]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/ip_output.c
xnu-7195.81.3.tar.gz
[apple/xnu.git] / bsd / netinet / ip_output.c
1 /*
2 * Copyright (c) 2000-2020 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
61 */
62 /*
63 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
64 * support for mandatory and extensible security protections. This notice
65 * is included in support of clause 2.2 (b) of the Apple Public License,
66 * Version 2.0.
67 */
68
69 #define _IP_VHL
70
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
75 #include <sys/mbuf.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <kern/locks.h>
80 #include <sys/sysctl.h>
81 #include <sys/mcache.h>
82 #include <sys/kdebug.h>
83
84 #include <machine/endian.h>
85 #include <pexpert/pexpert.h>
86 #include <mach/sdt.h>
87
88 #include <libkern/OSAtomic.h>
89 #include <libkern/OSByteOrder.h>
90
91 #include <net/if.h>
92 #include <net/if_dl.h>
93 #include <net/if_types.h>
94 #include <net/route.h>
95 #include <net/ntstat.h>
96 #include <net/net_osdep.h>
97 #include <net/dlil.h>
98 #include <net/net_perf.h>
99
100 #include <netinet/in.h>
101 #include <netinet/in_systm.h>
102 #include <netinet/ip.h>
103 #include <netinet/in_pcb.h>
104 #include <netinet/in_var.h>
105 #include <netinet/ip_var.h>
106 #include <netinet/kpi_ipfilter_var.h>
107 #include <netinet/in_tclass.h>
108 #include <netinet/udp.h>
109
110 #include <netinet6/nd6.h>
111
112 #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 1)
113 #define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 3)
114 #define DBG_FNC_IP_OUTPUT NETDBG_CODE(DBG_NETIP, (1 << 8) | 1)
115 #define DBG_FNC_IPSEC4_OUTPUT NETDBG_CODE(DBG_NETIP, (2 << 8) | 1)
116
117 #if IPSEC
118 #include <netinet6/ipsec.h>
119 #include <netkey/key.h>
120 #if IPSEC_DEBUG
121 #include <netkey/key_debug.h>
122 #else
123 #define KEYDEBUG(lev, arg)
124 #endif
125 #endif /* IPSEC */
126
127 #if NECP
128 #include <net/necp.h>
129 #endif /* NECP */
130
131
132 #if DUMMYNET
133 #include <netinet/ip_dummynet.h>
134 #endif
135
136 #if PF
137 #include <net/pfvar.h>
138 #endif /* PF */
139
140
141 u_short ip_id;
142
143 static int sysctl_reset_ip_output_stats SYSCTL_HANDLER_ARGS;
144 static int sysctl_ip_output_measure_bins SYSCTL_HANDLER_ARGS;
145 static int sysctl_ip_output_getperf SYSCTL_HANDLER_ARGS;
146 static void ip_out_cksum_stats(int, u_int32_t);
147 static struct mbuf *ip_insertoptions(struct mbuf *, struct mbuf *, int *);
148 static int ip_optcopy(struct ip *, struct ip *);
149 static int ip_pcbopts(int, struct mbuf **, struct mbuf *);
150 static void imo_trace(struct ip_moptions *, int);
151 static void ip_mloopback(struct ifnet *, struct ifnet *, struct mbuf *,
152 struct sockaddr_in *, int);
153 static struct ifaddr *in_selectsrcif(struct ip *, struct route *, unsigned int);
154
155 extern struct ip_linklocal_stat ip_linklocal_stat;
156
157 /* temporary: for testing */
158 #if IPSEC
159 extern int ipsec_bypass;
160 #endif
161
162 static int ip_maxchainsent = 0;
163 SYSCTL_INT(_net_inet_ip, OID_AUTO, maxchainsent,
164 CTLFLAG_RW | CTLFLAG_LOCKED, &ip_maxchainsent, 0,
165 "use dlil_output_list");
166 #if DEBUG
167 static int forge_ce = 0;
168 SYSCTL_INT(_net_inet_ip, OID_AUTO, forge_ce,
169 CTLFLAG_RW | CTLFLAG_LOCKED, &forge_ce, 0,
170 "Forge ECN CE");
171 #endif /* DEBUG */
172
173 static int ip_select_srcif_debug = 0;
174 SYSCTL_INT(_net_inet_ip, OID_AUTO, select_srcif_debug,
175 CTLFLAG_RW | CTLFLAG_LOCKED, &ip_select_srcif_debug, 0,
176 "log source interface selection debug info");
177
178 static int ip_output_measure = 0;
179 SYSCTL_PROC(_net_inet_ip, OID_AUTO, output_perf,
180 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
181 &ip_output_measure, 0, sysctl_reset_ip_output_stats, "I",
182 "Do time measurement");
183
184 static uint64_t ip_output_measure_bins = 0;
185 SYSCTL_PROC(_net_inet_ip, OID_AUTO, output_perf_bins,
186 CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED, &ip_output_measure_bins, 0,
187 sysctl_ip_output_measure_bins, "I",
188 "bins for chaining performance data histogram");
189
190 static net_perf_t net_perf;
191 SYSCTL_PROC(_net_inet_ip, OID_AUTO, output_perf_data,
192 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
193 0, 0, sysctl_ip_output_getperf, "S,net_perf",
194 "IP output performance data (struct net_perf, net/net_perf.h)");
195
196 __private_extern__ int rfc6864 = 1;
197 SYSCTL_INT(_net_inet_ip, OID_AUTO, rfc6864, CTLFLAG_RW | CTLFLAG_LOCKED,
198 &rfc6864, 0, "updated ip id field behavior");
199
200 #define IMO_TRACE_HIST_SIZE 32 /* size of trace history */
201
202 /* For gdb */
203 __private_extern__ unsigned int imo_trace_hist_size = IMO_TRACE_HIST_SIZE;
204
205 struct ip_moptions_dbg {
206 struct ip_moptions imo; /* ip_moptions */
207 u_int16_t imo_refhold_cnt; /* # of IMO_ADDREF */
208 u_int16_t imo_refrele_cnt; /* # of IMO_REMREF */
209 /*
210 * Alloc and free callers.
211 */
212 ctrace_t imo_alloc;
213 ctrace_t imo_free;
214 /*
215 * Circular lists of IMO_ADDREF and IMO_REMREF callers.
216 */
217 ctrace_t imo_refhold[IMO_TRACE_HIST_SIZE];
218 ctrace_t imo_refrele[IMO_TRACE_HIST_SIZE];
219 };
220
221 #if DEBUG
222 static unsigned int imo_debug = 1; /* debugging (enabled) */
223 #else
224 static unsigned int imo_debug; /* debugging (disabled) */
225 #endif /* !DEBUG */
226 static struct zone *imo_zone; /* zone for ip_moptions */
227 #define IMO_ZONE_NAME "ip_moptions" /* zone name */
228
229 /*
230 * IP output. The packet in mbuf chain m contains a skeletal IP
231 * header (with len, off, ttl, proto, tos, src, dst).
232 * The mbuf chain containing the packet will be freed.
233 * The mbuf opt, if present, will not be freed.
234 */
235 int
236 ip_output(struct mbuf *m0, struct mbuf *opt, struct route *ro, int flags,
237 struct ip_moptions *imo, struct ip_out_args *ipoa)
238 {
239 return ip_output_list(m0, 0, opt, ro, flags, imo, ipoa);
240 }
241
242 /*
243 * IP output. The packet in mbuf chain m contains a skeletal IP
244 * header (with len, off, ttl, proto, tos, src, dst).
245 * The mbuf chain containing the packet will be freed.
246 * The mbuf opt, if present, will not be freed.
247 *
248 * Route ro MUST be non-NULL; if ro->ro_rt is valid, route lookup would be
249 * skipped and ro->ro_rt would be used. Otherwise the result of route
250 * lookup is stored in ro->ro_rt.
251 *
252 * In the IP forwarding case, the packet will arrive with options already
253 * inserted, so must have a NULL opt pointer.
254 */
255 int
256 ip_output_list(struct mbuf *m0, int packetchain, struct mbuf *opt,
257 struct route *ro, int flags, struct ip_moptions *imo,
258 struct ip_out_args *ipoa)
259 {
260 struct ip *ip;
261 struct ifnet *ifp = NULL; /* not refcnt'd */
262 struct mbuf *m = m0, *prevnxt = NULL, **mppn = &prevnxt;
263 int hlen = sizeof(struct ip);
264 int len = 0, error = 0;
265 struct sockaddr_in *dst = NULL;
266 struct in_ifaddr *ia = NULL, *src_ia = NULL;
267 struct in_addr pkt_dst;
268 struct ipf_pktopts *ippo = NULL;
269 ipfilter_t inject_filter_ref = NULL;
270 struct mbuf *packetlist;
271 uint32_t sw_csum, pktcnt = 0, scnt = 0, bytecnt = 0;
272 uint32_t packets_processed = 0;
273 unsigned int ifscope = IFSCOPE_NONE;
274 struct flowadv *adv = NULL;
275 struct timeval start_tv;
276 #if IPSEC
277 struct socket *so = NULL;
278 struct secpolicy *sp = NULL;
279 #endif /* IPSEC */
280 #if NECP
281 necp_kernel_policy_result necp_result = 0;
282 necp_kernel_policy_result_parameter necp_result_parameter;
283 necp_kernel_policy_id necp_matched_policy_id = 0;
284 #endif /* NECP */
285 #if DUMMYNET
286 struct m_tag *tag;
287 struct ip_out_args saved_ipoa;
288 struct sockaddr_in dst_buf;
289 #endif /* DUMMYNET */
290 struct {
291 #if IPSEC
292 struct ipsec_output_state ipsec_state;
293 #endif /* IPSEC */
294 #if NECP
295 struct route necp_route;
296 #endif /* NECP */
297 #if DUMMYNET
298 struct ip_fw_args args;
299 struct route saved_route;
300 #endif /* DUMMYNET */
301 struct ipf_pktopts ipf_pktopts;
302 } ipobz;
303 #define ipsec_state ipobz.ipsec_state
304 #define necp_route ipobz.necp_route
305 #define args ipobz.args
306 #define sro_fwd ipobz.sro_fwd
307 #define saved_route ipobz.saved_route
308 #define ipf_pktopts ipobz.ipf_pktopts
309 union {
310 struct {
311 boolean_t select_srcif : 1; /* set once */
312 boolean_t srcbound : 1; /* set once */
313 boolean_t nocell : 1; /* set once */
314 boolean_t isbroadcast : 1;
315 boolean_t didfilter : 1;
316 boolean_t noexpensive : 1; /* set once */
317 boolean_t noconstrained : 1; /* set once */
318 boolean_t awdl_unrestricted : 1; /* set once */
319 };
320 uint32_t raw;
321 } ipobf = { .raw = 0 };
322
323 int interface_mtu = 0;
324
325 /*
326 * Here we check for restrictions when sending frames.
327 * N.B.: IPv4 over internal co-processor interfaces is not allowed.
328 */
329 #define IP_CHECK_RESTRICTIONS(_ifp, _ipobf) \
330 (((_ipobf).nocell && IFNET_IS_CELLULAR(_ifp)) || \
331 ((_ipobf).noexpensive && IFNET_IS_EXPENSIVE(_ifp)) || \
332 ((_ipobf).noconstrained && IFNET_IS_CONSTRAINED(_ifp)) || \
333 (IFNET_IS_INTCOPROC(_ifp)) || \
334 (!(_ipobf).awdl_unrestricted && IFNET_IS_AWDL_RESTRICTED(_ifp)))
335
336 if (ip_output_measure) {
337 net_perf_start_time(&net_perf, &start_tv);
338 }
339 KERNEL_DEBUG(DBG_FNC_IP_OUTPUT | DBG_FUNC_START, 0, 0, 0, 0, 0);
340
341 VERIFY(m0->m_flags & M_PKTHDR);
342 packetlist = m0;
343
344 /* zero out {ipsec_state, args, sro_fwd, saved_route, ipf_pktops} */
345 bzero(&ipobz, sizeof(ipobz));
346 ippo = &ipf_pktopts;
347
348 #if DUMMYNET
349 if (SLIST_EMPTY(&m0->m_pkthdr.tags)) {
350 goto ipfw_tags_done;
351 }
352
353 /* Grab info from mtags prepended to the chain */
354 if ((tag = m_tag_locate(m0, KERNEL_MODULE_TAG_ID,
355 KERNEL_TAG_TYPE_DUMMYNET, NULL)) != NULL) {
356 struct dn_pkt_tag *dn_tag;
357
358 dn_tag = (struct dn_pkt_tag *)(tag + 1);
359 args.fwa_pf_rule = dn_tag->dn_pf_rule;
360 opt = NULL;
361 saved_route = dn_tag->dn_ro;
362 ro = &saved_route;
363
364 imo = NULL;
365 bcopy(&dn_tag->dn_dst, &dst_buf, sizeof(dst_buf));
366 dst = &dst_buf;
367 ifp = dn_tag->dn_ifp;
368 flags = dn_tag->dn_flags;
369 if ((dn_tag->dn_flags & IP_OUTARGS)) {
370 saved_ipoa = dn_tag->dn_ipoa;
371 ipoa = &saved_ipoa;
372 }
373
374 m_tag_delete(m0, tag);
375 }
376 ipfw_tags_done:
377 #endif /* DUMMYNET */
378
379 m = m0;
380 m->m_pkthdr.pkt_flags &= ~(PKTF_LOOP | PKTF_IFAINFO);
381
382 #if IPSEC
383 if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) {
384 /* If packet is bound to an interface, check bound policies */
385 if ((flags & IP_OUTARGS) && (ipoa != NULL) &&
386 (ipoa->ipoa_flags & IPOAF_BOUND_IF) &&
387 ipoa->ipoa_boundif != IFSCOPE_NONE) {
388 if (ipsec4_getpolicybyinterface(m, IPSEC_DIR_OUTBOUND,
389 &flags, ipoa, &sp) != 0) {
390 goto bad;
391 }
392 }
393 }
394 #endif /* IPSEC */
395
396 VERIFY(ro != NULL);
397
398 if (flags & IP_OUTARGS) {
399 /*
400 * In the forwarding case, only the ifscope value is used,
401 * as source interface selection doesn't take place.
402 */
403 if ((ipobf.select_srcif = (!(flags & IP_FORWARDING) &&
404 (ipoa->ipoa_flags & IPOAF_SELECT_SRCIF)))) {
405 ipf_pktopts.ippo_flags |= IPPOF_SELECT_SRCIF;
406 }
407
408 if ((ipoa->ipoa_flags & IPOAF_BOUND_IF) &&
409 ipoa->ipoa_boundif != IFSCOPE_NONE) {
410 ifscope = ipoa->ipoa_boundif;
411 ipf_pktopts.ippo_flags |=
412 (IPPOF_BOUND_IF | (ifscope << IPPOF_SHIFT_IFSCOPE));
413 }
414
415 /* double negation needed for bool bit field */
416 ipobf.srcbound = !!(ipoa->ipoa_flags & IPOAF_BOUND_SRCADDR);
417 if (ipobf.srcbound) {
418 ipf_pktopts.ippo_flags |= IPPOF_BOUND_SRCADDR;
419 }
420 } else {
421 ipobf.select_srcif = FALSE;
422 ipobf.srcbound = FALSE;
423 ifscope = IFSCOPE_NONE;
424 if (flags & IP_OUTARGS) {
425 ipoa->ipoa_boundif = IFSCOPE_NONE;
426 ipoa->ipoa_flags &= ~(IPOAF_SELECT_SRCIF |
427 IPOAF_BOUND_IF | IPOAF_BOUND_SRCADDR);
428 }
429 }
430
431 if (flags & IP_OUTARGS) {
432 if (ipoa->ipoa_flags & IPOAF_NO_CELLULAR) {
433 ipobf.nocell = TRUE;
434 ipf_pktopts.ippo_flags |= IPPOF_NO_IFT_CELLULAR;
435 }
436 if (ipoa->ipoa_flags & IPOAF_NO_EXPENSIVE) {
437 ipobf.noexpensive = TRUE;
438 ipf_pktopts.ippo_flags |= IPPOF_NO_IFF_EXPENSIVE;
439 }
440 if (ipoa->ipoa_flags & IPOAF_NO_CONSTRAINED) {
441 ipobf.noconstrained = TRUE;
442 ipf_pktopts.ippo_flags |= IPPOF_NO_IFF_CONSTRAINED;
443 }
444 if (ipoa->ipoa_flags & IPOAF_AWDL_UNRESTRICTED) {
445 ipobf.awdl_unrestricted = TRUE;
446 }
447 adv = &ipoa->ipoa_flowadv;
448 adv->code = FADV_SUCCESS;
449 ipoa->ipoa_retflags = 0;
450 }
451
452 #if IPSEC
453 if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) {
454 so = ipsec_getsocket(m);
455 if (so != NULL) {
456 (void) ipsec_setsocket(m, NULL);
457 }
458 }
459 #endif /* IPSEC */
460
461 #if DUMMYNET
462 if (args.fwa_pf_rule != NULL) {
463 /* dummynet already saw us */
464 ip = mtod(m, struct ip *);
465 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
466 pkt_dst = ip->ip_dst;
467 if (ro->ro_rt != NULL) {
468 RT_LOCK_SPIN(ro->ro_rt);
469 ia = (struct in_ifaddr *)ro->ro_rt->rt_ifa;
470 if (ia) {
471 /* Become a regular mutex */
472 RT_CONVERT_LOCK(ro->ro_rt);
473 IFA_ADDREF(&ia->ia_ifa);
474 }
475 RT_UNLOCK(ro->ro_rt);
476 }
477
478 if (args.fwa_pf_rule != NULL) {
479 goto sendit;
480 }
481 }
482 #endif /* DUMMYNET */
483
484 loopit:
485 packets_processed++;
486 ipobf.isbroadcast = FALSE;
487 ipobf.didfilter = FALSE;
488
489 VERIFY(m->m_flags & M_PKTHDR);
490 /*
491 * No need to proccess packet twice if we've already seen it.
