2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
31 * All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
42 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * @(#)kern_event.c 1.0 (3/31/2000)
59 #include <sys/param.h>
60 #include <sys/systm.h>
61 #include <sys/filedesc.h>
62 #include <sys/kernel.h>
63 #include <sys/proc_internal.h>
64 #include <sys/kauth.h>
65 #include <sys/malloc.h>
66 #include <sys/unistd.h>
67 #include <sys/file_internal.h>
68 #include <sys/fcntl.h>
69 #include <sys/select.h>
70 #include <sys/queue.h>
71 #include <sys/event.h>
72 #include <sys/eventvar.h>
73 #include <sys/protosw.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
77 #include <sys/sysctl.h>
79 #include <sys/sysproto.h>
81 #include <sys/vnode_internal.h>
83 #include <sys/proc_info.h>
85 #include <kern/lock.h>
86 #include <kern/clock.h>
87 #include <kern/thread_call.h>
88 #include <kern/sched_prim.h>
89 #include <kern/zalloc.h>
90 #include <kern/assert.h>
92 #include <libkern/libkern.h>
93 #include "net/net_str_id.h"
95 MALLOC_DEFINE(M_KQUEUE
, "kqueue", "memory for kqueue system");
99 static inline void kqlock(struct kqueue
*kq
);
100 static inline void kqunlock(struct kqueue
*kq
);
102 static int kqlock2knoteuse(struct kqueue
*kq
, struct knote
*kn
);
103 static int kqlock2knoteusewait(struct kqueue
*kq
, struct knote
*kn
);
104 static int kqlock2knotedrop(struct kqueue
*kq
, struct knote
*kn
);
105 static int knoteuse2kqlock(struct kqueue
*kq
, struct knote
*kn
);
107 static void kqueue_wakeup(struct kqueue
*kq
, int closed
);
108 static int kqueue_read(struct fileproc
*fp
, struct uio
*uio
,
109 int flags
, vfs_context_t ctx
);
110 static int kqueue_write(struct fileproc
*fp
, struct uio
*uio
,
111 int flags
, vfs_context_t ctx
);
112 static int kqueue_ioctl(struct fileproc
*fp
, u_long com
, caddr_t data
,
114 static int kqueue_select(struct fileproc
*fp
, int which
, void *wql
,
116 static int kqueue_close(struct fileglob
*fg
, vfs_context_t ctx
);
117 static int kqueue_kqfilter(struct fileproc
*fp
, struct knote
*kn
, vfs_context_t ctx
);
118 static int kqueue_drain(struct fileproc
*fp
, vfs_context_t ctx
);
119 extern int kqueue_stat(struct fileproc
*fp
, void *ub
, int isstat64
, vfs_context_t ctx
);
121 static struct fileops kqueueops
= {
122 .fo_read
= kqueue_read
,
123 .fo_write
= kqueue_write
,
124 .fo_ioctl
= kqueue_ioctl
,
125 .fo_select
= kqueue_select
,
126 .fo_close
= kqueue_close
,
127 .fo_kqfilter
= kqueue_kqfilter
,
128 .fo_drain
= kqueue_drain
,
131 static int kevent_internal(struct proc
*p
, int iskev64
, user_addr_t changelist
,
132 int nchanges
, user_addr_t eventlist
, int nevents
, int fd
,
133 user_addr_t utimeout
, unsigned int flags
, int32_t *retval
);
134 static int kevent_copyin(user_addr_t
*addrp
, struct kevent64_s
*kevp
, struct proc
*p
, int iskev64
);
135 static int kevent_copyout(struct kevent64_s
*kevp
, user_addr_t
*addrp
, struct proc
*p
, int iskev64
);
136 char * kevent_description(struct kevent64_s
*kevp
, char *s
, size_t n
);
138 static int kevent_callback(struct kqueue
*kq
, struct kevent64_s
*kevp
, void *data
);
139 static void kevent_continue(struct kqueue
*kq
, void *data
, int error
);
140 static void kqueue_scan_continue(void *contp
, wait_result_t wait_result
);
141 static int kqueue_process(struct kqueue
*kq
, kevent_callback_t callback
,
142 void *data
, int *countp
, struct proc
*p
);
143 static int knote_process(struct knote
*kn
, kevent_callback_t callback
,
144 void *data
, struct kqtailq
*inprocessp
, struct proc
*p
);
145 static void knote_put(struct knote
*kn
);
146 static int knote_fdpattach(struct knote
*kn
, struct filedesc
*fdp
, struct proc
*p
);
147 static void knote_drop(struct knote
*kn
, struct proc
*p
);
148 static void knote_activate(struct knote
*kn
, int);
149 static void knote_deactivate(struct knote
*kn
);
150 static void knote_enqueue(struct knote
*kn
);
151 static void knote_dequeue(struct knote
*kn
);
152 static struct knote
*knote_alloc(void);
153 static void knote_free(struct knote
*kn
);
155 static int filt_fileattach(struct knote
*kn
);
156 static struct filterops file_filtops
= {
158 .f_attach
= filt_fileattach
,
161 static void filt_kqdetach(struct knote
*kn
);
162 static int filt_kqueue(struct knote
*kn
, long hint
);
163 static struct filterops kqread_filtops
= {
165 .f_detach
= filt_kqdetach
,
166 .f_event
= filt_kqueue
,
170 * placeholder for not-yet-implemented filters
172 static int filt_badattach(struct knote
*kn
);
173 static struct filterops bad_filtops
= {
174 .f_attach
= filt_badattach
,
177 static int filt_procattach(struct knote
*kn
);
178 static void filt_procdetach(struct knote
*kn
);
179 static int filt_proc(struct knote
*kn
, long hint
);
180 static struct filterops proc_filtops
= {
181 .f_attach
= filt_procattach
,
182 .f_detach
= filt_procdetach
,
183 .f_event
= filt_proc
,
186 extern struct filterops fs_filtops
;
188 extern struct filterops sig_filtops
;
191 static int filt_timerattach(struct knote
*kn
);
192 static void filt_timerdetach(struct knote
*kn
);
193 static int filt_timer(struct knote
*kn
, long hint
);
194 static void filt_timertouch(struct knote
*kn
, struct kevent64_s
*kev
,
196 static struct filterops timer_filtops
= {
197 .f_attach
= filt_timerattach
,
198 .f_detach
= filt_timerdetach
,
199 .f_event
= filt_timer
,
200 .f_touch
= filt_timertouch
,
205 static void filt_timerexpire(void *knx
, void *param1
);
206 static int filt_timervalidate(struct knote
*kn
);
207 static void filt_timerupdate(struct knote
*kn
);
208 static void filt_timercancel(struct knote
*kn
);
210 #define TIMER_RUNNING 0x1
211 #define TIMER_CANCELWAIT 0x2
213 static lck_mtx_t _filt_timerlock
;
214 static void filt_timerlock(void);
215 static void filt_timerunlock(void);
217 static zone_t knote_zone
;
219 #define KN_HASH(val, mask) (((val) ^ (val >> 8)) & (mask))
222 extern struct filterops aio_filtops
;
225 /* Mach portset filter */
226 extern struct filterops machport_filtops
;
229 static int filt_userattach(struct knote
*kn
);
230 static void filt_userdetach(struct knote
*kn
);
231 static int filt_user(struct knote
*kn
, long hint
);
232 static void filt_usertouch(struct knote
*kn
, struct kevent64_s
*kev
,
234 static struct filterops user_filtops
= {
235 .f_attach
= filt_userattach
,
236 .f_detach
= filt_userdetach
,
237 .f_event
= filt_user
,
238 .f_touch
= filt_usertouch
,
242 /* Audit session filter */
243 extern struct filterops audit_session_filtops
;
247 * Table for for all system-defined filters.
249 static struct filterops
*sysfilt_ops
[] = {
250 &file_filtops
, /* EVFILT_READ */
251 &file_filtops
, /* EVFILT_WRITE */
253 &aio_filtops
, /* EVFILT_AIO */
255 &bad_filtops
, /* EVFILT_AIO */
257 &file_filtops
, /* EVFILT_VNODE */
258 &proc_filtops
, /* EVFILT_PROC */
259 &sig_filtops
, /* EVFILT_SIGNAL */
260 &timer_filtops
, /* EVFILT_TIMER */
261 &machport_filtops
, /* EVFILT_MACHPORT */
262 &fs_filtops
, /* EVFILT_FS */
263 &user_filtops
, /* EVFILT_USER */
265 &audit_session_filtops
, /* EVFILT_SESSION */
272 * kqueue/note lock attributes and implementations
274 * kqueues have locks, while knotes have use counts
275 * Most of the knote state is guarded by the object lock.
276 * the knote "inuse" count and status use the kqueue lock.
278 lck_grp_attr_t
* kq_lck_grp_attr
;
279 lck_grp_t
* kq_lck_grp
;
280 lck_attr_t
* kq_lck_attr
;
283 kqlock(struct kqueue
*kq
)
285 lck_spin_lock(&kq
->kq_lock
);
289 kqunlock(struct kqueue
*kq
)
291 lck_spin_unlock(&kq
->kq_lock
);
295 * Convert a kq lock to a knote use referece.
297 * If the knote is being dropped, we can't get
298 * a use reference, so just return with it
301 * - kq locked at entry
302 * - unlock on exit if we get the use reference
305 kqlock2knoteuse(struct kqueue
*kq
, struct knote
*kn
)
307 if (kn
->kn_status
& KN_DROPPING
)
315 * Convert a kq lock to a knote use referece,
316 * but wait for attach and drop events to complete.
