]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/kern_memorystatus.c
xnu-7195.81.3.tar.gz
[apple/xnu.git] / bsd / kern / kern_memorystatus.c
1 /*
2 * Copyright (c) 2006-2019 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 *
28 */
29
30 #include <kern/sched_prim.h>
31 #include <kern/kalloc.h>
32 #include <kern/assert.h>
33 #include <kern/debug.h>
34 #include <kern/locks.h>
35 #include <kern/task.h>
36 #include <kern/thread.h>
37 #include <kern/host.h>
38 #include <kern/policy_internal.h>
39 #include <kern/thread_group.h>
40
41 #include <corpses/task_corpse.h>
42 #include <libkern/libkern.h>
43 #include <mach/coalition.h>
44 #include <mach/mach_time.h>
45 #include <mach/task.h>
46 #include <mach/host_priv.h>
47 #include <mach/mach_host.h>
48 #include <os/log.h>
49 #include <pexpert/pexpert.h>
50 #include <sys/coalition.h>
51 #include <sys/kern_event.h>
52 #include <sys/proc.h>
53 #include <sys/proc_info.h>
54 #include <sys/reason.h>
55 #include <sys/signal.h>
56 #include <sys/signalvar.h>
57 #include <sys/sysctl.h>
58 #include <sys/sysproto.h>
59 #include <sys/wait.h>
60 #include <sys/tree.h>
61 #include <sys/priv.h>
62 #include <vm/pmap.h>
63 #include <vm/vm_pageout.h>
64 #include <vm/vm_protos.h>
65 #include <mach/machine/sdt.h>
66 #include <libkern/section_keywords.h>
67 #include <stdatomic.h>
68
69 #include <IOKit/IOBSD.h>
70
71 #if CONFIG_FREEZE
72 #include <vm/vm_map.h>
73 #endif /* CONFIG_FREEZE */
74
75 #include <sys/kern_memorystatus.h>
76 #include <sys/kern_memorystatus_freeze.h>
77 #include <sys/kern_memorystatus_notify.h>
78
79 /* For logging clarity */
80 static const char *memorystatus_kill_cause_name[] = {
81 "", /* kMemorystatusInvalid */
82 "jettisoned", /* kMemorystatusKilled */
83 "highwater", /* kMemorystatusKilledHiwat */
84 "vnode-limit", /* kMemorystatusKilledVnodes */
85 "vm-pageshortage", /* kMemorystatusKilledVMPageShortage */
86 "proc-thrashing", /* kMemorystatusKilledProcThrashing */
87 "fc-thrashing", /* kMemorystatusKilledFCThrashing */
88 "per-process-limit", /* kMemorystatusKilledPerProcessLimit */
89 "disk-space-shortage", /* kMemorystatusKilledDiskSpaceShortage */
90 "idle-exit", /* kMemorystatusKilledIdleExit */
91 "zone-map-exhaustion", /* kMemorystatusKilledZoneMapExhaustion */
92 "vm-compressor-thrashing", /* kMemorystatusKilledVMCompressorThrashing */
93 "vm-compressor-space-shortage", /* kMemorystatusKilledVMCompressorSpaceShortage */
94 };
95
96 static const char *
97 memorystatus_priority_band_name(int32_t priority)
98 {
99 switch (priority) {
100 case JETSAM_PRIORITY_FOREGROUND:
101 return "FOREGROUND";
102 case JETSAM_PRIORITY_AUDIO_AND_ACCESSORY:
103 return "AUDIO_AND_ACCESSORY";
104 case JETSAM_PRIORITY_CONDUCTOR:
105 return "CONDUCTOR";
106 case JETSAM_PRIORITY_DRIVER_APPLE:
107 return "DRIVER_APPLE";
108 case JETSAM_PRIORITY_HOME:
109 return "HOME";
110 case JETSAM_PRIORITY_EXECUTIVE:
111 return "EXECUTIVE";
112 case JETSAM_PRIORITY_IMPORTANT:
113 return "IMPORTANT";
114 case JETSAM_PRIORITY_CRITICAL:
115 return "CRITICAL";
116 }
117
118 return "?";
119 }
120
121 /* Does cause indicate vm or fc thrashing? */
122 static boolean_t
123 is_reason_thrashing(unsigned cause)
124 {
125 switch (cause) {
126 case kMemorystatusKilledFCThrashing:
127 case kMemorystatusKilledVMCompressorThrashing:
128 case kMemorystatusKilledVMCompressorSpaceShortage:
129 return TRUE;
130 default:
131 return FALSE;
132 }
133 }
134
135 /* Is the zone map almost full? */
136 static boolean_t
137 is_reason_zone_map_exhaustion(unsigned cause)
138 {
139 if (cause == kMemorystatusKilledZoneMapExhaustion) {
140 return TRUE;
141 }
142 return FALSE;
143 }
144
145 /*
146 * Returns the current zone map size and capacity to include in the jetsam snapshot.