492 */
493 if (!SLIST_EMPTY(&m->m_pkthdr.tags)) {
494 inject_filter_ref = ipf_get_inject_filter(m);
495 } else {
496 inject_filter_ref = NULL;
497 }
498
499 if (opt) {
500 m = ip_insertoptions(m, opt, &len);
501 hlen = len;
502 /* Update the chain */
503 if (m != m0) {
504 if (m0 == packetlist) {
505 packetlist = m;
506 }
507 m0 = m;
508 }
509 }
510 ip = mtod(m, struct ip *);
511
512 pkt_dst = ip->ip_dst;
513
514 /*
515 * We must not send if the packet is destined to network zero.
516 * RFC1122 3.2.1.3 (a) and (b).
517 */
518 if (IN_ZERONET(ntohl(pkt_dst.s_addr))) {
519 error = EHOSTUNREACH;
520 goto bad;
521 }
522
523 /*
524 * Fill in IP header.
525 */
526 if (!(flags & (IP_FORWARDING | IP_RAWOUTPUT))) {
527 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, hlen >> 2);
528 ip->ip_off &= IP_DF;
529 if (rfc6864 && IP_OFF_IS_ATOMIC(ip->ip_off)) {
530 // Per RFC6864, value of ip_id is undefined for atomic ip packets
531 ip->ip_id = 0;
532 } else {
533 ip->ip_id = ip_randomid();
534 }
535 OSAddAtomic(1, &ipstat.ips_localout);
536 } else {
537 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
538 }
539
540 #if DEBUG
541 /* For debugging, we let the stack forge congestion */
542 if (forge_ce != 0 &&
543 ((ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_ECT1 ||
544 (ip->ip_tos & IPTOS_ECN_MASK) == IPTOS_ECN_ECT0)) {
545 ip->ip_tos = (ip->ip_tos & ~IPTOS_ECN_MASK) | IPTOS_ECN_CE;
546 forge_ce--;
547 }
548 #endif /* DEBUG */
549
550 KERNEL_DEBUG(DBG_LAYER_BEG, ip->ip_dst.s_addr, ip->ip_src.s_addr,
551 ip->ip_p, ip->ip_off, ip->ip_len);
552
553 dst = SIN(&ro->ro_dst);
554
555 /*
556 * If there is a cached route,
557 * check that it is to the same destination
558 * and is still up. If not, free it and try again.
559 * The address family should also be checked in case of sharing the
560 * cache with IPv6.
561 */
562
563 if (ro->ro_rt != NULL) {
564 if (ROUTE_UNUSABLE(ro) && ip->ip_src.s_addr != INADDR_ANY &&
565 !(flags & (IP_ROUTETOIF | IP_FORWARDING))) {
566 src_ia = ifa_foraddr(ip->ip_src.s_addr);
567 if (src_ia == NULL) {
568 error = EADDRNOTAVAIL;
569 goto bad;
570 }
571 IFA_REMREF(&src_ia->ia_ifa);
572 src_ia = NULL;
573 }
574 /*
575 * Test rt_flags without holding rt_lock for performance
576 * reasons; if the route is down it will hopefully be
577 * caught by the layer below (since it uses this route
578 * as a hint) or during the next transmit.
579 */
580 if (ROUTE_UNUSABLE(ro) || dst->sin_family != AF_INET ||
581 dst->sin_addr.s_addr != pkt_dst.s_addr) {
582 ROUTE_RELEASE(ro);
583 }
584
585 /*
586 * If we're doing source interface selection, we may not
587 * want to use this route; only synch up the generation
588 * count otherwise.
589 */
590 if (!ipobf.select_srcif && ro->ro_rt != NULL &&
591 RT_GENID_OUTOFSYNC(ro->ro_rt)) {
592 RT_GENID_SYNC(ro->ro_rt);
593 }
594 }
595 if (ro->ro_rt == NULL) {
596 bzero(dst, sizeof(*dst));
597 dst->sin_family = AF_INET;
598 dst->sin_len = sizeof(*dst);
599 dst->sin_addr = pkt_dst;
600 }
601 /*
602 * If routing to interface only,
603 * short circuit routing lookup.
604 */
605 if (flags & IP_ROUTETOIF) {
606 if (ia != NULL) {
607 IFA_REMREF(&ia->ia_ifa);
608 }
609 if ((ia = ifatoia(ifa_ifwithdstaddr(sintosa(dst)))) == NULL) {
610 ia = ifatoia(ifa_ifwithnet(sintosa(dst)));
611 if (ia == NULL) {
612 OSAddAtomic(1, &ipstat.ips_noroute);
613 error = ENETUNREACH;
614 /* XXX IPv6 APN fallback notification?? */
615 goto bad;
616 }
617 }
618 ifp = ia->ia_ifp;
619 ip->ip_ttl = 1;
620 ipobf.isbroadcast = in_broadcast(dst->sin_addr, ifp);
621 /*
622 * For consistency with other cases below. Loopback
623 * multicast case is handled separately by ip_mloopback().
624 */
625 if ((ifp->if_flags & IFF_LOOPBACK) &&
626 !IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
627 m->m_pkthdr.rcvif = ifp;
628 ip_setsrcifaddr_info(m, ifp->if_index, NULL);
629 ip_setdstifaddr_info(m, ifp->if_index, NULL);
630 }
631 } else if (IN_MULTICAST(ntohl(pkt_dst.s_addr)) &&
632 imo != NULL && (ifp = imo->imo_multicast_ifp) != NULL) {
633 /*
634 * Bypass the normal routing lookup for multicast
635 * packets if the interface is specified.
636 */
637 ipobf.isbroadcast = FALSE;
638 if (ia != NULL) {
639 IFA_REMREF(&ia->ia_ifa);
640 }
641
642 /* Macro takes reference on ia */
643 IFP_TO_IA(ifp, ia);
644 } else {
645 struct ifaddr *ia0 = NULL;
646 boolean_t cloneok = FALSE;
647 /*
648 * Perform source interface selection; the source IP address
649 * must belong to one of the addresses of the interface used
650 * by the route. For performance reasons, do this only if
651 * there is no route, or if the routing table has changed,
652 * or if we haven't done source interface selection on this
653 * route (for this PCB instance) before.
654 */
655 if (ipobf.select_srcif &&
656 ip->ip_src.s_addr != INADDR_ANY && (ROUTE_UNUSABLE(ro) ||
657 !(ro->ro_flags & ROF_SRCIF_SELECTED))) {
658 /* Find the source interface */
659 ia0 = in_selectsrcif(ip, ro, ifscope);
660
661 /*
662 * If the source address belongs to a restricted
663 * interface and the caller forbids our using
664 * interfaces of such type, pretend that there is no
665 * route.
666 */
667 if (ia0 != NULL &&
668 IP_CHECK_RESTRICTIONS(ia0->ifa_ifp, ipobf)) {
669 IFA_REMREF(ia0);
670 ia0 = NULL;
671 error = EHOSTUNREACH;
672 if (flags & IP_OUTARGS) {
673 ipoa->ipoa_retflags |= IPOARF_IFDENIED;
674 }
675 goto bad;
676 }
677
678 /*
679 * If the source address is spoofed (in the case of
680 * IP_RAWOUTPUT on an unbounded socket), or if this
681 * is destined for local/loopback, just let it go out
682 * using the interface of the route. Otherwise,
683 * there's no interface having such an address,
684 * so bail out.
685 */
686 if (ia0 == NULL && (!(flags & IP_RAWOUTPUT) ||
687 ipobf.srcbound) && ifscope != lo_ifp->if_index) {
688 error = EADDRNOTAVAIL;
689 goto bad;
690 }
691
692 /*
693 * If the caller didn't explicitly specify the scope,
694 * pick it up from the source interface. If the cached
695 * route was wrong and was blown away as part of source
696 * interface selection, don't mask out RTF_PRCLONING
697 * since that route may have been allocated by the ULP,
698 * unless the IP header was created by the caller or
699 * the destination is IPv4 LLA. The check for the
700 * latter is needed because IPv4 LLAs are never scoped
701 * in the current implementation, and we don't want to
702 * replace the resolved IPv4 LLA route with one whose
703 * gateway points to that of the default gateway on
704 * the primary interface of the system.
705 */
706 if (ia0 != NULL) {
707 if (ifscope == IFSCOPE_NONE) {
708 ifscope = ia0->ifa_ifp->if_index;
709 }
710 cloneok = (!(flags & IP_RAWOUTPUT) &&
711 !(IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))));
712 }
713 }
714
715 /*
716 * If this is the case, we probably don't want to allocate
717 * a protocol-cloned route since we didn't get one from the
718 * ULP. This lets TCP do its thing, while not burdening
719 * forwarding or ICMP with the overhead of cloning a route.
720 * Of course, we still want to do any cloning requested by
721 * the link layer, as this is probably required in all cases
722 * for correct operation (as it is for ARP).
723 */
724 if (ro->ro_rt == NULL) {
725 uint32_t ign = RTF_PRCLONING;
726 /*
727 * We make an exception here: if the destination
728 * address is INADDR_BROADCAST, allocate a protocol-
729 * cloned host route so that we end up with a route
730 * marked with the RTF_BROADCAST flag. Otherwise,
731 * we would end up referring to the default route,
732 * instead of creating a cloned host route entry.
733 * That would introduce inconsistencies between ULPs
734 * that allocate a route and those that don't. The
735 * RTF_BROADCAST route is important since we'd want
736 * to send out undirected IP broadcast packets using
737 * link-level broadcast address. Another exception
738 * is for ULP-created routes that got blown away by
739 * source interface selection (see above).
740 *
741 * These exceptions will no longer be necessary when
742 * the RTF_PRCLONING scheme is no longer present.
743 */
744 if (cloneok || dst->sin_addr.s_addr == INADDR_BROADCAST) {
745 ign &= ~RTF_PRCLONING;
746 }
747
748 /*
749 * Loosen the route lookup criteria if the ifscope
750 * corresponds to the loopback interface; this is
751 * needed to support Application Layer Gateways
752 * listening on loopback, in conjunction with packet
753 * filter redirection rules. The final source IP
754 * address will be rewritten by the packet filter
755 * prior to the RFC1122 loopback check below.
756 */
757 if (ifscope == lo_ifp->if_index) {
758 rtalloc_ign(ro, ign);
759 } else {
760 rtalloc_scoped_ign(ro, ign, ifscope);
761 }
762
763 /*
764 * If the route points to a cellular/expensive interface
765 * and the caller forbids our using interfaces of such type,
766 * pretend that there is no route.
767 */
768 if (ro->ro_rt != NULL) {
769 RT_LOCK_SPIN(ro->ro_rt);
770 if (IP_CHECK_RESTRICTIONS(ro->ro_rt->rt_ifp,
771 ipobf)) {
772 RT_UNLOCK(ro->ro_rt);
773 ROUTE_RELEASE(ro);
774 if (flags & IP_OUTARGS) {
775 ipoa->ipoa_retflags |=
776 IPOARF_IFDENIED;
777 }
778 } else {
779 RT_UNLOCK(ro->ro_rt);
780 }
781 }
782 }
783
784 if (ro->ro_rt == NULL) {
785 OSAddAtomic(1, &ipstat.ips_noroute);
786 error = EHOSTUNREACH;
787 if (ia0 != NULL) {
788 IFA_REMREF(ia0);
789 ia0 = NULL;
790 }
791 goto bad;
792 }
793
794 if (ia != NULL) {
795 IFA_REMREF(&ia->ia_ifa);
796 }
797 RT_LOCK_SPIN(ro->ro_rt);
798 ia = ifatoia(ro->ro_rt->rt_ifa);
799 if (ia != NULL) {
800 /* Become a regular mutex */
801 RT_CONVERT_LOCK(ro->ro_rt);
802 IFA_ADDREF(&ia->ia_ifa);
803 }
804 /*
805 * Note: ia_ifp may not be the same as rt_ifp; the latter
806 * is what we use for determining outbound i/f, mtu, etc.
807 */
808 ifp = ro->ro_rt->rt_ifp;
809 ro->ro_rt->rt_use++;
810 if (ro->ro_rt->rt_flags & RTF_GATEWAY) {
811 dst = SIN(ro->ro_rt->rt_gateway);
812 }
813 if (ro->ro_rt->rt_flags & RTF_HOST) {
814 /* double negation needed for bool bit field */
815 ipobf.isbroadcast =
816 !!(ro->ro_rt->rt_flags & RTF_BROADCAST);
817 } else {
818 /* Become a regular mutex */
819 RT_CONVERT_LOCK(ro->ro_rt);
820 ipobf.isbroadcast = in_broadcast(dst->sin_addr, ifp);
821 }
822 /*
823 * For consistency with IPv6, as well as to ensure that
824 * IP_RECVIF is set correctly for packets that are sent
825 * to one of the local addresses. ia (rt_ifa) would have
826 * been fixed up by rt_setif for local routes. This
827 * would make it appear as if the packet arrives on the
828 * interface which owns the local address. Loopback
829 * multicast case is handled separately by ip_mloopback().
830 */
831 if (ia != NULL && (ifp->if_flags & IFF_LOOPBACK) &&
832 !IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
833 uint32_t srcidx;
834
835 m->m_pkthdr.rcvif = ia->ia_ifa.ifa_ifp;
836
837 if (ia0 != NULL) {
838 srcidx = ia0->ifa_ifp->if_index;
839 } else if ((ro->ro_flags & ROF_SRCIF_SELECTED) &&
840 ro->ro_srcia != NULL) {
841 srcidx = ro->ro_srcia->ifa_ifp->if_index;
842 } else {
843 srcidx = 0;
844 }
845
846 ip_setsrcifaddr_info(m, srcidx, NULL);
847 ip_setdstifaddr_info(m, 0, ia);
848 }
849 RT_UNLOCK(ro->ro_rt);
850 if (ia0 != NULL) {
851 IFA_REMREF(ia0);
852 ia0 = NULL;
853 }
854 }
855
856 if (IN_MULTICAST(ntohl(pkt_dst.s_addr))) {
857 struct ifnet *srcifp = NULL;
858 struct in_multi *inm;
859 u_int32_t vif = 0;
860 u_int8_t ttl = IP_DEFAULT_MULTICAST_TTL;
861 u_int8_t loop = IP_DEFAULT_MULTICAST_LOOP;
862
863 m->m_flags |= M_MCAST;
864 /*
865 * IP destination address is multicast. Make sure "dst"
866 * still points to the address in "ro". (It may have been
867 * changed to point to a gateway address, above.)
