]> git.saurik.com Git - apple/xnu.git/blob - bsd/net/radix.c
xnu-7195.81.3.tar.gz
[apple/xnu.git] / bsd / net / radix.c
1 /*
2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1988, 1989, 1993
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)radix.c 8.4 (Berkeley) 11/2/94
61 * $FreeBSD: src/sys/net/radix.c,v 1.20.2.2 2001/03/06 00:56:50 obrien Exp $
62 */
63
64 /*
65 * Routines to build and maintain radix trees for routing lookups.
66 */
67 #ifndef _RADIX_H_
68 #include <sys/param.h>
69 #include <sys/systm.h>
70 #include <sys/malloc.h>
71 #define M_DONTWAIT M_NOWAIT
72 #include <sys/domain.h>
73 #include <sys/syslog.h>
74 #include <net/radix.h>
75 #include <sys/socket.h>
76 #include <sys/socketvar.h>
77 #include <kern/locks.h>
78 #endif
79
80 static int rn_walktree_from(struct radix_node_head *h, void *a,
81 void *m, walktree_f_t *f, void *w);
82 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
83 static struct radix_node
84 *rn_insert(void *, struct radix_node_head *, int *,
85 struct radix_node[2]),
86 *rn_newpair(void *, int, struct radix_node[2]),
87 *rn_search(void *, struct radix_node *),
88 *rn_search_m(void *, struct radix_node *, void *);
89
90 static int max_keylen;
91 static struct radix_mask *rn_mkfreelist;
92 static struct radix_node_head *mask_rnhead;
93 static char *addmask_key;
94 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
95 static char *rn_zeros, *rn_ones;
96
97
98 extern lck_grp_t *domain_proto_mtx_grp;
99 extern lck_attr_t *domain_proto_mtx_attr;
100
101 #define rn_masktop (mask_rnhead->rnh_treetop)
102 #undef Bcmp
103 #define Bcmp(a, b, l) \
104 (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (uint32_t)l))
105
106 static int rn_lexobetter(void *m_arg, void *n_arg);
107 static struct radix_mask *
108 rn_new_radix_mask(struct radix_node *tt,
109 struct radix_mask *next);
110 static int rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip,
111 rn_matchf_t *f, void *w);
112
113 #define RN_MATCHF(rn, f, arg) (f == NULL || (*f)((rn), arg))
114
115 /*
116 * The data structure for the keys is a radix tree with one way
117 * branching removed. The index rn_bit at an internal node n represents a bit
118 * position to be tested. The tree is arranged so that all descendants
119 * of a node n have keys whose bits all agree up to position rn_bit - 1.
120 * (We say the index of n is rn_bit.)
121 *
122 * There is at least one descendant which has a one bit at position rn_bit,
123 * and at least one with a zero there.
124 *
125 * A route is determined by a pair of key and mask. We require that the
126 * bit-wise logical and of the key and mask to be the key.
127 * We define the index of a route to associated with the mask to be
128 * the first bit number in the mask where 0 occurs (with bit number 0
129 * representing the highest order bit).
130 *
131 * We say a mask is normal if every bit is 0, past the index of the mask.
132 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
133 * and m is a normal mask, then the route applies to every descendant of n.
134 * If the index(m) < rn_bit, this implies the trailing last few bits of k
135 * before bit b are all 0, (and hence consequently true of every descendant
136 * of n), so the route applies to all descendants of the node as well.
137 *
138 * Similar logic shows that a non-normal mask m such that
139 * index(m) <= index(n) could potentially apply to many children of n.
140 * Thus, for each non-host route, we attach its mask to a list at an internal
141 * node as high in the tree as we can go.
142 *
143 * The present version of the code makes use of normal routes in short-
144 * circuiting an explict mask and compare operation when testing whether
145 * a key satisfies a normal route, and also in remembering the unique leaf
146 * that governs a subtree.
