]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/kern_event.c
xnu-1456.1.26.tar.gz
[apple/xnu.git] / bsd / kern / kern_event.c
1 /*
2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 *
28 */
29 /*-
30 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
31 * All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
52 * SUCH DAMAGE.
53 */
54 /*
55 * @(#)kern_event.c 1.0 (3/31/2000)
56 */
57 #include <stdint.h>
58
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/filedesc.h>
62 #include <sys/kernel.h>
63 #include <sys/proc_internal.h>
64 #include <sys/kauth.h>
65 #include <sys/malloc.h>
66 #include <sys/unistd.h>
67 #include <sys/file_internal.h>
68 #include <sys/fcntl.h>
69 #include <sys/select.h>
70 #include <sys/queue.h>
71 #include <sys/event.h>
72 #include <sys/eventvar.h>
73 #include <sys/protosw.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76 #include <sys/stat.h>
77 #include <sys/sysctl.h>
78 #include <sys/uio.h>
79 #include <sys/sysproto.h>
80 #include <sys/user.h>
81 #include <sys/vnode_internal.h>
82 #include <string.h>
83 #include <sys/proc_info.h>
84
85 #include <kern/lock.h>
86 #include <kern/clock.h>
87 #include <kern/thread_call.h>
88 #include <kern/sched_prim.h>
89 #include <kern/zalloc.h>
90 #include <kern/assert.h>
91
92 #include <libkern/libkern.h>
93 #include "net/net_str_id.h"
94
95 MALLOC_DEFINE(M_KQUEUE, "kqueue", "memory for kqueue system");
96
97 #define KQ_EVENT NULL
98
99 static inline void kqlock(struct kqueue *kq);
100 static inline void kqunlock(struct kqueue *kq);
101
102 static int kqlock2knoteuse(struct kqueue *kq, struct knote *kn);
103 static int kqlock2knoteusewait(struct kqueue *kq, struct knote *kn);
104 static int kqlock2knotedrop(struct kqueue *kq, struct knote *kn);
105 static int knoteuse2kqlock(struct kqueue *kq, struct knote *kn);
106
107 static void kqueue_wakeup(struct kqueue *kq, int closed);
108 static int kqueue_read(struct fileproc *fp, struct uio *uio,
109 int flags, vfs_context_t ctx);
110 static int kqueue_write(struct fileproc *fp, struct uio *uio,
111 int flags, vfs_context_t ctx);
112 static int kqueue_ioctl(struct fileproc *fp, u_long com, caddr_t data,
113 vfs_context_t ctx);
114 static int kqueue_select(struct fileproc *fp, int which, void *wql,
115 vfs_context_t ctx);
116 static int kqueue_close(struct fileglob *fg, vfs_context_t ctx);
117 static int kqueue_kqfilter(struct fileproc *fp, struct knote *kn, vfs_context_t ctx);
118 static int kqueue_drain(struct fileproc *fp, vfs_context_t ctx);
119 extern int kqueue_stat(struct fileproc *fp, void *ub, int isstat64, vfs_context_t ctx);
120
121 static struct fileops kqueueops = {
122 .fo_read = kqueue_read,
123 .fo_write = kqueue_write,
124 .fo_ioctl = kqueue_ioctl,
125 .fo_select = kqueue_select,
126 .fo_close = kqueue_close,
127 .fo_kqfilter = kqueue_kqfilter,
128 .fo_drain = kqueue_drain,
129 };
130
131 static int kevent_internal(struct proc *p, int iskev64, user_addr_t changelist,
132 int nchanges, user_addr_t eventlist, int nevents, int fd,
133 user_addr_t utimeout, unsigned int flags, int32_t *retval);
134 static int kevent_copyin(user_addr_t *addrp, struct kevent64_s *kevp, struct proc *p, int iskev64);
135 static int kevent_copyout(struct kevent64_s *kevp, user_addr_t *addrp, struct proc *p, int iskev64);
136 char * kevent_description(struct kevent64_s *kevp, char *s, size_t n);
137
138 static int kevent_callback(struct kqueue *kq, struct kevent64_s *kevp, void *data);
139 static void kevent_continue(struct kqueue *kq, void *data, int error);
140 static void kqueue_scan_continue(void *contp, wait_result_t wait_result);
141 static int kqueue_process(struct kqueue *kq, kevent_callback_t callback,
142 void *data, int *countp, struct proc *p);
143 static int knote_process(struct knote *kn, kevent_callback_t callback,
144 void *data, struct kqtailq *inprocessp, struct proc *p);
145 static void knote_put(struct knote *kn);
146 static int knote_fdpattach(struct knote *kn, struct filedesc *fdp, struct proc *p);
147 static void knote_drop(struct knote *kn, struct proc *p);
148 static void knote_activate(struct knote *kn, int);
149 static void knote_deactivate(struct knote *kn);
150 static void knote_enqueue(struct knote *kn);
151 static void knote_dequeue(struct knote *kn);
152 static struct knote *knote_alloc(void);
153 static void knote_free(struct knote *kn);
154
155 static int filt_fileattach(struct knote *kn);
156 static struct filterops file_filtops = {
157 .f_isfd = 1,
158 .f_attach = filt_fileattach,
159 };
160
161 static void filt_kqdetach(struct knote *kn);
162 static int filt_kqueue(struct knote *kn, long hint);
163 static struct filterops kqread_filtops = {
164 .f_isfd = 1,
165 .f_detach = filt_kqdetach,
166 .f_event = filt_kqueue,
167 };
168
169 /*
170 * placeholder for not-yet-implemented filters
171 */
172 static int filt_badattach(struct knote *kn);
173 static struct filterops bad_filtops = {
174 .f_attach = filt_badattach,
175 };
176
177 static int filt_procattach(struct knote *kn);
178 static void filt_procdetach(struct knote *kn);
179 static int filt_proc(struct knote *kn, long hint);
180 static struct filterops proc_filtops = {
181 .f_attach = filt_procattach,
182 .f_detach = filt_procdetach,
183 .f_event = filt_proc,
184 };
185
186 extern struct filterops fs_filtops;
187
188 extern struct filterops sig_filtops;
189
190 /* Timer filter */
191 static int filt_timerattach(struct knote *kn);
192 static void filt_timerdetach(struct knote *kn);
193 static int filt_timer(struct knote *kn, long hint);
194 static void filt_timertouch(struct knote *kn, struct kevent64_s *kev,
195 long type);
196 static struct filterops timer_filtops = {
197 .f_attach = filt_timerattach,
198 .f_detach = filt_timerdetach,
199 .f_event = filt_timer,
200 .f_touch = filt_timertouch,
201 };
202
203 /* Helpers */
204
205 static void filt_timerexpire(void *knx, void *param1);
206 static int filt_timervalidate(struct knote *kn);
207 static void filt_timerupdate(struct knote *kn);
208 static void filt_timercancel(struct knote *kn);
209
210 #define TIMER_RUNNING 0x1
211 #define TIMER_CANCELWAIT 0x2
212
213 static lck_mtx_t _filt_timerlock;
214 static void filt_timerlock(void);
215 static void filt_timerunlock(void);
216
217 static zone_t knote_zone;
218
219 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
220
221 #if 0
222 extern struct filterops aio_filtops;
223 #endif
224
225 /* Mach portset filter */
226 extern struct filterops machport_filtops;
227
228 /* User filter */
229 static int filt_userattach(struct knote *kn);
230 static void filt_userdetach(struct knote *kn);
231 static int filt_user(struct knote *kn, long hint);
232 static void filt_usertouch(struct knote *kn, struct kevent64_s *kev,
233 long type);
234 static struct filterops user_filtops = {
235 .f_attach = filt_userattach,
236 .f_detach = filt_userdetach,
237 .f_event = filt_user,
238 .f_touch = filt_usertouch,
239 };
240
241 #if CONFIG_AUDIT
242 /* Audit session filter */
243 extern struct filterops audit_session_filtops;
244 #endif
245
246 /*
247 * Table for for all system-defined filters.
248 */
249 static struct filterops *sysfilt_ops[] = {
250 &file_filtops, /* EVFILT_READ */
251 &file_filtops, /* EVFILT_WRITE */
252 #if 0
253 &aio_filtops, /* EVFILT_AIO */
254 #else
255 &bad_filtops, /* EVFILT_AIO */
256 #endif
257 &file_filtops, /* EVFILT_VNODE */
258 &proc_filtops, /* EVFILT_PROC */
259 &sig_filtops, /* EVFILT_SIGNAL */
260 &timer_filtops, /* EVFILT_TIMER */
261 &machport_filtops, /* EVFILT_MACHPORT */
262 &fs_filtops, /* EVFILT_FS */
263 &user_filtops, /* EVFILT_USER */
264 #if CONFIG_AUDIT
265 &audit_session_filtops, /* EVFILT_SESSION */
266 #else
267 &bad_filtops,
268 #endif
269 };
270
271 /*
272 * kqueue/note lock attributes and implementations
273 *
274 * kqueues have locks, while knotes have use counts
275 * Most of the knote state is guarded by the object lock.
276 * the knote "inuse" count and status use the kqueue lock.
277 */
278 lck_grp_attr_t * kq_lck_grp_attr;
279 lck_grp_t * kq_lck_grp;
280 lck_attr_t * kq_lck_attr;
281
282 static inline void
283 kqlock(struct kqueue *kq)
284 {
285 lck_spin_lock(&kq->kq_lock);
286 }
287
288 static inline void
289 kqunlock(struct kqueue *kq)
290 {
291 lck_spin_unlock(&kq->kq_lock);
292 }
293
294 /*
295 * Convert a kq lock to a knote use referece.
296 *
297 * If the knote is being dropped, we can't get
298 * a use reference, so just return with it
299 * still locked.
300 *
301 * - kq locked at entry
302 * - unlock on exit if we get the use reference
303 */
304 static int
305 kqlock2knoteuse(struct kqueue *kq, struct knote *kn)
306 {
307 if (kn->kn_status & KN_DROPPING)
308 return 0;
309 kn->kn_inuse++;
310 kqunlock(kq);
311 return 1;
312 }
313
314 /*
315 * Convert a kq lock to a knote use referece,
316 * but wait for attach and drop events to complete.
317 *
318 * If the knote is being dropped, we can't get
319 * a use reference, so just return with it
320 * still locked.
321 *
322 * - kq locked at entry
323 * - kq always unlocked on exit
324 */
325 static int
326 kqlock2knoteusewait(struct kqueue *kq, struct knote *kn)
327 {
328 if ((kn->kn_status & (KN_DROPPING | KN_ATTACHING)) != 0) {
329 kn->kn_status |= KN_USEWAIT;
330 wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_UNINT, 0);
331 kqunlock(kq);
332 thread_block(THREAD_CONTINUE_NULL);
333 return 0;
334 }
335 kn->kn_inuse++;
336 kqunlock(kq);
337 return 1;
338 }
339
340
341 /*
342 * Convert from a knote use reference back to kq lock.
343 *
344 * Drop a use reference and wake any waiters if
345 * this is the last one.
346 *
347 * The exit return indicates if the knote is
348 * still alive - but the kqueue lock is taken
349 * unconditionally.
350 */
351 static int
352 knoteuse2kqlock(struct kqueue *kq, struct knote *kn)
353 {
354 kqlock(kq);
355 if (--kn->kn_inuse == 0) {
356 if ((kn->kn_status & KN_ATTACHING) != 0) {
357 kn->kn_status &= ~KN_ATTACHING;
358 }
359 if ((kn->kn_status & KN_USEWAIT) != 0) {
360 kn->kn_status &= ~KN_USEWAIT;
361 wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_AWAKENED);
362 }
363 }
364 return ((kn->kn_status & KN_DROPPING) == 0);
365 }
366
367 /*
368 * Convert a kq lock to a knote drop referece.
369 *
370 * If the knote is in use, wait for the use count
371 * to subside. We first mark our intention to drop
372 * it - keeping other users from "piling on."