868 */
869 dst = SIN(&ro->ro_dst);
870 /*
871 * See if the caller provided any multicast options
872 */
873 if (imo != NULL) {
874 IMO_LOCK(imo);
875 vif = imo->imo_multicast_vif;
876 ttl = imo->imo_multicast_ttl;
877 loop = imo->imo_multicast_loop;
878 if (!(flags & IP_RAWOUTPUT)) {
879 ip->ip_ttl = ttl;
880 }
881 if (imo->imo_multicast_ifp != NULL) {
882 ifp = imo->imo_multicast_ifp;
883 }
884 IMO_UNLOCK(imo);
885 } else if (!(flags & IP_RAWOUTPUT)) {
886 vif = -1;
887 ip->ip_ttl = ttl;
888 }
889 /*
890 * Confirm that the outgoing interface supports multicast.
891 */
892 if (imo == NULL || vif == -1) {
893 if (!(ifp->if_flags & IFF_MULTICAST)) {
894 OSAddAtomic(1, &ipstat.ips_noroute);
895 error = ENETUNREACH;
896 goto bad;
897 }
898 }
899 /*
900 * If source address not specified yet, use address
901 * of outgoing interface.
902 */
903 if (ip->ip_src.s_addr == INADDR_ANY) {
904 struct in_ifaddr *ia1;
905 lck_rw_lock_shared(in_ifaddr_rwlock);
906 TAILQ_FOREACH(ia1, &in_ifaddrhead, ia_link) {
907 IFA_LOCK_SPIN(&ia1->ia_ifa);
908 if (ia1->ia_ifp == ifp) {
909 ip->ip_src = IA_SIN(ia1)->sin_addr;
910 srcifp = ifp;
911 IFA_UNLOCK(&ia1->ia_ifa);
912 break;
913 }
914 IFA_UNLOCK(&ia1->ia_ifa);
915 }
916 lck_rw_done(in_ifaddr_rwlock);
917 if (ip->ip_src.s_addr == INADDR_ANY) {
918 error = ENETUNREACH;
919 goto bad;
920 }
921 }
922
923 in_multihead_lock_shared();
924 IN_LOOKUP_MULTI(&pkt_dst, ifp, inm);
925 in_multihead_lock_done();
926 if (inm != NULL && (imo == NULL || loop)) {
927 /*
928 * If we belong to the destination multicast group
929 * on the outgoing interface, and the caller did not
930 * forbid loopback, loop back a copy.
931 */
932 if (!TAILQ_EMPTY(&ipv4_filters)
933 #if NECP
934 && !necp_packet_should_skip_filters(m)
935 #endif // NECP
936 ) {
937 struct ipfilter *filter;
938 int seen = (inject_filter_ref == NULL);
939
940 if (imo != NULL) {
941 ipf_pktopts.ippo_flags |=
942 IPPOF_MCAST_OPTS;
943 ipf_pktopts.ippo_mcast_ifnet = ifp;
944 ipf_pktopts.ippo_mcast_ttl = ttl;
945 ipf_pktopts.ippo_mcast_loop = loop;
946 }
947
948 ipf_ref();
949
950 /*
951 * 4135317 - always pass network byte
952 * order to filter
953 */
954 #if BYTE_ORDER != BIG_ENDIAN
955 HTONS(ip->ip_len);
956 HTONS(ip->ip_off);
957 #endif
958 TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) {
959 if (seen == 0) {
960 if ((struct ipfilter *)
961 inject_filter_ref == filter) {
962 seen = 1;
963 }
964 } else if (filter->ipf_filter.
965 ipf_output != NULL) {
966 errno_t result;
967 result = filter->ipf_filter.
968 ipf_output(filter->
969 ipf_filter.cookie,
970 (mbuf_t *)&m, ippo);
971 if (result == EJUSTRETURN) {
972 ipf_unref();
973 INM_REMREF(inm);
974 goto done;
975 }
976 if (result != 0) {
977 ipf_unref();
978 INM_REMREF(inm);
979 goto bad;
980 }
981 }
982 }
983
984 /* set back to host byte order */
985 ip = mtod(m, struct ip *);
986 #if BYTE_ORDER != BIG_ENDIAN
987 NTOHS(ip->ip_len);
988 NTOHS(ip->ip_off);
989 #endif
990 ipf_unref();
991 ipobf.didfilter = TRUE;
992 }
993 ip_mloopback(srcifp, ifp, m, dst, hlen);
994 }
995 if (inm != NULL) {
996 INM_REMREF(inm);
997 }
998 /*
999 * Multicasts with a time-to-live of zero may be looped-
1000 * back, above, but must not be transmitted on a network.
1001 * Also, multicasts addressed to the loopback interface
1002 * are not sent -- the above call to ip_mloopback() will
1003 * loop back a copy if this host actually belongs to the
1004 * destination group on the loopback interface.
1005 */
1006 if (ip->ip_ttl == 0 || ifp->if_flags & IFF_LOOPBACK) {
1007 m_freem(m);
1008 goto done;
1009 }
1010
1011 goto sendit;
1012 }
1013 /*
1014 * If source address not specified yet, use address
1015 * of outgoing interface.
1016 */
1017 if (ip->ip_src.s_addr == INADDR_ANY) {
1018 IFA_LOCK_SPIN(&ia->ia_ifa);
1019 ip->ip_src = IA_SIN(ia)->sin_addr;
1020 IFA_UNLOCK(&ia->ia_ifa);
1021 }
1022
1023 /*
1024 * Look for broadcast address and
1025 * and verify user is allowed to send
1026 * such a packet.
1027 */
1028 if (ipobf.isbroadcast) {
1029 if (!(ifp->if_flags & IFF_BROADCAST)) {
1030 error = EADDRNOTAVAIL;
1031 goto bad;
1032 }
1033 if (!(flags & IP_ALLOWBROADCAST)) {
1034 error = EACCES;
1035 goto bad;
1036 }
1037 /* don't allow broadcast messages to be fragmented */
1038 if ((u_short)ip->ip_len > ifp->if_mtu) {
1039 error = EMSGSIZE;
1040 goto bad;
1041 }
1042 m->m_flags |= M_BCAST;
1043 } else {
1044 m->m_flags &= ~M_BCAST;
1045 }
1046
1047 sendit:
1048 #if PF
1049 /* Invoke outbound packet filter */
1050 if (PF_IS_ENABLED) {
1051 int rc;
1052
1053 m0 = m; /* Save for later */
1054 #if DUMMYNET
1055 args.fwa_m = m;
1056 args.fwa_oif = ifp;
1057 args.fwa_ro = ro;
1058 args.fwa_dst = dst;
1059 args.fwa_oflags = flags;
1060 if (flags & IP_OUTARGS) {
1061 args.fwa_ipoa = ipoa;
1062 }
1063 rc = pf_af_hook(ifp, mppn, &m, AF_INET, FALSE, &args);
1064 #else /* DUMMYNET */
1065 rc = pf_af_hook(ifp, mppn, &m, AF_INET, FALSE, NULL);
1066 #endif /* DUMMYNET */
1067 if (rc != 0 || m == NULL) {
1068 /* Move to the next packet */
1069 m = *mppn;
1070
1071 /* Skip ahead if first packet in list got dropped */
1072 if (packetlist == m0) {
1073 packetlist = m;
1074 }
1075
1076 if (m != NULL) {
1077 m0 = m;
1078 /* Next packet in the chain */
1079 goto loopit;
1080 } else if (packetlist != NULL) {
1081 /* No more packet; send down the chain */
1082 goto sendchain;
1083 }
1084 /* Nothing left; we're done */
1085 goto done;
1086 }
1087 m0 = m;
1088 ip = mtod(m, struct ip *);
1089 pkt_dst = ip->ip_dst;
1090 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1091 }
1092 #endif /* PF */
1093 /*
1094 * Force IP TTL to 255 following draft-ietf-zeroconf-ipv4-linklocal.txt
1095 */
1096 if (IN_LINKLOCAL(ntohl(ip->ip_src.s_addr)) ||
1097 IN_LINKLOCAL(ntohl(ip->ip_dst.s_addr))) {
1098 ip_linklocal_stat.iplls_out_total++;
1099 if (ip->ip_ttl != MAXTTL) {
1100 ip_linklocal_stat.iplls_out_badttl++;
1101 ip->ip_ttl = MAXTTL;
1102 }
1103 }
1104
1105 if (!ipobf.didfilter &&
1106 !TAILQ_EMPTY(&ipv4_filters)
1107 #if NECP
1108 && !necp_packet_should_skip_filters(m)
1109 #endif // NECP
1110 ) {
1111 struct ipfilter *filter;
1112 int seen = (inject_filter_ref == NULL);
1113 ipf_pktopts.ippo_flags &= ~IPPOF_MCAST_OPTS;
1114
1115 /*
1116 * Check that a TSO frame isn't passed to a filter.
1117 * This could happen if a filter is inserted while
1118 * TCP is sending the TSO packet.
1119 */
1120 if (m->m_pkthdr.csum_flags & CSUM_TSO_IPV4) {
1121 error = EMSGSIZE;
1122 goto bad;
1123 }
1124
1125 ipf_ref();
1126
1127 /* 4135317 - always pass network byte order to filter */
1128 #if BYTE_ORDER != BIG_ENDIAN
1129 HTONS(ip->ip_len);
1130 HTONS(ip->ip_off);
1131 #endif
1132 TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) {
1133 if (seen == 0) {
1134 if ((struct ipfilter *)inject_filter_ref ==
1135 filter) {
1136 seen = 1;
1137 }
1138 } else if (filter->ipf_filter.ipf_output) {
1139 errno_t result;
1140 result = filter->ipf_filter.
1141 ipf_output(filter->ipf_filter.cookie,
1142 (mbuf_t *)&m, ippo);
1143 if (result == EJUSTRETURN) {
1144 ipf_unref();
1145 goto done;
1146 }
1147 if (result != 0) {
1148 ipf_unref();
1149 goto bad;
1150 }
1151 }
1152 }
1153 /* set back to host byte order */
1154 ip = mtod(m, struct ip *);
1155 #if BYTE_ORDER != BIG_ENDIAN
1156 NTOHS(ip->ip_len);
1157 NTOHS(ip->ip_off);
1158 #endif
1159 ipf_unref();
1160 }
1161
1162 #if NECP
1163 /* Process Network Extension Policy. Will Pass, Drop, or Rebind packet. */
1164 necp_matched_policy_id = necp_ip_output_find_policy_match(m,
1165 flags, (flags & IP_OUTARGS) ? ipoa : NULL, ro ? ro->ro_rt : NULL, &necp_result, &necp_result_parameter);
1166 if (necp_matched_policy_id) {
1167 necp_mark_packet_from_ip(m, necp_matched_policy_id);
1168 switch (necp_result) {
1169 case NECP_KERNEL_POLICY_RESULT_PASS:
1170 if (necp_result_parameter.pass_flags & NECP_KERNEL_POLICY_PASS_NO_SKIP_IPSEC) {
1171 break;
1172 }
1173 /* Check if the interface is allowed */
1174 if (!necp_packet_is_allowed_over_interface(m, ifp)) {
1175 error = EHOSTUNREACH;
1176 OSAddAtomic(1, &ipstat.ips_necp_policy_drop);
1177 goto bad;
1178 }
1179 goto skip_ipsec;
1180 case NECP_KERNEL_POLICY_RESULT_DROP:
1181 case NECP_KERNEL_POLICY_RESULT_SOCKET_DIVERT:
1182 /* Flow divert packets should be blocked at the IP layer */
1183 error = EHOSTUNREACH;
1184 OSAddAtomic(1, &ipstat.ips_necp_policy_drop);
1185 goto bad;
1186 case NECP_KERNEL_POLICY_RESULT_IP_TUNNEL: {
1187 /* Verify that the packet is being routed to the tunnel */
1188 struct ifnet *policy_ifp = necp_get_ifnet_from_result_parameter(&necp_result_parameter);
1189 if (policy_ifp == ifp) {
1190 /* Check if the interface is allowed */
1191 if (!necp_packet_is_allowed_over_interface(m, ifp)) {
1192 error = EHOSTUNREACH;
1193 OSAddAtomic(1, &ipstat.ips_necp_policy_drop);
1194 goto bad;
1195 }
1196 goto skip_ipsec;
1197 } else {
1198 if (necp_packet_can_rebind_to_ifnet(m, policy_ifp, &necp_route, AF_INET)) {
1199 /* Check if the interface is allowed */
1200 if (!necp_packet_is_allowed_over_interface(m, policy_ifp)) {
1201 error = EHOSTUNREACH;
1202 OSAddAtomic(1, &ipstat.ips_necp_policy_drop);
1203 goto bad;
1204 }
1205
1206 /*
1207 * Update the QOS marking policy if
1208 * 1. up layer asks it to do so
1209 * 2. net_qos_policy_restricted is not set
1210 * 3. qos_marking_gencount doesn't match necp_kernel_socket_policies_gencount (checked in necp_lookup_current_qos_marking)
1211 */
1212 if (ipoa != NULL &&
1213 (ipoa->ipoa_flags & IPOAF_REDO_QOSMARKING_POLICY) &&
1214 net_qos_policy_restricted != 0) {
1215 bool qos_marking = (ipoa->ipoa_flags & IPOAF_QOSMARKING_ALLOWED) ? TRUE : FALSE;
1216 qos_marking = necp_lookup_current_qos_marking(&ipoa->qos_marking_gencount, NULL, policy_ifp, necp_result_parameter.route_rule_id, qos_marking);
1217 if (qos_marking) {
1218 ipoa->ipoa_flags |= IPOAF_QOSMARKING_ALLOWED;
1219 } else {
1220 ipoa->ipoa_flags &= ~IPOAF_QOSMARKING_ALLOWED;
1221 }
1222 }
1223
1224 /* Set ifp to the tunnel interface, since it is compatible with the packet */
1225 ifp = policy_ifp;
1226 ro = &necp_route;
1227 goto skip_ipsec;
1228 } else {
1229 error = ENETUNREACH;
1230 OSAddAtomic(1, &ipstat.ips_necp_policy_drop);
1231 goto bad;
1232 }
1233 }
1234 }
1235 default:
1236 break;
1237 }
1238 }
1239 /* Catch-all to check if the interface is allowed */
1240 if (!necp_packet_is_allowed_over_interface(m, ifp)) {
1241 error = EHOSTUNREACH;
1242 OSAddAtomic(1, &ipstat.ips_necp_policy_drop);
1243 goto bad;
1244 }
1245 #endif /* NECP */
1246
1247 #if IPSEC
1248 if (ipsec_bypass != 0 || (flags & IP_NOIPSEC)) {
1249 goto skip_ipsec;
1250 }
1251
1252 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_START, 0, 0, 0, 0, 0);
1253
1254 if (sp == NULL) {
1255 /* get SP for this packet */
1256 if (so != NULL) {
1257 sp = ipsec4_getpolicybysock(m, IPSEC_DIR_OUTBOUND,
1258 so, &error);
1259 } else {
1260 sp = ipsec4_getpolicybyaddr(m, IPSEC_DIR_OUTBOUND,
1261 flags, &error);
1262 }
1263 if (sp == NULL) {
1264 IPSEC_STAT_INCREMENT(ipsecstat.out_inval);
1265 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1266 0, 0, 0, 0, 0);
1267 goto bad;
1268 }
1269 }
1270
1271 error = 0;
1272
1273 /* check policy */
1274 switch (sp->policy) {
1275 case IPSEC_POLICY_DISCARD:
1276 case IPSEC_POLICY_GENERATE:
1277 /*
1278 * This packet is just discarded.
