]> git.saurik.com Git - apple/xnu.git/blob - bsd/sys/dtrace_impl.h
xnu-7195.81.3.tar.gz
[apple/xnu.git] / bsd / sys / dtrace_impl.h
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 *
26 * Portions Copyright (c) 2012 by Delphix. All rights reserved.
27 * Portions Copyright (c) 2016 by Joyent, Inc.
28 */
29
30 #ifndef _SYS_DTRACE_IMPL_H
31 #define _SYS_DTRACE_IMPL_H
32
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36
37 /*
38 * DTrace Dynamic Tracing Software: Kernel Implementation Interfaces
39 *
40 * Note: The contents of this file are private to the implementation of the
41 * Solaris system and DTrace subsystem and are subject to change at any time
42 * without notice. Applications and drivers using these interfaces will fail
43 * to run on future releases. These interfaces should not be used for any
44 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
45 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
46 */
47
48 #include <sys/dtrace.h>
49
50 /*
51 * DTrace Implementation Locks
52 */
53 extern lck_mtx_t dtrace_procwaitfor_lock;
54
55 /*
56 * DTrace Implementation Constants and Typedefs
57 */
58 #define DTRACE_MAXPROPLEN 128
59 #define DTRACE_DYNVAR_CHUNKSIZE 256
60
61 struct dtrace_probe;
62 struct dtrace_ecb;
63 struct dtrace_predicate;
64 struct dtrace_action;
65 struct dtrace_provider;
66 struct dtrace_state;
67
68 typedef struct dtrace_probe dtrace_probe_t;
69 typedef struct dtrace_ecb dtrace_ecb_t;
70 typedef struct dtrace_predicate dtrace_predicate_t;
71 typedef struct dtrace_action dtrace_action_t;
72 typedef struct dtrace_provider dtrace_provider_t;
73 typedef struct dtrace_meta dtrace_meta_t;
74 typedef struct dtrace_state dtrace_state_t;
75 typedef uint32_t dtrace_optid_t;
76 typedef uint32_t dtrace_specid_t;
77 typedef uint64_t dtrace_genid_t;
78
79 /*
80 * DTrace Probes
81 *
82 * The probe is the fundamental unit of the DTrace architecture. Probes are
83 * created by DTrace providers, and managed by the DTrace framework. A probe
84 * is identified by a unique <provider, module, function, name> tuple, and has
85 * a unique probe identifier assigned to it. (Some probes are not associated
86 * with a specific point in text; these are called _unanchored probes_ and have
87 * no module or function associated with them.) Probes are represented as a
88 * dtrace_probe structure. To allow quick lookups based on each element of the
89 * probe tuple, probes are hashed by each of provider, module, function and
90 * name. (If a lookup is performed based on a regular expression, a
91 * dtrace_probekey is prepared, and a linear search is performed.) Each probe
92 * is additionally pointed to by a linear array indexed by its identifier. The
93 * identifier is the provider's mechanism for indicating to the DTrace
94 * framework that a probe has fired: the identifier is passed as the first
95 * argument to dtrace_probe(), where it is then mapped into the corresponding
96 * dtrace_probe structure. From the dtrace_probe structure, dtrace_probe() can
97 * iterate over the probe's list of enabling control blocks; see "DTrace
98 * Enabling Control Blocks", below.)
99 */
100 struct dtrace_probe {
101 dtrace_id_t dtpr_id; /* probe identifier */
102 dtrace_ecb_t *dtpr_ecb; /* ECB list; see below */
103 dtrace_ecb_t *dtpr_ecb_last; /* last ECB in list */
104 void *dtpr_arg; /* provider argument */
105 dtrace_cacheid_t dtpr_predcache; /* predicate cache ID */
106 int dtpr_aframes; /* artificial frames */
107 dtrace_provider_t *dtpr_provider; /* pointer to provider */
108 char *dtpr_mod; /* probe's module name */
109 char *dtpr_func; /* probe's function name */
110 char *dtpr_name; /* probe's name */
111 dtrace_probe_t *dtpr_nextprov; /* next in provider hash */
112 dtrace_probe_t *dtpr_prevprov; /* previous in provider hash */
113 dtrace_probe_t *dtpr_nextmod; /* next in module hash */
114 dtrace_probe_t *dtpr_prevmod; /* previous in module hash */
115 dtrace_probe_t *dtpr_nextfunc; /* next in function hash */
116 dtrace_probe_t *dtpr_prevfunc; /* previous in function hash */
117 dtrace_probe_t *dtpr_nextname; /* next in name hash */
118 dtrace_probe_t *dtpr_prevname; /* previous in name hash */
119 dtrace_genid_t dtpr_gen; /* probe generation ID */
120 };
121
122 typedef int dtrace_probekey_f(const char *, const char *, int);
123
124 typedef struct dtrace_probekey {
125 const char *dtpk_prov; /* provider name to match */
126 dtrace_probekey_f *dtpk_pmatch; /* provider matching function */
127 const char *dtpk_mod; /* module name to match */
128 dtrace_probekey_f *dtpk_mmatch; /* module matching function */
129 const char *dtpk_func; /* func name to match */
130 dtrace_probekey_f *dtpk_fmatch; /* func matching function */
131 const char *dtpk_name; /* name to match */
132 dtrace_probekey_f *dtpk_nmatch; /* name matching function */
133 dtrace_id_t dtpk_id; /* identifier to match */
134 } dtrace_probekey_t;
135
136 typedef struct dtrace_hashbucket {
137 struct dtrace_hashbucket *dthb_next; /* next on hash chain */
138 void *dthb_chain; /* chain of elements */
139 int dthb_len; /* number of probes here */
140 } dtrace_hashbucket_t;
141
142 typedef const char* dtrace_strkey_f(void*, uintptr_t);
143
144 typedef struct dtrace_hash {
145 dtrace_hashbucket_t **dth_tab; /* hash table */
146 int dth_size; /* size of hash table */
147 int dth_mask; /* mask to index into table */
148 int dth_nbuckets; /* total number of buckets */
149 uintptr_t dth_nextoffs; /* offset of next in element */
150 uintptr_t dth_prevoffs; /* offset of prev in element */
151 dtrace_strkey_f *dth_getstr; /* func to retrieve str in element */
152 uintptr_t dth_stroffs; /* offset of str in element */
153 } dtrace_hash_t;
154
155 /*
156 * DTrace Enabling Control Blocks
157 *
158 * When a provider wishes to fire a probe, it calls into dtrace_probe(),
159 * passing the probe identifier as the first argument. As described above,
160 * dtrace_probe() maps the identifier into a pointer to a dtrace_probe_t
161 * structure. This structure contains information about the probe, and a
162 * pointer to the list of Enabling Control Blocks (ECBs). Each ECB points to
163 * DTrace consumer state, and contains an optional predicate, and a list of
164 * actions. (Shown schematically below.) The ECB abstraction allows a single
165 * probe to be multiplexed across disjoint consumers, or across disjoint
166 * enablings of a single probe within one consumer.
167 *
168 * Enabling Control Block
169 * dtrace_ecb_t
170 * +------------------------+
171 * | dtrace_epid_t ---------+--------------> Enabled Probe ID (EPID)
172 * | dtrace_state_t * ------+--------------> State associated with this ECB
173 * | dtrace_predicate_t * --+---------+
174 * | dtrace_action_t * -----+----+ |
175 * | dtrace_ecb_t * ---+ | | | Predicate (if any)
176 * +-------------------+----+ | | dtrace_predicate_t
177 * | | +---> +--------------------+
178 * | | | dtrace_difo_t * ---+----> DIFO
179 * | | +--------------------+
180 * | |
181 * Next ECB | | Action
182 * (if any) | | dtrace_action_t
183 * : +--> +-------------------+
184 * : | dtrace_actkind_t -+------> kind
185 * v | dtrace_difo_t * --+------> DIFO (if any)
186 * | dtrace_recdesc_t -+------> record descr.
187 * | dtrace_action_t * +------+
188 * +-------------------+ |
189 * | Next action
190 * +-------------------------------+ (if any)
191 * |
192 * | Action
193 * | dtrace_action_t
194 * +--> +-------------------+
195 * | dtrace_actkind_t -+------> kind
196 * | dtrace_difo_t * --+------> DIFO (if any)
197 * | dtrace_action_t * +------+
198 * +-------------------+ |
199 * | Next action
200 * +-------------------------------+ (if any)
201 * |
202 * :
203 * v
204 *
205 *
206 * dtrace_probe() iterates over the ECB list. If the ECB needs less space
207 * than is available in the principal buffer, the ECB is processed: if the
208 * predicate is non-NULL, the DIF object is executed. If the result is
209 * non-zero, the action list is processed, with each action being executed
210 * accordingly. When the action list has been completely executed, processing
211 * advances to the next ECB. The ECB abstraction allows disjoint consumers
212 * to multiplex on single probes.
213 *
214 * Execution of the ECB results in consuming dte_size bytes in the buffer
215 * to record data. During execution, dte_needed bytes must be available in
216 * the buffer. This space is used for both recorded data and tuple data.
