2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
30 * Portions Copyright (c) 2000 Akamba Corp.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
42 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
43 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
46 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
47 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
48 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
49 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
50 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
51 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
54 * $FreeBSD: src/sys/netinet/ip_dummynet.c,v 1.84 2004/08/25 09:31:30 pjd Exp $
57 #define DUMMYNET_DEBUG
60 * This module implements IP dummynet, a bandwidth limiter/delay emulator
61 * Description of the data structures used is in ip_dummynet.h
62 * Here you mainly find the following blocks of code:
63 * + variable declarations;
64 * + heap management functions;
65 * + scheduler and dummynet functions;
66 * + configuration and initialization.
68 * NOTA BENE: critical sections are protected by the "dummynet lock".
70 * Most important Changes:
72 * 010124: Fixed WF2Q behaviour
73 * 010122: Fixed spl protection.
74 * 000601: WF2Q support
75 * 000106: large rewrite, use heaps to handle very many pipes.
76 * 980513: initial release
78 * include files marked with XXX are probably not needed
81 #include <sys/param.h>
82 #include <sys/systm.h>
83 #include <sys/malloc.h>
85 #include <sys/queue.h> /* XXX */
86 #include <sys/kernel.h>
87 #include <sys/random.h>
88 #include <sys/socket.h>
89 #include <sys/socketvar.h>
91 #include <sys/sysctl.h>
93 #include <net/route.h>
94 #include <net/kpi_protocol.h>
96 #include <net/kpi_protocol.h>
98 #include <net/nwk_wq.h>
99 #include <net/pfvar.h>
100 #include <netinet/in.h>
101 #include <netinet/in_systm.h>
102 #include <netinet/in_var.h>
103 #include <netinet/ip.h>
104 #include <netinet/ip_dummynet.h>
105 #include <netinet/ip_var.h>
107 #include <netinet/ip6.h> /* for ip6_input, ip6_output prototypes */
108 #include <netinet6/ip6_var.h>
111 * We keep a private variable for the simulation time, but we could
112 * probably use an existing one ("softticks" in sys/kern/kern_timer.c)
114 static dn_key curr_time
= 0; /* current simulation time */
116 /* this is for the timer that fires to call dummynet() - we only enable the timer when
117 * there are packets to process, otherwise it's disabled */
118 static int timer_enabled
= 0;
120 static int dn_hash_size
= 64; /* default hash size */
122 /* statistics on number of queue searches and search steps */
123 static int searches
, search_steps
;
124 static int pipe_expire
= 1; /* expire queue if empty */
125 static int dn_max_ratio
= 16; /* max queues/buckets ratio */
127 static int red_lookup_depth
= 256; /* RED - default lookup table depth */
128 static int red_avg_pkt_size
= 512; /* RED - default medium packet size */
129 static int red_max_pkt_size
= 1500; /* RED - default max packet size */
131 static int serialize
= 0;
134 * Three heaps contain queues and pipes that the scheduler handles:
136 * ready_heap contains all dn_flow_queue related to fixed-rate pipes.
138 * wfq_ready_heap contains the pipes associated with WF2Q flows
140 * extract_heap contains pipes associated with delay lines.
143 static struct dn_heap ready_heap
, extract_heap
, wfq_ready_heap
;
145 static int heap_init(struct dn_heap
*h
, int size
);
146 static int heap_insert(struct dn_heap
*h
, dn_key key1
, void *p
);
147 static void heap_extract(struct dn_heap
*h
, void *obj
);
150 static void transmit_event(struct dn_pipe
*pipe
, struct mbuf
**head
,
152 static void ready_event(struct dn_flow_queue
*q
, struct mbuf
**head
,
154 static void ready_event_wfq(struct dn_pipe
*p
, struct mbuf
**head
,
158 * Packets are retrieved from queues in Dummynet in chains instead of
159 * packet-by-packet. The entire list of packets is first dequeued and
160 * sent out by the following function.
162 static void dummynet_send(struct mbuf
*m
);
165 #define HASH(num) ((((num) >> 8) ^ ((num) >> 4) ^ (num)) & 0x0f)
166 static struct dn_pipe_head pipehash
[HASHSIZE
]; /* all pipes */
167 static struct dn_flow_set_head flowsethash
[HASHSIZE
]; /* all flowsets */
170 SYSCTL_NODE(_net_inet_ip
, OID_AUTO
, dummynet
,
171 CTLFLAG_RW
| CTLFLAG_LOCKED
, 0, "Dummynet");
172 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, hash_size
,
173 CTLFLAG_RW
| CTLFLAG_LOCKED
, &dn_hash_size
, 0, "Default hash table size");
174 SYSCTL_QUAD(_net_inet_ip_dummynet
, OID_AUTO
, curr_time
,
175 CTLFLAG_RD
| CTLFLAG_LOCKED
, &curr_time
, "Current tick");
176 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, ready_heap
,
177 CTLFLAG_RD
| CTLFLAG_LOCKED
, &ready_heap
.size
, 0, "Size of ready heap");
178 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, extract_heap
,
179 CTLFLAG_RD
| CTLFLAG_LOCKED
, &extract_heap
.size
, 0, "Size of extract heap");
180 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, searches
,
181 CTLFLAG_RD
| CTLFLAG_LOCKED
, &searches
, 0, "Number of queue searches");
182 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, search_steps
,
183 CTLFLAG_RD
| CTLFLAG_LOCKED
, &search_steps
, 0, "Number of queue search steps");
184 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, expire
,
185 CTLFLAG_RW
| CTLFLAG_LOCKED
, &pipe_expire
, 0, "Expire queue if empty");
186 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, max_chain_len
,
187 CTLFLAG_RW
| CTLFLAG_LOCKED
, &dn_max_ratio
, 0,
188 "Max ratio between dynamic queues and buckets");
189 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, red_lookup_depth
,
190 CTLFLAG_RD
| CTLFLAG_LOCKED
, &red_lookup_depth
, 0, "Depth of RED lookup table");
191 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, red_avg_pkt_size
,
192 CTLFLAG_RD
| CTLFLAG_LOCKED
, &red_avg_pkt_size
, 0, "RED Medium packet size");
193 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, red_max_pkt_size
,
194 CTLFLAG_RD
| CTLFLAG_LOCKED
, &red_max_pkt_size
, 0, "RED Max packet size");
197 #ifdef DUMMYNET_DEBUG
198 int dummynet_debug
= 0;
200 SYSCTL_INT(_net_inet_ip_dummynet
, OID_AUTO
, debug
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &dummynet_debug
,
201 0, "control debugging printfs");
203 #define DPRINTF(X) if (dummynet_debug) printf X
209 static lck_grp_t
*dn_mutex_grp
;
210 static lck_grp_attr_t
*dn_mutex_grp_attr
;
211 static lck_attr_t
*dn_mutex_attr
;
212 decl_lck_mtx_data(static, dn_mutex_data
);
213 static lck_mtx_t
*dn_mutex
= &dn_mutex_data
;
215 static int config_pipe(struct dn_pipe
*p
);
216 static int ip_dn_ctl(struct sockopt
*sopt
);
218 static void dummynet(void *);
219 static void dummynet_flush(void);
220 void dummynet_drain(void);
221 static ip_dn_io_t dummynet_io
;
223 static void cp_flow_set_to_64_user(struct dn_flow_set
*set
, struct dn_flow_set_64
*fs_bp
);
224 static void cp_queue_to_64_user( struct dn_flow_queue
*q
, struct dn_flow_queue_64
*qp
);
225 static char *cp_pipe_to_64_user(struct dn_pipe
*p
, struct dn_pipe_64
*pipe_bp
);
226 static char* dn_copy_set_64(struct dn_flow_set
*set
, char *bp
);
227 static int cp_pipe_from_user_64( struct sockopt
*sopt
, struct dn_pipe
*p
);
229 static void cp_flow_set_to_32_user(struct dn_flow_set
*set
, struct dn_flow_set_32
*fs_bp
);
230 static void cp_queue_to_32_user( struct dn_flow_queue
*q
, struct dn_flow_queue_32
*qp
);
231 static char *cp_pipe_to_32_user(struct dn_pipe
*p
, struct dn_pipe_32
*pipe_bp
);
232 static char* dn_copy_set_32(struct dn_flow_set
*set
, char *bp
);
233 static int cp_pipe_from_user_32( struct sockopt
*sopt
, struct dn_pipe
*p
);
235 struct eventhandler_lists_ctxt dummynet_evhdlr_ctxt
;
241 read_frandom(&val
, sizeof(val
));
248 * Heap management functions.
250 * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.
251 * Some macros help finding parent/children so we can optimize them.
253 * heap_init() is called to expand the heap when needed.
254 * Increment size in blocks of 16 entries.
255 * XXX failure to allocate a new element is a pretty bad failure
256 * as we basically stall a whole queue forever!!