318 * If the knote is being dropped, we can't get
319 * a use reference, so just return with it
322 * - kq locked at entry
323 * - kq always unlocked on exit
326 kqlock2knoteusewait(struct kqueue
*kq
, struct knote
*kn
)
328 if ((kn
->kn_status
& (KN_DROPPING
| KN_ATTACHING
)) != 0) {
329 kn
->kn_status
|= KN_USEWAIT
;
330 wait_queue_assert_wait((wait_queue_t
)kq
->kq_wqs
, &kn
->kn_status
, THREAD_UNINT
, 0);
332 thread_block(THREAD_CONTINUE_NULL
);
342 * Convert from a knote use reference back to kq lock.
344 * Drop a use reference and wake any waiters if
345 * this is the last one.
347 * The exit return indicates if the knote is
348 * still alive - but the kqueue lock is taken
352 knoteuse2kqlock(struct kqueue
*kq
, struct knote
*kn
)
355 if (--kn
->kn_inuse
== 0) {
356 if ((kn
->kn_status
& KN_ATTACHING
) != 0) {
357 kn
->kn_status
&= ~KN_ATTACHING
;
359 if ((kn
->kn_status
& KN_USEWAIT
) != 0) {
360 kn
->kn_status
&= ~KN_USEWAIT
;
361 wait_queue_wakeup_all((wait_queue_t
)kq
->kq_wqs
, &kn
->kn_status
, THREAD_AWAKENED
);
364 return ((kn
->kn_status
& KN_DROPPING
) == 0);
368 * Convert a kq lock to a knote drop referece.
370 * If the knote is in use, wait for the use count
371 * to subside. We first mark our intention to drop
372 * it - keeping other users from "piling on."
373 * If we are too late, we have to wait for the
374 * other drop to complete.
376 * - kq locked at entry
377 * - always unlocked on exit.
378 * - caller can't hold any locks that would prevent
379 * the other dropper from completing.
382 kqlock2knotedrop(struct kqueue
*kq
, struct knote
*kn
)
386 oktodrop
= ((kn
->kn_status
& (KN_DROPPING
| KN_ATTACHING
)) == 0);
387 kn
->kn_status
|= KN_DROPPING
;
389 if (kn
->kn_inuse
== 0) {
394 kn
->kn_status
|= KN_USEWAIT
;
395 wait_queue_assert_wait((wait_queue_t
)kq
->kq_wqs
, &kn
->kn_status
, THREAD_UNINT
, 0);
397 thread_block(THREAD_CONTINUE_NULL
);
402 * Release a knote use count reference.
405 knote_put(struct knote
*kn
)
407 struct kqueue
*kq
= kn
->kn_kq
;
410 if (--kn
->kn_inuse
== 0) {
411 if ((kn
->kn_status
& KN_USEWAIT
) != 0) {
412 kn
->kn_status
&= ~KN_USEWAIT
;
413 wait_queue_wakeup_all((wait_queue_t
)kq
->kq_wqs
, &kn
->kn_status
, THREAD_AWAKENED
);
420 filt_fileattach(struct knote
*kn
)
423 return (fo_kqfilter(kn
->kn_fp
, kn
, vfs_context_current()));
426 #define f_flag f_fglob->fg_flag
427 #define f_type f_fglob->fg_type
428 #define f_msgcount f_fglob->fg_msgcount
429 #define f_cred f_fglob->fg_cred
430 #define f_ops f_fglob->fg_ops
431 #define f_offset f_fglob->fg_offset
432 #define f_data f_fglob->fg_data
435 filt_kqdetach(struct knote
*kn
)
437 struct kqueue
*kq
= (struct kqueue
*)kn
->kn_fp
->f_data
;
440 KNOTE_DETACH(&kq
->kq_sel
.si_note
, kn
);
446 filt_kqueue(struct knote
*kn
, __unused
long hint
)
448 struct kqueue
*kq
= (struct kqueue
*)kn
->kn_fp
->f_data
;
450 kn
->kn_data
= kq
->kq_count
;
451 return (kn
->kn_data
> 0);
455 filt_procattach(struct knote
*kn
)
459 assert(PID_MAX
< NOTE_PDATAMASK
);
461 if ((kn
->kn_sfflags
& (NOTE_TRACK
| NOTE_TRACKERR
| NOTE_CHILD
)) != 0)
464 p
= proc_find(kn
->kn_id
);
471 kn
->kn_flags
|= EV_CLEAR
; /* automatically set */
472 kn
->kn_ptr
.p_proc
= p
; /* store the proc handle */
474 KNOTE_ATTACH(&p
->p_klist
, kn
);
484 * The knote may be attached to a different process, which may exit,
485 * leaving nothing for the knote to be attached to. In that case,
486 * the pointer to the process will have already been nulled out.
489 filt_procdetach(struct knote
*kn
)
495 p
= kn
->kn_ptr
.p_proc
;
496 if (p
!= PROC_NULL
) {
497 kn
->kn_ptr
.p_proc
= PROC_NULL
;
498 KNOTE_DETACH(&p
->p_klist
, kn
);
505 filt_proc(struct knote
*kn
, long hint
)
507 /* hint is 0 when called from above */
511 /* ALWAYS CALLED WITH proc_klist_lock when (hint != 0) */
514 * mask off extra data
516 event
= (u_int
)hint
& NOTE_PCTRLMASK
;
519 * if the user is interested in this event, record it.
521 if (kn
->kn_sfflags
& event
)
522 kn
->kn_fflags
|= event
;
524 if (event
== NOTE_REAP
|| (event
== NOTE_EXIT
&& !(kn
->kn_sfflags
& NOTE_REAP
))) {
525 kn
->kn_flags
|= (EV_EOF
| EV_ONESHOT
);
529 /* atomic check, no locking need when called from above */
530 return (kn
->kn_fflags
!= 0);
535 * filt_timervalidate - process data from user
537 * Converts to either interval or deadline format.
539 * The saved-data field in the knote contains the
540 * time value. The saved filter-flags indicates
541 * the unit of measurement.
543 * After validation, either the saved-data field
544 * contains the interval in absolute time, or ext[0]
545 * contains the expected deadline. If that deadline
546 * is in the past, ext[0] is 0.
548 * Returns EINVAL for unrecognized units of time.
550 * Timer filter lock is held.
554 filt_timervalidate(struct knote
*kn
)
559 switch (kn
->kn_sfflags
& (NOTE_SECONDS
|NOTE_USECONDS
|NOTE_NSECONDS
)) {
561 multiplier
= NSEC_PER_SEC
;
564 multiplier
= NSEC_PER_USEC
;
569 case 0: /* milliseconds (default) */
570 multiplier
= NSEC_PER_SEC
/ 1000;
576 nanoseconds_to_absolutetime((uint64_t)kn
->kn_sdata
* multiplier
, &raw
);
581 if (kn
->kn_sfflags
& NOTE_ABSOLUTE
) {
583 clock_nsec_t nanoseconds
;
586 clock_get_calendar_nanotime(&seconds
, &nanoseconds
);
587 nanoseconds_to_absolutetime((uint64_t)seconds
* NSEC_PER_SEC
+
591 /* time has already passed */
595 clock_absolutetime_interval_to_deadline(raw
,
606 * filt_timerupdate - compute the next deadline
608 * Repeating timers store their interval in kn_sdata. Absolute
609 * timers have already calculated the deadline, stored in ext[0].
611 * On return, the next deadline (or zero if no deadline is needed)
612 * is stored in kn_ext[0].
614 * Timer filter lock is held.
617 filt_timerupdate(struct knote
*kn
)
619 /* if there's no interval, deadline is just in kn_ext[0] */
620 if (kn
->kn_sdata
== 0)
623 /* if timer hasn't fired before, fire in interval nsecs */
624 if (kn
->kn_ext
[0] == 0) {
625 clock_absolutetime_interval_to_deadline(kn
->kn_sdata
,
629 * If timer has fired before, schedule the next pop
630 * relative to the last intended deadline.
632 * We could check for whether the deadline has expired,
633 * but the thread call layer can handle that.
635 kn
->kn_ext
[0] += kn
->kn_sdata
;
640 * filt_timerexpire - the timer callout routine
642 * Just propagate the timer event into the knote
643 * filter routine (by going through the knote
644 * synchronization point). Pass a hint to
645 * indicate this is a real event, not just a
649 filt_timerexpire(void *knx
, __unused
void *spare
)
651 struct klist timer_list
;
652 struct knote
*kn
= knx
;
656 kn
->kn_hookid
&= ~TIMER_RUNNING
;
658 /* no "object" for timers, so fake a list */
659 SLIST_INIT(&timer_list
);
660 SLIST_INSERT_HEAD(&timer_list
, kn
, kn_selnext
);
661 KNOTE(&timer_list
, 1);
663 /* if someone is waiting for timer to pop */
664 if (kn
->kn_hookid
& TIMER_CANCELWAIT
) {
665 struct kqueue
*kq
= kn
->kn_kq
;
666 wait_queue_wakeup_all((wait_queue_t
)kq
->kq_wqs
, &kn
->kn_hook
,
674 * Cancel a running timer (or wait for the pop).
675 * Timer filter lock is held.
678 filt_timercancel(struct knote
*kn
)
680 struct kqueue
*kq
= kn
->kn_kq
;
681 thread_call_t callout
= kn
->kn_hook
;
684 if (kn
->kn_hookid
& TIMER_RUNNING
) {
685 /* cancel the callout if we can */
686 cancelled
= thread_call_cancel(callout
);
688 kn
->kn_hookid
&= ~TIMER_RUNNING
;
690 /* we have to wait for the expire routine. */
691 kn
->kn_hookid
|= TIMER_CANCELWAIT
;
692 wait_queue_assert_wait((wait_queue_t
)kq
->kq_wqs
,
693 &kn
->kn_hook
, THREAD_UNINT
, 0);
695 thread_block(THREAD_CONTINUE_NULL
);
697 assert((kn
->kn_hookid
& TIMER_RUNNING
) == 0);
703 * Allocate a thread call for the knote's lifetime, and kick off the timer.