217 */
218 struct dtrace_ecb {
219 dtrace_epid_t dte_epid; /* enabled probe ID */
220 uint32_t dte_alignment; /* required alignment */
221 size_t dte_needed; /* space needed for execution */
222 size_t dte_size; /* size of recorded payload */
223 dtrace_predicate_t *dte_predicate; /* predicate, if any */
224 dtrace_action_t *dte_action; /* actions, if any */
225 dtrace_ecb_t *dte_next; /* next ECB on probe */
226 dtrace_state_t *dte_state; /* pointer to state */
227 uint32_t dte_cond; /* security condition */
228 dtrace_probe_t *dte_probe; /* pointer to probe */
229 dtrace_action_t *dte_action_last; /* last action on ECB */
230 uint64_t dte_uarg; /* library argument */
231 };
232
233 struct dtrace_predicate {
234 dtrace_difo_t *dtp_difo; /* DIF object */
235 dtrace_cacheid_t dtp_cacheid; /* cache identifier */
236 int dtp_refcnt; /* reference count */
237 };
238
239 struct dtrace_action {
240 dtrace_actkind_t dta_kind; /* kind of action */
241 uint16_t dta_intuple; /* boolean: in aggregation */
242 uint32_t dta_refcnt; /* reference count */
243 dtrace_difo_t *dta_difo; /* pointer to DIFO */
244 dtrace_recdesc_t dta_rec; /* record description */
245 dtrace_action_t *dta_prev; /* previous action */
246 dtrace_action_t *dta_next; /* next action */
247 };
248
249 typedef struct dtrace_aggregation {
250 dtrace_action_t dtag_action; /* action; must be first */
251 dtrace_aggid_t dtag_id; /* identifier */
252 dtrace_ecb_t *dtag_ecb; /* corresponding ECB */
253 dtrace_action_t *dtag_first; /* first action in tuple */
254 uint32_t dtag_base; /* base of aggregation */
255 uint8_t dtag_hasarg; /* boolean: has argument */
256 uint64_t dtag_initial; /* initial value */
257 void (*dtag_aggregate)(uint64_t *, uint64_t, uint64_t);
258 } dtrace_aggregation_t;
259
260 /*
261 * DTrace Buffers
262 *
263 * Principal buffers, aggregation buffers, and speculative buffers are all
264 * managed with the dtrace_buffer structure. By default, this structure
265 * includes twin data buffers -- dtb_tomax and dtb_xamot -- that serve as the
266 * active and passive buffers, respectively. For speculative buffers,
267 * dtb_xamot will be NULL; for "ring" and "fill" buffers, dtb_xamot will point
268 * to a scratch buffer. For all buffer types, the dtrace_buffer structure is
269 * always allocated on a per-CPU basis; a single dtrace_buffer structure is
270 * never shared among CPUs. (That is, there is never true sharing of the
271 * dtrace_buffer structure; to prevent false sharing of the structure, it must
272 * always be aligned to the coherence granularity -- generally 64 bytes.)
273 *
274 * One of the critical design decisions of DTrace is that a given ECB always
275 * stores the same quantity and type of data. This is done to assure that the
276 * only metadata required for an ECB's traced data is the EPID. That is, from
277 * the EPID, the consumer can determine the data layout. (The data buffer
278 * layout is shown schematically below.) By assuring that one can determine
279 * data layout from the EPID, the metadata stream can be separated from the
280 * data stream -- simplifying the data stream enormously. The ECB always
281 * proceeds the recorded data as part of the dtrace_rechdr_t structure that
282 * includes the EPID and a high-resolution timestamp used for output ordering
283 * consistency.
284 *
285 * base of data buffer ---> +--------+--------------------+--------+
286 * | rechdr | data | rechdr |
287 * +--------+------+--------+----+--------+
288 * | data | rechdr | data |
289 * +---------------+--------+-------------+
290 * | data, cont. |
291 * +--------+--------------------+--------+
292 * | rechdr | data | |
293 * +--------+--------------------+ |
294 * | || |
295 * | || |
296 * | \/ |
297 * : :
298 * . .
299 * . .
300 * . .
301 * : :
302 * | |
303 * limit of data buffer ---> +--------------------------------------+
304 *
305 * When evaluating an ECB, dtrace_probe() determines if the ECB's needs of the
306 * principal buffer (both scratch and payload) exceed the available space. If
307 * the ECB's needs exceed available space (and if the principal buffer policy
308 * is the default "switch" policy), the ECB is dropped, the buffer's drop count
309 * is incremented, and processing advances to the next ECB. If the ECB's needs
310 * can be met with the available space, the ECB is processed, but the offset in
311 * the principal buffer is only advanced if the ECB completes processing
312 * without error.
313 *
314 * When a buffer is to be switched (either because the buffer is the principal
315 * buffer with a "switch" policy or because it is an aggregation buffer), a
316 * cross call is issued to the CPU associated with the buffer. In the cross
317 * call context, interrupts are disabled, and the active and the inactive
318 * buffers are atomically switched. This involves switching the data pointers,
319 * copying the various state fields (offset, drops, errors, etc.) into their
320 * inactive equivalents, and clearing the state fields. Because interrupts are
321 * disabled during this procedure, the switch is guaranteed to appear atomic to
322 * dtrace_probe().
323 *
324 * DTrace Ring Buffering
325 *
326 * To process a ring buffer correctly, one must know the oldest valid record.
327 * Processing starts at the oldest record in the buffer and continues until
328 * the end of the buffer is reached. Processing then resumes starting with
329 * the record stored at offset 0 in the buffer, and continues until the
330 * youngest record is processed. If trace records are of a fixed-length,
331 * determining the oldest record is trivial:
332 *
333 * - If the ring buffer has not wrapped, the oldest record is the record
334 * stored at offset 0.
335 *
336 * - If the ring buffer has wrapped, the oldest record is the record stored
337 * at the current offset.
338 *
339 * With variable length records, however, just knowing the current offset
340 * doesn't suffice for determining the oldest valid record: assuming that one
341 * allows for arbitrary data, one has no way of searching forward from the
342 * current offset to find the oldest valid record. (That is, one has no way
343 * of separating data from metadata.) It would be possible to simply refuse to
344 * process any data in the ring buffer between the current offset and the
345 * limit, but this leaves (potentially) an enormous amount of otherwise valid
346 * data unprocessed.
347 *
348 * To effect ring buffering, we track two offsets in the buffer: the current
349 * offset and the _wrapped_ offset. If a request is made to reserve some
350 * amount of data, and the buffer has wrapped, the wrapped offset is
351 * incremented until the wrapped offset minus the current offset is greater
352 * than or equal to the reserve request. This is done by repeatedly looking
353 * up the ECB corresponding to the EPID at the current wrapped offset, and
354 * incrementing the wrapped offset by the size of the data payload
355 * corresponding to that ECB. If this offset is greater than or equal to the
356 * limit of the data buffer, the wrapped offset is set to 0. Thus, the
357 * current offset effectively "chases" the wrapped offset around the buffer.
358 * Schematically:
359 *
360 * base of data buffer ---> +------+--------------------+------+
361 * | EPID | data | EPID |
362 * +------+--------+------+----+------+
363 * | data | EPID | data |
364 * +---------------+------+-----------+
365 * | data, cont. |
366 * +------+---------------------------+
367 * | EPID | data |
368 * current offset ---> +------+---------------------------+
369 * | invalid data |
370 * wrapped offset ---> +------+--------------------+------+
371 * | EPID | data | EPID |
372 * +------+--------+------+----+------+
373 * | data | EPID | data |
374 * +---------------+------+-----------+
375 * : :
376 * . .
377 * . ... valid data ... .
378 * . .
379 * : :
380 * +------+-------------+------+------+
381 * | EPID | data | EPID | data |
382 * +------+------------++------+------+
383 * | data, cont. | leftover |
384 * limit of data buffer ---> +-------------------+--------------+
385 *
386 * If the amount of requested buffer space exceeds the amount of space
387 * available between the current offset and the end of the buffer:
388 *
389 * (1) all words in the data buffer between the current offset and the limit
390 * of the data buffer (marked "leftover", above) are set to
391 * DTRACE_EPIDNONE
392 *
393 * (2) the wrapped offset is set to zero
394 *
395 * (3) the iteration process described above occurs until the wrapped offset
396 * is greater than the amount of desired space.
397 *
398 * The wrapped offset is implemented by (re-)using the inactive offset.
399 * In a "switch" buffer policy, the inactive offset stores the offset in
400 * the inactive buffer; in a "ring" buffer policy, it stores the wrapped
401 * offset.
402 *
403 * DTrace Scratch Buffering
404 *
405 * Some ECBs may wish to allocate dynamically-sized temporary scratch memory.
