg_set_timestamp_and_cpu(kd
, timestamp
, coreid
);
1137 OSAddAtomic(1, &kdsp_actual
->kds_bufcnt
);
1139 enable_preemption();
1141 if ((kds_waiter
&& kd_ctrl_page
.kds_inuse_count
>= n_storage_threshold
)) {
1147 * Check if the given debug ID is allowed to be traced on the current process.
1149 * Returns true if allowed and false otherwise.
1152 kdebug_debugid_procfilt_allowed(uint32_t debugid
)
1154 uint32_t procfilt_flags
= kd_ctrl_page
.kdebug_flags
&
1155 (KDBG_PIDCHECK
| KDBG_PIDEXCLUDE
);
1157 if (!procfilt_flags
) {
1162 * DBG_TRACE and MACH_SCHED tracepoints ignore the process filter.
1164 if ((debugid
& 0xffff0000) == MACHDBG_CODE(DBG_MACH_SCHED
, 0) ||
1165 (debugid
>> 24 == DBG_TRACE
)) {
1169 struct proc
*curproc
= current_proc();
1171 * If the process is missing (early in boot), allow it.
1177 if (procfilt_flags
& KDBG_PIDCHECK
) {
1179 * Allow only processes marked with the kdebug bit.
1181 return curproc
->p_kdebug
;
1182 } else if (procfilt_flags
& KDBG_PIDEXCLUDE
) {
1184 * Exclude any process marked with the kdebug bit.
1186 return !curproc
->p_kdebug
;
1188 panic("kdebug: invalid procfilt flags %x", kd_ctrl_page
.kdebug_flags
);
1189 __builtin_unreachable();
1194 kernel_debug_internal(
1207 struct kd_bufinfo
*kdbp
;
1208 struct kd_storage
*kdsp_actual
;
1209 union kds_ptr kds_raw
;
1210 bool only_filter
= flags
& KDBG_FLAG_FILTERED
;
1211 bool observe_procfilt
= !(flags
& KDBG_FLAG_NOPROCFILT
);
1213 if (kd_ctrl_page
.kdebug_slowcheck
) {
1214 if ((kd_ctrl_page
.kdebug_slowcheck
& SLOW_NOLOG
) ||
1215 !(kdebug_enable
& (KDEBUG_ENABLE_TRACE
| KDEBUG_ENABLE_PPT
)))
1220 if (!ml_at_interrupt_context() && observe_procfilt
&&
1221 !kdebug_debugid_procfilt_allowed(debugid
)) {
1225 if (kd_ctrl_page
.kdebug_flags
& KDBG_TYPEFILTER_CHECK
) {
1226 if (typefilter_is_debugid_allowed(kdbg_typefilter
, debugid
))
1230 } else if (only_filter
) {
1233 else if (kd_ctrl_page
.kdebug_flags
& KDBG_RANGECHECK
) {
1234 /* Always record trace system info */
1235 if (KDBG_EXTRACT_CLASS(debugid
) == DBG_TRACE
)
1238 if (debugid
< kdlog_beg
|| debugid
> kdlog_end
)
1241 else if (kd_ctrl_page
.kdebug_flags
& KDBG_VALCHECK
) {
1242 /* Always record trace system info */
1243 if (KDBG_EXTRACT_CLASS(debugid
) == DBG_TRACE
)
1246 if ((debugid
& KDBG_EVENTID_MASK
) != kdlog_value1
&&
1247 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value2
&&
1248 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value3
&&
1249 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value4
)
1252 } else if (only_filter
) {
1257 disable_preemption();
1259 if (kd_ctrl_page
.enabled
== 0)
1265 #if KDEBUG_MOJO_TRACE
1266 if (kdebug_enable
& KDEBUG_ENABLE_SERIAL
)
1267 kdebug_serial_print(cpu
, debugid
,
1268 kdbg_timestamp() & KDBG_TIMESTAMP_MASK
,
1269 arg1
, arg2
, arg3
, arg4
, arg5
);
1273 kds_raw
= kdbp
->kd_list_tail
;
1275 if (kds_raw
.raw
!= KDS_PTR_NULL
) {
1276 kdsp_actual
= POINTER_FROM_KDS_PTR(kds_raw
);
1277 bindx
= kdsp_actual
->kds_bufindx
;
1280 bindx
= EVENTS_PER_STORAGE_UNIT
;
1283 if (kdsp_actual
== NULL
|| bindx
>= EVENTS_PER_STORAGE_UNIT
) {
1284 if (allocate_storage_unit(cpu
) == FALSE
) {
1286 * this can only happen if wrapping
1294 now
= kdbg_timestamp() & KDBG_TIMESTAMP_MASK
;
1296 if ( !OSCompareAndSwap(bindx
, bindx
+ 1, &kdsp_actual
->kds_bufindx
))
1299 kd
= &kdsp_actual
->kds_records
[bindx
];
1301 kd
->debugid
= debugid
;
1308 kdbg_set_timestamp_and_cpu(kd
, now
, cpu
);
1310 OSAddAtomic(1, &kdsp_actual
->kds_bufcnt
);
1313 kperf_kdebug_callback(debugid
, __builtin_frame_address(0));
1316 enable_preemption();
1318 if (kds_waiter
&& kd_ctrl_page
.kds_inuse_count
>= n_storage_threshold
) {
1322 etype
= debugid
& KDBG_EVENTID_MASK
;
1323 stype
= debugid
& KDBG_CSC_MASK
;
1325 if (etype
== INTERRUPT
|| etype
== MACH_vmfault
||
1326 stype
== BSC_SysCall
|| stype
== MACH_SysCall
) {
1339 __unused
uintptr_t arg5
)
1341 kernel_debug_internal(debugid
, arg1
, arg2
, arg3
, arg4
,
1342 (uintptr_t)thread_tid(current_thread()), 0);
1354 kernel_debug_internal(debugid
, arg1
, arg2
, arg3
, arg4
, arg5
, 0);
1366 kernel_debug_internal(debugid
, arg1
, arg2
, arg3
, arg4
,
1367 (uintptr_t)thread_tid(current_thread()), flags
);
1371 kernel_debug_filtered(
1378 kernel_debug_flags(debugid
, arg1
, arg2
, arg3
, arg4
, KDBG_FLAG_FILTERED
);
1382 kernel_debug_string_early(const char *message
)
1384 uintptr_t arg
[4] = {0, 0, 0, 0};
1386 /* Stuff the message string in the args and log it. */
1387 strncpy((char *)arg
, message
, MIN(sizeof(arg
), strlen(message
)));
1390 arg
[0], arg
[1], arg
[2], arg
[3]);
1393 #define SIMPLE_STR_LEN (64)
1394 static_assert(SIMPLE_STR_LEN
% sizeof(uintptr_t) == 0);
1397 kernel_debug_string_simple(uint32_t eventid
, const char *str
)
1399 if (!kdebug_enable
) {
1403 /* array of uintptr_ts simplifies emitting the string as arguments */
1404 uintptr_t str_buf
[(SIMPLE_STR_LEN
/ sizeof(uintptr_t)) + 1] = { 0 };
1405 size_t len
= strlcpy((char *)str_buf
, str
, SIMPLE_STR_LEN
+ 1);
1407 uintptr_t thread_id
= (uintptr_t)thread_tid(current_thread());
1408 uint32_t debugid
= eventid
| DBG_FUNC_START
;
1410 /* string can fit in a single tracepoint */
1411 if (len
<= (4 * sizeof(uintptr_t))) {
1412 debugid
|= DBG_FUNC_END
;
1415 kernel_debug_internal(debugid
, str_buf
[0],
1418 str_buf
[3], thread_id
, 0);
1420 debugid
&= KDBG_EVENTID_MASK
;
1422 size_t written
= 4 * sizeof(uintptr_t);
1424 for (; written
< len
; i
+= 4, written
+= 4 * sizeof(uintptr_t)) {
1425 /* if this is the last tracepoint to be emitted */
1426 if ((written
+ (4 * sizeof(uintptr_t))) >= len
) {
1427 debugid
|= DBG_FUNC_END
;
1429 kernel_debug_internal(debugid
, str_buf
[i
],
1432 str_buf
[i
+ 3], thread_id
, 0);
1436 extern int master_cpu
; /* MACH_KERNEL_PRIVATE */
1438 * Used prior to start_kern_tracing() being called.
1439 * Log temporarily into a static buffer.
1449 /* If early tracing is over, use the normal path. */
1450 if (kd_early_done
) {
1451 KERNEL_DEBUG_CONSTANT(debugid
, arg1
, arg2
, arg3
, arg4
, 0);
1455 /* Do nothing if the buffer is full or we're not on the boot cpu. */
1456 kd_early_overflow
= kd_early_index
>= KD_EARLY_BUFFER_NBUFS
;
1457 if (kd_early_overflow
|| cpu_number() != master_cpu
) {
1461 kd_early_buffer
[kd_early_index
].debugid
= debugid
;
1462 kd_early_buffer
[kd_early_index
].timestamp
= mach_absolute_time();
1463 kd_early_buffer
[kd_early_index
].arg1
= arg1
;
1464 kd_early_buffer
[kd_early_index
].arg2
= arg2
;
1465 kd_early_buffer
[kd_early_index
].arg3
= arg3
;
1466 kd_early_buffer
[kd_early_index
].arg4
= arg4
;
1467 kd_early_buffer
[kd_early_index
].arg5
= 0;
1472 * Transfer the contents of the temporary buffer into the trace buffers.
1473 * Precede that by logging the rebase time (offset) - the TSC-based time (in ns)
1474 * when mach_absolute_time is set to 0.
1477 kernel_debug_early_end(void)
1479 if (cpu_number() != master_cpu
) {
1480 panic("kernel_debug_early_end() not call on boot processor");
1483 /* reset the current oldest time to allow early events */
1484 kd_ctrl_page
.oldest_time
= 0;
1486 #if !CONFIG_EMBEDDED
1487 /* Fake sentinel marking the start of kernel time relative to TSC */
1488 kernel_debug_enter(0,
1491 (uint32_t)(tsc_rebase_abs_time
>> 32),
1492 (uint32_t)tsc_rebase_abs_time
,
1497 for (unsigned int i
= 0; i
< kd_early_index
; i
++) {
1498 kernel_debug_enter(0,
1499 kd_early_buffer
[i
].debugid
,
1500 kd_early_buffer
[i
].timestamp
,
1501 kd_early_buffer
[i
].arg1
,
1502 kd_early_buffer
[i
].arg2
,
1503 kd_early_buffer
[i
].arg3
,
1504 kd_early_buffer
[i
].arg4
,
1508 /* Cut events-lost event on overflow */
1509 if (kd_early_overflow
) {
1510 KDBG_RELEASE(TRACE_LOST_EVENTS
, 1);
1513 kd_early_done
= true;
1515 /* This trace marks the start of kernel tracing */
1516 kernel_debug_string_early("early trace done");
1520 kernel_debug_disable(void)
1522 if (kdebug_enable
) {
1523 kdbg_set_tracing_enabled(FALSE
, 0);
1528 * Returns non-zero if debugid is in a reserved class.
1531 kdebug_validate_debugid(uint32_t debugid
)
1533 uint8_t debugid_class
;
1535 debugid_class
= KDBG_EXTRACT_CLASS(debugid
);
1536 switch (debugid_class
) {
1545 * Support syscall SYS_kdebug_typefilter.
1548 kdebug_typefilter(__unused
struct proc
* p
,
1549 struct kdebug_typefilter_args
* uap
,
1550 __unused
int *retval
)
1552 int ret
= KERN_SUCCESS
;
1554 if (uap
->addr
== USER_ADDR_NULL
||
1555 uap
->size
== USER_ADDR_NULL
) {
1560 * The atomic load is to close a race window with setting the typefilter
1561 * and memory entry values. A description follows:
1565 * Allocate Typefilter
1566 * Allocate MemoryEntry
1567 * Write Global MemoryEntry Ptr
1568 * Atomic Store (Release) Global Typefilter Ptr
1570 * Thread 2 (reader, AKA us)
1572 * if ((Atomic Load (Acquire) Global Typefilter Ptr) == NULL)
1575 * Without the atomic store, it isn't guaranteed that the write of
1576 * Global MemoryEntry Ptr is visible before we can see the write of
1577 * Global Typefilter Ptr.
1579 * Without the atomic load, it isn't guaranteed that the loads of
1580 * Global MemoryEntry Ptr aren't speculated.
1582 * The global pointers transition from NULL -> valid once and only once,
1583 * and never change after becoming valid. This means that having passed
1584 * the first atomic load test of Global Typefilter Ptr, this function
1585 * can then safely use the remaining global state without atomic checks.
