2 * Copyright (c) 2006-2019 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 #include <kern/sched_prim.h>
31 #include <kern/kalloc.h>
32 #include <kern/assert.h>
33 #include <kern/debug.h>
34 #include <kern/locks.h>
35 #include <kern/task.h>
36 #include <kern/thread.h>
37 #include <kern/host.h>
38 #include <kern/policy_internal.h>
39 #include <kern/thread_group.h>
41 #include <corpses/task_corpse.h>
42 #include <libkern/libkern.h>
43 #include <mach/coalition.h>
44 #include <mach/mach_time.h>
45 #include <mach/task.h>
46 #include <mach/host_priv.h>
47 #include <mach/mach_host.h>
49 #include <pexpert/pexpert.h>
50 #include <sys/coalition.h>
51 #include <sys/kern_event.h>
53 #include <sys/proc_info.h>
54 #include <sys/reason.h>
55 #include <sys/signal.h>
56 #include <sys/signalvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/sysproto.h>
63 #include <vm/vm_pageout.h>
64 #include <vm/vm_protos.h>
65 #include <mach/machine/sdt.h>
66 #include <libkern/section_keywords.h>
67 #include <stdatomic.h>
69 #include <IOKit/IOBSD.h>
72 #include <vm/vm_map.h>
73 #endif /* CONFIG_FREEZE */
75 #include <sys/kern_memorystatus.h>
76 #include <sys/kern_memorystatus_freeze.h>
77 #include <sys/kern_memorystatus_notify.h>
79 /* For logging clarity */
80 static const char *memorystatus_kill_cause_name
[] = {
81 "", /* kMemorystatusInvalid */
82 "jettisoned", /* kMemorystatusKilled */
83 "highwater", /* kMemorystatusKilledHiwat */
84 "vnode-limit", /* kMemorystatusKilledVnodes */
85 "vm-pageshortage", /* kMemorystatusKilledVMPageShortage */
86 "proc-thrashing", /* kMemorystatusKilledProcThrashing */
87 "fc-thrashing", /* kMemorystatusKilledFCThrashing */
88 "per-process-limit", /* kMemorystatusKilledPerProcessLimit */
89 "disk-space-shortage", /* kMemorystatusKilledDiskSpaceShortage */
90 "idle-exit", /* kMemorystatusKilledIdleExit */
91 "zone-map-exhaustion", /* kMemorystatusKilledZoneMapExhaustion */
92 "vm-compressor-thrashing", /* kMemorystatusKilledVMCompressorThrashing */
93 "vm-compressor-space-shortage", /* kMemorystatusKilledVMCompressorSpaceShortage */
97 memorystatus_priority_band_name(int32_t priority
)
100 case JETSAM_PRIORITY_FOREGROUND
:
102 case JETSAM_PRIORITY_AUDIO_AND_ACCESSORY
:
103 return "AUDIO_AND_ACCESSORY";
104 case JETSAM_PRIORITY_CONDUCTOR
:
106 case JETSAM_PRIORITY_DRIVER_APPLE
:
107 return "DRIVER_APPLE";
108 case JETSAM_PRIORITY_HOME
:
110 case JETSAM_PRIORITY_EXECUTIVE
:
112 case JETSAM_PRIORITY_IMPORTANT
:
114 case JETSAM_PRIORITY_CRITICAL
:
121 /* Does cause indicate vm or fc thrashing? */
123 is_reason_thrashing(unsigned cause
)
126 case kMemorystatusKilledFCThrashing
:
127 case kMemorystatusKilledVMCompressorThrashing
:
128 case kMemorystatusKilledVMCompressorSpaceShortage
:
135 /* Is the zone map almost full? */
137 is_reason_zone_map_exhaustion(unsigned cause
)
139 if (cause
== kMemorystatusKilledZoneMapExhaustion
) {
146 * Returns the current zone map size and capacity to include in the jetsam snapshot.
147 * Defined in zalloc.c
149 extern void get_zone_map_size(uint64_t *current_size
, uint64_t *capacity
);
152 * Returns the name of the largest zone and its size to include in the jetsam snapshot.
153 * Defined in zalloc.c
155 extern void get_largest_zone_info(char *zone_name
, size_t zone_name_len
, uint64_t *zone_size
);
158 * Active / Inactive limit support
159 * proc list must be locked
161 * The SET_*** macros are used to initialize a limit
162 * for the first time.
164 * The CACHE_*** macros are use to cache the limit that will
165 * soon be in effect down in the ledgers.
168 #define SET_ACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \
170 (p)->p_memstat_memlimit_active = (limit); \
172 (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \
174 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \
178 #define SET_INACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \
180 (p)->p_memstat_memlimit_inactive = (limit); \
182 (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \
184 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \
188 #define CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal) \
190 (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_active; \
191 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL) { \
192 (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \
195 (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \
200 #define CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal) \
202 (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_inactive; \
203 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) { \
204 (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \
207 (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \
213 /* General tunables */
215 unsigned long delta_percentage
= 5;
216 unsigned long critical_threshold_percentage
= 5;
217 // On embedded devices with more than 3GB of memory we lower the critical percentage.
218 uint64_t config_jetsam_large_memory_cutoff
= 3UL * (1UL << 30);
219 unsigned long critical_threshold_percentage_larger_devices
= 4;
220 unsigned long delta_percentage_larger_devices
= 4;
221 unsigned long idle_offset_percentage
= 5;
222 unsigned long pressure_threshold_percentage
= 15;
223 unsigned long policy_more_free_offset_percentage
= 5;
224 unsigned long sysproc_aging_aggr_threshold_percentage
= 7;
227 * default jetsam snapshot support
229 memorystatus_jetsam_snapshot_t
*memorystatus_jetsam_snapshot
;
230 memorystatus_jetsam_snapshot_t
*memorystatus_jetsam_snapshot_copy
;
233 memorystatus_jetsam_snapshot_t
*memorystatus_jetsam_snapshot_freezer
;
235 * The size of the freezer snapshot is given by memorystatus_jetsam_snapshot_max / JETSAM_SNAPSHOT_FREEZER_MAX_FACTOR
236 * The freezer snapshot can be much smaller than the default snapshot
237 * because it only includes apps that have been killed and dasd consumes it every 30 minutes.
238 * Since the snapshots are always wired we don't want to overallocate too much.
240 #define JETSAM_SNAPSHOT_FREEZER_MAX_FACTOR 20
241 unsigned int memorystatus_jetsam_snapshot_freezer_max
;
242 unsigned int memorystatus_jetsam_snapshot_freezer_size
;
243 TUNABLE(bool, memorystatus_jetsam_use_freezer_snapshot
, "kern.jetsam_user_freezer_snapshot", true);
244 #endif /* CONFIG_FREEZE */
246 unsigned int memorystatus_jetsam_snapshot_count
= 0;
247 unsigned int memorystatus_jetsam_snapshot_copy_count
= 0;
248 unsigned int memorystatus_jetsam_snapshot_max
= 0;
249 unsigned int memorystatus_jetsam_snapshot_size
= 0;
250 uint64_t memorystatus_jetsam_snapshot_last_timestamp
= 0;
251 uint64_t memorystatus_jetsam_snapshot_timeout
= 0;
253 #if DEVELOPMENT || DEBUG
255 * On development and debug kernels, we allow one pid to take ownership
256 * of the memorystatus snapshot (via memorystatus_control).
257 * If there's an owner, then only they may consume the snapshot.
258 * This is used when testing the snapshot interface to avoid racing with other
259 * processes on the system that consume snapshots.
261 static pid_t memorystatus_snapshot_owner
= 0;
262 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_snapshot_owner
, CTLTYPE_INT
| CTLFLAG_RD
| CTLFLAG_LOCKED
, &memorystatus_snapshot_owner
, 0, "");
263 #endif /* DEVELOPMENT || DEBUG */
264 static void memorystatus_init_jetsam_snapshot_header(memorystatus_jetsam_snapshot_t
*snapshot
);
266 /* General memorystatus stuff */
268 uint64_t memorystatus_sysprocs_idle_delay_time
= 0;
269 uint64_t memorystatus_apps_idle_delay_time
= 0;
270 /* Some devices give entitled apps a higher memory limit */
272 int32_t memorystatus_entitled_max_task_footprint_mb
= 0;
274 #if DEVELOPMENT || DEBUG
275 SYSCTL_INT(_kern
, OID_AUTO
, entitled_max_task_pmem
, CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_entitled_max_task_footprint_mb
, 0, "");
276 #endif /* DEVELOPMENT || DEBUG */
277 #endif /* __arm64__ */
279 static lck_grp_attr_t
*memorystatus_jetsam_fg_band_lock_grp_attr
;
280 static lck_grp_t
*memorystatus_jetsam_fg_band_lock_grp
;
281 lck_mtx_t memorystatus_jetsam_fg_band_lock
;
283 /* Idle guard handling */
285 static int32_t memorystatus_scheduled_idle_demotions_sysprocs
= 0;
286 static int32_t memorystatus_scheduled_idle_demotions_apps
= 0;
288 static void memorystatus_perform_idle_demotion(__unused
void *spare1
, __unused
void *spare2
);
289 static void memorystatus_schedule_idle_demotion_locked(proc_t p
, boolean_t set_state
);
290 static void memorystatus_reschedule_idle_demotion_locked(void);
291 int memorystatus_update_priority_for_appnap(proc_t p
, boolean_t is_appnap
);
292 vm_pressure_level_t
convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t
);
293 boolean_t
is_knote_registered_modify_task_pressure_bits(struct knote
*, int, task_t
, vm_pressure_level_t
, vm_pressure_level_t
);
294 void memorystatus_klist_reset_all_for_level(vm_pressure_level_t pressure_level_to_clear
);
295 void memorystatus_send_low_swap_note(void);
296 int memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index
);
297 boolean_t
memorystatus_kill_elevated_process(uint32_t cause
, os_reason_t jetsam_reason
, unsigned int band
, int aggr_count
,
298 uint32_t *errors
, uint64_t *memory_reclaimed
);
299 uint64_t memorystatus_available_memory_internal(proc_t p
);
301 unsigned int memorystatus_level
= 0;
302 static int memorystatus_list_count
= 0;
303 memstat_bucket_t memstat_bucket
[MEMSTAT_BUCKET_COUNT
];
304 static thread_call_t memorystatus_idle_demotion_call
;
305 uint64_t memstat_idle_demotion_deadline
= 0;
306 int system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
307 int applications_aging_band
= JETSAM_PRIORITY_IDLE
;
309 #define isProcessInAgingBands(p) ((isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) || (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)))
311 #define kJetsamAgingPolicyNone (0)
312 #define kJetsamAgingPolicyLegacy (1)
313 #define kJetsamAgingPolicySysProcsReclaimedFirst (2)
314 #define kJetsamAgingPolicyAppsReclaimedFirst (3)
315 #define kJetsamAgingPolicyMax kJetsamAgingPolicyAppsReclaimedFirst
317 unsigned int jetsam_aging_policy
= kJetsamAgingPolicySysProcsReclaimedFirst
;
319 extern int corpse_for_fatal_memkill
;
320 extern uint64_t vm_purgeable_purge_task_owned(task_t task
);
321 boolean_t
memorystatus_allowed_vm_map_fork(task_t
);
322 #if DEVELOPMENT || DEBUG
323 void memorystatus_abort_vm_map_fork(task_t
);
327 * Idle delay timeout factors for daemons based on relaunch behavior. Only used in
328 * kJetsamAgingPolicySysProcsReclaimedFirst aging policy.
330 #define kJetsamSysProcsIdleDelayTimeLowRatio (5)
331 #define kJetsamSysProcsIdleDelayTimeMedRatio (2)
332 #define kJetsamSysProcsIdleDelayTimeHighRatio (1)
333 static_assert(kJetsamSysProcsIdleDelayTimeLowRatio
<= DEFERRED_IDLE_EXIT_TIME_SECS
, "sysproc idle delay time for low relaunch daemons would be 0");
336 * For the kJetsamAgingPolicySysProcsReclaimedFirst aging policy, treat apps as well
337 * behaved daemons for aging purposes.
339 #define kJetsamAppsIdleDelayTimeRatio (kJetsamSysProcsIdleDelayTimeLowRatio)
342 memorystatus_sysprocs_idle_time(proc_t p
)
345 * The kJetsamAgingPolicySysProcsReclaimedFirst aging policy uses the relaunch behavior to
346 * determine the exact idle deferred time provided to the daemons. For all other aging
347 * policies, simply return the default aging idle time.
349 if (jetsam_aging_policy
!= kJetsamAgingPolicySysProcsReclaimedFirst
) {
350 return memorystatus_sysprocs_idle_delay_time
;
353 uint64_t idle_delay_time
= 0;
355 * For system processes, base the idle delay time on the
356 * jetsam relaunch behavior specified by launchd. The idea
357 * is to provide extra protection to the daemons which would
358 * relaunch immediately after jetsam.
360 switch (p
->p_memstat_relaunch_flags
) {
361 case P_MEMSTAT_RELAUNCH_UNKNOWN
:
362 case P_MEMSTAT_RELAUNCH_LOW
:
363 idle_delay_time
= memorystatus_sysprocs_idle_delay_time
/ kJetsamSysProcsIdleDelayTimeLowRatio
;
365 case P_MEMSTAT_RELAUNCH_MED
:
366 idle_delay_time
= memorystatus_sysprocs_idle_delay_time
/ kJetsamSysProcsIdleDelayTimeMedRatio
;
368 case P_MEMSTAT_RELAUNCH_HIGH
:
369 idle_delay_time
= memorystatus_sysprocs_idle_delay_time
/ kJetsamSysProcsIdleDelayTimeHighRatio
;
372 panic("Unknown relaunch flags on process!");
375 return idle_delay_time
;
379 memorystatus_apps_idle_time(__unused proc_t p
)
382 * For kJetsamAgingPolicySysProcsReclaimedFirst, the Apps are considered as low
383 * relaunch candidates. So only provide limited protection to them. In the other
384 * aging policies, return the default aging idle time.
386 if (jetsam_aging_policy
!= kJetsamAgingPolicySysProcsReclaimedFirst
) {
387 return memorystatus_apps_idle_delay_time
;
390 return memorystatus_apps_idle_delay_time
/ kJetsamAppsIdleDelayTimeRatio
;
396 /* Keeping around for future use if we need a utility that can do this OR an app that needs a dynamic adjustment. */
399 sysctl_set_jetsam_aging_policy SYSCTL_HANDLER_ARGS
401 #pragma unused(oidp, arg1, arg2)
403 int error
= 0, val
= 0;
404 memstat_bucket_t
*old_bucket
= 0;
405 int old_system_procs_aging_band
= 0, new_system_procs_aging_band
= 0;
406 int old_applications_aging_band
= 0, new_applications_aging_band
= 0;
407 proc_t p
= NULL
, next_proc
= NULL
;
410 error
= sysctl_io_number(req
, jetsam_aging_policy
, sizeof(int), &val
, NULL
);
411 if (error
|| !req
->newptr
) {
415 if ((val
< 0) || (val
> kJetsamAgingPolicyMax
)) {
416 printf("jetsam: ordering policy sysctl has invalid value - %d\n", val
);
421 * We need to synchronize with any potential adding/removal from aging bands
422 * that might be in progress currently. We use the proc_list_lock() just for
423 * consistency with all the routines dealing with 'aging' processes. We need
424 * a lighterweight lock.
428 old_system_procs_aging_band
= system_procs_aging_band
;
429 old_applications_aging_band
= applications_aging_band
;
432 case kJetsamAgingPolicyNone
:
433 new_system_procs_aging_band
= JETSAM_PRIORITY_IDLE
;
434 new_applications_aging_band
= JETSAM_PRIORITY_IDLE
;
437 case kJetsamAgingPolicyLegacy
:
439 * Legacy behavior where some daemons get a 10s protection once and only before the first clean->dirty->clean transition before going into IDLE band.
441 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
442 new_applications_aging_band
= JETSAM_PRIORITY_IDLE
;
445 case kJetsamAgingPolicySysProcsReclaimedFirst
:
446 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
447 new_applications_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
450 case kJetsamAgingPolicyAppsReclaimedFirst
:
451 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
452 new_applications_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
459 if (old_system_procs_aging_band
&& (old_system_procs_aging_band
!= new_system_procs_aging_band
)) {
460 old_bucket
= &memstat_bucket
[old_system_procs_aging_band
];
461 p
= TAILQ_FIRST(&old_bucket
->list
);
464 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
467 if (new_system_procs_aging_band
== JETSAM_PRIORITY_IDLE
) {
468 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
471 memorystatus_update_priority_locked(p
, new_system_procs_aging_band
, false, true);
479 if (old_applications_aging_band
&& (old_applications_aging_band
!= new_applications_aging_band
)) {
480 old_bucket
= &memstat_bucket
[old_applications_aging_band
];
481 p
= TAILQ_FIRST(&old_bucket
->list
);
484 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
487 if (new_applications_aging_band
== JETSAM_PRIORITY_IDLE
) {
488 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
491 memorystatus_update_priority_locked(p
, new_applications_aging_band
, false, true);
499 jetsam_aging_policy
= val
;
500 system_procs_aging_band
= new_system_procs_aging_band
;
501 applications_aging_band
= new_applications_aging_band
;
508 SYSCTL_PROC(_kern
, OID_AUTO
, set_jetsam_aging_policy
, CTLTYPE_INT
| CTLFLAG_RW
,
509 0, 0, sysctl_set_jetsam_aging_policy
, "I", "Jetsam Aging Policy");
513 sysctl_jetsam_set_sysprocs_idle_delay_time SYSCTL_HANDLER_ARGS
515 #pragma unused(oidp, arg1, arg2)
517 int error
= 0, val
= 0, old_time_in_secs
= 0;
518 uint64_t old_time_in_ns
= 0;
520 absolutetime_to_nanoseconds(memorystatus_sysprocs_idle_delay_time
, &old_time_in_ns
);
521 old_time_in_secs
= (int) (old_time_in_ns
/ NSEC_PER_SEC
);
523 error
= sysctl_io_number(req
, old_time_in_secs
, sizeof(int), &val
, NULL
);
524 if (error
|| !req
->newptr
) {
528 if ((val
< 0) || (val
> INT32_MAX
)) {
529 printf("jetsam: new idle delay interval has invalid value.\n");
533 nanoseconds_to_absolutetime((uint64_t)val
* NSEC_PER_SEC
, &memorystatus_sysprocs_idle_delay_time
);
538 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_sysprocs_idle_delay_time
, CTLTYPE_INT
| CTLFLAG_RW
,
539 0, 0, sysctl_jetsam_set_sysprocs_idle_delay_time
, "I", "Aging window for system processes");
543 sysctl_jetsam_set_apps_idle_delay_time SYSCTL_HANDLER_ARGS
545 #pragma unused(oidp, arg1, arg2)
547 int error
= 0, val
= 0, old_time_in_secs
= 0;
548 uint64_t old_time_in_ns
= 0;
550 absolutetime_to_nanoseconds(memorystatus_apps_idle_delay_time
, &old_time_in_ns
);
551 old_time_in_secs
= (int) (old_time_in_ns
/ NSEC_PER_SEC
);
553 error
= sysctl_io_number(req
, old_time_in_secs
, sizeof(int), &val
, NULL
);
554 if (error
|| !req
->newptr
) {
558 if ((val
< 0) || (val
> INT32_MAX
)) {
559 printf("jetsam: new idle delay interval has invalid value.\n");
563 nanoseconds_to_absolutetime((uint64_t)val
* NSEC_PER_SEC
, &memorystatus_apps_idle_delay_time
);
568 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_apps_idle_delay_time
, CTLTYPE_INT
| CTLFLAG_RW
,
569 0, 0, sysctl_jetsam_set_apps_idle_delay_time
, "I", "Aging window for applications");
571 SYSCTL_INT(_kern
, OID_AUTO
, jetsam_aging_policy
, CTLTYPE_INT
| CTLFLAG_RD
, &jetsam_aging_policy
, 0, "");
573 static unsigned int memorystatus_dirty_count
= 0;
575 SYSCTL_INT(_kern
, OID_AUTO
, max_task_pmem
, CTLFLAG_RD
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
, &max_task_footprint_mb
, 0, "");
577 static int memorystatus_highwater_enabled
= 1; /* Update the cached memlimit data. */
578 static boolean_t
proc_jetsam_state_is_active_locked(proc_t
);
581 int legacy_footprint_bonus_mb
= 50; /* This value was chosen after looking at the top 30 apps
582 * that needed the additional room in their footprint when
583 * the 'correct' accounting methods were applied to them.
586 #if DEVELOPMENT || DEBUG
587 SYSCTL_INT(_kern
, OID_AUTO
, legacy_footprint_bonus_mb
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &legacy_footprint_bonus_mb
, 0, "");
588 #endif /* DEVELOPMENT || DEBUG */
590 * Raise the inactive and active memory limits to new values.
591 * Will only raise the limits and will do nothing if either of the current
593 * Caller must hold the proc_list_lock
596 memorystatus_raise_memlimit(proc_t p
, int new_memlimit_active
, int new_memlimit_inactive
)
598 int memlimit_mb_active
= 0, memlimit_mb_inactive
= 0;
599 boolean_t memlimit_active_is_fatal
= FALSE
, memlimit_inactive_is_fatal
= FALSE
, use_active_limit
= FALSE
;
601 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
603 if (p
->p_memstat_memlimit_active
> 0) {
604 memlimit_mb_active
= p
->p_memstat_memlimit_active
;
605 } else if (p
->p_memstat_memlimit_active
== -1) {
606 memlimit_mb_active
= max_task_footprint_mb
;
609 * Nothing to do for '0' which is
610 * a special value only used internally
611 * to test 'no limits'.
616 if (p
->p_memstat_memlimit_inactive
> 0) {
617 memlimit_mb_inactive
= p
->p_memstat_memlimit_inactive
;
618 } else if (p
->p_memstat_memlimit_inactive
== -1) {
619 memlimit_mb_inactive
= max_task_footprint_mb
;
622 * Nothing to do for '0' which is
623 * a special value only used internally
624 * to test 'no limits'.
629 memlimit_mb_active
= MAX(new_memlimit_active
, memlimit_mb_active
);
630 memlimit_mb_inactive
= MAX(new_memlimit_inactive
, memlimit_mb_inactive
);
632 memlimit_active_is_fatal
= (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
);
633 memlimit_inactive_is_fatal
= (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
);
635 SET_ACTIVE_LIMITS_LOCKED(p
, memlimit_mb_active
, memlimit_active_is_fatal
);
636 SET_INACTIVE_LIMITS_LOCKED(p
, memlimit_mb_inactive
, memlimit_inactive_is_fatal
);
638 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
639 use_active_limit
= TRUE
;
640 CACHE_ACTIVE_LIMITS_LOCKED(p
, memlimit_active_is_fatal
);
642 CACHE_INACTIVE_LIMITS_LOCKED(p
, memlimit_inactive_is_fatal
);
645 if (memorystatus_highwater_enabled
) {
646 task_set_phys_footprint_limit_internal(p
->task
,
647 (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1,
648 NULL
, /*return old value */
649 use_active_limit
, /*active limit?*/
650 (use_active_limit
? memlimit_active_is_fatal
: memlimit_inactive_is_fatal
));
655 memorystatus_act_on_legacy_footprint_entitlement(proc_t p
, boolean_t footprint_increase
)
657 int memlimit_mb_active
= 0, memlimit_mb_inactive
= 0;
665 if (p
->p_memstat_memlimit_active
> 0) {
666 memlimit_mb_active
= p
->p_memstat_memlimit_active
;
667 } else if (p
->p_memstat_memlimit_active
== -1) {
668 memlimit_mb_active
= max_task_footprint_mb
;
671 * Nothing to do for '0' which is
672 * a special value only used internally
673 * to test 'no limits'.
679 if (p
->p_memstat_memlimit_inactive
> 0) {
680 memlimit_mb_inactive
= p
->p_memstat_memlimit_inactive
;
681 } else if (p
->p_memstat_memlimit_inactive
== -1) {
682 memlimit_mb_inactive
= max_task_footprint_mb
;
685 * Nothing to do for '0' which is
686 * a special value only used internally
687 * to test 'no limits'.
693 if (footprint_increase
) {
694 memlimit_mb_active
+= legacy_footprint_bonus_mb
;
695 memlimit_mb_inactive
+= legacy_footprint_bonus_mb
;
697 memlimit_mb_active
-= legacy_footprint_bonus_mb
;
698 if (memlimit_mb_active
== max_task_footprint_mb
) {
699 memlimit_mb_active
= -1; /* reverting back to default system limit */
702 memlimit_mb_inactive
-= legacy_footprint_bonus_mb
;
703 if (memlimit_mb_inactive
== max_task_footprint_mb
) {
704 memlimit_mb_inactive
= -1; /* reverting back to default system limit */
707 memorystatus_raise_memlimit(p
, memlimit_mb_active
, memlimit_mb_inactive
);
713 memorystatus_act_on_ios13extended_footprint_entitlement(proc_t p
)
715 if (max_mem
< 1500ULL * 1024 * 1024 ||
716 max_mem
> 2ULL * 1024 * 1024 * 1024) {
717 /* ios13extended_footprint is only for 2GB devices */
720 /* limit to "almost 2GB" */
722 memorystatus_raise_memlimit(p
, 1800, 1800);
727 memorystatus_act_on_entitled_task_limit(proc_t p
)
729 if (memorystatus_entitled_max_task_footprint_mb
== 0) {
730 // Entitlement is not supported on this device.
734 memorystatus_raise_memlimit(p
, memorystatus_entitled_max_task_footprint_mb
, memorystatus_entitled_max_task_footprint_mb
);
737 #endif /* __arm64__ */
739 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_level
, CTLFLAG_RD
| CTLFLAG_LOCKED
, &memorystatus_level
, 0, "");
742 memorystatus_get_level(__unused
struct proc
*p
, struct memorystatus_get_level_args
*args
, __unused
int *ret
)
744 user_addr_t level
= 0;
748 if (copyout(&memorystatus_level
, level
, sizeof(memorystatus_level
)) != 0) {
755 static void memorystatus_thread(void *param __unused
, wait_result_t wr __unused
);
759 static boolean_t
memorystatus_kill_specific_process(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
);
760 static boolean_t
memorystatus_kill_process_sync(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
);
763 static int memorystatus_cmd_set_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
765 static int memorystatus_set_memlimit_properties(pid_t pid
, memorystatus_memlimit_properties_t
*entry
);
767 static int memorystatus_cmd_get_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
769 static int memorystatus_cmd_get_memlimit_excess_np(pid_t pid
, uint32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
771 static void memorystatus_get_memlimit_properties_internal(proc_t p
, memorystatus_memlimit_properties_t
*p_entry
);
772 static int memorystatus_set_memlimit_properties_internal(proc_t p
, memorystatus_memlimit_properties_t
*p_entry
);
774 int proc_get_memstat_priority(proc_t
, boolean_t
);
776 static boolean_t memorystatus_idle_snapshot
= 0;
778 unsigned int memorystatus_delta
= 0;
780 /* Jetsam Loop Detection */
781 static boolean_t memorystatus_jld_enabled
= FALSE
; /* Enable jetsam loop detection */
782 static uint32_t memorystatus_jld_eval_period_msecs
= 0; /* Init pass sets this based on device memory size */
783 static int memorystatus_jld_eval_aggressive_count
= 3; /* Raise the priority max after 'n' aggressive loops */
784 static int memorystatus_jld_eval_aggressive_priority_band_max
= 15; /* Kill aggressively up through this band */
787 * A FG app can request that the aggressive jetsam mechanism display some leniency in the FG band. This 'lenient' mode is described as:
788 * --- if aggressive jetsam kills an app in the FG band and gets back >=AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD memory, it will stop the aggressive march further into and up the jetsam bands.
791 * - Such a request is respected/acknowledged only once while that 'requesting' app is in the FG band i.e. if aggressive jetsam was
792 * needed and the 'lenient' mode was deployed then that's it for this special mode while the app is in the FG band.
794 * - If the app is still in the FG band and aggressive jetsam is needed again, there will be no stop-and-check the next time around.
796 * - Also, the transition of the 'requesting' app away from the FG band will void this special behavior.
799 #define AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD 25
800 boolean_t memorystatus_aggressive_jetsam_lenient_allowed
= FALSE
;
801 boolean_t memorystatus_aggressive_jetsam_lenient
= FALSE
;
803 #if DEVELOPMENT || DEBUG
805 * Jetsam Loop Detection tunables.
808 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_period_msecs
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_jld_eval_period_msecs
, 0, "");
809 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_aggressive_count
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_jld_eval_aggressive_count
, 0, "");
810 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_aggressive_priority_band_max
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_jld_eval_aggressive_priority_band_max
, 0, "");
811 #endif /* DEVELOPMENT || DEBUG */
813 static uint32_t kill_under_pressure_cause
= 0;
816 * snapshot support for memstats collected at boot.
818 static memorystatus_jetsam_snapshot_t memorystatus_at_boot_snapshot
;
820 static void memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t
*od_snapshot
, uint32_t ods_list_count
);
821 static boolean_t
memorystatus_init_jetsam_snapshot_entry_locked(proc_t p
, memorystatus_jetsam_snapshot_entry_t
*entry
, uint64_t gencount
);
822 static void memorystatus_update_jetsam_snapshot_entry_locked(proc_t p
, uint32_t kill_cause
, uint64_t killtime
);
824 static void memorystatus_clear_errors(void);
825 static void memorystatus_get_task_phys_footprint_page_counts(task_t task
,
826 uint64_t *internal_pages
, uint64_t *internal_compressed_pages
,
827 uint64_t *purgeable_nonvolatile_pages
, uint64_t *purgeable_nonvolatile_compressed_pages
,
828 uint64_t *alternate_accounting_pages
, uint64_t *alternate_accounting_compressed_pages
,
829 uint64_t *iokit_mapped_pages
, uint64_t *page_table_pages
, uint64_t *frozen_to_swap_pages
);
831 static void memorystatus_get_task_memory_region_count(task_t task
, uint64_t *count
);
833 static uint32_t memorystatus_build_state(proc_t p
);
834 //static boolean_t memorystatus_issue_pressure_kevent(boolean_t pressured);
836 static boolean_t
memorystatus_kill_top_process(boolean_t any
, boolean_t sort_flag
, uint32_t cause
, os_reason_t jetsam_reason
, int32_t *priority
,
837 uint32_t *errors
, uint64_t *memory_reclaimed
);
838 static boolean_t
memorystatus_kill_processes_aggressive(uint32_t cause
, int aggr_count
, int32_t priority_max
, uint32_t *errors
, uint64_t *memory_reclaimed
);
839 static boolean_t
memorystatus_kill_hiwat_proc(uint32_t *errors
, boolean_t
*purged
, uint64_t *memory_reclaimed
);
841 static boolean_t
memorystatus_kill_process_async(pid_t victim_pid
, uint32_t cause
);
843 /* Priority Band Sorting Routines */
844 static int memorystatus_sort_bucket(unsigned int bucket_index
, int sort_order
);
845 static int memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index
, int coal_sort_order
);
846 static void memorystatus_sort_by_largest_process_locked(unsigned int bucket_index
);
847 static int memorystatus_move_list_locked(unsigned int bucket_index
, pid_t
*pid_list
, int list_sz
);
850 typedef int (*cmpfunc_t
)(const void *a
, const void *b
);
851 extern void qsort(void *a
, size_t n
, size_t es
, cmpfunc_t cmp
);
852 static int memstat_asc_cmp(const void *a
, const void *b
);
856 extern unsigned int vm_page_free_count
;
857 extern unsigned int vm_page_active_count
;
858 extern unsigned int vm_page_inactive_count
;
859 extern unsigned int vm_page_throttled_count
;
860 extern unsigned int vm_page_purgeable_count
;
861 extern unsigned int vm_page_wire_count
;
862 extern unsigned int vm_page_speculative_count
;
865 #define MEMORYSTATUS_LOG_AVAILABLE_PAGES memorystatus_available_pages
866 #else /* CONFIG_JETSAM */
867 #define MEMORYSTATUS_LOG_AVAILABLE_PAGES (vm_page_active_count + vm_page_inactive_count + vm_page_free_count + vm_page_speculative_count)
868 #endif /* CONFIG_JETSAM */
869 #if CONFIG_SECLUDED_MEMORY
870 extern unsigned int vm_page_secluded_count
;
871 extern unsigned int vm_page_secluded_count_over_target
;
872 #endif /* CONFIG_SECLUDED_MEMORY */
874 /* Aggressive jetsam pages threshold for sysproc aging policy */
875 unsigned int memorystatus_sysproc_aging_aggr_pages
= 0;
878 unsigned int memorystatus_available_pages
= (unsigned int)-1;
879 unsigned int memorystatus_available_pages_pressure
= 0;
880 unsigned int memorystatus_available_pages_critical
= 0;
881 unsigned int memorystatus_available_pages_critical_base
= 0;
882 unsigned int memorystatus_available_pages_critical_idle_offset
= 0;
884 #if DEVELOPMENT || DEBUG
885 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages
, CTLFLAG_RD
| CTLFLAG_LOCKED
, &memorystatus_available_pages
, 0, "");
887 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages
, CTLFLAG_RD
| CTLFLAG_MASKED
| CTLFLAG_LOCKED
, &memorystatus_available_pages
, 0, "");
888 #endif /* DEVELOPMENT || DEBUG */
890 static unsigned int memorystatus_jetsam_policy
= kPolicyDefault
;
891 unsigned int memorystatus_policy_more_free_offset_pages
= 0;
892 static void memorystatus_update_levels_locked(boolean_t critical_only
);
893 static unsigned int memorystatus_thread_wasted_wakeup
= 0;
895 /* Callback into vm_compressor.c to signal that thrashing has been mitigated. */
896 extern void vm_thrashing_jetsam_done(void);
897 static int memorystatus_cmd_set_jetsam_memory_limit(pid_t pid
, int32_t high_water_mark
, __unused
int32_t *retval
, boolean_t is_fatal_limit
);
898 #if DEVELOPMENT || DEBUG
899 static inline uint32_t
900 roundToNearestMB(uint32_t in
)
902 return (in
+ ((1 << 20) - 1)) >> 20;
905 static int memorystatus_cmd_increase_jetsam_task_limit(pid_t pid
, uint32_t byte_increase
);
908 int32_t max_kill_priority
= JETSAM_PRIORITY_MAX
;
910 #else /* CONFIG_JETSAM */
912 uint64_t memorystatus_available_pages
= (uint64_t)-1;
913 uint64_t memorystatus_available_pages_pressure
= (uint64_t)-1;
914 uint64_t memorystatus_available_pages_critical
= (uint64_t)-1;
916 int32_t max_kill_priority
= JETSAM_PRIORITY_IDLE
;
917 #endif /* CONFIG_JETSAM */
919 #if DEVELOPMENT || DEBUG
921 lck_grp_attr_t
*disconnect_page_mappings_lck_grp_attr
;
922 lck_grp_t
*disconnect_page_mappings_lck_grp
;
923 static lck_mtx_t disconnect_page_mappings_mutex
;
925 extern bool kill_on_no_paging_space
;
926 #endif /* DEVELOPMENT || DEBUG */
931 extern struct knote
*vm_find_knote_from_pid(pid_t
, struct klist
*);
933 #if DEVELOPMENT || DEBUG
935 static unsigned int memorystatus_debug_dump_this_bucket
= 0;
938 memorystatus_debug_dump_bucket_locked(unsigned int bucket_index
)
942 int ledger_limit
= 0;
943 unsigned int b
= bucket_index
;
944 boolean_t traverse_all_buckets
= FALSE
;
946 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
947 traverse_all_buckets
= TRUE
;
950 traverse_all_buckets
= FALSE
;
955 * footprint reported in [pages / MB ]
956 * limits reported as:
957 * L-limit proc's Ledger limit
958 * C-limit proc's Cached limit, should match Ledger
959 * A-limit proc's Active limit
960 * IA-limit proc's Inactive limit
961 * F==Fatal, NF==NonFatal
964 printf("memorystatus_debug_dump ***START*(PAGE_SIZE_64=%llu)**\n", PAGE_SIZE_64
);
965 printf("bucket [pid] [pages / MB] [state] [EP / RP / AP] dirty deadline [L-limit / C-limit / A-limit / IA-limit] name\n");
966 p
= memorystatus_get_first_proc_locked(&b
, traverse_all_buckets
);
968 bytes
= get_task_phys_footprint(p
->task
);
969 task_get_phys_footprint_limit(p
->task
, &ledger_limit
);
970 printf("%2d [%5d] [%5lld /%3lldMB] 0x%-8x [%2d / %2d / %2d] 0x%-3x %10lld [%3d / %3d%s / %3d%s / %3d%s] %s\n",
972 (bytes
/ PAGE_SIZE_64
), /* task's footprint converted from bytes to pages */
973 (bytes
/ (1024ULL * 1024ULL)), /* task's footprint converted from bytes to MB */
974 p
->p_memstat_state
, p
->p_memstat_effectivepriority
, p
->p_memstat_requestedpriority
, p
->p_memstat_assertionpriority
,
975 p
->p_memstat_dirty
, p
->p_memstat_idledeadline
,
977 p
->p_memstat_memlimit
,
978 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"),
979 p
->p_memstat_memlimit_active
,
980 (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
? "F " : "NF"),
981 p
->p_memstat_memlimit_inactive
,
982 (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
? "F " : "NF"),
983 (*p
->p_name
? p
->p_name
: "unknown"));
984 p
= memorystatus_get_next_proc_locked(&b
, p
, traverse_all_buckets
);
986 printf("memorystatus_debug_dump ***END***\n");
990 sysctl_memorystatus_debug_dump_bucket SYSCTL_HANDLER_ARGS
992 #pragma unused(oidp, arg2)
993 int bucket_index
= 0;
995 error
= SYSCTL_OUT(req
, arg1
, sizeof(int));
996 if (error
|| !req
->newptr
) {
999 error
= SYSCTL_IN(req
, &bucket_index
, sizeof(int));
1000 if (error
|| !req
->newptr
) {
1003 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
1005 * All jetsam buckets will be dumped.