147 * Defined in zalloc.c
148 */
149 extern void get_zone_map_size(uint64_t *current_size, uint64_t *capacity);
150
151 /*
152 * Returns the name of the largest zone and its size to include in the jetsam snapshot.
153 * Defined in zalloc.c
154 */
155 extern void get_largest_zone_info(char *zone_name, size_t zone_name_len, uint64_t *zone_size);
156
157 /*
158 * Active / Inactive limit support
159 * proc list must be locked
160 *
161 * The SET_*** macros are used to initialize a limit
162 * for the first time.
163 *
164 * The CACHE_*** macros are use to cache the limit that will
165 * soon be in effect down in the ledgers.
166 */
167
168 #define SET_ACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \
169 MACRO_BEGIN \
170 (p)->p_memstat_memlimit_active = (limit); \
171 if (is_fatal) { \
172 (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \
173 } else { \
174 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \
175 } \
176 MACRO_END
177
178 #define SET_INACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \
179 MACRO_BEGIN \
180 (p)->p_memstat_memlimit_inactive = (limit); \
181 if (is_fatal) { \
182 (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \
183 } else { \
184 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \
185 } \
186 MACRO_END
187
188 #define CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal) \
189 MACRO_BEGIN \
190 (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_active; \
191 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL) { \
192 (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \
193 is_fatal = TRUE; \
194 } else { \
195 (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \
196 is_fatal = FALSE; \
197 } \
198 MACRO_END
199
200 #define CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal) \
201 MACRO_BEGIN \
202 (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_inactive; \
203 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) { \
204 (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \
205 is_fatal = TRUE; \
206 } else { \
207 (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \
208 is_fatal = FALSE; \
209 } \
210 MACRO_END
211
212
213 /* General tunables */
214
215 unsigned long delta_percentage = 5;
216 unsigned long critical_threshold_percentage = 5;
217 // On embedded devices with more than 3GB of memory we lower the critical percentage.
218 uint64_t config_jetsam_large_memory_cutoff = 3UL * (1UL << 30);
219 unsigned long critical_threshold_percentage_larger_devices = 4;
220 unsigned long delta_percentage_larger_devices = 4;
221 unsigned long idle_offset_percentage = 5;
222 unsigned long pressure_threshold_percentage = 15;
223 unsigned long policy_more_free_offset_percentage = 5;
224 unsigned long sysproc_aging_aggr_threshold_percentage = 7;
225
226 /*
227 * default jetsam snapshot support
228 */
229 memorystatus_jetsam_snapshot_t *memorystatus_jetsam_snapshot;
230 memorystatus_jetsam_snapshot_t *memorystatus_jetsam_snapshot_copy;
231
232 #if CONFIG_FREEZE
233 memorystatus_jetsam_snapshot_t *memorystatus_jetsam_snapshot_freezer;
234 /*
235 * The size of the freezer snapshot is given by memorystatus_jetsam_snapshot_max / JETSAM_SNAPSHOT_FREEZER_MAX_FACTOR
236 * The freezer snapshot can be much smaller than the default snapshot
237 * because it only includes apps that have been killed and dasd consumes it every 30 minutes.