147 */
148
149 static struct radix_node *
150 rn_search(void *v_arg, struct radix_node *head)
151 {
152 struct radix_node *x;
153 caddr_t v;
154
155 for (x = head, v = v_arg; x->rn_bit >= 0;) {
156 if (x->rn_bmask & v[x->rn_offset]) {
157 x = x->rn_right;
158 } else {
159 x = x->rn_left;
160 }
161 }
162 return x;
163 }
164
165 static struct radix_node *
166 rn_search_m(void *v_arg, struct radix_node *head, void *m_arg)
167 {
168 struct radix_node *x;
169 caddr_t v = v_arg, m = m_arg;
170
171 for (x = head; x->rn_bit >= 0;) {
172 if ((x->rn_bmask & m[x->rn_offset]) &&
173 (x->rn_bmask & v[x->rn_offset])) {
174 x = x->rn_right;
175 } else {
176 x = x->rn_left;
177 }
178 }
179 return x;
180 }
181
182 int
183 rn_refines(void *m_arg, void *n_arg)
184 {
185 caddr_t m = m_arg, n = n_arg;
186 caddr_t lim, lim2 = lim = n + *(u_char *)n;
187 int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
188 int masks_are_equal = 1;
189
190 if (longer > 0) {
191 lim -= longer;
192 }
193 while (n < lim) {
194 if (*n & ~(*m)) {
195 return 0;
196 }
197 if (*n++ != *m++) {
198 masks_are_equal = 0;
199 }
200 }
201 while (n < lim2) {
202 if (*n++) {
203 return 0;
204 }
205 }
206 if (masks_are_equal && (longer < 0)) {
207 for (lim2 = m - longer; m < lim2;) {
208 if (*m++) {
209 return 1;
210 }
211 }
212 }
213 return !masks_are_equal;
214 }
215
216 struct radix_node *
217 rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head)
218 {
219 return rn_lookup_args(v_arg, m_arg, head, NULL, NULL);
220 }
221
222 struct radix_node *
223 rn_lookup_args(void *v_arg, void *m_arg, struct radix_node_head *head,
224 rn_matchf_t *f, void *w)
225 {
226 struct radix_node *x;
227 caddr_t netmask = NULL;
228
229 if (m_arg) {
230 x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset);
231 if (x == 0) {
232 return NULL;
233 }
234 netmask = x->rn_key;
235 }
236 x = rn_match_args(v_arg, head, f, w);
237 if (x && netmask) {
238 while (x && x->rn_mask != netmask) {
239 x = x->rn_dupedkey;
240 }
241 }
242 return x;
243 }
244
245 /*
246 * Returns true if address 'trial' has no bits differing from the
247 * leaf's key when compared under the leaf's mask. In other words,
248 * returns true when 'trial' matches leaf. If a leaf-matching
249 * routine is passed in, it is also used to find a match on the
250 * conditions defined by the caller of rn_match.
251 */
252 static int
253 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip,
254 rn_matchf_t *f, void *w)
255 {
256 char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
257 char *cplim;
258 int length = min(*(u_char *)cp, *(u_char *)cp2);
259
260 if (cp3 == 0) {
261 cp3 = rn_ones;
262 } else {
263 length = min(length, *(u_char *)cp3);
264 }
265 cplim = cp + length; cp3 += skip; cp2 += skip;
266 for (cp += skip; cp < cplim; cp++, cp2++, cp3++) {
267 if ((*cp ^ *cp2) & *cp3) {
268 return 0;
269 }
270 }
271
272 return RN_MATCHF(leaf, f, w);
273 }
274
275 struct radix_node *
276 rn_match(void *v_arg, struct radix_node_head *head)
277 {
278 return rn_match_args(v_arg, head, NULL, NULL);
279 }
280
281 struct radix_node *
282 rn_match_args(void *v_arg, struct radix_node_head *head,
283 rn_matchf_t *f, void *w)
284 {
285 caddr_t v = v_arg;
286 struct radix_node *t = head->rnh_treetop, *x;
287 caddr_t cp = v, cp2;
288 caddr_t cplim;
289 struct radix_node *saved_t, *top = t;
290 int off = t->rn_offset, vlen = *(u_char *)cp, matched_off;
291 int test, b, rn_bit;
292
293 /*
294 * Open code rn_search(v, top) to avoid overhead of extra
295 * subroutine call.
296 */
297 for (; t->rn_bit >= 0;) {
298 if (t->rn_bmask & cp[t->rn_offset]) {
299 t = t->rn_right;
300 } else {
301 t = t->rn_left;
302 }
303 }
304 /*
305 * See if we match exactly as a host destination
306 * or at least learn how many bits match, for normal mask finesse.
307 *
308 * It doesn't hurt us to limit how many bytes to check
309 * to the length of the mask, since if it matches we had a genuine
310 * match and the leaf we have is the most specific one anyway;
311 * if it didn't match with a shorter length it would fail
312 * with a long one. This wins big for class B&C netmasks which
313 * are probably the most common case...
314 */
315 if (t->rn_mask) {
316 vlen = *(u_char *)t->rn_mask;
317 }
318 cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
319 for (; cp < cplim; cp++, cp2++) {
320 if (*cp != *cp2) {
321 goto on1;
322 }
323 }
324 /*
325 * This extra grot is in case we are explicitly asked
326 * to look up the default. Ugh!
327 *
328 * Never return the root node itself, it seems to cause a
329 * lot of confusion.
330 */
331 if (t->rn_flags & RNF_ROOT) {
332 t = t->rn_dupedkey;
333 }
334 if (t == NULL || RN_MATCHF(t, f, w)) {
335 return t;
336 } else {
337 /*
338 * Although we found an exact match on the key,
339 * f() is looking for some other criteria as well.
340 * Continue looking as if the exact match failed.
341 */
342 if (t->rn_parent->rn_flags & RNF_ROOT) {
343 /* Hit the top; have to give up */
344 return NULL;
345 }
346 b = 0;
347 goto keeplooking;
348 }
349 on1:
350 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
351 for (b = 7; (test >>= 1) > 0;) {
352 b--;
353 }
354 keeplooking:
355 matched_off = cp - v;
356 b += matched_off << 3;
357 rn_bit = -1 - b;
358 /*
359 * If there is a host route in a duped-key chain, it will be first.