1279 */
1280 IPSEC_STAT_INCREMENT(ipsecstat.out_polvio);
1281 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1282 1, 0, 0, 0, 0);
1283 goto bad;
1284
1285 case IPSEC_POLICY_BYPASS:
1286 case IPSEC_POLICY_NONE:
1287 /* no need to do IPsec. */
1288 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1289 2, 0, 0, 0, 0);
1290 goto skip_ipsec;
1291
1292 case IPSEC_POLICY_IPSEC:
1293 if (sp->req == NULL) {
1294 /* acquire a policy */
1295 error = key_spdacquire(sp);
1296 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1297 3, 0, 0, 0, 0);
1298 goto bad;
1299 }
1300 if (sp->ipsec_if) {
1301 /* Verify the redirect to ipsec interface */
1302 if (sp->ipsec_if == ifp) {
1303 goto skip_ipsec;
1304 }
1305 goto bad;
1306 }
1307 break;
1308
1309 case IPSEC_POLICY_ENTRUST:
1310 default:
1311 printf("ip_output: Invalid policy found. %d\n", sp->policy);
1312 }
1313 {
1314 ipsec_state.m = m;
1315 if (flags & IP_ROUTETOIF) {
1316 bzero(&ipsec_state.ro, sizeof(ipsec_state.ro));
1317 } else {
1318 route_copyout((struct route *)&ipsec_state.ro, ro, sizeof(struct route));
1319 }
1320 ipsec_state.dst = SA(dst);
1321
1322 ip->ip_sum = 0;
1323
1324 /*
1325 * XXX
1326 * delayed checksums are not currently compatible with IPsec
1327 */
1328 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
1329 in_delayed_cksum(m);
1330 }
1331
1332 #if BYTE_ORDER != BIG_ENDIAN
1333 HTONS(ip->ip_len);
1334 HTONS(ip->ip_off);
1335 #endif
1336
1337 DTRACE_IP6(send, struct mbuf *, m, struct inpcb *, NULL,
1338 struct ip *, ip, struct ifnet *, ifp,
1339 struct ip *, ip, struct ip6_hdr *, NULL);
1340
1341 error = ipsec4_output(&ipsec_state, sp, flags);
1342 if (ipsec_state.tunneled == 6) {
1343 m0 = m = NULL;
1344 error = 0;
1345 goto bad;
1346 }
1347
1348 m0 = m = ipsec_state.m;
1349
1350 #if DUMMYNET
1351 /*
1352 * If we're about to use the route in ipsec_state
1353 * and this came from dummynet, cleaup now.
1354 */
1355 if (ro == &saved_route &&
1356 (!(flags & IP_ROUTETOIF) || ipsec_state.tunneled)) {
1357 ROUTE_RELEASE(ro);
1358 }
1359 #endif /* DUMMYNET */
1360
1361 if (flags & IP_ROUTETOIF) {
1362 /*
1363 * if we have tunnel mode SA, we may need to ignore
1364 * IP_ROUTETOIF.
1365 */
1366 if (ipsec_state.tunneled) {
1367 flags &= ~IP_ROUTETOIF;
1368 ro = (struct route *)&ipsec_state.ro;
1369 }
1370 } else {
1371 ro = (struct route *)&ipsec_state.ro;
1372 }
1373 dst = SIN(ipsec_state.dst);
1374 if (error) {
1375 /* mbuf is already reclaimed in ipsec4_output. */
1376 m0 = NULL;
1377 switch (error) {
1378 case EHOSTUNREACH:
1379 case ENETUNREACH:
1380 case EMSGSIZE:
1381 case ENOBUFS:
1382 case ENOMEM:
1383 break;
1384 default:
1385 printf("ip4_output (ipsec): error code %d\n", error);
1386 OS_FALLTHROUGH;
1387 case ENOENT:
1388 /* don't show these error codes to the user */
1389 error = 0;
1390 break;
1391 }
1392 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1393 4, 0, 0, 0, 0);
1394 goto bad;
1395 }
1396 }
1397
1398 /* be sure to update variables that are affected by ipsec4_output() */
1399 ip = mtod(m, struct ip *);
1400
1401 #ifdef _IP_VHL
1402 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1403 #else /* !_IP_VHL */
1404 hlen = ip->ip_hl << 2;
1405 #endif /* !_IP_VHL */
1406 /* Check that there wasn't a route change and src is still valid */
1407 if (ROUTE_UNUSABLE(ro)) {
1408 ROUTE_RELEASE(ro);
1409 VERIFY(src_ia == NULL);
1410 if (ip->ip_src.s_addr != INADDR_ANY &&
1411 !(flags & (IP_ROUTETOIF | IP_FORWARDING)) &&
1412 (src_ia = ifa_foraddr(ip->ip_src.s_addr)) == NULL) {
1413 error = EADDRNOTAVAIL;
1414 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1415 5, 0, 0, 0, 0);
1416 goto bad;
1417 }
1418 if (src_ia != NULL) {
1419 IFA_REMREF(&src_ia->ia_ifa);
1420 src_ia = NULL;
1421 }
1422 }
1423
1424 if (ro->ro_rt == NULL) {
1425 if (!(flags & IP_ROUTETOIF)) {
1426 printf("%s: can't update route after "
1427 "IPsec processing\n", __func__);
1428 error = EHOSTUNREACH; /* XXX */
1429 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1430 6, 0, 0, 0, 0);
1431 goto bad;
1432 }
1433 } else {
1434 if (ia != NULL) {
1435 IFA_REMREF(&ia->ia_ifa);
1436 }
1437 RT_LOCK_SPIN(ro->ro_rt);
1438 ia = ifatoia(ro->ro_rt->rt_ifa);
1439 if (ia != NULL) {
1440 /* Become a regular mutex */
1441 RT_CONVERT_LOCK(ro->ro_rt);
1442 IFA_ADDREF(&ia->ia_ifa);
1443 }
1444 ifp = ro->ro_rt->rt_ifp;
1445 RT_UNLOCK(ro->ro_rt);
1446 }
1447
1448 /* make it flipped, again. */
1449 #if BYTE_ORDER != BIG_ENDIAN
1450 NTOHS(ip->ip_len);
1451 NTOHS(ip->ip_off);
1452 #endif
1453 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT | DBG_FUNC_END,
1454 7, 0xff, 0xff, 0xff, 0xff);
1455
1456 /* Pass to filters again */
1457 if (!TAILQ_EMPTY(&ipv4_filters)
1458 #if NECP
1459 && !necp_packet_should_skip_filters(m)
1460 #endif // NECP
1461 ) {
1462 struct ipfilter *filter;
1463
1464 ipf_pktopts.ippo_flags &= ~IPPOF_MCAST_OPTS;
1465
1466 /*
1467 * Check that a TSO frame isn't passed to a filter.
1468 * This could happen if a filter is inserted while
1469 * TCP is sending the TSO packet.
1470 */
1471 if (m->m_pkthdr.csum_flags & CSUM_TSO_IPV4) {
1472 error = EMSGSIZE;
1473 goto bad;
1474 }
1475
1476 ipf_ref();
1477
1478 /* 4135317 - always pass network byte order to filter */
1479 #if BYTE_ORDER != BIG_ENDIAN
1480 HTONS(ip->ip_len);
1481 HTONS(ip->ip_off);
1482 #endif
1483 TAILQ_FOREACH(filter, &ipv4_filters, ipf_link) {
1484 if (filter->ipf_filter.ipf_output) {
1485 errno_t result;
1486 result = filter->ipf_filter.
1487 ipf_output(filter->ipf_filter.cookie,
1488 (mbuf_t *)&m, ippo);
1489 if (result == EJUSTRETURN) {
1490 ipf_unref();
1491 goto done;
1492 }
1493 if (result != 0) {
1494 ipf_unref();
1495 goto bad;
1496 }
1497 }
1498 }
1499 /* set back to host byte order */
1500 ip = mtod(m, struct ip *);
1501 #if BYTE_ORDER != BIG_ENDIAN
1502 NTOHS(ip->ip_len);
1503 NTOHS(ip->ip_off);
1504 #endif
1505 ipf_unref();
1506 }
1507 skip_ipsec:
1508 #endif /* IPSEC */
1509
1510
1511 /* 127/8 must not appear on wire - RFC1122 */
1512 if (!(ifp->if_flags & IFF_LOOPBACK) &&
1513 ((ntohl(ip->ip_src.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET ||
1514 (ntohl(ip->ip_dst.s_addr) >> IN_CLASSA_NSHIFT) == IN_LOOPBACKNET)) {
1515 OSAddAtomic(1, &ipstat.ips_badaddr);
1516 error = EADDRNOTAVAIL;
1517 goto bad;
1518 }
1519
1520 if (ipoa != NULL) {
1521 u_int8_t dscp = ip->ip_tos >> IPTOS_DSCP_SHIFT;
1522
1523 error = set_packet_qos(m, ifp,
1524 ipoa->ipoa_flags & IPOAF_QOSMARKING_ALLOWED ? TRUE : FALSE,
1525 ipoa->ipoa_sotc, ipoa->ipoa_netsvctype, &dscp);
1526 if (error == 0) {
1527 ip->ip_tos &= IPTOS_ECN_MASK;
1528 ip->ip_tos |= dscp << IPTOS_DSCP_SHIFT;
1529 } else {
1530 printf("%s if_dscp_for_mbuf() error %d\n", __func__, error);
1531 error = 0;
1532 }
1533 }
1534
1535 ip_output_checksum(ifp, m, (IP_VHL_HL(ip->ip_vhl) << 2),
1536 ip->ip_len, &sw_csum);
1537
1538 interface_mtu = ifp->if_mtu;
1539
1540 if (INTF_ADJUST_MTU_FOR_CLAT46(ifp)) {
1541 interface_mtu = IN6_LINKMTU(ifp);
1542 /* Further adjust the size for CLAT46 expansion */
1543 interface_mtu -= CLAT46_HDR_EXPANSION_OVERHD;
1544 }
1545
1546 /*
1547 * If small enough for interface, or the interface will take
1548 * care of the fragmentation for us, can just send directly.
1549 */
1550 if ((u_short)ip->ip_len <= interface_mtu || TSO_IPV4_OK(ifp, m) ||
1551 (!(ip->ip_off & IP_DF) && (ifp->if_hwassist & CSUM_FRAGMENT))) {
1552 #if BYTE_ORDER != BIG_ENDIAN
1553 HTONS(ip->ip_len);
1554 HTONS(ip->ip_off);
1555 #endif
1556
1557 ip->ip_sum = 0;
1558 if (sw_csum & CSUM_DELAY_IP) {
1559 ip->ip_sum = ip_cksum_hdr_out(m, hlen);
1560 sw_csum &= ~CSUM_DELAY_IP;
1561 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP;
1562 }
1563
1564 #if IPSEC
1565 /* clean ipsec history once it goes out of the node */
1566 if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) {
1567 ipsec_delaux(m);
1568 }
1569 #endif /* IPSEC */
1570 if ((m->m_pkthdr.csum_flags & CSUM_TSO_IPV4) &&
1571 (m->m_pkthdr.tso_segsz > 0)) {
1572 scnt += m->m_pkthdr.len / m->m_pkthdr.tso_segsz;
1573 } else {
1574 scnt++;
1575 }
1576
1577 if (packetchain == 0) {
1578 if (ro->ro_rt != NULL && nstat_collect) {
1579 nstat_route_tx(ro->ro_rt, scnt,
1580 m->m_pkthdr.len, 0);
1581 }
1582
1583 error = dlil_output(ifp, PF_INET, m, ro->ro_rt,
1584 SA(dst), 0, adv);
1585 if (dlil_verbose && error) {
1586 printf("dlil_output error on interface %s: %d\n",
1587 ifp->if_xname, error);
1588 }
1589 scnt = 0;
1590 goto done;
1591 } else {
1592 /*
1593 * packet chaining allows us to reuse the
1594 * route for all packets
1595 */
1596 bytecnt += m->m_pkthdr.len;
1597 mppn = &m->m_nextpkt;
1598 m = m->m_nextpkt;
1599 if (m == NULL) {
1600 #if PF
1601 sendchain:
1602 #endif /* PF */
1603 if (pktcnt > ip_maxchainsent) {
1604 ip_maxchainsent = pktcnt;
1605 }
1606 if (ro->ro_rt != NULL && nstat_collect) {
1607 nstat_route_tx(ro->ro_rt, scnt,
1608 bytecnt, 0);
1609 }
1610
1611 error = dlil_output(ifp, PF_INET, packetlist,
1612 ro->ro_rt, SA(dst), 0, adv);
1613 if (dlil_verbose && error) {
1614 printf("dlil_output error on interface %s: %d\n",
1615 ifp->if_xname, error);
1616 }
1617 pktcnt = 0;
1618 scnt = 0;
1619 bytecnt = 0;
1620 goto done;
1621 }
1622 m0 = m;
1623 pktcnt++;
1624 goto loopit;
1625 }
1626 }
1627
1628 VERIFY(interface_mtu != 0);
1629 /*
1630 * Too large for interface; fragment if possible.
1631 * Must be able to put at least 8 bytes per fragment.
1632 * Balk when DF bit is set or the interface didn't support TSO.
1633 */
1634 if ((ip->ip_off & IP_DF) || pktcnt > 0 ||
1635 (m->m_pkthdr.csum_flags & CSUM_TSO_IPV4)) {
1636 error = EMSGSIZE;
1637 /*
1638 * This case can happen if the user changed the MTU
1639 * of an interface after enabling IP on it. Because
1640 * most netifs don't keep track of routes pointing to
1641 * them, there is no way for one to update all its
1642 * routes when the MTU is changed.
1643 */
1644 if (ro->ro_rt) {
1645 RT_LOCK_SPIN(ro->ro_rt);
1646 if ((ro->ro_rt->rt_flags & (RTF_UP | RTF_HOST)) &&
1647 !(ro->ro_rt->rt_rmx.rmx_locks & RTV_MTU) &&
1648 (ro->ro_rt->rt_rmx.rmx_mtu > interface_mtu)) {
1649 ro->ro_rt->rt_rmx.rmx_mtu = interface_mtu;
1650 }
1651 RT_UNLOCK(ro->ro_rt);
1652 }
1653 if (pktcnt > 0) {
1654 m0 = packetlist;
1655 }
1656 OSAddAtomic(1, &ipstat.ips_cantfrag);
1657 goto bad;
1658 }
1659
1660 /*
1661 * XXX Only TCP seems to be passing a list of packets here.
1662 * The following issue is limited to UDP datagrams with 0 checksum.
1663 * For now limit it to the case when single packet is passed down.
1664 */
1665 if (packetchain == 0 && IS_INTF_CLAT46(ifp)) {
1666 /*
1667 * If it is a UDP packet that has checksum set to 0
1668 * and is also not being offloaded, compute a full checksum
1669 * and update the UDP checksum.
1670 */
1671 if (ip->ip_p == IPPROTO_UDP &&
1672 !(m->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_PARTIAL))) {
1673 struct udphdr *uh = NULL;
1674
1675 if (m->m_len < hlen + sizeof(struct udphdr)) {
1676 m = m_pullup(m, hlen + sizeof(struct udphdr));
1677 if (m == NULL) {
1678 error = ENOBUFS;
1679 m0 = m;
1680 goto bad;
1681 }
1682 m0 = m;
1683 ip = mtod(m, struct ip *);
1684 }
1685 /*
1686 * Get UDP header and if checksum is 0, then compute the full
1687 * checksum.