373 * If we are too late, we have to wait for the
374 * other drop to complete.
375 *
376 * - kq locked at entry
377 * - always unlocked on exit.
378 * - caller can't hold any locks that would prevent
379 * the other dropper from completing.
380 */
381 static int
382 kqlock2knotedrop(struct kqueue *kq, struct knote *kn)
383 {
384 int oktodrop;
385
386 oktodrop = ((kn->kn_status & (KN_DROPPING | KN_ATTACHING)) == 0);
387 kn->kn_status |= KN_DROPPING;
388 if (oktodrop) {
389 if (kn->kn_inuse == 0) {
390 kqunlock(kq);
391 return oktodrop;
392 }
393 }
394 kn->kn_status |= KN_USEWAIT;
395 wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_UNINT, 0);
396 kqunlock(kq);
397 thread_block(THREAD_CONTINUE_NULL);
398 return oktodrop;
399 }
400
401 /*
402 * Release a knote use count reference.
403 */
404 static void
405 knote_put(struct knote *kn)
406 {
407 struct kqueue *kq = kn->kn_kq;
408
409 kqlock(kq);
410 if (--kn->kn_inuse == 0) {
411 if ((kn->kn_status & KN_USEWAIT) != 0) {
412 kn->kn_status &= ~KN_USEWAIT;
413 wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_AWAKENED);
414 }
415 }
416 kqunlock(kq);
417 }
418
419 static int
420 filt_fileattach(struct knote *kn)
421 {
422
423 return (fo_kqfilter(kn->kn_fp, kn, vfs_context_current()));
424 }
425
426 #define f_flag f_fglob->fg_flag
427 #define f_type f_fglob->fg_type
428 #define f_msgcount f_fglob->fg_msgcount
429 #define f_cred f_fglob->fg_cred
430 #define f_ops f_fglob->fg_ops
431 #define f_offset f_fglob->fg_offset
432 #define f_data f_fglob->fg_data
433
434 static void
435 filt_kqdetach(struct knote *kn)
436 {
437 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
438
439 kqlock(kq);
440 KNOTE_DETACH(&kq->kq_sel.si_note, kn);
441 kqunlock(kq);
442 }
443
444 /*ARGSUSED*/
445 static int
446 filt_kqueue(struct knote *kn, __unused long hint)
447 {
448 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
449
450 kn->kn_data = kq->kq_count;
451 return (kn->kn_data > 0);
452 }
453
454 static int
455 filt_procattach(struct knote *kn)
456 {
457 struct proc *p;
458
459 assert(PID_MAX < NOTE_PDATAMASK);
460
461 if ((kn->kn_sfflags & (NOTE_TRACK | NOTE_TRACKERR | NOTE_CHILD)) != 0)
462 return(ENOTSUP);
463
464 p = proc_find(kn->kn_id);
465 if (p == NULL) {
466 return (ESRCH);
467 }
468
469 proc_klist_lock();
470
471 kn->kn_flags |= EV_CLEAR; /* automatically set */
472 kn->kn_ptr.p_proc = p; /* store the proc handle */
473
474 KNOTE_ATTACH(&p->p_klist, kn);
475
476 proc_klist_unlock();
477
478 proc_rele(p);
479
480 return (0);
481 }
482
483 /*
484 * The knote may be attached to a different process, which may exit,
485 * leaving nothing for the knote to be attached to. In that case,
486 * the pointer to the process will have already been nulled out.
487 */
488 static void
489 filt_procdetach(struct knote *kn)
490 {
491 struct proc *p;
492
493 proc_klist_lock();
494
495 p = kn->kn_ptr.p_proc;
496 if (p != PROC_NULL) {
497 kn->kn_ptr.p_proc = PROC_NULL;
498 KNOTE_DETACH(&p->p_klist, kn);
499 }
500
501 proc_klist_unlock();
502 }
503
504 static int
505 filt_proc(struct knote *kn, long hint)
506 {
507 /* hint is 0 when called from above */
508 if (hint != 0) {
509 u_int event;
510
511 /* ALWAYS CALLED WITH proc_klist_lock when (hint != 0) */
512
513 /*
514 * mask off extra data
515 */
516 event = (u_int)hint & NOTE_PCTRLMASK;
517
518 /*
519 * if the user is interested in this event, record it.
520 */
521 if (kn->kn_sfflags & event)
522 kn->kn_fflags |= event;
523
524 if (event == NOTE_REAP || (event == NOTE_EXIT && !(kn->kn_sfflags & NOTE_REAP))) {
525 kn->kn_flags |= (EV_EOF | EV_ONESHOT);
526 }
527 }
528
529 /* atomic check, no locking need when called from above */
530 return (kn->kn_fflags != 0);
531 }
532
533
534 /*
535 * filt_timervalidate - process data from user
536 *
537 * Converts to either interval or deadline format.
538 *
539 * The saved-data field in the knote contains the
540 * time value. The saved filter-flags indicates
541 * the unit of measurement.
542 *
543 * After validation, either the saved-data field
544 * contains the interval in absolute time, or ext[0]
545 * contains the expected deadline. If that deadline
546 * is in the past, ext[0] is 0.
547 *
548 * Returns EINVAL for unrecognized units of time.
549 *
550 * Timer filter lock is held.
551 *
552 */
553 static int
554 filt_timervalidate(struct knote *kn)
555 {
556 uint64_t multiplier;
557 uint64_t raw;
558
559 switch (kn->kn_sfflags & (NOTE_SECONDS|NOTE_USECONDS|NOTE_NSECONDS)) {
560 case NOTE_SECONDS:
561 multiplier = NSEC_PER_SEC;
562 break;
563 case NOTE_USECONDS:
564 multiplier = NSEC_PER_USEC;
565 break;
566 case NOTE_NSECONDS:
567 multiplier = 1;
568 break;
569 case 0: /* milliseconds (default) */
570 multiplier = NSEC_PER_SEC / 1000;
571 break;
572 default:
573 return EINVAL;
574 }
575
576 nanoseconds_to_absolutetime((uint64_t)kn->kn_sdata * multiplier, &raw);
577
578 kn->kn_ext[0] = 0;
579 kn->kn_sdata = 0;
580
581 if (kn->kn_sfflags & NOTE_ABSOLUTE) {
582 clock_sec_t seconds;
583 clock_nsec_t nanoseconds;
584 uint64_t now;
585
586 clock_get_calendar_nanotime(&seconds, &nanoseconds);
587 nanoseconds_to_absolutetime((uint64_t)seconds * NSEC_PER_SEC +
588 nanoseconds, &now);
589
590 if (raw < now) {
591 /* time has already passed */
592 kn->kn_ext[0] = 0;
593 } else {
594 raw -= now;
595 clock_absolutetime_interval_to_deadline(raw,
596 &kn->kn_ext[0]);
597 }
598 } else {
599 kn->kn_sdata = raw;
600 }
601
602 return 0;
603 }
604
605 /*
606 * filt_timerupdate - compute the next deadline
607 *
608 * Repeating timers store their interval in kn_sdata. Absolute
609 * timers have already calculated the deadline, stored in ext[0].
610 *
611 * On return, the next deadline (or zero if no deadline is needed)
612 * is stored in kn_ext[0].
613 *
614 * Timer filter lock is held.
615 */
616 static void
617 filt_timerupdate(struct knote *kn)
618 {
619 /* if there's no interval, deadline is just in kn_ext[0] */
620 if (kn->kn_sdata == 0)
621 return;
622
623 /* if timer hasn't fired before, fire in interval nsecs */
624 if (kn->kn_ext[0] == 0) {
625 clock_absolutetime_interval_to_deadline(kn->kn_sdata,
626 &kn->kn_ext[0]);
627 } else {
628 /*
629 * If timer has fired before, schedule the next pop
630 * relative to the last intended deadline.
631 *
632 * We could check for whether the deadline has expired,
633 * but the thread call layer can handle that.
634 */
635 kn->kn_ext[0] += kn->kn_sdata;
636 }
637 }
638
639 /*
640 * filt_timerexpire - the timer callout routine
641 *
642 * Just propagate the timer event into the knote
643 * filter routine (by going through the knote
644 * synchronization point). Pass a hint to
645 * indicate this is a real event, not just a
646 * query from above.
647 */
648 static void
649 filt_timerexpire(void *knx, __unused void *spare)
650 {
651 struct klist timer_list;
652 struct knote *kn = knx;
653
654 filt_timerlock();
655
656 kn->kn_hookid &= ~TIMER_RUNNING;
657
658 /* no "object" for timers, so fake a list */
659 SLIST_INIT(&timer_list);
660 SLIST_INSERT_HEAD(&timer_list, kn, kn_selnext);
661 KNOTE(&timer_list, 1);
662
663 /* if someone is waiting for timer to pop */
664 if (kn->kn_hookid & TIMER_CANCELWAIT) {
665 struct kqueue *kq = kn->kn_kq;
666 wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_hook,
667 THREAD_AWAKENED);
668 }
669
670 filt_timerunlock();
671 }
672
673 /*
674 * Cancel a running timer (or wait for the pop).
675 * Timer filter lock is held.
676 */
677 static void
678 filt_timercancel(struct knote *kn)
679 {
680 struct kqueue *kq = kn->kn_kq;
681 thread_call_t callout = kn->kn_hook;
682 boolean_t cancelled;
683
684 if (kn->kn_hookid & TIMER_RUNNING) {
685 /* cancel the callout if we can */
686 cancelled = thread_call_cancel(callout);
687 if (cancelled) {
688 kn->kn_hookid &= ~TIMER_RUNNING;
689 } else {
690 /* we have to wait for the expire routine. */
691 kn->kn_hookid |= TIMER_CANCELWAIT;
692 wait_queue_assert_wait((wait_queue_t)kq->kq_wqs,
693 &kn->kn_hook, THREAD_UNINT, 0);
694 filt_timerunlock();
695 thread_block(THREAD_CONTINUE_NULL);
696 filt_timerlock();
697 assert((kn->kn_hookid & TIMER_RUNNING) == 0);
698 }
699 }
700 }
701
702 /*
703 * Allocate a thread call for the knote's lifetime, and kick off the timer.
704 */
705 static int
706 filt_timerattach(struct knote *kn)
707 {
708 thread_call_t callout;
709 int error;
710
711 callout = thread_call_allocate(filt_timerexpire, kn);
712 if (NULL == callout)
713 return (ENOMEM);
714
715 filt_timerlock();
716 error = filt_timervalidate(kn);
717 if (error) {
718 filt_timerunlock();
719 return (error);
720 }
721
722 kn->kn_hook = (void*)callout;
723 kn->kn_hookid = 0;
724
725 /* absolute=EV_ONESHOT */
726 if (kn->kn_sfflags & NOTE_ABSOLUTE)
727 kn->kn_flags |= EV_ONESHOT;
728
729 filt_timerupdate(kn);
730 if (kn->kn_ext[0]) {
731 kn->kn_flags |= EV_CLEAR;
732 thread_call_enter_delayed(callout, kn->kn_ext[0]);
733 kn->kn_hookid |= TIMER_RUNNING;
734 } else {
735 /* fake immediate */
736 kn->kn_data = 1;
737 }
738
739 filt_timerunlock();
740 return (0);
741 }
742
743 /*
744 * Shut down the timer if it's running, and free the callout.