1009 * Only a single bucket will be dumped.
1014 memorystatus_debug_dump_bucket_locked(bucket_index
);
1016 memorystatus_debug_dump_this_bucket
= bucket_index
;
1021 * Debug aid to look at jetsam buckets and proc jetsam fields.
1022 * Use this sysctl to act on a particular jetsam bucket.
1023 * Writing the sysctl triggers the dump.
1024 * Usage: sysctl kern.memorystatus_debug_dump_this_bucket=<bucket_index>
1027 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_debug_dump_this_bucket
, CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_debug_dump_this_bucket
, 0, sysctl_memorystatus_debug_dump_bucket
, "I", "");
1030 /* Debug aid to aid determination of limit */
1033 sysctl_memorystatus_highwater_enable SYSCTL_HANDLER_ARGS
1035 #pragma unused(oidp, arg2)
1038 int error
, enable
= 0;
1039 boolean_t use_active
; /* use the active limit and active limit attributes */
1042 error
= SYSCTL_OUT(req
, arg1
, sizeof(int));
1043 if (error
|| !req
->newptr
) {
1047 error
= SYSCTL_IN(req
, &enable
, sizeof(int));
1048 if (error
|| !req
->newptr
) {
1052 if (!(enable
== 0 || enable
== 1)) {
1058 p
= memorystatus_get_first_proc_locked(&b
, TRUE
);
1060 use_active
= proc_jetsam_state_is_active_locked(p
);
1063 if (use_active
== TRUE
) {
1064 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
1066 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
1070 * Disabling limits does not touch the stored variants.
1071 * Set the cached limit fields to system_wide defaults.
1073 p
->p_memstat_memlimit
= -1;
1074 p
->p_memstat_state
|= P_MEMSTAT_FATAL_MEMLIMIT
;
1079 * Enforce the cached limit by writing to the ledger.
1081 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, use_active
, is_fatal
);
1083 p
= memorystatus_get_next_proc_locked(&b
, p
, TRUE
);
1086 memorystatus_highwater_enabled
= enable
;
1093 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_highwater_enabled
, CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_highwater_enabled
, 0, sysctl_memorystatus_highwater_enable
, "I", "");
1095 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_idle_snapshot
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_idle_snapshot
, 0, "");
1098 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical
, CTLFLAG_RD
| CTLFLAG_LOCKED
, &memorystatus_available_pages_critical
, 0, "");
1099 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical_base
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_available_pages_critical_base
, 0, "");
1100 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical_idle_offset
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_available_pages_critical_idle_offset
, 0, "");
1101 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_policy_more_free_offset_pages
, CTLFLAG_RW
, &memorystatus_policy_more_free_offset_pages
, 0, "");
1103 static unsigned int memorystatus_jetsam_panic_debug
= 0;
1105 #if VM_PRESSURE_EVENTS
1107 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_pressure
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &memorystatus_available_pages_pressure
, 0, "");
1109 #endif /* VM_PRESSURE_EVENTS */
1111 #endif /* CONFIG_JETSAM */
1113 #endif /* DEVELOPMENT || DEBUG */
1115 extern kern_return_t
kernel_thread_start_priority(thread_continue_t continuation
,
1118 thread_t
*new_thread
);
1120 #if DEVELOPMENT || DEBUG
1123 sysctl_memorystatus_disconnect_page_mappings SYSCTL_HANDLER_ARGS
1125 #pragma unused(arg1, arg2)
1126 int error
= 0, pid
= 0;
1129 error
= sysctl_handle_int(oidp
, &pid
, 0, req
);
1130 if (error
|| !req
->newptr
) {
1134 lck_mtx_lock(&disconnect_page_mappings_mutex
);
1137 vm_pageout_disconnect_all_pages();
1142 error
= task_disconnect_page_mappings(p
->task
);
1153 lck_mtx_unlock(&disconnect_page_mappings_mutex
);
1158 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_disconnect_page_mappings
, CTLTYPE_INT
| CTLFLAG_WR
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
,
1159 0, 0, &sysctl_memorystatus_disconnect_page_mappings
, "I", "");
1161 #endif /* DEVELOPMENT || DEBUG */
1164 * Sorts the given bucket.
1167 * bucket_index - jetsam priority band to be sorted.
1168 * sort_order - JETSAM_SORT_xxx from kern_memorystatus.h
1169 * Currently sort_order is only meaningful when handling
1172 * proc_list_lock must be held by the caller.
1175 memorystatus_sort_bucket_locked(unsigned int bucket_index
, int sort_order
)
1177 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
1178 if (memstat_bucket
[bucket_index
].count
== 0) {
1182 switch (bucket_index
) {
1183 case JETSAM_PRIORITY_FOREGROUND
:
1184 if (memorystatus_sort_by_largest_coalition_locked(bucket_index
, sort_order
) == 0) {
1186 * Fall back to per process sorting when zero coalitions are found.
1188 memorystatus_sort_by_largest_process_locked(bucket_index
);
1192 memorystatus_sort_by_largest_process_locked(bucket_index
);
1198 * Picks the sorting routine for a given jetsam priority band.
1201 * bucket_index - jetsam priority band to be sorted.
1202 * sort_order - JETSAM_SORT_xxx from kern_memorystatus.h
1203 * Currently sort_order is only meaningful when handling
1211 memorystatus_sort_bucket(unsigned int bucket_index
, int sort_order
)
1213 int coal_sort_order
;
1216 * Verify the jetsam priority
1218 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
1222 #if DEVELOPMENT || DEBUG
1223 if (sort_order
== JETSAM_SORT_DEFAULT
) {
1224 coal_sort_order
= COALITION_SORT_DEFAULT
;
1226 coal_sort_order
= sort_order
; /* only used for testing scenarios */
1229 /* Verify default */
1230 if (sort_order
== JETSAM_SORT_DEFAULT
) {
1231 coal_sort_order
= COALITION_SORT_DEFAULT
;
1238 memorystatus_sort_bucket_locked(bucket_index
, coal_sort_order
);
1245 * Sort processes by size for a single jetsam bucket.
1249 memorystatus_sort_by_largest_process_locked(unsigned int bucket_index
)
1251 proc_t p
= NULL
, insert_after_proc
= NULL
, max_proc
= NULL
;
1252 proc_t next_p
= NULL
, prev_max_proc
= NULL
;
1253 uint32_t pages
= 0, max_pages
= 0;
1254 memstat_bucket_t
*current_bucket
;
1256 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
1260 current_bucket
= &memstat_bucket
[bucket_index
];
1262 p
= TAILQ_FIRST(¤t_bucket
->list
);
1265 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
);
1270 while ((next_p
= TAILQ_NEXT(p
, p_memstat_list
)) != NULL
) {
1271 /* traversing list until we find next largest process */
1273 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
);
1274 if (pages
> max_pages
) {
1280 if (prev_max_proc
!= max_proc
) {
1281 /* found a larger process, place it in the list */
1282 TAILQ_REMOVE(¤t_bucket
->list
, max_proc
, p_memstat_list
);
1283 if (insert_after_proc
== NULL
) {
1284 TAILQ_INSERT_HEAD(¤t_bucket
->list
, max_proc
, p_memstat_list
);
1286 TAILQ_INSERT_AFTER(¤t_bucket
->list
, insert_after_proc
, max_proc
, p_memstat_list
);
1288 prev_max_proc
= max_proc
;
1291 insert_after_proc
= max_proc
;
1293 p
= TAILQ_NEXT(max_proc
, p_memstat_list
);
1298 memorystatus_get_first_proc_locked(unsigned int *bucket_index
, boolean_t search
)
1300 memstat_bucket_t
*current_bucket
;
1303 if ((*bucket_index
) >= MEMSTAT_BUCKET_COUNT
) {
1307 current_bucket
= &memstat_bucket
[*bucket_index
];
1308 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1309 if (!next_p
&& search
) {
1310 while (!next_p
&& (++(*bucket_index
) < MEMSTAT_BUCKET_COUNT
)) {
1311 current_bucket
= &memstat_bucket
[*bucket_index
];
1312 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1320 memorystatus_get_next_proc_locked(unsigned int *bucket_index
, proc_t p
, boolean_t search
)
1322 memstat_bucket_t
*current_bucket
;
1325 if (!p
|| ((*bucket_index
) >= MEMSTAT_BUCKET_COUNT
)) {
1329 next_p
= TAILQ_NEXT(p
, p_memstat_list
);
1330 while (!next_p
&& search
&& (++(*bucket_index
) < MEMSTAT_BUCKET_COUNT
)) {
1331 current_bucket
= &memstat_bucket
[*bucket_index
];
1332 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1339 * Structure to hold state for a jetsam thread.
1340 * Typically there should be a single jetsam thread
1341 * unless parallel jetsam is enabled.
1343 struct jetsam_thread_state
{
1344 uint8_t inited
; /* boolean - if the thread is initialized */
1345 uint8_t limit_to_low_bands
; /* boolean */
1346 int memorystatus_wakeup
; /* wake channel */
1347 int index
; /* jetsam thread index */
1348 thread_t thread
; /* jetsam thread pointer */
1351 /* Maximum number of jetsam threads allowed */
1352 #define JETSAM_THREADS_LIMIT 3
1354 /* Number of active jetsam threads */
1355 _Atomic
int active_jetsam_threads
= 1;
1357 /* Number of maximum jetsam threads configured */
1358 int max_jetsam_threads
= JETSAM_THREADS_LIMIT
;
1361 * Global switch for enabling fast jetsam. Fast jetsam is
1362 * hooked up via the system_override() system call. It has the
1363 * following effects:
1364 * - Raise the jetsam threshold ("clear-the-deck")
1365 * - Enabled parallel jetsam on eligible devices
1368 int fast_jetsam_enabled
= 1;
1370 int fast_jetsam_enabled
= 0;
1371 #endif /* __AMP__ */
1373 #if CONFIG_DIRTYSTATUS_TRACKING
1374 int dirtystatus_tracking_enabled
= 0;
1375 SYSCTL_INT(_kern
, OID_AUTO
, dirtystatus_tracking_enabled
, CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &dirtystatus_tracking_enabled
, 0, "");
1378 /* Routine to find the jetsam state structure for the current jetsam thread */
1379 static inline struct jetsam_thread_state
*
1380 jetsam_current_thread(void)
1382 for (int thr_id
= 0; thr_id
< max_jetsam_threads
; thr_id
++) {
1383 if (jetsam_threads
[thr_id
].thread
== current_thread()) {
1384 return &(jetsam_threads
[thr_id
]);
1391 __private_extern__
void
1392 memorystatus_init(void)
1394 kern_return_t result
;
1398 memorystatus_freeze_jetsam_band
= JETSAM_PRIORITY_UI_SUPPORT
;
1399 memorystatus_frozen_processes_max
= FREEZE_PROCESSES_MAX
;
1400 memorystatus_frozen_shared_mb_max
= ((MAX_FROZEN_SHARED_MB_PERCENT
* max_task_footprint_mb
) / 100); /* 10% of the system wide task limit */
1401 memorystatus_freeze_shared_mb_per_process_max
= (memorystatus_frozen_shared_mb_max
/ 4);
1402 memorystatus_freeze_pages_min
= FREEZE_PAGES_MIN
;
1403 memorystatus_freeze_pages_max
= FREEZE_PAGES_MAX
;
1404 memorystatus_max_frozen_demotions_daily
= MAX_FROZEN_PROCESS_DEMOTIONS
;
1405 memorystatus_thaw_count_demotion_threshold
= MIN_THAW_DEMOTION_THRESHOLD
;
1408 #if DEVELOPMENT || DEBUG
1409 disconnect_page_mappings_lck_grp_attr
= lck_grp_attr_alloc_init();
1410 disconnect_page_mappings_lck_grp
= lck_grp_alloc_init("disconnect_page_mappings", disconnect_page_mappings_lck_grp_attr
);
1412 lck_mtx_init(&disconnect_page_mappings_mutex
, disconnect_page_mappings_lck_grp
, NULL
);
1414 if (kill_on_no_paging_space
) {
1415 max_kill_priority
= JETSAM_PRIORITY_MAX
;
1419 memorystatus_jetsam_fg_band_lock_grp_attr
= lck_grp_attr_alloc_init();
1420 memorystatus_jetsam_fg_band_lock_grp
=
1421 lck_grp_alloc_init("memorystatus_jetsam_fg_band", memorystatus_jetsam_fg_band_lock_grp_attr
);
1422 lck_mtx_init(&memorystatus_jetsam_fg_band_lock
, memorystatus_jetsam_fg_band_lock_grp
, NULL
);
1425 for (i
= 0; i
< MEMSTAT_BUCKET_COUNT
; i
++) {
1426 TAILQ_INIT(&memstat_bucket
[i
].list
);
1427 memstat_bucket
[i
].count
= 0;
1428 memstat_bucket
[i
].relaunch_high_count
= 0;
1430 memorystatus_idle_demotion_call
= thread_call_allocate((thread_call_func_t
)memorystatus_perform_idle_demotion
, NULL
);
1432 nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS
* NSEC_PER_SEC
, &memorystatus_sysprocs_idle_delay_time
);
1433 nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS
* NSEC_PER_SEC
, &memorystatus_apps_idle_delay_time
);
1436 /* Apply overrides */
1437 if (!PE_parse_boot_argn("kern.jetsam_delta", &delta_percentage
, sizeof(delta_percentage
))) {
1438 PE_get_default("kern.jetsam_delta", &delta_percentage
, sizeof(delta_percentage
));
1440 if (delta_percentage
== 0) {
1441 delta_percentage
= 5;
1443 if (max_mem
> config_jetsam_large_memory_cutoff
) {
1444 critical_threshold_percentage
= critical_threshold_percentage_larger_devices
;
1445 delta_percentage
= delta_percentage_larger_devices
;
1447 assert(delta_percentage
< 100);
1448 if (!PE_parse_boot_argn("kern.jetsam_critical_threshold", &critical_threshold_percentage
, sizeof(critical_threshold_percentage
))) {
1449 PE_get_default("kern.jetsam_critical_threshold", &critical_threshold_percentage
, sizeof(critical_threshold_percentage
));
1451 assert(critical_threshold_percentage
< 100);
1452 PE_get_default("kern.jetsam_idle_offset", &idle_offset_percentage
, sizeof(idle_offset_percentage
));
1453 assert(idle_offset_percentage
< 100);
1454 PE_get_default("kern.jetsam_pressure_threshold", &pressure_threshold_percentage
, sizeof(pressure_threshold_percentage
));
1455 assert(pressure_threshold_percentage
< 100);
1456 PE_get_default("kern.jetsam_freeze_threshold", &freeze_threshold_percentage
, sizeof(freeze_threshold_percentage
));
1457 assert(freeze_threshold_percentage
< 100);
1460 if (!PE_parse_boot_argn("jetsam_aging_policy", &jetsam_aging_policy
,
1461 sizeof(jetsam_aging_policy
))) {
1462 if (!PE_get_default("kern.jetsam_aging_policy", &jetsam_aging_policy
,
1463 sizeof(jetsam_aging_policy
))) {
1464 jetsam_aging_policy
= kJetsamAgingPolicySysProcsReclaimedFirst
;
1468 if (jetsam_aging_policy
> kJetsamAgingPolicyMax
) {
1469 jetsam_aging_policy
= kJetsamAgingPolicySysProcsReclaimedFirst
;
1472 switch (jetsam_aging_policy
) {
1473 case kJetsamAgingPolicyNone
:
1474 system_procs_aging_band
= JETSAM_PRIORITY_IDLE
;
1475 applications_aging_band
= JETSAM_PRIORITY_IDLE
;
1478 case kJetsamAgingPolicyLegacy
:
1480 * Legacy behavior where some daemons get a 10s protection once
1481 * AND only before the first clean->dirty->clean transition before
1482 * going into IDLE band.
1484 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1485 applications_aging_band
= JETSAM_PRIORITY_IDLE
;
1488 case kJetsamAgingPolicySysProcsReclaimedFirst
:
1489 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1490 applications_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
1493 case kJetsamAgingPolicyAppsReclaimedFirst
:
1494 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
1495 applications_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1503 * The aging bands cannot overlap with the JETSAM_PRIORITY_ELEVATED_INACTIVE
1504 * band and must be below it in priority. This is so that we don't have to make
1505 * our 'aging' code worry about a mix of processes, some of which need to age
1506 * and some others that need to stay elevated in the jetsam bands.
1508 assert(JETSAM_PRIORITY_ELEVATED_INACTIVE
> system_procs_aging_band
);
1509 assert(JETSAM_PRIORITY_ELEVATED_INACTIVE
> applications_aging_band
);
1511 /* Take snapshots for idle-exit kills by default? First check the boot-arg... */
1512 if (!PE_parse_boot_argn("jetsam_idle_snapshot", &memorystatus_idle_snapshot
, sizeof(memorystatus_idle_snapshot
))) {
1513 /* ...no boot-arg, so check the device tree */
1514 PE_get_default("kern.jetsam_idle_snapshot", &memorystatus_idle_snapshot
, sizeof(memorystatus_idle_snapshot
));
1517 memorystatus_delta
= (unsigned int) (delta_percentage
* atop_64(max_mem
) / 100);
1518 memorystatus_available_pages_critical_idle_offset
= (unsigned int) (idle_offset_percentage
* atop_64(max_mem
) / 100);
1519 memorystatus_available_pages_critical_base
= (unsigned int) ((critical_threshold_percentage
/ delta_percentage
) * memorystatus_delta
);
1520 memorystatus_policy_more_free_offset_pages
= (unsigned int) ((policy_more_free_offset_percentage
/ delta_percentage
) * memorystatus_delta
);
1521 memorystatus_sysproc_aging_aggr_pages
= (unsigned int) (sysproc_aging_aggr_threshold_percentage
* atop_64(max_mem
) / 100);
1523 /* Jetsam Loop Detection */
1524 if (max_mem
<= (512 * 1024 * 1024)) {
1525 /* 512 MB devices */
1526 memorystatus_jld_eval_period_msecs
= 8000; /* 8000 msecs == 8 second window */
1528 /* 1GB and larger devices */
1529 memorystatus_jld_eval_period_msecs
= 6000; /* 6000 msecs == 6 second window */
1532 memorystatus_jld_enabled
= TRUE
;
1534 /* No contention at this point */
1535 memorystatus_update_levels_locked(FALSE
);
1537 #endif /* CONFIG_JETSAM */
1540 if (!PE_parse_boot_argn("entitled_max_task_pmem", &memorystatus_entitled_max_task_footprint_mb
,
1541 sizeof(memorystatus_entitled_max_task_footprint_mb
))) {
1542 if (!PE_get_default("kern.entitled_max_task_pmem", &memorystatus_entitled_max_task_footprint_mb
,
1543 sizeof(memorystatus_entitled_max_task_footprint_mb
))) {
1544 // entitled_max_task_pmem is not supported on this system.
1545 memorystatus_entitled_max_task_footprint_mb
= 0;
1548 if (memorystatus_entitled_max_task_footprint_mb
> max_mem
/ (1UL << 20) || memorystatus_entitled_max_task_footprint_mb
< 0) {
1549 os_log_with_startup_serial(OS_LOG_DEFAULT
, "Invalid value (%d) for entitled_max_task_pmem. Setting to 0",
1550 memorystatus_entitled_max_task_footprint_mb
);
1552 #endif /* __arm64__ */
1554 memorystatus_jetsam_snapshot_max
= maxproc
;
1556 memorystatus_jetsam_snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
1557 (sizeof(memorystatus_jetsam_snapshot_entry_t
) * memorystatus_jetsam_snapshot_max
);
1559 memorystatus_jetsam_snapshot
= kalloc_flags(memorystatus_jetsam_snapshot_size
, Z_WAITOK
| Z_ZERO
);
1560 if (!memorystatus_jetsam_snapshot
) {
1561 panic("Could not allocate memorystatus_jetsam_snapshot");
1564 memorystatus_jetsam_snapshot_copy
= kalloc_flags(memorystatus_jetsam_snapshot_size
, Z_WAITOK
| Z_ZERO
);
1565 if (!memorystatus_jetsam_snapshot_copy
) {
1566 panic("Could not allocate memorystatus_jetsam_snapshot_copy");
1570 memorystatus_jetsam_snapshot_freezer_max
= memorystatus_jetsam_snapshot_max
/ JETSAM_SNAPSHOT_FREEZER_MAX_FACTOR
;
1571 memorystatus_jetsam_snapshot_freezer_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
1572 (sizeof(memorystatus_jetsam_snapshot_entry_t
) * memorystatus_jetsam_snapshot_freezer_max
);
1574 memorystatus_jetsam_snapshot_freezer
= kalloc_flags(memorystatus_jetsam_snapshot_freezer_size
, Z_WAITOK
| Z_ZERO
);
1575 if (!memorystatus_jetsam_snapshot_freezer
) {
1576 panic("Could not allocate memorystatus_jetsam_snapshot_freezer");
1578 #endif /* CONFIG_FREEZE */
1580 nanoseconds_to_absolutetime((uint64_t)JETSAM_SNAPSHOT_TIMEOUT_SECS
* NSEC_PER_SEC
, &memorystatus_jetsam_snapshot_timeout
);
1582 memset(&memorystatus_at_boot_snapshot
, 0, sizeof(memorystatus_jetsam_snapshot_t
));
1585 memorystatus_freeze_threshold
= (unsigned int) ((freeze_threshold_percentage
/ delta_percentage
) * memorystatus_delta
);
1588 /* Check the boot-arg to see if fast jetsam is allowed */
1589 if (!PE_parse_boot_argn("fast_jetsam_enabled", &fast_jetsam_enabled
, sizeof(fast_jetsam_enabled
))) {
1590 fast_jetsam_enabled
= 0;
1593 /* Check the boot-arg to configure the maximum number of jetsam threads */
1594 if (!PE_parse_boot_argn("max_jetsam_threads", &max_jetsam_threads
, sizeof(max_jetsam_threads
))) {
1595 max_jetsam_threads
= JETSAM_THREADS_LIMIT
;
1598 /* Restrict the maximum number of jetsam threads to JETSAM_THREADS_LIMIT */
1599 if (max_jetsam_threads
> JETSAM_THREADS_LIMIT
) {
1600 max_jetsam_threads
= JETSAM_THREADS_LIMIT
;
1603 /* For low CPU systems disable fast jetsam mechanism */
1604 if (vm_pageout_state
.vm_restricted_to_single_processor
== TRUE
) {
1605 max_jetsam_threads
= 1;
1606 fast_jetsam_enabled
= 0;
1609 /* Initialize the jetsam_threads state array */
1610 jetsam_threads
= zalloc_permanent(sizeof(struct jetsam_thread_state
) *
1611 max_jetsam_threads
, ZALIGN(struct jetsam_thread_state
));
1613 /* Initialize all the jetsam threads */
1614 for (i
= 0; i
< max_jetsam_threads
; i
++) {
1615 jetsam_threads
[i
].inited
= FALSE
;
1616 jetsam_threads
[i
].index
= i
;
1617 result
= kernel_thread_start_priority(memorystatus_thread
, NULL
, 95 /* MAXPRI_KERNEL */, &jetsam_threads
[i
].thread
);
1618 if (result
!= KERN_SUCCESS
) {
1619 panic("Could not create memorystatus_thread %d", i
);
1621 thread_deallocate(jetsam_threads
[i
].thread
);
1625 /* Centralised for the purposes of allowing panic-on-jetsam */
1627 vm_run_compactor(void);
1630 * The jetsam no frills kill call
1631 * Return: 0 on success
1632 * error code on failure (EINVAL...)
1635 jetsam_do_kill(proc_t p
, int jetsam_flags
, os_reason_t jetsam_reason
)
1638 error
= exit_with_reason(p
, W_EXITCODE(0, SIGKILL
), (int *)NULL
, FALSE
, FALSE
, jetsam_flags
, jetsam_reason
);
1643 * Wrapper for processes exiting with memorystatus details
1646 memorystatus_do_kill(proc_t p
, uint32_t cause
, os_reason_t jetsam_reason
, uint64_t *footprint_of_killed_proc
)
1649 __unused pid_t victim_pid
= p
->p_pid
;
1650 uint64_t footprint
= get_task_phys_footprint(p
->task
);
1651 #if (KDEBUG_LEVEL >= KDEBUG_LEVEL_STANDARD)
1652 int32_t memstat_effectivepriority
= p
->p_memstat_effectivepriority
;
1653 #endif /* (KDEBUG_LEVEL >= KDEBUG_LEVEL_STANDARD) */
1655 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DO_KILL
)) | DBG_FUNC_START
,
1656 victim_pid
, cause
, vm_page_free_count
, footprint
, 0);
1657 DTRACE_MEMORYSTATUS4(memorystatus_do_kill
, proc_t
, p
, os_reason_t
, jetsam_reason
, uint32_t, cause
, uint64_t, footprint
);
1658 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
1659 if (memorystatus_jetsam_panic_debug
& (1 << cause
)) {
1660 panic("memorystatus_do_kill(): jetsam debug panic (cause: %d)", cause
);
1663 #pragma unused(cause)
1666 if (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
) {
1667 printf("memorystatus: killing process %d [%s] in high band %s (%d) - memorystatus_available_pages: %llu\n", p
->p_pid
,
1668 (*p
->p_name
? p
->p_name
: "unknown"),
1669 memorystatus_priority_band_name(p
->p_memstat_effectivepriority
), p
->p_memstat_effectivepriority
,
1670 (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES
);
1674 * The jetsam_reason (os_reason_t) has enough information about the kill cause.
1675 * We don't really need jetsam_flags anymore, so it's okay that not all possible kill causes have been mapped.
1677 int jetsam_flags
= P_LTERM_JETSAM
;
1679 case kMemorystatusKilledHiwat
: jetsam_flags
|= P_JETSAM_HIWAT
; break;
1680 case kMemorystatusKilledVnodes
: jetsam_flags
|= P_JETSAM_VNODE
; break;
1681 case kMemorystatusKilledVMPageShortage
: jetsam_flags
|= P_JETSAM_VMPAGESHORTAGE
; break;
1682 case kMemorystatusKilledVMCompressorThrashing
:
1683 case kMemorystatusKilledVMCompressorSpaceShortage
: jetsam_flags
|= P_JETSAM_VMTHRASHING
; break;
1684 case kMemorystatusKilledFCThrashing
: jetsam_flags
|= P_JETSAM_FCTHRASHING
; break;
1685 case kMemorystatusKilledPerProcessLimit
: jetsam_flags
|= P_JETSAM_PID
; break;
1686 case kMemorystatusKilledIdleExit
: jetsam_flags
|= P_JETSAM_IDLEEXIT
; break;
1688 error
= jetsam_do_kill(p
, jetsam_flags
, jetsam_reason
);
1689 *footprint_of_killed_proc
= ((error
== 0) ? footprint
: 0);
1691 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DO_KILL
)) | DBG_FUNC_END
,
1692 victim_pid
, memstat_effectivepriority
, vm_page_free_count
, error
, 0);
1694 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_COMPACTOR_RUN
)) | DBG_FUNC_START
,
1695 victim_pid
, cause
, vm_page_free_count
, *footprint_of_killed_proc
, 0);
1699 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_COMPACTOR_RUN
)) | DBG_FUNC_END
,
1700 victim_pid
, cause
, vm_page_free_count
, 0, 0);
1710 memorystatus_check_levels_locked(void)
1714 memorystatus_update_levels_locked(TRUE
);
1715 #else /* CONFIG_JETSAM */
1717 * Nothing to do here currently since we update
1718 * memorystatus_available_pages in vm_pressure_response.
1720 #endif /* CONFIG_JETSAM */
1724 * Pin a process to a particular jetsam band when it is in the background i.e. not doing active work.
1725 * For an application: that means no longer in the FG band
1726 * For a daemon: that means no longer in its 'requested' jetsam priority band
1730 memorystatus_update_inactive_jetsam_priority_band(pid_t pid
, uint32_t op_flags
, int jetsam_prio
, boolean_t effective_now
)
1733 boolean_t enable
= FALSE
;
1736 if (op_flags
== MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE
) {
1738 } else if (op_flags
== MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE
) {
1746 if ((enable
&& ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) == P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
)) ||
1747 (!enable
&& ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) == 0))) {
1749 * No change in state.
1755 p
->p_memstat_state
|= P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
;
1756 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1758 if (effective_now
) {
1759 if (p
->p_memstat_effectivepriority
< jetsam_prio
) {
1760 if (memorystatus_highwater_enabled
) {
1762 * Process is about to transition from
1763 * inactive --> active
1764 * assign active state
1767 boolean_t use_active
= TRUE
;
1768 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
1769 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, use_active
, is_fatal
);
1771 memorystatus_update_priority_locked(p
, jetsam_prio
, FALSE
, FALSE
);
1774 if (isProcessInAgingBands(p
)) {
1775 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1779 p
->p_memstat_state
&= ~P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
;
1780 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1782 if (effective_now
) {
1783 if (p
->p_memstat_effectivepriority
== jetsam_prio
) {
1784 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1787 if (isProcessInAgingBands(p
)) {
1788 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1805 memorystatus_perform_idle_demotion(__unused
void *spare1
, __unused
void *spare2
)
1808 uint64_t current_time
= 0, idle_delay_time
= 0;
1809 int demote_prio_band
= 0;
1810 memstat_bucket_t
*demotion_bucket
;
1812 MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion()\n");
1814 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_IDLE_DEMOTE
) | DBG_FUNC_START
, 0, 0, 0, 0, 0);
1816 current_time
= mach_absolute_time();
1820 demote_prio_band
= JETSAM_PRIORITY_IDLE
+ 1;
1822 for (; demote_prio_band
< JETSAM_PRIORITY_MAX
; demote_prio_band
++) {
1823 if (demote_prio_band
!= system_procs_aging_band
&& demote_prio_band
!= applications_aging_band
) {
1827 demotion_bucket
= &memstat_bucket
[demote_prio_band
];
1828 p
= TAILQ_FIRST(&demotion_bucket
->list
);
1831 MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion() found %d\n", p
->p_pid
);
1833 assert(p
->p_memstat_idledeadline
);
1835 assert(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
);
1837 if (current_time
>= p
->p_memstat_idledeadline
) {
1838 if ((isSysProc(p
) &&
1839 ((p
->p_memstat_dirty
& (P_DIRTY_IDLE_EXIT_ENABLED
| P_DIRTY_IS_DIRTY
)) != P_DIRTY_IDLE_EXIT_ENABLED
)) || /* system proc marked dirty*/
1840 task_has_assertions((struct task
*)(p
->task
))) { /* has outstanding assertions which might indicate outstanding work too */
1841 idle_delay_time
= (isSysProc(p
)) ? memorystatus_sysprocs_idle_time(p
) : memorystatus_apps_idle_time(p
);
1843 p
->p_memstat_idledeadline
+= idle_delay_time
;
1844 p
= TAILQ_NEXT(p
, p_memstat_list
);
1846 proc_t next_proc
= NULL
;
1848 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
1849 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1851 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, false, true);
1857 // No further candidates
1863 memorystatus_reschedule_idle_demotion_locked();
1867 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_IDLE_DEMOTE
) | DBG_FUNC_END
, 0, 0, 0, 0, 0);
1871 memorystatus_schedule_idle_demotion_locked(proc_t p
, boolean_t set_state
)
1873 boolean_t present_in_sysprocs_aging_bucket
= FALSE
;
1874 boolean_t present_in_apps_aging_bucket
= FALSE
;
1875 uint64_t idle_delay_time
= 0;
1877 if (jetsam_aging_policy
== kJetsamAgingPolicyNone
) {
1881 if ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) ||
1882 (p
->p_memstat_state
& P_MEMSTAT_PRIORITY_ASSERTION
)) {
1884 * This process isn't going to be making the trip to the lower bands.