257 * Returns 1 on error, 0 on success
259 #define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 )
260 #define HEAP_LEFT(x) ( 2*(x) + 1 )
261 #define HEAP_IS_LEFT(x) ( (x) & 1 )
262 #define HEAP_RIGHT(x) ( 2*(x) + 2 )
263 #define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
264 #define HEAP_INCREMENT 15
268 cp_pipe_from_user_32( struct sockopt
*sopt
, struct dn_pipe
*p
)
270 struct dn_pipe_32 user_pipe_32
;
273 error
= sooptcopyin(sopt
, &user_pipe_32
, sizeof(struct dn_pipe_32
), sizeof(struct dn_pipe_32
));
275 p
->pipe_nr
= user_pipe_32
.pipe_nr
;
276 p
->bandwidth
= user_pipe_32
.bandwidth
;
277 p
->delay
= user_pipe_32
.delay
;
278 p
->V
= user_pipe_32
.V
;
279 p
->sum
= user_pipe_32
.sum
;
280 p
->numbytes
= user_pipe_32
.numbytes
;
281 p
->sched_time
= user_pipe_32
.sched_time
;
282 bcopy( user_pipe_32
.if_name
, p
->if_name
, IFNAMSIZ
);
283 p
->ready
= user_pipe_32
.ready
;
285 p
->fs
.fs_nr
= user_pipe_32
.fs
.fs_nr
;
286 p
->fs
.flags_fs
= user_pipe_32
.fs
.flags_fs
;
287 p
->fs
.parent_nr
= user_pipe_32
.fs
.parent_nr
;
288 p
->fs
.weight
= user_pipe_32
.fs
.weight
;
289 p
->fs
.qsize
= user_pipe_32
.fs
.qsize
;
290 p
->fs
.plr
= user_pipe_32
.fs
.plr
;
291 p
->fs
.flow_mask
= user_pipe_32
.fs
.flow_mask
;
292 p
->fs
.rq_size
= user_pipe_32
.fs
.rq_size
;
293 p
->fs
.rq_elements
= user_pipe_32
.fs
.rq_elements
;
294 p
->fs
.last_expired
= user_pipe_32
.fs
.last_expired
;
295 p
->fs
.backlogged
= user_pipe_32
.fs
.backlogged
;
296 p
->fs
.w_q
= user_pipe_32
.fs
.w_q
;
297 p
->fs
.max_th
= user_pipe_32
.fs
.max_th
;
298 p
->fs
.min_th
= user_pipe_32
.fs
.min_th
;
299 p
->fs
.max_p
= user_pipe_32
.fs
.max_p
;
300 p
->fs
.c_1
= user_pipe_32
.fs
.c_1
;
301 p
->fs
.c_2
= user_pipe_32
.fs
.c_2
;
302 p
->fs
.c_3
= user_pipe_32
.fs
.c_3
;
303 p
->fs
.c_4
= user_pipe_32
.fs
.c_4
;
304 p
->fs
.lookup_depth
= user_pipe_32
.fs
.lookup_depth
;
305 p
->fs
.lookup_step
= user_pipe_32
.fs
.lookup_step
;
306 p
->fs
.lookup_weight
= user_pipe_32
.fs
.lookup_weight
;
307 p
->fs
.avg_pkt_size
= user_pipe_32
.fs
.avg_pkt_size
;
308 p
->fs
.max_pkt_size
= user_pipe_32
.fs
.max_pkt_size
;
315 cp_pipe_from_user_64( struct sockopt
*sopt
, struct dn_pipe
*p
)
317 struct dn_pipe_64 user_pipe_64
;
320 error
= sooptcopyin(sopt
, &user_pipe_64
, sizeof(struct dn_pipe_64
), sizeof(struct dn_pipe_64
));
322 p
->pipe_nr
= user_pipe_64
.pipe_nr
;
323 p
->bandwidth
= user_pipe_64
.bandwidth
;
324 p
->delay
= user_pipe_64
.delay
;
325 p
->V
= user_pipe_64
.V
;
326 p
->sum
= user_pipe_64
.sum
;
327 p
->numbytes
= user_pipe_64
.numbytes
;
328 p
->sched_time
= user_pipe_64
.sched_time
;
329 bcopy( user_pipe_64
.if_name
, p
->if_name
, IFNAMSIZ
);
330 p
->ready
= user_pipe_64
.ready
;
332 p
->fs
.fs_nr
= user_pipe_64
.fs
.fs_nr
;
333 p
->fs
.flags_fs
= user_pipe_64
.fs
.flags_fs
;
334 p
->fs
.parent_nr
= user_pipe_64
.fs
.parent_nr
;
335 p
->fs
.weight
= user_pipe_64
.fs
.weight
;
336 p
->fs
.qsize
= user_pipe_64
.fs
.qsize
;
337 p
->fs
.plr
= user_pipe_64
.fs
.plr
;
338 p
->fs
.flow_mask
= user_pipe_64
.fs
.flow_mask
;
339 p
->fs
.rq_size
= user_pipe_64
.fs
.rq_size
;
340 p
->fs
.rq_elements
= user_pipe_64
.fs
.rq_elements
;
341 p
->fs
.last_expired
= user_pipe_64
.fs
.last_expired
;
342 p
->fs
.backlogged
= user_pipe_64
.fs
.backlogged
;
343 p
->fs
.w_q
= user_pipe_64
.fs
.w_q
;
344 p
->fs
.max_th
= user_pipe_64
.fs
.max_th
;
345 p
->fs
.min_th
= user_pipe_64
.fs
.min_th
;
346 p
->fs
.max_p
= user_pipe_64
.fs
.max_p
;
347 p
->fs
.c_1
= user_pipe_64
.fs
.c_1
;
348 p
->fs
.c_2
= user_pipe_64
.fs
.c_2
;
349 p
->fs
.c_3
= user_pipe_64
.fs
.c_3
;
350 p
->fs
.c_4
= user_pipe_64
.fs
.c_4
;
351 p
->fs
.lookup_depth
= user_pipe_64
.fs
.lookup_depth
;
352 p
->fs
.lookup_step
= user_pipe_64
.fs
.lookup_step
;
353 p
->fs
.lookup_weight
= user_pipe_64
.fs
.lookup_weight
;
354 p
->fs
.avg_pkt_size
= user_pipe_64
.fs
.avg_pkt_size
;
355 p
->fs
.max_pkt_size
= user_pipe_64
.fs
.max_pkt_size
;
361 cp_flow_set_to_32_user(struct dn_flow_set
*set
, struct dn_flow_set_32
*fs_bp
)
363 fs_bp
->fs_nr
= set
->fs_nr
;
364 fs_bp
->flags_fs
= set
->flags_fs
;
365 fs_bp
->parent_nr
= set
->parent_nr
;
366 fs_bp
->weight
= set
->weight
;
367 fs_bp
->qsize
= set
->qsize
;
368 fs_bp
->plr
= set
->plr
;
369 fs_bp
->flow_mask
= set
->flow_mask
;
370 fs_bp
->rq_size
= set
->rq_size
;
371 fs_bp
->rq_elements
= set
->rq_elements
;
372 fs_bp
->last_expired
= set
->last_expired
;
373 fs_bp
->backlogged
= set
->backlogged
;
374 fs_bp
->w_q
= set
->w_q
;
375 fs_bp
->max_th
= set
->max_th
;
376 fs_bp
->min_th
= set
->min_th
;
377 fs_bp
->max_p
= set
->max_p
;
378 fs_bp
->c_1
= set
->c_1
;
379 fs_bp
->c_2
= set
->c_2
;
380 fs_bp
->c_3
= set
->c_3
;
381 fs_bp
->c_4
= set
->c_4
;
382 fs_bp
->w_q_lookup
= CAST_DOWN_EXPLICIT(user32_addr_t
, set
->w_q_lookup
);
383 fs_bp
->lookup_depth
= set
->lookup_depth
;
384 fs_bp
->lookup_step
= set
->lookup_step
;
385 fs_bp
->lookup_weight
= set
->lookup_weight
;
386 fs_bp
->avg_pkt_size
= set
->avg_pkt_size
;
387 fs_bp
->max_pkt_size
= set
->max_pkt_size
;
391 cp_flow_set_to_64_user(struct dn_flow_set
*set
, struct dn_flow_set_64
*fs_bp
)
393 fs_bp
->fs_nr
= set
->fs_nr
;
394 fs_bp
->flags_fs
= set
->flags_fs
;
395 fs_bp
->parent_nr
= set
->parent_nr
;
396 fs_bp
->weight
= set
->weight
;
397 fs_bp
->qsize
= set
->qsize
;
398 fs_bp
->plr
= set
->plr
;
399 fs_bp
->flow_mask
= set
->flow_mask
;
400 fs_bp
->rq_size
= set
->rq_size
;
401 fs_bp
->rq_elements
= set
->rq_elements
;
402 fs_bp
->last_expired
= set
->last_expired
;
403 fs_bp
->backlogged
= set
->backlogged
;
404 fs_bp
->w_q
= set
->w_q
;
405 fs_bp
->max_th
= set
->max_th
;
406 fs_bp
->min_th
= set
->min_th
;
407 fs_bp
->max_p
= set
->max_p
;
408 fs_bp
->c_1
= set
->c_1
;
409 fs_bp
->c_2
= set
->c_2
;
410 fs_bp
->c_3
= set
->c_3
;
411 fs_bp
->c_4
= set
->c_4
;
412 fs_bp
->w_q_lookup
= CAST_DOWN(user64_addr_t
, set
->w_q_lookup
);
413 fs_bp
->lookup_depth
= set
->lookup_depth
;
414 fs_bp
->lookup_step
= set
->lookup_step
;
415 fs_bp
->lookup_weight
= set
->lookup_weight
;
416 fs_bp
->avg_pkt_size
= set
->avg_pkt_size
;
417 fs_bp
->max_pkt_size
= set
->max_pkt_size
;
422 cp_queue_to_32_user( struct dn_flow_queue
*q
, struct dn_flow_queue_32
*qp
)
426 qp
->len_bytes
= q
->len_bytes
;
427 qp
->numbytes
= q
->numbytes
;
428 qp
->tot_pkts
= q
->tot_pkts
;
429 qp
->tot_bytes
= q
->tot_bytes
;
430 qp
->drops
= q
->drops
;
431 qp
->hash_slot
= q
->hash_slot
;
433 qp
->count
= q
->count
;
434 qp
->random
= q
->random
;
435 qp
->q_time
= q
->q_time
;
436 qp
->heap_pos
= q
->heap_pos
;
437 qp
->sched_time
= q
->sched_time
;
444 cp_queue_to_64_user( struct dn_flow_queue
*q
, struct dn_flow_queue_64
*qp
)
448 qp
->len_bytes
= q
->len_bytes
;
449 qp
->numbytes
= q
->numbytes
;
450 qp
->tot_pkts
= q
->tot_pkts
;
451 qp
->tot_bytes
= q
->tot_bytes
;
452 qp
->drops
= q
->drops
;
453 qp
->hash_slot
= q
->hash_slot
;
455 qp
->count
= q
->count
;
456 qp
->random
= q
->random
;
457 qp
->q_time
= q
->q_time
;
458 qp
->heap_pos
= q
->heap_pos
;
459 qp
->sched_time
= q
->sched_time
;
466 cp_pipe_to_32_user(struct dn_pipe
*p
, struct dn_pipe_32
*pipe_bp
)
470 pipe_bp
->pipe_nr
= p
->pipe_nr
;
471 pipe_bp
->bandwidth
= p
->bandwidth
;
472 pipe_bp
->delay
= p
->delay
;
473 bcopy( &(p
->scheduler_heap
), &(pipe_bp
->scheduler_heap
), sizeof(struct dn_heap_32
));
474 pipe_bp
->scheduler_heap
.p
= CAST_DOWN_EXPLICIT(user32_addr_t
, pipe_bp
->scheduler_heap
.p
);
475 bcopy( &(p
->not_eligible_heap
), &(pipe_bp
->not_eligible_heap
), sizeof(struct dn_heap_32
));
476 pipe_bp
->not_eligible_heap
.p
= CAST_DOWN_EXPLICIT(user32_addr_t
, pipe_bp
->not_eligible_heap
.p
);
477 bcopy( &(p
->idle_heap
), &(pipe_bp
->idle_heap
), sizeof(struct dn_heap_32
));
478 pipe_bp
->idle_heap
.p
= CAST_DOWN_EXPLICIT(user32_addr_t
, pipe_bp
->idle_heap
.p
);
480 pipe_bp
->sum
= p
->sum
;
481 pipe_bp
->numbytes
= p
->numbytes
;
482 pipe_bp
->sched_time
= p
->sched_time
;
483 bcopy( p
->if_name
, pipe_bp
->if_name
, IFNAMSIZ
);
484 pipe_bp
->ifp
= CAST_DOWN_EXPLICIT(user32_addr_t
, p
->ifp
);
485 pipe_bp
->ready
= p
->ready
;
487 cp_flow_set_to_32_user( &(p
->fs
), &(pipe_bp
->fs
));
489 pipe_bp
->delay
= (pipe_bp
->delay
* 1000) / (hz
* 10);
491 * XXX the following is a hack based on ->next being the
492 * first field in dn_pipe and dn_flow_set. The correct
493 * solution would be to move the dn_flow_set to the beginning
496 pipe_bp
->next
= CAST_DOWN_EXPLICIT( user32_addr_t
, DN_IS_PIPE
);
498 pipe_bp
->head
= pipe_bp
->tail
= (user32_addr_t
) 0;
499 pipe_bp
->fs
.next
= (user32_addr_t
)0;
500 pipe_bp
->fs
.pipe
= (user32_addr_t
)0;
501 pipe_bp
->fs
.rq
= (user32_addr_t
)0;
502 bp
= ((char *)pipe_bp
) + sizeof(struct dn_pipe_32
);
503 return dn_copy_set_32( &(p
->fs
), bp
);
508 cp_pipe_to_64_user(struct dn_pipe
*p
, struct dn_pipe_64
*pipe_bp
)
512 pipe_bp
->pipe_nr
= p
->pipe_nr
;
513 pipe_bp
->bandwidth
= p
->bandwidth
;
514 pipe_bp
->delay
= p
->delay
;
515 bcopy( &(p
->scheduler_heap
), &(pipe_bp
->scheduler_heap
), sizeof(struct dn_heap_64
));
516 pipe_bp
->scheduler_heap
.p
= CAST_DOWN(user64_addr_t
, pipe_bp
->scheduler_heap
.p
);
517 bcopy( &(p
->not_eligible_heap
), &(pipe_bp
->not_eligible_heap
), sizeof(struct dn_heap_64
));
518 pipe_bp
->not_eligible_heap
.p
= CAST_DOWN(user64_addr_t
, pipe_bp
->not_eligible_heap
.p
);
519 bcopy( &(p
->idle_heap
), &(pipe_bp
->idle_heap
), sizeof(struct dn_heap_64
));
520 pipe_bp
->idle_heap
.p
= CAST_DOWN(user64_addr_t
, pipe_bp
->idle_heap
.p
);
522 pipe_bp
->sum
= p
->sum
;
523 pipe_bp
->numbytes
= p
->numbytes
;
524 pipe_bp
->sched_time
= p
->sched_time
;
525 bcopy( p
->if_name
, pipe_bp
->if_name
, IFNAMSIZ
);
526 pipe_bp
->ifp
= CAST_DOWN(user64_addr_t
, p
->ifp
);
527 pipe_bp
->ready
= p
->ready
;
529 cp_flow_set_to_64_user( &(p
->fs
), &(pipe_bp
->fs
));
531 pipe_bp
->delay
= (pipe_bp
->delay
* 1000) / (hz
* 10);
533 * XXX the following is a hack based on ->next being the
534 * first field in dn_pipe and dn_flow_set. The correct
535 * solution would be to move the dn_flow_set to the beginning
538 pipe_bp
->next
= CAST_DOWN( user64_addr_t
, DN_IS_PIPE
);
540 pipe_bp
->head
= pipe_bp
->tail
= USER_ADDR_NULL
;
541 pipe_bp
->fs
.next
= USER_ADDR_NULL
;
542 pipe_bp
->fs
.pipe
= USER_ADDR_NULL
;
543 pipe_bp
->fs
.rq
= USER_ADDR_NULL
;
544 bp
= ((char *)pipe_bp
) + sizeof(struct dn_pipe_64
);
545 return dn_copy_set_64( &(p
->fs
), bp
);
549 heap_init(struct dn_heap
*h
, int new_size
)
551 struct dn_heap_entry
*p
;
553 if (h
->size
>= new_size
) {
554 printf("dummynet: heap_init, Bogus call, have %d want %d\n",
558 new_size
= (new_size
+ HEAP_INCREMENT
) & ~HEAP_INCREMENT
;
559 p
= _MALLOC(new_size
* sizeof(*p
), M_DUMMYNET
, M_DONTWAIT
);
561 printf("dummynet: heap_init, resize %d failed\n", new_size
);
562 return 1; /* error */
565 bcopy(h
->p
, p
, h
->size
* sizeof(*p
));
566 FREE(h
->p
, M_DUMMYNET
);
574 * Insert element in heap. Normally, p != NULL, we insert p in
575 * a new position and bubble up. If p == NULL, then the element is
576 * already in place, and key is the position where to start the
578 * Returns 1 on failure (cannot allocate new heap entry)
580 * If offset > 0 the position (index, int) of the element in the heap is
581 * also stored in the element itself at the given offset in bytes.