1587 if (!__c11_atomic_load((_Atomic typefilter_t
*)&kdbg_typefilter
, memory_order_acquire
)) {
1591 assert(kdbg_typefilter_memory_entry
);
1593 mach_vm_offset_t user_addr
= 0;
1594 vm_map_t user_map
= current_map();
1596 ret
= mach_to_bsd_errno(
1597 mach_vm_map_kernel(user_map
, // target map
1598 &user_addr
, // [in, out] target address
1599 TYPEFILTER_ALLOC_SIZE
, // initial size
1600 0, // mask (alignment?)
1601 VM_FLAGS_ANYWHERE
, // flags
1602 VM_MAP_KERNEL_FLAGS_NONE
,
1603 VM_KERN_MEMORY_NONE
,
1604 kdbg_typefilter_memory_entry
, // port (memory entry!)
1605 0, // offset (in memory entry)
1606 FALSE
, // should copy
1607 VM_PROT_READ
, // cur_prot
1608 VM_PROT_READ
, // max_prot
1609 VM_INHERIT_SHARE
)); // inherit behavior on fork
1611 if (ret
== KERN_SUCCESS
) {
1612 vm_size_t user_ptr_size
= vm_map_is_64bit(user_map
) ? 8 : 4;
1613 ret
= copyout(CAST_DOWN(void *, &user_addr
), uap
->addr
, user_ptr_size
);
1615 if (ret
!= KERN_SUCCESS
) {
1616 mach_vm_deallocate(user_map
, user_addr
, TYPEFILTER_ALLOC_SIZE
);
1624 * Support syscall SYS_kdebug_trace. U64->K32 args may get truncated in kdebug_trace64
1627 kdebug_trace(struct proc
*p
, struct kdebug_trace_args
*uap
, int32_t *retval
)
1629 struct kdebug_trace64_args uap64
;
1631 uap64
.code
= uap
->code
;
1632 uap64
.arg1
= uap
->arg1
;
1633 uap64
.arg2
= uap
->arg2
;
1634 uap64
.arg3
= uap
->arg3
;
1635 uap64
.arg4
= uap
->arg4
;
1637 return kdebug_trace64(p
, &uap64
, retval
);
1641 * Support syscall SYS_kdebug_trace64. 64-bit args on K32 will get truncated
1642 * to fit in 32-bit record format.
1644 * It is intentional that error conditions are not checked until kdebug is
1645 * enabled. This is to match the userspace wrapper behavior, which is optimizing
1646 * for non-error case performance.
1648 int kdebug_trace64(__unused
struct proc
*p
, struct kdebug_trace64_args
*uap
, __unused
int32_t *retval
)
1652 if ( __probable(kdebug_enable
== 0) )
1655 if ((err
= kdebug_validate_debugid(uap
->code
)) != 0) {
1659 kernel_debug_internal(uap
->code
, (uintptr_t)uap
->arg1
,
1660 (uintptr_t)uap
->arg2
, (uintptr_t)uap
->arg3
, (uintptr_t)uap
->arg4
,
1661 (uintptr_t)thread_tid(current_thread()), 0);
1667 * Adding enough padding to contain a full tracepoint for the last
1668 * portion of the string greatly simplifies the logic of splitting the
1669 * string between tracepoints. Full tracepoints can be generated using
1670 * the buffer itself, without having to manually add zeros to pad the
1674 /* 2 string args in first tracepoint and 9 string data tracepoints */
1675 #define STR_BUF_ARGS (2 + (9 * 4))
1676 /* times the size of each arg on K64 */
1677 #define MAX_STR_LEN (STR_BUF_ARGS * sizeof(uint64_t))
1678 /* on K32, ending straddles a tracepoint, so reserve blanks */
1679 #define STR_BUF_SIZE (MAX_STR_LEN + (2 * sizeof(uint32_t)))
1682 * This function does no error checking and assumes that it is called with
1683 * the correct arguments, including that the buffer pointed to by str is at
1684 * least STR_BUF_SIZE bytes. However, str must be aligned to word-size and
1685 * be NUL-terminated. In cases where a string can fit evenly into a final
1686 * tracepoint without its NUL-terminator, this function will not end those
1687 * strings with a NUL in trace. It's up to clients to look at the function
1688 * qualifier for DBG_FUNC_END in this case, to end the string.
1691 kernel_debug_string_internal(uint32_t debugid
, uint64_t str_id
, void *vstr
,
1694 /* str must be word-aligned */
1695 uintptr_t *str
= vstr
;
1697 uintptr_t thread_id
;
1699 uint32_t trace_debugid
= TRACEDBG_CODE(DBG_TRACE_STRING
,
1700 TRACE_STRING_GLOBAL
);
1702 thread_id
= (uintptr_t)thread_tid(current_thread());
1704 /* if the ID is being invalidated, just emit that */
1705 if (str_id
!= 0 && str_len
== 0) {
1706 kernel_debug_internal(trace_debugid
| DBG_FUNC_START
| DBG_FUNC_END
,
1707 (uintptr_t)debugid
, (uintptr_t)str_id
, 0, 0, thread_id
, 0);
1711 /* generate an ID, if necessary */
1713 str_id
= OSIncrementAtomic64((SInt64
*)&g_curr_str_id
);
1714 str_id
= (str_id
& STR_ID_MASK
) | g_str_id_signature
;
1717 trace_debugid
|= DBG_FUNC_START
;
1718 /* string can fit in a single tracepoint */
1719 if (str_len
<= (2 * sizeof(uintptr_t))) {
1720 trace_debugid
|= DBG_FUNC_END
;
1723 kernel_debug_internal(trace_debugid
, (uintptr_t)debugid
, (uintptr_t)str_id
,
1724 str
[0], str
[1], thread_id
, 0);
1726 trace_debugid
&= KDBG_EVENTID_MASK
;
1728 written
+= 2 * sizeof(uintptr_t);
1730 for (; written
< str_len
; i
+= 4, written
+= 4 * sizeof(uintptr_t)) {
1731 if ((written
+ (4 * sizeof(uintptr_t))) >= str_len
) {
1732 trace_debugid
|= DBG_FUNC_END
;
1734 kernel_debug_internal(trace_debugid
, str
[i
],
1737 str
[i
+ 3], thread_id
, 0);
1744 * Returns true if the current process can emit events, and false otherwise.
1745 * Trace system and scheduling events circumvent this check, as do events
1746 * emitted in interrupt context.
1749 kdebug_current_proc_enabled(uint32_t debugid
)
1751 /* can't determine current process in interrupt context */
1752 if (ml_at_interrupt_context()) {
1756 /* always emit trace system and scheduling events */
1757 if ((KDBG_EXTRACT_CLASS(debugid
) == DBG_TRACE
||
1758 (debugid
& KDBG_CSC_MASK
) == MACHDBG_CODE(DBG_MACH_SCHED
, 0)))
1763 if (kd_ctrl_page
.kdebug_flags
& KDBG_PIDCHECK
) {
1764 proc_t cur_proc
= current_proc();
1766 /* only the process with the kdebug bit set is allowed */
1767 if (cur_proc
&& !(cur_proc
->p_kdebug
)) {
1770 } else if (kd_ctrl_page
.kdebug_flags
& KDBG_PIDEXCLUDE
) {
1771 proc_t cur_proc
= current_proc();
1773 /* every process except the one with the kdebug bit set is allowed */
1774 if (cur_proc
&& cur_proc
->p_kdebug
) {
1783 kdebug_debugid_enabled(uint32_t debugid
)
1785 /* if no filtering is enabled */
1786 if (!kd_ctrl_page
.kdebug_slowcheck
) {
1790 return kdebug_debugid_explicitly_enabled(debugid
);
1794 kdebug_debugid_explicitly_enabled(uint32_t debugid
)
1796 if (kd_ctrl_page
.kdebug_flags
& KDBG_TYPEFILTER_CHECK
) {
1797 return typefilter_is_debugid_allowed(kdbg_typefilter
, debugid
);
1798 } else if (KDBG_EXTRACT_CLASS(debugid
) == DBG_TRACE
) {
1800 } else if (kd_ctrl_page
.kdebug_flags
& KDBG_RANGECHECK
) {
1801 if (debugid
< kdlog_beg
|| debugid
> kdlog_end
) {
1804 } else if (kd_ctrl_page
.kdebug_flags
& KDBG_VALCHECK
) {
1805 if ((debugid
& KDBG_EVENTID_MASK
) != kdlog_value1
&&
1806 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value2
&&
1807 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value3
&&
1808 (debugid
& KDBG_EVENTID_MASK
) != kdlog_value4
)
1818 * Returns 0 if a string can be traced with these arguments. Returns errno
1819 * value if error occurred.
1822 kdebug_check_trace_string(uint32_t debugid
, uint64_t str_id
)
1824 /* if there are function qualifiers on the debugid */
1825 if (debugid
& ~KDBG_EVENTID_MASK
) {
1829 if (kdebug_validate_debugid(debugid
)) {
1833 if (str_id
!= 0 && (str_id
& STR_ID_SIG_MASK
) != g_str_id_signature
) {
1841 * Implementation of KPI kernel_debug_string.
1844 kernel_debug_string(uint32_t debugid
, uint64_t *str_id
, const char *str
)
1846 /* arguments to tracepoints must be word-aligned */
1847 __attribute__((aligned(sizeof(uintptr_t)))) char str_buf
[STR_BUF_SIZE
];
1848 static_assert(sizeof(str_buf
) > MAX_STR_LEN
);
1849 vm_size_t len_copied
;
1854 if (__probable(kdebug_enable
== 0)) {
1858 if (!kdebug_current_proc_enabled(debugid
)) {
1862 if (!kdebug_debugid_enabled(debugid
)) {
1866 if ((err
= kdebug_check_trace_string(debugid
, *str_id
)) != 0) {
1875 *str_id
= kernel_debug_string_internal(debugid
, *str_id
, NULL
, 0);
1879 memset(str_buf
, 0, sizeof(str_buf
));
1880 len_copied
= strlcpy(str_buf
, str
, MAX_STR_LEN
+ 1);
1881 *str_id
= kernel_debug_string_internal(debugid
, *str_id
, str_buf
,
1887 * Support syscall kdebug_trace_string.
1890 kdebug_trace_string(__unused
struct proc
*p
,
1891 struct kdebug_trace_string_args
*uap
,
1894 __attribute__((aligned(sizeof(uintptr_t)))) char str_buf
[STR_BUF_SIZE
];
1895 static_assert(sizeof(str_buf
) > MAX_STR_LEN
);
1899 if (__probable(kdebug_enable
== 0)) {
1903 if (!kdebug_current_proc_enabled(uap
->debugid
)) {
1907 if (!kdebug_debugid_enabled(uap
->debugid
)) {
1911 if ((err
= kdebug_check_trace_string(uap
->debugid
, uap
->str_id
)) != 0) {
1915 if (uap
->str
== USER_ADDR_NULL
) {
1916 if (uap
->str_id
== 0) {
1920 *retval
= kernel_debug_string_internal(uap
->debugid
, uap
->str_id
,
1925 memset(str_buf
, 0, sizeof(str_buf
));
1926 err
= copyinstr(uap
->str
, str_buf
, MAX_STR_LEN
+ 1, &len_copied
);
1928 /* it's alright to truncate the string, so allow ENAMETOOLONG */
1929 if (err
== ENAMETOOLONG
) {
1930 str_buf
[MAX_STR_LEN
] = '\0';
1935 if (len_copied
<= 1) {
1939 /* convert back to a length */
1942 *retval
= kernel_debug_string_internal(uap
->debugid
, uap
->str_id
, str_buf
,
1948 kdbg_lock_init(void)
1950 static lck_grp_attr_t
*kdebug_lck_grp_attr
= NULL
;
1951 static lck_grp_t
*kdebug_lck_grp
= NULL
;
1952 static lck_attr_t
*kdebug_lck_attr
= NULL
;
1954 if (kd_ctrl_page
.kdebug_flags
& KDBG_LOCKINIT
) {
1958 assert(kdebug_lck_grp_attr
== NULL
);
1959 kdebug_lck_grp_attr
= lck_grp_attr_alloc_init();
1960 kdebug_lck_grp
= lck_grp_alloc_init("kdebug", kdebug_lck_grp_attr
);
1961 kdebug_lck_attr
= lck_attr_alloc_init();
1963 kds_spin_lock
= lck_spin_alloc_init(kdebug_lck_grp
, kdebug_lck_attr
);
1964 kdw_spin_lock
= lck_spin_alloc_init(kdebug_lck_grp
, kdebug_lck_attr
);
1966 kd_ctrl_page
.kdebug_flags
|= KDBG_LOCKINIT
;
1970 kdbg_bootstrap(boolean_t early_trace
)
1972 kd_ctrl_page
.kdebug_flags
&= ~KDBG_WRAPPED
;
1974 return (create_buffers(early_trace
));
1978 kdbg_reinit(boolean_t early_trace
)
1983 * Disable trace collecting
1984 * First make sure we're not in
1985 * the middle of cutting a trace
1987 kernel_debug_disable();
1990 * make sure the SLOW_NOLOG is seen
1991 * by everyone that might be trying
1998 kdbg_clear_thread_map();
1999 ret
= kdbg_bootstrap(early_trace
);
2001 RAW_file_offset
= 0;
2002 RAW_file_written
= 0;
2008 kdbg_trace_data(struct proc
*proc
, long *arg_pid
, long *arg_uniqueid
)
2014 *arg_pid
= proc
->p_pid
;
2015 *arg_uniqueid
= proc
->p_uniqueid
;
2016 if ((uint64_t) *arg_uniqueid
!= proc
->p_uniqueid
) {
2024 kdbg_trace_string(struct proc
*proc
, long *arg1
, long *arg2
, long *arg3
, long *arg4
)
2038 * Collect the pathname for tracing
2040 dbg_nameptr
= proc
->p_comm
;
2041 dbg_namelen
= (int)strlen(proc
->p_comm
);
2047 if(dbg_namelen
> (int)sizeof(dbg_parms
))
2048 dbg_namelen
= (int)sizeof(dbg_parms
);
2050 strncpy((char *)dbg_parms
, dbg_nameptr
, dbg_namelen
);
2059 kdbg_resolve_map(thread_t th_act
, void *opaque
)
2061 kd_threadmap
*mapptr
;
2062 krt_t
*t
= (krt_t
*)opaque
;
2064 if (t
->count
< t
->maxcount
) {
2065 mapptr
= &t
->map
[t
->count
];
2066 mapptr
->thread
= (uintptr_t)thread_tid(th_act
);
2068 (void) strlcpy (mapptr
->command
, t
->atts
->task_comm
,
2069 sizeof(t
->atts
->task_comm
));
2071 * Some kernel threads have no associated pid.