406 * To accommodate such requests easily, scratch memory may be allocated in
407 * the buffer beyond the current offset plus the needed memory of the current
408 * ECB. If there isn't sufficient room in the buffer for the requested amount
409 * of scratch space, the allocation fails and an error is generated. Scratch
410 * memory is tracked in the dtrace_mstate_t and is automatically freed when
411 * the ECB ceases processing. Note that ring buffers cannot allocate their
412 * scratch from the principal buffer -- lest they needlessly overwrite older,
413 * valid data. Ring buffers therefore have their own dedicated scratch buffer
414 * from which scratch is allocated.
415 */
416 #define DTRACEBUF_RING 0x0001 /* bufpolicy set to "ring" */
417 #define DTRACEBUF_FILL 0x0002 /* bufpolicy set to "fill" */
418 #define DTRACEBUF_NOSWITCH 0x0004 /* do not switch buffer */
419 #define DTRACEBUF_WRAPPED 0x0008 /* ring buffer has wrapped */
420 #define DTRACEBUF_DROPPED 0x0010 /* drops occurred */
421 #define DTRACEBUF_ERROR 0x0020 /* errors occurred */
422 #define DTRACEBUF_FULL 0x0040 /* "fill" buffer is full */
423 #define DTRACEBUF_CONSUMED 0x0080 /* buffer has been consumed */
424 #define DTRACEBUF_INACTIVE 0x0100 /* buffer is not yet active */
425
426 typedef struct dtrace_buffer {
427 uint64_t dtb_offset; /* current offset in buffer */
428 uint64_t dtb_cur_limit; /* current limit before signaling/dropping */
429 uint64_t dtb_limit; /* limit before signaling */
430 uint64_t dtb_size; /* size of buffer */
431 uint32_t dtb_flags; /* flags */
432 uint32_t dtb_drops; /* number of drops */
433 caddr_t dtb_tomax; /* active buffer */
434 caddr_t dtb_xamot; /* inactive buffer */
435 uint32_t dtb_xamot_flags; /* inactive flags */
436 uint32_t dtb_xamot_drops; /* drops in inactive buffer */
437 uint64_t dtb_xamot_offset; /* offset in inactive buffer */
438 uint32_t dtb_errors; /* number of errors */
439 uint32_t dtb_xamot_errors; /* errors in inactive buffer */
440 #ifndef _LP64
441 uint64_t dtb_pad1;
442 #endif
443 uint64_t dtb_switched; /* time of last switch */
444 uint64_t dtb_interval; /* observed switch interval */
445 uint64_t dtb_pad2[4]; /* pad to avoid false sharing */
446 } dtrace_buffer_t;
447
448 /*
449 * DTrace Aggregation Buffers
450 *
451 * Aggregation buffers use much of the same mechanism as described above
452 * ("DTrace Buffers"). However, because an aggregation is fundamentally a
453 * hash, there exists dynamic metadata associated with an aggregation buffer
454 * that is not associated with other kinds of buffers. This aggregation
455 * metadata is _only_ relevant for the in-kernel implementation of
456 * aggregations; it is not actually relevant to user-level consumers. To do
457 * this, we allocate dynamic aggregation data (hash keys and hash buckets)
458 * starting below the _limit_ of the buffer, and we allocate data from the
459 * _base_ of the buffer. When the aggregation buffer is copied out, _only_ the
460 * data is copied out; the metadata is simply discarded. Schematically,
461 * aggregation buffers look like:
462 *
463 * base of data buffer ---> +-------+------+-----------+-------+
464 * | aggid | key | value | aggid |
465 * +-------+------+-----------+-------+
466 * | key |
467 * +-------+-------+-----+------------+
468 * | value | aggid | key | value |
469 * +-------+------++-----+------+-----+
470 * | aggid | key | value | |
471 * +-------+------+-------------+ |
472 * | || |
473 * | || |
474 * | \/ |
475 * : :
476 * . .
477 * . .
478 * . .
479 * : :
480 * | /\ |
481 * | || +------------+
482 * | || | |
483 * +---------------------+ |
484 * | hash keys |
485 * | (dtrace_aggkey structures) |
486 * | |
487 * +----------------------------------+
488 * | hash buckets |
489 * | (dtrace_aggbuffer structure) |
490 * | |
491 * limit of data buffer ---> +----------------------------------+
492 *
493 *
494 * As implied above, just as we assure that ECBs always store a constant
495 * amount of data, we assure that a given aggregation -- identified by its
496 * aggregation ID -- always stores data of a constant quantity and type.
497 * As with EPIDs, this allows the aggregation ID to serve as the metadata for a
498 * given record.
499 *
500 * Note that the size of the dtrace_aggkey structure must be sizeof (uintptr_t)
501 * aligned. (If this the structure changes such that this becomes false, an
502 * assertion will fail in dtrace_aggregate().)
503 */
504 typedef struct dtrace_aggkey {
505 uint32_t dtak_hashval; /* hash value */
506 uint32_t dtak_action:4; /* action -- 4 bits */
507 uint32_t dtak_size:28; /* size -- 28 bits */
508 caddr_t dtak_data; /* data pointer */
509 struct dtrace_aggkey *dtak_next; /* next in hash chain */
510 } dtrace_aggkey_t;
511
512 typedef struct dtrace_aggbuffer {
513 uintptr_t dtagb_hashsize; /* number of buckets */
514 uintptr_t dtagb_free; /* free list of keys */
515 dtrace_aggkey_t **dtagb_hash; /* hash table */
516 } dtrace_aggbuffer_t;
517
518 /*
519 * DTrace Speculations
520 *
521 * Speculations have a per-CPU buffer and a global state. Once a speculation
522 * buffer has been comitted or discarded, it cannot be reused until all CPUs
523 * have taken the same action (commit or discard) on their respective
524 * speculative buffer. However, because DTrace probes may execute in arbitrary
525 * context, other CPUs cannot simply be cross-called at probe firing time to
526 * perform the necessary commit or discard. The speculation states thus
527 * optimize for the case that a speculative buffer is only active on one CPU at
528 * the time of a commit() or discard() -- for if this is the case, other CPUs
529 * need not take action, and the speculation is immediately available for
530 * reuse. If the speculation is active on multiple CPUs, it must be
531 * asynchronously cleaned -- potentially leading to a higher rate of dirty
532 * speculative drops. The speculation states are as follows:
533 *
534 * DTRACESPEC_INACTIVE <= Initial state; inactive speculation
535 * DTRACESPEC_ACTIVE <= Allocated, but not yet speculatively traced to
536 * DTRACESPEC_ACTIVEONE <= Speculatively traced to on one CPU
537 * DTRACESPEC_ACTIVEMANY <= Speculatively traced to on more than one CPU
538 * DTRACESPEC_COMMITTING <= Currently being commited on one CPU
539 * DTRACESPEC_COMMITTINGMANY <= Currently being commited on many CPUs
540 * DTRACESPEC_DISCARDING <= Currently being discarded on many CPUs
541 *
542 * The state transition diagram is as follows:
543 *
544 * +----------------------------------------------------------+
545 * | |
546 * | +------------+ |
547 * | +-------------------| COMMITTING |<-----------------+ |
548 * | | +------------+ | |
549 * | | copied spec. ^ commit() on | | discard() on
550 * | | into principal | active CPU | | active CPU
551 * | | | commit() | |
552 * V V | | |
553 * +----------+ +--------+ +-----------+
554 * | INACTIVE |---------------->| ACTIVE |--------------->| ACTIVEONE |
555 * +----------+ speculation() +--------+ speculate() +-----------+
556 * ^ ^ | | |
557 * | | | discard() | |
558 * | | asynchronously | discard() on | | speculate()
559 * | | cleaned V inactive CPU | | on inactive
560 * | | +------------+ | | CPU
561 * | +-------------------| DISCARDING |<-----------------+ |
562 * | +------------+ |
563 * | asynchronously ^ |
564 * | copied spec. | discard() |
565 * | into principal +------------------------+ |
566 * | | V
567 * +----------------+ commit() +------------+
568 * | COMMITTINGMANY |<----------------------------------| ACTIVEMANY |
569 * +----------------+ +------------+
570 */
571 typedef enum dtrace_speculation_state {
572 DTRACESPEC_INACTIVE = 0,
573 DTRACESPEC_ACTIVE,
574 DTRACESPEC_ACTIVEONE,
575 DTRACESPEC_ACTIVEMANY,
576 DTRACESPEC_COMMITTING,
577 DTRACESPEC_COMMITTINGMANY,
578 DTRACESPEC_DISCARDING
579 } dtrace_speculation_state_t;
580
581 typedef struct dtrace_speculation {
582 dtrace_speculation_state_t dtsp_state; /* current speculation state */
583 int dtsp_cleaning; /* non-zero if being cleaned */
584 dtrace_buffer_t *dtsp_buffer; /* speculative buffer */
585 } dtrace_speculation_t;
586
587 /*
588 * DTrace Dynamic Variables
589 *
590 * The dynamic variable problem is obviously decomposed into two subproblems:
591 * allocating new dynamic storage, and freeing old dynamic storage. The
592 * presence of the second problem makes the first much more complicated -- or
593 * rather, the absence of the second renders the first trivial. This is the
594 * case with aggregations, for which there is effectively no deallocation of
595 * dynamic storage. (Or more accurately, all dynamic storage is deallocated
596 * when a snapshot is taken of the aggregation.) As DTrace dynamic variables
597 * allow for both dynamic allocation and dynamic deallocation, the
598 * implementation of dynamic variables is quite a bit more complicated than
599 * that of their aggregation kin.