583 #define SET_OFFSET(heap, node) \
584 if (heap->offset > 0) \
585 *((int *)((char *)(heap->p[node].object) + heap->offset)) = node ;
587 * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value.
589 #define RESET_OFFSET(heap, node) \
590 if (heap->offset > 0) \
591 *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ;
593 heap_insert(struct dn_heap
*h
, dn_key key1
, void *p
)
595 int son
= h
->elements
;
597 if (p
== NULL
) { /* data already there, set starting point */
599 } else { /* insert new element at the end, possibly resize */
601 if (son
== h
->size
) { /* need resize... */
602 if (heap_init(h
, h
->elements
+ 1)) {
603 return 1; /* failure... */
606 h
->p
[son
].object
= p
;
607 h
->p
[son
].key
= key1
;
610 while (son
> 0) { /* bubble up */
611 int father
= HEAP_FATHER(son
);
612 struct dn_heap_entry tmp
;
614 if (DN_KEY_LT( h
->p
[father
].key
, h
->p
[son
].key
)) {
615 break; /* found right position */
617 /* son smaller than father, swap and repeat */
618 HEAP_SWAP(h
->p
[son
], h
->p
[father
], tmp
);
627 * remove top element from heap, or obj if obj != NULL
630 heap_extract(struct dn_heap
*h
, void *obj
)
632 int child
, father
, maxelt
= h
->elements
- 1;
635 printf("dummynet: warning, extract from empty heap 0x%llx\n",
636 (uint64_t)VM_KERNEL_ADDRPERM(h
));
639 father
= 0; /* default: move up smallest child */
640 if (obj
!= NULL
) { /* extract specific element, index is at offset */
641 if (h
->offset
<= 0) {
642 panic("dummynet: heap_extract from middle not supported on this heap!!!\n");
644 father
= *((int *)((char *)obj
+ h
->offset
));
645 if (father
< 0 || father
>= h
->elements
) {
646 printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
647 father
, h
->elements
);
648 panic("dummynet: heap_extract");
651 RESET_OFFSET(h
, father
);
652 child
= HEAP_LEFT(father
); /* left child */
653 while (child
<= maxelt
) { /* valid entry */
654 if (child
!= maxelt
&& DN_KEY_LT(h
->p
[child
+ 1].key
, h
->p
[child
].key
)) {
655 child
= child
+ 1; /* take right child, otherwise left */
657 h
->p
[father
] = h
->p
[child
];
658 SET_OFFSET(h
, father
);
660 child
= HEAP_LEFT(child
); /* left child for next loop */
663 if (father
!= maxelt
) {
665 * Fill hole with last entry and bubble up, reusing the insert code
667 h
->p
[father
] = h
->p
[maxelt
];
668 heap_insert(h
, father
, NULL
); /* this one cannot fail */
673 * heapify() will reorganize data inside an array to maintain the
674 * heap property. It is needed when we delete a bunch of entries.
677 heapify(struct dn_heap
*h
)
681 for (i
= 0; i
< h
->elements
; i
++) {
682 heap_insert(h
, i
, NULL
);
687 * cleanup the heap and free data structure
690 heap_free(struct dn_heap
*h
)
693 FREE(h
->p
, M_DUMMYNET
);
695 bzero(h
, sizeof(*h
));
699 * --- end of heap management functions ---
703 * Return the mbuf tag holding the dummynet state. As an optimization
704 * this is assumed to be the first tag on the list. If this turns out
705 * wrong we'll need to search the list.
707 static struct dn_pkt_tag
*
708 dn_tag_get(struct mbuf
*m
)
710 struct m_tag
*mtag
= m_tag_first(m
);
712 if (!(mtag
!= NULL
&&
713 mtag
->m_tag_id
== KERNEL_MODULE_TAG_ID
&&
714 mtag
->m_tag_type
== KERNEL_TAG_TYPE_DUMMYNET
)) {
715 panic("packet on dummynet queue w/o dummynet tag: 0x%llx",
716 (uint64_t)VM_KERNEL_ADDRPERM(m
));
719 return (struct dn_pkt_tag
*)(mtag
+ 1);
723 * Scheduler functions:
725 * transmit_event() is called when the delay-line needs to enter
726 * the scheduler, either because of existing pkts getting ready,
727 * or new packets entering the queue. The event handled is the delivery
728 * time of the packet.
730 * ready_event() does something similar with fixed-rate queues, and the
731 * event handled is the finish time of the head pkt.
733 * wfq_ready_event() does something similar with WF2Q queues, and the
734 * event handled is the start time of the head pkt.
736 * In all cases, we make sure that the data structures are consistent
737 * before passing pkts out, because this might trigger recursive
738 * invocations of the procedures.
741 transmit_event(struct dn_pipe
*pipe
, struct mbuf
**head
, struct mbuf
**tail
)
744 struct dn_pkt_tag
*pkt
= NULL
;
745 u_int64_t schedule_time
;
747 LCK_MTX_ASSERT(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
748 ASSERT(serialize
>= 0);
749 if (serialize
== 0) {
750 while ((m
= pipe
->head
) != NULL
) {
752 if (!DN_KEY_LEQ(pkt
->dn_output_time
, curr_time
)) {
756 pipe
->head
= m
->m_nextpkt
;
758 (*tail
)->m_nextpkt
= m
;
766 (*tail
)->m_nextpkt
= NULL
;
770 schedule_time
= pkt
== NULL
|| DN_KEY_LEQ(pkt
->dn_output_time
, curr_time
) ?
771 curr_time
+ 1 : pkt
->dn_output_time
;
773 /* if there are leftover packets, put the pipe into the heap for next ready event */
774 if ((m
= pipe
->head
) != NULL
) {
776 /* XXX should check errors on heap_insert, by draining the
777 * whole pipe p and hoping in the future we are more successful
779 heap_insert(&extract_heap
, schedule_time
, pipe
);
784 * the following macro computes how many ticks we have to wait
785 * before being able to transmit a packet. The credit is taken from
786 * either a pipe (WF2Q) or a flow_queue (per-flow queueing)
789 /* hz is 100, which gives a granularity of 10ms in the old timer.
790 * The timer has been changed to fire every 1ms, so the use of
791 * hz has been modified here. All instances of hz have been left
792 * in place but adjusted by a factor of 10 so that hz is functionally
795 #define SET_TICKS(_m, q, p) \
796 ((_m)->m_pkthdr.len*8*(hz*10) - (q)->numbytes + p->bandwidth - 1 ) / \
800 * extract pkt from queue, compute output time (could be now)
801 * and put into delay line (p_queue)
804 move_pkt(struct mbuf
*pkt
, struct dn_flow_queue
*q
,
805 struct dn_pipe
*p
, int len
)
807 struct dn_pkt_tag
*dt
= dn_tag_get(pkt
);
809 q
->head
= pkt
->m_nextpkt
;
813 dt
->dn_output_time
= curr_time
+ p
->delay
;
815 if (p
->head
== NULL
) {
818 p
->tail
->m_nextpkt
= pkt
;
821 p
->tail
->m_nextpkt
= NULL
;
825 * ready_event() is invoked every time the queue must enter the
826 * scheduler, either because the first packet arrives, or because
827 * a previously scheduled event fired.
828 * On invokation, drain as many pkts as possible (could be 0) and then
829 * if there are leftover packets reinsert the pkt in the scheduler.
832 ready_event(struct dn_flow_queue
*q
, struct mbuf
**head
, struct mbuf
**tail
)
835 struct dn_pipe
*p
= q
->fs
->pipe
;
838 LCK_MTX_ASSERT(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
841 printf("dummynet: ready_event pipe is gone\n");
844 p_was_empty
= (p
->head
== NULL
);
847 * schedule fixed-rate queues linked to this pipe:
848 * Account for the bw accumulated since last scheduling, then
849 * drain as many pkts as allowed by q->numbytes and move to
850 * the delay line (in p) computing output time.
851 * bandwidth==0 (no limit) means we can drain the whole queue,
852 * setting len_scaled = 0 does the job.
854 q
->numbytes
+= (curr_time
- q
->sched_time
) * p
->bandwidth
;
855 while ((pkt
= q
->head
) != NULL
) {
856 int len
= pkt
->m_pkthdr
.len
;
857 int len_scaled
= p
->bandwidth
? len
* 8 * (hz
* 10) : 0;
858 if (len_scaled
> q
->numbytes
) {
861 q
->numbytes
-= len_scaled
;
862 move_pkt(pkt
, q
, p
, len
);
865 * If we have more packets queued, schedule next ready event
866 * (can only occur when bandwidth != 0, otherwise we would have
867 * flushed the whole queue in the previous loop).
868 * To this purpose we record the current time and compute how many
869 * ticks to go for the finish time of the packet.
871 if ((pkt
= q
->head
) != NULL
) { /* this implies bandwidth != 0 */
872 dn_key t
= SET_TICKS(pkt
, q
, p
); /* ticks i have to wait */
873 q
->sched_time
= curr_time
;
874 heap_insert(&ready_heap
, curr_time
+ t
, (void *)q
);
875 /* XXX should check errors on heap_insert, and drain the whole
876 * queue on error hoping next time we are luckier.
878 } else { /* RED needs to know when the queue becomes empty */
879 q
->q_time
= curr_time
;
883 * If the delay line was empty call transmit_event(p) now.
884 * Otherwise, the scheduler will take care of it.
887 transmit_event(p
, head
, tail
);
892 * Called when we can transmit packets on WF2Q queues. Take pkts out of
893 * the queues at their start time, and enqueue into the delay line.