745 */
746 static void
747 filt_timerdetach(struct knote *kn)
748 {
749 thread_call_t callout;
750
751 filt_timerlock();
752
753 callout = (thread_call_t)kn->kn_hook;
754 filt_timercancel(kn);
755
756 filt_timerunlock();
757
758 thread_call_free(callout);
759 }
760
761
762
763 static int
764 filt_timer(struct knote *kn, long hint)
765 {
766 int result;
767
768 if (hint) {
769 /* real timer pop -- timer lock held by filt_timerexpire */
770
771 kn->kn_data++;
772
773 if (((kn->kn_hookid & TIMER_CANCELWAIT) == 0) &&
774 ((kn->kn_flags & EV_ONESHOT) == 0)) {
775
776 /* evaluate next time to fire */
777 filt_timerupdate(kn);
778
779 if (kn->kn_ext[0]) {
780 /* keep the callout and re-arm */
781 thread_call_enter_delayed(kn->kn_hook,
782 kn->kn_ext[0]);
783 kn->kn_hookid |= TIMER_RUNNING;
784 }
785 }
786
787 return 1;
788 }
789
790 /* user-query */
791 filt_timerlock();
792
793 result = (kn->kn_data != 0);
794
795 filt_timerunlock();
796 return result;
797 }
798
799
800 /*
801 * filt_timertouch - update knote with new user input
802 *
803 * Cancel and restart the timer based on new user data. When
804 * the user picks up a knote, clear the count of how many timer
805 * pops have gone off (in kn_data).
806 */
807 static void
808 filt_timertouch(struct knote *kn, struct kevent64_s *kev, long type)
809 {
810 int error;
811 filt_timerlock();
812
813 switch (type) {
814 case EVENT_REGISTER:
815 /* cancel current call */
816 filt_timercancel(kn);
817
818 /* recalculate deadline */
819 kn->kn_sdata = kev->data;
820 kn->kn_sfflags = kev->fflags;
821
822 error = filt_timervalidate(kn);
823 if (error) {
824 /* no way to report error, so mark it in the knote */
825 kn->kn_flags |= EV_ERROR;
826 kn->kn_data = error;
827 break;
828 }
829
830 /* start timer if necessary */
831 filt_timerupdate(kn);
832 if (kn->kn_ext[0]) {
833 thread_call_enter_delayed(kn->kn_hook, kn->kn_ext[0]);
834 kn->kn_hookid |= TIMER_RUNNING;
835 } else {
836 /* pretend the timer has fired */
837 kn->kn_data = 1;
838 }
839
840 break;
841
842 case EVENT_PROCESS:
843 /* reset the timer pop count in kn_data */
844 *kev = kn->kn_kevent;
845 kev->ext[0] = 0;
846 kn->kn_data = 0;
847 if (kn->kn_flags & EV_CLEAR)
848 kn->kn_fflags = 0;
849 break;
850 default:
851 panic("filt_timertouch() - invalid type (%ld)", type);
852 break;
853 }
854
855 filt_timerunlock();
856 }
857
858 static void
859 filt_timerlock(void)
860 {
861 lck_mtx_lock(&_filt_timerlock);
862 }
863
864 static void
865 filt_timerunlock(void)
866 {
867 lck_mtx_unlock(&_filt_timerlock);
868 }
869
870 static int
871 filt_userattach(struct knote *kn)
872 {
873 /* EVFILT_USER knotes are not attached to anything in the kernel */
874 kn->kn_hook = NULL;
875 if (kn->kn_fflags & NOTE_TRIGGER || kn->kn_flags & EV_TRIGGER) {
876 kn->kn_hookid = 1;
877 } else {
878 kn->kn_hookid = 0;
879 }
880 return 0;
881 }
882
883 static void
884 filt_userdetach(__unused struct knote *kn)
885 {
886 /* EVFILT_USER knotes are not attached to anything in the kernel */
887 }
888
889 static int
890 filt_user(struct knote *kn, __unused long hint)
891 {
892 return kn->kn_hookid;
893 }
894
895 static void
896 filt_usertouch(struct knote *kn, struct kevent64_s *kev, long type)
897 {
898 int ffctrl;
899 switch (type) {
900 case EVENT_REGISTER:
901 if (kev->fflags & NOTE_TRIGGER || kev->flags & EV_TRIGGER) {
902 kn->kn_hookid = 1;
903 }
904
905 ffctrl = kev->fflags & NOTE_FFCTRLMASK;
906 kev->fflags &= NOTE_FFLAGSMASK;
907 switch (ffctrl) {
908 case NOTE_FFNOP:
909 break;
910 case NOTE_FFAND:
911 OSBitAndAtomic(kev->fflags, &kn->kn_sfflags);
912 break;
913 case NOTE_FFOR:
914 OSBitOrAtomic(kev->fflags, &kn->kn_sfflags);
915 break;
916 case NOTE_FFCOPY:
917 kn->kn_sfflags = kev->fflags;
918 break;
919 }
920 kn->kn_sdata = kev->data;
921 break;
922 case EVENT_PROCESS:
923 *kev = kn->kn_kevent;
924 kev->fflags = (volatile UInt32)kn->kn_sfflags;
925 kev->data = kn->kn_sdata;
926 if (kn->kn_flags & EV_CLEAR) {
927 kn->kn_hookid = 0;
928 kn->kn_data = 0;
929 kn->kn_fflags = 0;
930 }
931 break;
932 default:
933 panic("filt_usertouch() - invalid type (%ld)", type);
934 break;
935 }
936 }
937
938 /*
939 * JMM - placeholder for not-yet-implemented filters
940 */
941 static int
942 filt_badattach(__unused struct knote *kn)
943 {
944 return(ENOTSUP);
945 }
946
947
948 struct kqueue *
949 kqueue_alloc(struct proc *p)
950 {
951 struct filedesc *fdp = p->p_fd;
952 struct kqueue *kq;
953
954 MALLOC_ZONE(kq, struct kqueue *, sizeof(struct kqueue), M_KQUEUE, M_WAITOK);
955 if (kq != NULL) {
956 wait_queue_set_t wqs;
957
958 wqs = wait_queue_set_alloc(SYNC_POLICY_FIFO | SYNC_POLICY_PREPOST);
959 if (wqs != NULL) {
960 bzero(kq, sizeof(struct kqueue));
961 lck_spin_init(&kq->kq_lock, kq_lck_grp, kq_lck_attr);
962 TAILQ_INIT(&kq->kq_head);
963 kq->kq_wqs = wqs;
964 kq->kq_p = p;
965 } else {
966 FREE_ZONE(kq, sizeof(struct kqueue), M_KQUEUE);
967 }
968 }
969
970 if (fdp->fd_knlistsize < 0) {
971 proc_fdlock(p);
972 if (fdp->fd_knlistsize < 0)
973 fdp->fd_knlistsize = 0; /* this process has had a kq */
974 proc_fdunlock(p);
975 }
976
977 return kq;
978 }
979
980
981 /*
982 * kqueue_dealloc - detach all knotes from a kqueue and free it
983 *
984 * We walk each list looking for knotes referencing this
985 * this kqueue. If we find one, we try to drop it. But
986 * if we fail to get a drop reference, that will wait
987 * until it is dropped. So, we can just restart again
988 * safe in the assumption that the list will eventually
989 * not contain any more references to this kqueue (either
990 * we dropped them all, or someone else did).
991 *
992 * Assumes no new events are being added to the kqueue.
993 * Nothing locked on entry or exit.
994 */
995 void
996 kqueue_dealloc(struct kqueue *kq)
997 {
998 struct proc *p = kq->kq_p;
999 struct filedesc *fdp = p->p_fd;
1000 struct knote *kn;
1001 int i;
1002
1003 proc_fdlock(p);
1004 for (i = 0; i < fdp->fd_knlistsize; i++) {
1005 kn = SLIST_FIRST(&fdp->fd_knlist[i]);
1006 while (kn != NULL) {
1007 if (kq == kn->kn_kq) {
1008 kqlock(kq);
1009 proc_fdunlock(p);
1010 /* drop it ourselves or wait */
1011 if (kqlock2knotedrop(kq, kn)) {
1012 kn->kn_fop->f_detach(kn);
1013 knote_drop(kn, p);
1014 }
1015 proc_fdlock(p);
1016 /* start over at beginning of list */
1017 kn = SLIST_FIRST(&fdp->fd_knlist[i]);
1018 continue;
1019 }
1020 kn = SLIST_NEXT(kn, kn_link);
1021 }
1022 }
1023 if (fdp->fd_knhashmask != 0) {
1024 for (i = 0; i < (int)fdp->fd_knhashmask + 1; i++) {
1025 kn = SLIST_FIRST(&fdp->fd_knhash[i]);
1026 while (kn != NULL) {
1027 if (kq == kn->kn_kq) {
1028 kqlock(kq);
1029 proc_fdunlock(p);
1030 /* drop it ourselves or wait */
1031 if (kqlock2knotedrop(kq, kn)) {
1032 kn->kn_fop->f_detach(kn);
1033 knote_drop(kn, p);
1034 }
1035 proc_fdlock(p);
1036 /* start over at beginning of list */
1037 kn = SLIST_FIRST(&fdp->fd_knhash[i]);
1038 continue;
1039 }
1040 kn = SLIST_NEXT(kn, kn_link);
1041 }
1042 }
1043 }
1044 proc_fdunlock(p);
1045
1046 /*
1047 * before freeing the wait queue set for this kqueue,
1048 * make sure it is unlinked from all its containing (select) sets.
1049 */
1050 wait_queue_unlink_all((wait_queue_t)kq->kq_wqs);
1051 wait_queue_set_free(kq->kq_wqs);
1052 lck_spin_destroy(&kq->kq_lock, kq_lck_grp);
1053 FREE_ZONE(kq, sizeof(struct kqueue), M_KQUEUE);
1054 }
1055
1056 int
1057 kqueue(struct proc *p, __unused struct kqueue_args *uap, int32_t *retval)
1058 {
1059 struct kqueue *kq;
1060 struct fileproc *fp;
1061 int fd, error;
1062
1063 error = falloc(p, &fp, &fd, vfs_context_current());
1064 if (error) {
1065 return (error);
1066 }
1067
1068 kq = kqueue_alloc(p);
1069 if (kq == NULL) {
1070 fp_free(p, fd, fp);
1071 return (ENOMEM);
1072 }
1073
1074 fp->f_flag = FREAD | FWRITE;
1075 fp->f_type = DTYPE_KQUEUE;
1076 fp->f_ops = &kqueueops;
1077 fp->f_data = (caddr_t)kq;
1078
1079 proc_fdlock(p);
1080 procfdtbl_releasefd(p, fd, NULL);
1081 fp_drop(p, fd, fp, 1);
1082 proc_fdunlock(p);
1083
1084 *retval = fd;
1085 return (error);
1086 }
1087
1088 static int
1089 kevent_copyin(user_addr_t *addrp, struct kevent64_s *kevp, struct proc *p, int iskev64)
1090 {
1091 int advance;
1092 int error;
1093
1094 if (iskev64) {
1095 advance = sizeof(struct kevent64_s);
1096 error = copyin(*addrp, (caddr_t)kevp, advance);
1097 } else if (IS_64BIT_PROCESS(p)) {
1098 struct user64_kevent kev64;
1099 bzero(kevp, sizeof(struct kevent64_s));
1100
1101 advance = sizeof(kev64);
1102 error = copyin(*addrp, (caddr_t)&kev64, advance);
1103 if (error)
1104 return error;
1105 kevp->ident = kev64.ident;
1106 kevp->filter = kev64.filter;
1107 kevp->flags = kev64.flags;
1108 kevp->fflags = kev64.fflags;
1109 kevp->data = kev64.data;
1110 kevp->udata = kev64.udata;
1111 } else {
1112 struct user32_kevent kev32;
1113 bzero(kevp, sizeof(struct kevent64_s));
1114
1115 advance = sizeof(kev32);
1116 error = copyin(*addrp, (caddr_t)&kev32, advance);
1117 if (error)
1118 return error;
1119 kevp->ident = (uintptr_t)kev32.ident;
1120 kevp->filter = kev32.filter;
1121 kevp->flags = kev32.flags;
1122 kevp->fflags = kev32.fflags;
1123 kevp->data = (intptr_t)kev32.data;
1124 kevp->udata = CAST_USER_ADDR_T(kev32.udata);
1125 }
1126 if (!error)
1127 *addrp += advance;
1128 return error;
1129 }
1130
1131 static int
1132 kevent_copyout(struct kevent64_s *kevp, user_addr_t *addrp, struct proc *p, int iskev64)
1133 {
1134 int advance;
1135 int error;
1136
1137 if (iskev64) {
1138 advance = sizeof(struct kevent64_s);
1139 error = copyout((caddr_t)kevp, *addrp, advance);
1140 } else if (IS_64BIT_PROCESS(p)) {
1141 struct user64_kevent kev64;
1142
1143 /*
1144 * deal with the special case of a user-supplied
1145 * value of (uintptr_t)-1.