1889 if (isProcessInAgingBands(p
)) {
1890 if (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) {
1891 assert((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) != P_DIRTY_AGING_IN_PROGRESS
);
1894 if (isSysProc(p
) && system_procs_aging_band
) {
1895 present_in_sysprocs_aging_bucket
= TRUE
;
1896 } else if (isApp(p
) && applications_aging_band
) {
1897 present_in_apps_aging_bucket
= TRUE
;
1901 assert(!present_in_sysprocs_aging_bucket
);
1902 assert(!present_in_apps_aging_bucket
);
1904 MEMORYSTATUS_DEBUG(1, "memorystatus_schedule_idle_demotion_locked: scheduling demotion to idle band for pid %d (dirty:0x%x, set_state %d, demotions %d).\n",
1905 p
->p_pid
, p
->p_memstat_dirty
, set_state
, (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
));
1908 assert((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
);
1911 idle_delay_time
= (isSysProc(p
)) ? memorystatus_sysprocs_idle_time(p
) : memorystatus_apps_idle_time(p
);
1913 p
->p_memstat_dirty
|= P_DIRTY_AGING_IN_PROGRESS
;
1914 p
->p_memstat_idledeadline
= mach_absolute_time() + idle_delay_time
;
1917 assert(p
->p_memstat_idledeadline
);
1919 if (isSysProc(p
) && present_in_sysprocs_aging_bucket
== FALSE
) {
1920 memorystatus_scheduled_idle_demotions_sysprocs
++;
1921 } else if (isApp(p
) && present_in_apps_aging_bucket
== FALSE
) {
1922 memorystatus_scheduled_idle_demotions_apps
++;
1927 memorystatus_invalidate_idle_demotion_locked(proc_t p
, boolean_t clear_state
)
1929 boolean_t present_in_sysprocs_aging_bucket
= FALSE
;
1930 boolean_t present_in_apps_aging_bucket
= FALSE
;
1932 if (!system_procs_aging_band
&& !applications_aging_band
) {
1936 if ((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) == 0) {
1940 if (isProcessInAgingBands(p
)) {
1941 if (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) {
1942 assert((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) == P_DIRTY_AGING_IN_PROGRESS
);
1945 if (isSysProc(p
) && system_procs_aging_band
) {
1946 assert(p
->p_memstat_effectivepriority
== system_procs_aging_band
);
1947 assert(p
->p_memstat_idledeadline
);
1948 present_in_sysprocs_aging_bucket
= TRUE
;
1949 } else if (isApp(p
) && applications_aging_band
) {
1950 assert(p
->p_memstat_effectivepriority
== applications_aging_band
);
1951 assert(p
->p_memstat_idledeadline
);
1952 present_in_apps_aging_bucket
= TRUE
;
1956 MEMORYSTATUS_DEBUG(1, "memorystatus_invalidate_idle_demotion(): invalidating demotion to idle band for pid %d (clear_state %d, demotions %d).\n",
1957 p
->p_pid
, clear_state
, (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
));
1961 p
->p_memstat_idledeadline
= 0;
1962 p
->p_memstat_dirty
&= ~P_DIRTY_AGING_IN_PROGRESS
;
1965 if (isSysProc(p
) && present_in_sysprocs_aging_bucket
== TRUE
) {
1966 memorystatus_scheduled_idle_demotions_sysprocs
--;
1967 assert(memorystatus_scheduled_idle_demotions_sysprocs
>= 0);
1968 } else if (isApp(p
) && present_in_apps_aging_bucket
== TRUE
) {
1969 memorystatus_scheduled_idle_demotions_apps
--;
1970 assert(memorystatus_scheduled_idle_demotions_apps
>= 0);
1973 assert((memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
) >= 0);
1977 memorystatus_reschedule_idle_demotion_locked(void)
1979 if (0 == (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
)) {
1980 if (memstat_idle_demotion_deadline
) {
1981 /* Transitioned 1->0, so cancel next call */
1982 thread_call_cancel(memorystatus_idle_demotion_call
);
1983 memstat_idle_demotion_deadline
= 0;
1986 memstat_bucket_t
*demotion_bucket
;
1987 proc_t p
= NULL
, p1
= NULL
, p2
= NULL
;
1989 if (system_procs_aging_band
) {
1990 demotion_bucket
= &memstat_bucket
[system_procs_aging_band
];
1991 p1
= TAILQ_FIRST(&demotion_bucket
->list
);
1996 if (applications_aging_band
) {
1997 demotion_bucket
= &memstat_bucket
[applications_aging_band
];
1998 p2
= TAILQ_FIRST(&demotion_bucket
->list
);
2001 p
= (p1
->p_memstat_idledeadline
> p2
->p_memstat_idledeadline
) ? p2
: p1
;
2003 p
= (p1
== NULL
) ? p2
: p1
;
2010 assert(p
&& p
->p_memstat_idledeadline
);
2011 if (memstat_idle_demotion_deadline
!= p
->p_memstat_idledeadline
) {
2012 thread_call_enter_delayed(memorystatus_idle_demotion_call
, p
->p_memstat_idledeadline
);
2013 memstat_idle_demotion_deadline
= p
->p_memstat_idledeadline
;
2024 memorystatus_add(proc_t p
, boolean_t locked
)
2026 memstat_bucket_t
*bucket
;
2028 MEMORYSTATUS_DEBUG(1, "memorystatus_list_add(): adding pid %d with priority %d.\n", p
->p_pid
, p
->p_memstat_effectivepriority
);
2034 DTRACE_MEMORYSTATUS2(memorystatus_add
, proc_t
, p
, int32_t, p
->p_memstat_effectivepriority
);
2036 /* Processes marked internal do not have priority tracked */
2037 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
2042 * Opt out system processes from being frozen by default.
2043 * For coalition-based freezing, we only want to freeze sysprocs that have specifically opted in.
2046 p
->p_memstat_state
|= P_MEMSTAT_FREEZE_DISABLED
;
2049 memorystatus_freeze_init_proc(p
);
2052 bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
2054 if (isSysProc(p
) && system_procs_aging_band
&& (p
->p_memstat_effectivepriority
== system_procs_aging_band
)) {
2055 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_sysprocs
- 1);
2056 } else if (isApp(p
) && applications_aging_band
&& (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
2057 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_apps
- 1);
2058 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
2060 * Entering the idle band.
2061 * Record idle start time.
2063 p
->p_memstat_idle_start
= mach_absolute_time();
2066 TAILQ_INSERT_TAIL(&bucket
->list
, p
, p_memstat_list
);
2068 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
2069 bucket
->relaunch_high_count
++;
2072 memorystatus_list_count
++;
2074 memorystatus_check_levels_locked();
2086 * Moves a process from one jetsam bucket to another.
2087 * which changes the LRU position of the process.
2089 * Monitors transition between buckets and if necessary
2090 * will update cached memory limits accordingly.
2092 * skip_demotion_check:
2093 * - if the 'jetsam aging policy' is NOT 'legacy':
2094 * When this flag is TRUE, it means we are going
2095 * to age the ripe processes out of the aging bands and into the
2096 * IDLE band and apply their inactive memory limits.
2098 * - if the 'jetsam aging policy' is 'legacy':
2099 * When this flag is TRUE, it might mean the above aging mechanism
2101 * It might be that we have a process that has used up its 'idle deferral'
2102 * stay that is given to it once per lifetime. And in this case, the process
2103 * won't be going through any aging codepaths. But we still need to apply
2104 * the right inactive limits and so we explicitly set this to TRUE if the
2105 * new priority for the process is the IDLE band.
2108 memorystatus_update_priority_locked(proc_t p
, int priority
, boolean_t head_insert
, boolean_t skip_demotion_check
)
2110 memstat_bucket_t
*old_bucket
, *new_bucket
;
2112 assert(priority
< MEMSTAT_BUCKET_COUNT
);
2114 /* Ensure that exit isn't underway, leaving the proc retained but removed from its bucket */
2115 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2119 MEMORYSTATUS_DEBUG(1, "memorystatus_update_priority_locked(): setting %s(%d) to priority %d, inserting at %s\n",
2120 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
, priority
, head_insert
? "head" : "tail");
2122 DTRACE_MEMORYSTATUS3(memorystatus_update_priority
, proc_t
, p
, int32_t, p
->p_memstat_effectivepriority
, int, priority
);
2124 old_bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
2126 if (skip_demotion_check
== FALSE
) {
2129 * For system processes, the memorystatus_dirty_* routines take care of adding/removing
2130 * the processes from the aging bands and balancing the demotion counts.
2131 * We can, however, override that if the process has an 'elevated inactive jetsam band' attribute.
2134 if (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) {
2136 * 2 types of processes can use the non-standard elevated inactive band:
2137 * - Frozen processes that always land in memorystatus_freeze_jetsam_band
2139 * - processes that specifically opt-in to the elevated inactive support e.g. docked processes.
2142 if (p
->p_memstat_state
& P_MEMSTAT_FROZEN
) {
2143 if (priority
<= memorystatus_freeze_jetsam_band
) {
2144 priority
= memorystatus_freeze_jetsam_band
;
2147 #endif /* CONFIG_FREEZE */
2149 if (priority
<= JETSAM_PRIORITY_ELEVATED_INACTIVE
) {
2150 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
2153 assert(!(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
));
2155 } else if (isApp(p
)) {
2157 * Check to see if the application is being lowered in jetsam priority. If so, and:
2158 * - it has an 'elevated inactive jetsam band' attribute, then put it in the appropriate band.
2159 * - it is a normal application, then let it age in the aging band if that policy is in effect.
2162 if (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) {
2164 if (p
->p_memstat_state
& P_MEMSTAT_FROZEN
) {
2165 if (priority
<= memorystatus_freeze_jetsam_band
) {
2166 priority
= memorystatus_freeze_jetsam_band
;
2169 #endif /* CONFIG_FREEZE */
2171 if (priority
<= JETSAM_PRIORITY_ELEVATED_INACTIVE
) {
2172 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
2176 if (applications_aging_band
) {
2177 if (p
->p_memstat_effectivepriority
== applications_aging_band
) {
2178 assert(old_bucket
->count
== (memorystatus_scheduled_idle_demotions_apps
+ 1));
2181 if ((jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) && (priority
<= applications_aging_band
)) {
2182 assert(!(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
));
2183 priority
= applications_aging_band
;
2184 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2191 if ((system_procs_aging_band
&& (priority
== system_procs_aging_band
)) || (applications_aging_band
&& (priority
== applications_aging_band
))) {
2192 assert(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
);
2195 #if DEVELOPMENT || DEBUG
2196 if (priority
== JETSAM_PRIORITY_IDLE
&& /* if the process is on its way into the IDLE band */
2197 skip_demotion_check
== FALSE
&& /* and it isn't via the path that will set the INACTIVE memlimits */
2198 (p
->p_memstat_dirty
& P_DIRTY_TRACK
) && /* and it has 'DIRTY' tracking enabled */
2199 ((p
->p_memstat_memlimit
!= p
->p_memstat_memlimit_inactive
) || /* and we notice that the current limit isn't the right value (inactive) */
2200 ((p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
) ? (!(p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
)) : (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
)))) { /* OR type (fatal vs non-fatal) */
2201 printf("memorystatus_update_priority_locked: on %s with 0x%x, prio: %d and %d\n", p
->p_name
, p
->p_memstat_state
, priority
, p
->p_memstat_memlimit
); /* then we must catch this */
2203 #endif /* DEVELOPMENT || DEBUG */
2205 TAILQ_REMOVE(&old_bucket
->list
, p
, p_memstat_list
);
2206 old_bucket
->count
--;
2207 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
2208 old_bucket
->relaunch_high_count
--;
2211 new_bucket
= &memstat_bucket
[priority
];
2213 TAILQ_INSERT_HEAD(&new_bucket
->list
, p
, p_memstat_list
);
2215 TAILQ_INSERT_TAIL(&new_bucket
->list
, p
, p_memstat_list
);
2217 new_bucket
->count
++;
2218 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
2219 new_bucket
->relaunch_high_count
++;
2222 if (memorystatus_highwater_enabled
) {
2224 boolean_t use_active
;
2227 * If cached limit data is updated, then the limits
2228 * will be enforced by writing to the ledgers.
2230 boolean_t ledger_update_needed
= TRUE
;
2233 * Here, we must update the cached memory limit if the task
2234 * is transitioning between:
2235 * active <--> inactive
2238 * dirty <--> clean is ignored
2240 * We bypass non-idle processes that have opted into dirty tracking because
2241 * a move between buckets does not imply a transition between the
2242 * dirty <--> clean state.
2245 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
2246 if (skip_demotion_check
== TRUE
&& priority
== JETSAM_PRIORITY_IDLE
) {
2247 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2250 ledger_update_needed
= FALSE
;
2252 } else if ((priority
>= JETSAM_PRIORITY_FOREGROUND
) && (p
->p_memstat_effectivepriority
< JETSAM_PRIORITY_FOREGROUND
)) {
2254 * inactive --> active
2256 * assign active state
2258 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2260 } else if ((priority
< JETSAM_PRIORITY_FOREGROUND
) && (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
)) {
2262 * active --> inactive
2264 * assign inactive state
2266 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2270 * The transition between jetsam priority buckets apparently did
2271 * not affect active/inactive state.
2272 * This is not unusual... especially during startup when
2273 * processes are getting established in their respective bands.
2275 ledger_update_needed
= FALSE
;
2279 * Enforce the new limits by writing to the ledger
2281 if (ledger_update_needed
) {
2282 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, use_active
, is_fatal
);
2284 MEMORYSTATUS_DEBUG(3, "memorystatus_update_priority_locked: new limit on pid %d (%dMB %s) priority old --> new (%d --> %d) dirty?=0x%x %s\n",
2285 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
2286 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, priority
, p
->p_memstat_dirty
,
2287 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
2292 * Record idle start or idle delta.
2294 if (p
->p_memstat_effectivepriority
== priority
) {
2296 * This process is not transitioning between
2297 * jetsam priority buckets. Do nothing.
2299 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
2302 * Transitioning out of the idle priority bucket.
2303 * Record idle delta.
2305 assert(p
->p_memstat_idle_start
!= 0);
2306 now
= mach_absolute_time();
2307 if (now
> p
->p_memstat_idle_start
) {
2308 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
2312 * About to become active and so memory footprint could change.
2313 * So mark it eligible for freeze-considerations next time around.
2315 if (p
->p_memstat_state
& P_MEMSTAT_FREEZE_IGNORE
) {
2316 p
->p_memstat_state
&= ~P_MEMSTAT_FREEZE_IGNORE
;
2318 } else if (priority
== JETSAM_PRIORITY_IDLE
) {
2320 * Transitioning into the idle priority bucket.
2321 * Record idle start.
2323 p
->p_memstat_idle_start
= mach_absolute_time();
2326 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CHANGE_PRIORITY
), p
->p_pid
, priority
, p
->p_memstat_effectivepriority
, 0, 0);
2328 p
->p_memstat_effectivepriority
= priority
;
2330 #if CONFIG_SECLUDED_MEMORY
2331 if (secluded_for_apps
&&
2332 task_could_use_secluded_mem(p
->task
)) {
2333 task_set_can_use_secluded_mem(
2335 (priority
>= JETSAM_PRIORITY_FOREGROUND
));
2337 #endif /* CONFIG_SECLUDED_MEMORY */
2339 memorystatus_check_levels_locked();
2343 memorystatus_relaunch_flags_update(proc_t p
, int relaunch_flags
)
2345 p
->p_memstat_relaunch_flags
= relaunch_flags
;
2346 KDBG(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_RELAUNCH_FLAGS
), p
->p_pid
, relaunch_flags
, 0, 0, 0);
2352 * Description: Update the jetsam priority and memory limit attributes for a given process.
2355 * p init this process's jetsam information.
2356 * priority The jetsam priority band
2357 * user_data user specific data, unused by the kernel
2358 * is_assertion When true, a priority update is driven by an assertion.
2359 * effective guards against race if process's update already occurred
2360 * update_memlimit When true we know this is the init step via the posix_spawn path.
2362 * memlimit_active Value in megabytes; The monitored footprint level while the
2363 * process is active. Exceeding it may result in termination
2364 * based on it's associated fatal flag.
2366 * memlimit_active_is_fatal When a process is active and exceeds its memory footprint,
2367 * this describes whether or not it should be immediately fatal.
2369 * memlimit_inactive Value in megabytes; The monitored footprint level while the
2370 * process is inactive. Exceeding it may result in termination
2371 * based on it's associated fatal flag.
2373 * memlimit_inactive_is_fatal When a process is inactive and exceeds its memory footprint,
2374 * this describes whether or not it should be immediatly fatal.
2376 * Returns: 0 Success
2381 memorystatus_update(proc_t p
, int priority
, uint64_t user_data
, boolean_t is_assertion
, boolean_t effective
, boolean_t update_memlimit
,
2382 int32_t memlimit_active
, boolean_t memlimit_active_is_fatal
,
2383 int32_t memlimit_inactive
, boolean_t memlimit_inactive_is_fatal
)
2386 boolean_t head_insert
= false;
2388 MEMORYSTATUS_DEBUG(1, "memorystatus_update: changing (%s) pid %d: priority %d, user_data 0x%llx\n", (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
, priority
, user_data
);
2390 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_UPDATE
) | DBG_FUNC_START
, p
->p_pid
, priority
, user_data
, effective
, 0);
2392 if (priority
== -1) {
2393 /* Use as shorthand for default priority */
2394 priority
= JETSAM_PRIORITY_DEFAULT
;
2395 } else if ((priority
== system_procs_aging_band
) || (priority
== applications_aging_band
)) {
2396 /* Both the aging bands are reserved for internal use; if requested, adjust to JETSAM_PRIORITY_IDLE. */
2397 priority
= JETSAM_PRIORITY_IDLE
;
2398 } else if (priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
2399 /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle queue */
2400 priority
= JETSAM_PRIORITY_IDLE
;
2402 } else if ((priority
< 0) || (priority
>= MEMSTAT_BUCKET_COUNT
)) {
2410 assert(!(p
->p_memstat_state
& P_MEMSTAT_INTERNAL
));
2412 if (effective
&& (p
->p_memstat_state
& P_MEMSTAT_PRIORITYUPDATED
)) {
2415 MEMORYSTATUS_DEBUG(1, "memorystatus_update: effective change specified for pid %d, but change already occurred.\n", p
->p_pid
);
2419 if ((p
->p_memstat_state
& P_MEMSTAT_TERMINATED
) || ((p
->p_listflag
& P_LIST_EXITED
) != 0)) {
2421 * This could happen when a process calling posix_spawn() is exiting on the jetsam thread.
2428 p
->p_memstat_state
|= P_MEMSTAT_PRIORITYUPDATED
;
2429 p
->p_memstat_userdata
= user_data
;
2432 if (priority
== JETSAM_PRIORITY_IDLE
) {
2434 * Assertions relinquish control when the process is heading to IDLE.
2436 if (p
->p_memstat_state
& P_MEMSTAT_PRIORITY_ASSERTION
) {
2438 * Mark the process as no longer being managed by assertions.
2440 p
->p_memstat_state
&= ~P_MEMSTAT_PRIORITY_ASSERTION
;
2443 * Ignore an idle priority transition if the process is not
2444 * already managed by assertions. We won't treat this as
2445 * an error, but we will log the unexpected behavior and bail.
2447 os_log(OS_LOG_DEFAULT
, "memorystatus: Ignore assertion driven idle priority. Process not previously controlled %s:%d\n",
2448 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
);
2456 * Process is now being managed by assertions,
2458 p
->p_memstat_state
|= P_MEMSTAT_PRIORITY_ASSERTION
;
2461 /* Always update the assertion priority in this path */
2463 p
->p_memstat_assertionpriority
= priority
;
2465 int memstat_dirty_flags
= memorystatus_dirty_get(p
, TRUE
); /* proc_list_lock is held */
2467 if (memstat_dirty_flags
!= 0) {
2469 * Calculate maximum priority only when dirty tracking processes are involved.
2472 if (memstat_dirty_flags
& PROC_DIRTY_IS_DIRTY
) {
2473 maxpriority
= MAX(p
->p_memstat_assertionpriority
, p
->p_memstat_requestedpriority
);
2477 if (memstat_dirty_flags
& PROC_DIRTY_ALLOWS_IDLE_EXIT
) {
2479 * The aging policy must be evaluated and applied here because runnningboardd
2480 * has relinquished its hold on the jetsam priority by attempting to move a
2481 * clean process to the idle band.
2484 int newpriority
= JETSAM_PRIORITY_IDLE
;
2485 if ((p
->p_memstat_dirty
& (P_DIRTY_IDLE_EXIT_ENABLED
| P_DIRTY_IS_DIRTY
)) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2486 newpriority
= (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) ? system_procs_aging_band
: JETSAM_PRIORITY_IDLE
;
2489 maxpriority
= MAX(p
->p_memstat_assertionpriority
, newpriority
);
2491 if (newpriority
== system_procs_aging_band
) {
2492 memorystatus_schedule_idle_demotion_locked(p
, FALSE
);
2496 * Preserves requestedpriority when the process does not support pressured exit.
2498 maxpriority
= MAX(p
->p_memstat_assertionpriority
, p
->p_memstat_requestedpriority
);
2501 priority
= maxpriority
;
2504 p
->p_memstat_requestedpriority
= priority
;
2507 if (update_memlimit
) {
2509 boolean_t use_active
;
2512 * Posix_spawn'd processes come through this path to instantiate ledger limits.
2513 * Forked processes do not come through this path, so no ledger limits exist.
2514 * (That's why forked processes can consume unlimited memory.)
2517 MEMORYSTATUS_DEBUG(3, "memorystatus_update(enter): pid %d, priority %d, dirty=0x%x, Active(%dMB %s), Inactive(%dMB, %s)\n",
2518 p
->p_pid
, priority
, p
->p_memstat_dirty
,
2519 memlimit_active
, (memlimit_active_is_fatal
? "F " : "NF"),
2520 memlimit_inactive
, (memlimit_inactive_is_fatal
? "F " : "NF"));
2522 if (memlimit_active
<= 0) {
2524 * This process will have a system_wide task limit when active.
2525 * System_wide task limit is always fatal.
2526 * It's quite common to see non-fatal flag passed in here.
2527 * It's not an error, we just ignore it.
2531 * For backward compatibility with some unexplained launchd behavior,
2532 * we allow a zero sized limit. But we still enforce system_wide limit
2533 * when written to the ledgers.
2536 if (memlimit_active
< 0) {
2537 memlimit_active
= -1; /* enforces system_wide task limit */
2539 memlimit_active_is_fatal
= TRUE
;
2542 if (memlimit_inactive
<= 0) {
2544 * This process will have a system_wide task limit when inactive.
2545 * System_wide task limit is always fatal.
2548 memlimit_inactive
= -1;
2549 memlimit_inactive_is_fatal
= TRUE
;
2553 * Initialize the active limit variants for this process.
2555 SET_ACTIVE_LIMITS_LOCKED(p
, memlimit_active
, memlimit_active_is_fatal
);
2558 * Initialize the inactive limit variants for this process.
2560 SET_INACTIVE_LIMITS_LOCKED(p
, memlimit_inactive
, memlimit_inactive_is_fatal
);
2563 * Initialize the cached limits for target process.
2564 * When the target process is dirty tracked, it's typically
2565 * in a clean state. Non dirty tracked processes are
2566 * typically active (Foreground or above).
2567 * But just in case, we don't make assumptions...
2570 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
2571 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2574 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
2579 * Enforce the cached limit by writing to the ledger.
2581 if (memorystatus_highwater_enabled
) {
2583 task_set_phys_footprint_limit_internal(p
->task
, ((p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1), NULL
, use_active
, is_fatal
);
2585 MEMORYSTATUS_DEBUG(3, "memorystatus_update: init: limit on pid %d (%dMB %s) targeting priority(%d) dirty?=0x%x %s\n",
2586 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
2587 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), priority
, p
->p_memstat_dirty
,
2588 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
2593 * We can't add to the aging bands buckets here.
2594 * But, we could be removing it from those buckets.
2595 * Check and take appropriate steps if so.
2598 if (isProcessInAgingBands(p
)) {
2599 if ((jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) && isApp(p
) && (priority
> applications_aging_band
)) {
2601 * Runningboardd is pulling up an application that is in the aging band.
2602 * We reset the app's state here so that it'll get a fresh stay in the
2603 * aging band on the way back.
2605 * We always handled the app 'aging' in the memorystatus_update_priority_locked()
2606 * function. Daemons used to be handled via the dirty 'set/clear/track' path.
2607 * But with extensions (daemon-app hybrid), runningboardd is now going through
2608 * this routine for daemons too and things have gotten a bit tangled. This should
2609 * be simplified/untangled at some point and might require some assistance from
2612 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2614 memorystatus_invalidate_idle_demotion_locked(p
, FALSE
);
2616 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
2618 if (jetsam_aging_policy
== kJetsamAgingPolicyLegacy
&& priority
== JETSAM_PRIORITY_IDLE
) {
2620 * Daemons with 'inactive' limits will go through the dirty tracking codepath.
2621 * This path deals with apps that may have 'inactive' limits e.g. WebContent processes.
2622 * If this is the legacy aging policy we explicitly need to apply those limits. If it
2623 * is any other aging policy, then we don't need to worry because all processes
2624 * will go through the aging bands and then the demotion thread will take care to
2625 * move them into the IDLE band and apply the required limits.
2627 memorystatus_update_priority_locked(p
, priority
, head_insert
, TRUE
);
2631 memorystatus_update_priority_locked(p
, priority
, head_insert
, FALSE
);
2637 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_UPDATE
) | DBG_FUNC_END
, ret
, 0, 0, 0, 0);
2643 memorystatus_remove(proc_t p
)
2646 memstat_bucket_t
*bucket
;
2647 boolean_t reschedule
= FALSE
;
2649 MEMORYSTATUS_DEBUG(1, "memorystatus_list_remove: removing pid %d\n", p
->p_pid
);
2652 * Check if this proc is locked (because we're performing a freeze).
2653 * If so, we fail and instruct the caller to try again later.
2655 if (p
->p_memstat_state
& P_MEMSTAT_LOCKED
) {
2659 assert(!(p
->p_memstat_state
& P_MEMSTAT_INTERNAL
));
2661 bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
2663 if (isSysProc(p
) && system_procs_aging_band
&& (p
->p_memstat_effectivepriority
== system_procs_aging_band
)) {
2664 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_sysprocs
);
2666 } else if (isApp(p
) && applications_aging_band
&& (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
2667 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_apps
);
2675 if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
2676 uint64_t now
= mach_absolute_time();
2677 if (now
> p
->p_memstat_idle_start
) {
2678 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
2682 TAILQ_REMOVE(&bucket
->list
, p
, p_memstat_list
);
2684 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
2685 bucket
->relaunch_high_count
--;
2688 memorystatus_list_count
--;
2690 /* If awaiting demotion to the idle band, clean up */
2692 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2693 memorystatus_reschedule_idle_demotion_locked();
2696 memorystatus_check_levels_locked();
2699 if (p
->p_memstat_state
& (P_MEMSTAT_FROZEN
)) {
2700 if (p
->p_memstat_state
& P_MEMSTAT_REFREEZE_ELIGIBLE
) {
2701 p
->p_memstat_state
&= ~P_MEMSTAT_REFREEZE_ELIGIBLE
;
2702 memorystatus_refreeze_eligible_count
--;
2705 memorystatus_frozen_count
--;
2706 memorystatus_frozen_shared_mb
-= p
->p_memstat_freeze_sharedanon_pages
;
2707 p
->p_memstat_freeze_sharedanon_pages
= 0;
2710 if (p
->p_memstat_state
& P_MEMSTAT_SUSPENDED
) {
2711 memorystatus_suspended_count
--;
2715 #if DEVELOPMENT || DEBUG
2716 if (p
->p_pid
== memorystatus_snapshot_owner
) {
2717 memorystatus_snapshot_owner
= 0;
2719 #endif /* DEVELOPMENT || DEBUG */
2731 * Validate dirty tracking flags with process state.
2737 * The proc_list_lock is held by the caller.
2741 memorystatus_validate_track_flags(struct proc
*target_p
, uint32_t pcontrol
)
2743 /* See that the process isn't marked for termination */
2744 if (target_p
->p_memstat_dirty
& P_DIRTY_TERMINATED
) {
2748 /* Idle exit requires that process be tracked */
2749 if ((pcontrol
& PROC_DIRTY_ALLOW_IDLE_EXIT
) &&
2750 !(pcontrol
& PROC_DIRTY_TRACK
)) {
2754 /* 'Launch in progress' tracking requires that process have enabled dirty tracking too. */
2755 if ((pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) &&
2756 !(pcontrol
& PROC_DIRTY_TRACK
)) {
2760 /* Only one type of DEFER behavior is allowed.*/
2761 if ((pcontrol
& PROC_DIRTY_DEFER
) &&
2762 (pcontrol
& PROC_DIRTY_DEFER_ALWAYS
)) {
2766 /* Deferral is only relevant if idle exit is specified */
2767 if (((pcontrol
& PROC_DIRTY_DEFER
) ||
2768 (pcontrol
& PROC_DIRTY_DEFER_ALWAYS
)) &&
2769 !(pcontrol
& PROC_DIRTY_ALLOWS_IDLE_EXIT
)) {
2777 memorystatus_update_idle_priority_locked(proc_t p
)
2781 MEMORYSTATUS_DEBUG(1, "memorystatus_update_idle_priority_locked(): pid %d dirty 0x%X\n", p
->p_pid
, p
->p_memstat_dirty
);
2783 assert(isSysProc(p
));
2785 if ((p
->p_memstat_dirty
& (P_DIRTY_IDLE_EXIT_ENABLED
| P_DIRTY_IS_DIRTY
)) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2786 priority
= (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) ? system_procs_aging_band
: JETSAM_PRIORITY_IDLE
;
2788 priority
= p
->p_memstat_requestedpriority
;
2791 if (p
->p_memstat_state
& P_MEMSTAT_PRIORITY_ASSERTION
) {
2793 * This process has a jetsam priority managed by an assertion.
2794 * Policy is to choose the max priority.
2796 if (p
->p_memstat_assertionpriority
> priority
) {
2797 os_log(OS_LOG_DEFAULT
, "memorystatus: assertion priority %d overrides priority %d for %s:%d\n",
2798 p
->p_memstat_assertionpriority
, priority
,
2799 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
);
2800 priority
= p
->p_memstat_assertionpriority
;
2804 if (priority
!= p
->p_memstat_effectivepriority
) {
2805 if ((jetsam_aging_policy
== kJetsamAgingPolicyLegacy
) &&
2806 (priority
== JETSAM_PRIORITY_IDLE
)) {
2808 * This process is on its way into the IDLE band. The system is
2809 * using 'legacy' jetsam aging policy. That means, this process
2810 * has already used up its idle-deferral aging time that is given
2811 * once per its lifetime. So we need to set the INACTIVE limits
2812 * explicitly because it won't be going through the demotion paths
2813 * that take care to apply the limits appropriately.
2816 if (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) {
2818 * This process has the 'elevated inactive jetsam band' attribute.
2819 * So, there will be no trip to IDLE after all.
2820 * Instead, we pin the process in the elevated band,
2821 * where its ACTIVE limits will apply.
2824 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
2827 memorystatus_update_priority_locked(p
, priority
, false, true);
2829 memorystatus_update_priority_locked(p
, priority
, false, false);
2835 * Processes can opt to have their state tracked by the kernel, indicating when they are busy (dirty) or idle
2836 * (clean). They may also indicate that they support termination when idle, with the result that they are promoted
2837 * to their desired, higher, jetsam priority when dirty (and are therefore killed later), and demoted to the low
2838 * priority idle band when clean (and killed earlier, protecting higher priority procesess).
2840 * If the deferral flag is set, then newly tracked processes will be protected for an initial period (as determined by
2841 * memorystatus_sysprocs_idle_delay_time); if they go clean during this time, then they will be moved to a deferred-idle band
2842 * with a slightly higher priority, guarding against immediate termination under memory pressure and being unable to
2843 * make forward progress. Finally, when the guard expires, they will be moved to the standard, lowest-priority, idle
2844 * band. The deferral can be cleared early by clearing the appropriate flag.
2846 * The deferral timer is active only for the duration that the process is marked as guarded and clean; if the process
2847 * is marked dirty, the timer will be cancelled. Upon being subsequently marked clean, the deferment will either be
2848 * re-enabled or the guard state cleared, depending on whether the guard deadline has passed.
2852 memorystatus_dirty_track(proc_t p
, uint32_t pcontrol
)
2854 unsigned int old_dirty
;
2855 boolean_t reschedule
= FALSE
;
2856 boolean_t already_deferred
= FALSE
;
2857 boolean_t defer_now
= FALSE
;
2860 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_TRACK
),
2861 p
->p_pid
, p
->p_memstat_dirty
, pcontrol
, 0, 0);
2865 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2867 * Process is on its way out.
2873 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
2878 if ((ret
= memorystatus_validate_track_flags(p
, pcontrol
)) != 0) {
2883 old_dirty
= p
->p_memstat_dirty
;
2885 /* These bits are cumulative, as per <rdar://problem/11159924> */
2886 if (pcontrol
& PROC_DIRTY_TRACK
) {
2887 p
->p_memstat_dirty
|= P_DIRTY_TRACK
;
2890 if (pcontrol
& PROC_DIRTY_ALLOW_IDLE_EXIT
) {
2891 p
->p_memstat_dirty
|= P_DIRTY_ALLOW_IDLE_EXIT
;
2894 if (pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) {
2895 p
->p_memstat_dirty
|= P_DIRTY_LAUNCH_IN_PROGRESS
;
2898 if (old_dirty
& P_DIRTY_AGING_IN_PROGRESS
) {
2899 already_deferred
= TRUE
;
2903 /* This can be set and cleared exactly once. */
2904 if (pcontrol
& (PROC_DIRTY_DEFER
| PROC_DIRTY_DEFER_ALWAYS
)) {
2905 if ((pcontrol
& (PROC_DIRTY_DEFER
)) &&
2906 !(old_dirty
& P_DIRTY_DEFER
)) {
2907 p
->p_memstat_dirty
|= P_DIRTY_DEFER
;
2910 if ((pcontrol
& (PROC_DIRTY_DEFER_ALWAYS
)) &&
2911 !(old_dirty
& P_DIRTY_DEFER_ALWAYS
)) {
2912 p
->p_memstat_dirty
|= P_DIRTY_DEFER_ALWAYS
;
2918 MEMORYSTATUS_DEBUG(1, "memorystatus_on_track_dirty(): set idle-exit %s / defer %s / dirty %s for pid %d\n",
2919 ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) ? "Y" : "N",
2920 defer_now
? "Y" : "N",
2921 p
->p_memstat_dirty
& P_DIRTY
? "Y" : "N",
2924 /* Kick off or invalidate the idle exit deferment if there's a state transition. */
2925 if (!(p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
)) {
2926 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2927 if (defer_now
&& !already_deferred
) {
2929 * Request to defer a clean process that's idle-exit enabled
2930 * and not already in the jetsam deferred band. Most likely a
2933 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2935 } else if (!defer_now
) {
2937 * The process isn't asking for the 'aging' facility.
2938 * Could be that it is:
2941 if (already_deferred
) {
2943 * already in the aging bands. Traditionally,
2944 * some processes have tried to use this to
2945 * opt out of the 'aging' facility.
2948 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2951 * agnostic to the 'aging' facility. In that case,
2952 * we'll go ahead and opt it in because this is likely
2953 * a new launch (clean process, dirty tracking enabled)
2956 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2964 * We are trying to operate on a dirty process. Dirty processes have to
2965 * be removed from the deferred band. The question is do we reset the
2966 * deferred state or not?