894 * Packets are drained until p->numbytes < 0. As long as
895 * len_scaled >= p->numbytes, the packet goes into the delay line
896 * with a deadline p->delay. For the last packet, if p->numbytes<0,
897 * there is an additional delay.
900 ready_event_wfq(struct dn_pipe
*p
, struct mbuf
**head
, struct mbuf
**tail
)
902 int p_was_empty
= (p
->head
== NULL
);
903 struct dn_heap
*sch
= &(p
->scheduler_heap
);
904 struct dn_heap
*neh
= &(p
->not_eligible_heap
);
905 int64_t p_numbytes
= p
->numbytes
;
907 LCK_MTX_ASSERT(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
909 if (p
->if_name
[0] == 0) { /* tx clock is simulated */
910 p_numbytes
+= (curr_time
- p
->sched_time
) * p
->bandwidth
;
911 } else { /* tx clock is for real, the ifq must be empty or this is a NOP */
912 if (p
->ifp
&& !IFCQ_IS_EMPTY(&p
->ifp
->if_snd
)) {
915 DPRINTF(("dummynet: pipe %d ready from %s --\n",
916 p
->pipe_nr
, p
->if_name
));
921 * While we have backlogged traffic AND credit, we need to do
922 * something on the queue.
924 while (p_numbytes
>= 0 && (sch
->elements
> 0 || neh
->elements
> 0)) {
925 if (sch
->elements
> 0) { /* have some eligible pkts to send out */
926 struct dn_flow_queue
*q
= sch
->p
[0].object
;
927 struct mbuf
*pkt
= q
->head
;
928 struct dn_flow_set
*fs
= q
->fs
;
929 u_int64_t len
= pkt
->m_pkthdr
.len
;
930 int len_scaled
= p
->bandwidth
? len
* 8 * (hz
* 10) : 0;
932 heap_extract(sch
, NULL
); /* remove queue from heap */
933 p_numbytes
-= len_scaled
;
934 move_pkt(pkt
, q
, p
, len
);
936 p
->V
+= (len
<< MY_M
) / p
->sum
; /* update V */
937 q
->S
= q
->F
; /* update start time */
938 if (q
->len
== 0) { /* Flow not backlogged any more */
940 heap_insert(&(p
->idle_heap
), q
->F
, q
);
941 } else { /* still backlogged */
943 * update F and position in backlogged queue, then
944 * put flow in not_eligible_heap (we will fix this later).
946 len
= (q
->head
)->m_pkthdr
.len
;
947 q
->F
+= (len
<< MY_M
) / (u_int64_t
) fs
->weight
;
948 if (DN_KEY_LEQ(q
->S
, p
->V
)) {
949 heap_insert(neh
, q
->S
, q
);
951 heap_insert(sch
, q
->F
, q
);
956 * now compute V = max(V, min(S_i)). Remember that all elements in sch
957 * have by definition S_i <= V so if sch is not empty, V is surely
958 * the max and we must not update it. Conversely, if sch is empty
959 * we only need to look at neh.
961 if (sch
->elements
== 0 && neh
->elements
> 0) {
962 p
->V
= MAX64( p
->V
, neh
->p
[0].key
);
964 /* move from neh to sch any packets that have become eligible */
965 while (neh
->elements
> 0 && DN_KEY_LEQ(neh
->p
[0].key
, p
->V
)) {
966 struct dn_flow_queue
*q
= neh
->p
[0].object
;
967 heap_extract(neh
, NULL
);
968 heap_insert(sch
, q
->F
, q
);
971 if (p
->if_name
[0] != '\0') {/* tx clock is from a real thing */
972 p_numbytes
= -1; /* mark not ready for I/O */
976 if (sch
->elements
== 0 && neh
->elements
== 0 && p_numbytes
>= 0
977 && p
->idle_heap
.elements
> 0) {
979 * no traffic and no events scheduled. We can get rid of idle-heap.
983 for (i
= 0; i
< p
->idle_heap
.elements
; i
++) {
984 struct dn_flow_queue
*q
= p
->idle_heap
.p
[i
].object
;
991 p
->idle_heap
.elements
= 0;
994 * If we are getting clocks from dummynet (not a real interface) and
995 * If we are under credit, schedule the next ready event.
996 * Also fix the delivery time of the last packet.
998 if (p
->if_name
[0] == 0 && p_numbytes
< 0) { /* this implies bandwidth >0 */
999 dn_key t
= 0; /* number of ticks i have to wait */
1001 if (p
->bandwidth
> 0) {
1002 t
= (p
->bandwidth
- 1 - p_numbytes
) / p
->bandwidth
;
1004 dn_tag_get(p
->tail
)->dn_output_time
+= t
;
1005 p
->sched_time
= curr_time
;
1006 heap_insert(&wfq_ready_heap
, curr_time
+ t
, (void *)p
);
1007 /* XXX should check errors on heap_insert, and drain the whole
1008 * queue on error hoping next time we are luckier.
1012 /* Fit (adjust if necessary) 64bit result into 32bit variable. */
1013 if (p_numbytes
> INT_MAX
) {
1014 p
->numbytes
= INT_MAX
;
1015 } else if (p_numbytes
< INT_MIN
) {
1016 p
->numbytes
= INT_MIN
;
1018 p
->numbytes
= p_numbytes
;
1022 * If the delay line was empty call transmit_event(p) now.
1023 * Otherwise, the scheduler will take care of it.
1026 transmit_event(p
, head
, tail
);
1031 * This is called every 1ms. It is used to
1032 * increment the current tick counter and schedule expired events.
1035 dummynet(__unused
void * unused
)
1037 void *p
; /* generic parameter to handler */
1039 struct dn_heap
*heaps
[3];
1040 struct mbuf
*head
= NULL
, *tail
= NULL
;
1046 heaps
[0] = &ready_heap
; /* fixed-rate queues */
1047 heaps
[1] = &wfq_ready_heap
; /* wfq queues */
1048 heaps
[2] = &extract_heap
; /* delay line */
1050 lck_mtx_lock(dn_mutex
);
1052 /* make all time measurements in milliseconds (ms) -
1053 * here we convert secs and usecs to msecs (just divide the
1054 * usecs and take the closest whole number).
1057 curr_time
= (tv
.tv_sec
* 1000) + (tv
.tv_usec
/ 1000);
1059 for (i
= 0; i
< 3; i
++) {
1061 while (h
->elements
> 0 && DN_KEY_LEQ(h
->p
[0].key
, curr_time
)) {
1062 if (h
->p
[0].key
> curr_time
) {
1063 printf("dummynet: warning, heap %d is %d ticks late\n",
1064 i
, (int)(curr_time
- h
->p
[0].key
));
1066 p
= h
->p
[0].object
; /* store a copy before heap_extract */
1067 heap_extract(h
, NULL
); /* need to extract before processing */
1069 ready_event(p
, &head
, &tail
);
1070 } else if (i
== 1) {
1071 struct dn_pipe
*pipe
= p
;
1072 if (pipe
->if_name
[0] != '\0') {
1073 printf("dummynet: bad ready_event_wfq for pipe %s\n",
1076 ready_event_wfq(p
, &head
, &tail
);
1079 transmit_event(p
, &head
, &tail
);
1083 /* sweep pipes trying to expire idle flow_queues */
1084 for (i
= 0; i
< HASHSIZE
; i
++) {
1085 SLIST_FOREACH(pe
, &pipehash
[i
], next
) {
1086 if (pe
->idle_heap
.elements
> 0 &&
1087 DN_KEY_LT(pe
->idle_heap
.p
[0].key
, pe
->V
)) {
1088 struct dn_flow_queue
*q
= pe
->idle_heap
.p
[0].object
;
1090 heap_extract(&(pe
->idle_heap
), NULL
);
1091 q
->S
= q
->F
+ 1; /* mark timestamp as invalid */
1092 pe
->sum
-= q
->fs
->weight
;
1097 /* check the heaps to see if there's still stuff in there, and
1098 * only set the timer if there are packets to process
1101 for (i
= 0; i
< 3; i
++) {
1103 if (h
->elements
> 0) { // set the timer
1105 ts
.tv_nsec
= 1 * 1000000; // 1ms
1107 bsd_timeout(dummynet
, NULL
, &ts
);
1116 lck_mtx_unlock(dn_mutex
);
1118 /* Send out the de-queued list of ready-to-send packets */
1120 dummynet_send(head
);
1121 lck_mtx_lock(dn_mutex
);
1123 lck_mtx_unlock(dn_mutex
);
1129 dummynet_send(struct mbuf
*m
)
1131 struct dn_pkt_tag
*pkt
;
1134 for (; m
!= NULL
; m
= n
) {
1136 m
->m_nextpkt
= NULL
;
1137 pkt
= dn_tag_get(m
);
1139 DPRINTF(("dummynet_send m: 0x%llx dn_dir: %d dn_flags: 0x%x\n",
1140 (uint64_t)VM_KERNEL_ADDRPERM(m
), pkt
->dn_dir
,
1143 switch (pkt
->dn_dir
) {
1144 case DN_TO_IP_OUT
: {
1145 struct route tmp_rt
;
1147 /* route is already in the packet's dn_ro */
1148 bzero(&tmp_rt
, sizeof(tmp_rt
));
1150 /* Force IP_RAWOUTPUT as the IP header is fully formed */
1151 pkt
->dn_flags
|= IP_RAWOUTPUT
| IP_FORWARDING
;
1152 (void)ip_output(m
, NULL
, &tmp_rt
, pkt
->dn_flags
, NULL
, NULL
);
1153 ROUTE_RELEASE(&tmp_rt
);
1157 proto_inject(PF_INET
, m
);
1159 case DN_TO_IP6_OUT
: {
1160 /* routes already in the packet's dn_{ro6,pmtu} */
1161 ip6_output(m
, NULL
, NULL
, IPV6_FORWARDING
, NULL
, NULL
, NULL
);
1165 proto_inject(PF_INET6
, m
);
1168 printf("dummynet: bad switch %d!\n", pkt
->dn_dir
);
1176 * Unconditionally expire empty queues in case of shortage.
1177 * Returns the number of queues freed.
1180 expire_queues(struct dn_flow_set
*fs
)
1182 struct dn_flow_queue
*q
, *prev
;
1183 int i
, initial_elements
= fs
->rq_elements
;
1184 struct timeval timenow
;
1186 /* reviewed for getmicrotime usage */
1187 getmicrotime(&timenow
);
1189 if (fs
->last_expired
== timenow
.tv_sec
) {
1192 fs
->last_expired
= timenow
.tv_sec
;
1193 for (i
= 0; i
<= fs
->rq_size
; i
++) { /* last one is overflow */
1194 for (prev
= NULL
, q
= fs
->rq
[i
]; q
!= NULL
;) {
1195 if (q
->head
!= NULL
|| q
->S
!= q
->F
+ 1) {
1198 } else { /* entry is idle, expire it */
1199 struct dn_flow_queue
*old_q
= q
;
1202 prev
->next
= q
= q
->next
;
1204 fs
->rq
[i
] = q
= q
->next
;
1207 FREE(old_q
, M_DUMMYNET
);
1211 return initial_elements
- fs
->rq_elements
;
1215 * If room, create a new queue and put at head of slot i;
1216 * otherwise, create or use the default queue.
1218 static struct dn_flow_queue
*
1219 create_queue(struct dn_flow_set
*fs
, int i
)
1221 struct dn_flow_queue
*q
;
1223 if (fs
->rq_elements
> fs
->rq_size
* dn_max_ratio
&&
1224 expire_queues(fs
) == 0) {
1226 * No way to get room, use or create overflow queue.
1229 if (fs
->rq
[i
] != NULL
) {
1233 q
= _MALLOC(sizeof(*q
), M_DUMMYNET
, M_DONTWAIT
| M_ZERO
);
1235 printf("dummynet: sorry, cannot allocate queue for new flow\n");
1240 q
->next
= fs
->rq
[i
];
1241 q
->S
= q
->F
+ 1; /* hack - mark timestamp as invalid */
1248 * Given a flow_set and a pkt in last_pkt, find a matching queue
1249 * after appropriate masking. The queue is moved to front
1250 * so that further searches take less time.