1146 */
1147 kev64.ident = (kevp->ident == (uintptr_t)-1) ?
1148 (uint64_t)-1LL : (uint64_t)kevp->ident;
1149
1150 kev64.filter = kevp->filter;
1151 kev64.flags = kevp->flags;
1152 kev64.fflags = kevp->fflags;
1153 kev64.data = (int64_t) kevp->data;
1154 kev64.udata = kevp->udata;
1155 advance = sizeof(kev64);
1156 error = copyout((caddr_t)&kev64, *addrp, advance);
1157 } else {
1158 struct user32_kevent kev32;
1159
1160 kev32.ident = (uint32_t)kevp->ident;
1161 kev32.filter = kevp->filter;
1162 kev32.flags = kevp->flags;
1163 kev32.fflags = kevp->fflags;
1164 kev32.data = (int32_t)kevp->data;
1165 kev32.udata = kevp->udata;
1166 advance = sizeof(kev32);
1167 error = copyout((caddr_t)&kev32, *addrp, advance);
1168 }
1169 if (!error)
1170 *addrp += advance;
1171 return error;
1172 }
1173
1174 /*
1175 * kevent_continue - continue a kevent syscall after blocking
1176 *
1177 * assume we inherit a use count on the kq fileglob.
1178 */
1179
1180 static void
1181 kevent_continue(__unused struct kqueue *kq, void *data, int error)
1182 {
1183 struct _kevent *cont_args;
1184 struct fileproc *fp;
1185 int32_t *retval;
1186 int noutputs;
1187 int fd;
1188 struct proc *p = current_proc();
1189
1190 cont_args = (struct _kevent *)data;
1191 noutputs = cont_args->eventout;
1192 retval = cont_args->retval;
1193 fd = cont_args->fd;
1194 fp = cont_args->fp;
1195
1196 fp_drop(p, fd, fp, 0);
1197
1198 /* don't restart after signals... */
1199 if (error == ERESTART)
1200 error = EINTR;
1201 else if (error == EWOULDBLOCK)
1202 error = 0;
1203 if (error == 0)
1204 *retval = noutputs;
1205 unix_syscall_return(error);
1206 }
1207
1208 /*
1209 * kevent - [syscall] register and wait for kernel events
1210 *
1211 */
1212 int
1213 kevent(struct proc *p, struct kevent_args *uap, int32_t *retval)
1214 {
1215 return kevent_internal(p,
1216 0,
1217 uap->changelist,
1218 uap->nchanges,
1219 uap->eventlist,
1220 uap->nevents,
1221 uap->fd,
1222 uap->timeout,
1223 0, /* no flags from old kevent() call */
1224 retval);
1225 }
1226
1227 int
1228 kevent64(struct proc *p, struct kevent64_args *uap, int32_t *retval)
1229 {
1230 return kevent_internal(p,
1231 1,
1232 uap->changelist,
1233 uap->nchanges,
1234 uap->eventlist,
1235 uap->nevents,
1236 uap->fd,
1237 uap->timeout,
1238 uap->flags,
1239 retval);
1240 }
1241
1242 static int
1243 kevent_internal(struct proc *p, int iskev64, user_addr_t changelist,
1244 int nchanges, user_addr_t ueventlist, int nevents, int fd,
1245 user_addr_t utimeout, __unused unsigned int flags,
1246 int32_t *retval)
1247 {
1248 struct _kevent *cont_args;
1249 uthread_t ut;
1250 struct kqueue *kq;
1251 struct fileproc *fp;
1252 struct kevent64_s kev;
1253 int error, noutputs;
1254 struct timeval atv;
1255
1256 /* convert timeout to absolute - if we have one */
1257 if (utimeout != USER_ADDR_NULL) {
1258 struct timeval rtv;
1259 if (IS_64BIT_PROCESS(p)) {
1260 struct user64_timespec ts;
1261 error = copyin(utimeout, &ts, sizeof(ts));
1262 if ((ts.tv_sec & 0xFFFFFFFF00000000ull) != 0)
1263 error = EINVAL;
1264 else
1265 TIMESPEC_TO_TIMEVAL(&rtv, &ts);
1266 } else {
1267 struct user32_timespec ts;
1268 error = copyin(utimeout, &ts, sizeof(ts));
1269 TIMESPEC_TO_TIMEVAL(&rtv, &ts);
1270 }
1271 if (error)
1272 return error;
1273 if (itimerfix(&rtv))
1274 return EINVAL;
1275 getmicrouptime(&atv);
1276 timevaladd(&atv, &rtv);
1277 } else {
1278 atv.tv_sec = 0;
1279 atv.tv_usec = 0;
1280 }
1281
1282 /* get a usecount for the kq itself */
1283 if ((error = fp_getfkq(p, fd, &fp, &kq)) != 0)
1284 return(error);
1285
1286 /* each kq should only be used for events of one type */
1287 kqlock(kq);
1288 if (kq->kq_state & (KQ_KEV32 | KQ_KEV64)) {
1289 if (((iskev64 && (kq->kq_state & KQ_KEV32)) ||
1290 (!iskev64 && (kq->kq_state & KQ_KEV64)))) {
1291 error = EINVAL;
1292 kqunlock(kq);
1293 goto errorout;
1294 }
1295 } else {
1296 kq->kq_state |= (iskev64 ? KQ_KEV64 : KQ_KEV32);
1297 }
1298 kqunlock(kq);
1299
1300 /* register all the change requests the user provided... */
1301 noutputs = 0;
1302 while (nchanges > 0 && error == 0) {
1303 error = kevent_copyin(&changelist, &kev, p, iskev64);
1304 if (error)
1305 break;
1306
1307 kev.flags &= ~EV_SYSFLAGS;
1308 error = kevent_register(kq, &kev, p);
1309 if ((error || (kev.flags & EV_RECEIPT)) && nevents > 0) {
1310 kev.flags = EV_ERROR;
1311 kev.data = error;
1312 error = kevent_copyout(&kev, &ueventlist, p, iskev64);
1313 if (error == 0) {
1314 nevents--;
1315 noutputs++;
1316 }
1317 }
1318 nchanges--;
1319 }
1320
1321 /* store the continuation/completion data in the uthread */
1322 ut = (uthread_t)get_bsdthread_info(current_thread());
1323 cont_args = &ut->uu_kevent.ss_kevent;
1324 cont_args->fp = fp;
1325 cont_args->fd = fd;
1326 cont_args->retval = retval;
1327 cont_args->eventlist = ueventlist;
1328 cont_args->eventcount = nevents;
1329 cont_args->eventout = noutputs;
1330 cont_args->eventsize = iskev64;
1331
1332 if (nevents > 0 && noutputs == 0 && error == 0)
1333 error = kqueue_scan(kq, kevent_callback,
1334 kevent_continue, cont_args,
1335 &atv, p);
1336 kevent_continue(kq, cont_args, error);
1337
1338 errorout:
1339 fp_drop(p, fd, fp, 0);
1340 return error;
1341 }
1342
1343
1344 /*
1345 * kevent_callback - callback for each individual event
1346 *
1347 * called with nothing locked
1348 * caller holds a reference on the kqueue
1349 */
1350
1351 static int
1352 kevent_callback(__unused struct kqueue *kq, struct kevent64_s *kevp,
1353 void *data)
1354 {
1355 struct _kevent *cont_args;
1356 int error;
1357 int iskev64;
1358
1359 cont_args = (struct _kevent *)data;
1360 assert(cont_args->eventout < cont_args->eventcount);
1361
1362 iskev64 = cont_args->eventsize;
1363
1364 /*
1365 * Copy out the appropriate amount of event data for this user.
1366 */
1367 error = kevent_copyout(kevp, &cont_args->eventlist, current_proc(), iskev64);
1368
1369 /*
1370 * If there isn't space for additional events, return
1371 * a harmless error to stop the processing here
1372 */
1373 if (error == 0 && ++cont_args->eventout == cont_args->eventcount)
1374 error = EWOULDBLOCK;
1375 return error;
1376 }
1377
1378 /*
1379 * kevent_description - format a description of a kevent for diagnostic output
1380 *
1381 * called with a 128-byte string buffer
1382 */
1383
1384 char *
1385 kevent_description(struct kevent64_s *kevp, char *s, size_t n)
1386 {
1387 snprintf(s, n,
1388 "kevent="
1389 "{.ident=%#llx, .filter=%d, .flags=%#x, .fflags=%#x, .data=%#llx, .udata=%#llx, .ext[0]=%#llx, .ext[1]=%#llx}",
1390 kevp->ident,
1391 kevp->filter,
1392 kevp->flags,
1393 kevp->fflags,
1394 kevp->data,
1395 kevp->udata,
1396 kevp->ext[0],
1397 kevp->ext[1]);
1398 return s;
1399 }
1400
1401 /*
1402 * kevent_register - add a new event to a kqueue
1403 *
1404 * Creates a mapping between the event source and
1405 * the kqueue via a knote data structure.
1406 *
1407 * Because many/most the event sources are file
1408 * descriptor related, the knote is linked off
1409 * the filedescriptor table for quick access.
1410 *
1411 * called with nothing locked
1412 * caller holds a reference on the kqueue
1413 */
1414
1415 int
1416 kevent_register(struct kqueue *kq, struct kevent64_s *kev, __unused struct proc *ctxp)
1417 {
1418 struct proc *p = kq->kq_p;
1419 struct filedesc *fdp = p->p_fd;
1420 struct filterops *fops;
1421 struct fileproc *fp = NULL;
1422 struct knote *kn = NULL;
1423 int error = 0;
1424
1425 if (kev->filter < 0) {
1426 if (kev->filter + EVFILT_SYSCOUNT < 0)
1427 return (EINVAL);
1428 fops = sysfilt_ops[~kev->filter]; /* to 0-base index */
1429 } else {
1430 /*
1431 * XXX
1432 * filter attach routine is responsible for insuring that
1433 * the identifier can be attached to it.
1434 */
1435 printf("unknown filter: %d\n", kev->filter);
1436 return (EINVAL);
1437 }
1438
1439 restart:
1440 /* this iocount needs to be dropped if it is not registered */
1441 proc_fdlock(p);
1442 if (fops->f_isfd && (error = fp_lookup(p, kev->ident, &fp, 1)) != 0) {
1443 proc_fdunlock(p);
1444 return(error);
1445 }
1446
1447 if (fops->f_isfd) {
1448 /* fd-based knotes are linked off the fd table */
1449 if (kev->ident < (u_int)fdp->fd_knlistsize) {
1450 SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
1451 if (kq == kn->kn_kq &&
1452 kev->filter == kn->kn_filter)
1453 break;
1454 }
1455 } else {
1456 /* hash non-fd knotes here too */
1457 if (fdp->fd_knhashmask != 0) {
1458 struct klist *list;
1459
1460 list = &fdp->fd_knhash[
1461 KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
1462 SLIST_FOREACH(kn, list, kn_link)
1463 if (kev->ident == kn->kn_id &&
1464 kq == kn->kn_kq &&
1465 kev->filter == kn->kn_filter)
1466 break;
1467 }
1468 }
1469
1470 /*
1471 * kn now contains the matching knote, or NULL if no match
1472 */
1473 if (kn == NULL) {
1474 if ((kev->flags & (EV_ADD|EV_DELETE)) == EV_ADD) {
1475 kn = knote_alloc();
1476 if (kn == NULL) {
1477 proc_fdunlock(p);
1478 error = ENOMEM;
1479 goto done;
1480 }
1481 kn->kn_fp = fp;
1482 kn->kn_kq = kq;
1483 kn->kn_tq = &kq->kq_head;
1484 kn->kn_fop = fops;
1485 kn->kn_sfflags = kev->fflags;
1486 kn->kn_sdata = kev->data;
1487 kev->fflags = 0;
1488 kev->data = 0;
1489 kn->kn_kevent = *kev;
1490 kn->kn_inuse = 1; /* for f_attach() */
1491 kn->kn_status = KN_ATTACHING;
1492
1493 /* before anyone can find it */
1494 if (kev->flags & EV_DISABLE)
1495 kn->kn_status |= KN_DISABLED;
1496
1497 error = knote_fdpattach(kn, fdp, p);
1498 proc_fdunlock(p);
1499
1500 if (error) {
1501 knote_free(kn);
1502 goto done;
1503 }
1504
1505 /*
1506 * apply reference count to knote structure, and
1507 * do not release it at the end of this routine.