1688 */
1689 uh = (struct udphdr *)(void *)((caddr_t)ip + hlen);
1690 if (uh->uh_sum == 0) {
1691 uh->uh_sum = inet_cksum(m, IPPROTO_UDP, hlen,
1692 ip->ip_len - hlen);
1693 if (uh->uh_sum == 0) {
1694 uh->uh_sum = 0xffff;
1695 }
1696 }
1697 }
1698 }
1699
1700 error = ip_fragment(m, ifp, interface_mtu, sw_csum);
1701 if (error != 0) {
1702 m0 = m = NULL;
1703 goto bad;
1704 }
1705
1706 KERNEL_DEBUG(DBG_LAYER_END, ip->ip_dst.s_addr,
1707 ip->ip_src.s_addr, ip->ip_p, ip->ip_off, ip->ip_len);
1708
1709 for (m = m0; m; m = m0) {
1710 m0 = m->m_nextpkt;
1711 m->m_nextpkt = 0;
1712 #if IPSEC
1713 /* clean ipsec history once it goes out of the node */
1714 if (ipsec_bypass == 0 && !(flags & IP_NOIPSEC)) {
1715 ipsec_delaux(m);
1716 }
1717 #endif /* IPSEC */
1718 if (error == 0) {
1719 if ((packetchain != 0) && (pktcnt > 0)) {
1720 panic("%s: mix of packet in packetlist is "
1721 "wrong=%p", __func__, packetlist);
1722 /* NOTREACHED */
1723 }
1724 if (ro->ro_rt != NULL && nstat_collect) {
1725 nstat_route_tx(ro->ro_rt, 1,
1726 m->m_pkthdr.len, 0);
1727 }
1728 error = dlil_output(ifp, PF_INET, m, ro->ro_rt,
1729 SA(dst), 0, adv);
1730 if (dlil_verbose && error) {
1731 printf("dlil_output error on interface %s: %d\n",
1732 ifp->if_xname, error);
1733 }
1734 } else {
1735 m_freem(m);
1736 }
1737 }
1738
1739 if (error == 0) {
1740 OSAddAtomic(1, &ipstat.ips_fragmented);
1741 }
1742
1743 done:
1744 if (ia != NULL) {
1745 IFA_REMREF(&ia->ia_ifa);
1746 ia = NULL;
1747 }
1748 #if IPSEC
1749 ROUTE_RELEASE(&ipsec_state.ro);
1750 if (sp != NULL) {
1751 KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1752 printf("DP ip_output call free SP:%x\n", sp));
1753 key_freesp(sp, KEY_SADB_UNLOCKED);
1754 }
1755 #endif /* IPSEC */
1756 #if NECP
1757 ROUTE_RELEASE(&necp_route);
1758 #endif /* NECP */
1759 #if DUMMYNET
1760 ROUTE_RELEASE(&saved_route);
1761 #endif /* DUMMYNET */
1762
1763 KERNEL_DEBUG(DBG_FNC_IP_OUTPUT | DBG_FUNC_END, error, 0, 0, 0, 0);
1764 if (ip_output_measure) {
1765 net_perf_measure_time(&net_perf, &start_tv, packets_processed);
1766 net_perf_histogram(&net_perf, packets_processed);
1767 }
1768 return error;
1769 bad:
1770 if (pktcnt > 0) {
1771 m0 = packetlist;
1772 }
1773 m_freem_list(m0);
1774 goto done;
1775
1776 #undef ipsec_state
1777 #undef args
1778 #undef sro_fwd
1779 #undef saved_route
1780 #undef ipf_pktopts
1781 #undef IP_CHECK_RESTRICTIONS
1782 }
1783
1784 int
1785 ip_fragment(struct mbuf *m, struct ifnet *ifp, uint32_t mtu, int sw_csum)
1786 {
1787 struct ip *ip, *mhip;
1788 int len, hlen, mhlen, firstlen, off, error = 0;
1789 struct mbuf **mnext = &m->m_nextpkt, *m0;
1790 int nfrags = 1;
1791
1792 ip = mtod(m, struct ip *);
1793 #ifdef _IP_VHL
1794 hlen = IP_VHL_HL(ip->ip_vhl) << 2;
1795 #else /* !_IP_VHL */
1796 hlen = ip->ip_hl << 2;
1797 #endif /* !_IP_VHL */
1798
1799 /*
1800 * We need to adjust the fragment sizes to account
1801 * for IPv6 fragment header if it needs to be translated
1802 * from IPv4 to IPv6.
1803 */
1804 if (IS_INTF_CLAT46(ifp)) {
1805 mtu -= sizeof(struct ip6_frag);
1806 }
1807
1808 firstlen = len = (mtu - hlen) & ~7;
1809 if (len < 8) {
1810 m_freem(m);
1811 return EMSGSIZE;
1812 }
1813
1814 /*
1815 * if the interface will not calculate checksums on
1816 * fragmented packets, then do it here.
1817 */
1818 if ((m->m_pkthdr.csum_flags & CSUM_DELAY_DATA) &&
1819 !(ifp->if_hwassist & CSUM_IP_FRAGS)) {
1820 in_delayed_cksum(m);
1821 }
1822
1823 /*
1824 * Loop through length of segment after first fragment,
1825 * make new header and copy data of each part and link onto chain.
1826 */
1827 m0 = m;
1828 mhlen = sizeof(struct ip);
1829 for (off = hlen + len; off < (u_short)ip->ip_len; off += len) {
1830 MGETHDR(m, M_DONTWAIT, MT_HEADER); /* MAC-OK */
1831 if (m == NULL) {
1832 error = ENOBUFS;
1833 OSAddAtomic(1, &ipstat.ips_odropped);
1834 goto sendorfree;
1835 }
1836 m->m_flags |= (m0->m_flags & M_MCAST) | M_FRAG;
1837 m->m_data += max_linkhdr;
1838 mhip = mtod(m, struct ip *);
1839 *mhip = *ip;
1840 if (hlen > sizeof(struct ip)) {
1841 mhlen = ip_optcopy(ip, mhip) + sizeof(struct ip);
1842 mhip->ip_vhl = IP_MAKE_VHL(IPVERSION, mhlen >> 2);
1843 }
1844 m->m_len = mhlen;
1845 mhip->ip_off = (u_short)(((off - hlen) >> 3) + (ip->ip_off & ~IP_MF));
1846 if (ip->ip_off & IP_MF) {
1847 mhip->ip_off |= IP_MF;
1848 }
1849 if (off + len >= (u_short)ip->ip_len) {
1850 len = (u_short)ip->ip_len - off;
1851 } else {
1852 mhip->ip_off |= IP_MF;
1853 }
1854 mhip->ip_len = htons((u_short)(len + mhlen));
1855 m->m_next = m_copy(m0, off, len);
1856 if (m->m_next == NULL) {
1857 (void) m_free(m);
1858 error = ENOBUFS; /* ??? */
1859 OSAddAtomic(1, &ipstat.ips_odropped);
1860 goto sendorfree;
1861 }
1862 m->m_pkthdr.len = mhlen + len;
1863 m->m_pkthdr.rcvif = NULL;
1864 m->m_pkthdr.csum_flags = m0->m_pkthdr.csum_flags;
1865
1866 M_COPY_CLASSIFIER(m, m0);
1867 M_COPY_PFTAG(m, m0);
1868 M_COPY_NECPTAG(m, m0);
1869
1870 #if BYTE_ORDER != BIG_ENDIAN
1871 HTONS(mhip->ip_off);
1872 #endif
1873
1874 mhip->ip_sum = 0;
1875 if (sw_csum & CSUM_DELAY_IP) {
1876 mhip->ip_sum = ip_cksum_hdr_out(m, mhlen);
1877 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP;
1878 }
1879 *mnext = m;
1880 mnext = &m->m_nextpkt;
1881 nfrags++;
1882 }
1883 OSAddAtomic(nfrags, &ipstat.ips_ofragments);
1884
1885 /* set first/last markers for fragment chain */
1886 m->m_flags |= M_LASTFRAG;
1887 m0->m_flags |= M_FIRSTFRAG | M_FRAG;
1888 m0->m_pkthdr.csum_data = nfrags;
1889
1890 /*
1891 * Update first fragment by trimming what's been copied out
1892 * and updating header, then send each fragment (in order).
1893 */
1894 m = m0;
1895 m_adj(m, hlen + firstlen - (u_short)ip->ip_len);
1896 m->m_pkthdr.len = hlen + firstlen;
1897 ip->ip_len = htons((u_short)m->m_pkthdr.len);
1898 ip->ip_off |= IP_MF;
1899
1900 #if BYTE_ORDER != BIG_ENDIAN
1901 HTONS(ip->ip_off);
1902 #endif
1903
1904 ip->ip_sum = 0;
1905 if (sw_csum & CSUM_DELAY_IP) {
1906 ip->ip_sum = ip_cksum_hdr_out(m, hlen);
1907 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP;
1908 }
1909 sendorfree:
1910 if (error) {
1911 m_freem_list(m0);
1912 }
1913
1914 return error;
1915 }
1916
1917 static void
1918 ip_out_cksum_stats(int proto, u_int32_t len)
1919 {
1920 switch (proto) {
1921 case IPPROTO_TCP:
1922 tcp_out_cksum_stats(len);
1923 break;
1924 case IPPROTO_UDP:
1925 udp_out_cksum_stats(len);
1926 break;
1927 default:
1928 /* keep only TCP or UDP stats for now */
1929 break;
1930 }
1931 }
1932
1933 /*
1934 * Process a delayed payload checksum calculation (outbound path.)
1935 *
1936 * hoff is the number of bytes beyond the mbuf data pointer which
1937 * points to the IP header.
1938 *
1939 * Returns a bitmask representing all the work done in software.
1940 */
1941 uint32_t
1942 in_finalize_cksum(struct mbuf *m, uint32_t hoff, uint32_t csum_flags)
1943 {
1944 unsigned char buf[15 << 2] __attribute__((aligned(8)));
1945 struct ip *ip;
1946 uint32_t offset, _hlen, mlen, hlen, len, sw_csum;
1947 uint16_t csum, ip_len;
1948
1949 _CASSERT(sizeof(csum) == sizeof(uint16_t));
1950 VERIFY(m->m_flags & M_PKTHDR);
1951
1952 sw_csum = (csum_flags & m->m_pkthdr.csum_flags);
1953
1954 if ((sw_csum &= (CSUM_DELAY_IP | CSUM_DELAY_DATA)) == 0) {
1955 goto done;
1956 }
1957
1958 mlen = m->m_pkthdr.len; /* total mbuf len */
1959
1960 /* sanity check (need at least simple IP header) */
1961 if (mlen < (hoff + sizeof(*ip))) {
1962 panic("%s: mbuf %p pkt len (%u) < hoff+ip_hdr "
1963 "(%u+%u)\n", __func__, m, mlen, hoff,
1964 (uint32_t)sizeof(*ip));
1965 /* NOTREACHED */
1966 }
1967
1968 /*
1969 * In case the IP header is not contiguous, or not 32-bit aligned,
1970 * or if we're computing the IP header checksum, copy it to a local
1971 * buffer. Copy only the simple IP header here (IP options case
1972 * is handled below.)
1973 */
1974 if ((sw_csum & CSUM_DELAY_IP) || (hoff + sizeof(*ip)) > m->m_len ||
1975 !IP_HDR_ALIGNED_P(mtod(m, caddr_t) + hoff)) {
1976 m_copydata(m, hoff, sizeof(*ip), (caddr_t)buf);
1977 ip = (struct ip *)(void *)buf;
1978 _hlen = sizeof(*ip);
1979 } else {
1980 ip = (struct ip *)(void *)(m->m_data + hoff);
1981 _hlen = 0;
1982 }
1983
1984 hlen = IP_VHL_HL(ip->ip_vhl) << 2; /* IP header len */
1985
1986 /* sanity check */
1987 if (mlen < (hoff + hlen)) {
1988 panic("%s: mbuf %p pkt too short (%d) for IP header (%u), "
1989 "hoff %u", __func__, m, mlen, hlen, hoff);
1990 /* NOTREACHED */
1991 }
1992
1993 /*
1994 * We could be in the context of an IP or interface filter; in the
1995 * former case, ip_len would be in host (correct) order while for
1996 * the latter it would be in network order. Because of this, we
1997 * attempt to interpret the length field by comparing it against
1998 * the actual packet length. If the comparison fails, byte swap
1999 * the length and check again. If it still fails, use the actual
2000 * packet length. This also covers the trailing bytes case.
2001 */
2002 ip_len = ip->ip_len;
2003 if (ip_len != (mlen - hoff)) {
2004 ip_len = OSSwapInt16(ip_len);
2005 if (ip_len != (mlen - hoff)) {
2006 printf("%s: mbuf 0x%llx proto %d IP len %d (%x) "
2007 "[swapped %d (%x)] doesn't match actual packet "
2008 "length; %d is used instead\n", __func__,
2009 (uint64_t)VM_KERNEL_ADDRPERM(m), ip->ip_p,
2010 ip->ip_len, ip->ip_len, ip_len, ip_len,
2011 (mlen - hoff));
2012 if (mlen - hoff > UINT16_MAX) {
2013 panic("%s: mlen %u - hoff %u > 65535",
2014 __func__, mlen, hoff);
2015 }
2016 ip_len = (uint16_t)(mlen - hoff);
2017 }
2018 }
2019
2020 len = ip_len - hlen; /* csum span */
2021
2022 if (sw_csum & CSUM_DELAY_DATA) {
2023 uint16_t ulpoff;
2024
2025 /*
2026 * offset is added to the lower 16-bit value of csum_data,
2027 * which is expected to contain the ULP offset; therefore
2028 * CSUM_PARTIAL offset adjustment must be undone.
2029 */
2030 if ((m->m_pkthdr.csum_flags & (CSUM_PARTIAL | CSUM_DATA_VALID)) ==
2031 (CSUM_PARTIAL | CSUM_DATA_VALID)) {
2032 /*
2033 * Get back the original ULP offset (this will
2034 * undo the CSUM_PARTIAL logic in ip_output.)
2035 */
2036 m->m_pkthdr.csum_data = (m->m_pkthdr.csum_tx_stuff -
2037 m->m_pkthdr.csum_tx_start);
2038 }
2039
2040 ulpoff = (m->m_pkthdr.csum_data & 0xffff); /* ULP csum offset */
2041 offset = hoff + hlen; /* ULP header */
2042
2043 if (mlen < (ulpoff + sizeof(csum))) {
2044 panic("%s: mbuf %p pkt len (%u) proto %d invalid ULP "
2045 "cksum offset (%u) cksum flags 0x%x\n", __func__,
2046 m, mlen, ip->ip_p, ulpoff, m->m_pkthdr.csum_flags);
2047 /* NOTREACHED */
2048 }
2049
2050 csum = inet_cksum(m, 0, offset, len);
2051
2052 /* Update stats */
2053 ip_out_cksum_stats(ip->ip_p, len);
2054
2055 /* RFC1122 4.1.3.4 */
2056 if (csum == 0 &&
2057 (m->m_pkthdr.csum_flags & (CSUM_UDP | CSUM_ZERO_INVERT))) {
2058 csum = 0xffff;
2059 }
2060
2061 /* Insert the checksum in the ULP csum field */
2062 offset += ulpoff;
2063 if (offset + sizeof(csum) > m->m_len) {
2064 m_copyback(m, offset, sizeof(csum), &csum);
2065 } else if (IP_HDR_ALIGNED_P(mtod(m, char *) + hoff)) {
2066 *(uint16_t *)(void *)(mtod(m, char *) + offset) = csum;
2067 } else {
2068 bcopy(&csum, (mtod(m, char *) + offset), sizeof(csum));
2069 }
2070 m->m_pkthdr.csum_flags &= ~(CSUM_DELAY_DATA | CSUM_DATA_VALID |
2071 CSUM_PARTIAL | CSUM_ZERO_INVERT);
2072 }
2073
2074 if (sw_csum & CSUM_DELAY_IP) {
2075 /* IP header must be in the local buffer */
2076 VERIFY(_hlen == sizeof(*ip));
2077 if (_hlen != hlen) {
2078 VERIFY(hlen <= sizeof(buf));
2079 m_copydata(m, hoff, hlen, (caddr_t)buf);
2080 ip = (struct ip *)(void *)buf;
2081 _hlen = hlen;
2082 }
2083
2084 /*
2085 * Compute the IP header checksum as if the IP length
2086 * is the length which we believe is "correct"; see
2087 * how ip_len gets calculated above. Note that this
2088 * is done on the local copy and not on the real one.
2089 */
2090 ip->ip_len = htons(ip_len);
2091 ip->ip_sum = 0;
2092 csum = in_cksum_hdr_opt(ip);
2093
2094 /* Update stats */
2095 ipstat.ips_snd_swcsum++;
2096 ipstat.ips_snd_swcsum_bytes += hlen;
2097
2098 /*
2099 * Insert only the checksum in the existing IP header
2100 * csum field; all other fields are left unchanged.
2101 */
2102 offset = hoff + offsetof(struct ip, ip_sum);
2103 if (offset + sizeof(csum) > m->m_len) {
2104 m_copyback(m, offset, sizeof(csum), &csum);
2105 } else if (IP_HDR_ALIGNED_P(mtod(m, char *) + hoff)) {
2106 *(uint16_t *)(void *)(mtod(m, char *) + offset) = csum;
2107 } else {
2108 bcopy(&csum, (mtod(m, char *) + offset), sizeof(csum));
2109 }
2110 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_IP;
2111 }
2112
2113 done:
2114 return sw_csum;
2115 }
2116
2117 /*
2118 * Insert IP options into preformed packet.
2119 * Adjust IP destination as required for IP source routing,
2120 * as indicated by a non-zero in_addr at the start of the options.
2121 *
2122 * XXX This routine assumes that the packet has no options in place.