360 */
361 if ((saved_t = t)->rn_mask == 0) {
362 t = t->rn_dupedkey;
363 }
364 for (; t; t = t->rn_dupedkey) {
365 /*
366 * Even if we don't match exactly as a host,
367 * we may match if the leaf we wound up at is
368 * a route to a net.
369 */
370 if (t->rn_flags & RNF_NORMAL) {
371 if ((rn_bit <= t->rn_bit) && RN_MATCHF(t, f, w)) {
372 return t;
373 }
374 } else if (rn_satisfies_leaf(v, t, matched_off, f, w)) {
375 return t;
376 }
377 }
378 t = saved_t;
379 /* start searching up the tree */
380 do {
381 struct radix_mask *m;
382 t = t->rn_parent;
383 m = t->rn_mklist;
384 /*
385 * If non-contiguous masks ever become important
386 * we can restore the masking and open coding of
387 * the search and satisfaction test and put the
388 * calculation of "off" back before the "do".
389 */
390 while (m) {
391 if (m->rm_flags & RNF_NORMAL) {
392 if ((rn_bit <= m->rm_bit) &&
393 RN_MATCHF(m->rm_leaf, f, w)) {
394 return m->rm_leaf;
395 }
396 } else {
397 off = min(t->rn_offset, matched_off);
398 x = rn_search_m(v, t, m->rm_mask);
399 while (x && x->rn_mask != m->rm_mask) {
400 x = x->rn_dupedkey;
401 }
402 if (x && rn_satisfies_leaf(v, x, off, f, w)) {
403 return x;
404 }
405 }
406 m = m->rm_mklist;
407 }
408 } while (t != top);
409 return NULL;
410 }
411
412 #ifdef RN_DEBUG
413 int rn_nodenum;
414 struct radix_node *rn_clist;
415 int rn_saveinfo;
416 int rn_debug = 1;
417 #endif
418
419 static struct radix_node *
420 rn_newpair(void *v, int b, struct radix_node nodes[2])
421 {
422 struct radix_node *tt = nodes, *t = tt + 1;
423 t->rn_bit = b;
424 t->rn_bmask = 0x80 >> (b & 7);
425 t->rn_left = tt;
426 t->rn_offset = b >> 3;
427 tt->rn_bit = -1;
428 tt->rn_key = (caddr_t)v;
429 tt->rn_parent = t;
430 tt->rn_flags = t->rn_flags = RNF_ACTIVE;
431 tt->rn_mklist = t->rn_mklist = NULL;
432 #ifdef RN_DEBUG
433 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
434 tt->rn_twin = t;
435 tt->rn_ybro = rn_clist;
436 rn_clist = tt;
437 #endif
438 return t;
439 }
440
441 static struct radix_node *
442 rn_insert(void *v_arg, struct radix_node_head *head, int *dupentry,
443 struct radix_node nodes[2])
444 {
445 caddr_t v = v_arg;
446 struct radix_node *top = head->rnh_treetop;
447 int head_off = top->rn_offset, vlen = (int)*((u_char *)v);
448 struct radix_node *t = rn_search(v_arg, top);
449 caddr_t cp = v + head_off;
450 int b;
451 struct radix_node *tt;
452 /*
453 * Find first bit at which v and t->rn_key differ
454 */
455 {
456 caddr_t cp2 = t->rn_key + head_off;
457 int cmp_res;
458 caddr_t cplim = v + vlen;
459
460 while (cp < cplim) {
461 if (*cp2++ != *cp++) {
462 goto on1;
463 }
464 }
465 *dupentry = 1;
466 return t;
467 on1:
468 *dupentry = 0;
469 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
470 for (b = (cp - v) << 3; cmp_res; b--) {
471 cmp_res >>= 1;
472 }
473 }
474 {
475 struct radix_node *p, *x = top;
476 cp = v;
477 do {
478 p = x;
479 if (cp[x->rn_offset] & x->rn_bmask) {
480 x = x->rn_right;
481 } else {
482 x = x->rn_left;
483 }
484 } while (b > (unsigned) x->rn_bit);
485 /* x->rn_bit < b && x->rn_bit >= 0 */
486 #ifdef RN_DEBUG
487 if (rn_debug) {
488 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
489 }
490 #endif
491 t = rn_newpair(v_arg, b, nodes);
492 tt = t->rn_left;
493 if ((cp[p->rn_offset] & p->rn_bmask) == 0) {
494 p->rn_left = t;
495 } else {
496 p->rn_right = t;
497 }
498 x->rn_parent = t;
499 t->rn_parent = p; /* frees x, p as temp vars below */
500 if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
501 t->rn_right = x;
502 } else {
503 t->rn_right = tt;
504 t->rn_left = x;
505 }
506 #ifdef RN_DEBUG
507 if (rn_debug) {
508 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
509 }
510 #endif
511 }
512 return tt;
513 }
514
515 struct radix_node *
516 rn_addmask(void *n_arg, int search, int skip)
517 {
518 caddr_t netmask = (caddr_t)n_arg;
519 struct radix_node *x;
520 caddr_t cp, cplim;
521 int b = 0, mlen, j;
522 int maskduplicated, m0, isnormal;
523 struct radix_node *saved_x;
524 static int last_zeroed = 0;
525
526 if ((mlen = *(u_char *)netmask) > max_keylen) {
527 mlen = max_keylen;
528 }
529 if (skip == 0) {
530 skip = 1;
531 }
532 if (mlen <= skip) {
533 return mask_rnhead->rnh_nodes;
534 }
535 if (skip > 1) {
536 Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
537 }
538 if ((m0 = mlen) > skip) {
539 Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
540 }
541 /*
542 * Trim trailing zeroes.