706 filt_timerattach(struct knote
*kn
)
708 thread_call_t callout
;
711 callout
= thread_call_allocate(filt_timerexpire
, kn
);
716 error
= filt_timervalidate(kn
);
722 kn
->kn_hook
= (void*)callout
;
725 /* absolute=EV_ONESHOT */
726 if (kn
->kn_sfflags
& NOTE_ABSOLUTE
)
727 kn
->kn_flags
|= EV_ONESHOT
;
729 filt_timerupdate(kn
);
731 kn
->kn_flags
|= EV_CLEAR
;
732 thread_call_enter_delayed(callout
, kn
->kn_ext
[0]);
733 kn
->kn_hookid
|= TIMER_RUNNING
;
744 * Shut down the timer if it's running, and free the callout.
747 filt_timerdetach(struct knote
*kn
)
749 thread_call_t callout
;
753 callout
= (thread_call_t
)kn
->kn_hook
;
754 filt_timercancel(kn
);
758 thread_call_free(callout
);
764 filt_timer(struct knote
*kn
, long hint
)
769 /* real timer pop -- timer lock held by filt_timerexpire */
773 if (((kn
->kn_hookid
& TIMER_CANCELWAIT
) == 0) &&
774 ((kn
->kn_flags
& EV_ONESHOT
) == 0)) {
776 /* evaluate next time to fire */
777 filt_timerupdate(kn
);
780 /* keep the callout and re-arm */
781 thread_call_enter_delayed(kn
->kn_hook
,
783 kn
->kn_hookid
|= TIMER_RUNNING
;
793 result
= (kn
->kn_data
!= 0);
801 * filt_timertouch - update knote with new user input
803 * Cancel and restart the timer based on new user data. When
804 * the user picks up a knote, clear the count of how many timer
805 * pops have gone off (in kn_data).
808 filt_timertouch(struct knote
*kn
, struct kevent64_s
*kev
, long type
)
815 /* cancel current call */
816 filt_timercancel(kn
);
818 /* recalculate deadline */
819 kn
->kn_sdata
= kev
->data
;
820 kn
->kn_sfflags
= kev
->fflags
;
822 error
= filt_timervalidate(kn
);
824 /* no way to report error, so mark it in the knote */
825 kn
->kn_flags
|= EV_ERROR
;
830 /* start timer if necessary */
831 filt_timerupdate(kn
);
833 thread_call_enter_delayed(kn
->kn_hook
, kn
->kn_ext
[0]);
834 kn
->kn_hookid
|= TIMER_RUNNING
;
836 /* pretend the timer has fired */
843 /* reset the timer pop count in kn_data */
844 *kev
= kn
->kn_kevent
;
847 if (kn
->kn_flags
& EV_CLEAR
)
851 panic("filt_timertouch() - invalid type (%ld)", type
);
861 lck_mtx_lock(&_filt_timerlock
);
865 filt_timerunlock(void)
867 lck_mtx_unlock(&_filt_timerlock
);
871 filt_userattach(struct knote
*kn
)
873 /* EVFILT_USER knotes are not attached to anything in the kernel */
875 if (kn
->kn_fflags
& NOTE_TRIGGER
|| kn
->kn_flags
& EV_TRIGGER
) {
884 filt_userdetach(__unused
struct knote
*kn
)
886 /* EVFILT_USER knotes are not attached to anything in the kernel */
890 filt_user(struct knote
*kn
, __unused
long hint
)
892 return kn
->kn_hookid
;
896 filt_usertouch(struct knote
*kn
, struct kevent64_s
*kev
, long type
)
901 if (kev
->fflags
& NOTE_TRIGGER
|| kev
->flags
& EV_TRIGGER
) {
905 ffctrl
= kev
->fflags
& NOTE_FFCTRLMASK
;
906 kev
->fflags
&= NOTE_FFLAGSMASK
;
911 OSBitAndAtomic(kev
->fflags
, &kn
->kn_sfflags
);
914 OSBitOrAtomic(kev
->fflags
, &kn
->kn_sfflags
);
917 kn
->kn_sfflags
= kev
->fflags
;
920 kn
->kn_sdata
= kev
->data
;
923 *kev
= kn
->kn_kevent
;
924 kev
->fflags
= (volatile UInt32
)kn
->kn_sfflags
;
925 kev
->data
= kn
->kn_sdata
;
926 if (kn
->kn_flags
& EV_CLEAR
) {
933 panic("filt_usertouch() - invalid type (%ld)", type
);
939 * JMM - placeholder for not-yet-implemented filters
942 filt_badattach(__unused
struct knote
*kn
)
949 kqueue_alloc(struct proc
*p
)
951 struct filedesc
*fdp
= p
->p_fd
;
954 MALLOC_ZONE(kq
, struct kqueue
*, sizeof(struct kqueue
), M_KQUEUE
, M_WAITOK
);
956 wait_queue_set_t wqs
;
958 wqs
= wait_queue_set_alloc(SYNC_POLICY_FIFO
| SYNC_POLICY_PREPOST
);
960 bzero(kq
, sizeof(struct kqueue
));
961 lck_spin_init(&kq
->kq_lock
, kq_lck_grp
, kq_lck_attr
);
962 TAILQ_INIT(&kq
->kq_head
);
966 FREE_ZONE(kq
, sizeof(struct kqueue
), M_KQUEUE
);
970 if (fdp
->fd_knlistsize
< 0) {
972 if (fdp
->fd_knlistsize
< 0)
973 fdp
->fd_knlistsize
= 0; /* this process has had a kq */
982 * kqueue_dealloc - detach all knotes from a kqueue and free it
984 * We walk each list looking for knotes referencing this
985 * this kqueue. If we find one, we try to drop it. But
986 * if we fail to get a drop reference, that will wait
987 * until it is dropped. So, we can just restart again
988 * safe in the assumption that the list will eventually
989 * not contain any more references to this kqueue (either
990 * we dropped them all, or someone else did).
992 * Assumes no new events are being added to the kqueue.
993 * Nothing locked on entry or exit.
996 kqueue_dealloc(struct kqueue
*kq
)
998 struct proc
*p
= kq
->kq_p
;
999 struct filedesc
*fdp
= p
->p_fd
;
1004 for (i
= 0; i
< fdp
->fd_knlistsize
; i
++) {
1005 kn
= SLIST_FIRST(&fdp
->fd_knlist
[i
]);
1006 while (kn
!= NULL
) {
1007 if (kq
== kn
->kn_kq
) {
1010 /* drop it ourselves or wait */
1011 if (kqlock2knotedrop(kq
, kn
)) {
1012 kn
->kn_fop
->f_detach(kn
);
1016 /* start over at beginning of list */
1017 kn
= SLIST_FIRST(&fdp
->fd_knlist
[i
]);
1020 kn
= SLIST_NEXT(kn
, kn_link
);
1023 if (fdp
->fd_knhashmask
!= 0) {
1024 for (i
= 0; i
< (int)fdp
->fd_knhashmask
+ 1; i
++) {
1025 kn
= SLIST_FIRST(&fdp
->fd_knhash
[i
]);
1026 while (kn
!= NULL
) {
1027 if (kq
== kn
->kn_kq
) {
1030 /* drop it ourselves or wait */
1031 if (kqlock2knotedrop(kq
, kn
)) {
1032 kn
->kn_fop
->f_detach(kn
);
1036 /* start over at beginning of list */
1037 kn
= SLIST_FIRST(&fdp
->fd_knhash
[i
]);
1040 kn
= SLIST_NEXT(kn
, kn_link
);
1047 * before freeing the wait queue set for this kqueue,
1048 * make sure it is unlinked from all its containing (select) sets.
1050 wait_queue_unlink_all((wait_queue_t
)kq
->kq_wqs
);
1051 wait_queue_set_free(kq
->kq_wqs
);
1052 lck_spin_destroy(&kq
->kq_lock
, kq_lck_grp
);
1053 FREE_ZONE(kq
, sizeof(struct kqueue
), M_KQUEUE
);
1057 kqueue(struct proc
*p
, __unused
struct kqueue_args
*uap
, int32_t *retval
)
1060 struct fileproc
*fp
;
1063 error
= falloc(p
, &fp
, &fd
, vfs_context_current());
1068 kq
= kqueue_alloc(p
);
1074 fp
->f_flag
= FREAD
| FWRITE
;
1075 fp
->f_type
= DTYPE_KQUEUE
;
1076 fp
->f_ops
= &kqueueops
;
1077 fp
->f_data
= (caddr_t
)kq
;
1080 procfdtbl_releasefd(p
, fd
, NULL
);
1081 fp_drop(p
, fd
, fp
, 1);
1089 kevent_copyin(user_addr_t
*addrp
, struct kevent64_s
*kevp
, struct proc
*p
, int iskev64
)
1095 advance
= sizeof(struct kevent64_s
);
1096 error
= copyin(*addrp
, (caddr_t
)kevp
, advance
);
1097 } else if (IS_64BIT_PROCESS(p
)) {
1098 struct user64_kevent kev64
;
1099 bzero(kevp
, sizeof(struct kevent64_s
));
1101 advance
= sizeof(kev64
);
1102 error
= copyin(*addrp
, (caddr_t
)&kev64
, advance
);
1105 kevp
->ident
= kev64
.ident
;
1106 kevp
->filter
= kev64
.filter
;
1107 kevp
->flags
= kev64
.flags
;
1108 kevp
->fflags
= kev64
.fflags
;
1109 kevp
->data
= kev64
.data
;
1110 kevp
->udata
= kev64
.udata
;
1112 struct user32_kevent kev32
;
1113 bzero(kevp
, sizeof(struct kevent64_s
));
1115 advance
= sizeof(kev32
);
1116 error
= copyin(*addrp
, (caddr_t
)&kev32
, advance
);
1119 kevp
->ident
= (uintptr_t)kev32
.ident
;
1120 kevp
->filter
= kev32
.filter
;
1121 kevp
->flags
= kev32
.flags
;
1122 kevp
->fflags
= kev32
.fflags
;
1123 kevp
->data
= (intptr_t)kev32
.data
;
1124 kevp
->udata
= CAST_USER_ADDR_T(kev32
.udata
);
1132 kevent_copyout(struct kevent64_s
*kevp
, user_addr_t
*addrp
, struct proc
*p
, int iskev64
)
1138 advance
= sizeof(struct kevent64_s
);
1139 error
= copyout((caddr_t
)kevp
, *addrp
, advance
);
1140 } else if (IS_64BIT_PROCESS(p
)) {
1141 struct user64_kevent kev64
;
1144 * deal with the special case of a user-supplied
1145 * value of (uintptr_t)-1.