1252 static struct dn_flow_queue
*
1253 find_queue(struct dn_flow_set
*fs
, struct ip_flow_id
*id
)
1255 int i
= 0; /* we need i and q for new allocations */
1256 struct dn_flow_queue
*q
, *prev
;
1257 int is_v6
= IS_IP6_FLOW_ID(id
);
1259 if (!(fs
->flags_fs
& DN_HAVE_FLOW_MASK
)) {
1262 /* first, do the masking, then hash */
1263 id
->dst_port
&= fs
->flow_mask
.dst_port
;
1264 id
->src_port
&= fs
->flow_mask
.src_port
;
1265 id
->proto
&= fs
->flow_mask
.proto
;
1266 id
->flags
= 0; /* we don't care about this one */
1268 APPLY_MASK(&id
->dst_ip6
, &fs
->flow_mask
.dst_ip6
);
1269 APPLY_MASK(&id
->src_ip6
, &fs
->flow_mask
.src_ip6
);
1270 id
->flow_id6
&= fs
->flow_mask
.flow_id6
;
1272 i
= ((id
->dst_ip6
.__u6_addr
.__u6_addr32
[0]) & 0xffff) ^
1273 ((id
->dst_ip6
.__u6_addr
.__u6_addr32
[1]) & 0xffff) ^
1274 ((id
->dst_ip6
.__u6_addr
.__u6_addr32
[2]) & 0xffff) ^
1275 ((id
->dst_ip6
.__u6_addr
.__u6_addr32
[3]) & 0xffff) ^
1277 ((id
->dst_ip6
.__u6_addr
.__u6_addr32
[0] >> 15) & 0xffff) ^
1278 ((id
->dst_ip6
.__u6_addr
.__u6_addr32
[1] >> 15) & 0xffff) ^
1279 ((id
->dst_ip6
.__u6_addr
.__u6_addr32
[2] >> 15) & 0xffff) ^
1280 ((id
->dst_ip6
.__u6_addr
.__u6_addr32
[3] >> 15) & 0xffff) ^
1282 ((id
->src_ip6
.__u6_addr
.__u6_addr32
[0] << 1) & 0xfffff) ^
1283 ((id
->src_ip6
.__u6_addr
.__u6_addr32
[1] << 1) & 0xfffff) ^
1284 ((id
->src_ip6
.__u6_addr
.__u6_addr32
[2] << 1) & 0xfffff) ^
1285 ((id
->src_ip6
.__u6_addr
.__u6_addr32
[3] << 1) & 0xfffff) ^
1287 ((id
->src_ip6
.__u6_addr
.__u6_addr32
[0] >> 16) & 0xffff) ^
1288 ((id
->src_ip6
.__u6_addr
.__u6_addr32
[1] >> 16) & 0xffff) ^
1289 ((id
->src_ip6
.__u6_addr
.__u6_addr32
[2] >> 16) & 0xffff) ^
1290 ((id
->src_ip6
.__u6_addr
.__u6_addr32
[3] >> 16) & 0xffff) ^
1292 (id
->dst_port
<< 1) ^ (id
->src_port
) ^
1296 id
->dst_ip
&= fs
->flow_mask
.dst_ip
;
1297 id
->src_ip
&= fs
->flow_mask
.src_ip
;
1299 i
= ((id
->dst_ip
) & 0xffff) ^
1300 ((id
->dst_ip
>> 15) & 0xffff) ^
1301 ((id
->src_ip
<< 1) & 0xffff) ^
1302 ((id
->src_ip
>> 16) & 0xffff) ^
1303 (id
->dst_port
<< 1) ^ (id
->src_port
) ^
1306 i
= i
% fs
->rq_size
;
1307 /* finally, scan the current list for a match */
1309 for (prev
= NULL
, q
= fs
->rq
[i
]; q
;) {
1312 IN6_ARE_ADDR_EQUAL(&id
->dst_ip6
, &q
->id
.dst_ip6
) &&
1313 IN6_ARE_ADDR_EQUAL(&id
->src_ip6
, &q
->id
.src_ip6
) &&
1314 id
->dst_port
== q
->id
.dst_port
&&
1315 id
->src_port
== q
->id
.src_port
&&
1316 id
->proto
== q
->id
.proto
&&
1317 id
->flags
== q
->id
.flags
&&
1318 id
->flow_id6
== q
->id
.flow_id6
) {
1321 if (!is_v6
&& id
->dst_ip
== q
->id
.dst_ip
&&
1322 id
->src_ip
== q
->id
.src_ip
&&
1323 id
->dst_port
== q
->id
.dst_port
&&
1324 id
->src_port
== q
->id
.src_port
&&
1325 id
->proto
== q
->id
.proto
&&
1326 id
->flags
== q
->id
.flags
) {
1329 /* No match. Check if we can expire the entry */
1330 if (pipe_expire
&& q
->head
== NULL
&& q
->S
== q
->F
+ 1) {
1331 /* entry is idle and not in any heap, expire it */
1332 struct dn_flow_queue
*old_q
= q
;
1335 prev
->next
= q
= q
->next
;
1337 fs
->rq
[i
] = q
= q
->next
;
1340 FREE(old_q
, M_DUMMYNET
);
1346 if (q
&& prev
!= NULL
) { /* found and not in front */
1347 prev
->next
= q
->next
;
1348 q
->next
= fs
->rq
[i
];
1352 if (q
== NULL
) { /* no match, need to allocate a new entry */
1353 q
= create_queue(fs
, i
);
1362 red_drops(struct dn_flow_set
*fs
, struct dn_flow_queue
*q
, int len
)
1367 * RED calculates the average queue size (avg) using a low-pass filter
1368 * with an exponential weighted (w_q) moving average:
1369 * avg <- (1-w_q) * avg + w_q * q_size
1370 * where q_size is the queue length (measured in bytes or * packets).
1372 * If q_size == 0, we compute the idle time for the link, and set
1373 * avg = (1 - w_q)^(idle/s)
1374 * where s is the time needed for transmitting a medium-sized packet.
1376 * Now, if avg < min_th the packet is enqueued.
1377 * If avg > max_th the packet is dropped. Otherwise, the packet is
1378 * dropped with probability P function of avg.
1383 /* queue in bytes or packets ? */
1384 u_int q_size
= (fs
->flags_fs
& DN_QSIZE_IS_BYTES
) ? q
->len_bytes
: q
->len
;
1386 DPRINTF(("\ndummynet: %d q: %2u ", (int) curr_time
, q_size
));
1388 /* average queue size estimation */
1391 * queue is not empty, avg <- avg + (q_size - avg) * w_q
1393 int diff
= SCALE(q_size
) - q
->avg
;
1394 int64_t v
= SCALE_MUL((int64_t) diff
, (int64_t) fs
->w_q
);
1399 * queue is empty, find for how long the queue has been
1400 * empty and use a lookup table for computing
1401 * (1 - * w_q)^(idle_time/s) where s is the time to send a
1403 * XXX check wraps...
1406 u_int t
= (curr_time
- q
->q_time
) / fs
->lookup_step
;
1408 q
->avg
= (t
< fs
->lookup_depth
) ?
1409 SCALE_MUL(q
->avg
, fs
->w_q_lookup
[t
]) : 0;
1412 DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q
->avg
)));
1414 /* should i drop ? */
1416 if (q
->avg
< fs
->min_th
) {
1418 return 0; /* accept packet ; */
1420 if (q
->avg
>= fs
->max_th
) { /* average queue >= max threshold */
1421 if (fs
->flags_fs
& DN_IS_GENTLE_RED
) {
1423 * According to Gentle-RED, if avg is greater than max_th the
1424 * packet is dropped with a probability
1425 * p_b = c_3 * avg - c_4
1426 * where c_3 = (1 - max_p) / max_th, and c_4 = 1 - 2 * max_p
1428 p_b
= SCALE_MUL((int64_t) fs
->c_3
, (int64_t) q
->avg
) - fs
->c_4
;
1431 DPRINTF(("dummynet: - drop"));
1434 } else if (q
->avg
> fs
->min_th
) {
1436 * we compute p_b using the linear dropping function p_b = c_1 *
1437 * avg - c_2, where c_1 = max_p / (max_th - min_th), and c_2 =
1438 * max_p * min_th / (max_th - min_th)
1440 p_b
= SCALE_MUL((int64_t) fs
->c_1
, (int64_t) q
->avg
) - fs
->c_2
;
1442 if (fs
->flags_fs
& DN_QSIZE_IS_BYTES
) {
1443 p_b
= (p_b
* len
) / fs
->max_pkt_size
;
1445 if (++q
->count
== 0) {
1446 q
->random
= (my_random() & 0xffff);
1449 * q->count counts packets arrived since last drop, so a greater
1450 * value of q->count means a greater packet drop probability.
1452 if (SCALE_MUL(p_b
, SCALE((int64_t) q
->count
)) > q
->random
) {
1454 DPRINTF(("dummynet: - red drop"));
1455 /* after a drop we calculate a new random value */
1456 q
->random
= (my_random() & 0xffff);
1457 return 1; /* drop */
1460 /* end of RED algorithm */
1461 return 0; /* accept */
1465 struct dn_flow_set
*
1466 locate_flowset(int fs_nr
)
1468 struct dn_flow_set
*fs
;
1469 SLIST_FOREACH(fs
, &flowsethash
[HASH(fs_nr
)], next
) {
1470 if (fs
->fs_nr
== fs_nr
) {
1478 static __inline
struct dn_pipe
*
1479 locate_pipe(int pipe_nr
)
1481 struct dn_pipe
*pipe
;
1483 SLIST_FOREACH(pipe
, &pipehash
[HASH(pipe_nr
)], next
) {
1484 if (pipe
->pipe_nr
== pipe_nr
) {
1495 * dummynet hook for packets. Below 'pipe' is a pipe or a queue
1496 * depending on whether WF2Q or fixed bw is used.
1498 * pipe_nr pipe or queue the packet is destined for.
1499 * dir where shall we send the packet after dummynet.
1500 * m the mbuf with the packet
1501 * ifp the 'ifp' parameter from the caller.
1502 * NULL in ip_input, destination interface in ip_output,
1503 * real_dst in bdg_forward
1504 * ro route parameter (only used in ip_output, NULL otherwise)
1505 * dst destination address, only used by ip_output
1506 * rule matching rule, in case of multiple passes
1507 * flags flags from the caller, only used in ip_output
1511 dummynet_io(struct mbuf
*m
, int pipe_nr
, int dir
, struct ip_fw_args
*fwa
)
1513 struct mbuf
*head
= NULL
, *tail
= NULL
;
1514 struct dn_pkt_tag
*pkt
;
1516 struct dn_flow_set
*fs
= NULL
;
1517 struct dn_pipe
*pipe
;
1518 u_int64_t len
= m
->m_pkthdr
.len
;
1519 struct dn_flow_queue
*q
= NULL
;
1524 DPRINTF(("dummynet_io m: 0x%llx pipe: %d dir: %d\n",
1525 (uint64_t)VM_KERNEL_ADDRPERM(m
), pipe_nr
, dir
));
1529 is_pipe
= fwa
->fwa_flags
== DN_IS_PIPE
? 1 : 0;
1530 #endif /* DUMMYNET */
1534 lck_mtx_lock(dn_mutex
);
1536 /* make all time measurements in milliseconds (ms) -
1537 * here we convert secs and usecs to msecs (just divide the
1538 * usecs and take the closest whole number).
1541 curr_time
= (tv
.tv_sec
* 1000) + (tv
.tv_usec
/ 1000);
1544 * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule.