600 *
601 * We observe that allocating new dynamic storage is tricky only because the
602 * size can vary -- the allocation problem is much easier if allocation sizes
603 * are uniform. We further observe that in D, the size of dynamic variables is
604 * actually _not_ dynamic -- dynamic variable sizes may be determined by static
605 * analysis of DIF text. (This is true even of putatively dynamically-sized
606 * objects like strings and stacks, the sizes of which are dictated by the
607 * "stringsize" and "stackframes" variables, respectively.) We exploit this by
608 * performing this analysis on all DIF before enabling any probes. For each
609 * dynamic load or store, we calculate the dynamically-allocated size plus the
610 * size of the dtrace_dynvar structure plus the storage required to key the
611 * data. For all DIF, we take the largest value and dub it the _chunksize_.
612 * We then divide dynamic memory into two parts: a hash table that is wide
613 * enough to have every chunk in its own bucket, and a larger region of equal
614 * chunksize units. Whenever we wish to dynamically allocate a variable, we
615 * always allocate a single chunk of memory. Depending on the uniformity of
616 * allocation, this will waste some amount of memory -- but it eliminates the
617 * non-determinism inherent in traditional heap fragmentation.
618 *
619 * Dynamic objects are allocated by storing a non-zero value to them; they are
620 * deallocated by storing a zero value to them. Dynamic variables are
621 * complicated enormously by being shared between CPUs. In particular,
622 * consider the following scenario:
623 *
624 * CPU A CPU B
625 * +---------------------------------+ +---------------------------------+
626 * | | | |
627 * | allocates dynamic object a[123] | | |
628 * | by storing the value 345 to it | | |
629 * | ---------> |
630 * | | | wishing to load from object |
631 * | | | a[123], performs lookup in |
632 * | | | dynamic variable space |
633 * | <--------- |
634 * | deallocates object a[123] by | | |
635 * | storing 0 to it | | |
636 * | | | |
637 * | allocates dynamic object b[567] | | performs load from a[123] |
638 * | by storing the value 789 to it | | |
639 * : : : :
640 * . . . .
641 *
642 * This is obviously a race in the D program, but there are nonetheless only
643 * two valid values for CPU B's load from a[123]: 345 or 0. Most importantly,
644 * CPU B may _not_ see the value 789 for a[123].
645 *
646 * There are essentially two ways to deal with this:
647 *
648 * (1) Explicitly spin-lock variables. That is, if CPU B wishes to load
649 * from a[123], it needs to lock a[123] and hold the lock for the
650 * duration that it wishes to manipulate it.
651 *
652 * (2) Avoid reusing freed chunks until it is known that no CPU is referring
653 * to them.
654 *
655 * The implementation of (1) is rife with complexity, because it requires the
656 * user of a dynamic variable to explicitly decree when they are done using it.
657 * Were all variables by value, this perhaps wouldn't be debilitating -- but
658 * dynamic variables of non-scalar types are tracked by reference. That is, if
659 * a dynamic variable is, say, a string, and that variable is to be traced to,
660 * say, the principal buffer, the DIF emulation code returns to the main
661 * dtrace_probe() loop a pointer to the underlying storage, not the contents of
662 * the storage. Further, code calling on DIF emulation would have to be aware
663 * that the DIF emulation has returned a reference to a dynamic variable that
664 * has been potentially locked. The variable would have to be unlocked after
665 * the main dtrace_probe() loop is finished with the variable, and the main
666 * dtrace_probe() loop would have to be careful to not call any further DIF
667 * emulation while the variable is locked to avoid deadlock. More generally,
668 * if one were to implement (1), DIF emulation code dealing with dynamic
669 * variables could only deal with one dynamic variable at a time (lest deadlock
670 * result). To sum, (1) exports too much subtlety to the users of dynamic
671 * variables -- increasing maintenance burden and imposing serious constraints
672 * on future DTrace development.
673 *
674 * The implementation of (2) is also complex, but the complexity is more
675 * manageable. We need to be sure that when a variable is deallocated, it is
676 * not placed on a traditional free list, but rather on a _dirty_ list. Once a
677 * variable is on a dirty list, it cannot be found by CPUs performing a
678 * subsequent lookup of the variable -- but it may still be in use by other
679 * CPUs. To assure that all CPUs that may be seeing the old variable have
680 * cleared out of probe context, a dtrace_sync() can be issued. Once the
681 * dtrace_sync() has completed, it can be known that all CPUs are done
682 * manipulating the dynamic variable -- the dirty list can be atomically
683 * appended to the free list. Unfortunately, there's a slight hiccup in this
684 * mechanism: dtrace_sync() may not be issued from probe context. The
685 * dtrace_sync() must be therefore issued asynchronously from non-probe
686 * context. For this we rely on the DTrace cleaner, a cyclic that runs at the
687 * "cleanrate" frequency. To ease this implementation, we define several chunk
688 * lists:
689 *
690 * - Dirty. Deallocated chunks, not yet cleaned. Not available.
691 *
692 * - Rinsing. Formerly dirty chunks that are currently being asynchronously
693 * cleaned. Not available, but will be shortly. Dynamic variable
694 * allocation may not spin or block for availability, however.
695 *
696 * - Clean. Clean chunks, ready for allocation -- but not on the free list.
697 *
698 * - Free. Available for allocation.
699 *
700 * Moreover, to avoid absurd contention, _each_ of these lists is implemented
701 * on a per-CPU basis. This is only for performance, not correctness; chunks
702 * may be allocated from another CPU's free list. The algorithm for allocation
703 * then is this:
704 *
705 * (1) Attempt to atomically allocate from current CPU's free list. If list
706 * is non-empty and allocation is successful, allocation is complete.
707 *
708 * (2) If the clean list is non-empty, atomically move it to the free list,
709 * and reattempt (1).
710 *
711 * (3) If the dynamic variable space is in the CLEAN state, look for free
712 * and clean lists on other CPUs by setting the current CPU to the next
713 * CPU, and reattempting (1). If the next CPU is the current CPU (that
714 * is, if all CPUs have been checked), atomically switch the state of
715 * the dynamic variable space based on the following:
716 *
717 * - If no free chunks were found and no dirty chunks were found,
718 * atomically set the state to EMPTY.
719 *
720 * - If dirty chunks were found, atomically set the state to DIRTY.
721 *
722 * - If rinsing chunks were found, atomically set the state to RINSING.
723 *
724 * (4) Based on state of dynamic variable space state, increment appropriate
725 * counter to indicate dynamic drops (if in EMPTY state) vs. dynamic
726 * dirty drops (if in DIRTY state) vs. dynamic rinsing drops (if in
727 * RINSING state). Fail the allocation.
728 *
729 * The cleaning cyclic operates with the following algorithm: for all CPUs
730 * with a non-empty dirty list, atomically move the dirty list to the rinsing
731 * list. Perform a dtrace_sync(). For all CPUs with a non-empty rinsing list,
732 * atomically move the rinsing list to the clean list. Perform another
733 * dtrace_sync(). By this point, all CPUs have seen the new clean list; the
734 * state of the dynamic variable space can be restored to CLEAN.
735 *
736 * There exist two final races that merit explanation. The first is a simple
737 * allocation race:
738 *
739 * CPU A CPU B
740 * +---------------------------------+ +---------------------------------+
741 * | | | |
742 * | allocates dynamic object a[123] | | allocates dynamic object a[123] |
743 * | by storing the value 345 to it | | by storing the value 567 to it |
744 * | | | |
745 * : : : :
746 * . . . .
747 *
748 * Again, this is a race in the D program. It can be resolved by having a[123]
749 * hold the value 345 or a[123] hold the value 567 -- but it must be true that
750 * a[123] have only _one_ of these values. (That is, the racing CPUs may not
751 * put the same element twice on the same hash chain.) This is resolved
752 * simply: before the allocation is undertaken, the start of the new chunk's
753 * hash chain is noted. Later, after the allocation is complete, the hash
754 * chain is atomically switched to point to the new element. If this fails
755 * (because of either concurrent allocations or an allocation concurrent with a
756 * deletion), the newly allocated chunk is deallocated to the dirty list, and
757 * the whole process of looking up (and potentially allocating) the dynamic
758 * variable is reattempted.
759 *
760 * The final race is a simple deallocation race:
761 *
762 * CPU A CPU B
763 * +---------------------------------+ +---------------------------------+
764 * | | | |
765 * | deallocates dynamic object | | deallocates dynamic object |
766 * | a[123] by storing the value 0 | | a[123] by storing the value 0 |
767 * | to it | | to it |
768 * | | | |
769 * : : : :
770 * . . . .