1508 */
1509 fp = NULL;
1510
1511 error = fops->f_attach(kn);
1512
1513 /*
1514 * Anyone trying to drop this knote will yield to
1515 * us, since KN_ATTACHING is set.
1516 */
1517 kqlock(kq);
1518 if (error != 0 || (kn->kn_status & KN_DROPPING)) {
1519 if (error == 0) {
1520 kn->kn_fop->f_detach(kn);
1521 }
1522 kn->kn_status |= KN_DROPPING;
1523 kqunlock(kq);
1524 knote_drop(kn, p);
1525 goto done;
1526 }
1527 kn->kn_status &= ~KN_ATTACHING;
1528 kqunlock(kq);
1529 } else {
1530 proc_fdunlock(p);
1531 error = ENOENT;
1532 goto done;
1533 }
1534 } else {
1535 /* existing knote - get kqueue lock */
1536 kqlock(kq);
1537 proc_fdunlock(p);
1538
1539 if (kev->flags & EV_DELETE) {
1540 knote_dequeue(kn);
1541 kn->kn_status |= KN_DISABLED;
1542 if (kqlock2knotedrop(kq, kn)) {
1543 kn->kn_fop->f_detach(kn);
1544 knote_drop(kn, p);
1545 }
1546 goto done;
1547 }
1548
1549 /* update status flags for existing knote */
1550 if (kev->flags & EV_DISABLE) {
1551 knote_dequeue(kn);
1552 kn->kn_status |= KN_DISABLED;
1553 } else if (kev->flags & EV_ENABLE) {
1554 kn->kn_status &= ~KN_DISABLED;
1555 if (kn->kn_status & KN_ACTIVE)
1556 knote_enqueue(kn);
1557 }
1558
1559 /*
1560 * If somebody is in the middle of dropping this
1561 * knote - go find/insert a new one. But we have
1562 * wait for this one to go away first. Attaches
1563 * running in parallel may also drop/modify the
1564 * knote. Wait for those to complete as well and
1565 * then start over if we encounter one.
1566 */
1567 if (!kqlock2knoteusewait(kq, kn)) {
1568 /* kqueue, proc_fdlock both unlocked */
1569 goto restart;
1570 }
1571
1572 /*
1573 * The user may change some filter values after the
1574 * initial EV_ADD, but doing so will not reset any
1575 * filter which have already been triggered.
1576 */
1577 kn->kn_kevent.udata = kev->udata;
1578 if (!fops->f_isfd && fops->f_touch != NULL)
1579 fops->f_touch(kn, kev, EVENT_REGISTER);
1580 else {
1581 kn->kn_sfflags = kev->fflags;
1582 kn->kn_sdata = kev->data;
1583 }
1584
1585 /* We may need to push some info down to a networked filesystem */
1586 if (kn->kn_filter == EVFILT_VNODE) {
1587 vnode_knoteupdate(kn);
1588 }
1589 }
1590 /* still have use ref on knote */
1591
1592 /*
1593 * If the knote is not marked to always stay enqueued,
1594 * invoke the filter routine to see if it should be
1595 * enqueued now.
1596 */
1597 if ((kn->kn_status & KN_STAYQUEUED) == 0 && kn->kn_fop->f_event(kn, 0)) {
1598 if (knoteuse2kqlock(kq, kn))
1599 knote_activate(kn, 1);
1600 kqunlock(kq);
1601 } else {
1602 knote_put(kn);
1603 }
1604
1605 done:
1606 if (fp != NULL)
1607 fp_drop(p, kev->ident, fp, 0);
1608 return (error);
1609 }
1610
1611
1612 /*
1613 * knote_process - process a triggered event
1614 *
1615 * Validate that it is really still a triggered event
1616 * by calling the filter routines (if necessary). Hold
1617 * a use reference on the knote to avoid it being detached.
1618 * If it is still considered triggered, invoke the callback
1619 * routine provided and move it to the provided inprocess
1620 * queue.
1621 *
1622 * caller holds a reference on the kqueue.
1623 * kqueue locked on entry and exit - but may be dropped
1624 */
1625 static int
1626 knote_process(struct knote *kn,
1627 kevent_callback_t callback,
1628 void *data,
1629 struct kqtailq *inprocessp,
1630 struct proc *p)
1631 {
1632 struct kqueue *kq = kn->kn_kq;
1633 struct kevent64_s kev;
1634 int touch;
1635 int result;
1636 int error;
1637
1638 /*
1639 * Determine the kevent state we want to return.
1640 *
1641 * Some event states need to be revalidated before returning
1642 * them, others we take the snapshot at the time the event
1643 * was enqueued.
1644 *
1645 * Events with non-NULL f_touch operations must be touched.
1646 * Triggered events must fill in kev for the callback.
1647 *
1648 * Convert our lock to a use-count and call the event's
1649 * filter routine(s) to update.
1650 */
1651 if ((kn->kn_status & KN_DISABLED) != 0) {
1652 result = 0;
1653 touch = 0;
1654 } else {
1655 int revalidate;
1656
1657 result = 1;
1658 revalidate = ((kn->kn_status & KN_STAYQUEUED) != 0 ||
1659 (kn->kn_flags & EV_ONESHOT) == 0);
1660 touch = (!kn->kn_fop->f_isfd && kn->kn_fop->f_touch != NULL);
1661
1662 if (revalidate || touch) {
1663 if (revalidate)
1664 knote_deactivate(kn);
1665
1666 /* call the filter/touch routines with just a ref */
1667 if (kqlock2knoteuse(kq, kn)) {
1668
1669 /* if we have to revalidate, call the filter */
1670 if (revalidate) {
1671 result = kn->kn_fop->f_event(kn, 0);
1672 }
1673
1674 /* capture the kevent data - using touch if specified */
1675 if (result) {
1676 if (touch) {
1677 kn->kn_fop->f_touch(kn, &kev, EVENT_PROCESS);
1678 } else {
1679 kev = kn->kn_kevent;
1680 }
1681 }
1682 /* convert back to a kqlock - bail if the knote went away */
1683 if (!knoteuse2kqlock(kq, kn)) {
1684 return EJUSTRETURN;
1685 } else if (result) {
1686 /* if revalidated as alive, make sure it's active */
1687 if (!(kn->kn_status & KN_ACTIVE)) {
1688 knote_activate(kn, 0);
1689 }
1690 } else if ((kn->kn_status & KN_STAYQUEUED) == 0) {
1691 /* was already dequeued, so just bail on this one */
1692 return EJUSTRETURN;
1693 }
1694 } else {
1695 return EJUSTRETURN;
1696 }
1697 } else {
1698 kev = kn->kn_kevent;
1699 }
1700 }
1701
1702 /* move knote onto inprocess queue */
1703 assert(kn->kn_tq == &kq->kq_head);
1704 TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1705 kn->kn_tq = inprocessp;
1706 TAILQ_INSERT_TAIL(inprocessp, kn, kn_tqe);
1707
1708 /*
1709 * Determine how to dispatch the knote for future event handling.
1710 * not-fired: just return (do not callout).
1711 * One-shot: deactivate it.
1712 * Clear: deactivate and clear the state.
1713 * Dispatch: don't clear state, just deactivate it and mark it disabled.
1714 * All others: just leave where they are.
1715 */
1716
1717 if (result == 0) {
1718 return EJUSTRETURN;
1719 } else if (kn->kn_flags & EV_ONESHOT) {
1720 knote_deactivate(kn);
1721 if (kqlock2knotedrop(kq, kn)) {
1722 kn->kn_fop->f_detach(kn);
1723 knote_drop(kn, p);
1724 }
1725 } else if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
1726 knote_deactivate(kn);
1727 /* manually clear knotes who weren't 'touch'ed */
1728 if ((touch == 0) && (kn->kn_flags & EV_CLEAR)) {
1729 kn->kn_data = 0;
1730 kn->kn_fflags = 0;
1731 }
1732 if (kn->kn_flags & EV_DISPATCH)
1733 kn->kn_status |= KN_DISABLED;
1734 kqunlock(kq);
1735 } else {
1736 /*
1737 * leave on inprocess queue. We'll
1738 * move all the remaining ones back
1739 * the kq queue and wakeup any
1740 * waiters when we are done.
1741 */
1742 kqunlock(kq);
1743 }
1744
1745 /* callback to handle each event as we find it */
1746 error = (callback)(kq, &kev, data);
1747
1748 kqlock(kq);
1749 return error;
1750 }
1751
1752
1753 /*
1754 * kqueue_process - process the triggered events in a kqueue
1755 *
1756 * Walk the queued knotes and validate that they are
1757 * really still triggered events by calling the filter
1758 * routines (if necessary). Hold a use reference on
1759 * the knote to avoid it being detached. For each event
1760 * that is still considered triggered, invoke the
1761 * callback routine provided.
1762 *
1763 * caller holds a reference on the kqueue.
1764 * kqueue locked on entry and exit - but may be dropped
1765 * kqueue list locked (held for duration of call)
1766 */
1767
1768 static int
1769 kqueue_process(struct kqueue *kq,
1770 kevent_callback_t callback,
1771 void *data,
1772 int *countp,
1773 struct proc *p)
1774 {
1775 struct kqtailq inprocess;
1776 struct knote *kn;
1777 int nevents;
1778 int error;
1779
1780 TAILQ_INIT(&inprocess);
1781 restart:
1782 if (kq->kq_count == 0) {
1783 *countp = 0;
1784 return 0;
1785 }
1786
1787 /* if someone else is processing the queue, wait */
1788 if (hw_atomic_add(&kq->kq_nprocess, 1) != 1) {
1789 hw_atomic_sub(&kq->kq_nprocess, 1);
1790 wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, &kq->kq_nprocess, THREAD_UNINT, 0);
1791 kq->kq_state |= KQ_PROCWAIT;
1792 kqunlock(kq);
1793 thread_block(THREAD_CONTINUE_NULL);
1794 kqlock(kq);
1795 goto restart;
1796 }
1797
1798 /*
1799 * Clear any pre-posted status from previous runs, so we only
1800 * detect events that occur during this run.
1801 */
1802 wait_queue_sub_clearrefs(kq->kq_wqs);
1803
1804 /*
1805 * loop through the enqueued knotes, processing each one and
1806 * revalidating those that need it. As they are processed,
1807 * they get moved to the inprocess queue (so the loop can end).
1808 */
1809 error = 0;
1810 nevents = 0;
1811
1812 while (error == 0 &&
1813 (kn = TAILQ_FIRST(&kq->kq_head)) != NULL) {
1814 error = knote_process(kn, callback, data, &inprocess, p);
1815 if (error == EJUSTRETURN)
1816 error = 0;
1817 else
1818 nevents++;
1819 }
1820
1821 /*
1822 * With the kqueue still locked, move any knotes
1823 * remaining on the inprocess queue back to the
1824 * kq's queue and wake up any waiters.