2968 * This could be a legal request like:
2969 * - this process had opted into the 'aging' band
2970 * - but it's now dirty and requests to opt out.
2971 * In this case, we remove the process from the band and reset its
2972 * state too. It'll opt back in properly when needed.
2974 * OR, this request could be a user-space bug. E.g.:
2975 * - this process had opted into the 'aging' band when clean
2976 * - and, then issues another request to again put it into the band except
2977 * this time the process is dirty.
2978 * The process going dirty, as a transition in memorystatus_dirty_set(), will pull the process out of
2979 * the deferred band with its state intact. So our request below is no-op.
2980 * But we do it here anyways for coverage.
2982 * memorystatus_update_idle_priority_locked()
2983 * single-mindedly treats a dirty process as "cannot be in the aging band".
2986 if (!defer_now
&& already_deferred
) {
2987 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2990 boolean_t reset_state
= (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) ? TRUE
: FALSE
;
2992 memorystatus_invalidate_idle_demotion_locked(p
, reset_state
);
2997 memorystatus_update_idle_priority_locked(p
);
3000 memorystatus_reschedule_idle_demotion_locked();
3012 memorystatus_dirty_set(proc_t p
, boolean_t self
, uint32_t pcontrol
)
3015 boolean_t kill
= false;
3016 boolean_t reschedule
= FALSE
;
3017 boolean_t was_dirty
= FALSE
;
3018 boolean_t now_dirty
= FALSE
;
3019 #if CONFIG_DIRTYSTATUS_TRACKING
3020 boolean_t notify_change
= FALSE
;
3021 dirty_status_change_event_t change_event
;
3024 MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_set(): %d %d 0x%x 0x%x\n", self
, p
->p_pid
, pcontrol
, p
->p_memstat_dirty
);
3025 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_SET
), p
->p_pid
, self
, pcontrol
, 0, 0);
3029 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
3031 * Process is on its way out.
3037 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
3042 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
3046 if (!(p
->p_memstat_dirty
& P_DIRTY_TRACK
)) {
3047 /* Dirty tracking not enabled */
3049 } else if (pcontrol
&& (p
->p_memstat_dirty
& P_DIRTY_TERMINATED
)) {
3051 * Process is set to be terminated and we're attempting to mark it dirty.
3052 * Set for termination and marking as clean is OK - see <rdar://problem/10594349>.
3056 int flag
= (self
== TRUE
) ? P_DIRTY
: P_DIRTY_SHUTDOWN
;
3057 if (pcontrol
&& !(p
->p_memstat_dirty
& flag
)) {
3058 /* Mark the process as having been dirtied at some point */
3059 p
->p_memstat_dirty
|= (flag
| P_DIRTY_MARKED
);
3060 memorystatus_dirty_count
++;
3062 } else if ((pcontrol
== 0) && (p
->p_memstat_dirty
& flag
)) {
3063 if ((flag
== P_DIRTY_SHUTDOWN
) && (!(p
->p_memstat_dirty
& P_DIRTY
))) {
3064 /* Clearing the dirty shutdown flag, and the process is otherwise clean - kill */
3065 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
3067 } else if ((flag
== P_DIRTY
) && (p
->p_memstat_dirty
& P_DIRTY_TERMINATED
)) {
3068 /* Kill previously terminated processes if set clean */
3071 p
->p_memstat_dirty
&= ~flag
;
3072 memorystatus_dirty_count
--;
3084 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
3088 if ((was_dirty
== TRUE
&& now_dirty
== FALSE
) ||
3089 (was_dirty
== FALSE
&& now_dirty
== TRUE
)) {
3090 #if CONFIG_DIRTYSTATUS_TRACKING
3091 if (dirtystatus_tracking_enabled
) {
3093 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
);
3094 change_event
.dsc_pid
= p
->p_pid
;
3095 change_event
.dsc_event_type
= (now_dirty
== TRUE
) ? kDirtyStatusChangedDirty
: kDirtyStatusChangedClean
;
3096 change_event
.dsc_time
= mach_absolute_time();
3097 change_event
.dsc_pages
= pages
;
3098 change_event
.dsc_priority
= p
->p_memstat_effectivepriority
;
3099 strlcpy(&change_event
.dsc_process_name
[0], p
->p_name
, sizeof(change_event
.dsc_process_name
));
3100 notify_change
= TRUE
;
3104 /* Manage idle exit deferral, if applied */
3105 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
3107 * Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band OR it might be heading back
3108 * there once it's clean again. For the legacy case, this only applies if it has some protection window left.
3109 * P_DIRTY_DEFER: one-time protection window given at launch
3110 * P_DIRTY_DEFER_ALWAYS: protection window given for every dirty->clean transition. Like non-legacy mode.
3112 * Non-Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band. It will always stop over
3113 * in that band on it's way to IDLE.
3116 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
3118 * New dirty process i.e. "was_dirty == FALSE && now_dirty == TRUE"
3120 * The process will move from its aging band to its higher requested
3123 boolean_t reset_state
= (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) ? TRUE
: FALSE
;
3125 memorystatus_invalidate_idle_demotion_locked(p
, reset_state
);
3129 * Process is back from "dirty" to "clean".
3132 if (jetsam_aging_policy
== kJetsamAgingPolicyLegacy
) {
3133 if (((p
->p_memstat_dirty
& P_DIRTY_DEFER_ALWAYS
) == FALSE
) &&
3134 (mach_absolute_time() >= p
->p_memstat_idledeadline
)) {
3136 * The process' hasn't enrolled in the "always defer after dirty"
3137 * mode and its deadline has expired. It currently
3138 * does not reside in any of the aging buckets.
3140 * It's on its way to the JETSAM_PRIORITY_IDLE
3141 * bucket via memorystatus_update_idle_priority_locked()
3144 * So all we need to do is reset all the state on the
3145 * process that's related to the aging bucket i.e.
3146 * the AGING_IN_PROGRESS flag and the timer deadline.
3149 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
3153 * Process enrolled in "always stop in deferral band after dirty" OR
3154 * it still has some protection window left and so
3155 * we just re-arm the timer without modifying any
3156 * state on the process iff it still wants into that band.
3159 if (p
->p_memstat_dirty
& P_DIRTY_DEFER_ALWAYS
) {
3160 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
3162 } else if (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) {
3163 memorystatus_schedule_idle_demotion_locked(p
, FALSE
);
3168 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
3174 memorystatus_update_idle_priority_locked(p
);
3176 if (memorystatus_highwater_enabled
) {
3177 boolean_t ledger_update_needed
= TRUE
;
3178 boolean_t use_active
;
3181 * We are in this path because this process transitioned between
3182 * dirty <--> clean state. Update the cached memory limits.
3185 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
3187 * process is pinned in elevated band
3191 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
3193 ledger_update_needed
= TRUE
;
3196 * process is clean...but if it has opted into pressured-exit
3197 * we don't apply the INACTIVE limit till the process has aged
3198 * out and is entering the IDLE band.
3199 * See memorystatus_update_priority_locked() for that.
3202 if (p
->p_memstat_dirty
& P_DIRTY_ALLOW_IDLE_EXIT
) {
3203 ledger_update_needed
= FALSE
;
3205 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
3207 ledger_update_needed
= TRUE
;
3212 * Enforce the new limits by writing to the ledger.
3214 * This is a hot path and holding the proc_list_lock while writing to the ledgers,
3215 * (where the task lock is taken) is bad. So, we temporarily drop the proc_list_lock.
3216 * We aren't traversing the jetsam bucket list here, so we should be safe.
3217 * See rdar://21394491.
3220 if (ledger_update_needed
&& proc_ref_locked(p
) == p
) {
3222 if (p
->p_memstat_memlimit
> 0) {
3223 ledger_limit
= p
->p_memstat_memlimit
;
3228 task_set_phys_footprint_limit_internal(p
->task
, ledger_limit
, NULL
, use_active
, is_fatal
);
3230 proc_rele_locked(p
);
3232 MEMORYSTATUS_DEBUG(3, "memorystatus_dirty_set: new limit on pid %d (%dMB %s) priority(%d) dirty?=0x%x %s\n",
3233 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
3234 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, p
->p_memstat_dirty
,
3235 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
3239 /* If the deferral state changed, reschedule the demotion timer */
3241 memorystatus_reschedule_idle_demotion_locked();
3246 if (proc_ref_locked(p
) == p
) {
3248 psignal(p
, SIGKILL
);
3250 proc_rele_locked(p
);
3257 #if CONFIG_DIRTYSTATUS_TRACKING
3258 // Before returning, let's notify the dirtiness status if we have to
3259 if (notify_change
) {
3260 memorystatus_send_dirty_status_change_note(&change_event
, sizeof(change_event
));
3268 memorystatus_dirty_clear(proc_t p
, uint32_t pcontrol
)
3272 MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_clear(): %d 0x%x 0x%x\n", p
->p_pid
, pcontrol
, p
->p_memstat_dirty
);
3274 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_CLEAR
), p
->p_pid
, pcontrol
, 0, 0, 0);
3278 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
3280 * Process is on its way out.
3286 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
3291 if (!(p
->p_memstat_dirty
& P_DIRTY_TRACK
)) {
3292 /* Dirty tracking not enabled */
3297 if (!pcontrol
|| (pcontrol
& (PROC_DIRTY_LAUNCH_IN_PROGRESS
| PROC_DIRTY_DEFER
| PROC_DIRTY_DEFER_ALWAYS
)) == 0) {
3302 if (pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) {
3303 p
->p_memstat_dirty
&= ~P_DIRTY_LAUNCH_IN_PROGRESS
;
3306 /* This can be set and cleared exactly once. */
3307 if (pcontrol
& (PROC_DIRTY_DEFER
| PROC_DIRTY_DEFER_ALWAYS
)) {
3308 if (p
->p_memstat_dirty
& P_DIRTY_DEFER
) {
3309 p
->p_memstat_dirty
&= ~(P_DIRTY_DEFER
);
3312 if (p
->p_memstat_dirty
& P_DIRTY_DEFER_ALWAYS
) {
3313 p
->p_memstat_dirty
&= ~(P_DIRTY_DEFER_ALWAYS
);
3316 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
3317 memorystatus_update_idle_priority_locked(p
);
3318 memorystatus_reschedule_idle_demotion_locked();
3329 memorystatus_dirty_get(proc_t p
, boolean_t locked
)
3337 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
3338 ret
|= PROC_DIRTY_TRACKED
;
3339 if (p
->p_memstat_dirty
& P_DIRTY_ALLOW_IDLE_EXIT
) {
3340 ret
|= PROC_DIRTY_ALLOWS_IDLE_EXIT
;
3342 if (p
->p_memstat_dirty
& P_DIRTY
) {
3343 ret
|= PROC_DIRTY_IS_DIRTY
;
3345 if (p
->p_memstat_dirty
& P_DIRTY_LAUNCH_IN_PROGRESS
) {
3346 ret
|= PROC_DIRTY_LAUNCH_IS_IN_PROGRESS
;
3358 memorystatus_on_terminate(proc_t p
)
3364 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
3366 if (((p
->p_memstat_dirty
& (P_DIRTY_TRACK
| P_DIRTY_IS_DIRTY
)) == P_DIRTY_TRACK
) ||
3367 (p
->p_memstat_state
& P_MEMSTAT_SUSPENDED
)) {
3369 * Mark as terminated and issue SIGKILL if:-
3370 * - process is clean, or,
3371 * - if process is dirty but suspended. This case is likely
3372 * an extension because apps don't opt into dirty-tracking
3373 * and daemons aren't suspended.
3375 #if DEVELOPMENT || DEBUG
3376 if (p
->p_memstat_state
& P_MEMSTAT_SUSPENDED
) {
3377 os_log(OS_LOG_DEFAULT
, "memorystatus: sending suspended process %s (pid %d) SIGKILL",
3378 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
);
3380 #endif /* DEVELOPMENT || DEBUG */
3383 /* Dirty, terminated, or state tracking is unsupported; issue SIGTERM to allow cleanup */
3393 memorystatus_on_suspend(proc_t p
)
3397 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
);
3401 memorystatus_suspended_count
++;
3403 p
->p_memstat_state
|= P_MEMSTAT_SUSPENDED
;
3407 extern uint64_t memorystatus_thaw_count_since_boot
;
3410 memorystatus_on_resume(proc_t p
)
3420 frozen
= (p
->p_memstat_state
& P_MEMSTAT_FROZEN
);
3423 * Now that we don't _thaw_ a process completely,
3424 * resuming it (and having some on-demand swapins)
3425 * shouldn't preclude it from being counted as frozen.
3427 * memorystatus_frozen_count--;
3429 * We preserve the P_MEMSTAT_FROZEN state since the process
3430 * could have state on disk AND so will deserve some protection
3431 * in the jetsam bands.
3433 if ((p
->p_memstat_state
& P_MEMSTAT_REFREEZE_ELIGIBLE
) == 0) {
3434 p
->p_memstat_state
|= P_MEMSTAT_REFREEZE_ELIGIBLE
;
3435 memorystatus_refreeze_eligible_count
++;
3437 p
->p_memstat_thaw_count
++;
3439 memorystatus_thaw_count
++;
3440 memorystatus_thaw_count_since_boot
++;
3443 memorystatus_suspended_count
--;
3449 * P_MEMSTAT_FROZEN will remain unchanged. This used to be:
3450 * p->p_memstat_state &= ~(P_MEMSTAT_SUSPENDED | P_MEMSTAT_FROZEN);
3452 p
->p_memstat_state
&= ~P_MEMSTAT_SUSPENDED
;
3458 memorystatus_freeze_entry_t data
= { pid
, FALSE
, 0 };
3459 memorystatus_send_note(kMemorystatusFreezeNote
, &data
, sizeof(data
));
3465 memorystatus_on_inactivity(proc_t p
)
3469 /* Wake the freeze thread */
3470 thread_wakeup((event_t
)&memorystatus_freeze_wakeup
);
3475 * The proc_list_lock is held by the caller.
3478 memorystatus_build_state(proc_t p
)
3480 uint32_t snapshot_state
= 0;
3483 if (p
->p_memstat_state
& P_MEMSTAT_SUSPENDED
) {
3484 snapshot_state
|= kMemorystatusSuspended
;
3486 if (p
->p_memstat_state
& P_MEMSTAT_FROZEN
) {
3487 snapshot_state
|= kMemorystatusFrozen
;
3489 if (p
->p_memstat_state
& P_MEMSTAT_REFREEZE_ELIGIBLE
) {
3490 snapshot_state
|= kMemorystatusWasThawed
;
3492 if (p
->p_memstat_state
& P_MEMSTAT_PRIORITY_ASSERTION
) {
3493 snapshot_state
|= kMemorystatusAssertion
;
3497 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
3498 snapshot_state
|= kMemorystatusTracked
;
3500 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
3501 snapshot_state
|= kMemorystatusSupportsIdleExit
;
3503 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
3504 snapshot_state
|= kMemorystatusDirty
;
3507 return snapshot_state
;
3511 kill_idle_exit_proc(void)
3513 proc_t p
, victim_p
= PROC_NULL
;
3514 uint64_t current_time
, footprint_of_killed_proc
;
3515 boolean_t killed
= FALSE
;
3517 os_reason_t jetsam_reason
= OS_REASON_NULL
;
3519 /* Pick next idle exit victim. */
3520 current_time
= mach_absolute_time();
3522 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_IDLE_EXIT
);
3523 if (jetsam_reason
== OS_REASON_NULL
) {
3524 printf("kill_idle_exit_proc: failed to allocate jetsam reason\n");
3529 p
= memorystatus_get_first_proc_locked(&i
, FALSE
);
3531 /* No need to look beyond the idle band */
3532 if (p
->p_memstat_effectivepriority
!= JETSAM_PRIORITY_IDLE
) {
3536 if ((p
->p_memstat_dirty
& (P_DIRTY_ALLOW_IDLE_EXIT
| P_DIRTY_IS_DIRTY
| P_DIRTY_TERMINATED
)) == (P_DIRTY_ALLOW_IDLE_EXIT
)) {
3537 if (current_time
>= p
->p_memstat_idledeadline
) {
3538 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
3539 victim_p
= proc_ref_locked(p
);
3544 p
= memorystatus_get_next_proc_locked(&i
, p
, FALSE
);
3550 printf("memorystatus: killing_idle_process pid %d [%s] jetsam_reason->osr_code: %llu\n", victim_p
->p_pid
, (*victim_p
->p_name
? victim_p
->p_name
: "unknown"), jetsam_reason
->osr_code
);
3551 killed
= memorystatus_do_kill(victim_p
, kMemorystatusKilledIdleExit
, jetsam_reason
, &footprint_of_killed_proc
);
3552 proc_rele(victim_p
);
3554 os_reason_free(jetsam_reason
);
3561 memorystatus_thread_wake(void)
3564 int active_thr
= atomic_load(&active_jetsam_threads
);
3566 /* Wakeup all the jetsam threads */
3567 for (thr_id
= 0; thr_id
< active_thr
; thr_id
++) {
3568 thread_wakeup((event_t
)&jetsam_threads
[thr_id
].memorystatus_wakeup
);
3575 memorystatus_thread_pool_max()
3577 /* Increase the jetsam thread pool to max_jetsam_threads */
3578 int max_threads
= max_jetsam_threads
;
3579 printf("Expanding memorystatus pool to %d!\n", max_threads
);
3580 atomic_store(&active_jetsam_threads
, max_threads
);
3584 memorystatus_thread_pool_default()
3586 /* Restore the jetsam thread pool to a single thread */
3587 printf("Reverting memorystatus pool back to 1\n");
3588 atomic_store(&active_jetsam_threads
, 1);
3591 #endif /* CONFIG_JETSAM */
3593 extern void vm_pressure_response(void);
3596 memorystatus_thread_block(uint32_t interval_ms
, thread_continue_t continuation
)
3598 struct jetsam_thread_state
*jetsam_thread
= jetsam_current_thread();
3600 assert(jetsam_thread
!= NULL
);
3602 assert_wait_timeout(&jetsam_thread
->memorystatus_wakeup
, THREAD_UNINT
, interval_ms
, NSEC_PER_MSEC
);
3604 assert_wait(&jetsam_thread
->memorystatus_wakeup
, THREAD_UNINT
);
3607 return thread_block(continuation
);
3611 memorystatus_avail_pages_below_pressure(void)
3614 return memorystatus_available_pages
<= memorystatus_available_pages_pressure
;
3615 #else /* CONFIG_JETSAM */
3617 #endif /* CONFIG_JETSAM */
3621 memorystatus_avail_pages_below_critical(void)
3624 return memorystatus_available_pages
<= memorystatus_available_pages_critical
;
3625 #else /* CONFIG_JETSAM */
3627 #endif /* CONFIG_JETSAM */
3631 memorystatus_post_snapshot(int32_t priority
, uint32_t cause
)
3633 boolean_t is_idle_priority
;
3635 if (jetsam_aging_policy
== kJetsamAgingPolicyLegacy
) {
3636 is_idle_priority
= (priority
== JETSAM_PRIORITY_IDLE
);
3638 is_idle_priority
= (priority
== JETSAM_PRIORITY_IDLE
|| priority
== JETSAM_PRIORITY_IDLE_DEFERRED
);
3641 #pragma unused(cause)
3643 * Don't generate logs for steady-state idle-exit kills,
3644 * unless it is overridden for debug or by the device
3648 return !is_idle_priority
|| memorystatus_idle_snapshot
;
3650 #else /* CONFIG_JETSAM */
3652 * Don't generate logs for steady-state idle-exit kills,
3654 * - it is overridden for debug or by the device
3657 * - the kill causes are important i.e. not kMemorystatusKilledIdleExit
3660 boolean_t snapshot_eligible_kill_cause
= (is_reason_thrashing(cause
) || is_reason_zone_map_exhaustion(cause
));
3661 return !is_idle_priority
|| memorystatus_idle_snapshot
|| snapshot_eligible_kill_cause
;
3662 #endif /* CONFIG_JETSAM */
3666 memorystatus_action_needed(void)
3669 return is_reason_thrashing(kill_under_pressure_cause
) ||
3670 is_reason_zone_map_exhaustion(kill_under_pressure_cause
) ||
3671 memorystatus_available_pages
<= memorystatus_available_pages_pressure
;
3672 #else /* CONFIG_JETSAM */
3673 return is_reason_thrashing(kill_under_pressure_cause
) ||
3674 is_reason_zone_map_exhaustion(kill_under_pressure_cause
);
3675 #endif /* CONFIG_JETSAM */
3679 memorystatus_act_on_hiwat_processes(uint32_t *errors
, uint32_t *hwm_kill
, boolean_t
*post_snapshot
, __unused boolean_t
*is_critical
, uint64_t *memory_reclaimed
)
3681 boolean_t purged
= FALSE
, killed
= FALSE
;
3683 *memory_reclaimed
= 0;
3684 killed
= memorystatus_kill_hiwat_proc(errors
, &purged
, memory_reclaimed
);
3687 *hwm_kill
= *hwm_kill
+ 1;
3688 *post_snapshot
= TRUE
;
3691 if (purged
== FALSE
) {
3692 /* couldn't purge and couldn't kill */
3693 memorystatus_hwm_candidates
= FALSE
;
3698 /* No highwater processes to kill. Continue or stop for now? */
3699 if (!is_reason_thrashing(kill_under_pressure_cause
) &&
3700 !is_reason_zone_map_exhaustion(kill_under_pressure_cause
) &&
3701 (memorystatus_available_pages
> memorystatus_available_pages_critical
)) {
3703 * We are _not_ out of pressure but we are above the critical threshold and there's:
3704 * - no compressor thrashing
3705 * - enough zone memory
3706 * - no more HWM processes left.
3707 * For now, don't kill any other processes.
3710 if (*hwm_kill
== 0) {
3711 memorystatus_thread_wasted_wakeup
++;
3714 *is_critical
= FALSE
;
3718 #endif /* CONFIG_JETSAM */
3724 * kJetsamHighRelaunchCandidatesThreshold defines the percentage of candidates
3725 * in the idle & deferred bands that need to be bad candidates in order to trigger
3726 * aggressive jetsam.
3728 #define kJetsamHighRelaunchCandidatesThreshold (100)
3730 /* kJetsamMinCandidatesThreshold defines the minimum number of candidates in the
3731 * idle/deferred bands to trigger aggressive jetsam. This value basically decides
3732 * how much memory the system is ready to hold in the lower bands without triggering
3733 * aggressive jetsam. This number should ideally be tuned based on the memory config
3736 #define kJetsamMinCandidatesThreshold (5)
3739 memorystatus_aggressive_jetsam_needed_sysproc_aging(__unused
int jld_eval_aggressive_count
, __unused
int *jld_idle_kills
, __unused
int jld_idle_kill_candidates
, int *total_candidates
, int *elevated_bucket_count
)
3741 boolean_t aggressive_jetsam_needed
= false;
3744 * For the kJetsamAgingPolicySysProcsReclaimedFirst aging policy, we maintain the jetsam
3745 * relaunch behavior for all daemons. Also, daemons and apps are aged in deferred bands on
3746 * every dirty->clean transition. For this aging policy, the best way to determine if
3747 * aggressive jetsam is needed, is to see if the kill candidates are mostly bad candidates.
3748 * If yes, then we need to go to higher bands to reclaim memory.
3751 /* Get total candidate counts for idle and idle deferred bands */
3752 *total_candidates
= memstat_bucket
[JETSAM_PRIORITY_IDLE
].count
+ memstat_bucket
[system_procs_aging_band
].count
;
3753 /* Get counts of bad kill candidates in idle and idle deferred bands */
3754 int bad_candidates
= memstat_bucket
[JETSAM_PRIORITY_IDLE
].relaunch_high_count
+ memstat_bucket
[system_procs_aging_band
].relaunch_high_count
;
3756 *elevated_bucket_count
= memstat_bucket
[JETSAM_PRIORITY_ELEVATED_INACTIVE
].count
;
3760 /* Check if the number of bad candidates is greater than kJetsamHighRelaunchCandidatesThreshold % */
3761 aggressive_jetsam_needed
= (((bad_candidates
* 100) / *total_candidates
) >= kJetsamHighRelaunchCandidatesThreshold
);
3764 * Since the new aging policy bases the aggressive jetsam trigger on percentage of
3765 * bad candidates, it is prone to being overly aggressive. In order to mitigate that,
3766 * make sure the system is really under memory pressure before triggering aggressive
3769 if (memorystatus_available_pages
> memorystatus_sysproc_aging_aggr_pages
) {
3770 aggressive_jetsam_needed
= false;
3773 #if DEVELOPMENT || DEBUG
3774 printf("memorystatus: aggressive%d: [%s] Bad Candidate Threshold Check (total: %d, bad: %d, threshold: %d %%); Memory Pressure Check (available_pgs: %llu, threshold_pgs: %llu)\n",
3775 jld_eval_aggressive_count
, aggressive_jetsam_needed
? "PASSED" : "FAILED", *total_candidates
, bad_candidates
,
3776 kJetsamHighRelaunchCandidatesThreshold
, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES
, (uint64_t)memorystatus_sysproc_aging_aggr_pages
);
3777 #endif /* DEVELOPMENT || DEBUG */
3778 return aggressive_jetsam_needed
;
3782 * Gets memory back from various system caches.
3783 * Called before jetsamming in the foreground band in the hope that we'll
3787 memorystatus_approaching_fg_band(boolean_t
*corpse_list_purged
)
3789 assert(corpse_list_purged
!= NULL
);
3790 pmap_release_pages_fast();
3791 memorystatus_issue_fg_band_notify();
3792 if (total_corpses_count() > 0 && !*corpse_list_purged
) {
3793 task_purge_all_corpses();
3794 *corpse_list_purged
= TRUE
;
3799 memorystatus_aggressive_jetsam_needed_default(__unused
int jld_eval_aggressive_count
, int *jld_idle_kills
, int jld_idle_kill_candidates
, int *total_candidates
, int *elevated_bucket_count
)
3801 boolean_t aggressive_jetsam_needed
= false;
3802 /* Jetsam Loop Detection - locals */
3803 memstat_bucket_t
*bucket
;
3804 int jld_bucket_count
= 0;
3807 switch (jetsam_aging_policy
) {
3808 case kJetsamAgingPolicyLegacy
:
3809 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3810 jld_bucket_count
= bucket
->count
;
3811 bucket
= &memstat_bucket
[JETSAM_PRIORITY_AGING_BAND1
];
3812 jld_bucket_count
+= bucket
->count
;
3814 case kJetsamAgingPolicyAppsReclaimedFirst
:
3815 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3816 jld_bucket_count
= bucket
->count
;
3817 bucket
= &memstat_bucket
[system_procs_aging_band
];
3818 jld_bucket_count
+= bucket
->count
;
3819 bucket
= &memstat_bucket
[applications_aging_band
];
3820 jld_bucket_count
+= bucket
->count
;
3822 case kJetsamAgingPolicyNone
:
3824 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3825 jld_bucket_count
= bucket
->count
;
3829 bucket
= &memstat_bucket
[JETSAM_PRIORITY_ELEVATED_INACTIVE
];
3830 *elevated_bucket_count
= bucket
->count
;
3831 *total_candidates
= jld_bucket_count
;
3834 aggressive_jetsam_needed
= (*jld_idle_kills
> jld_idle_kill_candidates
);
3836 #if DEVELOPMENT || DEBUG
3837 if (aggressive_jetsam_needed
) {
3838 printf("memorystatus: aggressive%d: idle candidates: %d, idle kills: %d\n",
3839 jld_eval_aggressive_count
,
3840 jld_idle_kill_candidates
,
3843 #endif /* DEVELOPMENT || DEBUG */
3844 return aggressive_jetsam_needed
;
3848 memorystatus_act_aggressive(uint32_t cause
, os_reason_t jetsam_reason
, int *jld_idle_kills
, boolean_t
*corpse_list_purged
, boolean_t
*post_snapshot
, uint64_t *memory_reclaimed
)
3850 boolean_t aggressive_jetsam_needed
= false;
3852 uint32_t errors
= 0;
3853 uint64_t footprint_of_killed_proc
= 0;
3854 int elevated_bucket_count
= 0;
3855 int total_candidates
= 0;
3856 *memory_reclaimed
= 0;
3859 * The aggressive jetsam logic looks at the number of times it has been in the
3860 * aggressive loop to determine the max priority band it should kill upto. The
3861 * static variables below are used to track that property.
3863 * To reset those values, the implementation checks if it has been
3864 * memorystatus_jld_eval_period_msecs since the parameters were reset.
3866 static int jld_eval_aggressive_count
= 0;
3867 static int32_t jld_priority_band_max
= JETSAM_PRIORITY_UI_SUPPORT
;
3868 static uint64_t jld_timestamp_msecs
= 0;
3869 static int jld_idle_kill_candidates
= 0;
3871 if (memorystatus_jld_enabled
== FALSE
) {
3872 /* If aggressive jetsam is disabled, nothing to do here */
3876 /* Get current timestamp (msecs only) */
3877 struct timeval jld_now_tstamp
= {0, 0};
3878 uint64_t jld_now_msecs
= 0;
3879 microuptime(&jld_now_tstamp
);
3880 jld_now_msecs
= (jld_now_tstamp
.tv_sec
* 1000);
3883 * The aggressive jetsam logic looks at the number of candidates and their
3884 * properties to decide if aggressive jetsam should be engaged.
3886 if (jetsam_aging_policy
== kJetsamAgingPolicySysProcsReclaimedFirst
) {
3888 * For the kJetsamAgingPolicySysProcsReclaimedFirst aging policy, the logic looks at the number of
3889 * candidates in the idle and deferred band and how many out of them are marked as high relaunch
3892 aggressive_jetsam_needed
= memorystatus_aggressive_jetsam_needed_sysproc_aging(jld_eval_aggressive_count
,
3893 jld_idle_kills
, jld_idle_kill_candidates
, &total_candidates
, &elevated_bucket_count
);
3896 * The other aging policies look at number of candidate processes over a specific time window and
3897 * evaluate if the system is in a jetsam loop. If yes, aggressive jetsam is triggered.
3899 aggressive_jetsam_needed
= memorystatus_aggressive_jetsam_needed_default(jld_eval_aggressive_count
,
3900 jld_idle_kills
, jld_idle_kill_candidates
, &total_candidates
, &elevated_bucket_count
);
3904 * Check if its been really long since the aggressive jetsam evaluation
3905 * parameters have been refreshed. This logic also resets the jld_eval_aggressive_count
3906 * counter to make sure we reset the aggressive jetsam severity.
3908 boolean_t param_reval
= false;
3910 if ((total_candidates
== 0) ||
3911 (jld_now_msecs
> (jld_timestamp_msecs
+ memorystatus_jld_eval_period_msecs
))) {
3912 jld_timestamp_msecs
= jld_now_msecs
;
3913 jld_idle_kill_candidates
= total_candidates
;
3914 *jld_idle_kills
= 0;
3915 jld_eval_aggressive_count
= 0;
3916 jld_priority_band_max
= JETSAM_PRIORITY_UI_SUPPORT
;
3921 * If the parameters have been updated, re-evaluate the aggressive_jetsam_needed condition for
3922 * the non kJetsamAgingPolicySysProcsReclaimedFirst policy since its based on jld_idle_kill_candidates etc.
3924 if ((param_reval
== true) && (jetsam_aging_policy
!= kJetsamAgingPolicySysProcsReclaimedFirst
)) {
3925 aggressive_jetsam_needed
= (*jld_idle_kills
> jld_idle_kill_candidates
);
3929 * It is also possible that the system is down to a very small number of processes in the candidate
3930 * bands. In that case, the decisions made by the memorystatus_aggressive_jetsam_needed_* routines
3931 * would not be useful. In that case, do not trigger aggressive jetsam.
3933 if (total_candidates
< kJetsamMinCandidatesThreshold
) {
3934 #if DEVELOPMENT || DEBUG
3935 printf("memorystatus: aggressive: [FAILED] Low Candidate Count (current: %d, threshold: %d)\n", total_candidates
, kJetsamMinCandidatesThreshold
);
3936 #endif /* DEVELOPMENT || DEBUG */
3937 aggressive_jetsam_needed
= false;
3940 if (aggressive_jetsam_needed
== false) {
3941 /* Either the aging policy or the candidate count decided that aggressive jetsam is not needed. Nothing more to do here. */
3945 /* Looks like aggressive jetsam is needed */
3946 jld_eval_aggressive_count
++;
3948 if (jld_eval_aggressive_count
== memorystatus_jld_eval_aggressive_count
) {
3949 memorystatus_approaching_fg_band(corpse_list_purged
);
3950 } else if (jld_eval_aggressive_count
> memorystatus_jld_eval_aggressive_count
) {
3952 * Bump up the jetsam priority limit (eg: the bucket index)
3953 * Enforce bucket index sanity.
3955 if ((memorystatus_jld_eval_aggressive_priority_band_max
< 0) ||
3956 (memorystatus_jld_eval_aggressive_priority_band_max
>= MEMSTAT_BUCKET_COUNT
)) {
3958 * Do nothing. Stick with the default level.
3961 jld_priority_band_max
= memorystatus_jld_eval_aggressive_priority_band_max
;
3965 /* Visit elevated processes first */
3966 while (elevated_bucket_count
) {
3967 elevated_bucket_count
--;
3970 * memorystatus_kill_elevated_process() drops a reference,
3971 * so take another one so we can continue to use this exit reason
3972 * even after it returns.
3975 os_reason_ref(jetsam_reason
);
3976 killed
= memorystatus_kill_elevated_process(
3979 JETSAM_PRIORITY_ELEVATED_INACTIVE
,
3980 jld_eval_aggressive_count
,
3981 &errors
, &footprint_of_killed_proc
);
3983 *post_snapshot
= TRUE
;
3984 *memory_reclaimed
+= footprint_of_killed_proc
;
3985 if (memorystatus_avail_pages_below_pressure()) {
3987 * Still under pressure.
3988 * Find another pinned processes.
3996 * No pinned processes left to kill.
3997 * Abandon elevated band.
4004 * memorystatus_kill_processes_aggressive() allocates its own
4005 * jetsam_reason so the kMemorystatusKilledProcThrashing cause
4006 * is consistent throughout the aggressive march.
4008 killed
= memorystatus_kill_processes_aggressive(
4009 kMemorystatusKilledProcThrashing
,
4010 jld_eval_aggressive_count
,
4011 jld_priority_band_max
,
4012 &errors
, &footprint_of_killed_proc
);
4015 /* Always generate logs after aggressive kill */
4016 *post_snapshot
= TRUE
;
4017 *memory_reclaimed
+= footprint_of_killed_proc
;
4018 *jld_idle_kills
= 0;
4027 memorystatus_thread(void *param __unused
, wait_result_t wr __unused
)
4029 boolean_t post_snapshot
= FALSE
;
4030 uint32_t errors
= 0;
4031 uint32_t hwm_kill
= 0;
4032 boolean_t sort_flag
= TRUE
;
4033 boolean_t corpse_list_purged
= FALSE
;
4034 int jld_idle_kills
= 0;
4035 struct jetsam_thread_state
*jetsam_thread
= jetsam_current_thread();
4036 uint64_t total_memory_reclaimed
= 0;
4038 assert(jetsam_thread
!= NULL
);
4039 if (jetsam_thread
->inited
== FALSE
) {
4041 * It's the first time the thread has run, so just mark the thread as privileged and block.
