2 * Copyright (c) 2006 Apple Computer, Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <machine/cpu_capabilities.h>
30 #include <machine/commpage.h>
34 * The bcopy/memcpy loops for very long operands, tuned for Pentium-M
35 * class processors with Supplemental SSE3 and 64-byte cache lines.
37 * The following #defines are tightly coupled to the u-architecture:
40 #define kBigChunk (256*1024) // outer loop chunk size for kVeryLong sized operands
43 // Very long forward moves. These are at least several pages, so we loop over big
44 // chunks of memory (kBigChunk in size.) We first prefetch the chunk, and then copy
45 // it using non-temporal stores. Hopefully all the reads occur in the prefetch loop,
46 // so the copy loop reads from L2 and writes directly to memory (with write combining.)
47 // This minimizes bus turnaround and maintains good DRAM page locality.
48 // Note that for this scheme to work, kVeryLong must be a large fraction of L2 cache
49 // size. Otherwise, it is counter-productive to bypass L2 on the stores.
51 // We are called from the commpage bcopy loops when they encounter very long
52 // operands, with the standard ABI.
54 // void longcopy(const void *dest, void *sou, size_t len)
56 // void longcopy(const void *dest, void *sou, size_t len)
58 COMMPAGE_FUNCTION_START(longcopy_sse3x, 32, 5)
59 pushl %ebp // set up a frame for backtraces
63 pushl %ebx // we'll need to use this too
64 movl 8(%ebp),%edi // get dest ptr
65 movl 12(%ebp),%esi // get source ptr
66 movl 16(%ebp),%ecx // get length
67 movl %edi,%ebx // copy dest ptr
69 andl $63,%ebx // get #bytes to cache line align destination
70 jz LBigChunkLoop // already aligned
72 // Cache line align destination, so temporal stores in copy loops work right.
74 pushl %ebx // arg3 - #bytes to align destination (1..63)
75 pushl %esi // arg2 - source
76 pushl %edi // arg1 - dest
77 movl $(_COMM_PAGE_MEMCPY),%eax
78 call *%eax // align the destination
80 movl 8(%ebp),%edi // recover dest ptr
81 movl 12(%ebp),%esi // recover source ptr
82 movl 16(%ebp),%ecx // recover length
83 addl %ebx,%esi // adjust ptrs and lengths past copy
87 // Loop over big chunks.
88 // ecx = length remaining (>= 4096)
89 // edi = dest (64-byte aligned)
90 // esi = source (may be unaligned)
93 movl $(kBigChunk),%edx // assume we can do a full chunk
94 cmpl %edx,%ecx // do we have a full chunk left to do?
95 cmovbl %ecx,%edx // if not, only move what we have left
96 andl $-4096,%edx // we work in page multiples
97 xor %eax,%eax // initialize chunk offset
100 // Touch in the next chunk. We try to keep the prefetch unit in "kick-start" mode,
101 // by touching two adjacent cache lines every 8 lines of each page, in four slices.
102 // Because the source may be unaligned, we use byte loads to touch.
103 // ecx = length remaining (including this chunk)
104 // edi = ptr to start of dest chunk
105 // esi = ptr to start of source chunk
106 // edx = chunk length (multiples of pages)
107 // ebx = scratch reg used to read a byte of each cache line
108 // eax = chunk offset
110 .align 4,0x90 // 16-byte align inner loops
112 movzb (%esi,%eax),%ebx // touch line 0, 2, 4, or 6 of page
113 movzb 1*64(%esi,%eax),%ebx // touch line 1, 3, 5, or 7
114 movzb 8*64(%esi,%eax),%ebx // touch line 8, 10, 12, or 14
115 movzb 9*64(%esi,%eax),%ebx // etc
117 movzb 16*64(%esi,%eax),%ebx
118 movzb 17*64(%esi,%eax),%ebx
119 movzb 24*64(%esi,%eax),%ebx
120 movzb 25*64(%esi,%eax),%ebx
122 movzb 32*64(%esi,%eax),%ebx
123 movzb 33*64(%esi,%eax),%ebx
124 movzb 40*64(%esi,%eax),%ebx
125 movzb 41*64(%esi,%eax),%ebx
127 movzb 48*64(%esi,%eax),%ebx
128 movzb 49*64(%esi,%eax),%ebx
129 movzb 56*64(%esi,%eax),%ebx
130 movzb 57*64(%esi,%eax),%ebx
132 subl $-128,%eax // next slice of page (adding 128 w 8-bit immediate)
133 testl $512,%eax // done with this page?