1547 pipe
= locate_pipe(pipe_nr
);
1552 fs
= locate_flowset(pipe_nr
);
1557 goto dropit
; /* this queue/pipe does not exist! */
1560 if (pipe
== NULL
) { /* must be a queue, try find a matching pipe */
1561 pipe
= locate_pipe(fs
->parent_nr
);
1566 printf("dummynet: no pipe %d for queue %d, drop pkt\n",
1567 fs
->parent_nr
, fs
->fs_nr
);
1571 q
= find_queue(fs
, &(fwa
->fwa_id
));
1573 goto dropit
; /* cannot allocate queue */
1576 * update statistics, then check reasons to drop pkt
1578 q
->tot_bytes
+= len
;
1580 if (fs
->plr
&& (my_random() < fs
->plr
)) {
1581 goto dropit
; /* random pkt drop */
1583 if (fs
->flags_fs
& DN_QSIZE_IS_BYTES
) {
1584 if (q
->len_bytes
> fs
->qsize
) {
1585 goto dropit
; /* queue size overflow */
1588 if (q
->len
>= fs
->qsize
) {
1589 goto dropit
; /* queue count overflow */
1592 if (fs
->flags_fs
& DN_IS_RED
&& red_drops(fs
, q
, len
)) {
1596 /* XXX expensive to zero, see if we can remove it*/
1597 mtag
= m_tag_create(KERNEL_MODULE_TAG_ID
, KERNEL_TAG_TYPE_DUMMYNET
,
1598 sizeof(struct dn_pkt_tag
), M_NOWAIT
, m
);
1600 goto dropit
; /* cannot allocate packet header */
1602 m_tag_prepend(m
, mtag
); /* attach to mbuf chain */
1604 pkt
= (struct dn_pkt_tag
*)(mtag
+ 1);
1605 bzero(pkt
, sizeof(struct dn_pkt_tag
));
1606 /* ok, i can handle the pkt now... */
1607 /* build and enqueue packet + parameters */
1608 pkt
->dn_pf_rule
= fwa
->fwa_pf_rule
;
1611 pkt
->dn_ifp
= fwa
->fwa_oif
;
1612 if (dir
== DN_TO_IP_OUT
) {
1614 * We need to copy *ro because for ICMP pkts (and maybe others)
1615 * the caller passed a pointer into the stack; dst might also be
1616 * a pointer into *ro so it needs to be updated.
1619 route_copyout(&pkt
->dn_ro
, fwa
->fwa_ro
, sizeof(pkt
->dn_ro
));
1622 if (fwa
->fwa_dst
== (struct sockaddr_in
*)&fwa
->fwa_ro
->ro_dst
) { /* dst points into ro */
1623 fwa
->fwa_dst
= (struct sockaddr_in
*)&(pkt
->dn_ro
.ro_dst
);
1626 bcopy(fwa
->fwa_dst
, &pkt
->dn_dst
, sizeof(pkt
->dn_dst
));
1628 } else if (dir
== DN_TO_IP6_OUT
) {
1630 route_copyout((struct route
*)&pkt
->dn_ro6
,
1631 (struct route
*)fwa
->fwa_ro6
, sizeof(pkt
->dn_ro6
));
1633 if (fwa
->fwa_ro6_pmtu
) {
1634 route_copyout((struct route
*)&pkt
->dn_ro6_pmtu
,
1635 (struct route
*)fwa
->fwa_ro6_pmtu
, sizeof(pkt
->dn_ro6_pmtu
));
1637 if (fwa
->fwa_dst6
) {
1638 if (fwa
->fwa_dst6
== (struct sockaddr_in6
*)&fwa
->fwa_ro6
->ro_dst
) { /* dst points into ro */
1639 fwa
->fwa_dst6
= (struct sockaddr_in6
*)&(pkt
->dn_ro6
.ro_dst
);
1642 bcopy(fwa
->fwa_dst6
, &pkt
->dn_dst6
, sizeof(pkt
->dn_dst6
));
1644 pkt
->dn_origifp
= fwa
->fwa_origifp
;
1645 pkt
->dn_mtu
= fwa
->fwa_mtu
;
1646 pkt
->dn_unfragpartlen
= fwa
->fwa_unfragpartlen
;
1647 if (fwa
->fwa_exthdrs
) {
1648 bcopy(fwa
->fwa_exthdrs
, &pkt
->dn_exthdrs
, sizeof(pkt
->dn_exthdrs
));
1650 * Need to zero out the source structure so the mbufs
1651 * won't be freed by ip6_output()
1653 bzero(fwa
->fwa_exthdrs
, sizeof(struct ip6_exthdrs
));
1656 if (dir
== DN_TO_IP_OUT
|| dir
== DN_TO_IP6_OUT
) {
1657 pkt
->dn_flags
= fwa
->fwa_oflags
;
1658 if (fwa
->fwa_ipoa
!= NULL
) {
1659 pkt
->dn_ipoa
= *(fwa
->fwa_ipoa
);
1662 if (q
->head
== NULL
) {
1665 q
->tail
->m_nextpkt
= m
;
1669 q
->len_bytes
+= len
;
1671 if (q
->head
!= m
) { /* flow was not idle, we are done */
1675 * If we reach this point the flow was previously idle, so we need
1676 * to schedule it. This involves different actions for fixed-rate or
1681 * Fixed-rate queue: just insert into the ready_heap.
1684 if (pipe
->bandwidth
) {
1685 t
= SET_TICKS(m
, q
, pipe
);
1687 q
->sched_time
= curr_time
;
1688 if (t
== 0) { /* must process it now */
1689 ready_event( q
, &head
, &tail
);
1691 heap_insert(&ready_heap
, curr_time
+ t
, q
);
1695 * WF2Q. First, compute start time S: if the flow was idle (S=F+1)
1696 * set S to the virtual time V for the controlling pipe, and update
1697 * the sum of weights for the pipe; otherwise, remove flow from
1698 * idle_heap and set S to max(F,V).
1699 * Second, compute finish time F = S + len/weight.
1700 * Third, if pipe was idle, update V=max(S, V).
1701 * Fourth, count one more backlogged flow.
1703 if (DN_KEY_GT(q
->S
, q
->F
)) { /* means timestamps are invalid */
1705 pipe
->sum
+= fs
->weight
; /* add weight of new queue */
1707 heap_extract(&(pipe
->idle_heap
), q
);
1708 q
->S
= MAX64(q
->F
, pipe
->V
);
1710 q
->F
= q
->S
+ (len
<< MY_M
) / (u_int64_t
) fs
->weight
;
1712 if (pipe
->not_eligible_heap
.elements
== 0 &&
1713 pipe
->scheduler_heap
.elements
== 0) {
1714 pipe
->V
= MAX64( q
->S
, pipe
->V
);
1718 * Look at eligibility. A flow is not eligibile if S>V (when
1719 * this happens, it means that there is some other flow already
1720 * scheduled for the same pipe, so the scheduler_heap cannot be
1721 * empty). If the flow is not eligible we just store it in the
1722 * not_eligible_heap. Otherwise, we store in the scheduler_heap
1723 * and possibly invoke ready_event_wfq() right now if there is
1725 * Note that for all flows in scheduler_heap (SCH), S_i <= V,
1726 * and for all flows in not_eligible_heap (NEH), S_i > V .
1727 * So when we need to compute max( V, min(S_i) ) forall i in SCH+NEH,
1728 * we only need to look into NEH.
1730 if (DN_KEY_GT(q
->S
, pipe
->V
)) { /* not eligible */
1731 if (pipe
->scheduler_heap
.elements
== 0) {
1732 printf("dummynet: ++ ouch! not eligible but empty scheduler!\n");
1734 heap_insert(&(pipe
->not_eligible_heap
), q
->S
, q
);
1736 heap_insert(&(pipe
->scheduler_heap
), q
->F
, q
);
1737 if (pipe
->numbytes
>= 0) { /* pipe is idle */
1738 if (pipe
->scheduler_heap
.elements
!= 1) {
1739 printf("dummynet: OUCH! pipe should have been idle!\n");
1741 DPRINTF(("dummynet: waking up pipe %d at %d\n",
1742 pipe
->pipe_nr
, (int)(q
->F
>> MY_M
)));
1743 pipe
->sched_time
= curr_time
;
1744 ready_event_wfq(pipe
, &head
, &tail
);
1749 /* start the timer and set global if not already set */
1750 if (!timer_enabled
) {
1752 ts
.tv_nsec
= 1 * 1000000; // 1ms
1754 bsd_timeout(dummynet
, NULL
, &ts
);
1757 lck_mtx_unlock(dn_mutex
);
1760 dummynet_send(head
);
1769 lck_mtx_unlock(dn_mutex
);
1771 return (fs
&& (fs
->flags_fs
& DN_NOERROR
)) ? 0 : ENOBUFS
;
1775 * Below, the ROUTE_RELEASE is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
1776 * Doing this would probably save us the initial bzero of dn_pkt
1778 #define DN_FREE_PKT(_m) do { \
1779 struct m_tag *tag = m_tag_locate(m, KERNEL_MODULE_TAG_ID, KERNEL_TAG_TYPE_DUMMYNET, NULL); \
1781 struct dn_pkt_tag *n = (struct dn_pkt_tag *)(tag+1); \
1782 ROUTE_RELEASE(&n->dn_ro); \
1784 m_tag_delete(_m, tag); \
1789 * Dispose all packets and flow_queues on a flow_set.
1790 * If all=1, also remove red lookup table and other storage,
1791 * including the descriptor itself.
1792 * For the one in dn_pipe MUST also cleanup ready_heap...
1795 purge_flow_set(struct dn_flow_set
*fs
, int all
)
1797 struct dn_flow_queue
*q
, *qn
;
1800 LCK_MTX_ASSERT(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
1802 for (i
= 0; i
<= fs
->rq_size
; i
++) {
1803 for (q
= fs
->rq
[i
]; q
; q
= qn
) {
1804 struct mbuf
*m
, *mnext
;
1807 while ((m
= mnext
) != NULL
) {
1808 mnext
= m
->m_nextpkt
;
1812 FREE(q
, M_DUMMYNET
);
1816 fs
->rq_elements
= 0;
1818 /* RED - free lookup table */
1819 if (fs
->w_q_lookup
) {
1820 FREE(fs
->w_q_lookup
, M_DUMMYNET
);
1823 FREE(fs
->rq
, M_DUMMYNET
);
1825 /* if this fs is not part of a pipe, free it */
1826 if (fs
->pipe
&& fs
!= &(fs
->pipe
->fs
)) {
1827 FREE(fs
, M_DUMMYNET
);
1833 * Dispose all packets queued on a pipe (not a flow_set).
1834 * Also free all resources associated to a pipe, which is about
1838 purge_pipe(struct dn_pipe
*pipe
)
1840 struct mbuf
*m
, *mnext
;
1842 purge_flow_set( &(pipe
->fs
), 1 );
1845 while ((m
= mnext
) != NULL
) {
1846 mnext
= m
->m_nextpkt
;
1850 heap_free( &(pipe
->scheduler_heap
));
1851 heap_free( &(pipe
->not_eligible_heap
));
1852 heap_free( &(pipe
->idle_heap
));
1856 * Delete all pipes and heaps returning memory.
1859 dummynet_flush(void)
1861 struct dn_pipe
*pipe
, *pipe1
;
1862 struct dn_flow_set
*fs
, *fs1
;
1865 lck_mtx_lock(dn_mutex
);
1868 /* Free heaps so we don't have unwanted events. */
1869 heap_free(&ready_heap
);
1870 heap_free(&wfq_ready_heap
);
1871 heap_free(&extract_heap
);
1874 * Now purge all queued pkts and delete all pipes.
1876 * XXXGL: can we merge the for(;;) cycles into one or not?