2072 * We still need to mark the entry as valid.
2075 mapptr
->valid
= t
->atts
->pid
;
2085 * Writes a cpumap for the given iops_list/cpu_count to the provided buffer.
2087 * You may provide a buffer and size, or if you set the buffer to NULL, a
2088 * buffer of sufficient size will be allocated.
2090 * If you provide a buffer and it is too small, sets cpumap_size to the number
2091 * of bytes required and returns EINVAL.
2093 * On success, if you provided a buffer, cpumap_size is set to the number of
2094 * bytes written. If you did not provide a buffer, cpumap is set to the newly
2095 * allocated buffer and cpumap_size is set to the number of bytes allocated.
2097 * NOTE: It may seem redundant to pass both iops and a cpu_count.
2099 * We may be reporting data from "now", or from the "past".
2101 * The "past" data would be for kdbg_readcpumap().
2103 * If we do not pass both iops and cpu_count, and iops is NULL, this function
2104 * will need to read "now" state to get the number of cpus, which would be in
2105 * error if we were reporting "past" state.
2109 kdbg_cpumap_init_internal(kd_iop_t
* iops
, uint32_t cpu_count
, uint8_t** cpumap
, uint32_t* cpumap_size
)
2112 assert(cpumap_size
);
2114 assert(!iops
|| iops
->cpu_id
+ 1 == cpu_count
);
2116 uint32_t bytes_needed
= sizeof(kd_cpumap_header
) + cpu_count
* sizeof(kd_cpumap
);
2117 uint32_t bytes_available
= *cpumap_size
;
2118 *cpumap_size
= bytes_needed
;
2120 if (*cpumap
== NULL
) {
2121 if (kmem_alloc(kernel_map
, (vm_offset_t
*)cpumap
, (vm_size_t
)*cpumap_size
, VM_KERN_MEMORY_DIAG
) != KERN_SUCCESS
) {
2124 bzero(*cpumap
, *cpumap_size
);
2125 } else if (bytes_available
< bytes_needed
) {
2129 kd_cpumap_header
* header
= (kd_cpumap_header
*)(uintptr_t)*cpumap
;
2131 header
->version_no
= RAW_VERSION1
;
2132 header
->cpu_count
= cpu_count
;
2134 kd_cpumap
* cpus
= (kd_cpumap
*)&header
[1];
2136 int32_t index
= cpu_count
- 1;
2138 cpus
[index
].cpu_id
= iops
->cpu_id
;
2139 cpus
[index
].flags
= KDBG_CPUMAP_IS_IOP
;
2140 strlcpy(cpus
[index
].name
, iops
->callback
.iop_name
, sizeof(cpus
->name
));
2146 while (index
>= 0) {
2147 cpus
[index
].cpu_id
= index
;
2148 cpus
[index
].flags
= 0;
2149 strlcpy(cpus
[index
].name
, "AP", sizeof(cpus
->name
));
2154 return KERN_SUCCESS
;
2158 kdbg_thrmap_init(void)
2160 ktrace_assert_lock_held();
2162 if (kd_ctrl_page
.kdebug_flags
& KDBG_MAPINIT
) {
2166 kd_mapptr
= kdbg_thrmap_init_internal(0, &kd_mapsize
, &kd_mapcount
);
2169 kd_ctrl_page
.kdebug_flags
|= KDBG_MAPINIT
;
2173 static kd_threadmap
*
2174 kdbg_thrmap_init_internal(unsigned int count
, unsigned int *mapsize
, unsigned int *mapcount
)
2176 kd_threadmap
*mapptr
;
2179 int tts_count
= 0; /* number of task-to-string structures */
2180 struct tts
*tts_mapptr
;
2181 unsigned int tts_mapsize
= 0;
2184 assert(mapsize
!= NULL
);
2185 assert(mapcount
!= NULL
);
2187 *mapcount
= threads_count
;
2188 tts_count
= tasks_count
;
2191 * The proc count could change during buffer allocation,
2192 * so introduce a small fudge factor to bump up the
2193 * buffer sizes. This gives new tasks some chance of
2194 * making into the tables. Bump up by 25%.
2196 *mapcount
+= *mapcount
/ 4;
2197 tts_count
+= tts_count
/ 4;
2199 *mapsize
= *mapcount
* sizeof(kd_threadmap
);
2201 if (count
&& count
< *mapcount
) {
2205 if ((kmem_alloc(kernel_map
, &kaddr
, (vm_size_t
)*mapsize
, VM_KERN_MEMORY_DIAG
) == KERN_SUCCESS
)) {
2206 bzero((void *)kaddr
, *mapsize
);
2207 mapptr
= (kd_threadmap
*)kaddr
;
2212 tts_mapsize
= tts_count
* sizeof(struct tts
);
2214 if ((kmem_alloc(kernel_map
, &kaddr
, (vm_size_t
)tts_mapsize
, VM_KERN_MEMORY_DIAG
) == KERN_SUCCESS
)) {
2215 bzero((void *)kaddr
, tts_mapsize
);
2216 tts_mapptr
= (struct tts
*)kaddr
;
2218 kmem_free(kernel_map
, (vm_offset_t
)mapptr
, *mapsize
);
2224 * Save the proc's name and take a reference for each task associated
2225 * with a valid process.
2230 ALLPROC_FOREACH(p
) {
2231 if (i
>= tts_count
) {
2234 if (p
->p_lflag
& P_LEXIT
) {
2238 task_reference(p
->task
);
2239 tts_mapptr
[i
].task
= p
->task
;
2240 tts_mapptr
[i
].pid
= p
->p_pid
;
2241 (void)strlcpy(tts_mapptr
[i
].task_comm
, proc_best_name(p
), sizeof(tts_mapptr
[i
].task_comm
));
2250 * Initialize thread map data
2254 akrt
.maxcount
= *mapcount
;
2256 for (i
= 0; i
< tts_count
; i
++) {
2257 akrt
.atts
= &tts_mapptr
[i
];
2258 task_act_iterate_wth_args(tts_mapptr
[i
].task
, kdbg_resolve_map
, &akrt
);
2259 task_deallocate((task_t
)tts_mapptr
[i
].task
);
2261 kmem_free(kernel_map
, (vm_offset_t
)tts_mapptr
, tts_mapsize
);
2263 *mapcount
= akrt
.count
;
2272 * Clean up the trace buffer
2273 * First make sure we're not in
2274 * the middle of cutting a trace
2276 kernel_debug_disable();
2277 kdbg_disable_typefilter();
2280 * make sure the SLOW_NOLOG is seen
2281 * by everyone that might be trying
2286 /* reset kdebug state for each process */
2287 if (kd_ctrl_page
.kdebug_flags
& (KDBG_PIDCHECK
| KDBG_PIDEXCLUDE
)) {
2290 ALLPROC_FOREACH(p
) {
2296 kd_ctrl_page
.kdebug_flags
&= (unsigned int)~KDBG_CKTYPES
;
2297 kd_ctrl_page
.kdebug_flags
&= ~(KDBG_NOWRAP
| KDBG_RANGECHECK
| KDBG_VALCHECK
);
2298 kd_ctrl_page
.kdebug_flags
&= ~(KDBG_PIDCHECK
| KDBG_PIDEXCLUDE
);
2300 kd_ctrl_page
.oldest_time
= 0;
2305 /* Clean up the thread map buffer */
2306 kdbg_clear_thread_map();
2308 RAW_file_offset
= 0;
2309 RAW_file_written
= 0;
2315 ktrace_assert_lock_held();
2320 if (kdbg_typefilter
) {
2321 typefilter_reject_all(kdbg_typefilter
);
2322 typefilter_allow_class(kdbg_typefilter
, DBG_TRACE
);
2327 kdebug_free_early_buf(void)
2329 #if !CONFIG_EMBEDDED
2330 /* Must be done with the buffer, so release it back to the VM.
2331 * On embedded targets this buffer is freed when the BOOTDATA segment is freed. */
2332 ml_static_mfree((vm_offset_t
)&kd_early_buffer
, sizeof(kd_early_buffer
));
2337 kdbg_setpid(kd_regtype
*kdr
)
2343 pid
= (pid_t
)kdr
->value1
;
2344 flag
= (int)kdr
->value2
;
2347 if ((p
= proc_find(pid
)) == NULL
)
2352 * turn on pid check for this and all pids
2354 kd_ctrl_page
.kdebug_flags
|= KDBG_PIDCHECK
;
2355 kd_ctrl_page
.kdebug_flags
&= ~KDBG_PIDEXCLUDE
;
2356 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2361 * turn off pid check for this pid value
2362 * Don't turn off all pid checking though
2364 * kd_ctrl_page.kdebug_flags &= ~KDBG_PIDCHECK;
2377 /* This is for pid exclusion in the trace buffer */
2379 kdbg_setpidex(kd_regtype
*kdr
)
2385 pid
= (pid_t
)kdr
->value1
;
2386 flag
= (int)kdr
->value2
;
2389 if ((p
= proc_find(pid
)) == NULL
)
2394 * turn on pid exclusion
2396 kd_ctrl_page
.kdebug_flags
|= KDBG_PIDEXCLUDE
;
2397 kd_ctrl_page
.kdebug_flags
&= ~KDBG_PIDCHECK
;
2398 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2404 * turn off pid exclusion for this pid value
2405 * Don't turn off all pid exclusion though
2407 * kd_ctrl_page.kdebug_flags &= ~KDBG_PIDEXCLUDE;
2420 * The following functions all operate on the "global" typefilter singleton.
2424 * The tf param is optional, you may pass either a valid typefilter or NULL.
2425 * If you pass a valid typefilter, you release ownership of that typefilter.
2428 kdbg_initialize_typefilter(typefilter_t tf
)
2430 ktrace_assert_lock_held();
2431 assert(!kdbg_typefilter
);
2432 assert(!kdbg_typefilter_memory_entry
);
2433 typefilter_t deallocate_tf
= NULL
;
2435 if (!tf
&& ((tf
= deallocate_tf
= typefilter_create()) == NULL
)) {
2439 if ((kdbg_typefilter_memory_entry
= typefilter_create_memory_entry(tf
)) == MACH_PORT_NULL
) {
2440 if (deallocate_tf
) {
2441 typefilter_deallocate(deallocate_tf
);
2447 * The atomic store closes a race window with
2448 * the kdebug_typefilter syscall, which assumes
2449 * that any non-null kdbg_typefilter means a
2450 * valid memory_entry is available.