134 jz LTouchLoop // no, next of four slices
135 addl $(4096-512),%eax // move on to next page
136 cmpl %eax,%edx // done with this chunk?
137 jnz LTouchLoop // no, do next page
139 // The chunk has been pre-fetched, now copy it using non-temporal stores.
140 // There are two copy loops, depending on whether the source is 16-byte aligned
143 addl %edx,%esi // increment ptrs by chunk length
145 subl %edx,%ecx // adjust remaining length
146 negl %edx // prepare loop index (counts up to 0)
147 testl $15,%esi // is source 16-byte aligned?
148 jnz LVeryLongUnaligned // source is not aligned
151 .align 4,0x90 // 16-byte align inner loops
152 LVeryLongAligned: // aligned loop over 128-bytes
153 movdqa (%esi,%edx),%xmm0
154 movdqa 16(%esi,%edx),%xmm1
155 movdqa 32(%esi,%edx),%xmm2
156 movdqa 48(%esi,%edx),%xmm3
157 movdqa 64(%esi,%edx),%xmm4
158 movdqa 80(%esi,%edx),%xmm5
159 movdqa 96(%esi,%edx),%xmm6
160 movdqa 112(%esi,%edx),%xmm7
162 movntdq %xmm0,(%edi,%edx)
163 movntdq %xmm1,16(%edi,%edx)
164 movntdq %xmm2,32(%edi,%edx)
165 movntdq %xmm3,48(%edi,%edx)
166 movntdq %xmm4,64(%edi,%edx)
167 movntdq %xmm5,80(%edi,%edx)
168 movntdq %xmm6,96(%edi,%edx)
169 movntdq %xmm7,112(%edi,%edx)
171 subl $-128,%edx // add 128 with an 8-bit immediate
173 jmp LVeryLongChunkEnd
175 .align 4,0x90 // 16-byte align inner loops
176 LVeryLongUnaligned: // unaligned loop over 128-bytes
177 movdqu (%esi,%edx),%xmm0
178 movdqu 16(%esi,%edx),%xmm1
179 movdqu 32(%esi,%edx),%xmm2
180 movdqu 48(%esi,%edx),%xmm3
181 movdqu 64(%esi,%edx),%xmm4
182 movdqu 80(%esi,%edx),%xmm5
183 movdqu 96(%esi,%edx),%xmm6
184 movdqu 112(%esi,%edx),%xmm7
186 movntdq %xmm0,(%edi,%edx)
187 movntdq %xmm1,16(%edi,%edx)
188 movntdq %xmm2,32(%edi,%edx)
189 movntdq %xmm3,48(%edi,%edx)
190 movntdq %xmm4,64(%edi,%edx)
191 movntdq %xmm5,80(%edi,%edx)
192 movntdq %xmm6,96(%edi,%edx)
193 movntdq %xmm7,112(%edi,%edx)
195 subl $-128,%edx // add 128 with an 8-bit immediate
196 jnz LVeryLongUnaligned
199 cmpl $4096,%ecx // at least another page to go?
200 jae LBigChunkLoop // yes
202 // Done. Call memcpy() again to handle the 0-4095 bytes at the end.
204 sfence // required by non-temporal stores
205 testl %ecx,%ecx // anything left to copy?
207 pushl %ecx // arg3 - #bytes to align destination (1..63)
208 pushl %esi // arg2 - source
209 pushl %edi // arg1 - dest
210 movl $(_COMM_PAGE_MEMCPY),%eax
211 call *%eax // align the destination
212 addl $12,%esp // pop off arguments
220 /* always match for now, as commpage_stuff_routine() will panic if no match */
221 COMMPAGE_DESCRIPTOR(longcopy_sse3x, _COMM_PAGE_LONGCOPY, 0 ,0)