4042 * This avoids a spurious pass with unset variables, as set out in <rdar://problem/9609402>.
4046 thread_wire(host_priv_self(), current_thread(), TRUE
);
4047 snprintf(name
, 32, "VM_memorystatus_%d", jetsam_thread
->index
+ 1);
4049 /* Limit all but one thread to the lower jetsam bands, as that's where most of the victims are. */
4050 if (jetsam_thread
->index
== 0) {
4051 if (vm_pageout_state
.vm_restricted_to_single_processor
== TRUE
) {
4052 thread_vm_bind_group_add();
4054 jetsam_thread
->limit_to_low_bands
= FALSE
;
4056 jetsam_thread
->limit_to_low_bands
= TRUE
;
4058 #if CONFIG_THREAD_GROUPS
4059 thread_group_vm_add();
4061 thread_set_thread_name(current_thread(), name
);
4062 jetsam_thread
->inited
= TRUE
;
4063 memorystatus_thread_block(0, memorystatus_thread
);
4066 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_SCAN
) | DBG_FUNC_START
,
4067 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, memorystatus_jld_enabled
, memorystatus_jld_eval_period_msecs
, memorystatus_jld_eval_aggressive_count
, 0);
4070 * Jetsam aware version.
4072 * The VM pressure notification thread is working it's way through clients in parallel.
4074 * So, while the pressure notification thread is targeting processes in order of
4075 * increasing jetsam priority, we can hopefully reduce / stop it's work by killing
4076 * any processes that have exceeded their highwater mark.
4078 * If we run out of HWM processes and our available pages drops below the critical threshold, then,
4079 * we target the least recently used process in order of increasing jetsam priority (exception: the FG band).
4081 while (memorystatus_action_needed()) {
4085 uint64_t memory_reclaimed
= 0;
4086 uint64_t jetsam_reason_code
= JETSAM_REASON_INVALID
;
4087 os_reason_t jetsam_reason
= OS_REASON_NULL
;
4089 cause
= kill_under_pressure_cause
;
4091 case kMemorystatusKilledFCThrashing
:
4092 jetsam_reason_code
= JETSAM_REASON_MEMORY_FCTHRASHING
;
4094 case kMemorystatusKilledVMCompressorThrashing
:
4095 jetsam_reason_code
= JETSAM_REASON_MEMORY_VMCOMPRESSOR_THRASHING
;
4097 case kMemorystatusKilledVMCompressorSpaceShortage
:
4098 jetsam_reason_code
= JETSAM_REASON_MEMORY_VMCOMPRESSOR_SPACE_SHORTAGE
;
4100 case kMemorystatusKilledZoneMapExhaustion
:
4101 jetsam_reason_code
= JETSAM_REASON_ZONE_MAP_EXHAUSTION
;
4103 case kMemorystatusKilledVMPageShortage
:
4106 jetsam_reason_code
= JETSAM_REASON_MEMORY_VMPAGESHORTAGE
;
4107 cause
= kMemorystatusKilledVMPageShortage
;
4112 boolean_t is_critical
= TRUE
;
4113 if (memorystatus_act_on_hiwat_processes(&errors
, &hwm_kill
, &post_snapshot
, &is_critical
, &memory_reclaimed
)) {
4114 total_memory_reclaimed
+= memory_reclaimed
;
4115 if (is_critical
== FALSE
) {
4117 * For now, don't kill any other processes.
4125 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, jetsam_reason_code
);
4126 if (jetsam_reason
== OS_REASON_NULL
) {
4127 printf("memorystatus_thread: failed to allocate jetsam reason\n");
4130 /* Only unlimited jetsam threads should act aggressive */
4131 if (!jetsam_thread
->limit_to_low_bands
&&
4132 memorystatus_act_aggressive(cause
, jetsam_reason
, &jld_idle_kills
, &corpse_list_purged
, &post_snapshot
, &memory_reclaimed
)) {
4133 total_memory_reclaimed
+= memory_reclaimed
;
4138 * memorystatus_kill_top_process() drops a reference,
4139 * so take another one so we can continue to use this exit reason
4140 * even after it returns
4142 os_reason_ref(jetsam_reason
);
4145 killed
= memorystatus_kill_top_process(TRUE
, sort_flag
, cause
, jetsam_reason
, &priority
, &errors
, &memory_reclaimed
);
4149 total_memory_reclaimed
+= memory_reclaimed
;
4150 if (memorystatus_post_snapshot(priority
, cause
) == TRUE
) {
4151 post_snapshot
= TRUE
;
4154 /* Jetsam Loop Detection */
4155 if (memorystatus_jld_enabled
== TRUE
) {
4156 if ((priority
== JETSAM_PRIORITY_IDLE
) || (priority
== system_procs_aging_band
) || (priority
== applications_aging_band
)) {
4160 * We've reached into bands beyond idle deferred.
4161 * We make no attempt to monitor them
4167 * If we have jetsammed a process in or above JETSAM_PRIORITY_UI_SUPPORT
4168 * then we attempt to relieve pressure by purging corpse memory and notifying
4169 * anybody wanting to know this.
4171 if (priority
>= JETSAM_PRIORITY_UI_SUPPORT
) {
4172 memorystatus_approaching_fg_band(&corpse_list_purged
);
4177 if (memorystatus_avail_pages_below_critical()) {
4179 * Still under pressure and unable to kill a process - purge corpse memory
4180 * and get everything back from the pmap.
4182 pmap_release_pages_fast();
4183 if (total_corpses_count() > 0) {
4184 task_purge_all_corpses();
4185 corpse_list_purged
= TRUE
;
4188 if (!jetsam_thread
->limit_to_low_bands
&& memorystatus_avail_pages_below_critical()) {
4190 * Still under pressure and unable to kill a process - panic
4192 panic("memorystatus_jetsam_thread: no victim! available pages:%llu\n", (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES
);
4199 * We do not want to over-kill when thrashing has been detected.
4200 * To avoid that, we reset the flag here and notify the
4203 if (is_reason_thrashing(kill_under_pressure_cause
)) {
4204 kill_under_pressure_cause
= 0;
4206 vm_thrashing_jetsam_done();
4207 #endif /* CONFIG_JETSAM */
4208 } else if (is_reason_zone_map_exhaustion(kill_under_pressure_cause
)) {
4209 kill_under_pressure_cause
= 0;
4212 os_reason_free(jetsam_reason
);
4215 kill_under_pressure_cause
= 0;
4218 memorystatus_clear_errors();
4221 if (post_snapshot
) {
4223 size_t snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
4224 sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_count
);
4225 uint64_t timestamp_now
= mach_absolute_time();
4226 memorystatus_jetsam_snapshot
->notification_time
= timestamp_now
;
4227 memorystatus_jetsam_snapshot
->js_gencount
++;
4228 if (memorystatus_jetsam_snapshot_count
> 0 && (memorystatus_jetsam_snapshot_last_timestamp
== 0 ||
4229 timestamp_now
> memorystatus_jetsam_snapshot_last_timestamp
+ memorystatus_jetsam_snapshot_timeout
)) {
4231 int ret
= memorystatus_send_note(kMemorystatusSnapshotNote
, &snapshot_size
, sizeof(snapshot_size
));
4234 memorystatus_jetsam_snapshot_last_timestamp
= timestamp_now
;
4242 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_SCAN
) | DBG_FUNC_END
,
4243 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, total_memory_reclaimed
, 0, 0, 0);
4245 memorystatus_thread_block(0, memorystatus_thread
);
4250 * when an idle-exitable proc was killed
4252 * when there are no more idle-exitable procs found
4253 * when the attempt to kill an idle-exitable proc failed
4256 memorystatus_idle_exit_from_VM(void)
4259 * This routine should no longer be needed since we are
4260 * now using jetsam bands on all platforms and so will deal
4261 * with IDLE processes within the memorystatus thread itself.
4263 * But we still use it because we observed that macos systems
4264 * started heavy compression/swapping with a bunch of
4265 * idle-exitable processes alive and doing nothing. We decided
4266 * to rather kill those processes than start swapping earlier.
4269 return kill_idle_exit_proc();
4273 * Callback invoked when allowable physical memory footprint exceeded
4274 * (dirty pages + IOKit mappings)
4276 * This is invoked for both advisory, non-fatal per-task high watermarks,
4277 * as well as the fatal task memory limits.
4280 memorystatus_on_ledger_footprint_exceeded(boolean_t warning
, boolean_t memlimit_is_active
, boolean_t memlimit_is_fatal
)
4282 os_reason_t jetsam_reason
= OS_REASON_NULL
;
4284 proc_t p
= current_proc();
4286 #if VM_PRESSURE_EVENTS
4287 if (warning
== TRUE
) {
4289 * This is a warning path which implies that the current process is close, but has
4290 * not yet exceeded its per-process memory limit.
4292 if (memorystatus_warn_process(p
, memlimit_is_active
, memlimit_is_fatal
, FALSE
/* not exceeded */) != TRUE
) {
4293 /* Print warning, since it's possible that task has not registered for pressure notifications */
4294 os_log(OS_LOG_DEFAULT
, "memorystatus_on_ledger_footprint_exceeded: failed to warn the current task (%d exiting, or no handler registered?).\n", p
->p_pid
);
4298 #endif /* VM_PRESSURE_EVENTS */
4300 if (memlimit_is_fatal
) {
4302 * If this process has no high watermark or has a fatal task limit, then we have been invoked because the task
4303 * has violated either the system-wide per-task memory limit OR its own task limit.
4305 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_PERPROCESSLIMIT
);
4306 if (jetsam_reason
== NULL
) {
4307 printf("task_exceeded footprint: failed to allocate jetsam reason\n");
4308 } else if (corpse_for_fatal_memkill
!= 0 && proc_send_synchronous_EXC_RESOURCE(p
) == FALSE
) {
4309 /* Set OS_REASON_FLAG_GENERATE_CRASH_REPORT to generate corpse */
4310 jetsam_reason
->osr_flags
|= OS_REASON_FLAG_GENERATE_CRASH_REPORT
;
4313 if (memorystatus_kill_process_sync(p
->p_pid
, kMemorystatusKilledPerProcessLimit
, jetsam_reason
) != TRUE
) {
4314 printf("task_exceeded_footprint: failed to kill the current task (exiting?).\n");
4318 * HWM offender exists. Done without locks or synchronization.
4319 * See comment near its declaration for more details.
4321 memorystatus_hwm_candidates
= TRUE
;
4323 #if VM_PRESSURE_EVENTS
4325 * The current process is not in the warning path.
4326 * This path implies the current process has exceeded a non-fatal (soft) memory limit.
4327 * Failure to send note is ignored here.
4329 (void)memorystatus_warn_process(p
, memlimit_is_active
, memlimit_is_fatal
, TRUE
/* exceeded */);
4331 #endif /* VM_PRESSURE_EVENTS */
4336 memorystatus_log_exception(const int max_footprint_mb
, boolean_t memlimit_is_active
, boolean_t memlimit_is_fatal
)
4338 proc_t p
= current_proc();
4341 * The limit violation is logged here, but only once per process per limit.
4342 * Soft memory limit is a non-fatal high-water-mark
4343 * Hard memory limit is a fatal custom-task-limit or system-wide per-task memory limit.
4346 os_log_with_startup_serial(OS_LOG_DEFAULT
, "EXC_RESOURCE -> %s[%d] exceeded mem limit: %s%s %d MB (%s)\n",
4347 ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"), (p
? p
->p_pid
: -1), (memlimit_is_active
? "Active" : "Inactive"),
4348 (memlimit_is_fatal
? "Hard" : "Soft"), max_footprint_mb
,
4349 (memlimit_is_fatal
? "fatal" : "non-fatal"));
4357 * Evaluates process state to determine which limit
4358 * should be applied (active vs. inactive limit).
4360 * Processes that have the 'elevated inactive jetsam band' attribute
4361 * are first evaluated based on their current priority band.
4362 * presently elevated ==> active
4364 * Processes that opt into dirty tracking are evaluated
4365 * based on clean vs dirty state.
4367 * clean ==> inactive
4369 * Process that do not opt into dirty tracking are
4370 * evalulated based on priority level.
4371 * Foreground or above ==> active
4372 * Below Foreground ==> inactive
4374 * Return: TRUE if active
4379 proc_jetsam_state_is_active_locked(proc_t p
)
4381 if ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) &&
4382 (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_ELEVATED_INACTIVE
)) {
4384 * process has the 'elevated inactive jetsam band' attribute
4385 * and process is present in the elevated band
4386 * implies active state
4389 } else if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
4391 * process has opted into dirty tracking
4392 * active state is based on dirty vs. clean
4394 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
4397 * implies active state
4403 * implies inactive state
4407 } else if (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
) {
4409 * process is Foreground or higher
4410 * implies active state
4415 * process found below Foreground
4416 * implies inactive state
4423 memorystatus_kill_process_sync(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
)
4427 uint32_t errors
= 0;
4428 uint64_t memory_reclaimed
= 0;
4430 if (victim_pid
== -1) {
4431 /* No pid, so kill first process */
4432 res
= memorystatus_kill_top_process(TRUE
, TRUE
, cause
, jetsam_reason
, NULL
, &errors
, &memory_reclaimed
);
4434 res
= memorystatus_kill_specific_process(victim_pid
, cause
, jetsam_reason
);
4438 memorystatus_clear_errors();
4442 /* Fire off snapshot notification */
4444 size_t snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
4445 sizeof(memorystatus_jetsam_snapshot_entry_t
) * memorystatus_jetsam_snapshot_count
;
4446 uint64_t timestamp_now
= mach_absolute_time();
4447 memorystatus_jetsam_snapshot
->notification_time
= timestamp_now
;
4448 if (memorystatus_jetsam_snapshot_count
> 0 && (memorystatus_jetsam_snapshot_last_timestamp
== 0 ||
4449 timestamp_now
> memorystatus_jetsam_snapshot_last_timestamp
+ memorystatus_jetsam_snapshot_timeout
)) {
4451 int ret
= memorystatus_send_note(kMemorystatusSnapshotNote
, &snapshot_size
, sizeof(snapshot_size
));
4454 memorystatus_jetsam_snapshot_last_timestamp
= timestamp_now
;
4466 * Jetsam a specific process.
4469 memorystatus_kill_specific_process(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
)
4473 uint64_t killtime
= 0;
4474 uint64_t footprint_of_killed_proc
;
4476 clock_usec_t tv_usec
;
4479 /* TODO - add a victim queue and push this into the main jetsam thread */
4481 p
= proc_find(victim_pid
);
4483 os_reason_free(jetsam_reason
);
4489 if (memorystatus_jetsam_snapshot_count
== 0) {
4490 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
4493 killtime
= mach_absolute_time();
4494 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
4495 tv_msec
= tv_usec
/ 1000;
4497 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
4501 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
, &footprint_of_killed_proc
);
4503 os_log_with_startup_serial(OS_LOG_DEFAULT
, "%lu.%03d memorystatus: killing_specific_process pid %d [%s] (%s %d) %lluKB - memorystatus_available_pages: %llu\n",
4504 (unsigned long)tv_sec
, tv_msec
, victim_pid
, ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"),
4505 memorystatus_kill_cause_name
[cause
], (p
? p
->p_memstat_effectivepriority
: -1),
4506 footprint_of_killed_proc
>> 10, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES
);
4515 * Toggle the P_MEMSTAT_TERMINATED state.
4516 * Takes the proc_list_lock.
4519 proc_memstat_terminated(proc_t p
, boolean_t set
)
4521 #if DEVELOPMENT || DEBUG
4525 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
4527 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
4532 #pragma unused(p, set)
4536 #endif /* DEVELOPMENT || DEBUG */
4543 * This is invoked when cpulimits have been exceeded while in fatal mode.
4544 * The jetsam_flags do not apply as those are for memory related kills.
4545 * We call this routine so that the offending process is killed with
4546 * a non-zero exit status.
4549 jetsam_on_ledger_cpulimit_exceeded(void)
4552 int jetsam_flags
= 0; /* make it obvious */
4553 proc_t p
= current_proc();
4554 os_reason_t jetsam_reason
= OS_REASON_NULL
;
4556 printf("task_exceeded_cpulimit: killing pid %d [%s]\n",
4557 p
->p_pid
, (*p
->p_name
? p
->p_name
: "(unknown)"));
4559 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_CPULIMIT
);
4560 if (jetsam_reason
== OS_REASON_NULL
) {
4561 printf("task_exceeded_cpulimit: unable to allocate memory for jetsam reason\n");
4564 retval
= jetsam_do_kill(p
, jetsam_flags
, jetsam_reason
);
4567 printf("task_exceeded_cpulimit: failed to kill current task (exiting?).\n");
4571 #endif /* CONFIG_JETSAM */
4574 memorystatus_get_task_memory_region_count(task_t task
, uint64_t *count
)
4579 *count
= get_task_memory_region_count(task
);
4583 #define MEMORYSTATUS_VM_MAP_FORK_ALLOWED 0x100000000
4584 #define MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED 0x200000000
4586 #if DEVELOPMENT || DEBUG
4589 * Sysctl only used to test memorystatus_allowed_vm_map_fork() path.
4590 * set a new pidwatch value
4592 * get the current pidwatch value
4594 * The pidwatch_val starts out with a PID to watch for in the map_fork path.
4596 * - OR'd with MEMORYSTATUS_VM_MAP_FORK_ALLOWED if we allow the map_fork.
4597 * - OR'd with MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED if we disallow the map_fork.
4598 * - set to -1ull if the map_fork() is aborted for other reasons.
4601 uint64_t memorystatus_vm_map_fork_pidwatch_val
= 0;
4603 static int sysctl_memorystatus_vm_map_fork_pidwatch SYSCTL_HANDLER_ARGS
{
4604 #pragma unused(oidp, arg1, arg2)
4606 uint64_t new_value
= 0;
4607 uint64_t old_value
= 0;
4611 * The pid is held in the low 32 bits.
4612 * The 'allowed' flags are in the upper 32 bits.
4614 old_value
= memorystatus_vm_map_fork_pidwatch_val
;
4616 error
= sysctl_io_number(req
, old_value
, sizeof(old_value
), &new_value
, NULL
);
4618 if (error
|| !req
->newptr
) {
4620 * No new value passed in.
4626 * A new pid was passed in via req->newptr.
4627 * Ignore any attempt to set the higher order bits.
4629 memorystatus_vm_map_fork_pidwatch_val
= new_value
& 0xFFFFFFFF;
4630 printf("memorystatus: pidwatch old_value = 0x%llx, new_value = 0x%llx \n", old_value
, new_value
);
4635 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_vm_map_fork_pidwatch
, CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
,
4636 0, 0, sysctl_memorystatus_vm_map_fork_pidwatch
, "Q", "get/set pid watched for in vm_map_fork");
4640 * Record if a watched process fails to qualify for a vm_map_fork().
4643 memorystatus_abort_vm_map_fork(task_t task
)
4645 if (memorystatus_vm_map_fork_pidwatch_val
!= 0) {
4646 proc_t p
= get_bsdtask_info(task
);
4647 if (p
!= NULL
&& memorystatus_vm_map_fork_pidwatch_val
== (uint64_t)p
->p_pid
) {
4648 memorystatus_vm_map_fork_pidwatch_val
= -1ull;
4654 set_vm_map_fork_pidwatch(task_t task
, uint64_t x
)
4656 if (memorystatus_vm_map_fork_pidwatch_val
!= 0) {
4657 proc_t p
= get_bsdtask_info(task
);
4658 if (p
&& (memorystatus_vm_map_fork_pidwatch_val
== (uint64_t)p
->p_pid
)) {
4659 memorystatus_vm_map_fork_pidwatch_val
|= x
;
4664 #else /* DEVELOPMENT || DEBUG */
4668 set_vm_map_fork_pidwatch(task_t task
, uint64_t x
)
4670 #pragma unused(task)
4674 #endif /* DEVELOPMENT || DEBUG */
4677 * Called during EXC_RESOURCE handling when a process exceeds a soft
4678 * memory limit. This is the corpse fork path and here we decide if
4679 * vm_map_fork will be allowed when creating the corpse.
4680 * The task being considered is suspended.
4682 * By default, a vm_map_fork is allowed to proceed.
4684 * A few simple policy assumptions:
4685 * If the device has a zero system-wide task limit,
4686 * then the vm_map_fork is allowed. macOS always has a zero
4687 * system wide task limit (unless overriden by a boot-arg).
4689 * And if a process's memory footprint calculates less
4690 * than or equal to quarter of the system-wide task limit,
4691 * then the vm_map_fork is allowed. This calculation
4692 * is based on the assumption that a process can
4693 * munch memory up to the system-wide task limit.
4695 extern boolean_t corpse_threshold_system_limit
;
4697 memorystatus_allowed_vm_map_fork(task_t task
)
4699 boolean_t is_allowed
= TRUE
; /* default */
4701 uint64_t footprint_in_bytes
;
4702 uint64_t max_allowed_bytes
;
4704 if (max_task_footprint_mb
== 0) {
4705 set_vm_map_fork_pidwatch(task
, MEMORYSTATUS_VM_MAP_FORK_ALLOWED
);
4709 footprint_in_bytes
= get_task_phys_footprint(task
);
4712 * Maximum is 1/4 of the system-wide task limit by default.
4714 max_allowed_bytes
= ((uint64_t)max_task_footprint_mb
* 1024 * 1024) >> 2;
4716 #if DEBUG || DEVELOPMENT
4717 if (corpse_threshold_system_limit
) {
4718 max_allowed_bytes
= (uint64_t)max_task_footprint_mb
* (1UL << 20);
4720 #endif /* DEBUG || DEVELOPMENT */
4722 if (footprint_in_bytes
> max_allowed_bytes
) {
4723 printf("memorystatus disallowed vm_map_fork %lld %lld\n", footprint_in_bytes
, max_allowed_bytes
);
4724 set_vm_map_fork_pidwatch(task
, MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED
);
4728 set_vm_map_fork_pidwatch(task
, MEMORYSTATUS_VM_MAP_FORK_ALLOWED
);
4733 memorystatus_get_task_page_counts(task_t task
, uint32_t *footprint
, uint32_t *max_footprint_lifetime
, uint32_t *purgeable_pages
)
4740 pages
= (get_task_phys_footprint(task
) / PAGE_SIZE_64
);
4741 assert(((uint32_t)pages
) == pages
);
4742 *footprint
= (uint32_t)pages
;
4744 if (max_footprint_lifetime
) {
4745 pages
= (get_task_phys_footprint_lifetime_max(task
) / PAGE_SIZE_64
);
4746 assert(((uint32_t)pages
) == pages
);
4747 *max_footprint_lifetime
= (uint32_t)pages
;
4749 if (purgeable_pages
) {
4750 pages
= (get_task_purgeable_size(task
) / PAGE_SIZE_64
);
4751 assert(((uint32_t)pages
) == pages
);
4752 *purgeable_pages
= (uint32_t)pages
;
4757 memorystatus_get_task_phys_footprint_page_counts(task_t task
,
4758 uint64_t *internal_pages
, uint64_t *internal_compressed_pages
,
4759 uint64_t *purgeable_nonvolatile_pages
, uint64_t *purgeable_nonvolatile_compressed_pages
,
4760 uint64_t *alternate_accounting_pages
, uint64_t *alternate_accounting_compressed_pages
,
4761 uint64_t *iokit_mapped_pages
, uint64_t *page_table_pages
, uint64_t *frozen_to_swap_pages
)
4765 if (internal_pages
) {
4766 *internal_pages
= (get_task_internal(task
) / PAGE_SIZE_64
);
4769 if (internal_compressed_pages
) {
4770 *internal_compressed_pages
= (get_task_internal_compressed(task
) / PAGE_SIZE_64
);
4773 if (purgeable_nonvolatile_pages
) {
4774 *purgeable_nonvolatile_pages
= (get_task_purgeable_nonvolatile(task
) / PAGE_SIZE_64
);
4777 if (purgeable_nonvolatile_compressed_pages
) {
4778 *purgeable_nonvolatile_compressed_pages
= (get_task_purgeable_nonvolatile_compressed(task
) / PAGE_SIZE_64
);
4781 if (alternate_accounting_pages
) {
4782 *alternate_accounting_pages
= (get_task_alternate_accounting(task
) / PAGE_SIZE_64
);
4785 if (alternate_accounting_compressed_pages
) {
4786 *alternate_accounting_compressed_pages
= (get_task_alternate_accounting_compressed(task
) / PAGE_SIZE_64
);
4789 if (iokit_mapped_pages
) {
4790 *iokit_mapped_pages
= (get_task_iokit_mapped(task
) / PAGE_SIZE_64
);
4793 if (page_table_pages
) {
4794 *page_table_pages
= (get_task_page_table(task
) / PAGE_SIZE_64
);
4798 if (frozen_to_swap_pages
) {
4799 *frozen_to_swap_pages
= (get_task_frozen_to_swap(task
) / PAGE_SIZE_64
);
4801 #else /* CONFIG_FREEZE */
4802 #pragma unused(frozen_to_swap_pages)
4803 #endif /* CONFIG_FREEZE */
4808 * Copies the source entry into the destination snapshot.
4809 * Returns true on success. Fails if the destination snapshot is full.
4810 * Caller must hold the proc list lock.
4813 memorystatus_jetsam_snapshot_copy_entry_locked(memorystatus_jetsam_snapshot_t
*dst_snapshot
, unsigned int dst_snapshot_size
, const memorystatus_jetsam_snapshot_entry_t
*src_entry
)
4815 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
4816 assert(dst_snapshot
);
4818 if (dst_snapshot
->entry_count
== dst_snapshot_size
) {
4819 /* Destination snapshot is full. Can not be updated until it is consumed. */
4822 if (dst_snapshot
->entry_count
== 0) {
4823 memorystatus_init_jetsam_snapshot_header(dst_snapshot
);
4825 memorystatus_jetsam_snapshot_entry_t
*dst_entry
= &dst_snapshot
->entries
[dst_snapshot
->entry_count
++];
4826 memcpy(dst_entry
, src_entry
, sizeof(memorystatus_jetsam_snapshot_entry_t
));
4829 #endif /* CONFIG_FREEZE */
4832 memorystatus_init_jetsam_snapshot_entry_with_kill_locked(memorystatus_jetsam_snapshot_t
*snapshot
, proc_t p
, uint32_t kill_cause
, uint64_t killtime
, memorystatus_jetsam_snapshot_entry_t
**entry
)
4834 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
4835 memorystatus_jetsam_snapshot_entry_t
*snapshot_list
= snapshot
->entries
;
4836 size_t i
= snapshot
->entry_count
;
4838 if (memorystatus_init_jetsam_snapshot_entry_locked(p
, &snapshot_list
[i
], (snapshot
->js_gencount
)) == TRUE
) {
4839 *entry
= &snapshot_list
[i
];
4840 (*entry
)->killed
= kill_cause
;
4841 (*entry
)->jse_killtime
= killtime
;
4843 snapshot
->entry_count
= i
+ 1;
4850 * This routine only acts on the global jetsam event snapshot.
4851 * Updating the process's entry can race when the memorystatus_thread
4852 * has chosen to kill a process that is racing to exit on another core.
4855 memorystatus_update_jetsam_snapshot_entry_locked(proc_t p
, uint32_t kill_cause
, uint64_t killtime
)
4857 memorystatus_jetsam_snapshot_entry_t
*entry
= NULL
;
4858 memorystatus_jetsam_snapshot_t
*snapshot
= NULL
;
4859 memorystatus_jetsam_snapshot_entry_t
*snapshot_list
= NULL
;
4863 bool copied_to_freezer_snapshot
= false;
4864 #endif /* CONFIG_FREEZE */
4866 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
4868 if (memorystatus_jetsam_snapshot_count
== 0) {
4870 * No active snapshot.
4877 * Sanity check as this routine should only be called
4878 * from a jetsam kill path.
4880 assert(kill_cause
!= 0 && killtime
!= 0);
4882 snapshot
= memorystatus_jetsam_snapshot
;
4883 snapshot_list
= memorystatus_jetsam_snapshot
->entries
;
4885 for (i
= 0; i
< memorystatus_jetsam_snapshot_count
; i
++) {
4886 if (snapshot_list
[i
].pid
== p
->p_pid
) {
4887 entry
= &snapshot_list
[i
];
4889 if (entry
->killed
|| entry
->jse_killtime
) {
4891 * We apparently raced on the exit path
4892 * for this process, as it's snapshot entry
4893 * has already recorded a kill.
4895 assert(entry
->killed
&& entry
->jse_killtime
);
4900 * Update the entry we just found in the snapshot.
4903 entry
->killed
= kill_cause
;
4904 entry
->jse_killtime
= killtime
;
4905 entry
->jse_gencount
= snapshot
->js_gencount
;
4906 entry
->jse_idle_delta
= p
->p_memstat_idle_delta
;
4908 entry
->jse_thaw_count
= p
->p_memstat_thaw_count
;
4909 entry
->jse_freeze_skip_reason
= p
->p_memstat_freeze_skip_reason
;
4910 #else /* CONFIG_FREEZE */
4911 entry
->jse_thaw_count
= 0;
4912 entry
->jse_freeze_skip_reason
= kMemorystatusFreezeSkipReasonNone
;
4913 #endif /* CONFIG_FREEZE */
4916 * If a process has moved between bands since snapshot was
4917 * initialized, then likely these fields changed too.
4919 if (entry
->priority
!= p
->p_memstat_effectivepriority
) {
4920 strlcpy(entry
->name
, p
->p_name
, sizeof(entry
->name
));
4921 entry
->priority
= p
->p_memstat_effectivepriority
;
4922 entry
->state
= memorystatus_build_state(p
);
4923 entry
->user_data
= p
->p_memstat_userdata
;
4924 entry
->fds
= p
->p_fd
->fd_nfiles
;
4928 * Always update the page counts on a kill.
4932 uint32_t max_pages_lifetime
= 0;
4933 uint32_t purgeable_pages
= 0;
4935 memorystatus_get_task_page_counts(p
->task
, &pages
, &max_pages_lifetime
, &purgeable_pages
);
4936 entry
->pages
= (uint64_t)pages
;
4937 entry
->max_pages_lifetime
= (uint64_t)max_pages_lifetime
;
4938 entry
->purgeable_pages
= (uint64_t)purgeable_pages
;
4940 uint64_t internal_pages
= 0;
4941 uint64_t internal_compressed_pages
= 0;
4942 uint64_t purgeable_nonvolatile_pages
= 0;
4943 uint64_t purgeable_nonvolatile_compressed_pages
= 0;
4944 uint64_t alternate_accounting_pages
= 0;
4945 uint64_t alternate_accounting_compressed_pages
= 0;
4946 uint64_t iokit_mapped_pages
= 0;
4947 uint64_t page_table_pages
= 0;
4948 uint64_t frozen_to_swap_pages
= 0;
4950 memorystatus_get_task_phys_footprint_page_counts(p
->task
, &internal_pages
, &internal_compressed_pages
,
4951 &purgeable_nonvolatile_pages
, &purgeable_nonvolatile_compressed_pages
,
4952 &alternate_accounting_pages
, &alternate_accounting_compressed_pages
,
4953 &iokit_mapped_pages
, &page_table_pages
, &frozen_to_swap_pages
);
4955 entry
->jse_internal_pages
= internal_pages
;
4956 entry
->jse_internal_compressed_pages
= internal_compressed_pages
;
4957 entry
->jse_purgeable_nonvolatile_pages
= purgeable_nonvolatile_pages
;
4958 entry
->jse_purgeable_nonvolatile_compressed_pages
= purgeable_nonvolatile_compressed_pages
;
4959 entry
->jse_alternate_accounting_pages
= alternate_accounting_pages
;
4960 entry
->jse_alternate_accounting_compressed_pages
= alternate_accounting_compressed_pages
;
4961 entry
->jse_iokit_mapped_pages
= iokit_mapped_pages
;
4962 entry
->jse_page_table_pages
= page_table_pages
;
4963 entry
->jse_frozen_to_swap_pages
= frozen_to_swap_pages
;
4965 uint64_t region_count
= 0;
4966 memorystatus_get_task_memory_region_count(p
->task
, ®ion_count
);
4967 entry
->jse_memory_region_count
= region_count
;
4973 if (entry
== NULL
) {
4975 * The entry was not found in the snapshot, so the process must have
4976 * launched after the snapshot was initialized.
4977 * Let's try to append the new entry.
4979 if (memorystatus_jetsam_snapshot_count
< memorystatus_jetsam_snapshot_max
) {
4981 * A populated snapshot buffer exists
4982 * and there is room to init a new entry.
4984 assert(memorystatus_jetsam_snapshot_count
== snapshot
->entry_count
);
4986 if (memorystatus_init_jetsam_snapshot_entry_with_kill_locked(snapshot
, p
, kill_cause
, killtime
, &entry
)) {
4987 memorystatus_jetsam_snapshot_count
++;
4989 if (memorystatus_jetsam_snapshot_count
>= memorystatus_jetsam_snapshot_max
) {
4991 * We just used the last slot in the snapshot buffer.
4992 * We only want to log it once... so we do it here
4993 * when we notice we've hit the max.
4995 printf("memorystatus: WARNING snapshot buffer is full, count %d\n",
4996 memorystatus_jetsam_snapshot_count
);
5005 if (memorystatus_jetsam_use_freezer_snapshot
&& isApp(p
)) {
5006 /* This is an app kill. Record it in the freezer snapshot so dasd can incorporate this in its recommendations. */
5007 copied_to_freezer_snapshot
= memorystatus_jetsam_snapshot_copy_entry_locked(memorystatus_jetsam_snapshot_freezer
, memorystatus_jetsam_snapshot_freezer_max
, entry
);
5008 if (copied_to_freezer_snapshot
&& memorystatus_jetsam_snapshot_freezer
->entry_count
== memorystatus_jetsam_snapshot_freezer_max
) {
5010 * We just used the last slot in the freezer snapshot buffer.
5011 * We only want to log it once... so we do it here
5012 * when we notice we've hit the max.
5014 os_log_error(OS_LOG_DEFAULT
, "memorystatus: WARNING freezer snapshot buffer is full, count %zu",
5015 memorystatus_jetsam_snapshot_freezer
->entry_count
);
5018 #endif /* CONFIG_FREEZE */
5021 * If we reach here, the snapshot buffer could not be updated.
5022 * Most likely, the buffer is full, in which case we would have
5023 * logged a warning in the previous call.
5025 * For now, we will stop appending snapshot entries.
5026 * When the buffer is consumed, the snapshot state will reset.
5029 MEMORYSTATUS_DEBUG(4, "memorystatus_update_jetsam_snapshot_entry_locked: failed to update pid %d, priority %d, count %d\n",
5030 p
->p_pid
, p
->p_memstat_effectivepriority
, memorystatus_jetsam_snapshot_count
);
5033 /* We still attempt to record this in the freezer snapshot */
5034 if (memorystatus_jetsam_use_freezer_snapshot
&& isApp(p
)) {
5035 snapshot
= memorystatus_jetsam_snapshot_freezer
;
5036 if (snapshot
->entry_count
< memorystatus_jetsam_snapshot_freezer_max
) {
5037 copied_to_freezer_snapshot
= memorystatus_init_jetsam_snapshot_entry_with_kill_locked(snapshot
, p
, kill_cause
, killtime
, &entry
);
5038 if (copied_to_freezer_snapshot
&& memorystatus_jetsam_snapshot_freezer
->entry_count
== memorystatus_jetsam_snapshot_freezer_max
) {
5040 * We just used the last slot in the freezer snapshot buffer.