238 * Since the snapshots are always wired we don't want to overallocate too much.
239 */
240 #define JETSAM_SNAPSHOT_FREEZER_MAX_FACTOR 20
241 unsigned int memorystatus_jetsam_snapshot_freezer_max;
242 unsigned int memorystatus_jetsam_snapshot_freezer_size;
243 TUNABLE(bool, memorystatus_jetsam_use_freezer_snapshot, "kern.jetsam_user_freezer_snapshot", true);
244 #endif /* CONFIG_FREEZE */
245
246 unsigned int memorystatus_jetsam_snapshot_count = 0;
247 unsigned int memorystatus_jetsam_snapshot_copy_count = 0;
248 unsigned int memorystatus_jetsam_snapshot_max = 0;
249 unsigned int memorystatus_jetsam_snapshot_size = 0;
250 uint64_t memorystatus_jetsam_snapshot_last_timestamp = 0;
251 uint64_t memorystatus_jetsam_snapshot_timeout = 0;
252
253 #if DEVELOPMENT || DEBUG
254 /*
255 * On development and debug kernels, we allow one pid to take ownership
256 * of the memorystatus snapshot (via memorystatus_control).
257 * If there's an owner, then only they may consume the snapshot.
258 * This is used when testing the snapshot interface to avoid racing with other
259 * processes on the system that consume snapshots.
260 */
261 static pid_t memorystatus_snapshot_owner = 0;
262 SYSCTL_INT(_kern, OID_AUTO, memorystatus_snapshot_owner, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_snapshot_owner, 0, "");
263 #endif /* DEVELOPMENT || DEBUG */
264 static void memorystatus_init_jetsam_snapshot_header(memorystatus_jetsam_snapshot_t *snapshot);
265
266 /* General memorystatus stuff */
267
268 uint64_t memorystatus_sysprocs_idle_delay_time = 0;
269 uint64_t memorystatus_apps_idle_delay_time = 0;
270 /* Some devices give entitled apps a higher memory limit */
271 #if __arm64__
272 int32_t memorystatus_entitled_max_task_footprint_mb = 0;
273
274 #if DEVELOPMENT || DEBUG
275 SYSCTL_INT(_kern, OID_AUTO, entitled_max_task_pmem, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_entitled_max_task_footprint_mb, 0, "");
276 #endif /* DEVELOPMENT || DEBUG */
277 #endif /* __arm64__ */
278
279 static lck_grp_attr_t *memorystatus_jetsam_fg_band_lock_grp_attr;
280 static lck_grp_t *memorystatus_jetsam_fg_band_lock_grp;
281 lck_mtx_t memorystatus_jetsam_fg_band_lock;
282
283 /* Idle guard handling */
284
285 static int32_t memorystatus_scheduled_idle_demotions_sysprocs = 0;
286 static int32_t memorystatus_scheduled_idle_demotions_apps = 0;
287
288 static void memorystatus_perform_idle_demotion(__unused void *spare1, __unused void *spare2);
289 static void memorystatus_schedule_idle_demotion_locked(proc_t p, boolean_t set_state);
290 static void memorystatus_reschedule_idle_demotion_locked(void);
291 int memorystatus_update_priority_for_appnap(proc_t p, boolean_t is_appnap);
292 vm_pressure_level_t convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t);
293 boolean_t is_knote_registered_modify_task_pressure_bits(struct knote*, int, task_t, vm_pressure_level_t, vm_pressure_level_t);
294 void memorystatus_klist_reset_all_for_level(vm_pressure_level_t pressure_level_to_clear);
295 void memorystatus_send_low_swap_note(void);
296 int memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index);
297 boolean_t memorystatus_kill_elevated_process(uint32_t cause, os_reason_t jetsam_reason, unsigned int band, int aggr_count,
298 uint32_t *errors, uint64_t *memory_reclaimed);
299 uint64_t memorystatus_available_memory_internal(proc_t p);
300