543 */
544 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;) {
545 cp--;
546 }
547 mlen = cp - addmask_key;
548 if (mlen <= skip) {
549 if (m0 >= last_zeroed) {
550 last_zeroed = mlen;
551 }
552 return mask_rnhead->rnh_nodes;
553 }
554 if (m0 < last_zeroed) {
555 Bzero(addmask_key + m0, last_zeroed - m0);
556 }
557 *addmask_key = last_zeroed = mlen;
558 x = rn_search(addmask_key, rn_masktop);
559 if (Bcmp(addmask_key, x->rn_key, mlen) != 0) {
560 x = NULL;
561 }
562 if (x || search) {
563 return x;
564 }
565 R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof(*x));
566 if ((saved_x = x) == 0) {
567 return NULL;
568 }
569 Bzero(x, max_keylen + 2 * sizeof(*x));
570 netmask = cp = (caddr_t)(x + 2);
571 Bcopy(addmask_key, cp, mlen);
572 x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
573 if (maskduplicated) {
574 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
575 R_Free(saved_x);
576 return x;
577 }
578 mask_rnhead->rnh_cnt++;
579 /*
580 * Calculate index of mask, and check for normalcy.
581 */
582 cplim = netmask + mlen; isnormal = 1;
583 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;) {
584 cp++;
585 }
586 if (cp != cplim) {
587 for (j = 0x80; (j & *cp) != 0; j >>= 1) {
588 b++;
589 }
590 if (*cp != normal_chars[b] || cp != (cplim - 1)) {
591 isnormal = 0;
592 }
593 }
594 b += (cp - netmask) << 3;
595 x->rn_bit = -1 - b;
596 if (isnormal) {
597 x->rn_flags |= RNF_NORMAL;
598 }
599 return x;
600 }
601
602 static int
603 /* XXX: arbitrary ordering for non-contiguous masks */
604 rn_lexobetter(void *m_arg, void *n_arg)
605 {
606 u_char *mp = m_arg, *np = n_arg, *lim;
607
608 if (*mp > *np) {
609 return 1; /* not really, but need to check longer one first */
610 }
611 if (*mp == *np) {
612 for (lim = mp + *mp; mp < lim;) {
613 if (*mp++ > *np++) {
614 return 1;
615 }
616 }
617 }
618 return 0;
619 }
620
621 static struct radix_mask *
622 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next)
623 {
624 struct radix_mask *m;
625
626 MKGet(m);
627 if (m == 0) {
628 log(LOG_ERR, "Mask for route not entered\n");
629 return NULL;
630 }
631 Bzero(m, sizeof *m);
632 m->rm_bit = tt->rn_bit;
633 m->rm_flags = tt->rn_flags;
634 if (tt->rn_flags & RNF_NORMAL) {
635 m->rm_leaf = tt;
636 } else {
637 m->rm_mask = tt->rn_mask;
638 }
639 m->rm_mklist = next;
640 tt->rn_mklist = m;
641 return m;
642 }
643
644 struct radix_node *
645 rn_addroute(void *v_arg, void *n_arg, struct radix_node_head *head,
646 struct radix_node treenodes[2])
647 {
648 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
649 struct radix_node *t, *x = NULL, *tt;
650 struct radix_node *saved_tt, *top = head->rnh_treetop;
651 short b = 0, b_leaf = 0;
652 int keyduplicated;
653 caddr_t mmask;
654 struct radix_mask *m, **mp;
655
656 /*
657 * In dealing with non-contiguous masks, there may be
658 * many different routes which have the same mask.
659 * We will find it useful to have a unique pointer to
660 * the mask to speed avoiding duplicate references at
661 * nodes and possibly save time in calculating indices.