1147 kev64
.ident
= (kevp
->ident
== (uintptr_t)-1) ?
1148 (uint64_t)-1LL : (uint64_t)kevp
->ident
;
1150 kev64
.filter
= kevp
->filter
;
1151 kev64
.flags
= kevp
->flags
;
1152 kev64
.fflags
= kevp
->fflags
;
1153 kev64
.data
= (int64_t) kevp
->data
;
1154 kev64
.udata
= kevp
->udata
;
1155 advance
= sizeof(kev64
);
1156 error
= copyout((caddr_t
)&kev64
, *addrp
, advance
);
1158 struct user32_kevent kev32
;
1160 kev32
.ident
= (uint32_t)kevp
->ident
;
1161 kev32
.filter
= kevp
->filter
;
1162 kev32
.flags
= kevp
->flags
;
1163 kev32
.fflags
= kevp
->fflags
;
1164 kev32
.data
= (int32_t)kevp
->data
;
1165 kev32
.udata
= kevp
->udata
;
1166 advance
= sizeof(kev32
);
1167 error
= copyout((caddr_t
)&kev32
, *addrp
, advance
);
1175 * kevent_continue - continue a kevent syscall after blocking
1177 * assume we inherit a use count on the kq fileglob.
1181 kevent_continue(__unused
struct kqueue
*kq
, void *data
, int error
)
1183 struct _kevent
*cont_args
;
1184 struct fileproc
*fp
;
1188 struct proc
*p
= current_proc();
1190 cont_args
= (struct _kevent
*)data
;
1191 noutputs
= cont_args
->eventout
;
1192 retval
= cont_args
->retval
;
1196 fp_drop(p
, fd
, fp
, 0);
1198 /* don't restart after signals... */
1199 if (error
== ERESTART
)
1201 else if (error
== EWOULDBLOCK
)
1205 unix_syscall_return(error
);
1209 * kevent - [syscall] register and wait for kernel events
1213 kevent(struct proc
*p
, struct kevent_args
*uap
, int32_t *retval
)
1215 return kevent_internal(p
,
1223 0, /* no flags from old kevent() call */
1228 kevent64(struct proc
*p
, struct kevent64_args
*uap
, int32_t *retval
)
1230 return kevent_internal(p
,
1243 kevent_internal(struct proc
*p
, int iskev64
, user_addr_t changelist
,
1244 int nchanges
, user_addr_t ueventlist
, int nevents
, int fd
,
1245 user_addr_t utimeout
, __unused
unsigned int flags
,
1248 struct _kevent
*cont_args
;
1251 struct fileproc
*fp
;
1252 struct kevent64_s kev
;
1253 int error
, noutputs
;
1256 /* convert timeout to absolute - if we have one */
1257 if (utimeout
!= USER_ADDR_NULL
) {
1259 if (IS_64BIT_PROCESS(p
)) {
1260 struct user64_timespec ts
;
1261 error
= copyin(utimeout
, &ts
, sizeof(ts
));
1262 if ((ts
.tv_sec
& 0xFFFFFFFF00000000ull
) != 0)
1265 TIMESPEC_TO_TIMEVAL(&rtv
, &ts
);
1267 struct user32_timespec ts
;
1268 error
= copyin(utimeout
, &ts
, sizeof(ts
));
1269 TIMESPEC_TO_TIMEVAL(&rtv
, &ts
);
1273 if (itimerfix(&rtv
))
1275 getmicrouptime(&atv
);
1276 timevaladd(&atv
, &rtv
);
1282 /* get a usecount for the kq itself */
1283 if ((error
= fp_getfkq(p
, fd
, &fp
, &kq
)) != 0)
1286 /* each kq should only be used for events of one type */
1288 if (kq
->kq_state
& (KQ_KEV32
| KQ_KEV64
)) {
1289 if (((iskev64
&& (kq
->kq_state
& KQ_KEV32
)) ||
1290 (!iskev64
&& (kq
->kq_state
& KQ_KEV64
)))) {
1296 kq
->kq_state
|= (iskev64
? KQ_KEV64
: KQ_KEV32
);
1300 /* register all the change requests the user provided... */
1302 while (nchanges
> 0 && error
== 0) {
1303 error
= kevent_copyin(&changelist
, &kev
, p
, iskev64
);
1307 kev
.flags
&= ~EV_SYSFLAGS
;
1308 error
= kevent_register(kq
, &kev
, p
);
1309 if ((error
|| (kev
.flags
& EV_RECEIPT
)) && nevents
> 0) {
1310 kev
.flags
= EV_ERROR
;
1312 error
= kevent_copyout(&kev
, &ueventlist
, p
, iskev64
);
1321 /* store the continuation/completion data in the uthread */
1322 ut
= (uthread_t
)get_bsdthread_info(current_thread());
1323 cont_args
= &ut
->uu_kevent
.ss_kevent
;
1326 cont_args
->retval
= retval
;
1327 cont_args
->eventlist
= ueventlist
;
1328 cont_args
->eventcount
= nevents
;
1329 cont_args
->eventout
= noutputs
;
1330 cont_args
->eventsize
= iskev64
;
1332 if (nevents
> 0 && noutputs
== 0 && error
== 0)
1333 error
= kqueue_scan(kq
, kevent_callback
,
1334 kevent_continue
, cont_args
,
1336 kevent_continue(kq
, cont_args
, error
);
1339 fp_drop(p
, fd
, fp
, 0);
1345 * kevent_callback - callback for each individual event
1347 * called with nothing locked
1348 * caller holds a reference on the kqueue
1352 kevent_callback(__unused
struct kqueue
*kq
, struct kevent64_s
*kevp
,
1355 struct _kevent
*cont_args
;
1359 cont_args
= (struct _kevent
*)data
;
1360 assert(cont_args
->eventout
< cont_args
->eventcount
);
1362 iskev64
= cont_args
->eventsize
;
1365 * Copy out the appropriate amount of event data for this user.
1367 error
= kevent_copyout(kevp
, &cont_args
->eventlist
, current_proc(), iskev64
);
1370 * If there isn't space for additional events, return
1371 * a harmless error to stop the processing here
1373 if (error
== 0 && ++cont_args
->eventout
== cont_args
->eventcount
)
1374 error
= EWOULDBLOCK
;
1379 * kevent_description - format a description of a kevent for diagnostic output
1381 * called with a 128-byte string buffer
1385 kevent_description(struct kevent64_s
*kevp
, char *s
, size_t n
)
1389 "{.ident=%#llx, .filter=%d, .flags=%#x, .fflags=%#x, .data=%#llx, .udata=%#llx, .ext[0]=%#llx, .ext[1]=%#llx}",
1402 * kevent_register - add a new event to a kqueue
1404 * Creates a mapping between the event source and
1405 * the kqueue via a knote data structure.
1407 * Because many/most the event sources are file
1408 * descriptor related, the knote is linked off
1409 * the filedescriptor table for quick access.
1411 * called with nothing locked
1412 * caller holds a reference on the kqueue
1416 kevent_register(struct kqueue
*kq
, struct kevent64_s
*kev
, __unused
struct proc
*ctxp
)
1418 struct proc
*p
= kq
->kq_p
;
1419 struct filedesc
*fdp
= p
->p_fd
;
1420 struct filterops
*fops
;
1421 struct fileproc
*fp
= NULL
;
1422 struct knote
*kn
= NULL
;
1425 if (kev
->filter
< 0) {
1426 if (kev
->filter
+ EVFILT_SYSCOUNT
< 0)
1428 fops
= sysfilt_ops
[~kev
->filter
]; /* to 0-base index */
1432 * filter attach routine is responsible for insuring that
1433 * the identifier can be attached to it.
1435 printf("unknown filter: %d\n", kev
->filter
);
1440 /* this iocount needs to be dropped if it is not registered */
1442 if (fops
->f_isfd
&& (error
= fp_lookup(p
, kev
->ident
, &fp
, 1)) != 0) {
1448 /* fd-based knotes are linked off the fd table */
1449 if (kev
->ident
< (u_int
)fdp
->fd_knlistsize
) {
1450 SLIST_FOREACH(kn
, &fdp
->fd_knlist
[kev
->ident
], kn_link
)
1451 if (kq
== kn
->kn_kq
&&
1452 kev
->filter
== kn
->kn_filter
)
1456 /* hash non-fd knotes here too */
1457 if (fdp
->fd_knhashmask
!= 0) {
1460 list
= &fdp
->fd_knhash
[
1461 KN_HASH((u_long
)kev
->ident
, fdp
->fd_knhashmask
)];
1462 SLIST_FOREACH(kn
, list
, kn_link
)
1463 if (kev
->ident
== kn
->kn_id
&&
1465 kev
->filter
== kn
->kn_filter
)
1471 * kn now contains the matching knote, or NULL if no match
1474 if ((kev
->flags
& (EV_ADD
|EV_DELETE
)) == EV_ADD
) {
1483 kn
->kn_tq
= &kq
->kq_head
;
1485 kn
->kn_sfflags
= kev
->fflags
;
1486 kn
->kn_sdata
= kev
->data
;
1489 kn
->kn_kevent
= *kev
;
1490 kn
->kn_inuse
= 1; /* for f_attach() */
1491 kn
->kn_status
= KN_ATTACHING
;
1493 /* before anyone can find it */
1494 if (kev
->flags
& EV_DISABLE
)
1495 kn
->kn_status
|= KN_DISABLED
;
1497 error
= knote_fdpattach(kn
, fdp
, p
);
1506 * apply reference count to knote structure, and
1507 * do not release it at the end of this routine.