1878 for (i
= 0; i
< HASHSIZE
; i
++) {
1879 SLIST_FOREACH_SAFE(fs
, &flowsethash
[i
], next
, fs1
) {
1880 SLIST_REMOVE(&flowsethash
[i
], fs
, dn_flow_set
, next
);
1881 purge_flow_set(fs
, 1);
1884 for (i
= 0; i
< HASHSIZE
; i
++) {
1885 SLIST_FOREACH_SAFE(pipe
, &pipehash
[i
], next
, pipe1
) {
1886 SLIST_REMOVE(&pipehash
[i
], pipe
, dn_pipe
, next
);
1888 FREE(pipe
, M_DUMMYNET
);
1891 lck_mtx_unlock(dn_mutex
);
1895 * setup RED parameters
1898 config_red(struct dn_flow_set
*p
, struct dn_flow_set
* x
)
1903 x
->min_th
= SCALE(p
->min_th
);
1904 x
->max_th
= SCALE(p
->max_th
);
1905 x
->max_p
= p
->max_p
;
1907 x
->c_1
= p
->max_p
/ (p
->max_th
- p
->min_th
);
1908 x
->c_2
= SCALE_MUL(x
->c_1
, SCALE(p
->min_th
));
1909 if (x
->flags_fs
& DN_IS_GENTLE_RED
) {
1910 x
->c_3
= (SCALE(1) - p
->max_p
) / p
->max_th
;
1911 x
->c_4
= (SCALE(1) - 2 * p
->max_p
);
1914 /* if the lookup table already exist, free and create it again */
1915 if (x
->w_q_lookup
) {
1916 FREE(x
->w_q_lookup
, M_DUMMYNET
);
1917 x
->w_q_lookup
= NULL
;
1919 if (red_lookup_depth
== 0) {
1920 printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth must be > 0\n");
1921 FREE(x
, M_DUMMYNET
);
1924 x
->lookup_depth
= red_lookup_depth
;
1925 x
->w_q_lookup
= (u_int
*) _MALLOC(x
->lookup_depth
* sizeof(int),
1926 M_DUMMYNET
, M_DONTWAIT
);
1927 if (x
->w_q_lookup
== NULL
) {
1928 printf("dummynet: sorry, cannot allocate red lookup table\n");
1929 FREE(x
, M_DUMMYNET
);
1933 /* fill the lookup table with (1 - w_q)^x */
1934 x
->lookup_step
= p
->lookup_step
;
1935 x
->lookup_weight
= p
->lookup_weight
;
1936 x
->w_q_lookup
[0] = SCALE(1) - x
->w_q
;
1937 for (i
= 1; i
< x
->lookup_depth
; i
++) {
1938 x
->w_q_lookup
[i
] = SCALE_MUL(x
->w_q_lookup
[i
- 1], x
->lookup_weight
);
1940 if (red_avg_pkt_size
< 1) {
1941 red_avg_pkt_size
= 512;
1943 x
->avg_pkt_size
= red_avg_pkt_size
;
1944 if (red_max_pkt_size
< 1) {
1945 red_max_pkt_size
= 1500;
1947 x
->max_pkt_size
= red_max_pkt_size
;
1952 alloc_hash(struct dn_flow_set
*x
, struct dn_flow_set
*pfs
)
1954 if (x
->flags_fs
& DN_HAVE_FLOW_MASK
) { /* allocate some slots */
1955 int l
= pfs
->rq_size
;
1962 } else if (l
> DN_MAX_HASH_SIZE
) {
1963 l
= DN_MAX_HASH_SIZE
;
1966 } else { /* one is enough for null mask */
1969 x
->rq
= _MALLOC((1 + x
->rq_size
) * sizeof(struct dn_flow_queue
*),
1970 M_DUMMYNET
, M_DONTWAIT
| M_ZERO
);
1971 if (x
->rq
== NULL
) {
1972 printf("dummynet: sorry, cannot allocate queue\n");
1980 set_fs_parms(struct dn_flow_set
*x
, struct dn_flow_set
*src
)
1982 x
->flags_fs
= src
->flags_fs
;
1983 x
->qsize
= src
->qsize
;
1985 x
->flow_mask
= src
->flow_mask
;
1986 if (x
->flags_fs
& DN_QSIZE_IS_BYTES
) {
1987 if (x
->qsize
> 1024 * 1024) {
1988 x
->qsize
= 1024 * 1024;
1991 if (x
->qsize
== 0) {
1994 if (x
->qsize
> 100) {
1998 /* configuring RED */
1999 if (x
->flags_fs
& DN_IS_RED
) {
2000 config_red(src
, x
); /* XXX should check errors */
2005 * setup pipe or queue parameters.
2008 config_pipe(struct dn_pipe
*p
)
2011 struct dn_flow_set
*pfs
= &(p
->fs
);
2012 struct dn_flow_queue
*q
;
2015 * The config program passes parameters as follows:
2016 * bw = bits/second (0 means no limits),
2017 * delay = ms, must be translated into ticks.
2018 * qsize = slots/bytes
2020 p
->delay
= (p
->delay
* (hz
* 10)) / 1000;
2021 /* We need either a pipe number or a flow_set number */
2022 if (p
->pipe_nr
== 0 && pfs
->fs_nr
== 0) {
2025 if (p
->pipe_nr
!= 0 && pfs
->fs_nr
!= 0) {
2028 if (p
->pipe_nr
!= 0) { /* this is a pipe */
2029 struct dn_pipe
*x
, *b
;
2030 struct dummynet_event dn_event
;
2031 lck_mtx_lock(dn_mutex
);
2034 b
= locate_pipe(p
->pipe_nr
);
2036 if (b
== NULL
|| b
->pipe_nr
!= p
->pipe_nr
) { /* new pipe */
2037 x
= _MALLOC(sizeof(struct dn_pipe
), M_DUMMYNET
, M_DONTWAIT
| M_ZERO
);
2039 lck_mtx_unlock(dn_mutex
);
2040 printf("dummynet: no memory for new pipe\n");
2043 x
->pipe_nr
= p
->pipe_nr
;
2045 /* idle_heap is the only one from which we extract from the middle.
2047 x
->idle_heap
.size
= x
->idle_heap
.elements
= 0;
2048 x
->idle_heap
.offset
= offsetof(struct dn_flow_queue
, heap_pos
);
2051 /* Flush accumulated credit for all queues */
2052 for (i
= 0; i
<= x
->fs
.rq_size
; i
++) {
2053 for (q
= x
->fs
.rq
[i
]; q
; q
= q
->next
) {
2059 x
->bandwidth
= p
->bandwidth
;
2060 x
->numbytes
= 0; /* just in case... */
2061 bcopy(p
->if_name
, x
->if_name
, sizeof(p
->if_name
));
2062 x
->ifp
= NULL
; /* reset interface ptr */
2063 x
->delay
= p
->delay
;
2064 set_fs_parms(&(x
->fs
), pfs
);
2067 if (x
->fs
.rq
== NULL
) { /* a new pipe */
2068 r
= alloc_hash(&(x
->fs
), pfs
);
2070 lck_mtx_unlock(dn_mutex
);
2071 FREE(x
, M_DUMMYNET
);
2074 SLIST_INSERT_HEAD(&pipehash
[HASH(x
->pipe_nr
)],
2077 lck_mtx_unlock(dn_mutex
);
2079 bzero(&dn_event
, sizeof(dn_event
));
2080 dn_event
.dn_event_code
= DUMMYNET_PIPE_CONFIG
;
2081 dn_event
.dn_event_pipe_config
.bandwidth
= p
->bandwidth
;
2082 dn_event
.dn_event_pipe_config
.delay
= p
->delay
;
2083 dn_event
.dn_event_pipe_config
.plr
= pfs
->plr
;
2085 dummynet_event_enqueue_nwk_wq_entry(&dn_event
);
2086 } else { /* config queue */
2087 struct dn_flow_set
*x
, *b
;
2089 lck_mtx_lock(dn_mutex
);
2090 /* locate flow_set */
2091 b
= locate_flowset(pfs
->fs_nr
);
2093 if (b
== NULL
|| b
->fs_nr
!= pfs
->fs_nr
) { /* new */
2094 if (pfs
->parent_nr
== 0) { /* need link to a pipe */
2095 lck_mtx_unlock(dn_mutex
);
2098 x
= _MALLOC(sizeof(struct dn_flow_set
), M_DUMMYNET
, M_DONTWAIT
| M_ZERO
);
2100 lck_mtx_unlock(dn_mutex
);
2101 printf("dummynet: no memory for new flow_set\n");
2104 x
->fs_nr
= pfs
->fs_nr
;
2105 x
->parent_nr
= pfs
->parent_nr
;
2106 x
->weight
= pfs
->weight
;
2107 if (x
->weight
== 0) {
2109 } else if (x
->weight
> 100) {
2113 /* Change parent pipe not allowed; must delete and recreate */
2114 if (pfs
->parent_nr
!= 0 && b
->parent_nr
!= pfs
->parent_nr
) {
2115 lck_mtx_unlock(dn_mutex
);
2120 set_fs_parms(x
, pfs
);
2122 if (x
->rq
== NULL
) { /* a new flow_set */
2123 r
= alloc_hash(x
, pfs
);
2125 lck_mtx_unlock(dn_mutex
);
2126 FREE(x
, M_DUMMYNET
);
2129 SLIST_INSERT_HEAD(&flowsethash
[HASH(x
->fs_nr
)],
2132 lck_mtx_unlock(dn_mutex
);
2138 * Helper function to remove from a heap queues which are linked to
2139 * a flow_set about to be deleted.
2142 fs_remove_from_heap(struct dn_heap
*h
, struct dn_flow_set
*fs
)
2144 int i
= 0, found
= 0;
2145 for (; i
< h
->elements
;) {
2146 if (((struct dn_flow_queue
*)h
->p
[i
].object
)->fs
== fs
) {
2148 h
->p
[i
] = h
->p
[h
->elements
];
2160 * helper function to remove a pipe from a heap (can be there at most once)
2163 pipe_remove_from_heap(struct dn_heap
*h
, struct dn_pipe
*p
)
2165 if (h
->elements
> 0) {
2167 for (i
= 0; i
< h
->elements
; i
++) {
2168 if (h
->p
[i
].object
== p
) { /* found it */
2170 h
->p
[i
] = h
->p
[h
->elements
];
2179 * drain all queues. Called in case of severe mbuf shortage.
2182 dummynet_drain(void)
2184 struct dn_flow_set
*fs
;
2186 struct mbuf
*m
, *mnext
;
2189 LCK_MTX_ASSERT(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
2191 heap_free(&ready_heap
);
2192 heap_free(&wfq_ready_heap
);
2193 heap_free(&extract_heap
);
2194 /* remove all references to this pipe from flow_sets */
2195 for (i
= 0; i
< HASHSIZE
; i
++) {
2196 SLIST_FOREACH(fs
, &flowsethash
[i
], next
) {
2197 purge_flow_set(fs
, 0);
2201 for (i
= 0; i
< HASHSIZE
; i
++) {
2202 SLIST_FOREACH(p
, &pipehash
[i
], next
) {
2203 purge_flow_set(&(p
->fs
), 0);
2206 while ((m
= mnext
) != NULL
) {
2207 mnext
= m
->m_nextpkt
;
2210 p
->head
= p
->tail
= NULL
;
2216 * Fully delete a pipe or a queue, cleaning up associated info.