662 */
663 if (netmask) {
664 if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0) {
665 return NULL;
666 }
667 b_leaf = x->rn_bit;
668 b = -1 - x->rn_bit;
669 netmask = x->rn_key;
670 }
671 /*
672 * Deal with duplicated keys: attach node to previous instance
673 */
674 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
675 if (keyduplicated) {
676 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
677 if (tt->rn_mask == netmask) {
678 return NULL;
679 }
680 if (netmask == 0 ||
681 (tt->rn_mask &&
682 ((b_leaf < tt->rn_bit) /* index(netmask) > node */
683 || rn_refines(netmask, tt->rn_mask)
684 || rn_lexobetter(netmask, tt->rn_mask)))) {
685 break;
686 }
687 }
688 /*
689 * If the mask is not duplicated, we wouldn't
690 * find it among possible duplicate key entries
691 * anyway, so the above test doesn't hurt.
692 *
693 * We sort the masks for a duplicated key the same way as
694 * in a masklist -- most specific to least specific.
695 * This may require the unfortunate nuisance of relocating
696 * the head of the list.
697 */
698 if (tt == saved_tt) {
699 struct radix_node *xx = x;
700 /* link in at head of list */
701 (tt = treenodes)->rn_dupedkey = t;
702 tt->rn_flags = t->rn_flags;
703 tt->rn_parent = x = t->rn_parent;
704 t->rn_parent = tt; /* parent */
705 if (x->rn_left == t) {
706 x->rn_left = tt;
707 } else {
708 x->rn_right = tt;
709 }
710 saved_tt = tt; x = xx;
711 } else {
712 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
713 t->rn_dupedkey = tt;
714 tt->rn_parent = t; /* parent */
715 if (tt->rn_dupedkey) { /* parent */
716 tt->rn_dupedkey->rn_parent = tt; /* parent */
717 }
718 }
719 #ifdef RN_DEBUG
720 t = tt + 1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
721 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
722 #endif
723 tt->rn_key = (caddr_t) v;
724 tt->rn_bit = -1;
725 tt->rn_flags = RNF_ACTIVE;
726 }
727 head->rnh_cnt++;
728 /*
729 * Put mask in tree.
730 */
731 if (netmask) {
732 tt->rn_mask = netmask;
733 tt->rn_bit = x->rn_bit;
734 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
735 }
736 t = saved_tt->rn_parent;
737 if (keyduplicated) {
738 goto on2;
739 }
740 b_leaf = -1 - t->rn_bit;
741 if (t->rn_right == saved_tt) {
742 x = t->rn_left;
743 } else {
744 x = t->rn_right;
745 }
746 /* Promote general routes from below */
747 if (x->rn_bit < 0) {
748 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey) {
749 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
750 *mp = m = rn_new_radix_mask(x, NULL);
751 if (m) {
752 mp = &m->rm_mklist;
753 }
754 }
755 }
756 } else if (x->rn_mklist) {
757 /*
758 * Skip over masks whose index is > that of new node
759 */
760 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
761 if (m->rm_bit >= b_leaf) {
762 break;
763 }
764 }
765 t->rn_mklist = m; *mp = NULL;
766 }
767 on2:
768 /* Add new route to highest possible ancestor's list */
769 if ((netmask == 0) || (b > t->rn_bit)) {
770 return tt; /* can't lift at all */
771 }
772 b_leaf = tt->rn_bit;
773 do {
774 x = t;
775 t = t->rn_parent;
776 } while (b <= t->rn_bit && x != top);
777 /*
778 * Search through routes associated with node to
779 * insert new route according to index.
780 * Need same criteria as when sorting dupedkeys to avoid
781 * double loop on deletion.
782 */
783 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
784 if (m->rm_bit < b_leaf) {
785 continue;
786 }
787 if (m->rm_bit > b_leaf) {
788 break;
789 }
790 if (m->rm_flags & RNF_NORMAL) {
791 mmask = m->rm_leaf->rn_mask;
792 if (tt->rn_flags & RNF_NORMAL) {
793 log(LOG_ERR,
794 "Non-unique normal route, mask not entered");
795 return tt;
796 }
797 } else {
798 mmask = m->rm_mask;
799 }
800 if (mmask == netmask) {
801 m->rm_refs++;
802 tt->rn_mklist = m;
803 return tt;
804 }
805 if (rn_refines(netmask, mmask)
806 || rn_lexobetter(netmask, mmask)) {
807 break;
808 }
809 }
810 *mp = rn_new_radix_mask(tt, *mp);
811 return tt;
812 }
813
814 struct radix_node *
815 rn_delete(void *v_arg, void *netmask_arg, struct radix_node_head *head)
816 {
817 struct radix_node *t, *p, *x, *tt;
818 struct radix_mask *m, *saved_m, **mp;
819 struct radix_node *dupedkey, *saved_tt, *top;
820 caddr_t v, netmask;
821 int b, head_off, vlen;
822
823 v = v_arg;
824 netmask = netmask_arg;
825 x = head->rnh_treetop;
826 tt = rn_search(v, x);
827 head_off = x->rn_offset;
828 vlen = *(u_char *)v;
829 saved_tt = tt;
830 top = x;
831 if (tt == 0 ||
832 Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off)) {
833 return NULL;
834 }
835 /*
836 * Delete our route from mask lists.