5041 * We only want to log it once... so we do it here
5042 * when we notice we've hit the max.
5044 os_log_error(OS_LOG_DEFAULT
, "memorystatus: WARNING freezer snapshot buffer is full, count %zu",
5045 memorystatus_jetsam_snapshot_freezer
->entry_count
);
5049 #endif /* CONFIG_FREEZE */
5057 memorystatus_pages_update(unsigned int pages_avail
)
5059 memorystatus_available_pages
= pages_avail
;
5061 #if VM_PRESSURE_EVENTS
5063 * Since memorystatus_available_pages changes, we should
5064 * re-evaluate the pressure levels on the system and
5065 * check if we need to wake the pressure thread.
5066 * We also update memorystatus_level in that routine.
5068 vm_pressure_response();
5070 if (memorystatus_available_pages
<= memorystatus_available_pages_pressure
) {
5071 if (memorystatus_hwm_candidates
|| (memorystatus_available_pages
<= memorystatus_available_pages_critical
)) {
5072 memorystatus_thread_wake();
5077 * We can't grab the freezer_mutex here even though that synchronization would be correct to inspect
5078 * the # of frozen processes and wakeup the freezer thread. Reason being that we come here into this
5079 * code with (possibly) the page-queue locks held and preemption disabled. So trying to grab a mutex here
5080 * will result in the "mutex with preemption disabled" panic.
5083 if (memorystatus_freeze_thread_should_run() == TRUE
) {
5085 * The freezer thread is usually woken up by some user-space call i.e. pid_hibernate(any process).
5086 * That trigger isn't invoked often enough and so we are enabling this explicit wakeup here.
5088 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
5089 thread_wakeup((event_t
)&memorystatus_freeze_wakeup
);
5092 #endif /* CONFIG_FREEZE */
5094 #else /* VM_PRESSURE_EVENTS */
5096 boolean_t critical
, delta
;
5098 if (!memorystatus_delta
) {
5102 critical
= (pages_avail
< memorystatus_available_pages_critical
) ? TRUE
: FALSE
;
5103 delta
= ((pages_avail
>= (memorystatus_available_pages
+ memorystatus_delta
))
5104 || (memorystatus_available_pages
>= (pages_avail
+ memorystatus_delta
))) ? TRUE
: FALSE
;
5106 if (critical
|| delta
) {
5107 unsigned int total_pages
;
5109 total_pages
= (unsigned int) atop_64(max_mem
);
5110 #if CONFIG_SECLUDED_MEMORY
5111 total_pages
-= vm_page_secluded_count
;
5112 #endif /* CONFIG_SECLUDED_MEMORY */
5113 memorystatus_level
= memorystatus_available_pages
* 100 / total_pages
;
5114 memorystatus_thread_wake();
5116 #endif /* VM_PRESSURE_EVENTS */
5118 #endif /* CONFIG_JETSAM */
5121 memorystatus_init_jetsam_snapshot_entry_locked(proc_t p
, memorystatus_jetsam_snapshot_entry_t
*entry
, uint64_t gencount
)
5124 clock_usec_t tv_usec
;
5126 uint32_t max_pages_lifetime
= 0;
5127 uint32_t purgeable_pages
= 0;
5128 uint64_t internal_pages
= 0;
5129 uint64_t internal_compressed_pages
= 0;
5130 uint64_t purgeable_nonvolatile_pages
= 0;
5131 uint64_t purgeable_nonvolatile_compressed_pages
= 0;
5132 uint64_t alternate_accounting_pages
= 0;
5133 uint64_t alternate_accounting_compressed_pages
= 0;
5134 uint64_t iokit_mapped_pages
= 0;
5135 uint64_t page_table_pages
= 0;
5136 uint64_t frozen_to_swap_pages
= 0;
5137 uint64_t region_count
= 0;
5138 uint64_t cids
[COALITION_NUM_TYPES
];
5140 memset(entry
, 0, sizeof(memorystatus_jetsam_snapshot_entry_t
));
5142 entry
->pid
= p
->p_pid
;
5143 strlcpy(&entry
->name
[0], p
->p_name
, sizeof(entry
->name
));
5144 entry
->priority
= p
->p_memstat_effectivepriority
;
5146 memorystatus_get_task_page_counts(p
->task
, &pages
, &max_pages_lifetime
, &purgeable_pages
);
5147 entry
->pages
= (uint64_t)pages
;
5148 entry
->max_pages_lifetime
= (uint64_t)max_pages_lifetime
;
5149 entry
->purgeable_pages
= (uint64_t)purgeable_pages
;
5151 memorystatus_get_task_phys_footprint_page_counts(p
->task
, &internal_pages
, &internal_compressed_pages
,
5152 &purgeable_nonvolatile_pages
, &purgeable_nonvolatile_compressed_pages
,
5153 &alternate_accounting_pages
, &alternate_accounting_compressed_pages
,
5154 &iokit_mapped_pages
, &page_table_pages
, &frozen_to_swap_pages
);
5156 entry
->jse_internal_pages
= internal_pages
;
5157 entry
->jse_internal_compressed_pages
= internal_compressed_pages
;
5158 entry
->jse_purgeable_nonvolatile_pages
= purgeable_nonvolatile_pages
;
5159 entry
->jse_purgeable_nonvolatile_compressed_pages
= purgeable_nonvolatile_compressed_pages
;
5160 entry
->jse_alternate_accounting_pages
= alternate_accounting_pages
;
5161 entry
->jse_alternate_accounting_compressed_pages
= alternate_accounting_compressed_pages
;
5162 entry
->jse_iokit_mapped_pages
= iokit_mapped_pages
;
5163 entry
->jse_page_table_pages
= page_table_pages
;
5164 entry
->jse_frozen_to_swap_pages
= frozen_to_swap_pages
;
5166 memorystatus_get_task_memory_region_count(p
->task
, ®ion_count
);
5167 entry
->jse_memory_region_count
= region_count
;
5169 entry
->state
= memorystatus_build_state(p
);
5170 entry
->user_data
= p
->p_memstat_userdata
;
5171 memcpy(&entry
->uuid
[0], &p
->p_uuid
[0], sizeof(p
->p_uuid
));
5172 entry
->fds
= p
->p_fd
->fd_nfiles
;
5174 absolutetime_to_microtime(get_task_cpu_time(p
->task
), &tv_sec
, &tv_usec
);
5175 entry
->cpu_time
.tv_sec
= (int64_t)tv_sec
;
5176 entry
->cpu_time
.tv_usec
= (int64_t)tv_usec
;
5178 assert(p
->p_stats
!= NULL
);
5179 entry
->jse_starttime
= p
->p_stats
->ps_start
; /* abstime process started */
5180 entry
->jse_killtime
= 0; /* abstime jetsam chose to kill process */
5181 entry
->killed
= 0; /* the jetsam kill cause */
5182 entry
->jse_gencount
= gencount
; /* indicates a pass through jetsam thread, when process was targeted to be killed */
5184 entry
->jse_idle_delta
= p
->p_memstat_idle_delta
; /* Most recent timespan spent in idle-band */
5187 entry
->jse_freeze_skip_reason
= p
->p_memstat_freeze_skip_reason
;
5188 entry
->jse_thaw_count
= p
->p_memstat_thaw_count
;
5189 #else /* CONFIG_FREEZE */
5190 entry
->jse_thaw_count
= 0;
5191 entry
->jse_freeze_skip_reason
= kMemorystatusFreezeSkipReasonNone
;
5192 #endif /* CONFIG_FREEZE */
5194 proc_coalitionids(p
, cids
);
5195 entry
->jse_coalition_jetsam_id
= cids
[COALITION_TYPE_JETSAM
];
5201 memorystatus_init_snapshot_vmstats(memorystatus_jetsam_snapshot_t
*snapshot
)
5203 kern_return_t kr
= KERN_SUCCESS
;
5204 mach_msg_type_number_t count
= HOST_VM_INFO64_COUNT
;
5205 vm_statistics64_data_t vm_stat
;
5207 if ((kr
= host_statistics64(host_self(), HOST_VM_INFO64
, (host_info64_t
)&vm_stat
, &count
)) != KERN_SUCCESS
) {
5208 printf("memorystatus_init_jetsam_snapshot_stats: host_statistics64 failed with %d\n", kr
);
5209 memset(&snapshot
->stats
, 0, sizeof(snapshot
->stats
));
5211 snapshot
->stats
.free_pages
= vm_stat
.free_count
;
5212 snapshot
->stats
.active_pages
= vm_stat
.active_count
;
5213 snapshot
->stats
.inactive_pages
= vm_stat
.inactive_count
;
5214 snapshot
->stats
.throttled_pages
= vm_stat
.throttled_count
;
5215 snapshot
->stats
.purgeable_pages
= vm_stat
.purgeable_count
;
5216 snapshot
->stats
.wired_pages
= vm_stat
.wire_count
;
5218 snapshot
->stats
.speculative_pages
= vm_stat
.speculative_count
;
5219 snapshot
->stats
.filebacked_pages
= vm_stat
.external_page_count
;
5220 snapshot
->stats
.anonymous_pages
= vm_stat
.internal_page_count
;
5221 snapshot
->stats
.compressions
= vm_stat
.compressions
;
5222 snapshot
->stats
.decompressions
= vm_stat
.decompressions
;
5223 snapshot
->stats
.compressor_pages
= vm_stat
.compressor_page_count
;
5224 snapshot
->stats
.total_uncompressed_pages_in_compressor
= vm_stat
.total_uncompressed_pages_in_compressor
;
5227 get_zone_map_size(&snapshot
->stats
.zone_map_size
, &snapshot
->stats
.zone_map_capacity
);
5229 bzero(snapshot
->stats
.largest_zone_name
, sizeof(snapshot
->stats
.largest_zone_name
));
5230 get_largest_zone_info(snapshot
->stats
.largest_zone_name
, sizeof(snapshot
->stats
.largest_zone_name
),
5231 &snapshot
->stats
.largest_zone_size
);
5235 * Collect vm statistics at boot.
5236 * Called only once (see kern_exec.c)
5237 * Data can be consumed at any time.
5240 memorystatus_init_at_boot_snapshot()
5242 memorystatus_init_snapshot_vmstats(&memorystatus_at_boot_snapshot
);
5243 memorystatus_at_boot_snapshot
.entry_count
= 0;
5244 memorystatus_at_boot_snapshot
.notification_time
= 0; /* updated when consumed */
5245 memorystatus_at_boot_snapshot
.snapshot_time
= mach_absolute_time();
5249 memorystatus_init_jetsam_snapshot_header(memorystatus_jetsam_snapshot_t
*snapshot
)
5251 memorystatus_init_snapshot_vmstats(snapshot
);
5252 snapshot
->snapshot_time
= mach_absolute_time();
5253 snapshot
->notification_time
= 0;
5254 snapshot
->js_gencount
= 0;
5258 memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t
*od_snapshot
, uint32_t ods_list_count
)
5261 unsigned int b
= 0, i
= 0;
5263 memorystatus_jetsam_snapshot_t
*snapshot
= NULL
;
5264 memorystatus_jetsam_snapshot_entry_t
*snapshot_list
= NULL
;
5265 unsigned int snapshot_max
= 0;
5267 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
5271 * This is an on_demand snapshot
5273 snapshot
= od_snapshot
;
5274 snapshot_list
= od_snapshot
->entries
;
5275 snapshot_max
= ods_list_count
;
5278 * This is a jetsam event snapshot
5280 snapshot
= memorystatus_jetsam_snapshot
;
5281 snapshot_list
= memorystatus_jetsam_snapshot
->entries
;
5282 snapshot_max
= memorystatus_jetsam_snapshot_max
;
5285 memorystatus_init_jetsam_snapshot_header(snapshot
);
5287 next_p
= memorystatus_get_first_proc_locked(&b
, TRUE
);
5290 next_p
= memorystatus_get_next_proc_locked(&b
, p
, TRUE
);
5292 if (FALSE
== memorystatus_init_jetsam_snapshot_entry_locked(p
, &snapshot_list
[i
], snapshot
->js_gencount
)) {
5296 MEMORYSTATUS_DEBUG(0, "jetsam snapshot pid %d, uuid = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5298 p
->p_uuid
[0], p
->p_uuid
[1], p
->p_uuid
[2], p
->p_uuid
[3], p
->p_uuid
[4], p
->p_uuid
[5], p
->p_uuid
[6], p
->p_uuid
[7],
5299 p
->p_uuid
[8], p
->p_uuid
[9], p
->p_uuid
[10], p
->p_uuid
[11], p
->p_uuid
[12], p
->p_uuid
[13], p
->p_uuid
[14], p
->p_uuid
[15]);
5301 if (++i
== snapshot_max
) {
5306 snapshot
->entry_count
= i
;
5309 /* update the system buffer count */
5310 memorystatus_jetsam_snapshot_count
= i
;
5314 #if DEVELOPMENT || DEBUG
5318 memorystatus_cmd_set_panic_bits(user_addr_t buffer
, size_t buffer_size
)
5321 memorystatus_jetsam_panic_options_t debug
;
5323 if (buffer_size
!= sizeof(memorystatus_jetsam_panic_options_t
)) {
5327 ret
= copyin(buffer
, &debug
, buffer_size
);
5332 /* Panic bits match kMemorystatusKilled* enum */
5333 memorystatus_jetsam_panic_debug
= (memorystatus_jetsam_panic_debug
& ~debug
.mask
) | (debug
.data
& debug
.mask
);
5335 /* Copyout new value */
5336 debug
.data
= memorystatus_jetsam_panic_debug
;
5337 ret
= copyout(&debug
, buffer
, sizeof(memorystatus_jetsam_panic_options_t
));
5341 #endif /* CONFIG_JETSAM */
5344 * Verify that the given bucket has been sorted correctly.
5346 * Walks through the bucket and verifies that all pids in the
5347 * expected_order buffer are in that bucket and in the same
5350 * The proc_list_lock must be held by the caller.
5353 memorystatus_verify_sort_order(unsigned int bucket_index
, pid_t
*expected_order
, size_t num_pids
)
5355 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
5362 * NB: We allow other procs to be mixed in within the expected ones.
5363 * We just need the expected procs to be in the right order relative to each other.
5365 p
= memorystatus_get_first_proc_locked(&bucket_index
, FALSE
);
5367 if (p
->p_pid
== expected_order
[i
]) {
5370 if (i
== num_pids
) {
5373 p
= memorystatus_get_next_proc_locked(&bucket_index
, p
, FALSE
);
5375 if (i
!= num_pids
) {
5377 size_t len
= sizeof(buffer
);
5378 size_t buffer_idx
= 0;
5379 os_log_error(OS_LOG_DEFAULT
, "memorystatus_verify_sort_order: Processes in bucket %d were not sorted properly\n", bucket_index
);
5380 for (i
= 0; i
< num_pids
; i
++) {
5381 int num_written
= snprintf(buffer
+ buffer_idx
, len
- buffer_idx
, "%d,", expected_order
[i
]);
5382 if (num_written
<= 0) {
5385 if (buffer_idx
+ (unsigned int) num_written
>= len
) {
5388 buffer_idx
+= num_written
;
5390 os_log_error(OS_LOG_DEFAULT
, "memorystatus_verify_sort_order: Expected order [%s]", buffer
);
5391 memset(buffer
, 0, len
);
5393 p
= memorystatus_get_first_proc_locked(&bucket_index
, FALSE
);
5395 os_log_error(OS_LOG_DEFAULT
, "memorystatus_verify_sort_order: Actual order:");
5398 if (buffer_idx
== 0) {
5399 num_written
= snprintf(buffer
+ buffer_idx
, len
- buffer_idx
, "%zu: %d,", i
, p
->p_pid
);
5401 num_written
= snprintf(buffer
+ buffer_idx
, len
- buffer_idx
, "%d,", p
->p_pid
);
5403 if (num_written
<= 0) {
5406 buffer_idx
+= (unsigned int) num_written
;
5407 assert(buffer_idx
<= len
);
5409 os_log_error(OS_LOG_DEFAULT
, "memorystatus_verify_sort_order: %s", buffer
);
5412 p
= memorystatus_get_next_proc_locked(&bucket_index
, p
, FALSE
);
5415 if (buffer_idx
!= 0) {
5416 os_log_error(OS_LOG_DEFAULT
, "memorystatus_verify_sort_order: %s", buffer
);
5424 * Triggers a sort_order on a specified jetsam priority band.
5425 * This is for testing only, used to force a path through the sort
5429 memorystatus_cmd_test_jetsam_sort(int priority
,
5431 user_addr_t expected_order_user
,
5432 size_t expected_order_user_len
)
5435 unsigned int bucket_index
= 0;
5436 static size_t kMaxPids
= 8;
5437 pid_t expected_order
[kMaxPids
];
5438 size_t copy_size
= sizeof(expected_order
);
5441 if (expected_order_user_len
< copy_size
) {
5442 copy_size
= expected_order_user_len
;
5444 num_pids
= copy_size
/ sizeof(pid_t
);
5446 error
= copyin(expected_order_user
, expected_order
, copy_size
);
5451 if (priority
== -1) {
5452 /* Use as shorthand for default priority */
5453 bucket_index
= JETSAM_PRIORITY_DEFAULT
;
5455 bucket_index
= (unsigned int)priority
;
5459 * Acquire lock before sorting so we can check the sort order
5460 * while still holding the lock.
5464 memorystatus_sort_bucket_locked(bucket_index
, sort_order
);
5466 if (expected_order_user
!= CAST_USER_ADDR_T(NULL
) && expected_order_user_len
> 0) {
5467 error
= memorystatus_verify_sort_order(bucket_index
, expected_order
, num_pids
);
5475 #endif /* DEVELOPMENT || DEBUG */
5478 * Prepare the process to be killed (set state, update snapshot) and kill it.
5480 static uint64_t memorystatus_purge_before_jetsam_success
= 0;
5483 memorystatus_kill_proc(proc_t p
, uint32_t cause
, os_reason_t jetsam_reason
, boolean_t
*killed
, uint64_t *footprint_of_killed_proc
)
5486 uint32_t aPid_ep
= 0;
5488 uint64_t killtime
= 0;
5490 clock_usec_t tv_usec
;
5492 boolean_t retval
= FALSE
;
5495 aPid_ep
= p
->p_memstat_effectivepriority
;
5497 if (cause
!= kMemorystatusKilledVnodes
&& cause
!= kMemorystatusKilledZoneMapExhaustion
) {
5499 * Genuine memory pressure and not other (vnode/zone) resource exhaustion.
5501 boolean_t success
= FALSE
;
5502 uint64_t num_pages_purged
;
5503 uint64_t num_pages_reclaimed
= 0;
5504 uint64_t num_pages_unsecluded
= 0;
5506 networking_memstatus_callout(p
, cause
);
5507 num_pages_purged
= vm_purgeable_purge_task_owned(p
->task
);
5508 num_pages_reclaimed
+= num_pages_purged
;
5509 #if CONFIG_SECLUDED_MEMORY
5510 if (cause
== kMemorystatusKilledVMPageShortage
&&
5511 vm_page_secluded_count
> 0 &&
5512 task_can_use_secluded_mem(p
->task
, FALSE
)) {
5514 * We're about to kill a process that has access
5515 * to the secluded pool. Drain that pool into the
5516 * free or active queues to make these pages re-appear
5517 * as "available", which might make us no longer need
5518 * to kill that process.
5519 * Since the secluded pool does not get refilled while
5520 * a process has access to it, it should remain
5523 num_pages_unsecluded
= vm_page_secluded_drain();
5524 num_pages_reclaimed
+= num_pages_unsecluded
;
5526 #endif /* CONFIG_SECLUDED_MEMORY */
5528 if (num_pages_reclaimed
) {
5530 * We actually reclaimed something and so let's
5531 * check if we need to continue with the kill.
5533 if (cause
== kMemorystatusKilledHiwat
) {
5534 uint64_t footprint_in_bytes
= get_task_phys_footprint(p
->task
);
5535 uint64_t memlimit_in_bytes
= (((uint64_t)p
->p_memstat_memlimit
) * 1024ULL * 1024ULL); /* convert MB to bytes */
5536 success
= (footprint_in_bytes
<= memlimit_in_bytes
);
5538 success
= (memorystatus_avail_pages_below_pressure() == FALSE
);
5539 #if CONFIG_SECLUDED_MEMORY
5540 if (!success
&& num_pages_unsecluded
) {
5542 * We just drained the secluded pool
5543 * because we're about to kill a
5544 * process that has access to it.
5545 * This is an important process and
5546 * we'd rather not kill it unless
5547 * absolutely necessary, so declare
5548 * success even if draining the pool
5549 * did not quite get us out of the
5550 * "pressure" level but still got
5551 * us out of the "critical" level.
5553 success
= (memorystatus_avail_pages_below_critical() == FALSE
);
5555 #endif /* CONFIG_SECLUDED_MEMORY */
5559 memorystatus_purge_before_jetsam_success
++;
5561 os_log_with_startup_serial(OS_LOG_DEFAULT
, "memorystatus: reclaimed %llu pages (%llu purged, %llu unsecluded) from pid %d [%s] and avoided %s\n",
5562 num_pages_reclaimed
, num_pages_purged
, num_pages_unsecluded
, aPid
, ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"), memorystatus_kill_cause_name
[cause
]);
5571 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
5572 MEMORYSTATUS_DEBUG(1, "jetsam: killing pid %d [%s] - %lld Mb > 1 (%d Mb)\n",
5573 aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
5574 (footprint_in_bytes
/ (1024ULL * 1024ULL)), /* converted bytes to MB */
5575 p
->p_memstat_memlimit
);
5576 #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
5578 killtime
= mach_absolute_time();
5579 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
5580 tv_msec
= tv_usec
/ 1000;
5583 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
5586 char kill_reason_string
[128];
5588 if (cause
== kMemorystatusKilledHiwat
) {
5589 strlcpy(kill_reason_string
, "killing_highwater_process", 128);
5591 if (aPid_ep
== JETSAM_PRIORITY_IDLE
) {
5592 strlcpy(kill_reason_string
, "killing_idle_process", 128);
5594 strlcpy(kill_reason_string
, "killing_top_process", 128);
5599 * memorystatus_do_kill drops a reference, so take another one so we can
5600 * continue to use this exit reason even after memorystatus_do_kill()
5603 os_reason_ref(jetsam_reason
);
5605 retval
= memorystatus_do_kill(p
, cause
, jetsam_reason
, footprint_of_killed_proc
);
5608 os_log_with_startup_serial(OS_LOG_DEFAULT
, "%lu.%03d memorystatus: %s pid %d [%s] (%s %d) %lluKB - memorystatus_available_pages: %llu",
5609 (unsigned long)tv_sec
, tv_msec
, kill_reason_string
,
5610 aPid
, ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"),
5611 memorystatus_kill_cause_name
[cause
], aPid_ep
,
5612 (*footprint_of_killed_proc
) >> 10, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES
);
5618 * Jetsam the first process in the queue.
5621 memorystatus_kill_top_process(boolean_t any
, boolean_t sort_flag
, uint32_t cause
, os_reason_t jetsam_reason
,
5622 int32_t *priority
, uint32_t *errors
, uint64_t *memory_reclaimed
)
5625 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5626 boolean_t new_snapshot
= FALSE
, force_new_snapshot
= FALSE
, killed
= FALSE
, freed_mem
= FALSE
;
5629 int32_t local_max_kill_prio
= JETSAM_PRIORITY_IDLE
;
5630 uint64_t footprint_of_killed_proc
= 0;
5632 #ifndef CONFIG_FREEZE
5636 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
5637 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, 0, 0, 0, 0);
5641 if (sort_flag
== TRUE
) {
5642 (void)memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND
, JETSAM_SORT_DEFAULT
);
5645 local_max_kill_prio
= max_kill_priority
;
5647 force_new_snapshot
= FALSE
;
5649 #else /* CONFIG_JETSAM */
5651 if (sort_flag
== TRUE
) {
5652 (void)memorystatus_sort_bucket(JETSAM_PRIORITY_IDLE
, JETSAM_SORT_DEFAULT
);
5656 * On macos, we currently only have 2 reasons to be here:
5658 * kMemorystatusKilledZoneMapExhaustion
5660 * kMemorystatusKilledVMCompressorSpaceShortage
5662 * If we are here because of kMemorystatusKilledZoneMapExhaustion, we will consider
5663 * any and all processes as eligible kill candidates since we need to avoid a panic.
5665 * Since this function can be called async. it is harder to toggle the max_kill_priority
5666 * value before and after a call. And so we use this local variable to set the upper band
5667 * on the eligible kill bands.
5669 if (cause
== kMemorystatusKilledZoneMapExhaustion
) {
5670 local_max_kill_prio
= JETSAM_PRIORITY_MAX
;
5672 local_max_kill_prio
= max_kill_priority
;
5676 * And, because we are here under extreme circumstances, we force a snapshot even for
5679 force_new_snapshot
= TRUE
;
5681 #endif /* CONFIG_JETSAM */
5683 if (cause
!= kMemorystatusKilledZoneMapExhaustion
&&
5684 jetsam_current_thread() != NULL
&&
5685 jetsam_current_thread()->limit_to_low_bands
&&
5686 local_max_kill_prio
> JETSAM_PRIORITY_BACKGROUND
) {
5687 local_max_kill_prio
= JETSAM_PRIORITY_BACKGROUND
;
5692 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5693 while (next_p
&& (next_p
->p_memstat_effectivepriority
<= local_max_kill_prio
)) {
5695 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
5699 aPid_ep
= p
->p_memstat_effectivepriority
;
5701 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5702 continue; /* with lock held */
5705 if (cause
== kMemorystatusKilledVnodes
) {
5707 * If the system runs out of vnodes, we systematically jetsam
5708 * processes in hopes of stumbling onto a vnode gain that helps
5709 * the system recover. The process that happens to trigger
5710 * this path has no known relationship to the vnode shortage.
5711 * Deadlock avoidance: attempt to safeguard the caller.
5714 if (p
== current_proc()) {
5715 /* do not jetsam the current process */
5722 boolean_t reclaim_proc
= !(p
->p_memstat_state
& P_MEMSTAT_LOCKED
);
5723 if (any
|| reclaim_proc
) {
5734 if (proc_ref_locked(p
) == p
) {
5736 * Mark as terminated so that if exit1() indicates success, but the process (for example)
5737 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
5738 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
5739 * acquisition of the proc lock.
5741 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5744 * We need to restart the search again because
5745 * proc_ref_locked _can_ drop the proc_list lock
5746 * and we could have lost our stored next_p via
5747 * an exit() on another core.
5750 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5755 * Capture a snapshot if none exists and:
5756 * - we are forcing a new snapshot creation, either because:
5757 * - on a particular platform we need these snapshots every time, OR
5758 * - a boot-arg/embedded device tree property has been set.
5759 * - priority was not requested (this is something other than an ambient kill)
5760 * - the priority was requested *and* the targeted process is not at idle priority
5762 if ((memorystatus_jetsam_snapshot_count
== 0) &&
5763 (force_new_snapshot
|| memorystatus_idle_snapshot
|| ((!priority
) || (priority
&& (aPid_ep
!= JETSAM_PRIORITY_IDLE
))))) {
5764 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
5765 new_snapshot
= TRUE
;
5770 freed_mem
= memorystatus_kill_proc(p
, cause
, jetsam_reason
, &killed
, &footprint_of_killed_proc
); /* purged and/or killed 'p' */
5774 *memory_reclaimed
= footprint_of_killed_proc
;
5776 *priority
= aPid_ep
;
5781 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5789 * Failure - first unwind the state,
5790 * then fall through to restart the search.
5793 proc_rele_locked(p
);
5794 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5795 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
5799 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5806 os_reason_free(jetsam_reason
);
5809 *memory_reclaimed
= 0;
5811 /* Clear snapshot if freshly captured and no target was found */
5814 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
5819 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
5820 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, killed
? aPid
: 0, killed
, *memory_reclaimed
, 0);
5826 * Jetsam aggressively
5829 memorystatus_kill_processes_aggressive(uint32_t cause
, int aggr_count
,
5830 int32_t priority_max
, uint32_t *errors
, uint64_t *memory_reclaimed
)
5833 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5834 boolean_t new_snapshot
= FALSE
, killed
= FALSE
;
5837 int32_t aPid_ep
= 0;
5838 unsigned int memorystatus_level_snapshot
= 0;
5839 uint64_t killtime
= 0;
5841 clock_usec_t tv_usec
;
5843 os_reason_t jetsam_reason
= OS_REASON_NULL
;
5844 uint64_t footprint_of_killed_proc
= 0;
5846 *memory_reclaimed
= 0;
5848 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
5849 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, priority_max
, 0, 0, 0);
5851 if (priority_max
>= JETSAM_PRIORITY_FOREGROUND
) {
5853 * Check if aggressive jetsam has been asked to kill upto or beyond the
5854 * JETSAM_PRIORITY_FOREGROUND bucket. If yes, sort the FG band based on
5855 * coalition footprint.
5857 memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND
, JETSAM_SORT_DEFAULT
);
5860 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, cause
);
5861 if (jetsam_reason
== OS_REASON_NULL
) {
5862 printf("memorystatus_kill_processes_aggressive: failed to allocate exit reason\n");
5867 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5869 if (((next_p
->p_listflag
& P_LIST_EXITED
) != 0) ||
5870 ((unsigned int)(next_p
->p_memstat_effectivepriority
) != i
)) {
5872 * We have raced with next_p running on another core.
5873 * It may be exiting or it may have moved to a different
5874 * jetsam priority band. This means we have lost our
5875 * place in line while traversing the jetsam list. We
5876 * attempt to recover by rewinding to the beginning of the band
5877 * we were already traversing. By doing this, we do not guarantee
5878 * that no process escapes this aggressive march, but we can make
5879 * skipping an entire range of processes less likely. (PR-21069019)
5882 MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: rewinding band %d, %s(%d) moved or exiting.\n",
5883 aggr_count
, i
, (*next_p
->p_name
? next_p
->p_name
: "unknown"), next_p
->p_pid
);
5885 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5890 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
5892 if (p
->p_memstat_effectivepriority
> priority_max
) {
5894 * Bail out of this killing spree if we have
5895 * reached beyond the priority_max jetsam band.
5896 * That is, we kill up to and through the
5897 * priority_max jetsam band.
5904 aPid_ep
= p
->p_memstat_effectivepriority
;
5906 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5911 * Capture a snapshot if none exists.
5913 if (memorystatus_jetsam_snapshot_count
== 0) {
5914 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
5915 new_snapshot
= TRUE
;
5919 * Mark as terminated so that if exit1() indicates success, but the process (for example)
5920 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
5921 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
5922 * acquisition of the proc lock.
5924 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5926 killtime
= mach_absolute_time();
5927 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
5928 tv_msec
= tv_usec
/ 1000;
5930 /* Shift queue, update stats */
5931 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
5934 * In order to kill the target process, we will drop the proc_list_lock.
5935 * To guaranteee that p and next_p don't disappear out from under the lock,
5936 * we must take a ref on both.
5937 * If we cannot get a reference, then it's likely we've raced with
5938 * that process exiting on another core.
5940 if (proc_ref_locked(p
) == p
) {
5942 while (next_p
&& (proc_ref_locked(next_p
) != next_p
)) {
5946 * We must have raced with next_p exiting on another core.
5947 * Recover by getting the next eligible process in the band.
5950 MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: skipping %d [%s] (exiting?)\n",
5951 aggr_count
, next_p
->p_pid
, (*next_p
->p_name
? next_p
->p_name
: "(unknown)"));
5954 next_p
= memorystatus_get_next_proc_locked(&i
, temp_p
, TRUE
);
5959 printf("%lu.%03d memorystatus: %s%d pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n",
5960 (unsigned long)tv_sec
, tv_msec
,
5961 ((aPid_ep
== JETSAM_PRIORITY_IDLE
) ? "killing_idle_process_aggressive" : "killing_top_process_aggressive"),
5962 aggr_count
, aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
5963 memorystatus_kill_cause_name
[cause
], aPid_ep
, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES
);
5965 memorystatus_level_snapshot
= memorystatus_level
;
5968 * memorystatus_do_kill() drops a reference, so take another one so we can
5969 * continue to use this exit reason even after memorystatus_do_kill()
5972 os_reason_ref(jetsam_reason
);
5973 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
, &footprint_of_killed_proc
);
5977 *memory_reclaimed
+= footprint_of_killed_proc
;
5984 * Continue the killing spree.
5988 proc_rele_locked(next_p
);
5991 if (aPid_ep
== JETSAM_PRIORITY_FOREGROUND
&& memorystatus_aggressive_jetsam_lenient
== TRUE
) {
5992 if (memorystatus_level
> memorystatus_level_snapshot
&& ((memorystatus_level
- memorystatus_level_snapshot
) >= AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD
)) {
5993 #if DEVELOPMENT || DEBUG
5994 printf("Disabling Lenient mode after one-time deployment.\n");
5995 #endif /* DEVELOPMENT || DEBUG */
5996 memorystatus_aggressive_jetsam_lenient
= FALSE
;
6005 * Failure - first unwind the state,
6006 * then fall through to restart the search.
6009 proc_rele_locked(p
);
6011 proc_rele_locked(next_p
);
6013 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
6014 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
6020 * Failure - restart the search at the beginning of
6021 * the band we were already traversing.
6023 * We might have raced with "p" exiting on another core, resulting in no
6024 * ref on "p". Or, we may have failed to kill "p".
6026 * Either way, we fall thru to here, leaving the proc in the
6027 * P_MEMSTAT_TERMINATED or P_MEMSTAT_ERROR state.
6029 * And, we hold the the proc_list_lock at this point.
6032 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6038 os_reason_free(jetsam_reason
);
6040 /* Clear snapshot if freshly captured and no target was found */
6041 if (new_snapshot
&& (kill_count
== 0)) {
6043 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
6047 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
6048 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, 0, kill_count
, *memory_reclaimed
, 0);
6050 if (kill_count
> 0) {
6058 memorystatus_kill_hiwat_proc(uint32_t *errors
, boolean_t
*purged
, uint64_t *memory_reclaimed
)
6061 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
6062 boolean_t new_snapshot
= FALSE
, killed
= FALSE
, freed_mem
= FALSE
;
6065 os_reason_t jetsam_reason
= OS_REASON_NULL
;
6066 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM_HIWAT
) | DBG_FUNC_START
,
6067 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, 0, 0, 0, 0);
6069 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_HIGHWATER
);
6070 if (jetsam_reason
== OS_REASON_NULL
) {
6071 printf("memorystatus_kill_hiwat_proc: failed to allocate exit reason\n");
6076 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6078 uint64_t footprint_in_bytes
= 0;
6079 uint64_t memlimit_in_bytes
= 0;
6083 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
6086 aPid_ep
= p
->p_memstat_effectivepriority
;
6088 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
6092 /* skip if no limit set */
6093 if (p
->p_memstat_memlimit
<= 0) {
6097 footprint_in_bytes
= get_task_phys_footprint(p
->task
);
6098 memlimit_in_bytes
= (((uint64_t)p
->p_memstat_memlimit
) * 1024ULL * 1024ULL); /* convert MB to bytes */
6099 skip
= (footprint_in_bytes
<= memlimit_in_bytes
);
6103 if (p
->p_memstat_state
& P_MEMSTAT_LOCKED
) {
6114 if (memorystatus_jetsam_snapshot_count
== 0) {
6115 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
6116 new_snapshot
= TRUE
;
6119 if (proc_ref_locked(p
) == p
) {
6121 * Mark as terminated so that if exit1() indicates success, but the process (for example)
6122 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
6123 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
6124 * acquisition of the proc lock.