2452 __c11_atomic_store(((_Atomic typefilter_t
*)&kdbg_typefilter
), tf
, memory_order_release
);
2454 return KERN_SUCCESS
;
2458 kdbg_copyin_typefilter(user_addr_t addr
, size_t size
)
2463 ktrace_assert_lock_held();
2465 if (size
!= KDBG_TYPEFILTER_BITMAP_SIZE
) {
2469 if ((tf
= typefilter_create())) {
2470 if ((ret
= copyin(addr
, tf
, KDBG_TYPEFILTER_BITMAP_SIZE
)) == 0) {
2471 /* The kernel typefilter must always allow DBG_TRACE */
2472 typefilter_allow_class(tf
, DBG_TRACE
);
2475 * If this is the first typefilter; claim it.
2476 * Otherwise copy and deallocate.
2478 * Allocating a typefilter for the copyin allows
2479 * the kernel to hold the invariant that DBG_TRACE
2480 * must always be allowed.
2482 if (!kdbg_typefilter
) {
2483 if ((ret
= kdbg_initialize_typefilter(tf
))) {
2488 typefilter_copy(kdbg_typefilter
, tf
);
2491 kdbg_enable_typefilter();
2492 kdbg_iop_list_callback(kd_ctrl_page
.kdebug_iops
, KD_CALLBACK_TYPEFILTER_CHANGED
, kdbg_typefilter
);
2496 typefilter_deallocate(tf
);
2503 * Enable the flags in the control page for the typefilter. Assumes that
2504 * kdbg_typefilter has already been allocated, so events being written
2505 * don't see a bad typefilter.
2508 kdbg_enable_typefilter(void)
2510 assert(kdbg_typefilter
);
2511 kd_ctrl_page
.kdebug_flags
&= ~(KDBG_RANGECHECK
| KDBG_VALCHECK
);
2512 kd_ctrl_page
.kdebug_flags
|= KDBG_TYPEFILTER_CHECK
;
2513 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2514 commpage_update_kdebug_state();
2518 * Disable the flags in the control page for the typefilter. The typefilter
2519 * may be safely deallocated shortly after this function returns.
2522 kdbg_disable_typefilter(void)
2524 bool notify_iops
= kd_ctrl_page
.kdebug_flags
& KDBG_TYPEFILTER_CHECK
;
2525 kd_ctrl_page
.kdebug_flags
&= ~KDBG_TYPEFILTER_CHECK
;
2527 if ((kd_ctrl_page
.kdebug_flags
& (KDBG_PIDCHECK
| KDBG_PIDEXCLUDE
))) {
2528 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2530 kdbg_set_flags(SLOW_CHECKS
, 0, FALSE
);
2532 commpage_update_kdebug_state();
2536 * Notify IOPs that the typefilter will now allow everything.
2537 * Otherwise, they won't know a typefilter is no longer in
2540 typefilter_allow_all(kdbg_typefilter
);
2541 kdbg_iop_list_callback(kd_ctrl_page
.kdebug_iops
,
2542 KD_CALLBACK_TYPEFILTER_CHANGED
, kdbg_typefilter
);
2547 kdebug_commpage_state(void)
2549 if (kdebug_enable
) {
2550 if (kd_ctrl_page
.kdebug_flags
& KDBG_TYPEFILTER_CHECK
) {
2551 return KDEBUG_COMMPAGE_ENABLE_TYPEFILTER
| KDEBUG_COMMPAGE_ENABLE_TRACE
;
2554 return KDEBUG_COMMPAGE_ENABLE_TRACE
;
2561 kdbg_setreg(kd_regtype
* kdr
)
2564 unsigned int val_1
, val_2
, val
;
2565 switch (kdr
->type
) {
2567 case KDBG_CLASSTYPE
:
2568 val_1
= (kdr
->value1
& 0xff);
2569 val_2
= (kdr
->value2
& 0xff);
2570 kdlog_beg
= (val_1
<<24);
2571 kdlog_end
= (val_2
<<24);
2572 kd_ctrl_page
.kdebug_flags
&= (unsigned int)~KDBG_CKTYPES
;
2573 kd_ctrl_page
.kdebug_flags
&= ~KDBG_VALCHECK
; /* Turn off specific value check */
2574 kd_ctrl_page
.kdebug_flags
|= (KDBG_RANGECHECK
| KDBG_CLASSTYPE
);
2575 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2577 case KDBG_SUBCLSTYPE
:
2578 val_1
= (kdr
->value1
& 0xff);
2579 val_2
= (kdr
->value2
& 0xff);
2581 kdlog_beg
= ((val_1
<<24) | (val_2
<< 16));
2582 kdlog_end
= ((val_1
<<24) | (val
<< 16));
2583 kd_ctrl_page
.kdebug_flags
&= (unsigned int)~KDBG_CKTYPES
;
2584 kd_ctrl_page
.kdebug_flags
&= ~KDBG_VALCHECK
; /* Turn off specific value check */
2585 kd_ctrl_page
.kdebug_flags
|= (KDBG_RANGECHECK
| KDBG_SUBCLSTYPE
);
2586 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2588 case KDBG_RANGETYPE
:
2589 kdlog_beg
= (kdr
->value1
);
2590 kdlog_end
= (kdr
->value2
);
2591 kd_ctrl_page
.kdebug_flags
&= (unsigned int)~KDBG_CKTYPES
;
2592 kd_ctrl_page
.kdebug_flags
&= ~KDBG_VALCHECK
; /* Turn off specific value check */
2593 kd_ctrl_page
.kdebug_flags
|= (KDBG_RANGECHECK
| KDBG_RANGETYPE
);
2594 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2597 kdlog_value1
= (kdr
->value1
);
2598 kdlog_value2
= (kdr
->value2
);
2599 kdlog_value3
= (kdr
->value3
);
2600 kdlog_value4
= (kdr
->value4
);
2601 kd_ctrl_page
.kdebug_flags
&= (unsigned int)~KDBG_CKTYPES
;
2602 kd_ctrl_page
.kdebug_flags
&= ~KDBG_RANGECHECK
; /* Turn off range check */
2603 kd_ctrl_page
.kdebug_flags
|= KDBG_VALCHECK
; /* Turn on specific value check */
2604 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2606 case KDBG_TYPENONE
:
2607 kd_ctrl_page
.kdebug_flags
&= (unsigned int)~KDBG_CKTYPES
;
2609 if ( (kd_ctrl_page
.kdebug_flags
& (KDBG_RANGECHECK
| KDBG_VALCHECK
|
2610 KDBG_PIDCHECK
| KDBG_PIDEXCLUDE
|
2611 KDBG_TYPEFILTER_CHECK
)) )
2612 kdbg_set_flags(SLOW_CHECKS
, 0, TRUE
);
2614 kdbg_set_flags(SLOW_CHECKS
, 0, FALSE
);
2627 kdbg_write_to_vnode(caddr_t buffer
, size_t size
, vnode_t vp
, vfs_context_t ctx
, off_t file_offset
)
2629 return vn_rdwr(UIO_WRITE
, vp
, buffer
, size
, file_offset
, UIO_SYSSPACE
, IO_NODELOCKED
|IO_UNIT
,
2630 vfs_context_ucred(ctx
), (int *) 0, vfs_context_proc(ctx
));
2634 kdbg_write_v3_chunk_header(user_addr_t buffer
, uint32_t tag
, uint32_t sub_tag
, uint64_t length
, vnode_t vp
, vfs_context_t ctx
)
2636 int ret
= KERN_SUCCESS
;
2637 kd_chunk_header_v3 header
= {
2643 // Check that only one of them is valid
2644 assert(!buffer
^ !vp
);
2645 assert((vp
== NULL
) || (ctx
!= NULL
));
2647 // Write the 8-byte future_chunk_timestamp field in the payload
2650 ret
= kdbg_write_to_vnode((caddr_t
)&header
, sizeof(kd_chunk_header_v3
), vp
, ctx
, RAW_file_offset
);
2654 RAW_file_offset
+= (sizeof(kd_chunk_header_v3
));
2657 ret
= copyout(&header
, buffer
, sizeof(kd_chunk_header_v3
));
2668 kdbg_write_v3_chunk_header_to_buffer(void * buffer
, uint32_t tag
, uint32_t sub_tag
, uint64_t length
)
2670 kd_chunk_header_v3 header
= {
2680 memcpy(buffer
, &header
, sizeof(kd_chunk_header_v3
));
2682 return (sizeof(kd_chunk_header_v3
));
2686 kdbg_write_v3_chunk_to_fd(uint32_t tag
, uint32_t sub_tag
, uint64_t length
, void *payload
, uint64_t payload_size
, int fd
)
2689 struct vfs_context context
;
2690 struct fileproc
*fp
;
2695 if ( (fp_lookup(p
, fd
, &fp
, 1)) ) {
2700 context
.vc_thread
= current_thread();
2701 context
.vc_ucred
= fp
->f_fglob
->fg_cred
;
2703 if (FILEGLOB_DTYPE(fp
->f_fglob
) != DTYPE_VNODE
) {
2704 fp_drop(p
, fd
, fp
, 1);
2708 vp
= (struct vnode
*) fp
->f_fglob
->fg_data
;
2711 if ( (vnode_getwithref(vp
)) == 0 ) {
2712 RAW_file_offset
= fp
->f_fglob
->fg_offset
;
2714 kd_chunk_header_v3 chunk_header
= {
2720 int ret
= kdbg_write_to_vnode((caddr_t
) &chunk_header
, sizeof(kd_chunk_header_v3
), vp
, &context
, RAW_file_offset
);
2722 RAW_file_offset
+= sizeof(kd_chunk_header_v3
);
2725 ret
= kdbg_write_to_vnode((caddr_t
) payload
, (size_t) payload_size
, vp
, &context
, RAW_file_offset
);
2727 RAW_file_offset
+= payload_size
;
2730 fp
->f_fglob
->fg_offset
= RAW_file_offset
;
2734 fp_drop(p
, fd
, fp
, 0);
2735 return KERN_SUCCESS
;
2739 kdbg_write_v3_event_chunk_header(user_addr_t buffer
, uint32_t tag
, uint64_t length
, vnode_t vp
, vfs_context_t ctx
)
2741 uint64_t future_chunk_timestamp
= 0;
2742 length
+= sizeof(uint64_t);
2744 if (kdbg_write_v3_chunk_header(buffer
, tag
, V3_EVENT_DATA_VERSION
, length
, vp
, ctx
)) {
2748 buffer
+= sizeof(kd_chunk_header_v3
);
2751 // Check that only one of them is valid
2752 assert(!buffer
^ !vp
);
2753 assert((vp
== NULL
) || (ctx
!= NULL
));
2755 // Write the 8-byte future_chunk_timestamp field in the payload
2758 int ret
= kdbg_write_to_vnode((caddr_t
)&future_chunk_timestamp
, sizeof(uint64_t), vp
, ctx
, RAW_file_offset
);
2760 RAW_file_offset
+= (sizeof(uint64_t));
2764 if (copyout(&future_chunk_timestamp
, buffer
, sizeof(uint64_t))) {
2770 return (buffer
+ sizeof(uint64_t));
2774 kdbg_write_v3_header(user_addr_t user_header
, size_t *user_header_size
, int fd
)
2776 int ret
= KERN_SUCCESS
;
2778 uint8_t* cpumap
= 0;
2779 uint32_t cpumap_size
= 0;
2780 uint32_t thrmap_size
= 0;
2782 size_t bytes_needed
= 0;
2784 // Check that only one of them is valid
2785 assert(!user_header
^ !fd
);
2786 assert(user_header_size
);
2788 if ( !(kd_ctrl_page
.kdebug_flags
& KDBG_BUFINIT
) ) {
2793 if ( !(user_header
|| fd
) ) {
2798 // Initialize the cpu map
2799 ret
= kdbg_cpumap_init_internal(kd_ctrl_page
.kdebug_iops
, kd_ctrl_page
.kdebug_cpus
, &cpumap
, &cpumap_size
);
2800 if (ret
!= KERN_SUCCESS
) {
2804 // Check if a thread map is initialized
2809 thrmap_size
= kd_mapcount
* sizeof(kd_threadmap
);
2811 mach_timebase_info_data_t timebase
= {0, 0};
2812 clock_timebase_info(&timebase
);
2814 // Setup the header.
2815 // See v3 header description in sys/kdebug.h for more inforamtion.
2816 kd_header_v3 header
= {
2817 .tag
= RAW_VERSION3
,
2818 .sub_tag
= V3_HEADER_VERSION
,
2819 .length
= (sizeof(kd_header_v3
) + cpumap_size
- sizeof(kd_cpumap_header
)),
2820 .timebase_numer
= timebase
.numer
,
2821 .timebase_denom
= timebase
.denom
,
2822 .timestamp
= 0, /* FIXME rdar://problem/22053009 */
2824 .walltime_usecs
= 0,
2825 .timezone_minuteswest
= 0,
2827 #if defined(__LP64__)
2834 // If its a buffer, check if we have enough space to copy the header and the maps.