1825 */
1826 while ((kn = TAILQ_FIRST(&inprocess)) != NULL) {
1827 assert(kn->kn_tq == &inprocess);
1828 TAILQ_REMOVE(&inprocess, kn, kn_tqe);
1829 kn->kn_tq = &kq->kq_head;
1830 TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1831 }
1832 hw_atomic_sub(&kq->kq_nprocess, 1);
1833 if (kq->kq_state & KQ_PROCWAIT) {
1834 kq->kq_state &= ~KQ_PROCWAIT;
1835 wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kq->kq_nprocess, THREAD_AWAKENED);
1836 }
1837
1838 *countp = nevents;
1839 return error;
1840 }
1841
1842
1843 static void
1844 kqueue_scan_continue(void *data, wait_result_t wait_result)
1845 {
1846 thread_t self = current_thread();
1847 uthread_t ut = (uthread_t)get_bsdthread_info(self);
1848 struct _kqueue_scan * cont_args = &ut->uu_kevent.ss_kqueue_scan;
1849 struct kqueue *kq = (struct kqueue *)data;
1850 int error;
1851 int count;
1852
1853 /* convert the (previous) wait_result to a proper error */
1854 switch (wait_result) {
1855 case THREAD_AWAKENED:
1856 kqlock(kq);
1857 error = kqueue_process(kq, cont_args->call, cont_args, &count, current_proc());
1858 if (error == 0 && count == 0) {
1859 wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, KQ_EVENT,
1860 THREAD_ABORTSAFE, cont_args->deadline);
1861 kq->kq_state |= KQ_SLEEP;
1862 kqunlock(kq);
1863 thread_block_parameter(kqueue_scan_continue, kq);
1864 /* NOTREACHED */
1865 }
1866 kqunlock(kq);
1867 break;
1868 case THREAD_TIMED_OUT:
1869 error = EWOULDBLOCK;
1870 break;
1871 case THREAD_INTERRUPTED:
1872 error = EINTR;
1873 break;
1874 default:
1875 panic("kevent_scan_cont() - invalid wait_result (%d)", wait_result);
1876 error = 0;
1877 }
1878
1879 /* call the continuation with the results */
1880 assert(cont_args->cont != NULL);
1881 (cont_args->cont)(kq, cont_args->data, error);
1882 }
1883
1884
1885 /*
1886 * kqueue_scan - scan and wait for events in a kqueue
1887 *
1888 * Process the triggered events in a kqueue.
1889 *
1890 * If there are no events triggered arrange to
1891 * wait for them. If the caller provided a
1892 * continuation routine, then kevent_scan will
1893 * also.
1894 *
1895 * The callback routine must be valid.
1896 * The caller must hold a use-count reference on the kq.
1897 */
1898
1899 int
1900 kqueue_scan(struct kqueue *kq,
1901 kevent_callback_t callback,
1902 kqueue_continue_t continuation,
1903 void *data,
1904 struct timeval *atvp,
1905 struct proc *p)
1906 {
1907 thread_continue_t cont = THREAD_CONTINUE_NULL;
1908 uint64_t deadline;
1909 int error;
1910 int first;
1911
1912 assert(callback != NULL);
1913
1914 first = 1;
1915 for (;;) {
1916 wait_result_t wait_result;
1917 int count;
1918
1919 /*
1920 * Make a pass through the kq to find events already
1921 * triggered.
1922 */
1923 kqlock(kq);
1924 error = kqueue_process(kq, callback, data, &count, p);
1925 if (error || count)
1926 break; /* lock still held */
1927
1928 /* looks like we have to consider blocking */
1929 if (first) {
1930 first = 0;
1931 /* convert the timeout to a deadline once */
1932 if (atvp->tv_sec || atvp->tv_usec) {
1933 uint64_t now;
1934
1935 clock_get_uptime(&now);
1936 nanoseconds_to_absolutetime((uint64_t)atvp->tv_sec * NSEC_PER_SEC +
1937 atvp->tv_usec * NSEC_PER_USEC,
1938 &deadline);
1939 if (now >= deadline) {
1940 /* non-blocking call */
1941 error = EWOULDBLOCK;
1942 break; /* lock still held */
1943 }
1944 deadline -= now;
1945 clock_absolutetime_interval_to_deadline(deadline, &deadline);
1946 } else {
1947 deadline = 0; /* block forever */
1948 }
1949
1950 if (continuation) {
1951 uthread_t ut = (uthread_t)get_bsdthread_info(current_thread());
1952 struct _kqueue_scan *cont_args = &ut->uu_kevent.ss_kqueue_scan;
1953
1954 cont_args->call = callback;
1955 cont_args->cont = continuation;
1956 cont_args->deadline = deadline;
1957 cont_args->data = data;
1958 cont = kqueue_scan_continue;
1959 }
1960 }
1961
1962 /* go ahead and wait */
1963 wait_queue_assert_wait((wait_queue_t)kq->kq_wqs, KQ_EVENT, THREAD_ABORTSAFE, deadline);
1964 kq->kq_state |= KQ_SLEEP;
1965 kqunlock(kq);
1966 wait_result = thread_block_parameter(cont, kq);
1967 /* NOTREACHED if (continuation != NULL) */
1968
1969 switch (wait_result) {
1970 case THREAD_AWAKENED:
1971 continue;
1972 case THREAD_TIMED_OUT:
1973 return EWOULDBLOCK;
1974 case THREAD_INTERRUPTED:
1975 return EINTR;
1976 default:
1977 panic("kevent_scan - bad wait_result (%d)",
1978 wait_result);
1979 error = 0;
1980 }
1981 }
1982 kqunlock(kq);
1983 return error;
1984 }
1985
1986
1987 /*
1988 * XXX
1989 * This could be expanded to call kqueue_scan, if desired.
1990 */
1991 /*ARGSUSED*/
1992 static int
1993 kqueue_read(__unused struct fileproc *fp,
1994 __unused struct uio *uio,
1995 __unused int flags,
1996 __unused vfs_context_t ctx)
1997 {
1998 return (ENXIO);
1999 }
2000
2001 /*ARGSUSED*/
2002 static int
2003 kqueue_write(__unused struct fileproc *fp,
2004 __unused struct uio *uio,
2005 __unused int flags,
2006 __unused vfs_context_t ctx)
2007 {
2008 return (ENXIO);
2009 }
2010
2011 /*ARGSUSED*/
2012 static int
2013 kqueue_ioctl(__unused struct fileproc *fp,
2014 __unused u_long com,
2015 __unused caddr_t data,
2016 __unused vfs_context_t ctx)
2017 {
2018 return (ENOTTY);
2019 }
2020
2021 /*ARGSUSED*/
2022 static int
2023 kqueue_select(struct fileproc *fp, int which, void *wql, __unused vfs_context_t ctx)
2024 {
2025 struct kqueue *kq = (struct kqueue *)fp->f_data;
2026 int again;
2027
2028 if (which != FREAD)
2029 return 0;
2030
2031 kqlock(kq);
2032 /*
2033 * If this is the first pass, link the wait queue associated with the
2034 * the kqueue onto the wait queue set for the select(). Normally we
2035 * use selrecord() for this, but it uses the wait queue within the
2036 * selinfo structure and we need to use the main one for the kqueue to
2037 * catch events from KN_STAYQUEUED sources. So we do the linkage manually.
2038 * (The select() call will unlink them when it ends).
2039 */
2040 if (wql != NULL) {
2041 thread_t cur_act = current_thread();
2042 struct uthread * ut = get_bsdthread_info(cur_act);
2043
2044 kq->kq_state |= KQ_SEL;
2045 wait_queue_link_noalloc((wait_queue_t)kq->kq_wqs, ut->uu_wqset,
2046 (wait_queue_link_t)wql);
2047 }
2048
2049 retry:
2050 again = 0;
2051 if (kq->kq_count != 0) {
2052 struct knote *kn;
2053
2054 /*
2055 * there is something queued - but it might be a
2056 * KN_STAYQUEUED knote, which may or may not have
2057 * any events pending. So, we have to walk the
2058 * list of knotes to see, and peek at the stay-
2059 * queued ones to be really sure.
2060 */
2061 TAILQ_FOREACH(kn, &kq->kq_head, kn_tqe) {
2062 int retnum = 0;
2063 if ((kn->kn_status & KN_STAYQUEUED) == 0 ||
2064 (retnum = kn->kn_fop->f_peek(kn)) > 0) {
2065 kqunlock(kq);
2066 return 1;
2067 }
2068 if (retnum < 0)
2069 again++;
2070 }
2071 }
2072
2073 /*
2074 * If we stumbled across a knote that couldn't be peeked at,
2075 * we have to drop the kq lock and try again.
2076 */
2077 if (again > 0) {
2078 kqunlock(kq);
2079 mutex_pause(0);
2080 kqlock(kq);
2081 goto retry;
2082 }
2083
2084 kqunlock(kq);
2085 return 0;
2086 }
2087
2088 /*
2089 * kqueue_close -
2090 */
2091 /*ARGSUSED*/
2092 static int
2093 kqueue_close(struct fileglob *fg, __unused vfs_context_t ctx)
2094 {
2095 struct kqueue *kq = (struct kqueue *)fg->fg_data;
2096
2097 kqueue_dealloc(kq);
2098 fg->fg_data = NULL;
2099 return (0);
2100 }
2101
2102 /*ARGSUSED*/
2103 /*
2104 * The callers has taken a use-count reference on this kqueue and will donate it
2105 * to the kqueue we are being added to. This keeps the kqueue from closing until
2106 * that relationship is torn down.
2107 */
2108 static int
2109 kqueue_kqfilter(__unused struct fileproc *fp, struct knote *kn, __unused vfs_context_t ctx)
2110 {
2111 struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
2112 struct kqueue *parentkq = kn->kn_kq;
2113
2114 if (parentkq == kq ||
2115 kn->kn_filter != EVFILT_READ)
2116 return (1);
2117
2118 /*
2119 * We have to avoid creating a cycle when nesting kqueues
2120 * inside another. Rather than trying to walk the whole
2121 * potential DAG of nested kqueues, we just use a simple
2122 * ceiling protocol. When a kqueue is inserted into another,
2123 * we check that the (future) parent is not already nested
2124 * into another kqueue at a lower level than the potenial
2125 * child (because it could indicate a cycle). If that test
2126 * passes, we just mark the nesting levels accordingly.