1511 error
= fops
->f_attach(kn
);
1514 * Anyone trying to drop this knote will yield to
1515 * us, since KN_ATTACHING is set.
1518 if (error
!= 0 || (kn
->kn_status
& KN_DROPPING
)) {
1520 kn
->kn_fop
->f_detach(kn
);
1522 kn
->kn_status
|= KN_DROPPING
;
1527 kn
->kn_status
&= ~KN_ATTACHING
;
1535 /* existing knote - get kqueue lock */
1539 if (kev
->flags
& EV_DELETE
) {
1541 kn
->kn_status
|= KN_DISABLED
;
1542 if (kqlock2knotedrop(kq
, kn
)) {
1543 kn
->kn_fop
->f_detach(kn
);
1549 /* update status flags for existing knote */
1550 if (kev
->flags
& EV_DISABLE
) {
1552 kn
->kn_status
|= KN_DISABLED
;
1553 } else if (kev
->flags
& EV_ENABLE
) {
1554 kn
->kn_status
&= ~KN_DISABLED
;
1555 if (kn
->kn_status
& KN_ACTIVE
)
1560 * If somebody is in the middle of dropping this
1561 * knote - go find/insert a new one. But we have
1562 * wait for this one to go away first. Attaches
1563 * running in parallel may also drop/modify the
1564 * knote. Wait for those to complete as well and
1565 * then start over if we encounter one.
1567 if (!kqlock2knoteusewait(kq
, kn
)) {
1568 /* kqueue, proc_fdlock both unlocked */
1573 * The user may change some filter values after the
1574 * initial EV_ADD, but doing so will not reset any
1575 * filter which have already been triggered.
1577 kn
->kn_kevent
.udata
= kev
->udata
;
1578 if (!fops
->f_isfd
&& fops
->f_touch
!= NULL
)
1579 fops
->f_touch(kn
, kev
, EVENT_REGISTER
);
1581 kn
->kn_sfflags
= kev
->fflags
;
1582 kn
->kn_sdata
= kev
->data
;
1585 /* We may need to push some info down to a networked filesystem */
1586 if (kn
->kn_filter
== EVFILT_VNODE
) {
1587 vnode_knoteupdate(kn
);
1590 /* still have use ref on knote */
1593 * If the knote is not marked to always stay enqueued,
1594 * invoke the filter routine to see if it should be
1597 if ((kn
->kn_status
& KN_STAYQUEUED
) == 0 && kn
->kn_fop
->f_event(kn
, 0)) {
1598 if (knoteuse2kqlock(kq
, kn
))
1599 knote_activate(kn
, 1);
1607 fp_drop(p
, kev
->ident
, fp
, 0);
1613 * knote_process - process a triggered event
1615 * Validate that it is really still a triggered event
1616 * by calling the filter routines (if necessary). Hold
1617 * a use reference on the knote to avoid it being detached.
1618 * If it is still considered triggered, invoke the callback
1619 * routine provided and move it to the provided inprocess
1622 * caller holds a reference on the kqueue.
1623 * kqueue locked on entry and exit - but may be dropped
1626 knote_process(struct knote
*kn
,
1627 kevent_callback_t callback
,
1629 struct kqtailq
*inprocessp
,
1632 struct kqueue
*kq
= kn
->kn_kq
;
1633 struct kevent64_s kev
;
1639 * Determine the kevent state we want to return.
1641 * Some event states need to be revalidated before returning
1642 * them, others we take the snapshot at the time the event
1645 * Events with non-NULL f_touch operations must be touched.
1646 * Triggered events must fill in kev for the callback.
1648 * Convert our lock to a use-count and call the event's
1649 * filter routine(s) to update.
1651 if ((kn
->kn_status
& KN_DISABLED
) != 0) {
1658 revalidate
= ((kn
->kn_status
& KN_STAYQUEUED
) != 0 ||
1659 (kn
->kn_flags
& EV_ONESHOT
) == 0);
1660 touch
= (!kn
->kn_fop
->f_isfd
&& kn
->kn_fop
->f_touch
!= NULL
);
1662 if (revalidate
|| touch
) {
1664 knote_deactivate(kn
);
1666 /* call the filter/touch routines with just a ref */
1667 if (kqlock2knoteuse(kq
, kn
)) {
1669 /* if we have to revalidate, call the filter */
1671 result
= kn
->kn_fop
->f_event(kn
, 0);
1674 /* capture the kevent data - using touch if specified */
1677 kn
->kn_fop
->f_touch(kn
, &kev
, EVENT_PROCESS
);
1679 kev
= kn
->kn_kevent
;
1682 /* convert back to a kqlock - bail if the knote went away */
1683 if (!knoteuse2kqlock(kq
, kn
)) {
1685 } else if (result
) {
1686 /* if revalidated as alive, make sure it's active */
1687 if (!(kn
->kn_status
& KN_ACTIVE
)) {
1688 knote_activate(kn
, 0);
1690 } else if ((kn
->kn_status
& KN_STAYQUEUED
) == 0) {
1691 /* was already dequeued, so just bail on this one */
1698 kev
= kn
->kn_kevent
;
1702 /* move knote onto inprocess queue */
1703 assert(kn
->kn_tq
== &kq
->kq_head
);
1704 TAILQ_REMOVE(&kq
->kq_head
, kn
, kn_tqe
);
1705 kn
->kn_tq
= inprocessp
;
1706 TAILQ_INSERT_TAIL(inprocessp
, kn
, kn_tqe
);
1709 * Determine how to dispatch the knote for future event handling.
1710 * not-fired: just return (do not callout).
1711 * One-shot: deactivate it.
1712 * Clear: deactivate and clear the state.
1713 * Dispatch: don't clear state, just deactivate it and mark it disabled.
1714 * All others: just leave where they are.
1719 } else if (kn
->kn_flags
& EV_ONESHOT
) {
1720 knote_deactivate(kn
);
1721 if (kqlock2knotedrop(kq
, kn
)) {
1722 kn
->kn_fop
->f_detach(kn
);
1725 } else if (kn
->kn_flags
& (EV_CLEAR
| EV_DISPATCH
)) {
1726 knote_deactivate(kn
);
1727 /* manually clear knotes who weren't 'touch'ed */
1728 if ((touch
== 0) && (kn
->kn_flags
& EV_CLEAR
)) {
1732 if (kn
->kn_flags
& EV_DISPATCH
)
1733 kn
->kn_status
|= KN_DISABLED
;
1737 * leave on inprocess queue. We'll
1738 * move all the remaining ones back
1739 * the kq queue and wakeup any
1740 * waiters when we are done.
1745 /* callback to handle each event as we find it */
1746 error
= (callback
)(kq
, &kev
, data
);
1754 * kqueue_process - process the triggered events in a kqueue
1756 * Walk the queued knotes and validate that they are
1757 * really still triggered events by calling the filter
1758 * routines (if necessary). Hold a use reference on
1759 * the knote to avoid it being detached. For each event
1760 * that is still considered triggered, invoke the
1761 * callback routine provided.
1763 * caller holds a reference on the kqueue.
1764 * kqueue locked on entry and exit - but may be dropped
1765 * kqueue list locked (held for duration of call)
1769 kqueue_process(struct kqueue
*kq
,
1770 kevent_callback_t callback
,
1775 struct kqtailq inprocess
;
1780 TAILQ_INIT(&inprocess
);
1782 if (kq
->kq_count
== 0) {
1787 /* if someone else is processing the queue, wait */
1788 if (hw_atomic_add(&kq
->kq_nprocess
, 1) != 1) {
1789 hw_atomic_sub(&kq
->kq_nprocess
, 1);
1790 wait_queue_assert_wait((wait_queue_t
)kq
->kq_wqs
, &kq
->kq_nprocess
, THREAD_UNINT
, 0);
1791 kq
->kq_state
|= KQ_PROCWAIT
;
1793 thread_block(THREAD_CONTINUE_NULL
);
1799 * Clear any pre-posted status from previous runs, so we only
1800 * detect events that occur during this run.
1802 wait_queue_sub_clearrefs(kq
->kq_wqs
);
1805 * loop through the enqueued knotes, processing each one and
1806 * revalidating those that need it. As they are processed,
1807 * they get moved to the inprocess queue (so the loop can end).
1812 while (error
== 0 &&
1813 (kn
= TAILQ_FIRST(&kq
->kq_head
)) != NULL
) {
1814 error
= knote_process(kn
, callback
, data
, &inprocess
, p
);
1815 if (error
== EJUSTRETURN
)
1822 * With the kqueue still locked, move any knotes
1823 * remaining on the inprocess queue back to the
1824 * kq's queue and wake up any waiters.