2123 */
2124 static struct mbuf *
2125 ip_insertoptions(struct mbuf *m, struct mbuf *opt, int *phlen)
2126 {
2127 struct ipoption *p = mtod(opt, struct ipoption *);
2128 struct mbuf *n;
2129 struct ip *ip = mtod(m, struct ip *);
2130 unsigned optlen;
2131
2132 optlen = opt->m_len - sizeof(p->ipopt_dst);
2133 if (optlen + (u_short)ip->ip_len > IP_MAXPACKET) {
2134 return m; /* XXX should fail */
2135 }
2136 if (p->ipopt_dst.s_addr) {
2137 ip->ip_dst = p->ipopt_dst;
2138 }
2139 if (m->m_flags & M_EXT || m->m_data - optlen < m->m_pktdat) {
2140 MGETHDR(n, M_DONTWAIT, MT_HEADER); /* MAC-OK */
2141 if (n == NULL) {
2142 return m;
2143 }
2144 n->m_pkthdr.rcvif = 0;
2145 n->m_pkthdr.len = m->m_pkthdr.len + optlen;
2146 m->m_len -= sizeof(struct ip);
2147 m->m_data += sizeof(struct ip);
2148 n->m_next = m;
2149 m = n;
2150 m->m_len = optlen + sizeof(struct ip);
2151 m->m_data += max_linkhdr;
2152 (void) memcpy(mtod(m, void *), ip, sizeof(struct ip));
2153 } else {
2154 m->m_data -= optlen;
2155 m->m_len += optlen;
2156 m->m_pkthdr.len += optlen;
2157 ovbcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
2158 }
2159 ip = mtod(m, struct ip *);
2160 bcopy(p->ipopt_list, ip + 1, optlen);
2161 *phlen = sizeof(struct ip) + optlen;
2162 ip->ip_vhl = IP_MAKE_VHL(IPVERSION, *phlen >> 2);
2163 ip->ip_len += optlen;
2164 return m;
2165 }
2166
2167 /*
2168 * Copy options from ip to jp,
2169 * omitting those not copied during fragmentation.
2170 */
2171 static int
2172 ip_optcopy(struct ip *ip, struct ip *jp)
2173 {
2174 u_char *cp, *dp;
2175 int opt, optlen, cnt;
2176
2177 cp = (u_char *)(ip + 1);
2178 dp = (u_char *)(jp + 1);
2179 cnt = (IP_VHL_HL(ip->ip_vhl) << 2) - sizeof(struct ip);
2180 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2181 opt = cp[0];
2182 if (opt == IPOPT_EOL) {
2183 break;
2184 }
2185 if (opt == IPOPT_NOP) {
2186 /* Preserve for IP mcast tunnel's LSRR alignment. */
2187 *dp++ = IPOPT_NOP;
2188 optlen = 1;
2189 continue;
2190 }
2191 #if DIAGNOSTIC
2192 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
2193 panic("malformed IPv4 option passed to ip_optcopy");
2194 /* NOTREACHED */
2195 }
2196 #endif
2197 optlen = cp[IPOPT_OLEN];
2198 #if DIAGNOSTIC
2199 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
2200 panic("malformed IPv4 option passed to ip_optcopy");
2201 /* NOTREACHED */
2202 }
2203 #endif
2204 /* bogus lengths should have been caught by ip_dooptions */
2205 if (optlen > cnt) {
2206 optlen = cnt;
2207 }
2208 if (IPOPT_COPIED(opt)) {
2209 bcopy(cp, dp, optlen);
2210 dp += optlen;
2211 }
2212 }
2213 for (optlen = (int)(dp - (u_char *)(jp + 1)); optlen & 0x3; optlen++) {
2214 *dp++ = IPOPT_EOL;
2215 }
2216 return optlen;
2217 }
2218
2219 /*
2220 * IP socket option processing.
2221 */
2222 int
2223 ip_ctloutput(struct socket *so, struct sockopt *sopt)
2224 {
2225 struct inpcb *inp = sotoinpcb(so);
2226 int error, optval;
2227 lck_mtx_t *mutex_held = NULL;
2228
2229 error = optval = 0;
2230 if (sopt->sopt_level != IPPROTO_IP) {
2231 return EINVAL;
2232 }
2233
2234 switch (sopt->sopt_dir) {
2235 case SOPT_SET:
2236 mutex_held = socket_getlock(so, PR_F_WILLUNLOCK);
2237 /*
2238 * Wait if we are in the middle of ip_output
2239 * as we unlocked the socket there and don't
2240 * want to overwrite the IP options
2241 */
2242 if (inp->inp_sndinprog_cnt > 0) {
2243 inp->inp_sndingprog_waiters++;
2244
2245 while (inp->inp_sndinprog_cnt > 0) {
2246 msleep(&inp->inp_sndinprog_cnt, mutex_held,
2247 PSOCK | PCATCH, "inp_sndinprog_cnt", NULL);
2248 }
2249 inp->inp_sndingprog_waiters--;
2250 }
2251 switch (sopt->sopt_name) {
2252 #ifdef notyet
2253 case IP_RETOPTS:
2254 #endif
2255 case IP_OPTIONS: {
2256 struct mbuf *m;
2257
2258 if (sopt->sopt_valsize > MLEN) {
2259 error = EMSGSIZE;
2260 break;
2261 }
2262 MGET(m, sopt->sopt_p != kernproc ? M_WAIT : M_DONTWAIT,
2263 MT_HEADER);
2264 if (m == NULL) {
2265 error = ENOBUFS;
2266 break;
2267 }
2268 m->m_len = (int32_t)sopt->sopt_valsize;
2269 error = sooptcopyin(sopt, mtod(m, char *),
2270 m->m_len, m->m_len);
2271 if (error) {
2272 m_freem(m);
2273 break;
2274 }
2275
2276 return ip_pcbopts(sopt->sopt_name,
2277 &inp->inp_options, m);
2278 }
2279
2280 case IP_TOS:
2281 case IP_TTL:
2282 case IP_RECVOPTS:
2283 case IP_RECVRETOPTS:
2284 case IP_RECVDSTADDR:
2285 case IP_RECVIF:
2286 case IP_RECVTTL:
2287 case IP_RECVPKTINFO:
2288 case IP_RECVTOS:
2289 case IP_DONTFRAG:
2290 error = sooptcopyin(sopt, &optval, sizeof(optval),
2291 sizeof(optval));
2292 if (error) {
2293 break;
2294 }
2295
2296 switch (sopt->sopt_name) {
2297 case IP_TOS:
2298 if (optval > UINT8_MAX) {
2299 error = EINVAL;
2300 break;
2301 }
2302 inp->inp_ip_tos = (uint8_t)optval;
2303 break;
2304
2305 case IP_TTL:
2306 if (optval > UINT8_MAX) {
2307 error = EINVAL;
2308 break;
2309 }
2310 inp->inp_ip_ttl = (uint8_t)optval;
2311 break;
2312 #define OPTSET(bit) do { \
2313 if (optval) { \
2314 inp->inp_flags |= bit; \
2315 } else { \
2316 inp->inp_flags &= ~bit; \
2317 } \
2318 } while (0)
2319
2320 #define OPTSET2(bit) do { \
2321 if (optval) { \
2322 inp->inp_flags2 |= bit; \
2323 } else { \
2324 inp->inp_flags2 &= ~bit; \
2325 } \
2326 } while (0)
2327
2328 case IP_RECVOPTS:
2329 OPTSET(INP_RECVOPTS);
2330 break;
2331
2332 case IP_RECVRETOPTS:
2333 OPTSET(INP_RECVRETOPTS);
2334 break;
2335
2336 case IP_RECVDSTADDR:
2337 OPTSET(INP_RECVDSTADDR);
2338 break;
2339
2340 case IP_RECVIF:
2341 OPTSET(INP_RECVIF);
2342 break;
2343
2344 case IP_RECVTTL:
2345 OPTSET(INP_RECVTTL);
2346 break;
2347
2348 case IP_RECVPKTINFO:
2349 OPTSET(INP_PKTINFO);
2350 break;
2351
2352 case IP_RECVTOS:
2353 OPTSET(INP_RECVTOS);
2354 break;
2355
2356 case IP_DONTFRAG:
2357 /* This option is settable only for IPv4 */
2358 if (!(inp->inp_vflag & INP_IPV4)) {
2359 error = EINVAL;
2360 break;
2361 }
2362 OPTSET2(INP2_DONTFRAG);
2363 break;
2364 #undef OPTSET
2365 #undef OPTSET2
2366 }
2367 break;
2368 /*
2369 * Multicast socket options are processed by the in_mcast
2370 * module.
2371 */
2372 case IP_MULTICAST_IF:
2373 case IP_MULTICAST_IFINDEX:
2374 case IP_MULTICAST_VIF:
2375 case IP_MULTICAST_TTL:
2376 case IP_MULTICAST_LOOP:
2377 case IP_ADD_MEMBERSHIP:
2378 case IP_DROP_MEMBERSHIP:
2379 case IP_ADD_SOURCE_MEMBERSHIP:
2380 case IP_DROP_SOURCE_MEMBERSHIP:
2381 case IP_BLOCK_SOURCE:
2382 case IP_UNBLOCK_SOURCE:
2383 case IP_MSFILTER:
2384 case MCAST_JOIN_GROUP:
2385 case MCAST_LEAVE_GROUP:
2386 case MCAST_JOIN_SOURCE_GROUP:
2387 case MCAST_LEAVE_SOURCE_GROUP:
2388 case MCAST_BLOCK_SOURCE:
2389 case MCAST_UNBLOCK_SOURCE:
2390 error = inp_setmoptions(inp, sopt);
2391 break;
2392
2393 case IP_PORTRANGE:
2394 error = sooptcopyin(sopt, &optval, sizeof(optval),
2395 sizeof(optval));
2396 if (error) {
2397 break;
2398 }
2399
2400 switch (optval) {
2401 case IP_PORTRANGE_DEFAULT:
2402 inp->inp_flags &= ~(INP_LOWPORT);
2403 inp->inp_flags &= ~(INP_HIGHPORT);
2404 break;
2405
2406 case IP_PORTRANGE_HIGH:
2407 inp->inp_flags &= ~(INP_LOWPORT);
2408 inp->inp_flags |= INP_HIGHPORT;
2409 break;
2410
2411 case IP_PORTRANGE_LOW:
2412 inp->inp_flags &= ~(INP_HIGHPORT);
2413 inp->inp_flags |= INP_LOWPORT;
2414 break;
2415
2416 default:
2417 error = EINVAL;
2418 break;
2419 }
2420 break;
2421
2422 #if IPSEC
2423 case IP_IPSEC_POLICY: {
2424 caddr_t req = NULL;
2425 size_t len = 0;
2426 int priv;
2427 struct mbuf *m;
2428 int optname;
2429
2430 if ((error = soopt_getm(sopt, &m)) != 0) { /* XXX */
2431 break;
2432 }
2433 if ((error = soopt_mcopyin(sopt, m)) != 0) { /* XXX */
2434 break;
2435 }
2436 priv = (proc_suser(sopt->sopt_p) == 0);
2437 if (m) {
2438 req = mtod(m, caddr_t);
2439 len = m->m_len;
2440 }
2441 optname = sopt->sopt_name;
2442 error = ipsec4_set_policy(inp, optname, req, len, priv);
2443 m_freem(m);
2444 break;
2445 }
2446 #endif /* IPSEC */
2447
2448 #if TRAFFIC_MGT
2449 case IP_TRAFFIC_MGT_BACKGROUND: {
2450 unsigned background = 0;
2451
2452 error = sooptcopyin(sopt, &background,
2453 sizeof(background), sizeof(background));
2454 if (error) {
2455 break;
2456 }
2457
2458 if (background) {
2459 socket_set_traffic_mgt_flags_locked(so,
2460 TRAFFIC_MGT_SO_BACKGROUND);
2461 } else {
2462 socket_clear_traffic_mgt_flags_locked(so,
2463 TRAFFIC_MGT_SO_BACKGROUND);
2464 }
2465
2466 break;
2467 }
2468 #endif /* TRAFFIC_MGT */
2469
2470 /*
2471 * On a multihomed system, scoped routing can be used to
2472 * restrict the source interface used for sending packets.
2473 * The socket option IP_BOUND_IF binds a particular AF_INET
2474 * socket to an interface such that data sent on the socket
2475 * is restricted to that interface. This is unlike the
2476 * SO_DONTROUTE option where the routing table is bypassed;
2477 * therefore it allows for a greater flexibility and control
2478 * over the system behavior, and does not place any restriction
2479 * on the destination address type (e.g. unicast, multicast,
2480 * or broadcast if applicable) or whether or not the host is
2481 * directly reachable. Note that in the multicast transmit
2482 * case, IP_MULTICAST_{IF,IFINDEX} takes precedence over
2483 * IP_BOUND_IF, since the former practically bypasses the
2484 * routing table; in this case, IP_BOUND_IF sets the default
2485 * interface used for sending multicast packets in the absence
2486 * of an explicit multicast transmit interface.
2487 */
2488 case IP_BOUND_IF:
2489 /* This option is settable only for IPv4 */
2490 if (!(inp->inp_vflag & INP_IPV4)) {
2491 error = EINVAL;
2492 break;
2493 }
2494
2495 error = sooptcopyin(sopt, &optval, sizeof(optval),
2496 sizeof(optval));
2497
2498 if (error) {
2499 break;
2500 }
2501
2502 error = inp_bindif(inp, optval, NULL);
2503 break;
2504
2505 case IP_NO_IFT_CELLULAR:
2506 /* This option is settable only for IPv4 */
2507 if (!(inp->inp_vflag & INP_IPV4)) {
2508 error = EINVAL;
2509 break;
2510 }
2511
2512 error = sooptcopyin(sopt, &optval, sizeof(optval),
2513 sizeof(optval));
2514
2515 if (error) {
2516 break;
2517 }
2518
2519 /* once set, it cannot be unset */
2520 if (!optval && INP_NO_CELLULAR(inp)) {
2521 error = EINVAL;
2522 break;
2523 }
2524
2525 error = so_set_restrictions(so,
2526 SO_RESTRICT_DENY_CELLULAR);
2527 break;
2528
2529 case IP_OUT_IF:
2530 /* This option is not settable */
2531 error = EINVAL;
2532 break;
2533
2534 default:
2535 error = ENOPROTOOPT;
2536 break;
2537 }
2538 break;
2539
2540 case SOPT_GET:
2541 switch (sopt->sopt_name) {
2542 case IP_OPTIONS:
2543 case IP_RETOPTS:
2544 if (inp->inp_options) {
2545 error = sooptcopyout(sopt,
2546 mtod(inp->inp_options, char *),
2547 inp->inp_options->m_len);
2548 } else {
2549 sopt->sopt_valsize = 0;
2550 }
2551 break;
2552
2553 case IP_TOS:
2554 case IP_TTL:
2555 case IP_RECVOPTS:
2556 case IP_RECVRETOPTS:
2557 case IP_RECVDSTADDR:
2558 case IP_RECVIF:
2559 case IP_RECVTTL:
2560 case IP_PORTRANGE:
2561 case IP_RECVPKTINFO:
2562 case IP_RECVTOS:
2563 case IP_DONTFRAG:
2564 switch (sopt->sopt_name) {
2565 case IP_TOS:
2566 optval = inp->inp_ip_tos;
2567 break;
2568
2569 case IP_TTL:
2570 optval = inp->inp_ip_ttl;
2571 break;
2572
2573 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
2574 #define OPTBIT2(bit) (inp->inp_flags2 & bit ? 1 : 0)
2575 case IP_RECVOPTS:
2576 optval = OPTBIT(INP_RECVOPTS);
2577 break;
2578
2579 case IP_RECVRETOPTS:
2580 optval = OPTBIT(INP_RECVRETOPTS);
2581 break;
2582
2583 case IP_RECVDSTADDR:
2584 optval = OPTBIT(INP_RECVDSTADDR);
2585 break;
2586
2587 case IP_RECVIF:
2588 optval = OPTBIT(INP_RECVIF);
2589 break;
2590
2591 case IP_RECVTTL:
2592 optval = OPTBIT(INP_RECVTTL);
2593 break;
2594
2595 case IP_PORTRANGE:
2596 if (inp->inp_flags & INP_HIGHPORT) {
2597 optval = IP_PORTRANGE_HIGH;
2598 } else if (inp->inp_flags & INP_LOWPORT) {
2599 optval = IP_PORTRANGE_LOW;
2600 } else {
2601 optval = 0;
2602 }
2603 break;
2604
2605 case IP_RECVPKTINFO:
2606 optval = OPTBIT(INP_PKTINFO);
2607 break;
2608
2609 case IP_RECVTOS:
2610 optval = OPTBIT(INP_RECVTOS);
2611 break;
2612 case IP_DONTFRAG:
2613 optval = OPTBIT2(INP2_DONTFRAG);
2614 break;
2615 }
2616 error = sooptcopyout(sopt, &optval, sizeof(optval));
2617 break;
2618
2619 case IP_MULTICAST_IF:
2620 case IP_MULTICAST_IFINDEX:
2621 case IP_MULTICAST_VIF:
2622 case IP_MULTICAST_TTL:
2623 case IP_MULTICAST_LOOP:
2624 case IP_MSFILTER:
2625 error = inp_getmoptions(inp, sopt);
2626 break;
2627
2628 #if IPSEC
2629 case IP_IPSEC_POLICY: {
2630 error = 0; /* This option is no longer supported */
2631 break;
2632 }
2633 #endif /* IPSEC */
2634
2635 #if TRAFFIC_MGT
2636 case IP_TRAFFIC_MGT_BACKGROUND: {
2637 unsigned background = (so->so_flags1 &
2638 SOF1_TRAFFIC_MGT_SO_BACKGROUND) ? 1 : 0;
2639 return sooptcopyout(sopt, &background,
2640 sizeof(background));
2641 }
2642 #endif /* TRAFFIC_MGT */
2643
2644 case IP_BOUND_IF:
2645 if (inp->inp_flags & INP_BOUND_IF) {
2646 optval = inp->inp_boundifp->if_index;
2647 }
2648 error = sooptcopyout(sopt, &optval, sizeof(optval));
2649 break;
2650
2651 case IP_NO_IFT_CELLULAR:
2652 optval = INP_NO_CELLULAR(inp) ? 1 : 0;
2653 error = sooptcopyout(sopt, &optval, sizeof(optval));
2654 break;
2655
2656 case IP_OUT_IF:
2657 optval = (inp->inp_last_outifp != NULL) ?