6126 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
6131 * We need to restart the search again because
6132 * proc_ref_locked _can_ drop the proc_list lock
6133 * and we could have lost our stored next_p via
6134 * an exit() on another core.
6137 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6141 footprint_in_bytes
= 0;
6142 freed_mem
= memorystatus_kill_proc(p
, kMemorystatusKilledHiwat
, jetsam_reason
, &killed
, &footprint_in_bytes
); /* purged and/or killed 'p' */
6146 if (killed
== FALSE
) {
6147 /* purged 'p'..don't reset HWM candidate count */
6151 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
6154 *memory_reclaimed
= footprint_in_bytes
;
6160 * Failure - first unwind the state,
6161 * then fall through to restart the search.
6164 proc_rele_locked(p
);
6165 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
6166 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
6170 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6177 os_reason_free(jetsam_reason
);
6180 *memory_reclaimed
= 0;
6182 /* Clear snapshot if freshly captured and no target was found */
6185 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
6190 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM_HIWAT
) | DBG_FUNC_END
,
6191 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, killed
? aPid
: 0, killed
, *memory_reclaimed
, 0);
6197 * Jetsam a process pinned in the elevated band.
6199 * Return: true -- a pinned process was jetsammed
6200 * false -- no pinned process was jetsammed
6203 memorystatus_kill_elevated_process(uint32_t cause
, os_reason_t jetsam_reason
, unsigned int band
, int aggr_count
, uint32_t *errors
, uint64_t *memory_reclaimed
)
6206 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
6207 boolean_t new_snapshot
= FALSE
, killed
= FALSE
;
6210 uint64_t killtime
= 0;
6212 clock_usec_t tv_usec
;
6214 uint64_t footprint_of_killed_proc
= 0;
6217 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
6218 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, 0, 0, 0, 0);
6221 boolean_t consider_frozen_only
= FALSE
;
6223 if (band
== (unsigned int) memorystatus_freeze_jetsam_band
) {
6224 consider_frozen_only
= TRUE
;
6226 #endif /* CONFIG_FREEZE */
6230 next_p
= memorystatus_get_first_proc_locked(&band
, FALSE
);
6233 next_p
= memorystatus_get_next_proc_locked(&band
, p
, FALSE
);
6236 aPid_ep
= p
->p_memstat_effectivepriority
;
6239 * Only pick a process pinned in this elevated band
6241 if (!(p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
)) {
6245 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
6250 if (consider_frozen_only
&& !(p
->p_memstat_state
& P_MEMSTAT_FROZEN
)) {
6254 if (p
->p_memstat_state
& P_MEMSTAT_LOCKED
) {
6257 #endif /* CONFIG_FREEZE */
6259 #if DEVELOPMENT || DEBUG
6260 MEMORYSTATUS_DEBUG(1, "jetsam: elevated%d process pid %d [%s] - memorystatus_available_pages: %d\n",
6262 aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
6263 MEMORYSTATUS_LOG_AVAILABLE_PAGES
);
6264 #endif /* DEVELOPMENT || DEBUG */
6266 if (memorystatus_jetsam_snapshot_count
== 0) {
6267 memorystatus_init_jetsam_snapshot_locked(NULL
, 0);
6268 new_snapshot
= TRUE
;
6271 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
6273 killtime
= mach_absolute_time();
6274 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
6275 tv_msec
= tv_usec
/ 1000;
6277 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
6279 if (proc_ref_locked(p
) == p
) {
6283 * memorystatus_do_kill drops a reference, so take another one so we can
6284 * continue to use this exit reason even after memorystatus_do_kill()
6287 os_reason_ref(jetsam_reason
);
6288 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
, &footprint_of_killed_proc
);
6290 os_log_with_startup_serial(OS_LOG_DEFAULT
, "%lu.%03d memorystatus: killing_top_process_elevated%d pid %d [%s] (%s %d) %lluKB - memorystatus_available_pages: %llu\n",
6291 (unsigned long)tv_sec
, tv_msec
,
6293 aPid
, ((p
&& *p
->p_name
) ? p
->p_name
: "unknown"),
6294 memorystatus_kill_cause_name
[cause
], aPid_ep
,
6295 footprint_of_killed_proc
>> 10, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES
);
6299 *memory_reclaimed
= footprint_of_killed_proc
;
6306 * Failure - first unwind the state,
6307 * then fall through to restart the search.
6310 proc_rele_locked(p
);
6311 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
6312 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
6317 * Failure - restart the search.
6319 * We might have raced with "p" exiting on another core, resulting in no
6320 * ref on "p". Or, we may have failed to kill "p".
6322 * Either way, we fall thru to here, leaving the proc in the
6323 * P_MEMSTAT_TERMINATED state or P_MEMSTAT_ERROR state.
6325 * And, we hold the the proc_list_lock at this point.
6328 next_p
= memorystatus_get_first_proc_locked(&band
, FALSE
);
6334 os_reason_free(jetsam_reason
);
6336 if (kill_count
== 0) {
6337 *memory_reclaimed
= 0;
6339 /* Clear snapshot if freshly captured and no target was found */
6342 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
6347 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
6348 MEMORYSTATUS_LOG_AVAILABLE_PAGES
, killed
? aPid
: 0, kill_count
, *memory_reclaimed
, 0);
6354 memorystatus_kill_process_async(pid_t victim_pid
, uint32_t cause
)
6357 * TODO: allow a general async path
6359 * NOTE: If a new async kill cause is added, make sure to update memorystatus_thread() to
6360 * add the appropriate exit reason code mapping.
6362 if ((victim_pid
!= -1) ||
6363 (cause
!= kMemorystatusKilledVMPageShortage
&&
6364 cause
!= kMemorystatusKilledVMCompressorThrashing
&&
6365 cause
!= kMemorystatusKilledVMCompressorSpaceShortage
&&
6366 cause
!= kMemorystatusKilledFCThrashing
&&
6367 cause
!= kMemorystatusKilledZoneMapExhaustion
)) {
6371 kill_under_pressure_cause
= cause
;
6372 memorystatus_thread_wake();
6377 memorystatus_kill_on_VM_compressor_space_shortage(boolean_t async
)
6380 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMCompressorSpaceShortage
);
6382 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_VMCOMPRESSOR_SPACE_SHORTAGE
);
6383 if (jetsam_reason
== OS_REASON_NULL
) {
6384 printf("memorystatus_kill_on_VM_compressor_space_shortage -- sync: failed to allocate jetsam reason\n");
6387 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMCompressorSpaceShortage
, jetsam_reason
);
6393 memorystatus_kill_on_VM_compressor_thrashing(boolean_t async
)
6396 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMCompressorThrashing
);
6398 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_VMCOMPRESSOR_THRASHING
);
6399 if (jetsam_reason
== OS_REASON_NULL
) {
6400 printf("memorystatus_kill_on_VM_compressor_thrashing -- sync: failed to allocate jetsam reason\n");
6403 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMCompressorThrashing
, jetsam_reason
);
6408 memorystatus_kill_on_VM_page_shortage(boolean_t async
)
6411 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMPageShortage
);
6413 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_VMPAGESHORTAGE
);
6414 if (jetsam_reason
== OS_REASON_NULL
) {
6415 printf("memorystatus_kill_on_VM_page_shortage -- sync: failed to allocate jetsam reason\n");
6418 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMPageShortage
, jetsam_reason
);
6423 memorystatus_kill_on_FC_thrashing(boolean_t async
)
6426 return memorystatus_kill_process_async(-1, kMemorystatusKilledFCThrashing
);
6428 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_FCTHRASHING
);
6429 if (jetsam_reason
== OS_REASON_NULL
) {
6430 printf("memorystatus_kill_on_FC_thrashing -- sync: failed to allocate jetsam reason\n");
6433 return memorystatus_kill_process_sync(-1, kMemorystatusKilledFCThrashing
, jetsam_reason
);
6438 memorystatus_kill_on_vnode_limit(void)
6440 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_VNODE
);
6441 if (jetsam_reason
== OS_REASON_NULL
) {
6442 printf("memorystatus_kill_on_vnode_limit: failed to allocate jetsam reason\n");
6445 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVnodes
, jetsam_reason
);
6448 #endif /* CONFIG_JETSAM */
6451 memorystatus_kill_on_zone_map_exhaustion(pid_t pid
)
6453 boolean_t res
= FALSE
;
6455 res
= memorystatus_kill_process_async(-1, kMemorystatusKilledZoneMapExhaustion
);
6457 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_ZONE_MAP_EXHAUSTION
);
6458 if (jetsam_reason
== OS_REASON_NULL
) {
6459 printf("memorystatus_kill_on_zone_map_exhaustion: failed to allocate jetsam reason\n");
6462 res
= memorystatus_kill_process_sync(pid
, kMemorystatusKilledZoneMapExhaustion
, jetsam_reason
);
6468 memorystatus_on_pageout_scan_end(void)
6473 /* Return both allocated and actual size, since there's a race between allocation and list compilation */
6475 memorystatus_get_priority_list(memorystatus_priority_entry_t
**list_ptr
, size_t *buffer_size
, size_t *list_size
, boolean_t size_only
)
6477 uint32_t list_count
, i
= 0;
6478 memorystatus_priority_entry_t
*list_entry
;
6481 list_count
= memorystatus_list_count
;
6482 *list_size
= sizeof(memorystatus_priority_entry_t
) * list_count
;
6484 /* Just a size check? */
6489 /* Otherwise, validate the size of the buffer */
6490 if (*buffer_size
< *list_size
) {
6494 *list_ptr
= kheap_alloc(KHEAP_TEMP
, *list_size
, Z_WAITOK
| Z_ZERO
);
6499 *buffer_size
= *list_size
;
6502 list_entry
= *list_ptr
;
6506 p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6507 while (p
&& (*list_size
< *buffer_size
)) {
6508 list_entry
->pid
= p
->p_pid
;
6509 list_entry
->priority
= p
->p_memstat_effectivepriority
;
6510 list_entry
->user_data
= p
->p_memstat_userdata
;
6512 if (p
->p_memstat_memlimit
<= 0) {
6513 task_get_phys_footprint_limit(p
->task
, &list_entry
->limit
);
6515 list_entry
->limit
= p
->p_memstat_memlimit
;
6518 list_entry
->state
= memorystatus_build_state(p
);
6521 *list_size
+= sizeof(memorystatus_priority_entry_t
);
6523 p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
6528 MEMORYSTATUS_DEBUG(1, "memorystatus_get_priority_list: returning %lu for size\n", (unsigned long)*list_size
);
6534 memorystatus_get_priority_pid(pid_t pid
, user_addr_t buffer
, size_t buffer_size
)
6537 memorystatus_priority_entry_t mp_entry
;
6540 /* Validate inputs */
6541 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_priority_entry_t
))) {
6545 proc_t p
= proc_find(pid
);
6550 memset(&mp_entry
, 0, sizeof(memorystatus_priority_entry_t
));
6552 mp_entry
.pid
= p
->p_pid
;
6553 mp_entry
.priority
= p
->p_memstat_effectivepriority
;
6554 mp_entry
.user_data
= p
->p_memstat_userdata
;
6555 if (p
->p_memstat_memlimit
<= 0) {
6556 ret
= task_get_phys_footprint_limit(p
->task
, &mp_entry
.limit
);
6557 if (ret
!= KERN_SUCCESS
) {
6562 mp_entry
.limit
= p
->p_memstat_memlimit
;
6564 mp_entry
.state
= memorystatus_build_state(p
);
6568 error
= copyout(&mp_entry
, buffer
, buffer_size
);
6574 memorystatus_cmd_get_priority_list(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, int32_t *retval
)
6577 boolean_t size_only
;
6581 * When a non-zero pid is provided, the 'list' has only one entry.
6584 size_only
= ((buffer
== USER_ADDR_NULL
) ? TRUE
: FALSE
);
6587 list_size
= sizeof(memorystatus_priority_entry_t
) * 1;
6589 error
= memorystatus_get_priority_pid(pid
, buffer
, buffer_size
);
6592 memorystatus_priority_entry_t
*list
= NULL
;
6593 error
= memorystatus_get_priority_list(&list
, &buffer_size
, &list_size
, size_only
);
6597 error
= copyout(list
, buffer
, list_size
);
6602 kheap_free(KHEAP_TEMP
, list
, buffer_size
);
6607 assert(list_size
<= INT32_MAX
);
6608 *retval
= (int32_t) list_size
;
6615 memorystatus_clear_errors(void)
6620 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CLEAR_ERRORS
) | DBG_FUNC_START
, 0, 0, 0, 0, 0);
6624 p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6626 if (p
->p_memstat_state
& P_MEMSTAT_ERROR
) {
6627 p
->p_memstat_state
&= ~P_MEMSTAT_ERROR
;
6629 p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
6634 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CLEAR_ERRORS
) | DBG_FUNC_END
, 0, 0, 0, 0, 0);
6639 memorystatus_update_levels_locked(boolean_t critical_only
)
6641 memorystatus_available_pages_critical
= memorystatus_available_pages_critical_base
;
6644 * If there's an entry in the first bucket, we have idle processes.
6647 memstat_bucket_t
*first_bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
6648 if (first_bucket
->count
) {
6649 memorystatus_available_pages_critical
+= memorystatus_available_pages_critical_idle_offset
;
6651 if (memorystatus_available_pages_critical
> memorystatus_available_pages_pressure
) {
6653 * The critical threshold must never exceed the pressure threshold
6655 memorystatus_available_pages_critical
= memorystatus_available_pages_pressure
;
6659 if (memorystatus_jetsam_policy
& kPolicyMoreFree
) {
6660 memorystatus_available_pages_critical
+= memorystatus_policy_more_free_offset_pages
;
6663 if (critical_only
) {
6667 #if VM_PRESSURE_EVENTS
6668 memorystatus_available_pages_pressure
= (int32_t)(pressure_threshold_percentage
* (atop_64(max_mem
) / 100));
6673 memorystatus_fast_jetsam_override(boolean_t enable_override
)
6675 /* If fast jetsam is not enabled, simply return */
6676 if (!fast_jetsam_enabled
) {
6680 if (enable_override
) {
6681 if ((memorystatus_jetsam_policy
& kPolicyMoreFree
) == kPolicyMoreFree
) {
6685 memorystatus_jetsam_policy
|= kPolicyMoreFree
;
6686 memorystatus_thread_pool_max();
6687 memorystatus_update_levels_locked(TRUE
);
6690 if ((memorystatus_jetsam_policy
& kPolicyMoreFree
) == 0) {
6694 memorystatus_jetsam_policy
&= ~kPolicyMoreFree
;
6695 memorystatus_thread_pool_default();
6696 memorystatus_update_levels_locked(TRUE
);
6703 sysctl_kern_memorystatus_policy_more_free SYSCTL_HANDLER_ARGS
6705 #pragma unused(arg1, arg2, oidp)
6706 int error
= 0, more_free
= 0;
6709 * TODO: Enable this privilege check?
6711 * error = priv_check_cred(kauth_cred_get(), PRIV_VM_JETSAM, 0);
6716 error
= sysctl_handle_int(oidp
, &more_free
, 0, req
);
6717 if (error
|| !req
->newptr
) {
6722 memorystatus_fast_jetsam_override(true);
6724 memorystatus_fast_jetsam_override(false);
6729 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_policy_more_free
, CTLTYPE_INT
| CTLFLAG_WR
| CTLFLAG_LOCKED
| CTLFLAG_MASKED
,
6730 0, 0, &sysctl_kern_memorystatus_policy_more_free
, "I", "");
6732 #endif /* CONFIG_JETSAM */
6735 * Get the at_boot snapshot
6738 memorystatus_get_at_boot_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6740 size_t input_size
= *snapshot_size
;
6743 * The at_boot snapshot has no entry list.
6745 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
);
6752 * Validate the size of the snapshot buffer
6754 if (input_size
< *snapshot_size
) {
6759 * Update the notification_time only
6761 memorystatus_at_boot_snapshot
.notification_time
= mach_absolute_time();
6762 *snapshot
= &memorystatus_at_boot_snapshot
;
6764 MEMORYSTATUS_DEBUG(7, "memorystatus_get_at_boot_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%d)\n",
6765 (long)input_size
, (long)*snapshot_size
, 0);
6770 * Get the previous fully populated snapshot
6773 memorystatus_get_jetsam_snapshot_copy(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6775 size_t input_size
= *snapshot_size
;
6777 if (memorystatus_jetsam_snapshot_copy_count
> 0) {
6778 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_copy_count
));
6787 if (input_size
< *snapshot_size
) {
6791 *snapshot
= memorystatus_jetsam_snapshot_copy
;
6793 MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot_copy: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6794 (long)input_size
, (long)*snapshot_size
, (long)memorystatus_jetsam_snapshot_copy_count
);
6801 memorystatus_get_jetsam_snapshot_freezer(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6803 size_t input_size
= *snapshot_size
;
6805 if (memorystatus_jetsam_snapshot_freezer
->entry_count
> 0) {
6806 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_freezer
->entry_count
));
6810 assert(*snapshot_size
<= memorystatus_jetsam_snapshot_freezer_size
);
6816 if (input_size
< *snapshot_size
) {
6820 *snapshot
= memorystatus_jetsam_snapshot_freezer
;
6822 MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot_freezer: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6823 (long)input_size
, (long)*snapshot_size
, (long)memorystatus_jetsam_snapshot_freezer
->entry_count
);
6827 #endif /* CONFIG_FREEZE */
6830 memorystatus_get_on_demand_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6832 size_t input_size
= *snapshot_size
;
6833 uint32_t ods_list_count
= memorystatus_list_count
;
6834 memorystatus_jetsam_snapshot_t
*ods
= NULL
; /* The on_demand snapshot buffer */
6836 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (ods_list_count
));
6843 * Validate the size of the snapshot buffer.
6844 * This is inherently racey. May want to revisit
6845 * this error condition and trim the output when
6848 if (input_size
< *snapshot_size
) {
6853 * Allocate and initialize a snapshot buffer.
6855 ods
= kalloc(*snapshot_size
);
6860 memset(ods
, 0, *snapshot_size
);
6863 memorystatus_init_jetsam_snapshot_locked(ods
, ods_list_count
);
6867 * Return the kernel allocated, on_demand buffer.
6868 * The caller of this routine will copy the data out
6869 * to user space and then free the kernel allocated
6874 MEMORYSTATUS_DEBUG(7, "memorystatus_get_on_demand_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6875 (long)input_size
, (long)*snapshot_size
, (long)ods_list_count
);
6881 memorystatus_get_jetsam_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
)
6883 size_t input_size
= *snapshot_size
;
6885 if (memorystatus_jetsam_snapshot_count
> 0) {
6886 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_count
));
6895 if (input_size
< *snapshot_size
) {
6899 *snapshot
= memorystatus_jetsam_snapshot
;
6901 MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6902 (long)input_size
, (long)*snapshot_size
, (long)memorystatus_jetsam_snapshot_count
);
6909 memorystatus_cmd_get_jetsam_snapshot(int32_t flags
, user_addr_t buffer
, size_t buffer_size
, int32_t *retval
)
6912 boolean_t size_only
;
6913 boolean_t is_default_snapshot
= FALSE
;
6914 boolean_t is_on_demand_snapshot
= FALSE
;
6915 boolean_t is_at_boot_snapshot
= FALSE
;
6917 bool is_freezer_snapshot
= false;
6918 #endif /* CONFIG_FREEZE */
6919 memorystatus_jetsam_snapshot_t
*snapshot
;
6921 size_only
= ((buffer
== USER_ADDR_NULL
) ? TRUE
: FALSE
);
6925 is_default_snapshot
= TRUE
;
6926 error
= memorystatus_get_jetsam_snapshot(&snapshot
, &buffer_size
, size_only
);
6928 if (flags
& ~(MEMORYSTATUS_SNAPSHOT_ON_DEMAND
| MEMORYSTATUS_SNAPSHOT_AT_BOOT
| MEMORYSTATUS_SNAPSHOT_COPY
| MEMORYSTATUS_FLAGS_SNAPSHOT_FREEZER
)) {
6930 * Unsupported bit set in flag.
6935 if (flags
& (flags
- 0x1)) {
6937 * Can't have multiple flags set at the same time.
6942 if (flags
& MEMORYSTATUS_SNAPSHOT_ON_DEMAND
) {
6943 is_on_demand_snapshot
= TRUE
;
6945 * When not requesting the size only, the following call will allocate
6946 * an on_demand snapshot buffer, which is freed below.
6948 error
= memorystatus_get_on_demand_snapshot(&snapshot
, &buffer_size
, size_only
);
6949 } else if (flags
& MEMORYSTATUS_SNAPSHOT_AT_BOOT
) {
6950 is_at_boot_snapshot
= TRUE
;
6951 error
= memorystatus_get_at_boot_snapshot(&snapshot
, &buffer_size
, size_only
);
6952 } else if (flags
& MEMORYSTATUS_SNAPSHOT_COPY
) {
6953 error
= memorystatus_get_jetsam_snapshot_copy(&snapshot
, &buffer_size
, size_only
);
6955 } else if (flags
& MEMORYSTATUS_FLAGS_SNAPSHOT_FREEZER
) {
6956 is_freezer_snapshot
= true;
6957 error
= memorystatus_get_jetsam_snapshot_freezer(&snapshot
, &buffer_size
, size_only
);
6958 #endif /* CONFIG_FREEZE */
6961 * Invalid flag setting.
6972 * Copy the data out to user space and clear the snapshot buffer.
6973 * If working with the jetsam snapshot,
6974 * clearing the buffer means, reset the count.
6975 * If working with an on_demand snapshot
6976 * clearing the buffer means, free it.
6977 * If working with the at_boot snapshot
6978 * there is nothing to clear or update.
6979 * If working with a copy of the snapshot
6980 * there is nothing to clear or update.
6981 * If working with the freezer snapshot
6982 * clearing the buffer means, reset the count.
6985 if ((error
= copyout(snapshot
, buffer
, buffer_size
)) == 0) {
6987 if (is_default_snapshot
|| is_freezer_snapshot
) {
6989 if (is_default_snapshot
) {
6990 #endif /* CONFIG_FREEZE */
6992 * The jetsam snapshot is never freed, its count is simply reset.
6993 * However, we make a copy for any parties that might be interested
6994 * in the previous fully populated snapshot.
6997 #if DEVELOPMENT || DEBUG
6998 if (memorystatus_snapshot_owner
!= 0 && memorystatus_snapshot_owner
!= current_proc()->p_pid
) {
6999 /* Snapshot is currently owned by someone else. Don't consume it. */
7003 #endif /* (DEVELOPMENT || DEBUG)*/
7004 if (is_default_snapshot
) {
7005 memcpy(memorystatus_jetsam_snapshot_copy
, memorystatus_jetsam_snapshot
, memorystatus_jetsam_snapshot_size
);
7006 memorystatus_jetsam_snapshot_copy_count
= memorystatus_jetsam_snapshot_count
;
7007 snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
7008 memorystatus_jetsam_snapshot_last_timestamp
= 0;
7011 else if (is_freezer_snapshot
) {
7012 memorystatus_jetsam_snapshot_freezer
->entry_count
= 0;
7014 #endif /* CONFIG_FREEZE */
7019 if (is_on_demand_snapshot
) {
7021 * The on_demand snapshot is always freed,
7022 * even if the copyout failed.
7025 kfree(snapshot
, buffer_size
);
7032 assert(buffer_size
<= INT32_MAX
);
7033 *retval
= (int32_t) buffer_size
;
7038 #if DEVELOPMENT || DEBUG
7040 memorystatus_cmd_set_jetsam_snapshot_ownership(int32_t flags
)
7043 proc_t caller
= current_proc();
7044 assert(caller
!= kernproc
);
7046 if (flags
& MEMORYSTATUS_FLAGS_SNAPSHOT_TAKE_OWNERSHIP
) {
7047 if (memorystatus_snapshot_owner
== 0) {
7048 memorystatus_snapshot_owner
= caller
->p_pid
;
7050 } else if (memorystatus_snapshot_owner
== caller
->p_pid
) {
7053 /* We don't allow ownership to be taken from another proc. */
7056 } else if (flags
& MEMORYSTATUS_FLAGS_SNAPSHOT_DROP_OWNERSHIP
) {
7057 if (memorystatus_snapshot_owner
== caller
->p_pid
) {
7058 memorystatus_snapshot_owner
= 0;
7060 } else if (memorystatus_snapshot_owner
!= 0) {
7061 /* We don't allow ownership to be taken from another proc. */
7069 #endif /* DEVELOPMENT || DEBUG */
7072 * Routine: memorystatus_cmd_grp_set_priorities
7073 * Purpose: Update priorities for a group of processes.
7076 * Move each process out of its effective priority
7077 * band and into a new priority band.
7078 * Maintains relative order from lowest to highest priority.
7079 * In single band, maintains relative order from head to tail.
7081 * eg: before [effectivepriority | pid]
7083 * [17 | p55, p67, p19 ]
7088 * after [ new band | pid]
7089 * [ xxx | p71, p82, p25, p103, p10, p55, p67, p19, p101]
7091 * Returns: 0 on success, else non-zero.
7093 * Caveat: We know there is a race window regarding recycled pids.
7094 * A process could be killed before the kernel can act on it here.
7095 * If a pid cannot be found in any of the jetsam priority bands,
7096 * then we simply ignore it. No harm.
7097 * But, if the pid has been recycled then it could be an issue.
7098 * In that scenario, we might move an unsuspecting process to the new
7099 * priority band. It's not clear how the kernel can safeguard
7100 * against this, but it would be an extremely rare case anyway.
7101 * The caller of this api might avoid such race conditions by
7102 * ensuring that the processes passed in the pid list are suspended.
7107 memorystatus_cmd_grp_set_priorities(user_addr_t buffer
, size_t buffer_size
)
7110 * We only handle setting priority
7115 memorystatus_properties_entry_v1_t
*entries
= NULL
;
7116 size_t entry_count
= 0;
7118 /* This will be the ordered proc list */
7119 typedef struct memorystatus_internal_properties
{
7122 } memorystatus_internal_properties_t
;
7124 memorystatus_internal_properties_t
*table
= NULL
;
7125 size_t table_size
= 0;
7126 uint32_t table_count
= 0;
7129 uint32_t bucket_index
= 0;
7130 boolean_t head_insert
;
7131 int32_t new_priority
;
7136 if ((buffer
== USER_ADDR_NULL
) || (buffer_size
== 0)) {
7141 entry_count
= (buffer_size
/ sizeof(memorystatus_properties_entry_v1_t
));
7142 if (entry_count
== 0) {
7143 /* buffer size was not large enough for a single entry */
7148 if ((entries
= kheap_alloc(KHEAP_TEMP
, buffer_size
, Z_WAITOK
)) == NULL
) {
7153 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_START
, MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY
, entry_count
, 0, 0, 0);
7155 if ((error
= copyin(buffer
, entries
, buffer_size
)) != 0) {
7159 /* Verify sanity of input priorities */
7160 if (entries
[0].version
== MEMORYSTATUS_MPE_VERSION_1
) {
7161 if ((buffer_size
% MEMORYSTATUS_MPE_VERSION_1_SIZE
) != 0) {
7170 for (i
= 0; i
< entry_count
; i
++) {
7171 if (entries
[i
].priority
== -1) {
7172 /* Use as shorthand for default priority */
7173 entries
[i
].priority
= JETSAM_PRIORITY_DEFAULT
;
7174 } else if ((entries
[i
].priority
== system_procs_aging_band
) || (entries
[i
].priority
== applications_aging_band
)) {
7175 /* Both the aging bands are reserved for internal use;
7176 * if requested, adjust to JETSAM_PRIORITY_IDLE. */
7177 entries
[i
].priority
= JETSAM_PRIORITY_IDLE
;
7178 } else if (entries
[i
].priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
7179 /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle
7181 /* Deal with this later */
7182 } else if ((entries
[i
].priority
< 0) || (entries
[i
].priority
>= MEMSTAT_BUCKET_COUNT
)) {
7189 table_size
= sizeof(memorystatus_internal_properties_t
) * entry_count
;
7190 if ((table
= kheap_alloc(KHEAP_TEMP
, table_size
, Z_WAITOK
| Z_ZERO
)) == NULL
) {
7197 * For each jetsam bucket entry, spin through the input property list.
7198 * When a matching pid is found, populate an adjacent table with the
7199 * appropriate proc pointer and new property values.
7200 * This traversal automatically preserves order from lowest
7201 * to highest priority.
7208 /* Create the ordered table */
7209 p
= memorystatus_get_first_proc_locked(&bucket_index
, TRUE
);
7210 while (p
&& (table_count
< entry_count
)) {
7211 for (i
= 0; i
< entry_count
; i
++) {
7212 if (p
->p_pid
== entries
[i
].pid
) {
7213 /* Build the table data */
7214 table
[table_count
].proc
= p
;
7215 table
[table_count
].priority
= entries
[i
].priority
;
7220 p
= memorystatus_get_next_proc_locked(&bucket_index
, p
, TRUE
);
7223 /* We now have ordered list of procs ready to move */
7224 for (i
= 0; i
< table_count
; i
++) {
7228 /* Allow head inserts -- but relative order is now */
7229 if (table
[i
].priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
7230 new_priority
= JETSAM_PRIORITY_IDLE
;
7233 new_priority
= table
[i
].priority
;
7234 head_insert
= false;
7238 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
7243 * Take appropriate steps if moving proc out of
7244 * either of the aging bands.
7246 if ((p
->p_memstat_effectivepriority
== system_procs_aging_band
) || (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
7247 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
7250 memorystatus_update_priority_locked(p
, new_priority
, head_insert
, false);
7256 * if (table_count != entry_count)
7257 * then some pids were not found in a jetsam band.
7258 * harmless but interesting...
7261 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_END
, MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY
, entry_count
, table_count
, 0, 0);
7264 kheap_free(KHEAP_TEMP
, entries
, buffer_size
);
7267 kheap_free(KHEAP_TEMP
, table
, table_size
);
7273 memorystatus_internal_probabilities_t
*memorystatus_global_probabilities_table
= NULL
;
7274 size_t memorystatus_global_probabilities_size
= 0;
7277 memorystatus_cmd_grp_set_probabilities(user_addr_t buffer
, size_t buffer_size
)
7280 memorystatus_properties_entry_v1_t
*entries
= NULL
;
7281 size_t entry_count
= 0, i
= 0;
7282 memorystatus_internal_probabilities_t
*tmp_table_new
= NULL
, *tmp_table_old
= NULL
;
7283 size_t tmp_table_new_size
= 0, tmp_table_old_size
= 0;
7286 if ((buffer
== USER_ADDR_NULL
) || (buffer_size
== 0)) {
7291 entry_count
= (buffer_size
/ sizeof(memorystatus_properties_entry_v1_t
));
7293 if ((entries
= kheap_alloc(KHEAP_TEMP
, buffer_size
, Z_WAITOK
)) == NULL
) {
7298 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_START
, MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY
, entry_count
, 0, 0, 0);
7300 if ((error
= copyin(buffer
, entries
, buffer_size
)) != 0) {
7304 if (entries
[0].version
== MEMORYSTATUS_MPE_VERSION_1
) {
7305 if ((buffer_size
% MEMORYSTATUS_MPE_VERSION_1_SIZE
) != 0) {
7314 /* Verify sanity of input priorities */
7315 for (i
= 0; i
< entry_count
; i
++) {
7317 * 0 - low probability of use.
7318 * 1 - high probability of use.
7320 * Keeping this field an int (& not a bool) to allow
7321 * us to experiment with different values/approaches
7324 if (entries
[i
].use_probability
> 1) {
7330 tmp_table_new_size
= sizeof(memorystatus_internal_probabilities_t
) * entry_count
;
7332 if ((tmp_table_new
= kalloc_flags(tmp_table_new_size
, Z_WAITOK
| Z_ZERO
)) == NULL
) {
7339 if (memorystatus_global_probabilities_table
) {
7340 tmp_table_old
= memorystatus_global_probabilities_table
;
7341 tmp_table_old_size
= memorystatus_global_probabilities_size
;
7344 memorystatus_global_probabilities_table
= tmp_table_new
;
7345 memorystatus_global_probabilities_size
= tmp_table_new_size
;
7346 tmp_table_new
= NULL
;
7348 for (i
= 0; i
< entry_count
; i
++) {
7349 /* Build the table data */
7350 strlcpy(memorystatus_global_probabilities_table
[i
].proc_name
, entries
[i
].proc_name
, MAXCOMLEN
+ 1);
7351 memorystatus_global_probabilities_table
[i
].use_probability
= entries
[i
].use_probability
;
7357 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_END
, MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY
, entry_count
, tmp_table_new_size
, 0, 0);
7360 kheap_free(KHEAP_TEMP
, entries
, buffer_size
);
7364 if (tmp_table_old
) {
7365 kfree(tmp_table_old
, tmp_table_old_size
);
7366 tmp_table_old
= NULL
;
7373 memorystatus_cmd_grp_set_properties(int32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
7377 if ((flags
& MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY
) == MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY
) {
7378 error
= memorystatus_cmd_grp_set_priorities(buffer
, buffer_size
);
7379 } else if ((flags
& MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY
) == MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY
) {
7380 error
= memorystatus_cmd_grp_set_probabilities(buffer
, buffer_size
);
7389 * This routine is used to update a process's jetsam priority position and stored user_data.
7390 * It is not used for the setting of memory limits, which is why the last 6 args to the
7391 * memorystatus_update() call are 0 or FALSE.
7393 * Flags passed into this call are used to distinguish the motivation behind a jetsam priority
7394 * transition. By default, the kernel updates the process's original requested priority when
7395 * no flag is passed. But when the MEMORYSTATUS_SET_PRIORITY_ASSERTION flag is used, the kernel
7396 * updates the process's assertion driven priority.
7398 * The assertion flag was introduced for use by the device's assertion mediator (eg: runningboardd).
7399 * When an assertion is controlling a process's jetsam priority, it may conflict with that process's
7400 * dirty/clean (active/inactive) jetsam state. The kernel attempts to resolve a priority transition
7401 * conflict by reviewing the process state and then choosing the maximum jetsam band at play,
7402 * eg: requested priority versus assertion priority.
7406 memorystatus_cmd_set_priority_properties(pid_t pid
, uint32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
7409 boolean_t is_assertion
= FALSE
; /* priority is driven by an assertion */
7410 memorystatus_priority_properties_t mpp_entry
;
7412 /* Validate inputs */
7413 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_priority_properties_t
))) {
7417 /* Validate flags */
7420 * Default. This path updates requestedpriority.