1826 while ((kn
= TAILQ_FIRST(&inprocess
)) != NULL
) {
1827 assert(kn
->kn_tq
== &inprocess
);
1828 TAILQ_REMOVE(&inprocess
, kn
, kn_tqe
);
1829 kn
->kn_tq
= &kq
->kq_head
;
1830 TAILQ_INSERT_TAIL(&kq
->kq_head
, kn
, kn_tqe
);
1832 hw_atomic_sub(&kq
->kq_nprocess
, 1);
1833 if (kq
->kq_state
& KQ_PROCWAIT
) {
1834 kq
->kq_state
&= ~KQ_PROCWAIT
;
1835 wait_queue_wakeup_all((wait_queue_t
)kq
->kq_wqs
, &kq
->kq_nprocess
, THREAD_AWAKENED
);
1844 kqueue_scan_continue(void *data
, wait_result_t wait_result
)
1846 thread_t self
= current_thread();
1847 uthread_t ut
= (uthread_t
)get_bsdthread_info(self
);
1848 struct _kqueue_scan
* cont_args
= &ut
->uu_kevent
.ss_kqueue_scan
;
1849 struct kqueue
*kq
= (struct kqueue
*)data
;
1853 /* convert the (previous) wait_result to a proper error */
1854 switch (wait_result
) {
1855 case THREAD_AWAKENED
:
1857 error
= kqueue_process(kq
, cont_args
->call
, cont_args
, &count
, current_proc());
1858 if (error
== 0 && count
== 0) {
1859 wait_queue_assert_wait((wait_queue_t
)kq
->kq_wqs
, KQ_EVENT
,
1860 THREAD_ABORTSAFE
, cont_args
->deadline
);
1861 kq
->kq_state
|= KQ_SLEEP
;
1863 thread_block_parameter(kqueue_scan_continue
, kq
);
1868 case THREAD_TIMED_OUT
:
1869 error
= EWOULDBLOCK
;
1871 case THREAD_INTERRUPTED
:
1875 panic("kevent_scan_cont() - invalid wait_result (%d)", wait_result
);
1879 /* call the continuation with the results */
1880 assert(cont_args
->cont
!= NULL
);
1881 (cont_args
->cont
)(kq
, cont_args
->data
, error
);
1886 * kqueue_scan - scan and wait for events in a kqueue
1888 * Process the triggered events in a kqueue.
1890 * If there are no events triggered arrange to
1891 * wait for them. If the caller provided a
1892 * continuation routine, then kevent_scan will
1895 * The callback routine must be valid.
1896 * The caller must hold a use-count reference on the kq.
1900 kqueue_scan(struct kqueue
*kq
,
1901 kevent_callback_t callback
,
1902 kqueue_continue_t continuation
,
1904 struct timeval
*atvp
,
1907 thread_continue_t cont
= THREAD_CONTINUE_NULL
;
1912 assert(callback
!= NULL
);
1916 wait_result_t wait_result
;
1920 * Make a pass through the kq to find events already
1924 error
= kqueue_process(kq
, callback
, data
, &count
, p
);
1926 break; /* lock still held */
1928 /* looks like we have to consider blocking */
1931 /* convert the timeout to a deadline once */
1932 if (atvp
->tv_sec
|| atvp
->tv_usec
) {
1935 clock_get_uptime(&now
);
1936 nanoseconds_to_absolutetime((uint64_t)atvp
->tv_sec
* NSEC_PER_SEC
+
1937 atvp
->tv_usec
* NSEC_PER_USEC
,
1939 if (now
>= deadline
) {
1940 /* non-blocking call */
1941 error
= EWOULDBLOCK
;
1942 break; /* lock still held */
1945 clock_absolutetime_interval_to_deadline(deadline
, &deadline
);
1947 deadline
= 0; /* block forever */
1951 uthread_t ut
= (uthread_t
)get_bsdthread_info(current_thread());
1952 struct _kqueue_scan
*cont_args
= &ut
->uu_kevent
.ss_kqueue_scan
;
1954 cont_args
->call
= callback
;
1955 cont_args
->cont
= continuation
;
1956 cont_args
->deadline
= deadline
;
1957 cont_args
->data
= data
;
1958 cont
= kqueue_scan_continue
;
1962 /* go ahead and wait */
1963 wait_queue_assert_wait((wait_queue_t
)kq
->kq_wqs
, KQ_EVENT
, THREAD_ABORTSAFE
, deadline
);
1964 kq
->kq_state
|= KQ_SLEEP
;
1966 wait_result
= thread_block_parameter(cont
, kq
);
1967 /* NOTREACHED if (continuation != NULL) */
1969 switch (wait_result
) {
1970 case THREAD_AWAKENED
:
1972 case THREAD_TIMED_OUT
:
1974 case THREAD_INTERRUPTED
:
1977 panic("kevent_scan - bad wait_result (%d)",
1989 * This could be expanded to call kqueue_scan, if desired.
1993 kqueue_read(__unused
struct fileproc
*fp
,
1994 __unused
struct uio
*uio
,
1996 __unused vfs_context_t ctx
)
2003 kqueue_write(__unused
struct fileproc
*fp
,
2004 __unused
struct uio
*uio
,
2006 __unused vfs_context_t ctx
)
2013 kqueue_ioctl(__unused
struct fileproc
*fp
,
2014 __unused u_long com
,
2015 __unused caddr_t data
,
2016 __unused vfs_context_t ctx
)
2023 kqueue_select(struct fileproc
*fp
, int which
, void *wql
, __unused vfs_context_t ctx
)
2025 struct kqueue
*kq
= (struct kqueue
*)fp
->f_data
;
2033 * If this is the first pass, link the wait queue associated with the
2034 * the kqueue onto the wait queue set for the select(). Normally we
2035 * use selrecord() for this, but it uses the wait queue within the
2036 * selinfo structure and we need to use the main one for the kqueue to
2037 * catch events from KN_STAYQUEUED sources. So we do the linkage manually.
2038 * (The select() call will unlink them when it ends).
2041 thread_t cur_act
= current_thread();
2042 struct uthread
* ut
= get_bsdthread_info(cur_act
);
2044 kq
->kq_state
|= KQ_SEL
;
2045 wait_queue_link_noalloc((wait_queue_t
)kq
->kq_wqs
, ut
->uu_wqset
,
2046 (wait_queue_link_t
)wql
);
2051 if (kq
->kq_count
!= 0) {
2055 * there is something queued - but it might be a
2056 * KN_STAYQUEUED knote, which may or may not have
2057 * any events pending. So, we have to walk the
2058 * list of knotes to see, and peek at the stay-
2059 * queued ones to be really sure.
2061 TAILQ_FOREACH(kn
, &kq
->kq_head
, kn_tqe
) {
2063 if ((kn
->kn_status
& KN_STAYQUEUED
) == 0 ||
2064 (retnum
= kn
->kn_fop
->f_peek(kn
)) > 0) {
2074 * If we stumbled across a knote that couldn't be peeked at,
2075 * we have to drop the kq lock and try again.
2093 kqueue_close(struct fileglob
*fg
, __unused vfs_context_t ctx
)
2095 struct kqueue
*kq
= (struct kqueue
*)fg
->fg_data
;
2104 * The callers has taken a use-count reference on this kqueue and will donate it
2105 * to the kqueue we are being added to. This keeps the kqueue from closing until
2106 * that relationship is torn down.
2109 kqueue_kqfilter(__unused
struct fileproc
*fp
, struct knote
*kn
, __unused vfs_context_t ctx
)
2111 struct kqueue
*kq
= (struct kqueue
*)kn
->kn_fp
->f_data
;
2112 struct kqueue
*parentkq
= kn
->kn_kq
;
2114 if (parentkq
== kq
||
2115 kn
->kn_filter
!= EVFILT_READ
)
2119 * We have to avoid creating a cycle when nesting kqueues
2120 * inside another. Rather than trying to walk the whole
2121 * potential DAG of nested kqueues, we just use a simple
2122 * ceiling protocol. When a kqueue is inserted into another,
2123 * we check that the (future) parent is not already nested
2124 * into another kqueue at a lower level than the potenial
2125 * child (because it could indicate a cycle). If that test
2126 * passes, we just mark the nesting levels accordingly.
2130 if (parentkq
->kq_level
> 0 &&
2131 parentkq
->kq_level
< kq
->kq_level
)
2136 /* set parent level appropriately */
2137 if (parentkq
->kq_level
== 0)
2138 parentkq
->kq_level
= 2;
2139 if (parentkq
->kq_level
< kq
->kq_level
+ 1)
2140 parentkq
->kq_level
= kq
->kq_level
+ 1;
2143 kn
->kn_fop
= &kqread_filtops
;
2145 KNOTE_ATTACH(&kq
->kq_sel
.si_note
, kn
);
2146 /* indicate nesting in child, if needed */
2147 if (kq
->kq_level
== 0)
2155 * kqueue_drain - called when kq is closed
2159 kqueue_drain(struct fileproc
*fp
, __unused vfs_context_t ctx
)
2161 struct kqueue
*kq
= (struct kqueue
*)fp
->f_fglob
->fg_data
;
2163 kqueue_wakeup(kq
, 1);
2170 kqueue_stat(struct fileproc
*fp
, void *ub
, int isstat64
, __unused vfs_context_t ctx
)
2173 struct kqueue
*kq
= (struct kqueue
*)fp
->f_data
;
2174 if (isstat64
!= 0) {
2175 struct stat64
*sb64
= (struct stat64
*)ub
;
2177 bzero((void *)sb64
, sizeof(*sb64
));
2178 sb64
->st_size
= kq
->kq_count
;
2179 if (kq
->kq_state
& KQ_KEV64
)
2180 sb64
->st_blksize
= sizeof(struct kevent64_s
);
2182 sb64
->st_blksize
= sizeof(struct kevent
);
2183 sb64
->st_mode
= S_IFIFO
;
2185 struct stat
*sb
= (struct stat
*)ub
;
2187 bzero((void *)sb
, sizeof(*sb
));
2188 sb
->st_size
= kq
->kq_count
;
2189 if (kq
->kq_state
& KQ_KEV64
)
2190 sb
->st_blksize
= sizeof(struct kevent64_s
);
2192 sb
->st_blksize
= sizeof(struct kevent
);
2193 sb
->st_mode
= S_IFIFO
;
2200 * Called with the kqueue locked
2203 kqueue_wakeup(struct kqueue
*kq
, int closed
)
2205 if ((kq
->kq_state
& (KQ_SLEEP
| KQ_SEL
)) != 0 || kq
->kq_nprocess
> 0) {
2206 kq
->kq_state
&= ~(KQ_SLEEP
| KQ_SEL
);
2207 wait_queue_wakeup_all((wait_queue_t
)kq
->kq_wqs
, KQ_EVENT
,
2208 (closed
) ? THREAD_INTERRUPTED
: THREAD_AWAKENED
);
2213 klist_init(struct klist
*list
)
2220 * Query/Post each knote in the object's list
2222 * The object lock protects the list. It is assumed
2223 * that the filter/event routine for the object can
2224 * determine that the object is already locked (via
2225 * the hint) and not deadlock itself.