771 *
772 * Once again, this is a race in the D program, but it is one that we must
773 * handle without corrupting the underlying data structures. Because
774 * deallocations require the deletion of a chunk from the middle of a hash
775 * chain, we cannot use a single-word atomic operation to remove it. For this,
776 * we add a spin lock to the hash buckets that is _only_ used for deallocations
777 * (allocation races are handled as above). Further, this spin lock is _only_
778 * held for the duration of the delete; before control is returned to the DIF
779 * emulation code, the hash bucket is unlocked.
780 */
781 typedef struct dtrace_key {
782 uint64_t dttk_value; /* data value or data pointer */
783 uint64_t dttk_size; /* 0 if by-val, >0 if by-ref */
784 } dtrace_key_t;
785
786 typedef struct dtrace_tuple {
787 uint32_t dtt_nkeys; /* number of keys in tuple */
788 uint32_t dtt_pad; /* padding */
789 dtrace_key_t dtt_key[1]; /* array of tuple keys */
790 } dtrace_tuple_t;
791
792 typedef struct dtrace_dynvar {
793 uint64_t dtdv_hashval; /* hash value -- 0 if free */
794 struct dtrace_dynvar *dtdv_next; /* next on list or hash chain */
795 void *dtdv_data; /* pointer to data */
796 dtrace_tuple_t dtdv_tuple; /* tuple key */
797 } dtrace_dynvar_t;
798
799 typedef enum dtrace_dynvar_op {
800 DTRACE_DYNVAR_ALLOC,
801 DTRACE_DYNVAR_NOALLOC,
802 DTRACE_DYNVAR_DEALLOC
803 } dtrace_dynvar_op_t;
804
805 typedef struct dtrace_dynhash {
806 dtrace_dynvar_t *dtdh_chain; /* hash chain for this bucket */
807 uintptr_t dtdh_lock; /* deallocation lock */
808 #ifdef _LP64
809 uintptr_t dtdh_pad[6]; /* pad to avoid false sharing */
810 #else
811 uintptr_t dtdh_pad[14]; /* pad to avoid false sharing */
812 #endif
813 } dtrace_dynhash_t;
814
815 typedef struct dtrace_dstate_percpu {
816 dtrace_dynvar_t *dtdsc_free; /* free list for this CPU */
817 dtrace_dynvar_t *dtdsc_dirty; /* dirty list for this CPU */
818 dtrace_dynvar_t *dtdsc_rinsing; /* rinsing list for this CPU */
819 dtrace_dynvar_t *dtdsc_clean; /* clean list for this CPU */
820 uint64_t dtdsc_drops; /* number of capacity drops */
821 uint64_t dtdsc_dirty_drops; /* number of dirty drops */
822 uint64_t dtdsc_rinsing_drops; /* number of rinsing drops */
823 #ifdef _LP64
824 uint64_t dtdsc_pad; /* pad to avoid false sharing */
825 #else
826 uint64_t dtdsc_pad[2]; /* pad to avoid false sharing */
827 #endif
828 } dtrace_dstate_percpu_t;
829
830 typedef enum dtrace_dstate_state {
831 DTRACE_DSTATE_CLEAN = 0,
832 DTRACE_DSTATE_EMPTY,
833 DTRACE_DSTATE_DIRTY,
834 DTRACE_DSTATE_RINSING
835 } dtrace_dstate_state_t;
836
837 typedef struct dtrace_dstate {
838 void *dtds_base; /* base of dynamic var. space */
839 size_t dtds_size; /* size of dynamic var. space */
840 size_t dtds_hashsize; /* number of buckets in hash */
841 size_t dtds_chunksize; /* size of each chunk */
842 dtrace_dynhash_t *dtds_hash; /* pointer to hash table */
843 dtrace_dstate_state_t dtds_state; /* current dynamic var. state */
844 dtrace_dstate_percpu_t *dtds_percpu; /* per-CPU dyn. var. state */
845 } dtrace_dstate_t;
846
847 /*
848 * DTrace Variable State
849 *
850 * The DTrace variable state tracks user-defined variables in its dtrace_vstate
851 * structure. Each DTrace consumer has exactly one dtrace_vstate structure,
852 * but some dtrace_vstate structures may exist without a corresponding DTrace
853 * consumer (see "DTrace Helpers", below). As described in <sys/dtrace.h>,
854 * user-defined variables can have one of three scopes:
855 *
856 * DIFV_SCOPE_GLOBAL => global scope
857 * DIFV_SCOPE_THREAD => thread-local scope (i.e. "self->" variables)
858 * DIFV_SCOPE_LOCAL => clause-local scope (i.e. "this->" variables)
859 *
860 * The variable state tracks variables by both their scope and their allocation
861 * type:
862 *
863 * - The dtvs_globals and dtvs_locals members each point to an array of
864 * dtrace_statvar structures. These structures contain both the variable
865 * metadata (dtrace_difv structures) and the underlying storage for all
866 * statically allocated variables, including statically allocated
867 * DIFV_SCOPE_GLOBAL variables and all DIFV_SCOPE_LOCAL variables.
868 *
869 * - The dtvs_tlocals member points to an array of dtrace_difv structures for
870 * DIFV_SCOPE_THREAD variables. As such, this array tracks _only_ the
871 * variable metadata for DIFV_SCOPE_THREAD variables; the underlying storage
872 * is allocated out of the dynamic variable space.
873 *
874 * - The dtvs_dynvars member is the dynamic variable state associated with the
875 * variable state. The dynamic variable state (described in "DTrace Dynamic
876 * Variables", above) tracks all DIFV_SCOPE_THREAD variables and all
877 * dynamically-allocated DIFV_SCOPE_GLOBAL variables.
878 */
879 typedef struct dtrace_statvar {
880 uint64_t dtsv_data; /* data or pointer to it */
881 size_t dtsv_size; /* size of pointed-to data */
882 int dtsv_refcnt; /* reference count */
883 dtrace_difv_t dtsv_var; /* variable metadata */
884 } dtrace_statvar_t;
885
886 typedef struct dtrace_vstate {
887 dtrace_state_t *dtvs_state; /* back pointer to state */
888 dtrace_statvar_t **dtvs_globals; /* statically-allocated glbls */
889 int dtvs_nglobals; /* number of globals */
890 dtrace_difv_t *dtvs_tlocals; /* thread-local metadata */
891 int dtvs_ntlocals; /* number of thread-locals */
892 dtrace_statvar_t **dtvs_locals; /* clause-local data */
893 int dtvs_nlocals; /* number of clause-locals */
894 dtrace_dstate_t dtvs_dynvars; /* dynamic variable state */
895 } dtrace_vstate_t;
896
897 /*
898 * DTrace Machine State
899 *
900 * In the process of processing a fired probe, DTrace needs to track and/or
901 * cache some per-CPU state associated with that particular firing. This is
902 * state that is always discarded after the probe firing has completed, and
903 * much of it is not specific to any DTrace consumer, remaining valid across
904 * all ECBs. This state is tracked in the dtrace_mstate structure.
905 */
906 #define DTRACE_MSTATE_ARGS 0x00000001
907 #define DTRACE_MSTATE_PROBE 0x00000002
908 #define DTRACE_MSTATE_EPID 0x00000004
909 #define DTRACE_MSTATE_TIMESTAMP 0x00000008
910 #define DTRACE_MSTATE_STACKDEPTH 0x00000010
911 #define DTRACE_MSTATE_CALLER 0x00000020
912 #define DTRACE_MSTATE_IPL 0x00000040
913 #define DTRACE_MSTATE_FLTOFFS 0x00000080
914 #define DTRACE_MSTATE_WALLTIMESTAMP 0x00000100
915 #define DTRACE_MSTATE_USTACKDEPTH 0x00000200
916 #define DTRACE_MSTATE_UCALLER 0x00000400
917 #define DTRACE_MSTATE_MACHTIMESTAMP 0x00000800
918 #define DTRACE_MSTATE_MACHCTIMESTAMP 0x00001000
919
920 typedef struct dtrace_mstate {
921 uintptr_t dtms_scratch_base; /* base of scratch space */
922 uintptr_t dtms_scratch_ptr; /* current scratch pointer */
923 size_t dtms_scratch_size; /* scratch size */
924 uint32_t dtms_present; /* variables that are present */
925 uint64_t dtms_arg[5]; /* cached arguments */
926 dtrace_epid_t dtms_epid; /* current EPID */
927 uint64_t dtms_timestamp; /* cached timestamp */
928 hrtime_t dtms_walltimestamp; /* cached wall timestamp */
929 uint64_t dtms_machtimestamp; /* cached mach absolute timestamp */
930 uint64_t dtms_machctimestamp; /* cached mach continuous timestamp */
931 int dtms_stackdepth; /* cached stackdepth */
932 int dtms_ustackdepth; /* cached ustackdepth */
933 struct dtrace_probe *dtms_probe; /* current probe */
934 uintptr_t dtms_caller; /* cached caller */
935 uint64_t dtms_ucaller; /* cached user-level caller */
936 int dtms_ipl; /* cached interrupt pri lev */
937 int dtms_fltoffs; /* faulting DIFO offset */
938 uintptr_t dtms_strtok; /* saved strtok() pointer */
939 uintptr_t dtms_strtok_limit; /* upper bound of strtok ptr */
940 uint32_t dtms_access; /* memory access rights */
941 dtrace_difo_t *dtms_difo; /* current dif object */
942 } dtrace_mstate_t;
943
944 #define DTRACE_COND_OWNER 0x1
945 #define DTRACE_COND_USERMODE 0x2
946 #define DTRACE_COND_ZONEOWNER 0x4
947
948 #define DTRACE_PROBEKEY_MAXDEPTH 8 /* max glob recursion depth */
949
950 /*
951 * Access flag used by dtrace_mstate.dtms_access.