2836 bytes_needed
= header
.length
+ thrmap_size
+ (2 * sizeof(kd_chunk_header_v3
));
2837 if (*user_header_size
< bytes_needed
) {
2843 // Start writing the header
2845 void *hdr_ptr
= (void *)(((uintptr_t) &header
) + sizeof(kd_chunk_header_v3
));
2846 size_t payload_size
= (sizeof(kd_header_v3
) - sizeof(kd_chunk_header_v3
));
2848 ret
= kdbg_write_v3_chunk_to_fd(RAW_VERSION3
, V3_HEADER_VERSION
, header
.length
, hdr_ptr
, payload_size
, fd
);
2854 if (copyout(&header
, user_header
, sizeof(kd_header_v3
))) {
2858 // Update the user pointer
2859 user_header
+= sizeof(kd_header_v3
);
2862 // Write a cpu map. This is a sub chunk of the header
2863 cpumap
= (uint8_t*)((uintptr_t) cpumap
+ sizeof(kd_cpumap_header
));
2864 size_t payload_size
= (size_t)(cpumap_size
- sizeof(kd_cpumap_header
));
2866 ret
= kdbg_write_v3_chunk_to_fd(V3_CPU_MAP
, V3_CPUMAP_VERSION
, payload_size
, (void *)cpumap
, payload_size
, fd
);
2872 ret
= kdbg_write_v3_chunk_header(user_header
, V3_CPU_MAP
, V3_CPUMAP_VERSION
, payload_size
, NULL
, NULL
);
2876 user_header
+= sizeof(kd_chunk_header_v3
);
2877 if (copyout(cpumap
, user_header
, payload_size
)) {
2881 // Update the user pointer
2882 user_header
+= payload_size
;
2885 // Write a thread map
2887 ret
= kdbg_write_v3_chunk_to_fd(V3_THREAD_MAP
, V3_THRMAP_VERSION
, thrmap_size
, (void *)kd_mapptr
, thrmap_size
, fd
);
2893 ret
= kdbg_write_v3_chunk_header(user_header
, V3_THREAD_MAP
, V3_THRMAP_VERSION
, thrmap_size
, NULL
, NULL
);
2897 user_header
+= sizeof(kd_chunk_header_v3
);
2898 if (copyout(kd_mapptr
, user_header
, thrmap_size
)) {
2902 user_header
+= thrmap_size
;
2906 RAW_file_written
+= bytes_needed
;
2909 *user_header_size
= bytes_needed
;
2912 kmem_free(kernel_map
, (vm_offset_t
)cpumap
, cpumap_size
);
2918 kdbg_readcpumap(user_addr_t user_cpumap
, size_t *user_cpumap_size
)
2920 uint8_t* cpumap
= NULL
;
2921 uint32_t cpumap_size
= 0;
2922 int ret
= KERN_SUCCESS
;
2924 if (kd_ctrl_page
.kdebug_flags
& KDBG_BUFINIT
) {
2925 if (kdbg_cpumap_init_internal(kd_ctrl_page
.kdebug_iops
, kd_ctrl_page
.kdebug_cpus
, &cpumap
, &cpumap_size
) == KERN_SUCCESS
) {
2927 size_t bytes_to_copy
= (*user_cpumap_size
>= cpumap_size
) ? cpumap_size
: *user_cpumap_size
;
2928 if (copyout(cpumap
, user_cpumap
, (size_t)bytes_to_copy
)) {
2932 *user_cpumap_size
= cpumap_size
;
2933 kmem_free(kernel_map
, (vm_offset_t
)cpumap
, cpumap_size
);
2943 kdbg_readcurthrmap(user_addr_t buffer
, size_t *bufsize
)
2945 kd_threadmap
*mapptr
;
2946 unsigned int mapsize
;
2947 unsigned int mapcount
;
2948 unsigned int count
= 0;
2951 count
= *bufsize
/sizeof(kd_threadmap
);
2954 if ( (mapptr
= kdbg_thrmap_init_internal(count
, &mapsize
, &mapcount
)) ) {
2955 if (copyout(mapptr
, buffer
, mapcount
* sizeof(kd_threadmap
)))
2958 *bufsize
= (mapcount
* sizeof(kd_threadmap
));
2960 kmem_free(kernel_map
, (vm_offset_t
)mapptr
, mapsize
);
2968 kdbg_write_v1_header(boolean_t write_thread_map
, vnode_t vp
, vfs_context_t ctx
)
2976 uint32_t extra_thread_count
= 0;
2977 uint32_t cpumap_size
;
2978 size_t map_size
= 0;
2979 size_t map_count
= 0;
2981 if (write_thread_map
) {
2982 assert(kd_ctrl_page
.kdebug_flags
& KDBG_MAPINIT
);
2983 map_count
= kd_mapcount
;
2984 map_size
= map_count
* sizeof(kd_threadmap
);
2988 * Without the buffers initialized, we cannot construct a CPU map or a
2989 * thread map, and cannot write a header.
2991 if (!(kd_ctrl_page
.kdebug_flags
& KDBG_BUFINIT
)) {
2996 * To write a RAW_VERSION1+ file, we must embed a cpumap in the
2997 * "padding" used to page align the events following the threadmap. If
2998 * the threadmap happens to not require enough padding, we artificially
2999 * increase its footprint until it needs enough padding.
3005 pad_size
= PAGE_16KB
- ((sizeof(RAW_header
) + map_size
) & PAGE_MASK_64
);
3006 cpumap_size
= sizeof(kd_cpumap_header
) + kd_ctrl_page
.kdebug_cpus
* sizeof(kd_cpumap
);
3008 if (cpumap_size
> pad_size
) {
3009 /* If the cpu map doesn't fit in the current available pad_size,
3010 * we increase the pad_size by 16K. We do this so that the event
3011 * data is always available on a page aligned boundary for both
3012 * 4k and 16k systems. We enforce this alignment for the event
3013 * data so that we can take advantage of optimized file/disk writes.
3015 pad_size
+= PAGE_16KB
;
3018 /* The way we are silently embedding a cpumap in the "padding" is by artificially
3019 * increasing the number of thread entries. However, we'll also need to ensure that
3020 * the cpumap is embedded in the last 4K page before when the event data is expected.
3021 * This way the tools can read the data starting the next page boundary on both
3022 * 4K and 16K systems preserving compatibility with older versions of the tools
3024 if (pad_size
> PAGE_4KB
) {
3025 pad_size
-= PAGE_4KB
;
3026 extra_thread_count
= (pad_size
/ sizeof(kd_threadmap
)) + 1;
3029 memset(&header
, 0, sizeof(header
));
3030 header
.version_no
= RAW_VERSION1
;
3031 header
.thread_count
= map_count
+ extra_thread_count
;
3033 clock_get_calendar_microtime(&secs
, &usecs
);
3034 header
.TOD_secs
= secs
;
3035 header
.TOD_usecs
= usecs
;
3037 ret
= vn_rdwr(UIO_WRITE
, vp
, (caddr_t
)&header
, sizeof(RAW_header
), RAW_file_offset
,
3038 UIO_SYSSPACE
, IO_NODELOCKED
|IO_UNIT
, vfs_context_ucred(ctx
), (int *) 0, vfs_context_proc(ctx
));
3042 RAW_file_offset
+= sizeof(RAW_header
);
3043 RAW_file_written
+= sizeof(RAW_header
);
3045 if (write_thread_map
) {
3046 ret
= vn_rdwr(UIO_WRITE
, vp
, (caddr_t
)kd_mapptr
, map_size
, RAW_file_offset
,
3047 UIO_SYSSPACE
, IO_NODELOCKED
|IO_UNIT
, vfs_context_ucred(ctx
), (int *) 0, vfs_context_proc(ctx
));
3052 RAW_file_offset
+= map_size
;
3053 RAW_file_written
+= map_size
;
3056 if (extra_thread_count
) {
3057 pad_size
= extra_thread_count
* sizeof(kd_threadmap
);
3058 pad_buf
= kalloc(pad_size
);
3063 memset(pad_buf
, 0, pad_size
);
3065 ret
= vn_rdwr(UIO_WRITE
, vp
, (caddr_t
)pad_buf
, pad_size
, RAW_file_offset
,
3066 UIO_SYSSPACE
, IO_NODELOCKED
|IO_UNIT
, vfs_context_ucred(ctx
), (int *) 0, vfs_context_proc(ctx
));
3067 kfree(pad_buf
, pad_size
);
3072 RAW_file_offset
+= pad_size
;
3073 RAW_file_written
+= pad_size
;
3076 pad_size
= PAGE_SIZE
- (RAW_file_offset
& PAGE_MASK_64
);
3078 pad_buf
= (char *)kalloc(pad_size
);
3083 memset(pad_buf
, 0, pad_size
);
3086 * embed a cpumap in the padding bytes.
3087 * older code will skip this.
3088 * newer code will know how to read it.
3090 uint32_t temp
= pad_size
;
3091 if (kdbg_cpumap_init_internal(kd_ctrl_page
.kdebug_iops
, kd_ctrl_page
.kdebug_cpus
, (uint8_t**)&pad_buf
, &temp
) != KERN_SUCCESS
) {
3092 memset(pad_buf
, 0, pad_size
);
3095 ret
= vn_rdwr(UIO_WRITE
, vp
, (caddr_t
)pad_buf
, pad_size
, RAW_file_offset
,
3096 UIO_SYSSPACE
, IO_NODELOCKED
|IO_UNIT
, vfs_context_ucred(ctx
), (int *) 0, vfs_context_proc(ctx
));
3097 kfree(pad_buf
, pad_size
);
3102 RAW_file_offset
+= pad_size
;
3103 RAW_file_written
+= pad_size
;
3111 kdbg_clear_thread_map(void)
3113 ktrace_assert_lock_held();
3115 if (kd_ctrl_page
.kdebug_flags
& KDBG_MAPINIT
) {
3116 assert(kd_mapptr
!= NULL
);
3117 kmem_free(kernel_map
, (vm_offset_t
)kd_mapptr
, kd_mapsize
);
3121 kd_ctrl_page
.kdebug_flags
&= ~KDBG_MAPINIT
;
3126 * Write out a version 1 header and the thread map, if it is initialized, to a
3127 * vnode. Used by KDWRITEMAP and kdbg_dump_trace_to_file.
3129 * Returns write errors from vn_rdwr if a write fails. Returns ENODATA if the
3130 * thread map has not been initialized, but the header will still be written.
3131 * Returns ENOMEM if padding could not be allocated. Returns 0 otherwise.
3134 kdbg_write_thread_map(vnode_t vp
, vfs_context_t ctx
)
3137 boolean_t map_initialized
;
3139 ktrace_assert_lock_held();
3140 assert(ctx
!= NULL
);
3142 map_initialized
= (kd_ctrl_page
.kdebug_flags
& KDBG_MAPINIT
);
3144 ret
= kdbg_write_v1_header(map_initialized
, vp
, ctx
);
3146 if (map_initialized
) {
3147 kdbg_clear_thread_map();
3157 * Copy out the thread map to a user space buffer. Used by KDTHRMAP.
3159 * Returns copyout errors if the copyout fails. Returns ENODATA if the thread
3160 * map has not been initialized. Returns EINVAL if the buffer provided is not
3161 * large enough for the entire thread map. Returns 0 otherwise.
3164 kdbg_copyout_thread_map(user_addr_t buffer
, size_t *buffer_size
)
3166 boolean_t map_initialized
;
3170 ktrace_assert_lock_held();
3171 assert(buffer_size
!= NULL
);
3173 map_initialized
= (kd_ctrl_page
.kdebug_flags
& KDBG_MAPINIT
);
3174 if (!map_initialized
) {
3178 map_size
= kd_mapcount
* sizeof(kd_threadmap
);
3179 if (*buffer_size
< map_size
) {
3183 ret
= copyout(kd_mapptr
, buffer
, map_size
);
3185 kdbg_clear_thread_map();
3192 kdbg_readthrmap_v3(user_addr_t buffer
, size_t buffer_size
, int fd
)
3195 boolean_t map_initialized
;
3198 ktrace_assert_lock_held();
3200 if ((!fd
&& !buffer
) || (fd
&& buffer
)) {
3204 map_initialized
= (kd_ctrl_page
.kdebug_flags
& KDBG_MAPINIT
);
3205 map_size
= kd_mapcount
* sizeof(kd_threadmap
);
3207 if (map_initialized
&& (buffer_size
>= map_size
))
3209 ret
= kdbg_write_v3_header(buffer
, &buffer_size
, fd
);
3212 kdbg_clear_thread_map();
3222 kdbg_set_nkdbufs(unsigned int value
)
3225 * We allow a maximum buffer size of 50% of either ram or max mapped
3226 * address, whichever is smaller 'value' is the desired number of trace
3229 unsigned int max_entries
= (sane_size
/ 2) / sizeof(kd_buf
);
3231 if (value
<= max_entries
) {
3234 nkdbufs
= max_entries
;
3239 * Block until there are `n_storage_threshold` storage units filled with
3240 * events or `timeout_ms` milliseconds have passed. If `locked_wait` is true,
3241 * `ktrace_lock` is held while waiting. This is necessary while waiting to
3242 * write events out of the buffers.