2219 delete_pipe(struct dn_pipe
*p
)
2221 if (p
->pipe_nr
== 0 && p
->fs
.fs_nr
== 0) {
2224 if (p
->pipe_nr
!= 0 && p
->fs
.fs_nr
!= 0) {
2227 if (p
->pipe_nr
!= 0) { /* this is an old-style pipe */
2229 struct dn_flow_set
*fs
;
2232 lck_mtx_lock(dn_mutex
);
2234 b
= locate_pipe(p
->pipe_nr
);
2236 lck_mtx_unlock(dn_mutex
);
2237 return EINVAL
; /* not found */
2240 /* Unlink from list of pipes. */
2241 SLIST_REMOVE(&pipehash
[HASH(b
->pipe_nr
)], b
, dn_pipe
, next
);
2244 /* Remove all references to this pipe from flow_sets. */
2245 for (i
= 0; i
< HASHSIZE
; i
++) {
2246 SLIST_FOREACH(fs
, &flowsethash
[i
], next
) {
2247 if (fs
->pipe
== b
) {
2248 printf("dummynet: ++ ref to pipe %d from fs %d\n",
2249 p
->pipe_nr
, fs
->fs_nr
);
2251 purge_flow_set(fs
, 0);
2255 fs_remove_from_heap(&ready_heap
, &(b
->fs
));
2257 purge_pipe(b
); /* remove all data associated to this pipe */
2258 /* remove reference to here from extract_heap and wfq_ready_heap */
2259 pipe_remove_from_heap(&extract_heap
, b
);
2260 pipe_remove_from_heap(&wfq_ready_heap
, b
);
2261 lck_mtx_unlock(dn_mutex
);
2263 FREE(b
, M_DUMMYNET
);
2264 } else { /* this is a WF2Q queue (dn_flow_set) */
2265 struct dn_flow_set
*b
;
2267 lck_mtx_lock(dn_mutex
);
2269 b
= locate_flowset(p
->fs
.fs_nr
);
2271 lck_mtx_unlock(dn_mutex
);
2272 return EINVAL
; /* not found */
2276 /* Unlink from list of flowsets. */
2277 SLIST_REMOVE( &flowsethash
[HASH(b
->fs_nr
)], b
, dn_flow_set
, next
);
2279 if (b
->pipe
!= NULL
) {
2280 /* Update total weight on parent pipe and cleanup parent heaps */
2281 b
->pipe
->sum
-= b
->weight
* b
->backlogged
;
2282 fs_remove_from_heap(&(b
->pipe
->not_eligible_heap
), b
);
2283 fs_remove_from_heap(&(b
->pipe
->scheduler_heap
), b
);
2284 #if 1 /* XXX should i remove from idle_heap as well ? */
2285 fs_remove_from_heap(&(b
->pipe
->idle_heap
), b
);
2288 purge_flow_set(b
, 1);
2289 lck_mtx_unlock(dn_mutex
);
2295 * helper function used to copy data from kernel in DUMMYNET_GET
2299 dn_copy_set_32(struct dn_flow_set
*set
, char *bp
)
2302 struct dn_flow_queue
*q
;
2303 struct dn_flow_queue_32
*qp
= (struct dn_flow_queue_32
*)bp
;
2305 LCK_MTX_ASSERT(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
2307 for (i
= 0; i
<= set
->rq_size
; i
++) {
2308 for (q
= set
->rq
[i
]; q
; q
= q
->next
, qp
++) {
2309 if (q
->hash_slot
!= i
) {
2310 printf("dummynet: ++ at %d: wrong slot (have %d, "
2311 "should be %d)\n", copied
, q
->hash_slot
, i
);
2314 printf("dummynet: ++ at %d: wrong fs ptr "
2315 "(have 0x%llx, should be 0x%llx)\n", i
,
2316 (uint64_t)VM_KERNEL_ADDRPERM(q
->fs
),
2317 (uint64_t)VM_KERNEL_ADDRPERM(set
));
2320 cp_queue_to_32_user( q
, qp
);
2321 /* cleanup pointers */
2322 qp
->next
= (user32_addr_t
)0;
2323 qp
->head
= qp
->tail
= (user32_addr_t
)0;
2324 qp
->fs
= (user32_addr_t
)0;
2327 if (copied
!= set
->rq_elements
) {
2328 printf("dummynet: ++ wrong count, have %d should be %d\n",
2329 copied
, set
->rq_elements
);
2336 dn_copy_set_64(struct dn_flow_set
*set
, char *bp
)
2339 struct dn_flow_queue
*q
;
2340 struct dn_flow_queue_64
*qp
= (struct dn_flow_queue_64
*)bp
;
2342 LCK_MTX_ASSERT(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
2344 for (i
= 0; i
<= set
->rq_size
; i
++) {
2345 for (q
= set
->rq
[i
]; q
; q
= q
->next
, qp
++) {
2346 if (q
->hash_slot
!= i
) {
2347 printf("dummynet: ++ at %d: wrong slot (have %d, "
2348 "should be %d)\n", copied
, q
->hash_slot
, i
);
2351 printf("dummynet: ++ at %d: wrong fs ptr "
2352 "(have 0x%llx, should be 0x%llx)\n", i
,
2353 (uint64_t)VM_KERNEL_ADDRPERM(q
->fs
),
2354 (uint64_t)VM_KERNEL_ADDRPERM(set
));
2357 //bcopy(q, qp, sizeof(*q));
2358 cp_queue_to_64_user( q
, qp
);
2359 /* cleanup pointers */
2360 qp
->next
= USER_ADDR_NULL
;
2361 qp
->head
= qp
->tail
= USER_ADDR_NULL
;
2362 qp
->fs
= USER_ADDR_NULL
;
2365 if (copied
!= set
->rq_elements
) {
2366 printf("dummynet: ++ wrong count, have %d should be %d\n",
2367 copied
, set
->rq_elements
);
2373 dn_calc_size(int is64user
)
2375 struct dn_flow_set
*set
;
2383 LCK_MTX_ASSERT(dn_mutex
, LCK_MTX_ASSERT_OWNED
);
2385 pipesize
= sizeof(struct dn_pipe_64
);
2386 queuesize
= sizeof(struct dn_flow_queue_64
);
2387 setsize
= sizeof(struct dn_flow_set_64
);
2389 pipesize
= sizeof(struct dn_pipe_32
);
2390 queuesize
= sizeof(struct dn_flow_queue_32
);
2391 setsize
= sizeof(struct dn_flow_set_32
);
2394 * compute size of data structures: list of pipes and flow_sets.
2396 for (i
= 0; i
< HASHSIZE
; i
++) {
2397 SLIST_FOREACH(p
, &pipehash
[i
], next
) {
2398 size
+= sizeof(*p
) +
2399 p
->fs
.rq_elements
* sizeof(struct dn_flow_queue
);
2401 SLIST_FOREACH(set
, &flowsethash
[i
], next
) {
2402 size
+= sizeof(*set
) +
2403 set
->rq_elements
* sizeof(struct dn_flow_queue
);
2410 dummynet_get(struct sockopt
*sopt
)
2412 char *buf
= NULL
, *bp
= NULL
; /* bp is the "copy-pointer" */
2414 struct dn_flow_set
*set
;
2419 /* XXX lock held too long */
2420 lck_mtx_lock(dn_mutex
);
2422 * XXX: Ugly, but we need to allocate memory with M_WAITOK flag
2423 * and we cannot use this flag while holding a mutex.
2425 if (proc_is64bit(sopt
->sopt_p
)) {
2428 for (i
= 0; i
< 10; i
++) {
2429 size
= dn_calc_size(is64user
);
2430 lck_mtx_unlock(dn_mutex
);
2431 buf
= _MALLOC(size
, M_TEMP
, M_WAITOK
| M_ZERO
);
2435 lck_mtx_lock(dn_mutex
);
2436 if (size
== dn_calc_size(is64user
)) {
2443 lck_mtx_unlock(dn_mutex
);
2448 for (i
= 0; i
< HASHSIZE
; i
++) {
2449 SLIST_FOREACH(p
, &pipehash
[i
], next
) {
2451 * copy pipe descriptor into *bp, convert delay
2452 * back to ms, then copy the flow_set descriptor(s)
2453 * one at a time. After each flow_set, copy the
2454 * queue descriptor it owns.
2457 bp
= cp_pipe_to_64_user(p
,
2458 (struct dn_pipe_64
*)bp
);
2460 bp
= cp_pipe_to_32_user(p
,
2461 (struct dn_pipe_32
*)bp
);
2465 for (i
= 0; i
< HASHSIZE
; i
++) {
2466 SLIST_FOREACH(set
, &flowsethash
[i
], next
) {
2467 struct dn_flow_set_64
*fs_bp
=
2468 (struct dn_flow_set_64
*)bp
;
2469 cp_flow_set_to_64_user(set
, fs_bp
);
2470 /* XXX same hack as above */
2471 fs_bp
->next
= CAST_DOWN(user64_addr_t
,
2473 fs_bp
->pipe
= USER_ADDR_NULL
;
2474 fs_bp
->rq
= USER_ADDR_NULL
;
2475 bp
+= sizeof(struct dn_flow_set_64
);
2476 bp
= dn_copy_set_64( set
, bp
);
2479 lck_mtx_unlock(dn_mutex
);
2480 error
= sooptcopyout(sopt
, buf
, size
);
2486 * Handler for the various dummynet socket options (get, flush, config, del)
2489 ip_dn_ctl(struct sockopt
*sopt
)
2492 struct dn_pipe
*p
, tmp_pipe
;
2494 /* Disallow sets in really-really secure mode. */
2495 if (sopt
->sopt_dir
== SOPT_SET
&& securelevel
>= 3) {
2499 switch (sopt
->sopt_name
) {
2501 printf("dummynet: -- unknown option %d", sopt
->sopt_name
);
2504 case IP_DUMMYNET_GET
:
2505 error
= dummynet_get(sopt
);
2508 case IP_DUMMYNET_FLUSH
:
2512 case IP_DUMMYNET_CONFIGURE
:
2514 if (proc_is64bit(sopt
->sopt_p
)) {
2515 error
= cp_pipe_from_user_64( sopt
, p
);
2517 error
= cp_pipe_from_user_32( sopt
, p
);
2523 error
= config_pipe(p
);
2526 case IP_DUMMYNET_DEL
: /* remove a pipe or queue */
2528 if (proc_is64bit(sopt
->sopt_p
)) {
2529 error
= cp_pipe_from_user_64( sopt
, p
);
2531 error
= cp_pipe_from_user_32( sopt
, p
);
2537 error
= delete_pipe(p
);
2546 eventhandler_lists_ctxt_init(&dummynet_evhdlr_ctxt
);
2553 dn_mutex_grp_attr
= lck_grp_attr_alloc_init();
2554 dn_mutex_grp
= lck_grp_alloc_init("dn", dn_mutex_grp_attr
);
2555 dn_mutex_attr
= lck_attr_alloc_init();
2556 lck_mtx_init(dn_mutex
, dn_mutex_grp
, dn_mutex_attr
);
2558 ready_heap
.size
= ready_heap
.elements
= 0;
2559 ready_heap
.offset
= 0;
2561 wfq_ready_heap
.size
= wfq_ready_heap
.elements
= 0;
2562 wfq_ready_heap
.offset
= 0;
2564 extract_heap
.size
= extract_heap
.elements
= 0;
2565 extract_heap
.offset
= 0;
2566 ip_dn_ctl_ptr
= ip_dn_ctl
;
2567 ip_dn_io_ptr
= dummynet_io
;
2570 struct dn_event_nwk_wq_entry
{
2571 struct nwk_wq_entry nwk_wqe
;
2572 struct dummynet_event dn_ev_arg
;
2576 dummynet_event_callback(void *arg
)
2578 struct dummynet_event
*p_dn_ev
= (struct dummynet_event
*)arg
;
2580 EVENTHANDLER_INVOKE(&dummynet_evhdlr_ctxt
, dummynet_event
, p_dn_ev
);
2585 dummynet_event_enqueue_nwk_wq_entry(struct dummynet_event
*p_dn_event
)
2587 struct dn_event_nwk_wq_entry
*p_dn_ev
= NULL
;
2589 MALLOC(p_dn_ev
, struct dn_event_nwk_wq_entry
*,
2590 sizeof(struct dn_event_nwk_wq_entry
),
2591 M_NWKWQ
, M_WAITOK
| M_ZERO
);
2593 p_dn_ev
->nwk_wqe
.func
= dummynet_event_callback
;
2594 p_dn_ev
->nwk_wqe
.is_arg_managed
= TRUE
;
2595 p_dn_ev
->nwk_wqe
.arg
= &p_dn_ev
->dn_ev_arg
;
2597 bcopy(p_dn_event
, &(p_dn_ev
->dn_ev_arg
),
2598 sizeof(struct dummynet_event
));
2599 nwk_wq_enqueue((struct nwk_wq_entry
*)p_dn_ev
);