952 */
953 #define DTRACE_ACCESS_KERNEL 0x1 /* the priv to read kmem */
954
955
956 /*
957 * DTrace Activity
958 *
959 * Each DTrace consumer is in one of several states, which (for purposes of
960 * avoiding yet-another overloading of the noun "state") we call the current
961 * _activity_. The activity transitions on dtrace_go() (from DTRACIOCGO), on
962 * dtrace_stop() (from DTRACIOCSTOP) and on the exit() action. Activities may
963 * only transition in one direction; the activity transition diagram is a
964 * directed acyclic graph. The activity transition diagram is as follows:
965 *
966 *
967 *
968 * +----------+ +--------+ +--------+
969 * | INACTIVE |------------------>| WARMUP |------------------>| ACTIVE |
970 * +----------+ dtrace_go(), +--------+ dtrace_go(), +--------+
971 * before BEGIN | after BEGIN | | |
972 * | | | |
973 * exit() action | | | |
974 * from BEGIN ECB | | | |
975 * | | | |
976 * v | | |
977 * +----------+ exit() action | | |
978 * +-----------------------------| DRAINING |<-------------------+ | |
979 * | +----------+ | |
980 * | | | |
981 * | dtrace_stop(), | | |
982 * | before END | | |
983 * | | | |
984 * | v | |
985 * | +---------+ +----------+ | |
986 * | | STOPPED |<----------------| COOLDOWN |<----------------------+ |
987 * | +---------+ dtrace_stop(), +----------+ dtrace_stop(), |
988 * | after END before END |
989 * | |
990 * | +--------+ |
991 * +----------------------------->| KILLED |<--------------------------+
992 * deadman timeout or +--------+ deadman timeout or
993 * killed consumer killed consumer
994 *
995 * Note that once a DTrace consumer has stopped tracing, there is no way to
996 * restart it; if a DTrace consumer wishes to restart tracing, it must reopen
997 * the DTrace pseudodevice.
998 */
999 typedef enum dtrace_activity {
1000 DTRACE_ACTIVITY_INACTIVE = 0, /* not yet running */
1001 DTRACE_ACTIVITY_WARMUP, /* while starting */
1002 DTRACE_ACTIVITY_ACTIVE, /* running */
1003 DTRACE_ACTIVITY_DRAINING, /* before stopping */
1004 DTRACE_ACTIVITY_COOLDOWN, /* while stopping */
1005 DTRACE_ACTIVITY_STOPPED, /* after stopping */
1006 DTRACE_ACTIVITY_KILLED /* killed */
1007 } dtrace_activity_t;
1008
1009
1010 /*
1011 * APPLE NOTE: DTrace dof modes implementation
1012 *
1013 * DTrace has four "dof modes". They are:
1014 *
1015 * DTRACE_DOF_MODE_NEVER Never load any dof, period.
1016 * DTRACE_DOF_MODE_LAZY_ON Defer loading dof until later
1017 * DTRACE_DOF_MODE_LAZY_OFF Load all deferred dof now, and any new dof
1018 * DTRACE_DOF_MODE_NON_LAZY Load all dof immediately.
1019 *
1020 * It is legal to transition between the two lazy modes. The NEVER and
1021 * NON_LAZY modes are permanent, and must not change once set.
1022 *
1023 * The current dof mode is kept in dtrace_dof_mode, which is protected by the
1024 * dtrace_dof_mode_lock. This is a RW lock, reads require shared access, writes
1025 * require exclusive access. Because NEVER and NON_LAZY are permanent states,
1026 * it is legal to test for those modes without holding the dof mode lock.
1027 *
1028 * Lock ordering is dof mode lock before any dtrace lock, and before the
1029 * process p_dtrace_sprlock. In general, other locks should not be held when
1030 * taking the dof mode lock. Acquiring the dof mode lock in exclusive mode
1031 * will block process fork, exec, and exit, so it should be held exclusive
1032 * for as short a time as possible.
1033 */
1034
1035 #define DTRACE_DOF_MODE_NEVER 0
1036 #define DTRACE_DOF_MODE_LAZY_ON 1
1037 #define DTRACE_DOF_MODE_LAZY_OFF 2
1038 #define DTRACE_DOF_MODE_NON_LAZY 3
1039
1040 /*
1041 * dtrace kernel symbol modes are used to control when the kernel may dispose of
1042 * symbol information used by the fbt/sdt provider. The kernel itself, as well as
1043 * every kext, has symbol table/nlist info that has historically been preserved
1044 * for dtrace's use. This allowed dtrace to be lazy about allocating fbt/sdt probes,
1045 * at the expense of keeping the symbol info in the kernel permanently.
1046 *
1047 * Starting in 10.7+, fbt probes may be created from userspace, in the same
1048 * fashion as pid probes. The kernel allows dtrace "first right of refusal"
1049 * whenever symbol data becomes available (such as a kext load). If dtrace is
1050 * active, it will immediately read/copy the needed data, and then the kernel
1051 * may free it. If dtrace is not active, it returns immediately, having done
1052 * no work or allocations, and the symbol data is freed. Should dtrace need
1053 * this data later, it is expected that the userspace client will push the
1054 * data into the kernel via ioctl calls.
1055 *
1056 * The kernel symbol modes are used to control what dtrace does with symbol data:
1057 *
1058 * DTRACE_KERNEL_SYMBOLS_NEVER Effectively disables fbt/sdt
1059 * DTRACE_KERNEL_SYMBOLS_FROM_KERNEL Immediately read/copy symbol data
1060 * DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE Wait for symbols from userspace
1061 * DTRACE_KERNEL_SYMBOLS_ALWAYS_FROM_KERNEL Immediately read/copy symbol data
1062 *
1063 * It is legal to transition between DTRACE_KERNEL_SYMBOLS_FROM_KERNEL and
1064 * DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE. The DTRACE_KERNEL_SYMBOLS_NEVER and
1065 * DTRACE_KERNEL_SYMBOLS_ALWAYS_FROM_KERNEL are permanent modes, intended to
1066 * disable fbt probes entirely, or prevent any symbols being loaded from
1067 * userspace.
1068 *
1069 * The kernel symbol mode is kept in dtrace_kernel_symbol_mode, which is protected
1070 * by the dtrace_lock.
1071 */
1072
1073 #define DTRACE_KERNEL_SYMBOLS_NEVER 0
1074 #define DTRACE_KERNEL_SYMBOLS_FROM_KERNEL 1
1075 #define DTRACE_KERNEL_SYMBOLS_FROM_USERSPACE 2
1076 #define DTRACE_KERNEL_SYMBOLS_ALWAYS_FROM_KERNEL 3
1077
1078
1079 /*
1080 * DTrace Helper Implementation
1081 *
1082 * A description of the helper architecture may be found in <sys/dtrace.h>.
1083 * Each process contains a pointer to its helpers in its p_dtrace_helpers
1084 * member. This is a pointer to a dtrace_helpers structure, which contains an
1085 * array of pointers to dtrace_helper structures, helper variable state (shared
1086 * among a process's helpers) and a generation count. (The generation count is
1087 * used to provide an identifier when a helper is added so that it may be
1088 * subsequently removed.) The dtrace_helper structure is self-explanatory,
1089 * containing pointers to the objects needed to execute the helper. Note that
1090 * helpers are _duplicated_ across fork(2), and destroyed on exec(2). No more
1091 * than dtrace_helpers_max are allowed per-process.