3244 * Returns true if the threshold was reached and false otherwise.
3246 * Called with `ktrace_lock` locked and interrupts enabled.
3249 kdbg_wait(uint64_t timeout_ms
, boolean_t locked_wait
)
3251 int wait_result
= THREAD_AWAKENED
;
3252 uint64_t abstime
= 0;
3254 ktrace_assert_lock_held();
3256 if (timeout_ms
!= 0) {
3257 uint64_t ns
= timeout_ms
* NSEC_PER_MSEC
;
3258 nanoseconds_to_absolutetime(ns
, &abstime
);
3259 clock_absolutetime_interval_to_deadline(abstime
, &abstime
);
3262 boolean_t s
= ml_set_interrupts_enabled(FALSE
);
3264 panic("kdbg_wait() called with interrupts disabled");
3266 lck_spin_lock(kdw_spin_lock
);
3269 /* drop the mutex to allow others to access trace */
3273 while (wait_result
== THREAD_AWAKENED
&&
3274 kd_ctrl_page
.kds_inuse_count
< n_storage_threshold
)
3279 wait_result
= lck_spin_sleep_deadline(kdw_spin_lock
, 0, &kds_waiter
, THREAD_ABORTSAFE
, abstime
);
3281 wait_result
= lck_spin_sleep(kdw_spin_lock
, 0, &kds_waiter
, THREAD_ABORTSAFE
);
3287 /* check the count under the spinlock */
3288 boolean_t threshold_exceeded
= (kd_ctrl_page
.kds_inuse_count
>= n_storage_threshold
);
3290 lck_spin_unlock(kdw_spin_lock
);
3291 ml_set_interrupts_enabled(s
);
3294 /* pick the mutex back up again */
3298 /* write out whether we've exceeded the threshold */
3299 return threshold_exceeded
;
3303 * Wakeup a thread waiting using `kdbg_wait` if there are at least
3304 * `n_storage_threshold` storage units in use.
3309 boolean_t need_kds_wakeup
= FALSE
;
3312 * Try to take the lock here to synchronize with the waiter entering
3313 * the blocked state. Use the try mode to prevent deadlocks caused by
3314 * re-entering this routine due to various trace points triggered in the
3315 * lck_spin_sleep_xxxx routines used to actually enter one of our 2 wait
3316 * conditions. No problem if we fail, there will be lots of additional
3317 * events coming in that will eventually succeed in grabbing this lock.
3319 boolean_t s
= ml_set_interrupts_enabled(FALSE
);
3321 if (lck_spin_try_lock(kdw_spin_lock
)) {
3323 (kd_ctrl_page
.kds_inuse_count
>= n_storage_threshold
))
3326 need_kds_wakeup
= TRUE
;
3328 lck_spin_unlock(kdw_spin_lock
);
3331 ml_set_interrupts_enabled(s
);
3333 if (need_kds_wakeup
== TRUE
) {
3334 wakeup(&kds_waiter
);
3339 kdbg_control(int *name
, u_int namelen
, user_addr_t where
, size_t *sizep
)
3342 size_t size
= *sizep
;
3343 unsigned int value
= 0;
3345 kbufinfo_t kd_bufinfo
;
3348 if (name
[0] == KERN_KDWRITETR
||
3349 name
[0] == KERN_KDWRITETR_V3
||
3350 name
[0] == KERN_KDWRITEMAP
||
3351 name
[0] == KERN_KDWRITEMAP_V3
||
3352 name
[0] == KERN_KDEFLAGS
||
3353 name
[0] == KERN_KDDFLAGS
||
3354 name
[0] == KERN_KDENABLE
||
3355 name
[0] == KERN_KDSETBUF
)
3364 assert(kd_ctrl_page
.kdebug_flags
& KDBG_LOCKINIT
);
3369 * Some requests only require "read" access to kdebug trace. Regardless,
3370 * tell ktrace that a configuration or read is occurring (and see if it's
3373 if (name
[0] != KERN_KDGETBUF
&&
3374 name
[0] != KERN_KDGETREG
&&
3375 name
[0] != KERN_KDREADCURTHRMAP
)
3377 if ((ret
= ktrace_configure(KTRACE_KDEBUG
))) {
3381 if ((ret
= ktrace_read_check())) {
3388 if (size
< sizeof(kd_bufinfo
.nkdbufs
)) {
3390 * There is not enough room to return even
3391 * the first element of the info structure.
3397 memset(&kd_bufinfo
, 0, sizeof(kd_bufinfo
));
3399 kd_bufinfo
.nkdbufs
= nkdbufs
;
3400 kd_bufinfo
.nkdthreads
= kd_mapcount
;
3402 if ( (kd_ctrl_page
.kdebug_slowcheck
& SLOW_NOLOG
) )
3403 kd_bufinfo
.nolog
= 1;
3405 kd_bufinfo
.nolog
= 0;
3407 kd_bufinfo
.flags
= kd_ctrl_page
.kdebug_flags
;
3408 #if defined(__LP64__)
3409 kd_bufinfo
.flags
|= KDBG_LP64
;
3412 int pid
= ktrace_get_owning_pid();
3413 kd_bufinfo
.bufid
= (pid
== 0 ? -1 : pid
);
3416 if (size
>= sizeof(kd_bufinfo
)) {
3418 * Provide all the info we have
3420 if (copyout(&kd_bufinfo
, where
, sizeof(kd_bufinfo
)))
3424 * For backwards compatibility, only provide
3425 * as much info as there is room for.
3427 if (copyout(&kd_bufinfo
, where
, size
))
3432 case KERN_KDREADCURTHRMAP
:
3433 ret
= kdbg_readcurthrmap(where
, sizep
);
3437 value
&= KDBG_USERFLAGS
;
3438 kd_ctrl_page
.kdebug_flags
|= value
;
3442 value
&= KDBG_USERFLAGS
;
3443 kd_ctrl_page
.kdebug_flags
&= ~value
;
3448 * Enable tracing mechanism. Two types:
3449 * KDEBUG_TRACE is the standard one,
3450 * and KDEBUG_PPT which is a carefully
3451 * chosen subset to avoid performance impact.
3455 * enable only if buffer is initialized
3457 if (!(kd_ctrl_page
.kdebug_flags
& KDBG_BUFINIT
) ||
3458 !(value
== KDEBUG_ENABLE_TRACE
|| value
== KDEBUG_ENABLE_PPT
)) {
3464 kdbg_set_tracing_enabled(TRUE
, value
);
3468 if (!kdebug_enable
) {
3472 kernel_debug_disable();
3477 kdbg_set_nkdbufs(value
);
3481 ret
= kdbg_reinit(FALSE
);
3485 ktrace_reset(KTRACE_KDEBUG
);
3489 if(size
< sizeof(kd_regtype
)) {
3493 if (copyin(where
, &kd_Reg
, sizeof(kd_regtype
))) {
3498 ret
= kdbg_setreg(&kd_Reg
);
3506 ret
= kdbg_read(where
, sizep
, NULL
, NULL
, RAW_VERSION1
);
3509 case KERN_KDWRITETR
:
3510 case KERN_KDWRITETR_V3
:
3511 case KERN_KDWRITEMAP
:
3512 case KERN_KDWRITEMAP_V3
:
3514 struct vfs_context context
;
3515 struct fileproc
*fp
;
3520 if (name
[0] == KERN_KDWRITETR
|| name
[0] == KERN_KDWRITETR_V3
) {
3521 (void)kdbg_wait(size
, TRUE
);
3527 if ( (ret
= fp_lookup(p
, fd
, &fp
, 1)) ) {
3531 context
.vc_thread
= current_thread();
3532 context
.vc_ucred
= fp
->f_fglob
->fg_cred
;
3534 if (FILEGLOB_DTYPE(fp
->f_fglob
) != DTYPE_VNODE
) {
3535 fp_drop(p
, fd
, fp
, 1);
3541 vp
= (struct vnode
*)fp
->f_fglob
->fg_data
;
3544 if ((ret
= vnode_getwithref(vp
)) == 0) {
3545 RAW_file_offset
= fp
->f_fglob
->fg_offset
;
3546 if (name
[0] == KERN_KDWRITETR
|| name
[0] == KERN_KDWRITETR_V3
) {
3547 number
= nkdbufs
* sizeof(kd_buf
);
3549 KDBG_RELEASE(TRACE_WRITING_EVENTS
| DBG_FUNC_START
);
3550 if (name
[0] == KERN_KDWRITETR_V3
)
3551 ret
= kdbg_read(0, &number
, vp
, &context
, RAW_VERSION3
);
3553 ret
= kdbg_read(0, &number
, vp
, &context
, RAW_VERSION1
);
3554 KDBG_RELEASE(TRACE_WRITING_EVENTS
| DBG_FUNC_END
, number
);
3558 number
= kd_mapcount
* sizeof(kd_threadmap
);
3559 if (name
[0] == KERN_KDWRITEMAP_V3
) {
3560 ret
= kdbg_readthrmap_v3(0, number
, fd
);
3562 ret
= kdbg_write_thread_map(vp
, &context
);
3565 fp
->f_fglob
->fg_offset
= RAW_file_offset
;
3568 fp_drop(p
, fd
, fp
, 0);
3572 case KERN_KDBUFWAIT
:
3573 *sizep
= kdbg_wait(size
, FALSE
);
3577 if (size
< sizeof(kd_regtype
)) {
3581 if (copyin(where
, &kd_Reg
, sizeof(kd_regtype
))) {
3586 ret
= kdbg_setpid(&kd_Reg
);
3590 if (size
< sizeof(kd_regtype
)) {
3594 if (copyin(where
, &kd_Reg
, sizeof(kd_regtype
))) {
3599 ret
= kdbg_setpidex(&kd_Reg
);
3603 ret
= kdbg_readcpumap(where
, sizep
);
3607 ret
= kdbg_copyout_thread_map(where
, sizep
);
3610 case KERN_KDSET_TYPEFILTER
: {
3611 ret
= kdbg_copyin_typefilter(where
, size
);
3616 ret
= kdbg_test(size
);
3631 * This code can run for the most part concurrently with kernel_debug_internal()...
3632 * 'release_storage_unit' will take the kds_spin_lock which may cause us to briefly
3633 * synchronize with the recording side of this puzzle... otherwise, we are able to
3634 * move through the lists w/o use of any locks
3637 kdbg_read(user_addr_t buffer
, size_t *number
, vnode_t vp
, vfs_context_t ctx
, uint32_t file_version
)
3640 unsigned int cpu
, min_cpu
;
3641 uint64_t barrier_min
= 0, barrier_max
= 0, t
, earliest_time
;
3647 bool traced_retrograde
= false;
3648 struct kd_storage
*kdsp_actual
;
3649 struct kd_bufinfo
*kdbp
;
3650 struct kd_bufinfo
*min_kdbp
;
3651 uint32_t tempbuf_count
;
3652 uint32_t tempbuf_number
;
3653 uint32_t old_kdebug_flags
;
3654 uint32_t old_kdebug_slowcheck
;
3655 boolean_t out_of_events
= FALSE
;
3656 boolean_t wrapped
= FALSE
;
3659 count
= *number
/sizeof(kd_buf
);
3662 ktrace_assert_lock_held();
3664 if (count
== 0 || !(kd_ctrl_page
.kdebug_flags
& KDBG_BUFINIT
) || kdcopybuf
== 0)
3667 thread_set_eager_preempt(current_thread());
3669 memset(&lostevent
, 0, sizeof(lostevent
));
3670 lostevent
.debugid
= TRACE_LOST_EVENTS
;
3673 * Capture the current time. Only sort events that have occured
3674 * before now. Since the IOPs are being flushed here, it is possible
3675 * that events occur on the AP while running live tracing. If we are
3676 * disabled, no new events should occur on the AP.
3678 if (kd_ctrl_page
.enabled
) {
3679 barrier_max
= kdbg_timestamp() & KDBG_TIMESTAMP_MASK
;
3683 * Request each IOP to provide us with up to date entries before merging
3686 kdbg_iop_list_callback(kd_ctrl_page
.kdebug_iops
, KD_CALLBACK_SYNC_FLUSH
, NULL
);
3689 * Disable wrap so storage units cannot be stolen out from underneath us
3690 * while merging events.