2227 * The object lock should also hold off pending
2228 * detach/drop operations. But we'll prevent it here
2229 * too - just in case.
2232 knote(struct klist
*list
, long hint
)
2236 SLIST_FOREACH(kn
, list
, kn_selnext
) {
2237 struct kqueue
*kq
= kn
->kn_kq
;
2240 if (kqlock2knoteuse(kq
, kn
)) {
2243 /* call the event with only a use count */
2244 result
= kn
->kn_fop
->f_event(kn
, hint
);
2246 /* if its not going away and triggered */
2247 if (knoteuse2kqlock(kq
, kn
) && result
)
2248 knote_activate(kn
, 1);
2249 /* lock held again */
2256 * attach a knote to the specified list. Return true if this is the first entry.
2257 * The list is protected by whatever lock the object it is associated with uses.
2260 knote_attach(struct klist
*list
, struct knote
*kn
)
2262 int ret
= SLIST_EMPTY(list
);
2263 SLIST_INSERT_HEAD(list
, kn
, kn_selnext
);
2268 * detach a knote from the specified list. Return true if that was the last entry.
2269 * The list is protected by whatever lock the object it is associated with uses.
2272 knote_detach(struct klist
*list
, struct knote
*kn
)
2274 SLIST_REMOVE(list
, kn
, knote
, kn_selnext
);
2275 return SLIST_EMPTY(list
);
2279 * For a given knote, link a provided wait queue directly with the kqueue.
2280 * Wakeups will happen via recursive wait queue support. But nothing will move
2281 * the knote to the active list at wakeup (nothing calls knote()). Instead,
2282 * we permanently enqueue them here.
2284 * kqueue and knote references are held by caller.
2287 knote_link_wait_queue(struct knote
*kn
, struct wait_queue
*wq
)
2289 struct kqueue
*kq
= kn
->kn_kq
;
2292 kr
= wait_queue_link(wq
, kq
->kq_wqs
);
2293 if (kr
== KERN_SUCCESS
) {
2295 kn
->kn_status
|= KN_STAYQUEUED
;
2305 * Unlink the provided wait queue from the kqueue associated with a knote.
2306 * Also remove it from the magic list of directly attached knotes.
2308 * Note that the unlink may have already happened from the other side, so
2309 * ignore any failures to unlink and just remove it from the kqueue list.
2312 knote_unlink_wait_queue(struct knote
*kn
, struct wait_queue
*wq
)
2314 struct kqueue
*kq
= kn
->kn_kq
;
2316 (void) wait_queue_unlink(wq
, kq
->kq_wqs
);
2318 kn
->kn_status
&= ~KN_STAYQUEUED
;
2324 * remove all knotes referencing a specified fd
2326 * Essentially an inlined knote_remove & knote_drop
2327 * when we know for sure that the thing is a file
2329 * Entered with the proc_fd lock already held.
2330 * It returns the same way, but may drop it temporarily.
2333 knote_fdclose(struct proc
*p
, int fd
)
2335 struct filedesc
*fdp
= p
->p_fd
;
2339 list
= &fdp
->fd_knlist
[fd
];
2340 while ((kn
= SLIST_FIRST(list
)) != NULL
) {
2341 struct kqueue
*kq
= kn
->kn_kq
;
2344 panic("knote_fdclose: proc mismatch (kq->kq_p=%p != p=%p)", kq
->kq_p
, p
);
2350 * Convert the lock to a drop ref.
2351 * If we get it, go ahead and drop it.
2352 * Otherwise, we waited for it to
2353 * be dropped by the other guy, so
2354 * it is safe to move on in the list.
2356 if (kqlock2knotedrop(kq
, kn
)) {
2357 kn
->kn_fop
->f_detach(kn
);
2363 /* the fd tables may have changed - start over */
2364 list
= &fdp
->fd_knlist
[fd
];
2368 /* proc_fdlock held on entry (and exit) */
2370 knote_fdpattach(struct knote
*kn
, struct filedesc
*fdp
, __unused
struct proc
*p
)
2372 struct klist
*list
= NULL
;
2374 if (! kn
->kn_fop
->f_isfd
) {
2375 if (fdp
->fd_knhashmask
== 0)
2376 fdp
->fd_knhash
= hashinit(CONFIG_KN_HASHSIZE
, M_KQUEUE
,
2377 &fdp
->fd_knhashmask
);
2378 list
= &fdp
->fd_knhash
[KN_HASH(kn
->kn_id
, fdp
->fd_knhashmask
)];
2380 if ((u_int
)fdp
->fd_knlistsize
<= kn
->kn_id
) {
2383 /* have to grow the fd_knlist */
2384 size
= fdp
->fd_knlistsize
;
2385 while (size
<= kn
->kn_id
)
2387 MALLOC(list
, struct klist
*,
2388 size
* sizeof(struct klist
*), M_KQUEUE
, M_WAITOK
);
2392 bcopy((caddr_t
)fdp
->fd_knlist
, (caddr_t
)list
,
2393 fdp
->fd_knlistsize
* sizeof(struct klist
*));
2394 bzero((caddr_t
)list
+
2395 fdp
->fd_knlistsize
* sizeof(struct klist
*),
2396 (size
- fdp
->fd_knlistsize
) * sizeof(struct klist
*));
2397 FREE(fdp
->fd_knlist
, M_KQUEUE
);
2398 fdp
->fd_knlist
= list
;
2399 fdp
->fd_knlistsize
= size
;
2401 list
= &fdp
->fd_knlist
[kn
->kn_id
];
2403 SLIST_INSERT_HEAD(list
, kn
, kn_link
);
2410 * should be called at spl == 0, since we don't want to hold spl
2411 * while calling fdrop and free.
2414 knote_drop(struct knote
*kn
, __unused
struct proc
*ctxp
)
2416 struct kqueue
*kq
= kn
->kn_kq
;
2417 struct proc
*p
= kq
->kq_p
;
2418 struct filedesc
*fdp
= p
->p_fd
;
2423 if (kn
->kn_fop
->f_isfd
)
2424 list
= &fdp
->fd_knlist
[kn
->kn_id
];
2426 list
= &fdp
->fd_knhash
[KN_HASH(kn
->kn_id
, fdp
->fd_knhashmask
)];
2428 SLIST_REMOVE(list
, kn
, knote
, kn_link
);
2431 needswakeup
= (kn
->kn_status
& KN_USEWAIT
);
2436 wait_queue_wakeup_all((wait_queue_t
)kq
->kq_wqs
, &kn
->kn_status
, THREAD_AWAKENED
);
2438 if (kn
->kn_fop
->f_isfd
)
2439 fp_drop(p
, kn
->kn_id
, kn
->kn_fp
, 0);
2444 /* called with kqueue lock held */
2446 knote_activate(struct knote
*kn
, int propagate
)
2448 struct kqueue
*kq
= kn
->kn_kq
;
2450 kn
->kn_status
|= KN_ACTIVE
;
2452 kqueue_wakeup(kq
, 0);
2454 /* this is a real event: wake up the parent kq, too */
2456 KNOTE(&kq
->kq_sel
.si_note
, 0);
2459 /* called with kqueue lock held */
2461 knote_deactivate(struct knote
*kn
)
2463 kn
->kn_status
&= ~KN_ACTIVE
;
2467 /* called with kqueue lock held */
2469 knote_enqueue(struct knote
*kn
)
2471 if ((kn
->kn_status
& (KN_QUEUED
| KN_STAYQUEUED
)) == KN_STAYQUEUED
||
2472 (kn
->kn_status
& (KN_QUEUED
| KN_STAYQUEUED
| KN_DISABLED
)) == 0) {
2473 struct kqtailq
*tq
= kn
->kn_tq
;
2474 struct kqueue
*kq
= kn
->kn_kq
;
2476 TAILQ_INSERT_TAIL(tq
, kn
, kn_tqe
);
2477 kn
->kn_status
|= KN_QUEUED
;
2482 /* called with kqueue lock held */
2484 knote_dequeue(struct knote
*kn
)
2486 struct kqueue
*kq
= kn
->kn_kq
;
2488 if ((kn
->kn_status
& (KN_QUEUED
| KN_STAYQUEUED
)) == KN_QUEUED
) {
2489 struct kqtailq
*tq
= kn
->kn_tq
;
2491 TAILQ_REMOVE(tq
, kn
, kn_tqe
);
2492 kn
->kn_tq
= &kq
->kq_head
;
2493 kn
->kn_status
&= ~KN_QUEUED
;
2501 knote_zone
= zinit(sizeof(struct knote
), 8192*sizeof(struct knote
), 8192, "knote zone");
2503 /* allocate kq lock group attribute and group */
2504 kq_lck_grp_attr
= lck_grp_attr_alloc_init();
2506 kq_lck_grp
= lck_grp_alloc_init("kqueue", kq_lck_grp_attr
);
2508 /* Allocate kq lock attribute */
2509 kq_lck_attr
= lck_attr_alloc_init();
2511 /* Initialize the timer filter lock */
2512 lck_mtx_init(&_filt_timerlock
, kq_lck_grp
, kq_lck_attr
);
2514 SYSINIT(knote
, SI_SUB_PSEUDO
, SI_ORDER_ANY
, knote_init
, NULL
)
2516 static struct knote
*
2519 return ((struct knote
*)zalloc(knote_zone
));
2523 knote_free(struct knote