1092 */
1093 #define DTRACE_HELPER_ACTION_USTACK 0
1094 #define DTRACE_NHELPER_ACTIONS 1
1095
1096 typedef struct dtrace_helper_action {
1097 int dtha_generation; /* helper action generation */
1098 int dtha_nactions; /* number of actions */
1099 dtrace_difo_t *dtha_predicate; /* helper action predicate */
1100 dtrace_difo_t **dtha_actions; /* array of actions */
1101 struct dtrace_helper_action *dtha_next; /* next helper action */
1102 } dtrace_helper_action_t;
1103
1104 typedef struct dtrace_helper_provider {
1105 int dthp_generation; /* helper provider generation */
1106 uint32_t dthp_ref; /* reference count */
1107 dof_helper_t dthp_prov; /* DOF w/ provider and probes */
1108 } dtrace_helper_provider_t;
1109
1110 typedef struct dtrace_helpers {
1111 dtrace_helper_action_t **dthps_actions; /* array of helper actions */
1112 dtrace_vstate_t dthps_vstate; /* helper action var. state */
1113 dtrace_helper_provider_t **dthps_provs; /* array of providers */
1114 uint_t dthps_nprovs; /* count of providers */
1115 uint_t dthps_maxprovs; /* provider array size */
1116 int dthps_generation; /* current generation */
1117 pid_t dthps_pid; /* pid of associated proc */
1118 int dthps_deferred; /* helper in deferred list */
1119 struct dtrace_helpers *dthps_next; /* next pointer */
1120 struct dtrace_helpers *dthps_prev; /* prev pointer */
1121 } dtrace_helpers_t;
1122
1123 /*
1124 * DTrace Helper Action Tracing
1125 *
1126 * Debugging helper actions can be arduous. To ease the development and
1127 * debugging of helpers, DTrace contains a tracing-framework-within-a-tracing-
1128 * framework: helper tracing. If dtrace_helptrace_enabled is non-zero (which
1129 * it is by default on DEBUG kernels), all helper activity will be traced to a
1130 * global, in-kernel ring buffer. Each entry includes a pointer to the specific
1131 * helper, the location within the helper, and a trace of all local variables.
1132 * The ring buffer may be displayed in a human-readable format with the
1133 * ::dtrace_helptrace mdb(1) dcmd.
1134 */
1135 #define DTRACE_HELPTRACE_NEXT (-1)
1136 #define DTRACE_HELPTRACE_DONE (-2)
1137 #define DTRACE_HELPTRACE_ERR (-3)
1138
1139
1140 typedef struct dtrace_helptrace {
1141 dtrace_helper_action_t *dtht_helper; /* helper action */
1142 int dtht_where; /* where in helper action */
1143 int dtht_nlocals; /* number of locals */
1144 int dtht_fault; /* type of fault (if any) */
1145 int dtht_fltoffs; /* DIF offset */
1146 uint64_t dtht_illval; /* faulting value */
1147 uint64_t dtht_locals[1]; /* local variables */
1148 } dtrace_helptrace_t;
1149
1150 /*
1151 * DTrace Credentials
1152 *
1153 * In probe context, we have limited flexibility to examine the credentials
1154 * of the DTrace consumer that created a particular enabling. We use
1155 * the Least Privilege interfaces to cache the consumer's cred pointer and
1156 * some facts about that credential in a dtrace_cred_t structure. These
1157 * can limit the consumer's breadth of visibility and what actions the
1158 * consumer may take.
1159 */
1160 #define DTRACE_CRV_ALLPROC 0x01
1161 #define DTRACE_CRV_KERNEL 0x02
1162 #define DTRACE_CRV_ALLZONE 0x04
1163
1164 #define DTRACE_CRV_ALL (DTRACE_CRV_ALLPROC | DTRACE_CRV_KERNEL | \
1165 DTRACE_CRV_ALLZONE)
1166
1167 #define DTRACE_CRA_PROC 0x0001
1168 #define DTRACE_CRA_PROC_CONTROL 0x0002
1169 #define DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER 0x0004
1170 #define DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE 0x0008
1171 #define DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG 0x0010
1172 #define DTRACE_CRA_KERNEL 0x0020
1173 #define DTRACE_CRA_KERNEL_DESTRUCTIVE 0x0040
1174
1175 #define DTRACE_CRA_ALL (DTRACE_CRA_PROC | \
1176 DTRACE_CRA_PROC_CONTROL | \
1177 DTRACE_CRA_PROC_DESTRUCTIVE_ALLUSER | \
1178 DTRACE_CRA_PROC_DESTRUCTIVE_ALLZONE | \
1179 DTRACE_CRA_PROC_DESTRUCTIVE_CREDCHG | \
1180 DTRACE_CRA_KERNEL | \
1181 DTRACE_CRA_KERNEL_DESTRUCTIVE)
1182
1183 typedef struct dtrace_cred {
1184 cred_t *dcr_cred;
1185 uint8_t dcr_destructive;
1186 uint8_t dcr_visible;
1187 uint16_t dcr_action;
1188 } dtrace_cred_t;
1189
1190 typedef struct dtrace_format {
1191 uint64_t dtf_refcount;
1192 char dtf_str[];
1193 } dtrace_format_t;
1194
1195 #define DTRACE_FORMAT_SIZE(fmt) (strlen(fmt->dtf_str) + 1 + sizeof(dtrace_format_t))
1196
1197 /*
1198 * DTrace Consumer State
1199 *
1200 * Each DTrace consumer has an associated dtrace_state structure that contains
1201 * its in-kernel DTrace state -- including options, credentials, statistics and
1202 * pointers to ECBs, buffers, speculations and formats. A dtrace_state
1203 * structure is also allocated for anonymous enablings. When anonymous state
1204 * is grabbed, the grabbing consumers dts_anon pointer is set to the grabbed
1205 * dtrace_state structure.
1206 */
1207 struct dtrace_state {
1208 dev_t dts_dev; /* device */
1209 int dts_necbs; /* total number of ECBs */
1210 dtrace_ecb_t **dts_ecbs; /* array of ECBs */
1211 dtrace_epid_t dts_epid; /* next EPID to allocate */
1212 size_t dts_needed; /* greatest needed space */
1213 struct dtrace_state *dts_anon; /* anon. state, if grabbed */
1214 dtrace_activity_t dts_activity; /* current activity */
1215 dtrace_vstate_t dts_vstate; /* variable state */
1216 dtrace_buffer_t *dts_buffer; /* principal buffer */
1217 dtrace_buffer_t *dts_aggbuffer; /* aggregation buffer */
1218 dtrace_speculation_t *dts_speculations; /* speculation array */
1219 int dts_nspeculations; /* number of speculations */
1220 int dts_naggregations; /* number of aggregations */
1221 dtrace_aggregation_t **dts_aggregations; /* aggregation array */
1222 vmem_t *dts_aggid_arena; /* arena for aggregation IDs */
1223 uint64_t dts_errors; /* total number of errors */
1224 uint32_t dts_speculations_busy; /* number of spec. busy */
1225 uint32_t dts_speculations_unavail; /* number of spec unavail */
1226 uint32_t dts_stkstroverflows; /* stack string tab overflows */
1227 uint32_t dts_dblerrors; /* errors in ERROR probes */
1228 uint32_t dts_reserve; /* space reserved for END */
1229 hrtime_t dts_laststatus; /* time of last status */
1230 cyclic_id_t dts_cleaner; /* cleaning cyclic */
1231 cyclic_id_t dts_deadman; /* deadman cyclic */
1232 hrtime_t dts_alive; /* time last alive */
1233 char dts_speculates; /* boolean: has speculations */
1234 char dts_destructive; /* boolean: has dest. actions */
1235 int dts_nformats; /* number of formats */
1236 dtrace_format_t **dts_formats; /* format string array */
1237 dtrace_optval_t dts_options[DTRACEOPT_MAX]; /* options */
1238 dtrace_cred_t dts_cred; /* credentials */
1239 size_t dts_nretained; /* number of retained enabs */
1240 uint64_t dts_arg_error_illval;
1241 uint32_t dts_buf_over_limit; /* number of bufs over dtb_limit */
1242 uint64_t **dts_rstate; /* per-CPU random state */
1243 };
1244
1245 struct dtrace_provider {
1246 dtrace_pattr_t dtpv_attr; /* provider attributes */
1247 dtrace_ppriv_t dtpv_priv; /* provider privileges */
1248 dtrace_pops_t dtpv_pops; /* provider operations */
1249 char *dtpv_name; /* provider name */
1250 void *dtpv_arg; /* provider argument */
1251 uint_t dtpv_defunct; /* boolean: defunct provider */
1252 struct dtrace_provider *dtpv_next; /* next provider */
1253 uint64_t dtpv_probe_count; /* number of associated probes */
1254 uint64_t dtpv_ecb_count; /* number of associated enabled ECBs */
1255 };
1256
1257 struct dtrace_meta {
1258 dtrace_mops_t dtm_mops; /* meta provider operations */
1259 char *dtm_name; /* meta provider name */
1260 void *dtm_arg; /* meta provider user arg */
1261 uint64_t dtm_count; /* number of associated providers */
1262 };
1263
1264 /*
1265 * DTrace Enablings
1266 *
1267 * A dtrace_enabling structure is used to track a collection of ECB
1268 * descriptions -- before they have been turned into actual ECBs. This is
1269 * created as a result of DOF processing, and is generally used to generate
1270 * ECBs immediately thereafter. However, enablings are also generally
1271 * retained should the probes they describe be created at a later time; as
1272 * each new module or provider registers with the framework, the retained
1273 * enablings are reevaluated, with any new match resulting in new ECBs. To
1274 * prevent probes from being matched more than once, the enabling tracks the
1275 * last probe generation matched, and only matches probes from subsequent
1276 * generations.