837 */
838 if (netmask) {
839 if ((x = rn_addmask(netmask, 1, head_off)) == 0) {
840 return NULL;
841 }
842 netmask = x->rn_key;
843 while (tt->rn_mask != netmask) {
844 if ((tt = tt->rn_dupedkey) == 0) {
845 return NULL;
846 }
847 }
848 }
849 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0) {
850 goto on1;
851 }
852 if (tt->rn_flags & RNF_NORMAL) {
853 if (m->rm_leaf != tt || m->rm_refs > 0) {
854 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
855 return NULL; /* dangling ref could cause disaster */
856 }
857 } else {
858 if (m->rm_mask != tt->rn_mask) {
859 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
860 goto on1;
861 }
862 if (--m->rm_refs >= 0) {
863 goto on1;
864 }
865 }
866 b = -1 - tt->rn_bit;
867 t = saved_tt->rn_parent;
868 if (b > t->rn_bit) {
869 goto on1; /* Wasn't lifted at all */
870 }
871 do {
872 x = t;
873 t = t->rn_parent;
874 } while (b <= t->rn_bit && x != top);
875 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
876 if (m == saved_m) {
877 *mp = m->rm_mklist;
878 MKFree(m);
879 break;
880 }
881 }
882 if (m == 0) {
883 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
884 if (tt->rn_flags & RNF_NORMAL) {
885 return NULL; /* Dangling ref to us */
886 }
887 }
888 on1:
889 /*
890 * Eliminate us from tree
891 */
892 if (tt->rn_flags & RNF_ROOT) {
893 return NULL;
894 }
895 head->rnh_cnt--;
896 #ifdef RN_DEBUG
897 /* Get us out of the creation list */
898 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {
899 }
900 if (t) {
901 t->rn_ybro = tt->rn_ybro;
902 }
903 #endif
904 t = tt->rn_parent;
905 dupedkey = saved_tt->rn_dupedkey;
906 if (dupedkey) {
907 /*
908 * at this point, tt is the deletion target and saved_tt
909 * is the head of the dupekey chain
910 */
911 if (tt == saved_tt) {
912 /* remove from head of chain */
913 x = dupedkey; x->rn_parent = t;
914 if (t->rn_left == tt) {
915 t->rn_left = x;
916 } else {
917 t->rn_right = x;
918 }
919 } else {
920 /* find node in front of tt on the chain */
921 for (x = p = saved_tt; p && p->rn_dupedkey != tt;) {
922 p = p->rn_dupedkey;
923 }
924 if (p) {
925 p->rn_dupedkey = tt->rn_dupedkey;
926 if (tt->rn_dupedkey) { /* parent */
927 tt->rn_dupedkey->rn_parent = p;
928 }
929 /* parent */
930 } else {
931 log(LOG_ERR, "rn_delete: couldn't find us\n");
932 }
933 }
934 t = tt + 1;
935 if (t->rn_flags & RNF_ACTIVE) {
936 #ifndef RN_DEBUG
937 *++x = *t;
938 p = t->rn_parent;
939 #else
940 b = t->rn_info;
941 *++x = *t;
942 t->rn_info = b;
943 p = t->rn_parent;
944 #endif
945 if (p->rn_left == t) {
946 p->rn_left = x;
947 } else {
948 p->rn_right = x;
949 }
950 x->rn_left->rn_parent = x;
951 x->rn_right->rn_parent = x;
952 }
953 goto out;
954 }
955 if (t->rn_left == tt) {
956 x = t->rn_right;
957 } else {
958 x = t->rn_left;
959 }
960 p = t->rn_parent;
961 if (p->rn_right == t) {
962 p->rn_right = x;
963 } else {
964 p->rn_left = x;
965 }
966 x->rn_parent = p;
967 /*
968 * Demote routes attached to us.
969 */
970 if (t->rn_mklist) {
971 if (x->rn_bit >= 0) {
972 for (mp = &x->rn_mklist; (m = *mp);) {
973 mp = &m->rm_mklist;
974 }
975 *mp = t->rn_mklist;
976 } else {
977 /* If there are any key,mask pairs in a sibling
978 * duped-key chain, some subset will appear sorted
979 * in the same order attached to our mklist */
980 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey) {
981 if (m == x->rn_mklist) {
982 struct radix_mask *mm = m->rm_mklist;
983 x->rn_mklist = NULL;
984 if (--(m->rm_refs) < 0) {
985 MKFree(m);
986 }
987 m = mm;
988 }
989 }
990 if (m) {
991 log(LOG_ERR, "rn_delete: Orphaned Mask "
992 "0x%llx at 0x%llx\n",
993 (uint64_t)VM_KERNEL_ADDRPERM(m),
994 (uint64_t)VM_KERNEL_ADDRPERM(x));
995 }
996 }
997 }
998 /*
999 * We may be holding an active internal node in the tree.