3692 * Because we hold ktrace_lock, no other control threads can be playing
3693 * with kdebug_flags. The code that emits new events could be running,
3694 * but it grabs kds_spin_lock if it needs to acquire a new storage
3695 * chunk, which is where it examines kdebug_flags. If it is adding to
3696 * the same chunk we're reading from, check for that below.
3698 wrapped
= disable_wrap(&old_kdebug_slowcheck
, &old_kdebug_flags
);
3700 if (count
> nkdbufs
)
3703 if ((tempbuf_count
= count
) > KDCOPYBUF_COUNT
) {
3704 tempbuf_count
= KDCOPYBUF_COUNT
;
3708 * If the buffers have wrapped, do not emit additional lost events for the
3709 * oldest storage units.
3712 kd_ctrl_page
.kdebug_flags
&= ~KDBG_WRAPPED
;
3714 for (cpu
= 0, kdbp
= &kdbip
[0]; cpu
< kd_ctrl_page
.kdebug_cpus
; cpu
++, kdbp
++) {
3715 if ((kdsp
= kdbp
->kd_list_head
).raw
== KDS_PTR_NULL
) {
3718 kdsp_actual
= POINTER_FROM_KDS_PTR(kdsp
);
3719 kdsp_actual
->kds_lostevents
= FALSE
;
3723 * Capture the earliest time where there are events for all CPUs and don't
3724 * emit events with timestamps prior.
3726 barrier_min
= kd_ctrl_page
.oldest_time
;
3729 tempbuf
= kdcopybuf
;
3734 * Emit a lost events tracepoint to indicate that previous events
3735 * were lost -- the thread map cannot be trusted. A new one must
3736 * be taken so tools can analyze the trace in a backwards-facing
3739 kdbg_set_timestamp_and_cpu(&lostevent
, barrier_min
, 0);
3740 *tempbuf
= lostevent
;
3745 /* While space left in merged events scratch buffer. */
3746 while (tempbuf_count
) {
3747 bool lostevents
= false;
3749 earliest_time
= UINT64_MAX
;
3753 /* Check each CPU's buffers for the earliest event. */
3754 for (cpu
= 0, kdbp
= &kdbip
[0]; cpu
< kd_ctrl_page
.kdebug_cpus
; cpu
++, kdbp
++) {
3755 /* Skip CPUs without data in their oldest storage unit. */
3756 if ((kdsp
= kdbp
->kd_list_head
).raw
== KDS_PTR_NULL
) {
3760 /* From CPU data to buffer header to buffer. */
3761 kdsp_actual
= POINTER_FROM_KDS_PTR(kdsp
);
3764 /* The next event to be read from this buffer. */
3765 rcursor
= kdsp_actual
->kds_readlast
;
3767 /* Skip this buffer if there are no events left. */
3768 if (rcursor
== kdsp_actual
->kds_bufindx
) {
3773 * Check that this storage unit wasn't stolen and events were
3774 * lost. This must have happened while wrapping was disabled
3777 if (kdsp_actual
->kds_lostevents
) {
3779 kdsp_actual
->kds_lostevents
= FALSE
;
3782 * The earliest event we can trust is the first one in this
3783 * stolen storage unit.
3785 uint64_t lost_time
=
3786 kdbg_get_timestamp(&kdsp_actual
->kds_records
[0]);
3787 if (kd_ctrl_page
.oldest_time
< lost_time
) {
3789 * If this is the first time we've seen lost events for
3790 * this gap, record its timestamp as the oldest
3791 * timestamp we're willing to merge for the lost events
3794 kd_ctrl_page
.oldest_time
= barrier_min
= lost_time
;
3799 t
= kdbg_get_timestamp(&kdsp_actual
->kds_records
[rcursor
]);
3801 if ((t
> barrier_max
) && (barrier_max
> 0)) {
3803 printf("kdebug: FUTURE EVENT: debugid %#8x: "
3804 "time %lld from CPU %u "
3805 "(barrier at time %lld, read %lu events)\n",
3806 kdsp_actual
->kds_records
[rcursor
].debugid
,
3807 t
, cpu
, barrier_max
, *number
+ tempbuf_number
);
3810 * Need to flush IOPs again before we can sort any more
3811 * data from the buffers.
3813 out_of_events
= TRUE
;
3816 if (t
< kdsp_actual
->kds_timestamp
) {
3818 * This indicates the event emitter hasn't completed
3819 * filling in the event (becuase we're looking at the
3820 * buffer that the record head is using). The max barrier
3821 * timestamp should have saved us from seeing these kinds
3822 * of things, but other CPUs might be slow on the up-take.
3824 * Bail out so we don't get out-of-order events by
3825 * continuing to read events from other CPUs' events.
3827 out_of_events
= TRUE
;
3832 * Ignore events that have aged out due to wrapping or storage
3833 * unit exhaustion while merging events.
3835 if (t
< barrier_min
) {
3836 kdsp_actual
->kds_readlast
++;
3838 if (kdsp_actual
->kds_readlast
>= EVENTS_PER_STORAGE_UNIT
) {
3839 release_storage_unit(cpu
, kdsp
.raw
);
3841 if ((kdsp
= kdbp
->kd_list_head
).raw
== KDS_PTR_NULL
) {
3844 kdsp_actual
= POINTER_FROM_KDS_PTR(kdsp
);
3851 * Don't worry about merging any events -- just walk through
3852 * the CPUs and find the latest timestamp of lost events.
3858 if (t
< earliest_time
) {
3866 * If any lost events were hit in the buffers, emit an event
3867 * with the latest timestamp.
3869 kdbg_set_timestamp_and_cpu(&lostevent
, barrier_min
, lostcpu
);
3870 *tempbuf
= lostevent
;
3874 if (min_kdbp
== NULL
) {
3875 /* All buffers ran empty. */
3876 out_of_events
= TRUE
;
3878 if (out_of_events
) {
3882 kdsp
= min_kdbp
->kd_list_head
;
3883 kdsp_actual
= POINTER_FROM_KDS_PTR(kdsp
);
3885 /* Copy earliest event into merged events scratch buffer. */
3886 *tempbuf
= kdsp_actual
->kds_records
[kdsp_actual
->kds_readlast
++];
3888 if (kdsp_actual
->kds_readlast
== EVENTS_PER_STORAGE_UNIT
)
3889 release_storage_unit(min_cpu
, kdsp
.raw
);
3892 * Watch for out of order timestamps (from IOPs).
3894 if (earliest_time
< min_kdbp
->kd_prev_timebase
) {
3896 * If we haven't already, emit a retrograde events event.
3897 * Otherwise, ignore this event.
3899 if (traced_retrograde
) {
3903 kdbg_set_timestamp_and_cpu(tempbuf
, min_kdbp
->kd_prev_timebase
, kdbg_get_cpu(tempbuf
));
3904 tempbuf
->arg1
= tempbuf
->debugid
;
3905 tempbuf
->arg2
= earliest_time
;
3908 tempbuf
->debugid
= TRACE_RETROGRADE_EVENTS
;
3909 traced_retrograde
= true;
3911 min_kdbp
->kd_prev_timebase
= earliest_time
;
3918 if ((RAW_file_written
+= sizeof(kd_buf
)) >= RAW_FLUSH_SIZE
)
3921 if (tempbuf_number
) {
3923 * Remember the latest timestamp of events that we've merged so we
3924 * don't think we've lost events later.
3926 uint64_t latest_time
= kdbg_get_timestamp(tempbuf
- 1);
3927 if (kd_ctrl_page
.oldest_time
< latest_time
) {
3928 kd_ctrl_page
.oldest_time
= latest_time
;
3930 if (file_version
== RAW_VERSION3
) {
3931 if ( !(kdbg_write_v3_event_chunk_header(buffer
, V3_RAW_EVENTS
, (tempbuf_number
* sizeof(kd_buf
)), vp
, ctx
))) {
3936 buffer
+= (sizeof(kd_chunk_header_v3
) + sizeof(uint64_t));
3938 assert(count
>= (sizeof(kd_chunk_header_v3
) + sizeof(uint64_t)));
3939 count
-= (sizeof(kd_chunk_header_v3
) + sizeof(uint64_t));
3940 *number
+= (sizeof(kd_chunk_header_v3
) + sizeof(uint64_t));
3943 size_t write_size
= tempbuf_number
* sizeof(kd_buf
);
3944 error
= kdbg_write_to_vnode((caddr_t
)kdcopybuf
, write_size
, vp
, ctx
, RAW_file_offset
);
3946 RAW_file_offset
+= write_size
;
3948 if (RAW_file_written
>= RAW_FLUSH_SIZE
) {
3949 error
= VNOP_FSYNC(vp
, MNT_NOWAIT
, ctx
);
3951 RAW_file_written
= 0;
3954 error
= copyout(kdcopybuf
, buffer
, tempbuf_number
* sizeof(kd_buf
));
3955 buffer
+= (tempbuf_number
* sizeof(kd_buf
));
3963 count
-= tempbuf_number
;
3964 *number
+= tempbuf_number
;
3966 if (out_of_events
== TRUE
)
3968 * all trace buffers are empty
3972 if ((tempbuf_count
= count
) > KDCOPYBUF_COUNT
)
3973 tempbuf_count
= KDCOPYBUF_COUNT
;
3975 if ( !(old_kdebug_flags
& KDBG_NOWRAP
)) {
3976 enable_wrap(old_kdebug_slowcheck
);
3978 thread_clear_eager_preempt(current_thread());
3983 kdbg_test(size_t flavor
)
3988 #define KDEBUG_TEST_CODE(code) BSDDBG_CODE(DBG_BSD_KDEBUG_TEST, (code))
3991 /* try each macro */
3992 KDBG(KDEBUG_TEST_CODE(code
)); code
++;
3993 KDBG(KDEBUG_TEST_CODE(code
), 1); code
++;
3994 KDBG(KDEBUG_TEST_CODE(code
), 1, 2); code
++;
3995 KDBG(KDEBUG_TEST_CODE(code
), 1, 2, 3); code
++;
3996 KDBG(KDEBUG_TEST_CODE(code
), 1, 2, 3, 4); code
++;
3998 KDBG_RELEASE(KDEBUG_TEST_CODE(code
)); code
++;
3999 KDBG_RELEASE(KDEBUG_TEST_CODE(code
), 1); code
++;
4000 KDBG_RELEASE(KDEBUG_TEST_CODE(code
), 1, 2); code
++;
4001 KDBG_RELEASE(KDEBUG_TEST_CODE(code
), 1, 2, 3); code
++;
4002 KDBG_RELEASE(KDEBUG_TEST_CODE(code
), 1, 2, 3, 4); code
++;
4004 KDBG_FILTERED(KDEBUG_TEST_CODE(code
)); code
++;
4005 KDBG_FILTERED(KDEBUG_TEST_CODE(code
), 1); code
++;
4006 KDBG_FILTERED(KDEBUG_TEST_CODE(code
), 1, 2); code
++;
4007 KDBG_FILTERED(KDEBUG_TEST_CODE(code
), 1, 2, 3); code
++;
4008 KDBG_FILTERED(KDEBUG_TEST_CODE(code
), 1, 2, 3, 4); code
++;
4010 KDBG_RELEASE_NOPROCFILT(KDEBUG_TEST_CODE(code
)); code
++;
4011 KDBG_RELEASE_NOPROCFILT(KDEBUG_TEST_CODE(code
), 1); code
++;
4012 KDBG_RELEASE_NOPROCFILT(KDEBUG_TEST_CODE(code
), 1, 2); code
++;
4013 KDBG_RELEASE_NOPROCFILT(KDEBUG_TEST_CODE(code
), 1, 2, 3); code
++;
4014 KDBG_RELEASE_NOPROCFILT(KDEBUG_TEST_CODE(code
), 1, 2, 3, 4); code
++;
4016 KDBG_DEBUG(KDEBUG_TEST_CODE(code
)); code
++;
4017 KDBG_DEBUG(KDEBUG_TEST_CODE(code
), 1); code
++;
4018 KDBG_DEBUG(KDEBUG_TEST_CODE(code
), 1, 2); code
++;
4019 KDBG_DEBUG(KDEBUG_TEST_CODE(code
), 1, 2, 3); code
++;
4020 KDBG_DEBUG(KDEBUG_TEST_CODE(code
), 1, 2, 3, 4); code
++;
4024 if (kd_ctrl_page
.kdebug_iops
) {
4025 /* avoid the assertion in kernel_debug_enter for a valid IOP */
4026 dummy_iop
= kd_ctrl_page
.kdebug_iops
[0].cpu_id
;
4029 /* ensure old timestamps are not emitted from kernel_debug_enter */
4030 kernel_debug_enter(dummy_iop
, KDEBUG_TEST_CODE(code
),
4031 100 /* very old timestamp */, 0, 0, 0,
4032 0, (uintptr_t)thread_tid(current_thread()));
4034 kernel_debug_enter(dummy_iop
, KDEBUG_TEST_CODE(code
),
4035 kdbg_timestamp(), 0, 0, 0, 0,
4036 (uintptr_t)thread_tid(current_thread()));
4043 #undef KDEBUG_TEST_CODE
4049 kdebug_init(unsigned int n_events
, char *filter_desc
, boolean_t wrapping
)
4051 assert(filter_desc
!= NULL
);
4053 #if defined(__x86_64__)
4054 /* only trace MACH events when outputting kdebug to serial */
4055 if (kdebug_serial
) {
4057 if (filter_desc
[0] == '\0') {
4058 filter_desc
[0] = 'C';
4059 filter_desc
[1] = '1';
4060 filter_desc
[2] = '\0';
4063 #endif /* defined(__x86_64__) */
4065 if (log_leaks
&& n_events
== 0) {
4069 kdebug_trace_start(n_events
, filter_desc
, wrapping
, FALSE
);
4073 kdbg_set_typefilter_string(const char *filter_desc
)
4077 ktrace_assert_lock_held();
4079 assert(filter_desc
!= NULL
);
4081 typefilter_reject_all(kdbg_typefilter
);
4082 typefilter_allow_class(kdbg_typefilter
, DBG_TRACE
);
4084 /* if the filter description starts with a number, assume it's a csc */
4085 if (filter_desc
[0] >= '0' && filter_desc
[0] <= '9'){
4086 unsigned long csc
= strtoul(filter_desc
, NULL
, 0);
4087 if (filter_desc
!= end
&& csc
<= KDBG_CSC_MAX
) {
4088 typefilter_allow_csc(kdbg_typefilter
, csc
);
4093 while (filter_desc
[0] != '\0') {
4094 unsigned long allow_value
;
4096 char filter_type
= filter_desc
[0];
4097 if (filter_type
!= 'C' && filter_type
!= 'S') {
4102 allow_value
= strtoul(filter_desc
, &end
, 0);
4103 if (filter_desc
== end
) {
4104 /* cannot parse as integer */
4108 switch (filter_type
) {
4110 if (allow_value
<= KDBG_CLASS_MAX
) {
4111 typefilter_allow_class(kdbg_typefilter
, allow_value
);
4118 if (allow_value
<= KDBG_CSC_MAX
) {
4119 typefilter_allow_csc(kdbg_typefilter
, allow_value
);
4121 /* illegal class subclass */
4129 /* advance to next filter entry */
4131 if (filter_desc
[0] == ',') {
4138 * This function is meant to be called from the bootstrap thread or coming out
4139 * of acpi_idle_kernel.