2658 inp->inp_last_outifp->if_index : 0;
2659 error = sooptcopyout(sopt, &optval, sizeof(optval));
2660 break;
2661
2662 default:
2663 error = ENOPROTOOPT;
2664 break;
2665 }
2666 break;
2667 }
2668 return error;
2669 }
2670
2671 /*
2672 * Set up IP options in pcb for insertion in output packets.
2673 * Store in mbuf with pointer in pcbopt, adding pseudo-option
2674 * with destination address if source routed.
2675 */
2676 static int
2677 ip_pcbopts(int optname, struct mbuf **pcbopt, struct mbuf *m)
2678 {
2679 #pragma unused(optname)
2680 int cnt, optlen;
2681 u_char *cp;
2682 u_char opt;
2683
2684 /* turn off any old options */
2685 if (*pcbopt) {
2686 (void) m_free(*pcbopt);
2687 }
2688 *pcbopt = 0;
2689 if (m == (struct mbuf *)0 || m->m_len == 0) {
2690 /*
2691 * Only turning off any previous options.
2692 */
2693 if (m) {
2694 (void) m_free(m);
2695 }
2696 return 0;
2697 }
2698
2699 if (m->m_len % sizeof(int32_t)) {
2700 goto bad;
2701 }
2702
2703 /*
2704 * IP first-hop destination address will be stored before
2705 * actual options; move other options back
2706 * and clear it when none present.
2707 */
2708 if (m->m_data + m->m_len + sizeof(struct in_addr) >= &m->m_dat[MLEN]) {
2709 goto bad;
2710 }
2711 cnt = m->m_len;
2712 m->m_len += sizeof(struct in_addr);
2713 cp = mtod(m, u_char *) + sizeof(struct in_addr);
2714 ovbcopy(mtod(m, caddr_t), (caddr_t)cp, (unsigned)cnt);
2715 bzero(mtod(m, caddr_t), sizeof(struct in_addr));
2716
2717 for (; cnt > 0; cnt -= optlen, cp += optlen) {
2718 opt = cp[IPOPT_OPTVAL];
2719 if (opt == IPOPT_EOL) {
2720 break;
2721 }
2722 if (opt == IPOPT_NOP) {
2723 optlen = 1;
2724 } else {
2725 if (cnt < IPOPT_OLEN + sizeof(*cp)) {
2726 goto bad;
2727 }
2728 optlen = cp[IPOPT_OLEN];
2729 if (optlen < IPOPT_OLEN + sizeof(*cp) || optlen > cnt) {
2730 goto bad;
2731 }
2732 }
2733 switch (opt) {
2734 default:
2735 break;
2736
2737 case IPOPT_LSRR:
2738 case IPOPT_SSRR:
2739 /*
2740 * user process specifies route as:
2741 * ->A->B->C->D
2742 * D must be our final destination (but we can't
2743 * check that since we may not have connected yet).
2744 * A is first hop destination, which doesn't appear in
2745 * actual IP option, but is stored before the options.
2746 */
2747 if (optlen < IPOPT_MINOFF - 1 + sizeof(struct in_addr)) {
2748 goto bad;
2749 }
2750 if (optlen > UINT8_MAX) {
2751 goto bad;
2752 }
2753 m->m_len -= sizeof(struct in_addr);
2754 cnt -= sizeof(struct in_addr);
2755 optlen -= sizeof(struct in_addr);
2756 cp[IPOPT_OLEN] = (uint8_t)optlen;
2757 /*
2758 * Move first hop before start of options.
2759 */
2760 bcopy((caddr_t)&cp[IPOPT_OFFSET + 1], mtod(m, caddr_t),
2761 sizeof(struct in_addr));
2762 /*
2763 * Then copy rest of options back
2764 * to close up the deleted entry.
2765 */
2766 ovbcopy((caddr_t)(&cp[IPOPT_OFFSET + 1] +
2767 sizeof(struct in_addr)),
2768 (caddr_t)&cp[IPOPT_OFFSET + 1],
2769 (unsigned)cnt - (IPOPT_MINOFF - 1));
2770 break;
2771 }
2772 }
2773 if (m->m_len > MAX_IPOPTLEN + sizeof(struct in_addr)) {
2774 goto bad;
2775 }
2776 *pcbopt = m;
2777 return 0;
2778
2779 bad:
2780 (void) m_free(m);
2781 return EINVAL;
2782 }
2783
2784 void
2785 ip_moptions_init(void)
2786 {
2787 PE_parse_boot_argn("ifa_debug", &imo_debug, sizeof(imo_debug));
2788
2789 vm_size_t imo_size = (imo_debug == 0) ? sizeof(struct ip_moptions) :
2790 sizeof(struct ip_moptions_dbg);
2791
2792 imo_zone = zone_create(IMO_ZONE_NAME, imo_size, ZC_ZFREE_CLEARMEM);
2793 }
2794
2795 void
2796 imo_addref(struct ip_moptions *imo, int locked)
2797 {
2798 if (!locked) {
2799 IMO_LOCK(imo);
2800 } else {
2801 IMO_LOCK_ASSERT_HELD(imo);
2802 }
2803
2804 if (++imo->imo_refcnt == 0) {
2805 panic("%s: imo %p wraparound refcnt\n", __func__, imo);
2806 /* NOTREACHED */
2807 } else if (imo->imo_trace != NULL) {
2808 (*imo->imo_trace)(imo, TRUE);
2809 }
2810
2811 if (!locked) {
2812 IMO_UNLOCK(imo);
2813 }
2814 }
2815
2816 void
2817 imo_remref(struct ip_moptions *imo)
2818 {
2819 int i;
2820
2821 IMO_LOCK(imo);
2822 if (imo->imo_refcnt == 0) {
2823 panic("%s: imo %p negative refcnt", __func__, imo);
2824 /* NOTREACHED */
2825 } else if (imo->imo_trace != NULL) {
2826 (*imo->imo_trace)(imo, FALSE);
2827 }
2828
2829 --imo->imo_refcnt;
2830 if (imo->imo_refcnt > 0) {
2831 IMO_UNLOCK(imo);
2832 return;
2833 }
2834
2835 for (i = 0; i < imo->imo_num_memberships; ++i) {
2836 struct in_mfilter *imf;
2837
2838 imf = imo->imo_mfilters ? &imo->imo_mfilters[i] : NULL;
2839 if (imf != NULL) {
2840 imf_leave(imf);
2841 }
2842
2843 (void) in_leavegroup(imo->imo_membership[i], imf);
2844
2845 if (imf != NULL) {
2846 imf_purge(imf);
2847 }
2848
2849 INM_REMREF(imo->imo_membership[i]);
2850 imo->imo_membership[i] = NULL;
2851 }
2852 imo->imo_num_memberships = 0;
2853 if (imo->imo_mfilters != NULL) {
2854 FREE(imo->imo_mfilters, M_INMFILTER);
2855 imo->imo_mfilters = NULL;
2856 }
2857 if (imo->imo_membership != NULL) {
2858 FREE(imo->imo_membership, M_IPMOPTS);
2859 imo->imo_membership = NULL;
2860 }
2861 IMO_UNLOCK(imo);
2862
2863 lck_mtx_destroy(&imo->imo_lock, ifa_mtx_grp);
2864
2865 if (!(imo->imo_debug & IFD_ALLOC)) {
2866 panic("%s: imo %p cannot be freed", __func__, imo);
2867 /* NOTREACHED */
2868 }
2869 zfree(imo_zone, imo);
2870 }
2871
2872 static void
2873 imo_trace(struct ip_moptions *imo, int refhold)
2874 {
2875 struct ip_moptions_dbg *imo_dbg = (struct ip_moptions_dbg *)imo;
2876 ctrace_t *tr;
2877 u_int32_t idx;
2878 u_int16_t *cnt;
2879
2880 if (!(imo->imo_debug & IFD_DEBUG)) {
2881 panic("%s: imo %p has no debug structure", __func__, imo);
2882 /* NOTREACHED */
2883 }
2884 if (refhold) {
2885 cnt = &imo_dbg->imo_refhold_cnt;
2886 tr = imo_dbg->imo_refhold;
2887 } else {
2888 cnt = &imo_dbg->imo_refrele_cnt;
2889 tr = imo_dbg->imo_refrele;
2890 }
2891
2892 idx = atomic_add_16_ov(cnt, 1) % IMO_TRACE_HIST_SIZE;
2893 ctrace_record(&tr[idx]);
2894 }
2895
2896 struct ip_moptions *
2897 ip_allocmoptions(zalloc_flags_t how)
2898 {
2899 struct ip_moptions *imo;
2900
2901 imo = zalloc_flags(imo_zone, how | Z_ZERO);
2902 if (imo != NULL) {
2903 lck_mtx_init(&imo->imo_lock, ifa_mtx_grp, ifa_mtx_attr);
2904 imo->imo_debug |= IFD_ALLOC;
2905 if (imo_debug != 0) {
2906 imo->imo_debug |= IFD_DEBUG;
2907 imo->imo_trace = imo_trace;
2908 }
2909 IMO_ADDREF(imo);
2910 }
2911
2912 return imo;
2913 }
2914
2915 /*
2916 * Routine called from ip_output() to loop back a copy of an IP multicast
2917 * packet to the input queue of a specified interface. Note that this
2918 * calls the output routine of the loopback "driver", but with an interface
2919 * pointer that might NOT be a loopback interface -- evil, but easier than
2920 * replicating that code here.
2921 */
2922 static void
2923 ip_mloopback(struct ifnet *srcifp, struct ifnet *origifp, struct mbuf *m,
2924 struct sockaddr_in *dst, int hlen)
2925 {
2926 struct mbuf *copym;
2927 struct ip *ip;
2928
2929 if (lo_ifp == NULL) {
2930 return;
2931 }
2932
2933 /*
2934 * Copy the packet header as it's needed for the checksum
2935 * Make sure to deep-copy IP header portion in case the data
2936 * is in an mbuf cluster, so that we can safely override the IP
2937 * header portion later.
2938 */
2939 copym = m_copym_mode(m, 0, M_COPYALL, M_DONTWAIT, M_COPYM_COPY_HDR);
2940 if (copym != NULL && ((copym->m_flags & M_EXT) || copym->m_len < hlen)) {
2941 copym = m_pullup(copym, hlen);
2942 }
2943
2944 if (copym == NULL) {
2945 return;
2946 }
2947
2948 /*
2949 * We don't bother to fragment if the IP length is greater
2950 * than the interface's MTU. Can this possibly matter?
2951 */
2952 ip = mtod(copym, struct ip *);
2953 #if BYTE_ORDER != BIG_ENDIAN
2954 HTONS(ip->ip_len);
2955 HTONS(ip->ip_off);
2956 #endif
2957 ip->ip_sum = 0;
2958 ip->ip_sum = ip_cksum_hdr_out(copym, hlen);
2959
2960 /*
2961 * Mark checksum as valid unless receive checksum offload is
2962 * disabled; if so, compute checksum in software. If the
2963 * interface itself is lo0, this will be overridden by if_loop.
2964 */
2965 if (hwcksum_rx) {
2966 copym->m_pkthdr.csum_flags &= ~(CSUM_PARTIAL | CSUM_ZERO_INVERT);
2967 copym->m_pkthdr.csum_flags |=
2968 CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2969 copym->m_pkthdr.csum_data = 0xffff;
2970 } else if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA) {
2971 #if BYTE_ORDER != BIG_ENDIAN
2972 NTOHS(ip->ip_len);
2973 #endif
2974 in_delayed_cksum(copym);
2975 #if BYTE_ORDER != BIG_ENDIAN
2976 HTONS(ip->ip_len);
2977 #endif
2978 }
2979
2980 /*
2981 * Stuff the 'real' ifp into the pkthdr, to be used in matching
2982 * in ip_input(); we need the loopback ifp/dl_tag passed as args
2983 * to make the loopback driver compliant with the data link
2984 * requirements.
2985 */
2986 copym->m_pkthdr.rcvif = origifp;
2987
2988 /*
2989 * Also record the source interface (which owns the source address).
2990 * This is basically a stripped down version of ifa_foraddr().
2991 */
2992 if (srcifp == NULL) {
2993 struct in_ifaddr *ia;
2994
2995 lck_rw_lock_shared(in_ifaddr_rwlock);
2996 TAILQ_FOREACH(ia, INADDR_HASH(ip->ip_src.s_addr), ia_hash) {
2997 IFA_LOCK_SPIN(&ia->ia_ifa);
2998 if (IA_SIN(ia)->sin_addr.s_addr == ip->ip_src.s_addr) {
2999 srcifp = ia->ia_ifp;
3000 IFA_UNLOCK(&ia->ia_ifa);
3001 break;
3002 }
3003 IFA_UNLOCK(&ia->ia_ifa);
3004 }
3005 lck_rw_done(in_ifaddr_rwlock);
3006 }
3007 if (srcifp != NULL) {
3008 ip_setsrcifaddr_info(copym, srcifp->if_index, NULL);
3009 }
3010 ip_setdstifaddr_info(copym, origifp->if_index, NULL);
3011
3012 dlil_output(lo_ifp, PF_INET, copym, NULL, SA(dst), 0, NULL);
3013 }
3014
3015 /*
3016 * Given a source IP address (and route, if available), determine the best
3017 * interface to send the packet from. Checking for (and updating) the
3018 * ROF_SRCIF_SELECTED flag in the pcb-supplied route placeholder is done
3019 * without any locks based on the assumption that ip_output() is single-
3020 * threaded per-pcb, i.e. for any given pcb there can only be one thread
3021 * performing output at the IP layer.
3022 *
3023 * This routine is analogous to in6_selectroute() for IPv6.
3024 */
3025 static struct ifaddr *
3026 in_selectsrcif(struct ip *ip, struct route *ro, unsigned int ifscope)
3027 {
3028 struct ifaddr *ifa = NULL;
3029 struct in_addr src = ip->ip_src;
3030 struct in_addr dst = ip->ip_dst;
3031 struct ifnet *rt_ifp;
3032 char s_src[MAX_IPv4_STR_LEN], s_dst[MAX_IPv4_STR_LEN];
3033
3034 VERIFY(src.s_addr != INADDR_ANY);
3035
3036 if (ip_select_srcif_debug) {
3037 (void) inet_ntop(AF_INET, &src.s_addr, s_src, sizeof(s_src));
3038 (void) inet_ntop(AF_INET, &dst.s_addr, s_dst, sizeof(s_dst));
3039 }
3040
3041 if (ro->ro_rt != NULL) {
3042 RT_LOCK(ro->ro_rt);
3043 }
3044
3045 rt_ifp = (ro->ro_rt != NULL) ? ro->ro_rt->rt_ifp : NULL;
3046
3047 /*
3048 * Given the source IP address, find a suitable source interface
3049 * to use for transmission; if the caller has specified a scope,
3050 * optimize the search by looking at the addresses only for that
3051 * interface. This is still suboptimal, however, as we need to
3052 * traverse the per-interface list.