1000 */
1001 x = tt + 1;
1002 if (t != x) {
1003 #ifndef RN_DEBUG
1004 *t = *x;
1005 #else
1006 b = t->rn_info;
1007 *t = *x;
1008 t->rn_info = b;
1009 #endif
1010 t->rn_left->rn_parent = t;
1011 t->rn_right->rn_parent = t;
1012 p = x->rn_parent;
1013 if (p->rn_left == x) {
1014 p->rn_left = t;
1015 } else {
1016 p->rn_right = t;
1017 }
1018 }
1019 out:
1020 tt->rn_flags &= ~RNF_ACTIVE;
1021 tt[1].rn_flags &= ~RNF_ACTIVE;
1022 return tt;
1023 }
1024
1025 /*
1026 * This is the same as rn_walktree() except for the parameters and the
1027 * exit.
1028 */
1029 static int
1030 rn_walktree_from(struct radix_node_head *h, void *a, void *m, walktree_f_t *f,
1031 void *w)
1032 {
1033 int error;
1034 struct radix_node *base, *next;
1035 u_char *xa = (u_char *)a;
1036 u_char *xm = (u_char *)m;
1037 struct radix_node *rn, *last;
1038 int stopping;
1039 int lastb;
1040 int rnh_cnt;
1041
1042 /*
1043 * This gets complicated because we may delete the node while
1044 * applying the function f to it; we cannot simply use the next
1045 * leaf as the successor node in advance, because that leaf may
1046 * be removed as well during deletion when it is a clone of the
1047 * current node. When that happens, we would end up referring
1048 * to an already-freed radix node as the successor node. To get
1049 * around this issue, if we detect that the radix tree has changed
1050 * in dimension (smaller than before), we simply restart the walk
1051 * from the top of tree.
1052 */
1053 restart:
1054 last = NULL;
1055 stopping = 0;
1056 rnh_cnt = h->rnh_cnt;
1057
1058 /*
1059 * rn_search_m is sort-of-open-coded here.
1060 */
1061 for (rn = h->rnh_treetop; rn->rn_bit >= 0;) {
1062 last = rn;
1063 if (!(rn->rn_bmask & xm[rn->rn_offset])) {
1064 break;
1065 }
1066
1067 if (rn->rn_bmask & xa[rn->rn_offset]) {
1068 rn = rn->rn_right;
1069 } else {
1070 rn = rn->rn_left;
1071 }
1072 }
1073
1074 /*
1075 * Two cases: either we stepped off the end of our mask,
1076 * in which case last == rn, or we reached a leaf, in which
1077 * case we want to start from the last node we looked at.
1078 * Either way, last is the node we want to start from.
1079 */
1080 rn = last;
1081 lastb = rn->rn_bit;
1082
1083 /* First time through node, go left */
1084 while (rn->rn_bit >= 0) {
1085 rn = rn->rn_left;
1086 }
1087
1088 while (!stopping) {
1089 base = rn;
1090 /* If at right child go back up, otherwise, go right */
1091 while (rn->rn_parent->rn_right == rn
1092 && !(rn->rn_flags & RNF_ROOT)) {
1093 rn = rn->rn_parent;
1094
1095 /* if went up beyond last, stop */
1096 if (rn->rn_bit <= lastb) {
1097 stopping = 1;
1098 /*
1099 * XXX we should jump to the 'Process leaves'
1100 * part, because the values of 'rn' and 'next'
1101 * we compute will not be used. Not a big deal
1102 * because this loop will terminate, but it is
1103 * inefficient and hard to understand!
1104 */
1105 }
1106 }
1107
1108 /*
1109 * The following code (bug fix) inherited from FreeBSD is
1110 * currently disabled, because our implementation uses the
1111 * RTF_PRCLONING scheme that has been abandoned in current
1112 * FreeBSD release. The scheme involves setting such a flag
1113 * for the default route entry, and therefore all off-link
1114 * destinations would become clones of that entry. Enabling
1115 * the following code would be problematic at this point,
1116 * because the removal of default route would cause only
1117 * the left-half of the tree to be traversed, leaving the
1118 * right-half untouched. If there are clones of the entry
1119 * that reside in that right-half, they would not be deleted
1120 * and would linger around until they expire or explicitly
1121 * deleted, which is a very bad thing.
1122 *
1123 * This code should be uncommented only after we get rid
1124 * of the RTF_PRCLONING scheme.
1125 */
1126 #if 0
1127 /*
1128 * At the top of the tree, no need to traverse the right
1129 * half, prevent the traversal of the entire tree in the
1130 * case of default route.