1277 */
1278 typedef struct dtrace_enabling {
1279 dtrace_ecbdesc_t **dten_desc; /* all ECB descriptions */
1280 int dten_ndesc; /* number of ECB descriptions */
1281 int dten_maxdesc; /* size of ECB array */
1282 dtrace_vstate_t *dten_vstate; /* associated variable state */
1283 dtrace_genid_t dten_probegen; /* matched probe generation */
1284 dtrace_ecbdesc_t *dten_current; /* current ECB description */
1285 int dten_error; /* current error value */
1286 int dten_primed; /* boolean: set if primed */
1287 struct dtrace_enabling *dten_prev; /* previous enabling */
1288 struct dtrace_enabling *dten_next; /* next enabling */
1289 } dtrace_enabling_t;
1290
1291 /*
1292 * DTrace Anonymous Enablings
1293 *
1294 * Anonymous enablings are DTrace enablings that are not associated with a
1295 * controlling process, but rather derive their enabling from DOF stored as
1296 * properties in the dtrace.conf file. If there is an anonymous enabling, a
1297 * DTrace consumer state and enabling are created on attach. The state may be
1298 * subsequently grabbed by the first consumer specifying the "grabanon"
1299 * option. As long as an anonymous DTrace enabling exists, dtrace(7D) will
1300 * refuse to unload.
1301 */
1302 typedef struct dtrace_anon {
1303 dtrace_state_t *dta_state; /* DTrace consumer state */
1304 dtrace_enabling_t *dta_enabling; /* pointer to enabling */
1305 processorid_t dta_beganon; /* which CPU BEGIN ran on */
1306 } dtrace_anon_t;
1307
1308 /*
1309 * DTrace Error Debugging
1310 */
1311 #if DEBUG
1312 #define DTRACE_ERRDEBUG
1313 #endif
1314
1315 #ifdef DTRACE_ERRDEBUG
1316
1317 typedef struct dtrace_errhash {
1318 const char *dter_msg; /* error message */
1319 int dter_count; /* number of times seen */
1320 } dtrace_errhash_t;
1321
1322 #define DTRACE_ERRHASHSZ 256 /* must be > number of err msgs */
1323
1324 #endif /* DTRACE_ERRDEBUG */
1325
1326 typedef struct dtrace_string dtrace_string_t;
1327
1328 typedef struct dtrace_string {
1329 dtrace_string_t *dtst_next;
1330 dtrace_string_t *dtst_prev;
1331 uint32_t dtst_refcount;
1332 char dtst_str[];
1333 } dtrace_string_t;
1334
1335 /**
1336 * DTrace Matching pre-conditions
1337 *
1338 * Used when matching new probes to discard matching of enablings that
1339 * doesn't match the condition tested by dmc_func
1340 */
1341 typedef struct dtrace_match_cond {
1342 int (*dmc_func)(dtrace_probedesc_t*, void*);
1343 void *dmc_data;
1344 } dtrace_match_cond_t;
1345
1346
1347 /*
1348 * DTrace Toxic Ranges
1349 *
1350 * DTrace supports safe loads from probe context; if the address turns out to
1351 * be invalid, a bit will be set by the kernel indicating that DTrace
1352 * encountered a memory error, and DTrace will propagate the error to the user
1353 * accordingly. However, there may exist some regions of memory in which an
1354 * arbitrary load can change system state, and from which it is impossible to
1355 * recover from such a load after it has been attempted. Examples of this may
1356 * include memory in which programmable I/O registers are mapped (for which a
1357 * read may have some implications for the device) or (in the specific case of
1358 * UltraSPARC-I and -II) the virtual address hole. The platform is required
1359 * to make DTrace aware of these toxic ranges; DTrace will then check that
1360 * target addresses are not in a toxic range before attempting to issue a
1361 * safe load.
1362 */
1363 typedef struct dtrace_toxrange {
1364 uintptr_t dtt_base; /* base of toxic range */
1365 uintptr_t dtt_limit; /* limit of toxic range */
1366 } dtrace_toxrange_t;
1367
1368 extern uint64_t dtrace_getarg(int, int, dtrace_mstate_t*, dtrace_vstate_t*);
1369 extern int dtrace_getipl(void);
1370 extern uintptr_t dtrace_caller(int);
1371 extern uint32_t dtrace_cas32(uint32_t *, uint32_t, uint32_t);
1372 extern void *dtrace_casptr(void *, void *, void *);
1373 extern void dtrace_copyin(user_addr_t, uintptr_t, size_t, volatile uint16_t *);
1374 extern void dtrace_copyinstr(user_addr_t, uintptr_t, size_t, volatile uint16_t *);
1375 extern void dtrace_copyout(uintptr_t, user_addr_t, size_t, volatile uint16_t *);
1376 extern void dtrace_copyoutstr(uintptr_t, user_addr_t, size_t, volatile uint16_t *);
1377 extern void dtrace_getpcstack(pc_t *, int, int, uint32_t *);
1378 extern uint64_t dtrace_load64(uintptr_t);
1379 extern int dtrace_canload(uint64_t, size_t, dtrace_mstate_t*, dtrace_vstate_t*);
1380
1381 extern uint64_t dtrace_getreg(struct regs *, uint_t);
1382 extern uint64_t dtrace_getvmreg(uint_t);
1383 extern int dtrace_getstackdepth(int);
1384 extern void dtrace_getupcstack(uint64_t *, int);
1385 extern void dtrace_getufpstack(uint64_t *, uint64_t *, int);
1386 extern int dtrace_getustackdepth(void);
1387 extern uintptr_t dtrace_fulword(void *);
1388 extern uint8_t dtrace_fuword8(user_addr_t);
1389 extern uint16_t dtrace_fuword16(user_addr_t);
1390 extern uint32_t dtrace_fuword32(user_addr_t);
1391 extern uint64_t dtrace_fuword64(user_addr_t);
1392 extern int dtrace_proc_waitfor(dtrace_procdesc_t*);
1393 extern void dtrace_probe_error(dtrace_state_t *, dtrace_epid_t, int, int,
1394 int, uint64_t);
1395 extern int dtrace_assfail(const char *, const char *, int);
1396 extern int dtrace_attached(void);
1397 extern hrtime_t dtrace_gethrestime(void);
1398 extern void dtrace_isa_init(void);
1399
1400 extern void dtrace_flush_caches(void);
1401
1402 extern void dtrace_copy(uintptr_t, uintptr_t, size_t);
1403 extern void dtrace_copystr(uintptr_t, uintptr_t, size_t, volatile uint16_t *);
1404
1405 extern void* dtrace_ptrauth_strip(void*, uint64_t);
1406 extern int dtrace_is_valid_ptrauth_key(uint64_t);
1407
1408 extern uint64_t dtrace_physmem_read(uint64_t, size_t);
1409 extern void dtrace_physmem_write(uint64_t, uint64_t, size_t);
1410
1411 /*
1412 * DTrace state handling
1413 */
1414 extern minor_t dtrace_state_reserve(void);
1415 extern dtrace_state_t* dtrace_state_allocate(minor_t minor);
1416 extern dtrace_state_t* dtrace_state_get(minor_t minor);
1417 extern void dtrace_state_free(minor_t minor);
1418
1419 /*
1420 * DTrace restriction checks
1421 */
1422 extern void dtrace_restriction_policy_load(void);
1423 extern boolean_t dtrace_is_restricted(void);
1424 extern boolean_t dtrace_are_restrictions_relaxed(void);
1425 extern boolean_t dtrace_fbt_probes_restricted(void);
1426 extern boolean_t dtrace_sdt_probes_restricted(void);
1427 extern boolean_t dtrace_can_attach_to_proc(proc_t);
1428
1429 /*
1430 * DTrace Assertions
1431 *
1432 * DTrace calls ASSERT and VERIFY from probe context. To assure that a failed
1433 * ASSERT or VERIFYdoes not induce a markedly more catastrophic failure (e.g.,
1434 * one from which a dump cannot be gleaned), DTrace must define its own ASSERT
1435 * and VERIFY macros to be ones that may safely be called from probe context.
1436 * This header file must thus be included by any DTrace component that calls
1437 * ASSERT and/or VERIFY from probe context, and _only_ by those components.
1438 * (The only exception to this is kernel debugging infrastructure at user-level
1439 * that doesn't depend on calling ASSERT.)
1440 */
1441 #undef ASSERT
1442 #undef VERIFY
1443
1444 #define VERIFY(EX) ((void)((EX) || \
1445 dtrace_assfail(#EX, __FILE__, __LINE__)))
1446
1447 #if DEBUG
1448 #define ASSERT(EX) ((void)((EX) || \
1449 dtrace_assfail(#EX, __FILE__, __LINE__)))
1450 #else
1451 #define ASSERT(X) ((void)0)
1452 #endif
1453
1454 #ifdef __cplusplus
1455 }
1456 #endif
1457
1458 #endif /* _SYS_DTRACE_IMPL_H */
1459