4142 kdebug_trace_start(unsigned int n_events
, const char *filter_desc
,
4143 boolean_t wrapping
, boolean_t at_wake
)
4146 kd_early_done
= true;
4150 ktrace_start_single_threaded();
4154 ktrace_kernel_configure(KTRACE_KDEBUG
);
4156 kdbg_set_nkdbufs(n_events
);
4158 kernel_debug_string_early("start_kern_tracing");
4160 if (kdbg_reinit(TRUE
)) {
4161 printf("error from kdbg_reinit, kernel tracing not started\n");
4166 * Wrapping is disabled because boot and wake tracing is interested in
4167 * the earliest events, at the expense of later ones.
4170 uint32_t old1
, old2
;
4171 (void)disable_wrap(&old1
, &old2
);
4174 if (filter_desc
&& filter_desc
[0] != '\0') {
4175 if (kdbg_initialize_typefilter(NULL
) == KERN_SUCCESS
) {
4176 kdbg_set_typefilter_string(filter_desc
);
4177 kdbg_enable_typefilter();
4182 * Hold off interrupts between getting a thread map and enabling trace
4183 * and until the early traces are recorded.
4185 boolean_t s
= ml_set_interrupts_enabled(FALSE
);
4191 kdbg_set_tracing_enabled(TRUE
, KDEBUG_ENABLE_TRACE
| (kdebug_serial
?
4192 KDEBUG_ENABLE_SERIAL
: 0));
4196 * Transfer all very early events from the static buffer into the real
4199 kernel_debug_early_end();
4202 ml_set_interrupts_enabled(s
);
4204 printf("kernel tracing started with %u events\n", n_events
);
4206 #if KDEBUG_MOJO_TRACE
4207 if (kdebug_serial
) {
4208 printf("serial output enabled with %lu named events\n",
4209 sizeof(kd_events
)/sizeof(kd_event_t
));
4211 #endif /* KDEBUG_MOJO_TRACE */
4214 ktrace_end_single_threaded();
4218 kdbg_dump_trace_to_file(const char *filename
)
4227 if (!(kdebug_enable
& KDEBUG_ENABLE_TRACE
)) {
4231 if (ktrace_get_owning_pid() != 0) {
4233 * Another process owns ktrace and is still active, disable tracing to
4237 kd_ctrl_page
.enabled
= 0;
4238 commpage_update_kdebug_state();
4242 KDBG_RELEASE(TRACE_WRITING_EVENTS
| DBG_FUNC_START
);
4245 kd_ctrl_page
.enabled
= 0;
4246 commpage_update_kdebug_state();
4248 ctx
= vfs_context_kernel();
4250 if (vnode_open(filename
, (O_CREAT
| FWRITE
| O_NOFOLLOW
), 0600, 0, &vp
, ctx
)) {
4254 kdbg_write_thread_map(vp
, ctx
);
4256 write_size
= nkdbufs
* sizeof(kd_buf
);
4257 ret
= kdbg_read(0, &write_size
, vp
, ctx
, RAW_VERSION1
);
4263 * Wait to synchronize the file to capture the I/O in the
4264 * TRACE_WRITING_EVENTS interval.
4266 ret
= VNOP_FSYNC(vp
, MNT_WAIT
, ctx
);
4269 * Balance the starting TRACE_WRITING_EVENTS tracepoint manually.
4271 kd_buf end_event
= {
4272 .debugid
= TRACE_WRITING_EVENTS
| DBG_FUNC_END
,
4275 .arg5
= thread_tid(current_thread()),
4277 kdbg_set_timestamp_and_cpu(&end_event
, kdbg_timestamp(),
4280 /* this is best effort -- ignore any errors */
4281 (void)kdbg_write_to_vnode((caddr_t
)&end_event
, sizeof(kd_buf
), vp
, ctx
,
4285 vnode_close(vp
, FWRITE
, ctx
);
4286 sync(current_proc(), (void *)NULL
, (int *)NULL
);
4293 kdbg_sysctl_continuous SYSCTL_HANDLER_ARGS
4295 #pragma unused(oidp, arg1, arg2)
4296 int value
= kdbg_continuous_time
;
4297 int ret
= sysctl_io_number(req
, value
, sizeof(value
), &value
, NULL
);
4299 if (ret
|| !req
->newptr
) {
4303 kdbg_continuous_time
= value
;
4307 SYSCTL_NODE(_kern
, OID_AUTO
, kdbg
, CTLFLAG_RD
| CTLFLAG_LOCKED
, 0,
4310 SYSCTL_PROC(_kern_kdbg
, OID_AUTO
, experimental_continuous
,
4311 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, 0,
4312 sizeof(int), kdbg_sysctl_continuous
, "I",
4313 "Set kdebug to use mach_continuous_time");
4315 SYSCTL_INT(_kern_kdbg
, OID_AUTO
, debug
,
4316 CTLFLAG_RW
| CTLFLAG_LOCKED
,
4317 &kdbg_debug
, 0, "Set kdebug debug mode");
4319 SYSCTL_QUAD(_kern_kdbg
, OID_AUTO
, oldest_time
,
4320 CTLTYPE_QUAD
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
4321 &kd_ctrl_page
.oldest_time
,
4322 "Find the oldest timestamp still in trace");
4324 #if KDEBUG_MOJO_TRACE
4326 binary_search(uint32_t id
)
4331 high
= sizeof(kd_events
)/sizeof(kd_event_t
) - 1;
4335 mid
= (low
+ high
) / 2;
4338 return NULL
; /* failed */
4339 else if ( low
+ 1 >= high
) {
4340 /* We have a match */
4341 if (kd_events
[high
].id
== id
)
4342 return &kd_events
[high
];
4343 else if (kd_events
[low
].id
== id
)
4344 return &kd_events
[low
];
4346 return NULL
; /* search failed */
4348 else if (id
< kd_events
[mid
].id
)
4356 * Look up event id to get name string.
4357 * Using a per-cpu cache of a single entry
4358 * before resorting to a binary search of the full table.
4361 static kd_event_t
*last_hit
[MAX_CPUS
];
4363 event_lookup_cache(uint32_t cpu
, uint32_t id
)
4365 if (last_hit
[cpu
] == NULL
|| last_hit
[cpu
]->id
!= id
)
4366 last_hit
[cpu
] = binary_search(id
);
4367 return last_hit
[cpu
];
4370 static uint64_t kd_last_timstamp
;
4373 kdebug_serial_print(
4384 char kprintf_line
[192];
4386 uint64_t us
= timestamp
/ NSEC_PER_USEC
;
4387 uint64_t us_tenth
= (timestamp
% NSEC_PER_USEC
) / 100;
4388 uint64_t delta
= timestamp
- kd_last_timstamp
;
4389 uint64_t delta_us
= delta
/ NSEC_PER_USEC
;
4390 uint64_t delta_us_tenth
= (delta
% NSEC_PER_USEC
) / 100;
4391 uint32_t event_id
= debugid
& KDBG_EVENTID_MASK
;
4392 const char *command
;
4397 /* event time and delta from last */
4398 snprintf(kprintf_line
, sizeof(kprintf_line
),
4399 "%11llu.%1llu %8llu.%1llu ",
4400 us
, us_tenth
, delta_us
, delta_us_tenth
);
4403 /* event (id or name) - start prefixed by "[", end postfixed by "]" */
4404 bra
= (debugid
& DBG_FUNC_START
) ? "[" : " ";
4405 ket
= (debugid
& DBG_FUNC_END
) ? "]" : " ";
4406 ep
= event_lookup_cache(cpunum
, event_id
);
4408 if (strlen(ep
->name
) < sizeof(event
) - 3)
4409 snprintf(event
, sizeof(event
), "%s%s%s",
4410 bra
, ep
->name
, ket
);
4412 snprintf(event
, sizeof(event
), "%s%x(name too long)%s",
4413 bra
, event_id
, ket
);
4415 snprintf(event
, sizeof(event
), "%s%x%s",
4416 bra
, event_id
, ket
);
4418 snprintf(kprintf_line
+ strlen(kprintf_line
),
4419 sizeof(kprintf_line
) - strlen(kprintf_line
),
4422 /* arg1 .. arg4 with special cases for strings */
4425 case VFS_LOOKUP_DONE
:
4426 if (debugid
& DBG_FUNC_START
) {
4427 /* arg1 hex then arg2..arg4 chars */
4428 snprintf(kprintf_line
+ strlen(kprintf_line
),
4429 sizeof(kprintf_line
) - strlen(kprintf_line
),
4430 "%-16lx %-8s%-8s%-8s ",
4431 arg1
, (char*)&arg2
, (char*)&arg3
, (char*)&arg4
);
4434 /* else fall through for arg1..arg4 chars */
4435 case TRACE_STRING_EXEC
:
4436 case TRACE_STRING_NEWTHREAD
:
4437 case TRACE_INFO_STRING
:
4438 snprintf(kprintf_line
+ strlen(kprintf_line
),
4439 sizeof(kprintf_line
) - strlen(kprintf_line
),
4440 "%-8s%-8s%-8s%-8s ",
4441 (char*)&arg1
, (char*)&arg2
, (char*)&arg3
, (char*)&arg4
);
4444 snprintf(kprintf_line
+ strlen(kprintf_line
),
4445 sizeof(kprintf_line
) - strlen(kprintf_line
),
4446 "%-16lx %-16lx %-16lx %-16lx",
4447 arg1
, arg2
, arg3
, arg4
);
4450 /* threadid, cpu and command name */
4451 if (threadid
== (uintptr_t)thread_tid(current_thread()) &&
4453 current_proc()->p_comm
[0])
4454 command
= current_proc()->p_comm
;
4457 snprintf(kprintf_line
+ strlen(kprintf_line
),
4458 sizeof(kprintf_line
) - strlen(kprintf_line
),
4459 " %-16lx %-2d %s\n",
4460 threadid
, cpunum
, command
);
4462 kprintf("%s", kprintf_line
);
4463 kd_last_timstamp
= timestamp
;