1131 */
1132 if (rn->rn_parent->rn_flags & RNF_ROOT) {
1133 stopping = 1;
1134 }
1135 #endif
1136
1137 /* Find the next *leaf* to start from */
1138 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) {
1139 rn = rn->rn_left;
1140 }
1141 next = rn;
1142 /* Process leaves */
1143 while ((rn = base) != 0) {
1144 base = rn->rn_dupedkey;
1145 if (!(rn->rn_flags & RNF_ROOT)
1146 && (error = (*f)(rn, w))) {
1147 return error;
1148 }
1149 }
1150 /* If one or more nodes got deleted, restart from top */
1151 if (h->rnh_cnt < rnh_cnt) {
1152 goto restart;
1153 }
1154 rn = next;
1155 if (rn->rn_flags & RNF_ROOT) {
1156 stopping = 1;
1157 }
1158 }
1159 return 0;
1160 }
1161
1162 static int
1163 rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w)
1164 {
1165 int error;
1166 struct radix_node *base, *next;
1167 struct radix_node *rn;
1168 int rnh_cnt;
1169
1170 /*
1171 * This gets complicated because we may delete the node while
1172 * applying the function f to it; we cannot simply use the next
1173 * leaf as the successor node in advance, because that leaf may
1174 * be removed as well during deletion when it is a clone of the
1175 * current node. When that happens, we would end up referring
1176 * to an already-freed radix node as the successor node. To get
1177 * around this issue, if we detect that the radix tree has changed
1178 * in dimension (smaller than before), we simply restart the walk
1179 * from the top of tree.
1180 */
1181 restart:
1182 rn = h->rnh_treetop;
1183 rnh_cnt = h->rnh_cnt;
1184
1185 /* First time through node, go left */
1186 while (rn->rn_bit >= 0) {
1187 rn = rn->rn_left;
1188 }
1189 for (;;) {
1190 base = rn;
1191 /* If at right child go back up, otherwise, go right */
1192 while (rn->rn_parent->rn_right == rn &&
1193 (rn->rn_flags & RNF_ROOT) == 0) {
1194 rn = rn->rn_parent;
1195 }
1196 /* Find the next *leaf* to start from */
1197 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) {
1198 rn = rn->rn_left;
1199 }
1200 next = rn;
1201 /* Process leaves */
1202 while ((rn = base) != NULL) {
1203 base = rn->rn_dupedkey;
1204 if (!(rn->rn_flags & RNF_ROOT)
1205 && (error = (*f)(rn, w))) {
1206 return error;
1207 }
1208 }
1209 /* If one or more nodes got deleted, restart from top */
1210 if (h->rnh_cnt < rnh_cnt) {
1211 goto restart;
1212 }
1213 rn = next;
1214 if (rn->rn_flags & RNF_ROOT) {
1215 return 0;
1216 }
1217 }
1218 /* NOTREACHED */
1219 }
1220
1221 int
1222 rn_inithead(void **head, int off)
1223 {
1224 struct radix_node_head *rnh;
1225 struct radix_node *t, *tt, *ttt;
1226 if (*head) {
1227 return 1;
1228 }
1229 R_Malloc(rnh, struct radix_node_head *, sizeof(*rnh));
1230 if (rnh == 0) {
1231 return 0;
1232 }
1233 Bzero(rnh, sizeof(*rnh));
1234 *head = rnh;
1235 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1236 ttt = rnh->rnh_nodes + 2;
1237 t->rn_right = ttt;
1238 t->rn_parent = t;
1239 tt = t->rn_left;
1240 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1241 tt->rn_bit = -1 - off;
1242 *ttt = *tt;
1243 ttt->rn_key = rn_ones;
1244 rnh->rnh_addaddr = rn_addroute;
1245 rnh->rnh_deladdr = rn_delete;
1246 rnh->rnh_matchaddr = rn_match;
1247 rnh->rnh_matchaddr_args = rn_match_args;
1248 rnh->rnh_lookup = rn_lookup;
1249 rnh->rnh_lookup_args = rn_lookup_args;
1250 rnh->rnh_walktree = rn_walktree;
1251 rnh->rnh_walktree_from = rn_walktree_from;
1252 rnh->rnh_treetop = t;
1253 rnh->rnh_cnt = 3;
1254 return 1;
1255 }
1256
1257 void
1258 rn_init(void)
1259 {
1260 char *cp, *cplim;
1261 struct domain *dom;
1262
1263 /* lock already held when rn_init is called */
1264 TAILQ_FOREACH(dom, &domains, dom_entry) {
1265 if (dom->dom_maxrtkey > max_keylen) {
1266 max_keylen = dom->dom_maxrtkey;
1267 }
1268 }
1269 if (max_keylen == 0) {
1270 log(LOG_ERR,
1271 "rn_init: radix functions require max_keylen be set\n");
1272 return;
1273 }
1274 R_Malloc(rn_zeros, char *, 3 * max_keylen);
1275 if (rn_zeros == NULL) {
1276 panic("rn_init");
1277 }
1278 Bzero(rn_zeros, 3 * max_keylen);
1279 rn_ones = cp = rn_zeros + max_keylen;
1280 addmask_key = cplim = rn_ones + max_keylen;
1281 while (cp < cplim) {
1282 *cp++ = -1;
1283 }
1284 if (rn_inithead((void **)&mask_rnhead, 0) == 0) {
1285 panic("rn_init 2");
1286 }
1287 }