7423 if (flags
& ~(MEMORYSTATUS_SET_PRIORITY_ASSERTION
)) {
7425 * Unsupported bit set in flag.
7428 } else if (flags
& MEMORYSTATUS_SET_PRIORITY_ASSERTION
) {
7429 is_assertion
= TRUE
;
7433 error
= copyin(buffer
, &mpp_entry
, buffer_size
);
7443 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
7449 os_log(OS_LOG_DEFAULT
, "memorystatus: set assertion priority(%d) target %s:%d\n",
7450 mpp_entry
.priority
, (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
);
7453 error
= memorystatus_update(p
, mpp_entry
.priority
, mpp_entry
.user_data
, is_assertion
, FALSE
, FALSE
, 0, 0, FALSE
, FALSE
);
7461 memorystatus_cmd_set_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
7464 memorystatus_memlimit_properties_t mmp_entry
;
7466 /* Validate inputs */
7467 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_memlimit_properties_t
))) {
7471 error
= copyin(buffer
, &mmp_entry
, buffer_size
);
7474 error
= memorystatus_set_memlimit_properties(pid
, &mmp_entry
);
7481 memorystatus_get_memlimit_properties_internal(proc_t p
, memorystatus_memlimit_properties_t
* p_entry
)
7483 memset(p_entry
, 0, sizeof(memorystatus_memlimit_properties_t
));
7485 if (p
->p_memstat_memlimit_active
> 0) {
7486 p_entry
->memlimit_active
= p
->p_memstat_memlimit_active
;
7488 task_convert_phys_footprint_limit(-1, &p_entry
->memlimit_active
);
7491 if (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
) {
7492 p_entry
->memlimit_active_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7496 * Get the inactive limit and attributes
7498 if (p
->p_memstat_memlimit_inactive
<= 0) {
7499 task_convert_phys_footprint_limit(-1, &p_entry
->memlimit_inactive
);
7501 p_entry
->memlimit_inactive
= p
->p_memstat_memlimit_inactive
;
7503 if (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
) {
7504 p_entry
->memlimit_inactive_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7509 * When getting the memlimit settings, we can't simply call task_get_phys_footprint_limit().
7510 * That gets the proc's cached memlimit and there is no guarantee that the active/inactive
7511 * limits will be the same in the no-limit case. Instead we convert limits <= 0 using
7512 * task_convert_phys_footprint_limit(). It computes the same limit value that would be written
7513 * to the task's ledgers via task_set_phys_footprint_limit().
7516 memorystatus_cmd_get_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
7518 memorystatus_memlimit_properties2_t mmp_entry
;
7520 /* Validate inputs */
7521 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) ||
7522 ((buffer_size
!= sizeof(memorystatus_memlimit_properties_t
)) &&
7523 (buffer_size
!= sizeof(memorystatus_memlimit_properties2_t
)))) {
7527 memset(&mmp_entry
, 0, sizeof(memorystatus_memlimit_properties2_t
));
7529 proc_t p
= proc_find(pid
);
7535 * Get the active limit and attributes.
7536 * No locks taken since we hold a reference to the proc.
7539 memorystatus_get_memlimit_properties_internal(p
, &mmp_entry
.v1
);
7542 #if DEVELOPMENT || DEBUG
7544 * Get the limit increased via SPI
7546 mmp_entry
.memlimit_increase
= roundToNearestMB(p
->p_memlimit_increase
);
7547 mmp_entry
.memlimit_increase_bytes
= p
->p_memlimit_increase
;
7548 #endif /* DEVELOPMENT || DEBUG */
7549 #endif /* CONFIG_JETSAM */
7553 int error
= copyout(&mmp_entry
, buffer
, buffer_size
);
7560 * SPI for kbd - pr24956468
7561 * This is a very simple snapshot that calculates how much a
7562 * process's phys_footprint exceeds a specific memory limit.
7563 * Only the inactive memory limit is supported for now.
7564 * The delta is returned as bytes in excess or zero.
7567 memorystatus_cmd_get_memlimit_excess_np(pid_t pid
, uint32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
)
7570 uint64_t footprint_in_bytes
= 0;
7571 uint64_t delta_in_bytes
= 0;
7572 int32_t memlimit_mb
= 0;
7573 uint64_t memlimit_bytes
= 0;
7575 /* Validate inputs */
7576 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(uint64_t)) || (flags
!= 0)) {
7580 proc_t p
= proc_find(pid
);
7586 * Get the inactive limit.
7587 * No locks taken since we hold a reference to the proc.
7590 if (p
->p_memstat_memlimit_inactive
<= 0) {
7591 task_convert_phys_footprint_limit(-1, &memlimit_mb
);
7593 memlimit_mb
= p
->p_memstat_memlimit_inactive
;
7596 footprint_in_bytes
= get_task_phys_footprint(p
->task
);
7600 memlimit_bytes
= memlimit_mb
* 1024 * 1024; /* MB to bytes */
7603 * Computed delta always returns >= 0 bytes
7605 if (footprint_in_bytes
> memlimit_bytes
) {
7606 delta_in_bytes
= footprint_in_bytes
- memlimit_bytes
;
7609 error
= copyout(&delta_in_bytes
, buffer
, sizeof(delta_in_bytes
));
7616 memorystatus_cmd_get_pressure_status(int32_t *retval
)
7620 /* Need privilege for check */
7621 error
= priv_check_cred(kauth_cred_get(), PRIV_VM_PRESSURE
, 0);
7626 /* Inherently racy, so it's not worth taking a lock here */
7627 *retval
= (kVMPressureNormal
!= memorystatus_vm_pressure_level
) ? 1 : 0;
7633 memorystatus_get_pressure_status_kdp()
7635 return (kVMPressureNormal
!= memorystatus_vm_pressure_level
) ? 1 : 0;
7639 * Every process, including a P_MEMSTAT_INTERNAL process (currently only pid 1), is allowed to set a HWM.
7641 * This call is inflexible -- it does not distinguish between active/inactive, fatal/non-fatal
7642 * So, with 2-level HWM preserving previous behavior will map as follows.
7643 * - treat the limit passed in as both an active and inactive limit.
7644 * - treat the is_fatal_limit flag as though it applies to both active and inactive limits.
7646 * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK
7647 * - the is_fatal_limit is FALSE, meaning the active and inactive limits are non-fatal/soft
7648 * - so mapping is (active/non-fatal, inactive/non-fatal)
7650 * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT
7651 * - the is_fatal_limit is TRUE, meaning the process's active and inactive limits are fatal/hard
7652 * - so mapping is (active/fatal, inactive/fatal)
7657 memorystatus_cmd_set_jetsam_memory_limit(pid_t pid
, int32_t high_water_mark
, __unused
int32_t *retval
, boolean_t is_fatal_limit
)
7660 memorystatus_memlimit_properties_t entry
;
7662 entry
.memlimit_active
= high_water_mark
;
7663 entry
.memlimit_active_attr
= 0;
7664 entry
.memlimit_inactive
= high_water_mark
;
7665 entry
.memlimit_inactive_attr
= 0;
7667 if (is_fatal_limit
== TRUE
) {
7668 entry
.memlimit_active_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7669 entry
.memlimit_inactive_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7672 error
= memorystatus_set_memlimit_properties(pid
, &entry
);
7675 #endif /* CONFIG_JETSAM */
7678 memorystatus_set_memlimit_properties_internal(proc_t p
, memorystatus_memlimit_properties_t
*p_entry
)
7682 LCK_MTX_ASSERT(proc_list_mlock
, LCK_MTX_ASSERT_OWNED
);
7685 * Store the active limit variants in the proc.
7687 SET_ACTIVE_LIMITS_LOCKED(p
, p_entry
->memlimit_active
, p_entry
->memlimit_active_attr
);
7690 * Store the inactive limit variants in the proc.
7692 SET_INACTIVE_LIMITS_LOCKED(p
, p_entry
->memlimit_inactive
, p_entry
->memlimit_inactive_attr
);
7695 * Enforce appropriate limit variant by updating the cached values
7696 * and writing the ledger.
7697 * Limit choice is based on process active/inactive state.
7700 if (memorystatus_highwater_enabled
) {
7702 boolean_t use_active
;
7704 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
7705 CACHE_ACTIVE_LIMITS_LOCKED(p
, is_fatal
);
7708 CACHE_INACTIVE_LIMITS_LOCKED(p
, is_fatal
);
7712 /* Enforce the limit by writing to the ledgers */
7713 error
= (task_set_phys_footprint_limit_internal(p
->task
, ((p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1), NULL
, use_active
, is_fatal
) == 0) ? 0 : EINVAL
;
7715 MEMORYSTATUS_DEBUG(3, "memorystatus_set_memlimit_properties: new limit on pid %d (%dMB %s) current priority (%d) dirty_state?=0x%x %s\n",
7716 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
7717 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, p
->p_memstat_dirty
,
7718 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
7719 DTRACE_MEMORYSTATUS2(memorystatus_set_memlimit
, proc_t
, p
, int32_t, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1));
7726 memorystatus_set_memlimit_properties(pid_t pid
, memorystatus_memlimit_properties_t
*entry
)
7728 memorystatus_memlimit_properties_t set_entry
;
7730 proc_t p
= proc_find(pid
);
7736 * Check for valid attribute flags.
7738 const uint32_t valid_attrs
= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7739 if ((entry
->memlimit_active_attr
& (~valid_attrs
)) != 0) {
7743 if ((entry
->memlimit_inactive_attr
& (~valid_attrs
)) != 0) {
7749 * Setup the active memlimit properties
7751 set_entry
.memlimit_active
= entry
->memlimit_active
;
7752 set_entry
.memlimit_active_attr
= entry
->memlimit_active_attr
& MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7755 * Setup the inactive memlimit properties
7757 set_entry
.memlimit_inactive
= entry
->memlimit_inactive
;
7758 set_entry
.memlimit_inactive_attr
= entry
->memlimit_inactive_attr
& MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7761 * Setting a limit of <= 0 implies that the process has no
7762 * high-water-mark and has no per-task-limit. That means
7763 * the system_wide task limit is in place, which by the way,
7767 if (set_entry
.memlimit_active
<= 0) {
7769 * Enforce the fatal system_wide task limit while process is active.
7771 set_entry
.memlimit_active
= -1;
7772 set_entry
.memlimit_active_attr
= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7775 #if DEVELOPMENT || DEBUG
7777 /* add the current increase to it, for roots */
7778 set_entry
.memlimit_active
+= roundToNearestMB(p
->p_memlimit_increase
);
7780 #endif /* DEVELOPMENT || DEBUG */
7781 #endif /* CONFIG_JETSAM */
7783 if (set_entry
.memlimit_inactive
<= 0) {
7785 * Enforce the fatal system_wide task limit while process is inactive.
7787 set_entry
.memlimit_inactive
= -1;
7788 set_entry
.memlimit_inactive_attr
= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7791 #if DEVELOPMENT || DEBUG
7793 /* add the current increase to it, for roots */
7794 set_entry
.memlimit_inactive
+= roundToNearestMB(p
->p_memlimit_increase
);
7796 #endif /* DEVELOPMENT || DEBUG */
7797 #endif /* CONFIG_JETSAM */
7801 int error
= memorystatus_set_memlimit_properties_internal(p
, &set_entry
);
7810 * Returns the jetsam priority (effective or requested) of the process
7811 * associated with this task.
7814 proc_get_memstat_priority(proc_t p
, boolean_t effective_priority
)
7817 if (effective_priority
) {
7818 return p
->p_memstat_effectivepriority
;
7820 return p
->p_memstat_requestedpriority
;
7827 memorystatus_get_process_is_managed(pid_t pid
, int *is_managed
)
7831 /* Validate inputs */
7842 *is_managed
= ((p
->p_memstat_state
& P_MEMSTAT_MANAGED
) ? 1 : 0);
7843 proc_rele_locked(p
);
7850 memorystatus_set_process_is_managed(pid_t pid
, boolean_t set_managed
)
7854 /* Validate inputs */
7865 if (set_managed
== TRUE
) {
7866 p
->p_memstat_state
|= P_MEMSTAT_MANAGED
;
7868 * The P_MEMSTAT_MANAGED bit is set by assertiond for Apps.
7869 * Also opt them in to being frozen (they might have started
7870 * off with the P_MEMSTAT_FREEZE_DISABLED bit set.)
7872 p
->p_memstat_state
&= ~P_MEMSTAT_FREEZE_DISABLED
;
7874 p
->p_memstat_state
&= ~P_MEMSTAT_MANAGED
;
7876 proc_rele_locked(p
);
7883 memorystatus_control(struct proc
*p __unused
, struct memorystatus_control_args
*args
, int *ret
)
7886 boolean_t skip_auth_check
= FALSE
;
7887 os_reason_t jetsam_reason
= OS_REASON_NULL
;
7891 #pragma unused(jetsam_reason)
7894 /* We don't need entitlements if we're setting / querying the freeze preference or frozen status for a process. */
7895 if (args
->command
== MEMORYSTATUS_CMD_SET_PROCESS_IS_FREEZABLE
||
7896 args
->command
== MEMORYSTATUS_CMD_GET_PROCESS_IS_FREEZABLE
||
7897 args
->command
== MEMORYSTATUS_CMD_GET_PROCESS_IS_FROZEN
) {
7898 skip_auth_check
= TRUE
;
7901 /* Need to be root or have entitlement. */
7902 if (!kauth_cred_issuser(kauth_cred_get()) && !IOTaskHasEntitlement(current_task(), MEMORYSTATUS_ENTITLEMENT
) && !skip_auth_check
) {
7909 * Do not enforce it for snapshots.
7911 if (args
->command
!= MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT
) {
7912 if (args
->buffersize
> MEMORYSTATUS_BUFFERSIZE_MAX
) {
7918 switch (args
->command
) {
7919 case MEMORYSTATUS_CMD_GET_PRIORITY_LIST
:
7920 error
= memorystatus_cmd_get_priority_list(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
7922 case MEMORYSTATUS_CMD_SET_PRIORITY_PROPERTIES
:
7923 error
= memorystatus_cmd_set_priority_properties(args
->pid
, args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7925 case MEMORYSTATUS_CMD_SET_MEMLIMIT_PROPERTIES
:
7926 error
= memorystatus_cmd_set_memlimit_properties(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
7928 case MEMORYSTATUS_CMD_GET_MEMLIMIT_PROPERTIES
:
7929 error
= memorystatus_cmd_get_memlimit_properties(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
7931 case MEMORYSTATUS_CMD_GET_MEMLIMIT_EXCESS
:
7932 error
= memorystatus_cmd_get_memlimit_excess_np(args
->pid
, args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7934 case MEMORYSTATUS_CMD_GRP_SET_PROPERTIES
:
7935 error
= memorystatus_cmd_grp_set_properties((int32_t)args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7937 case MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT
:
7938 error
= memorystatus_cmd_get_jetsam_snapshot((int32_t)args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7940 #if DEVELOPMENT || DEBUG
7941 case MEMORYSTATUS_CMD_SET_JETSAM_SNAPSHOT_OWNERSHIP
:
7942 error
= memorystatus_cmd_set_jetsam_snapshot_ownership((int32_t) args
->flags
);
7945 case MEMORYSTATUS_CMD_GET_PRESSURE_STATUS
:
7946 error
= memorystatus_cmd_get_pressure_status(ret
);
7949 case MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK
:
7951 * This call does not distinguish between active and inactive limits.
7952 * Default behavior in 2-level HWM world is to set both.
7953 * Non-fatal limit is also assumed for both.
7955 error
= memorystatus_cmd_set_jetsam_memory_limit(args
->pid
, (int32_t)args
->flags
, ret
, FALSE
);
7957 case MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT
:
7959 * This call does not distinguish between active and inactive limits.
7960 * Default behavior in 2-level HWM world is to set both.
7961 * Fatal limit is also assumed for both.
7963 error
= memorystatus_cmd_set_jetsam_memory_limit(args
->pid
, (int32_t)args
->flags
, ret
, TRUE
);
7965 #endif /* CONFIG_JETSAM */
7967 #if DEVELOPMENT || DEBUG
7968 case MEMORYSTATUS_CMD_TEST_JETSAM
:
7969 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_GENERIC
);
7970 if (jetsam_reason
== OS_REASON_NULL
) {
7971 printf("memorystatus_control: failed to allocate jetsam reason\n");
7974 error
= memorystatus_kill_process_sync(args
->pid
, kMemorystatusKilled
, jetsam_reason
) ? 0 : EINVAL
;
7976 case MEMORYSTATUS_CMD_TEST_JETSAM_SORT
:
7977 error
= memorystatus_cmd_test_jetsam_sort(args
->pid
, (int32_t)args
->flags
, args
->buffer
, args
->buffersize
);
7980 case MEMORYSTATUS_CMD_SET_JETSAM_PANIC_BITS
:
7981 error
= memorystatus_cmd_set_panic_bits(args
->buffer
, args
->buffersize
);
7983 #endif /* CONFIG_JETSAM */
7984 #else /* DEVELOPMENT || DEBUG */
7985 #pragma unused(jetsam_reason)
7986 #endif /* DEVELOPMENT || DEBUG */
7987 case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_ENABLE
:
7988 if (memorystatus_aggressive_jetsam_lenient_allowed
== FALSE
) {
7989 #if DEVELOPMENT || DEBUG
7990 printf("Enabling Lenient Mode\n");
7991 #endif /* DEVELOPMENT || DEBUG */
7993 memorystatus_aggressive_jetsam_lenient_allowed
= TRUE
;
7994 memorystatus_aggressive_jetsam_lenient
= TRUE
;
7998 case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_DISABLE
:
7999 #if DEVELOPMENT || DEBUG
8000 printf("Disabling Lenient mode\n");
8001 #endif /* DEVELOPMENT || DEBUG */
8002 memorystatus_aggressive_jetsam_lenient_allowed
= FALSE
;
8003 memorystatus_aggressive_jetsam_lenient
= FALSE
;
8006 case MEMORYSTATUS_CMD_GET_AGGRESSIVE_JETSAM_LENIENT_MODE
:
8007 *ret
= (memorystatus_aggressive_jetsam_lenient
? 1 : 0);
8010 case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_ENABLE
:
8011 case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_DISABLE
:
8012 error
= memorystatus_low_mem_privileged_listener(args
->command
);
8015 case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE
:
8016 case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE
:
8017 error
= memorystatus_update_inactive_jetsam_priority_band(args
->pid
, args
->command
, JETSAM_PRIORITY_ELEVATED_INACTIVE
, args
->flags
? TRUE
: FALSE
);
8019 case MEMORYSTATUS_CMD_SET_PROCESS_IS_MANAGED
:
8020 error
= memorystatus_set_process_is_managed(args
->pid
, args
->flags
);
8023 case MEMORYSTATUS_CMD_GET_PROCESS_IS_MANAGED
:
8024 error
= memorystatus_get_process_is_managed(args
->pid
, ret
);
8028 case MEMORYSTATUS_CMD_SET_PROCESS_IS_FREEZABLE
:
8029 error
= memorystatus_set_process_is_freezable(args
->pid
, args
->flags
? TRUE
: FALSE
);
8032 case MEMORYSTATUS_CMD_GET_PROCESS_IS_FREEZABLE
:
8033 error
= memorystatus_get_process_is_freezable(args
->pid
, ret
);
8035 case MEMORYSTATUS_CMD_GET_PROCESS_IS_FROZEN
:
8036 error
= memorystatus_get_process_is_frozen(args
->pid
, ret
);
8039 case MEMORYSTATUS_CMD_FREEZER_CONTROL
:
8040 error
= memorystatus_freezer_control(args
->flags
, args
->buffer
, args
->buffersize
, ret
);
8042 #endif /* CONFIG_FREEZE */
8045 #if DEVELOPMENT || DEBUG
8046 case MEMORYSTATUS_CMD_INCREASE_JETSAM_TASK_LIMIT
:
8047 error
= memorystatus_cmd_increase_jetsam_task_limit(args
->pid
, args
->flags
);
8049 #endif /* DEVELOPMENT || DEBUG */
8050 #endif /* CONFIG_JETSAM */
8060 /* Coalition support */
8062 /* sorting info for a particular priority bucket */
8063 typedef struct memstat_sort_info
{
8064 coalition_t msi_coal
;
8065 uint64_t msi_page_count
;
8068 } memstat_sort_info_t
;
8071 * qsort from smallest page count to largest page count
8073 * return < 0 for a < b
8078 memstat_asc_cmp(const void *a
, const void *b
)
8080 const memstat_sort_info_t
*msA
= (const memstat_sort_info_t
*)a
;
8081 const memstat_sort_info_t
*msB
= (const memstat_sort_info_t
*)b
;
8083 return (int)((uint64_t)msA
->msi_page_count
- (uint64_t)msB
->msi_page_count
);
8087 * Return the number of pids rearranged during this sort.
8090 memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index
, int coal_sort_order
)
8092 #define MAX_SORT_PIDS 80
8093 #define MAX_COAL_LEADERS 10
8095 unsigned int b
= bucket_index
;
8099 coalition_t coal
= COALITION_NULL
;
8101 int total_pids_moved
= 0;
8105 * The system is typically under memory pressure when in this
8106 * path, hence, we want to avoid dynamic memory allocation.
8108 memstat_sort_info_t leaders
[MAX_COAL_LEADERS
];
8109 pid_t pid_list
[MAX_SORT_PIDS
];
8111 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
8116 * Clear the array that holds coalition leader information
8118 for (i
= 0; i
< MAX_COAL_LEADERS
; i
++) {
8119 leaders
[i
].msi_coal
= COALITION_NULL
;
8120 leaders
[i
].msi_page_count
= 0; /* will hold total coalition page count */
8121 leaders
[i
].msi_pid
= 0; /* will hold coalition leader pid */
8122 leaders
[i
].msi_ntasks
= 0; /* will hold the number of tasks in a coalition */
8125 p
= memorystatus_get_first_proc_locked(&b
, FALSE
);
8127 coal
= task_get_coalition(p
->task
, COALITION_TYPE_JETSAM
);
8128 if (coalition_is_leader(p
->task
, coal
)) {
8129 if (nleaders
< MAX_COAL_LEADERS
) {
8130 int coal_ntasks
= 0;
8131 uint64_t coal_page_count
= coalition_get_page_count(coal
, &coal_ntasks
);
8132 leaders
[nleaders
].msi_coal
= coal
;
8133 leaders
[nleaders
].msi_page_count
= coal_page_count
;
8134 leaders
[nleaders
].msi_pid
= p
->p_pid
; /* the coalition leader */
8135 leaders
[nleaders
].msi_ntasks
= coal_ntasks
;
8139 * We've hit MAX_COAL_LEADERS meaning we can handle no more coalitions.
8140 * Abandoned coalitions will linger at the tail of the priority band
8141 * when this sort session ends.
8142 * TODO: should this be an assert?
8144 printf("%s: WARNING: more than %d leaders in priority band [%d]\n",
8145 __FUNCTION__
, MAX_COAL_LEADERS
, bucket_index
);
8149 p
= memorystatus_get_next_proc_locked(&b
, p
, FALSE
);
8152 if (nleaders
== 0) {
8153 /* Nothing to sort */
8158 * Sort the coalition leader array, from smallest coalition page count
8159 * to largest coalition page count. When inserted in the priority bucket,
8160 * smallest coalition is handled first, resulting in the last to be jetsammed.
8163 qsort(leaders
, nleaders
, sizeof(memstat_sort_info_t
), memstat_asc_cmp
);
8167 for (i
= 0; i
< nleaders
; i
++) {
8168 printf("%s: coal_leader[%d of %d] pid[%d] pages[%llu] ntasks[%d]\n",
8169 __FUNCTION__
, i
, nleaders
, leaders
[i
].msi_pid
, leaders
[i
].msi_page_count
,
8170 leaders
[i
].msi_ntasks
);
8175 * During coalition sorting, processes in a priority band are rearranged
8176 * by being re-inserted at the head of the queue. So, when handling a
8177 * list, the first process that gets moved to the head of the queue,
8178 * ultimately gets pushed toward the queue tail, and hence, jetsams last.
8180 * So, for example, the coalition leader is expected to jetsam last,
8181 * after its coalition members. Therefore, the coalition leader is
8182 * inserted at the head of the queue first.
8184 * After processing a coalition, the jetsam order is as follows:
8185 * undefs(jetsam first), extensions, xpc services, leader(jetsam last)
8189 * Coalition members are rearranged in the priority bucket here,
8190 * based on their coalition role.
8192 total_pids_moved
= 0;
8193 for (i
= 0; i
< nleaders
; i
++) {
8194 /* a bit of bookkeeping */
8197 /* Coalition leaders are jetsammed last, so move into place first */
8198 pid_list
[0] = leaders
[i
].msi_pid
;
8199 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
, 1);
8201 /* xpc services should jetsam after extensions */
8202 ntasks
= coalition_get_pid_list(leaders
[i
].msi_coal
, COALITION_ROLEMASK_XPC
,
8203 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
8206 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
8207 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
8210 /* extensions should jetsam after unmarked processes */
8211 ntasks
= coalition_get_pid_list(leaders
[i
].msi_coal
, COALITION_ROLEMASK_EXT
,
8212 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
8215 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
8216 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
8219 /* undefined coalition members should be the first to jetsam */
8220 ntasks
= coalition_get_pid_list(leaders
[i
].msi_coal
, COALITION_ROLEMASK_UNDEF
,
8221 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
8224 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
8225 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
8229 if (pids_moved
== leaders
[i
].msi_ntasks
) {
8231 * All the pids in the coalition were found in this band.
8233 printf("%s: pids_moved[%d] equal total coalition ntasks[%d] \n", __FUNCTION__
,
8234 pids_moved
, leaders
[i
].msi_ntasks
);
8235 } else if (pids_moved
> leaders
[i
].msi_ntasks
) {
8237 * Apparently new coalition members showed up during the sort?
8239 printf("%s: pids_moved[%d] were greater than expected coalition ntasks[%d] \n", __FUNCTION__
,
8240 pids_moved
, leaders
[i
].msi_ntasks
);
8243 * Apparently not all the pids in the coalition were found in this band?
8245 printf("%s: pids_moved[%d] were less than expected coalition ntasks[%d] \n", __FUNCTION__
,
8246 pids_moved
, leaders
[i
].msi_ntasks
);
8250 total_pids_moved
+= pids_moved
;
8253 return total_pids_moved
;
8258 * Traverse a list of pids, searching for each within the priority band provided.
8259 * If pid is found, move it to the front of the priority band.
8260 * Never searches outside the priority band provided.
8263 * bucket_index - jetsam priority band.
8264 * pid_list - pointer to a list of pids.
8265 * list_sz - number of pids in the list.
8267 * Pid list ordering is important in that,
8268 * pid_list[n] is expected to jetsam ahead of pid_list[n+1].
8269 * The sort_order is set by the coalition default.
8272 * the number of pids found and hence moved within the priority band.
8275 memorystatus_move_list_locked(unsigned int bucket_index
, pid_t
*pid_list
, int list_sz
)
8277 memstat_bucket_t
*current_bucket
;
8281 if ((pid_list
== NULL
) || (list_sz
<= 0)) {
8285 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
8289 current_bucket
= &memstat_bucket
[bucket_index
];
8290 for (i
= 0; i
< list_sz
; i
++) {
8291 unsigned int b
= bucket_index
;
8293 proc_t aProc
= NULL
;
8297 list_index
= ((list_sz
- 1) - i
);
8298 aPid
= pid_list
[list_index
];
8300 /* never search beyond bucket_index provided */
8301 p
= memorystatus_get_first_proc_locked(&b
, FALSE
);
8303 if (p
->p_pid
== aPid
) {
8307 p
= memorystatus_get_next_proc_locked(&b
, p
, FALSE
);
8310 if (aProc
== NULL
) {
8311 /* pid not found in this band, just skip it */
8314 TAILQ_REMOVE(¤t_bucket
->list
, aProc
, p_memstat_list
);
8315 TAILQ_INSERT_HEAD(¤t_bucket
->list
, aProc
, p_memstat_list
);
8323 memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index
)
8325 int32_t i
= JETSAM_PRIORITY_IDLE
;
8328 if (max_bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
8332 while (i
<= max_bucket_index
) {
8333 count
+= memstat_bucket
[i
++].count
;
8340 memorystatus_update_priority_for_appnap(proc_t p
, boolean_t is_appnap
)
8343 if (!p
|| (!isApp(p
)) || (p
->p_memstat_state
& (P_MEMSTAT_INTERNAL
| P_MEMSTAT_MANAGED
))) {
8345 * Ineligible processes OR system processes e.g. launchd.
8347 * We also skip processes that have the P_MEMSTAT_MANAGED bit set, i.e.
8348 * they're managed by assertiond. These are iOS apps that have been ported
8349 * to macOS. assertiond might be in the process of modifying the app's
8350 * priority / memory limit - so it might have the proc_list lock, and then try
8351 * to take the task lock. Meanwhile we've entered this function with the task lock
8352 * held, and we need the proc_list lock below. So we'll deadlock with assertiond.
8354 * It should be fine to read the P_MEMSTAT_MANAGED bit without the proc_list
8355 * lock here, since assertiond only sets this bit on process launch.
8362 * We would like to use memorystatus_update() here to move the processes
8363 * within the bands. Unfortunately memorystatus_update() calls
8364 * memorystatus_update_priority_locked() which uses any band transitions
8365 * as an indication to modify ledgers. For that it needs the task lock
8366 * and since we came into this function with the task lock held, we'll deadlock.
8368 * Unfortunately we can't completely disable ledger updates because we still
8369 * need the ledger updates for a subset of processes i.e. daemons.
8370 * When all processes on all platforms support memory limits, we can simply call
8371 * memorystatus_update().
8373 * It also has some logic to deal with 'aging' which, currently, is only applicable
8374 * on CONFIG_JETSAM configs. So, till every platform has CONFIG_JETSAM we'll need
8375 * to do this explicit band transition.
8378 memstat_bucket_t
*current_bucket
, *new_bucket
;
8379 int32_t priority
= 0;
8383 if (((p
->p_listflag
& P_LIST_EXITED
) != 0) ||
8384 (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
))) {
8386 * If the process is on its way out OR
8387 * jetsam has alread tried and failed to kill this process,
8388 * let's skip the whole jetsam band transition.
8395 current_bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
8396 new_bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
8397 priority
= JETSAM_PRIORITY_IDLE
;
8399 if (p
->p_memstat_effectivepriority
!= JETSAM_PRIORITY_IDLE
) {
8401 * It is possible that someone pulled this process
8402 * out of the IDLE band without updating its app-nap
8409 current_bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
8410 new_bucket
= &memstat_bucket
[p
->p_memstat_requestedpriority
];
8411 priority
= p
->p_memstat_requestedpriority
;
8414 TAILQ_REMOVE(¤t_bucket
->list
, p
, p_memstat_list
);
8415 current_bucket
->count
--;
8416 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
8417 current_bucket
->relaunch_high_count
--;
8419 TAILQ_INSERT_TAIL(&new_bucket
->list
, p
, p_memstat_list
);
8420 new_bucket
->count
++;
8421 if (p
->p_memstat_relaunch_flags
& (P_MEMSTAT_RELAUNCH_HIGH
)) {
8422 new_bucket
->relaunch_high_count
++;
8425 * Record idle start or idle delta.
8427 if (p
->p_memstat_effectivepriority
== priority
) {
8429 * This process is not transitioning between
8430 * jetsam priority buckets. Do nothing.
8432 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
8435 * Transitioning out of the idle priority bucket.
8436 * Record idle delta.
8438 assert(p
->p_memstat_idle_start
!= 0);
8439 now
= mach_absolute_time();
8440 if (now
> p
->p_memstat_idle_start
) {
8441 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
8443 } else if (priority
== JETSAM_PRIORITY_IDLE
) {
8445 * Transitioning into the idle priority bucket.
8446 * Record idle start.
8448 p
->p_memstat_idle_start
= mach_absolute_time();
8451 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CHANGE_PRIORITY
), p
->p_pid
, priority
, p
->p_memstat_effectivepriority
, 0, 0);
8453 p
->p_memstat_effectivepriority
= priority
;
8459 #else /* !CONFIG_JETSAM */
8461 #pragma unused(is_appnap)
8463 #endif /* !CONFIG_JETSAM */
8467 memorystatus_available_memory_internal(struct proc
*p
)
8469 #ifdef XNU_TARGET_OS_OSX
8470 if (p
->p_memstat_memlimit
<= 0) {
8473 #endif /* XNU_TARGET_OS_OSX */
8474 const uint64_t footprint_in_bytes
= get_task_phys_footprint(p
->task
);
8475 int32_t memlimit_mb
;
8476 int64_t memlimit_bytes
;
8479 if (isApp(p
) == FALSE
) {
8483 if (p
->p_memstat_memlimit
> 0) {
8484 memlimit_mb
= p
->p_memstat_memlimit
;
8485 } else if (task_convert_phys_footprint_limit(-1, &memlimit_mb
) != KERN_SUCCESS
) {
8489 if (memlimit_mb
<= 0) {
8490 memlimit_bytes
= INT_MAX
& ~((1 << 20) - 1);
8492 memlimit_bytes
= ((int64_t) memlimit_mb
) << 20;
8495 rc
= memlimit_bytes
- footprint_in_bytes
;
8497 return (rc
>= 0) ? rc
: 0;
8501 memorystatus_available_memory(struct proc
*p
, __unused
struct memorystatus_available_memory_args
*args
, uint64_t *ret
)
8503 *ret
= memorystatus_available_memory_internal(p
);
8509 #if DEVELOPMENT || DEBUG
8511 memorystatus_cmd_increase_jetsam_task_limit(pid_t pid
, uint32_t byte_increase
)
8513 memorystatus_memlimit_properties_t mmp_entry
;
8515 /* Validate inputs */
8516 if ((pid
== 0) || (byte_increase
== 0)) {
8520 proc_t p
= proc_find(pid
);
8526 const uint32_t current_memlimit_increase
= roundToNearestMB(p
->p_memlimit_increase
);
8528 const int32_t page_aligned_increase
= (int32_t) MIN(round_page(p
->p_memlimit_increase
+ byte_increase
), INT32_MAX
);
8532 memorystatus_get_memlimit_properties_internal(p
, &mmp_entry
);
8534 if (mmp_entry
.memlimit_active
> 0) {
8535 mmp_entry
.memlimit_active
-= current_memlimit_increase
;
8536 mmp_entry
.memlimit_active
+= roundToNearestMB(page_aligned_increase
);
8539 if (mmp_entry
.memlimit_inactive
> 0) {
8540 mmp_entry
.memlimit_inactive
-= current_memlimit_increase
;
8541 mmp_entry
.memlimit_inactive
+= roundToNearestMB(page_aligned_increase
);
8545 * Store the updated delta limit in the proc.
8547 p
->p_memlimit_increase
= page_aligned_increase
;
8549 int error
= memorystatus_set_memlimit_properties_internal(p
, &mmp_entry
);
8556 #endif /* DEVELOPMENT */
8557 #endif /* CONFIG_JETSAM */