2127 */
2128
2129 kqlock(parentkq);
2130 if (parentkq->kq_level > 0 &&
2131 parentkq->kq_level < kq->kq_level)
2132 {
2133 kqunlock(parentkq);
2134 return (1);
2135 } else {
2136 /* set parent level appropriately */
2137 if (parentkq->kq_level == 0)
2138 parentkq->kq_level = 2;
2139 if (parentkq->kq_level < kq->kq_level + 1)
2140 parentkq->kq_level = kq->kq_level + 1;
2141 kqunlock(parentkq);
2142
2143 kn->kn_fop = &kqread_filtops;
2144 kqlock(kq);
2145 KNOTE_ATTACH(&kq->kq_sel.si_note, kn);
2146 /* indicate nesting in child, if needed */
2147 if (kq->kq_level == 0)
2148 kq->kq_level = 1;
2149 kqunlock(kq);
2150 return (0);
2151 }
2152 }
2153
2154 /*
2155 * kqueue_drain - called when kq is closed
2156 */
2157 /*ARGSUSED*/
2158 static int
2159 kqueue_drain(struct fileproc *fp, __unused vfs_context_t ctx)
2160 {
2161 struct kqueue *kq = (struct kqueue *)fp->f_fglob->fg_data;
2162 kqlock(kq);
2163 kqueue_wakeup(kq, 1);
2164 kqunlock(kq);
2165 return 0;
2166 }
2167
2168 /*ARGSUSED*/
2169 int
2170 kqueue_stat(struct fileproc *fp, void *ub, int isstat64, __unused vfs_context_t ctx)
2171 {
2172
2173 struct kqueue *kq = (struct kqueue *)fp->f_data;
2174 if (isstat64 != 0) {
2175 struct stat64 *sb64 = (struct stat64 *)ub;
2176
2177 bzero((void *)sb64, sizeof(*sb64));
2178 sb64->st_size = kq->kq_count;
2179 if (kq->kq_state & KQ_KEV64)
2180 sb64->st_blksize = sizeof(struct kevent64_s);
2181 else
2182 sb64->st_blksize = sizeof(struct kevent);
2183 sb64->st_mode = S_IFIFO;
2184 } else {
2185 struct stat *sb = (struct stat *)ub;
2186
2187 bzero((void *)sb, sizeof(*sb));
2188 sb->st_size = kq->kq_count;
2189 if (kq->kq_state & KQ_KEV64)
2190 sb->st_blksize = sizeof(struct kevent64_s);
2191 else
2192 sb->st_blksize = sizeof(struct kevent);
2193 sb->st_mode = S_IFIFO;
2194 }
2195
2196 return (0);
2197 }
2198
2199 /*
2200 * Called with the kqueue locked
2201 */
2202 static void
2203 kqueue_wakeup(struct kqueue *kq, int closed)
2204 {
2205 if ((kq->kq_state & (KQ_SLEEP | KQ_SEL)) != 0 || kq->kq_nprocess > 0) {
2206 kq->kq_state &= ~(KQ_SLEEP | KQ_SEL);
2207 wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, KQ_EVENT,
2208 (closed) ? THREAD_INTERRUPTED : THREAD_AWAKENED);
2209 }
2210 }
2211
2212 void
2213 klist_init(struct klist *list)
2214 {
2215 SLIST_INIT(list);
2216 }
2217
2218
2219 /*
2220 * Query/Post each knote in the object's list
2221 *
2222 * The object lock protects the list. It is assumed
2223 * that the filter/event routine for the object can
2224 * determine that the object is already locked (via
2225 * the hint) and not deadlock itself.
2226 *
2227 * The object lock should also hold off pending
2228 * detach/drop operations. But we'll prevent it here
2229 * too - just in case.
2230 */
2231 void
2232 knote(struct klist *list, long hint)
2233 {
2234 struct knote *kn;
2235
2236 SLIST_FOREACH(kn, list, kn_selnext) {
2237 struct kqueue *kq = kn->kn_kq;
2238
2239 kqlock(kq);
2240 if (kqlock2knoteuse(kq, kn)) {
2241 int result;
2242
2243 /* call the event with only a use count */
2244 result = kn->kn_fop->f_event(kn, hint);
2245
2246 /* if its not going away and triggered */
2247 if (knoteuse2kqlock(kq, kn) && result)
2248 knote_activate(kn, 1);
2249 /* lock held again */
2250 }
2251 kqunlock(kq);
2252 }
2253 }
2254
2255 /*
2256 * attach a knote to the specified list. Return true if this is the first entry.
2257 * The list is protected by whatever lock the object it is associated with uses.
2258 */
2259 int
2260 knote_attach(struct klist *list, struct knote *kn)
2261 {
2262 int ret = SLIST_EMPTY(list);
2263 SLIST_INSERT_HEAD(list, kn, kn_selnext);
2264 return ret;
2265 }
2266
2267 /*
2268 * detach a knote from the specified list. Return true if that was the last entry.
2269 * The list is protected by whatever lock the object it is associated with uses.
2270 */
2271 int
2272 knote_detach(struct klist *list, struct knote *kn)
2273 {
2274 SLIST_REMOVE(list, kn, knote, kn_selnext);
2275 return SLIST_EMPTY(list);
2276 }
2277
2278 /*
2279 * For a given knote, link a provided wait queue directly with the kqueue.
2280 * Wakeups will happen via recursive wait queue support. But nothing will move
2281 * the knote to the active list at wakeup (nothing calls knote()). Instead,
2282 * we permanently enqueue them here.
2283 *
2284 * kqueue and knote references are held by caller.
2285 */
2286 int
2287 knote_link_wait_queue(struct knote *kn, struct wait_queue *wq)
2288 {
2289 struct kqueue *kq = kn->kn_kq;
2290 kern_return_t kr;
2291
2292 kr = wait_queue_link(wq, kq->kq_wqs);
2293 if (kr == KERN_SUCCESS) {
2294 kqlock(kq);
2295 kn->kn_status |= KN_STAYQUEUED;
2296 knote_enqueue(kn);
2297 kqunlock(kq);
2298 return 0;
2299 } else {
2300 return ENOMEM;
2301 }
2302 }
2303
2304 /*
2305 * Unlink the provided wait queue from the kqueue associated with a knote.
2306 * Also remove it from the magic list of directly attached knotes.
2307 *
2308 * Note that the unlink may have already happened from the other side, so
2309 * ignore any failures to unlink and just remove it from the kqueue list.
2310 */
2311 void
2312 knote_unlink_wait_queue(struct knote *kn, struct wait_queue *wq)
2313 {
2314 struct kqueue *kq = kn->kn_kq;
2315
2316 (void) wait_queue_unlink(wq, kq->kq_wqs);
2317 kqlock(kq);
2318 kn->kn_status &= ~KN_STAYQUEUED;
2319 knote_dequeue(kn);
2320 kqunlock(kq);
2321 }
2322
2323 /*
2324 * remove all knotes referencing a specified fd
2325 *
2326 * Essentially an inlined knote_remove & knote_drop
2327 * when we know for sure that the thing is a file
2328 *
2329 * Entered with the proc_fd lock already held.
2330 * It returns the same way, but may drop it temporarily.
2331 */
2332 void
2333 knote_fdclose(struct proc *p, int fd)
2334 {
2335 struct filedesc *fdp = p->p_fd;
2336 struct klist *list;
2337 struct knote *kn;
2338
2339 list = &fdp->fd_knlist[fd];
2340 while ((kn = SLIST_FIRST(list)) != NULL) {
2341 struct kqueue *kq = kn->kn_kq;
2342
2343 if (kq->kq_p != p)
2344 panic("knote_fdclose: proc mismatch (kq->kq_p=%p != p=%p)", kq->kq_p, p);
2345
2346 kqlock(kq);
2347 proc_fdunlock(p);
2348
2349 /*
2350 * Convert the lock to a drop ref.
2351 * If we get it, go ahead and drop it.
2352 * Otherwise, we waited for it to
2353 * be dropped by the other guy, so
2354 * it is safe to move on in the list.
2355 */
2356 if (kqlock2knotedrop(kq, kn)) {
2357 kn->kn_fop->f_detach(kn);
2358 knote_drop(kn, p);
2359 }
2360
2361 proc_fdlock(p);
2362
2363 /* the fd tables may have changed - start over */
2364 list = &fdp->fd_knlist[fd];
2365 }
2366 }
2367
2368 /* proc_fdlock held on entry (and exit) */
2369 static int
2370 knote_fdpattach(struct knote *kn, struct filedesc *fdp, __unused struct proc *p)
2371 {
2372 struct klist *list = NULL;
2373
2374 if (! kn->kn_fop->f_isfd) {
2375 if (fdp->fd_knhashmask == 0)
2376 fdp->fd_knhash = hashinit(CONFIG_KN_HASHSIZE, M_KQUEUE,
2377 &fdp->fd_knhashmask);
2378 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
2379 } else {
2380 if ((u_int)fdp->fd_knlistsize <= kn->kn_id) {
2381 u_int size = 0;
2382
2383 /* have to grow the fd_knlist */
2384 size = fdp->fd_knlistsize;
2385 while (size <= kn->kn_id)
2386 size += KQEXTENT;
2387 MALLOC(list, struct klist *,
2388 size * sizeof(struct klist *), M_KQUEUE, M_WAITOK);
2389 if (list == NULL)
2390 return (ENOMEM);
2391
2392 bcopy((caddr_t)fdp->fd_knlist, (caddr_t)list,
2393 fdp->fd_knlistsize * sizeof(struct klist *));
2394 bzero((caddr_t)list +
2395 fdp->fd_knlistsize * sizeof(struct klist *),
2396 (size - fdp->fd_knlistsize) * sizeof(struct klist *));
2397 FREE(fdp->fd_knlist, M_KQUEUE);
2398 fdp->fd_knlist = list;
2399 fdp->fd_knlistsize = size;
2400 }
2401 list = &fdp->fd_knlist[kn->kn_id];
2402 }
2403 SLIST_INSERT_HEAD(list, kn, kn_link);
2404 return (0);
2405 }
2406
2407
2408
2409 /*
2410 * should be called at spl == 0, since we don't want to hold spl
2411 * while calling fdrop and free.