3053 */
3054 if (ifscope != IFSCOPE_NONE || ro->ro_rt != NULL) {
3055 unsigned int scope = ifscope;
3056
3057 /*
3058 * If no scope is specified and the route is stale (pointing
3059 * to a defunct interface) use the current primary interface;
3060 * this happens when switching between interfaces configured
3061 * with the same IP address. Otherwise pick up the scope
3062 * information from the route; the ULP may have looked up a
3063 * correct route and we just need to verify it here and mark
3064 * it with the ROF_SRCIF_SELECTED flag below.
3065 */
3066 if (scope == IFSCOPE_NONE) {
3067 scope = rt_ifp->if_index;
3068 if (scope != get_primary_ifscope(AF_INET) &&
3069 ROUTE_UNUSABLE(ro)) {
3070 scope = get_primary_ifscope(AF_INET);
3071 }
3072 }
3073
3074 ifa = (struct ifaddr *)ifa_foraddr_scoped(src.s_addr, scope);
3075
3076 if (ifa == NULL && ip->ip_p != IPPROTO_UDP &&
3077 ip->ip_p != IPPROTO_TCP && ipforwarding) {
3078 /*
3079 * If forwarding is enabled, and if the packet isn't
3080 * TCP or UDP, check if the source address belongs
3081 * to one of our own interfaces; if so, demote the
3082 * interface scope and do a route lookup right below.
3083 */
3084 ifa = (struct ifaddr *)ifa_foraddr(src.s_addr);
3085 if (ifa != NULL) {
3086 IFA_REMREF(ifa);
3087 ifa = NULL;
3088 ifscope = IFSCOPE_NONE;
3089 }
3090 }
3091
3092 if (ip_select_srcif_debug && ifa != NULL) {
3093 if (ro->ro_rt != NULL) {
3094 printf("%s->%s ifscope %d->%d ifa_if %s "
3095 "ro_if %s\n", s_src, s_dst, ifscope,
3096 scope, if_name(ifa->ifa_ifp),
3097 if_name(rt_ifp));
3098 } else {
3099 printf("%s->%s ifscope %d->%d ifa_if %s\n",
3100 s_src, s_dst, ifscope, scope,
3101 if_name(ifa->ifa_ifp));
3102 }
3103 }
3104 }
3105
3106 /*
3107 * Slow path; search for an interface having the corresponding source
3108 * IP address if the scope was not specified by the caller, and:
3109 *
3110 * 1) There currently isn't any route, or,
3111 * 2) The interface used by the route does not own that source
3112 * IP address; in this case, the route will get blown away
3113 * and we'll do a more specific scoped search using the newly
3114 * found interface.
3115 */
3116 if (ifa == NULL && ifscope == IFSCOPE_NONE) {
3117 ifa = (struct ifaddr *)ifa_foraddr(src.s_addr);
3118
3119 /*
3120 * If we have the IP address, but not the route, we don't
3121 * really know whether or not it belongs to the correct
3122 * interface (it could be shared across multiple interfaces.)
3123 * The only way to find out is to do a route lookup.
3124 */
3125 if (ifa != NULL && ro->ro_rt == NULL) {
3126 struct rtentry *rt;
3127 struct sockaddr_in sin;
3128 struct ifaddr *oifa = NULL;
3129
3130 bzero(&sin, sizeof(sin));
3131 sin.sin_family = AF_INET;
3132 sin.sin_len = sizeof(sin);
3133 sin.sin_addr = dst;
3134
3135 lck_mtx_lock(rnh_lock);
3136 if ((rt = rt_lookup(TRUE, SA(&sin), NULL,
3137 rt_tables[AF_INET], IFSCOPE_NONE)) != NULL) {
3138 RT_LOCK(rt);
3139 /*
3140 * If the route uses a different interface,
3141 * use that one instead. The IP address of
3142 * the ifaddr that we pick up here is not
3143 * relevant.
3144 */
3145 if (ifa->ifa_ifp != rt->rt_ifp) {
3146 oifa = ifa;
3147 ifa = rt->rt_ifa;
3148 IFA_ADDREF(ifa);
3149 RT_UNLOCK(rt);
3150 } else {
3151 RT_UNLOCK(rt);
3152 }
3153 rtfree_locked(rt);
3154 }
3155 lck_mtx_unlock(rnh_lock);
3156
3157 if (oifa != NULL) {
3158 struct ifaddr *iifa;
3159
3160 /*
3161 * See if the interface pointed to by the
3162 * route is configured with the source IP
3163 * address of the packet.
3164 */
3165 iifa = (struct ifaddr *)ifa_foraddr_scoped(
3166 src.s_addr, ifa->ifa_ifp->if_index);
3167
3168 if (iifa != NULL) {
3169 /*
3170 * Found it; drop the original one
3171 * as well as the route interface
3172 * address, and use this instead.
3173 */
3174 IFA_REMREF(oifa);
3175 IFA_REMREF(ifa);
3176 ifa = iifa;
3177 } else if (!ipforwarding ||
3178 (rt->rt_flags & RTF_GATEWAY)) {
3179 /*
3180 * This interface doesn't have that
3181 * source IP address; drop the route
3182 * interface address and just use the
3183 * original one, and let the caller
3184 * do a scoped route lookup.
3185 */
3186 IFA_REMREF(ifa);
3187 ifa = oifa;
3188 } else {
3189 /*
3190 * Forwarding is enabled and the source
3191 * address belongs to one of our own
3192 * interfaces which isn't the outgoing
3193 * interface, and we have a route, and
3194 * the destination is on a network that
3195 * is directly attached (onlink); drop
3196 * the original one and use the route
3197 * interface address instead.
3198 */
3199 IFA_REMREF(oifa);
3200 }
3201 }
3202 } else if (ifa != NULL && ro->ro_rt != NULL &&
3203 !(ro->ro_rt->rt_flags & RTF_GATEWAY) &&
3204 ifa->ifa_ifp != ro->ro_rt->rt_ifp && ipforwarding) {
3205 /*
3206 * Forwarding is enabled and the source address belongs
3207 * to one of our own interfaces which isn't the same
3208 * as the interface used by the known route; drop the
3209 * original one and use the route interface address.
3210 */
3211 IFA_REMREF(ifa);
3212 ifa = ro->ro_rt->rt_ifa;
3213 IFA_ADDREF(ifa);
3214 }
3215
3216 if (ip_select_srcif_debug && ifa != NULL) {
3217 printf("%s->%s ifscope %d ifa_if %s\n",
3218 s_src, s_dst, ifscope, if_name(ifa->ifa_ifp));
3219 }
3220 }
3221
3222 if (ro->ro_rt != NULL) {
3223 RT_LOCK_ASSERT_HELD(ro->ro_rt);
3224 }
3225 /*
3226 * If there is a non-loopback route with the wrong interface, or if
3227 * there is no interface configured with such an address, blow it
3228 * away. Except for local/loopback, we look for one with a matching
3229 * interface scope/index.
3230 */
3231 if (ro->ro_rt != NULL &&
3232 (ifa == NULL || (ifa->ifa_ifp != rt_ifp && rt_ifp != lo_ifp) ||
3233 !(ro->ro_rt->rt_flags & RTF_UP))) {
3234 if (ip_select_srcif_debug) {
3235 if (ifa != NULL) {
3236 printf("%s->%s ifscope %d ro_if %s != "
3237 "ifa_if %s (cached route cleared)\n",
3238 s_src, s_dst, ifscope, if_name(rt_ifp),
3239 if_name(ifa->ifa_ifp));
3240 } else {
3241 printf("%s->%s ifscope %d ro_if %s "
3242 "(no ifa_if found)\n",
3243 s_src, s_dst, ifscope, if_name(rt_ifp));
3244 }
3245 }
3246
3247 RT_UNLOCK(ro->ro_rt);
3248 ROUTE_RELEASE(ro);
3249
3250 /*
3251 * If the destination is IPv4 LLA and the route's interface
3252 * doesn't match the source interface, then the source IP
3253 * address is wrong; it most likely belongs to the primary
3254 * interface associated with the IPv4 LL subnet. Drop the
3255 * packet rather than letting it go out and return an error
3256 * to the ULP. This actually applies not only to IPv4 LL
3257 * but other shared subnets; for now we explicitly test only
3258 * for the former case and save the latter for future.
3259 */
3260 if (IN_LINKLOCAL(ntohl(dst.s_addr)) &&
3261 !IN_LINKLOCAL(ntohl(src.s_addr)) && ifa != NULL) {
3262 IFA_REMREF(ifa);
3263 ifa = NULL;
3264 }
3265 }
3266
3267 if (ip_select_srcif_debug && ifa == NULL) {
3268 printf("%s->%s ifscope %d (neither ro_if/ifa_if found)\n",
3269 s_src, s_dst, ifscope);
3270 }
3271
3272 /*
3273 * If there is a route, mark it accordingly. If there isn't one,
3274 * we'll get here again during the next transmit (possibly with a
3275 * route) and the flag will get set at that point. For IPv4 LLA
3276 * destination, mark it only if the route has been fully resolved;
3277 * otherwise we want to come back here again when the route points
3278 * to the interface over which the ARP reply arrives on.
3279 */
3280 if (ro->ro_rt != NULL && (!IN_LINKLOCAL(ntohl(dst.s_addr)) ||
3281 (ro->ro_rt->rt_gateway->sa_family == AF_LINK &&
3282 SDL(ro->ro_rt->rt_gateway)->sdl_alen != 0))) {
3283 if (ifa != NULL) {
3284 IFA_ADDREF(ifa); /* for route */
3285 }
3286 if (ro->ro_srcia != NULL) {
3287 IFA_REMREF(ro->ro_srcia);
3288 }
3289 ro->ro_srcia = ifa;
3290 ro->ro_flags |= ROF_SRCIF_SELECTED;
3291 RT_GENID_SYNC(ro->ro_rt);
3292 }
3293
3294 if (ro->ro_rt != NULL) {
3295 RT_UNLOCK(ro->ro_rt);
3296 }
3297
3298 return ifa;
3299 }
3300
3301 /*
3302 * @brief Given outgoing interface it determines what checksum needs
3303 * to be computed in software and what needs to be offloaded to the
3304 * interface.
3305 *
3306 * @param ifp Pointer to the outgoing interface
3307 * @param m Pointer to the packet
3308 * @param hlen IP header length
3309 * @param ip_len Total packet size i.e. headers + data payload
3310 * @param sw_csum Pointer to a software checksum flag set
3311 *
3312 * @return void
3313 */
3314 void
3315 ip_output_checksum(struct ifnet *ifp, struct mbuf *m, int hlen, int ip_len,
3316 uint32_t *sw_csum)
3317 {
3318 int tso = TSO_IPV4_OK(ifp, m);
3319 uint32_t hwcap = ifp->if_hwassist;
3320
3321 m->m_pkthdr.csum_flags |= CSUM_IP;
3322
3323 if (!hwcksum_tx) {
3324 /* do all in software; hardware checksum offload is disabled */
3325 *sw_csum = (CSUM_DELAY_DATA | CSUM_DELAY_IP) &
3326 m->m_pkthdr.csum_flags;
3327 } else {
3328 /* do in software what the hardware cannot */
3329 *sw_csum = m->m_pkthdr.csum_flags &
3330 ~IF_HWASSIST_CSUM_FLAGS(hwcap);
3331 }
3332
3333 if (hlen != sizeof(struct ip)) {
3334 *sw_csum |= ((CSUM_DELAY_DATA | CSUM_DELAY_IP) &
3335 m->m_pkthdr.csum_flags);
3336 } else if (!(*sw_csum & CSUM_DELAY_DATA) && (hwcap & CSUM_PARTIAL)) {
3337 int interface_mtu = ifp->if_mtu;
3338
3339 if (INTF_ADJUST_MTU_FOR_CLAT46(ifp)) {
3340 interface_mtu = IN6_LINKMTU(ifp);
3341 /* Further adjust the size for CLAT46 expansion */
3342 interface_mtu -= CLAT46_HDR_EXPANSION_OVERHD;
3343 }
3344
3345 /*
3346 * Partial checksum offload, if non-IP fragment, and TCP only
3347 * (no UDP support, as the hardware may not be able to convert
3348 * +0 to -0 (0xffff) per RFC1122 4.1.3.4. unless the interface
3349 * supports "invert zero" capability.)
3350 */
3351 if (hwcksum_tx && !tso &&
3352 ((m->m_pkthdr.csum_flags & CSUM_TCP) ||
3353 ((hwcap & CSUM_ZERO_INVERT) &&
3354 (m->m_pkthdr.csum_flags & CSUM_ZERO_INVERT))) &&
3355 ip_len <= interface_mtu) {
3356 uint16_t start = sizeof(struct ip);
3357 uint16_t ulpoff = m->m_pkthdr.csum_data & 0xffff;
3358 m->m_pkthdr.csum_flags |=
3359 (CSUM_DATA_VALID | CSUM_PARTIAL);
3360 m->m_pkthdr.csum_tx_stuff = (ulpoff + start);
3361 m->m_pkthdr.csum_tx_start = start;
3362 /* do IP hdr chksum in software */
3363 *sw_csum = CSUM_DELAY_IP;
3364 } else {
3365 *sw_csum |= (CSUM_DELAY_DATA & m->m_pkthdr.csum_flags);
3366 }
3367 }
3368
3369 if (*sw_csum & CSUM_DELAY_DATA) {
3370 in_delayed_cksum(m);
3371 *sw_csum &= ~CSUM_DELAY_DATA;
3372 }
3373
3374 if (hwcksum_tx) {
3375 /*
3376 * Drop off bits that aren't supported by hardware;
3377 * also make sure to preserve non-checksum related bits.
3378 */
3379 m->m_pkthdr.csum_flags =
3380 ((m->m_pkthdr.csum_flags &
3381 (IF_HWASSIST_CSUM_FLAGS(hwcap) | CSUM_DATA_VALID)) |
3382 (m->m_pkthdr.csum_flags & ~IF_HWASSIST_CSUM_MASK));
3383 } else {
3384 /* drop all bits; hardware checksum offload is disabled */
3385 m->m_pkthdr.csum_flags = 0;
3386 }
3387 }
3388
3389 /*
3390 * GRE protocol output for PPP/PPTP
3391 */
3392 int
3393 ip_gre_output(struct mbuf *m)
3394 {
3395 struct route ro;
3396 int error;
3397
3398 bzero(&ro, sizeof(ro));
3399
3400 error = ip_output(m, NULL, &ro, 0, NULL, NULL);
3401
3402 ROUTE_RELEASE(&ro);
3403
3404 return error;
3405 }
3406
3407 static int
3408 sysctl_reset_ip_output_stats SYSCTL_HANDLER_ARGS
3409 {
3410 #pragma unused(arg1, arg2)
3411 int error, i;
3412
3413 i = ip_output_measure;
3414 error = sysctl_handle_int(oidp, &i, 0, req);
3415 if (error || req->newptr == USER_ADDR_NULL) {
3416 goto done;
3417 }
3418 /* impose bounds */
3419 if (i < 0 || i > 1) {
3420 error = EINVAL;
3421 goto done;
3422 }
3423 if (ip_output_measure != i && i == 1) {
3424 net_perf_initialize(&net_perf, ip_output_measure_bins);
3425 }
3426 ip_output_measure = i;
3427 done:
3428 return error;
3429 }
3430
3431 static int
3432 sysctl_ip_output_measure_bins SYSCTL_HANDLER_ARGS
3433 {
3434 #pragma unused(arg1, arg2)
3435 int error;
3436 uint64_t i;
3437
3438 i = ip_output_measure_bins;
3439 error = sysctl_handle_quad(oidp, &i, 0, req);
3440 if (error || req->newptr == USER_ADDR_NULL) {
3441 goto done;
3442 }
3443 /* validate data */
3444 if (!net_perf_validate_bins(i)) {
3445 error = EINVAL;
3446 goto done;
3447 }
3448 ip_output_measure_bins = i;
3449 done:
3450 return error;
3451 }
3452
3453 static int
3454 sysctl_ip_output_getperf SYSCTL_HANDLER_ARGS
3455 {
3456 #pragma unused(oidp, arg1, arg2)
3457 if (req->oldptr == USER_ADDR_NULL) {
3458 req->oldlen = (size_t)sizeof(struct ipstat);
3459 }
3460
3461 return SYSCTL_OUT(req, &net_perf, MIN(sizeof(net_perf), req->oldlen));
3462 }