*kn
)
2525 zfree(knote_zone
, kn
);
2529 #include <sys/param.h>
2530 #include <sys/socket.h>
2531 #include <sys/protosw.h>
2532 #include <sys/domain.h>
2533 #include <sys/mbuf.h>
2534 #include <sys/kern_event.h>
2535 #include <sys/malloc.h>
2536 #include <sys/sys_domain.h>
2537 #include <sys/syslog.h>
2540 static int kev_attach(struct socket
*so
, int proto
, struct proc
*p
);
2541 static int kev_detach(struct socket
*so
);
2542 static int kev_control(struct socket
*so
, u_long cmd
, caddr_t data
, struct ifnet
*ifp
, struct proc
*p
);
2544 struct pr_usrreqs event_usrreqs
= {
2545 pru_abort_notsupp
, pru_accept_notsupp
, kev_attach
, pru_bind_notsupp
, pru_connect_notsupp
,
2546 pru_connect2_notsupp
, kev_control
, kev_detach
, pru_disconnect_notsupp
,
2547 pru_listen_notsupp
, pru_peeraddr_notsupp
, pru_rcvd_notsupp
, pru_rcvoob_notsupp
,
2548 pru_send_notsupp
, pru_sense_null
, pru_shutdown_notsupp
, pru_sockaddr_notsupp
,
2549 pru_sosend_notsupp
, soreceive
, pru_sopoll_notsupp
2552 struct protosw eventsw
[] = {
2554 .pr_type
= SOCK_RAW
,
2555 .pr_domain
= &systemdomain
,
2556 .pr_protocol
= SYSPROTO_EVENT
,
2557 .pr_flags
= PR_ATOMIC
,
2558 .pr_usrreqs
= &event_usrreqs
,
2563 struct kern_event_head kern_event_head
;
2565 static u_int32_t static_event_id
= 0;
2566 struct domain
*sysdom
= &systemdomain
;
2567 static lck_mtx_t
*sys_mtx
;
2570 * Install the protosw's for the NKE manager. Invoked at
2571 * extension load time
2574 kern_event_init(void)
2578 if ((retval
= net_add_proto(eventsw
, &systemdomain
)) != 0) {
2579 log(LOG_WARNING
, "Can't install kernel events protocol (%d)\n", retval
);
2584 * Use the domain mutex for all system event sockets
2586 sys_mtx
= sysdom
->dom_mtx
;
2588 return(KERN_SUCCESS
);
2592 kev_attach(struct socket
*so
, __unused
int proto
, __unused
struct proc
*p
)
2595 struct kern_event_pcb
*ev_pcb
;
2597 error
= soreserve(so
, KEV_SNDSPACE
, KEV_RECVSPACE
);
2601 MALLOC(ev_pcb
, struct kern_event_pcb
*, sizeof(struct kern_event_pcb
), M_PCB
, M_WAITOK
);
2605 ev_pcb
->ev_socket
= so
;
2606 ev_pcb
->vendor_code_filter
= 0xffffffff;
2608 so
->so_pcb
= (caddr_t
) ev_pcb
;
2609 lck_mtx_lock(sys_mtx
);
2610 LIST_INSERT_HEAD(&kern_event_head
, ev_pcb
, ev_link
);
2611 lck_mtx_unlock(sys_mtx
);
2618 kev_detach(struct socket
*so
)
2620 struct kern_event_pcb
*ev_pcb
= (struct kern_event_pcb
*) so
->so_pcb
;
2623 LIST_REMOVE(ev_pcb
, ev_link
);
2624 FREE(ev_pcb
, M_PCB
);
2626 so
->so_flags
|= SOF_PCBCLEARING
;
2633 * For now, kev_vendor_code and mbuf_tags use the same
2637 errno_t
kev_vendor_code_find(
2639 u_int32_t
*out_vendor_code
)
2641 if (strlen(string
) >= KEV_VENDOR_CODE_MAX_STR_LEN
) {
2644 return net_str_id_find_internal(string
, out_vendor_code
, NSI_VENDOR_CODE
, 1);
2647 errno_t
kev_msg_post(struct kev_msg
*event_msg
)
2649 mbuf_tag_id_t min_vendor
, max_vendor
;
2651 net_str_id_first_last(&min_vendor
, &max_vendor
, NSI_VENDOR_CODE
);
2653 if (event_msg
== NULL
)
2656 /* Limit third parties to posting events for registered vendor codes only */
2657 if (event_msg
->vendor_code
< min_vendor
||
2658 event_msg
->vendor_code
> max_vendor
)
2663 return kev_post_msg(event_msg
);
2667 int kev_post_msg(struct kev_msg
*event_msg
)
2669 struct mbuf
*m
, *m2
;
2670 struct kern_event_pcb
*ev_pcb
;
2671 struct kern_event_msg
*ev
;
2673 u_int32_t total_size
;
2676 /* Verify the message is small enough to fit in one mbuf w/o cluster */
2677 total_size
= KEV_MSG_HEADER_SIZE
;
2679 for (i
= 0; i
< 5; i
++) {
2680 if (event_msg
->dv
[i
].data_length
== 0)
2682 total_size
+= event_msg
->dv
[i
].data_length
;
2685 if (total_size
> MLEN
) {
2689 m
= m_get(M_DONTWAIT
, MT_DATA
);
2693 ev
= mtod(m
, struct kern_event_msg
*);
2694 total_size
= KEV_MSG_HEADER_SIZE
;
2696 tmp
= (char *) &ev
->event_data
[0];
2697 for (i
= 0; i
< 5; i
++) {
2698 if (event_msg
->dv
[i
].data_length
== 0)
2701 total_size
+= event_msg
->dv
[i
].data_length
;
2702 bcopy(event_msg
->dv
[i
].data_ptr
, tmp
,
2703 event_msg
->dv
[i
].data_length
);
2704 tmp
+= event_msg
->dv
[i
].data_length
;
2707 ev
->id
= ++static_event_id
;
2708 ev
->total_size
= total_size
;
2709 ev
->vendor_code
= event_msg
->vendor_code
;
2710 ev
->kev_class
= event_msg
->kev_class
;
2711 ev
->kev_subclass
= event_msg
->kev_subclass
;
2712 ev
->event_code
= event_msg
->event_code
;
2714 m
->m_len
= total_size
;
2715 lck_mtx_lock(sys_mtx
);
2716 for (ev_pcb
= LIST_FIRST(&kern_event_head
);
2718 ev_pcb
= LIST_NEXT(ev_pcb
, ev_link
)) {
2720 if (ev_pcb
->vendor_code_filter
!= KEV_ANY_VENDOR
) {
2721 if (ev_pcb
->vendor_code_filter
!= ev
->vendor_code
)
2724 if (ev_pcb
->class_filter
!= KEV_ANY_CLASS
) {
2725 if (ev_pcb
->class_filter
!= ev
->kev_class
)
2728 if ((ev_pcb
->subclass_filter
!= KEV_ANY_SUBCLASS
) &&
2729 (ev_pcb
->subclass_filter
!= ev
->kev_subclass
))
2734 m2
= m_copym(m
, 0, m
->m_len
, M_NOWAIT
);
2737 lck_mtx_unlock(sys_mtx
);
2740 /* the socket is already locked because we hold the sys_mtx here */
2741 if (sbappendrecord(&ev_pcb
->ev_socket
->so_rcv
, m2
))
2742 sorwakeup(ev_pcb
->ev_socket
);
2746 lck_mtx_unlock(sys_mtx
);
2751 kev_control(struct socket
*so
,
2754 __unused
struct ifnet
*ifp
,
2755 __unused
struct proc
*p
)
2757 struct kev_request
*kev_req
= (struct kev_request
*) data
;
2758 struct kern_event_pcb
*ev_pcb
;
2759 struct kev_vendor_code
*kev_vendor
;
2760 u_int32_t
*id_value
= (u_int32_t
*) data
;
2766 *id_value
= static_event_id
;
2770 ev_pcb
= (struct kern_event_pcb
*) so
->so_pcb
;
2771 ev_pcb
->vendor_code_filter
= kev_req
->vendor_code
;
2772 ev_pcb
->class_filter
= kev_req
->kev_class
;
2773 ev_pcb
->subclass_filter
= kev_req
->kev_subclass
;
2777 ev_pcb
= (struct kern_event_pcb
*) so
->so_pcb
;
2778 kev_req
->vendor_code
= ev_pcb
->vendor_code_filter
;
2779 kev_req
->kev_class
= ev_pcb
->class_filter
;
2780 kev_req
->kev_subclass
= ev_pcb
->subclass_filter
;
2783 case SIOCGKEVVENDOR
:
2784 kev_vendor
= (struct kev_vendor_code
*)data
;
2786 /* Make sure string is NULL terminated */
2787 kev_vendor
->vendor_string
[KEV_VENDOR_CODE_MAX_STR_LEN
-1] = 0;
2789 return net_str_id_find_internal(kev_vendor
->vendor_string
,
2790 &kev_vendor
->vendor_code
, NSI_VENDOR_CODE
, 0);
2799 #endif /* SOCKETS */
2803 fill_kqueueinfo(struct kqueue
*kq
, struct kqueue_info
* kinfo
)
2805 struct vinfo_stat
* st
;
2807 /* No need for the funnel as fd is kept alive */
2809 st
= &kinfo
->kq_stat
;
2811 st
->vst_size
= kq
->kq_count
;
2812 if (kq
->kq_state
& KQ_KEV64
)
2813 st
->vst_blksize
= sizeof(struct kevent64_s
);
2815 st
->vst_blksize
= sizeof(struct kevent
);
2816 st
->vst_mode
= S_IFIFO
;
2817 if (kq
->kq_state
& KQ_SEL
)
2818 kinfo
->kq_state
|= PROC_KQUEUE_SELECT
;
2819 if (kq
->kq_state
& KQ_SLEEP
)
2820 kinfo
->kq_state
|= PROC_KQUEUE_SLEEP
;