2412 */
2413 static void
2414 knote_drop(struct knote *kn, __unused struct proc *ctxp)
2415 {
2416 struct kqueue *kq = kn->kn_kq;
2417 struct proc *p = kq->kq_p;
2418 struct filedesc *fdp = p->p_fd;
2419 struct klist *list;
2420 int needswakeup;
2421
2422 proc_fdlock(p);
2423 if (kn->kn_fop->f_isfd)
2424 list = &fdp->fd_knlist[kn->kn_id];
2425 else
2426 list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
2427
2428 SLIST_REMOVE(list, kn, knote, kn_link);
2429 kqlock(kq);
2430 knote_dequeue(kn);
2431 needswakeup = (kn->kn_status & KN_USEWAIT);
2432 kqunlock(kq);
2433 proc_fdunlock(p);
2434
2435 if (needswakeup)
2436 wait_queue_wakeup_all((wait_queue_t)kq->kq_wqs, &kn->kn_status, THREAD_AWAKENED);
2437
2438 if (kn->kn_fop->f_isfd)
2439 fp_drop(p, kn->kn_id, kn->kn_fp, 0);
2440
2441 knote_free(kn);
2442 }
2443
2444 /* called with kqueue lock held */
2445 static void
2446 knote_activate(struct knote *kn, int propagate)
2447 {
2448 struct kqueue *kq = kn->kn_kq;
2449
2450 kn->kn_status |= KN_ACTIVE;
2451 knote_enqueue(kn);
2452 kqueue_wakeup(kq, 0);
2453
2454 /* this is a real event: wake up the parent kq, too */
2455 if (propagate)
2456 KNOTE(&kq->kq_sel.si_note, 0);
2457 }
2458
2459 /* called with kqueue lock held */
2460 static void
2461 knote_deactivate(struct knote *kn)
2462 {
2463 kn->kn_status &= ~KN_ACTIVE;
2464 knote_dequeue(kn);
2465 }
2466
2467 /* called with kqueue lock held */
2468 static void
2469 knote_enqueue(struct knote *kn)
2470 {
2471 if ((kn->kn_status & (KN_QUEUED | KN_STAYQUEUED)) == KN_STAYQUEUED ||
2472 (kn->kn_status & (KN_QUEUED | KN_STAYQUEUED | KN_DISABLED)) == 0) {
2473 struct kqtailq *tq = kn->kn_tq;
2474 struct kqueue *kq = kn->kn_kq;
2475
2476 TAILQ_INSERT_TAIL(tq, kn, kn_tqe);
2477 kn->kn_status |= KN_QUEUED;
2478 kq->kq_count++;
2479 }
2480 }
2481
2482 /* called with kqueue lock held */
2483 static void
2484 knote_dequeue(struct knote *kn)
2485 {
2486 struct kqueue *kq = kn->kn_kq;
2487
2488 if ((kn->kn_status & (KN_QUEUED | KN_STAYQUEUED)) == KN_QUEUED) {
2489 struct kqtailq *tq = kn->kn_tq;
2490
2491 TAILQ_REMOVE(tq, kn, kn_tqe);
2492 kn->kn_tq = &kq->kq_head;
2493 kn->kn_status &= ~KN_QUEUED;
2494 kq->kq_count--;
2495 }
2496 }
2497
2498 void
2499 knote_init(void)
2500 {
2501 knote_zone = zinit(sizeof(struct knote), 8192*sizeof(struct knote), 8192, "knote zone");
2502
2503 /* allocate kq lock group attribute and group */
2504 kq_lck_grp_attr= lck_grp_attr_alloc_init();
2505
2506 kq_lck_grp = lck_grp_alloc_init("kqueue", kq_lck_grp_attr);
2507
2508 /* Allocate kq lock attribute */
2509 kq_lck_attr = lck_attr_alloc_init();
2510
2511 /* Initialize the timer filter lock */
2512 lck_mtx_init(&_filt_timerlock, kq_lck_grp, kq_lck_attr);
2513 }
2514 SYSINIT(knote, SI_SUB_PSEUDO, SI_ORDER_ANY, knote_init, NULL)
2515
2516 static struct knote *
2517 knote_alloc(void)
2518 {
2519 return ((struct knote *)zalloc(knote_zone));
2520 }
2521
2522 static void
2523 knote_free(struct knote *kn)
2524 {
2525 zfree(knote_zone, kn);
2526 }
2527
2528 #if SOCKETS
2529 #include <sys/param.h>
2530 #include <sys/socket.h>
2531 #include <sys/protosw.h>
2532 #include <sys/domain.h>
2533 #include <sys/mbuf.h>
2534 #include <sys/kern_event.h>
2535 #include <sys/malloc.h>
2536 #include <sys/sys_domain.h>
2537 #include <sys/syslog.h>
2538
2539
2540 static int kev_attach(struct socket *so, int proto, struct proc *p);
2541 static int kev_detach(struct socket *so);
2542 static int kev_control(struct socket *so, u_long cmd, caddr_t data, struct ifnet *ifp, struct proc *p);
2543
2544 struct pr_usrreqs event_usrreqs = {
2545 pru_abort_notsupp, pru_accept_notsupp, kev_attach, pru_bind_notsupp, pru_connect_notsupp,
2546 pru_connect2_notsupp, kev_control, kev_detach, pru_disconnect_notsupp,
2547 pru_listen_notsupp, pru_peeraddr_notsupp, pru_rcvd_notsupp, pru_rcvoob_notsupp,
2548 pru_send_notsupp, pru_sense_null, pru_shutdown_notsupp, pru_sockaddr_notsupp,
2549 pru_sosend_notsupp, soreceive, pru_sopoll_notsupp
2550 };
2551
2552 struct protosw eventsw[] = {
2553 {
2554 .pr_type = SOCK_RAW,
2555 .pr_domain = &systemdomain,
2556 .pr_protocol = SYSPROTO_EVENT,
2557 .pr_flags = PR_ATOMIC,
2558 .pr_usrreqs = &event_usrreqs,
2559 }
2560 };
2561
2562 static
2563 struct kern_event_head kern_event_head;
2564
2565 static u_int32_t static_event_id = 0;
2566 struct domain *sysdom = &systemdomain;
2567 static lck_mtx_t *sys_mtx;
2568
2569 /*
2570 * Install the protosw's for the NKE manager. Invoked at
2571 * extension load time
2572 */
2573 int
2574 kern_event_init(void)
2575 {
2576 int retval;
2577
2578 if ((retval = net_add_proto(eventsw, &systemdomain)) != 0) {
2579 log(LOG_WARNING, "Can't install kernel events protocol (%d)\n", retval);
2580 return(retval);
2581 }
2582
2583 /*
2584 * Use the domain mutex for all system event sockets
2585 */
2586 sys_mtx = sysdom->dom_mtx;
2587
2588 return(KERN_SUCCESS);
2589 }
2590
2591 static int
2592 kev_attach(struct socket *so, __unused int proto, __unused struct proc *p)
2593 {
2594 int error;
2595 struct kern_event_pcb *ev_pcb;
2596
2597 error = soreserve(so, KEV_SNDSPACE, KEV_RECVSPACE);
2598 if (error)
2599 return error;
2600
2601 MALLOC(ev_pcb, struct kern_event_pcb *, sizeof(struct kern_event_pcb), M_PCB, M_WAITOK);
2602 if (ev_pcb == 0)
2603 return ENOBUFS;
2604
2605 ev_pcb->ev_socket = so;
2606 ev_pcb->vendor_code_filter = 0xffffffff;
2607
2608 so->so_pcb = (caddr_t) ev_pcb;
2609 lck_mtx_lock(sys_mtx);
2610 LIST_INSERT_HEAD(&kern_event_head, ev_pcb, ev_link);
2611 lck_mtx_unlock(sys_mtx);
2612
2613 return 0;
2614 }
2615
2616
2617 static int
2618 kev_detach(struct socket *so)
2619 {
2620 struct kern_event_pcb *ev_pcb = (struct kern_event_pcb *) so->so_pcb;
2621
2622 if (ev_pcb != 0) {
2623 LIST_REMOVE(ev_pcb, ev_link);
2624 FREE(ev_pcb, M_PCB);
2625 so->so_pcb = 0;
2626 so->so_flags |= SOF_PCBCLEARING;
2627 }
2628
2629 return 0;
2630 }
2631
2632 /*
2633 * For now, kev_vendor_code and mbuf_tags use the same
2634 * mechanism.
2635 */
2636
2637 errno_t kev_vendor_code_find(
2638 const char *string,
2639 u_int32_t *out_vendor_code)
2640 {
2641 if (strlen(string) >= KEV_VENDOR_CODE_MAX_STR_LEN) {
2642 return EINVAL;
2643 }
2644 return net_str_id_find_internal(string, out_vendor_code, NSI_VENDOR_CODE, 1);
2645 }
2646
2647 errno_t kev_msg_post(struct kev_msg *event_msg)
2648 {
2649 mbuf_tag_id_t min_vendor, max_vendor;
2650
2651 net_str_id_first_last(&min_vendor, &max_vendor, NSI_VENDOR_CODE);
2652
2653 if (event_msg == NULL)
2654 return EINVAL;
2655
2656 /* Limit third parties to posting events for registered vendor codes only */
2657 if (event_msg->vendor_code < min_vendor ||
2658 event_msg->vendor_code > max_vendor)
2659 {
2660 return EINVAL;
2661 }
2662
2663 return kev_post_msg(event_msg);
2664 }
2665
2666
2667 int kev_post_msg(struct kev_msg *event_msg)
2668 {
2669 struct mbuf *m, *m2;
2670 struct kern_event_pcb *ev_pcb;
2671 struct kern_event_msg *ev;
2672 char *tmp;
2673 u_int32_t total_size;
2674 int i;
2675
2676 /* Verify the message is small enough to fit in one mbuf w/o cluster */
2677 total_size = KEV_MSG_HEADER_SIZE;
2678
2679 for (i = 0; i < 5; i++) {
2680 if (event_msg->dv[i].data_length == 0)
2681 break;
2682 total_size += event_msg->dv[i].data_length;
2683 }
2684
2685 if (total_size > MLEN) {
2686 return EMSGSIZE;
2687 }
2688
2689 m = m_get(M_DONTWAIT, MT_DATA);
2690 if (m == 0)
2691 return ENOBUFS;
2692
2693 ev = mtod(m, struct kern_event_msg *);
2694 total_size = KEV_MSG_HEADER_SIZE;
2695
2696 tmp = (char *) &ev->event_data[0];
2697 for (i = 0; i < 5; i++) {
2698 if (event_msg->dv[i].data_length == 0)
2699 break;
2700
2701 total_size += event_msg->dv[i].data_length;
2702 bcopy(event_msg->dv[i].data_ptr, tmp,
2703 event_msg->dv[i].data_length);
2704 tmp += event_msg->dv[i].data_length;
2705 }
2706
2707 ev->id = ++static_event_id;
2708 ev->total_size = total_size;
2709 ev->vendor_code = event_msg->vendor_code;
2710 ev->kev_class = event_msg->kev_class;
2711 ev->kev_subclass = event_msg->kev_subclass;
2712 ev->event_code = event_msg->event_code;
2713
2714 m->m_len = total_size;
2715 lck_mtx_lock(sys_mtx);
2716 for (ev_pcb = LIST_FIRST(&kern_event_head);
2717 ev_pcb;
2718 ev_pcb = LIST_NEXT(ev_pcb, ev_link)) {
2719
2720 if (ev_pcb->vendor_code_filter != KEV_ANY_VENDOR) {
2721 if (ev_pcb->vendor_code_filter != ev->vendor_code)
2722 continue;
2723
2724 if (ev_pcb->class_filter != KEV_ANY_CLASS) {
2725 if (ev_pcb->class_filter != ev->kev_class)
2726 continue;
2727
2728 if ((ev_pcb->subclass_filter != KEV_ANY_SUBCLASS) &&
2729 (ev_pcb->subclass_filter != ev->kev_subclass))
2730 continue;
2731 }
2732 }
2733
2734 m2 = m_copym(m, 0, m->m_len, M_NOWAIT);
2735 if (m2 == 0) {
2736 m_free(m);
2737 lck_mtx_unlock(sys_mtx);
2738 return ENOBUFS;
2739 }
2740 /* the socket is already locked because we hold the sys_mtx here */
2741 if (sbappendrecord(&ev_pcb->ev_socket->so_rcv, m2))
2742 sorwakeup(ev_pcb->ev_socket);
2743 }
2744
2745 m_free(m);
2746 lck_mtx_unlock(sys_mtx);
2747 return 0;
2748 }
2749
2750 static int
2751 kev_control(struct socket *so,
2752 u_long cmd,
2753 caddr_t data,
2754 __unused struct ifnet *ifp,
2755 __unused struct proc *p)
2756 {
2757 struct kev_request *kev_req = (struct kev_request *) data;
2758 struct kern_event_pcb *ev_pcb;
2759 struct kev_vendor_code *kev_vendor;
2760 u_int32_t *id_value = (u_int32_t *) data;
2761
2762
2763 switch (cmd) {
2764
2765 case SIOCGKEVID:
2766 *id_value = static_event_id;
2767 break;
2768
2769 case SIOCSKEVFILT:
2770 ev_pcb = (struct kern_event_pcb *) so->so_pcb;
2771 ev_pcb->vendor_code_filter = kev_req->vendor_code;
2772 ev_pcb->class_filter = kev_req->kev_class;
2773 ev_pcb->subclass_filter = kev_req->kev_subclass;
2774 break;
2775
2776 case SIOCGKEVFILT:
2777 ev_pcb = (struct kern_event_pcb *) so->so_pcb;
2778 kev_req->vendor_code = ev_pcb->vendor_code_filter;
2779 kev_req->kev_class = ev_pcb->class_filter;
2780 kev_req->kev_subclass = ev_pcb->subclass_filter;
2781 break;
2782
2783 case SIOCGKEVVENDOR:
2784 kev_vendor = (struct kev_vendor_code*)data;
2785
2786 /* Make sure string is NULL terminated */
2787 kev_vendor->vendor_string[KEV_VENDOR_CODE_MAX_STR_LEN-1] = 0;
2788
2789 return net_str_id_find_internal(kev_vendor->vendor_string,
2790 &kev_vendor->vendor_code, NSI_VENDOR_CODE, 0);
2791
2792 default:
2793 return ENOTSUP;
2794 }
2795
2796 return 0;
2797 }
2798
2799 #endif /* SOCKETS */
2800
2801
2802 int
2803 fill_kqueueinfo(struct kqueue *kq, struct kqueue_info * kinfo)
2804 {
2805 struct vinfo_stat * st;
2806
2807 /* No need for the funnel as fd is kept alive */
2808
2809 st = &kinfo->kq_stat;
2810
2811 st->vst_size = kq->kq_count;
2812 if (kq->kq_state & KQ_KEV64)
2813 st->vst_blksize = sizeof(struct kevent64_s);
2814 else
2815 st->vst_blksize = sizeof(struct kevent);
2816 st->vst_mode = S_IFIFO;
2817 if (kq->kq_state & KQ_SEL)
2818 kinfo->kq_state |= PROC_KQUEUE_SELECT;
2819 if (kq->kq_state & KQ_SLEEP)
2820 kinfo->kq_state |= PROC_KQUEUE_SLEEP;
2821
2822 return(0);
2823 }
2824