301 unsigned int memorystatus_level = 0;
302 static int memorystatus_list_count = 0;
303 memstat_bucket_t memstat_bucket[MEMSTAT_BUCKET_COUNT];
304 static thread_call_t memorystatus_idle_demotion_call;
305 uint64_t memstat_idle_demotion_deadline = 0;
306 int system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1;
307 int applications_aging_band = JETSAM_PRIORITY_IDLE;
308
309 #define isProcessInAgingBands(p) ((isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) || (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)))
310
311 #define kJetsamAgingPolicyNone (0)
312 #define kJetsamAgingPolicyLegacy (1)
313 #define kJetsamAgingPolicySysProcsReclaimedFirst (2)
314 #define kJetsamAgingPolicyAppsReclaimedFirst (3)
315 #define kJetsamAgingPolicyMax kJetsamAgingPolicyAppsReclaimedFirst
316
317 unsigned int jetsam_aging_policy = kJetsamAgingPolicySysProcsReclaimedFirst;
318
319 extern int corpse_for_fatal_memkill;
320 extern uint64_t vm_purgeable_purge_task_owned(task_t task);
321 boolean_t memorystatus_allowed_vm_map_fork(task_t);
322 #if DEVELOPMENT || DEBUG
323 void memorystatus_abort_vm_map_fork(task_t);
324 #endif
325
326 /*
327 * Idle delay timeout factors for daemons based on relaunch behavior. Only used in
328 * kJetsamAgingPolicySysProcsReclaimedFirst aging policy.
329 */
330 #define kJetsamSysProcsIdleDelayTimeLowRatio (5)
331 #define kJetsamSysProcsIdleDelayTimeMedRatio (2)
332 #define kJetsamSysProcsIdleDelayTimeHighRatio (1)
333 static_assert(kJetsamSysProcsIdleDelayTimeLowRatio <= DEFERRED_IDLE_EXIT_TIME_SECS, "sysproc idle delay time for low relaunch daemons would be 0");
334
335 /*
336 * For the kJetsamAgingPolicySysProcsReclaimedFirst aging policy, treat apps as well
337 * behaved daemons for aging purposes.
338 */
339 #define kJetsamAppsIdleDelayTimeRatio (kJetsamSysProcsIdleDelayTimeLowRatio)
340
341 static uint64_t
342 memorystatus_sysprocs_idle_time(proc_t p)
343 {
344 /*
345 * The kJetsamAgingPolicySysProcsReclaimedFirst aging policy uses the relaunch behavior to
346 * determine the exact idle deferred time provided to the daemons. For all other aging
347 * policies, simply return the default aging idle time.
348 */
349 if (jetsam_aging_policy != kJetsamAgingPolicySysProcsReclaimedFirst) {
350 return memorystatus_sysprocs_idle_delay_time;
351 }
352
353 uint64_t idle_delay_time = 0;
354 /*
355 * For system processes, base the idle delay time on the
356 * jetsam relaunch behavior specified by launchd. The idea
357 * is to provide extra protection to the daemons which would
358 * relaunch immediately after jetsam.
359 */
360 switch (p->p_memstat_relaunch_flags) {
361 case P_MEMSTAT_RELAUNCH_UNKNOWN:
362 case P_MEMSTAT_RELAUNCH_LOW:
363 idle_delay_time = memorystatus_sysprocs_idle_delay_time / kJetsamSysProcsIdleDelayTimeLowRatio;
364 break;
365 case P_MEMSTAT_RELAUNCH_MED:
366 idle_delay_time = memorystatus_sysprocs_idle_delay_time / kJetsamSysProcsIdleDelayTimeMedRatio;
367 break;
368 case P_MEMSTAT_RELAUNCH_HIGH:
369 idle_delay_time = memorystatus_sysprocs_idle_delay_time / kJetsamSysProcsIdleDelayTimeHighRatio;
370 break;
371 default:
372 panic("Unknown relaunch flags on process!");
373 break;
374 }
375 return idle_delay_time;
376 }
377
378 static uint64_t
379 memorystatus_apps_idle_time(__unused proc_t p)
380 {
381 /*
382 * For kJetsamAgingPolicySysProcsReclaimedFirst, the Apps are considered as low
383 * relaunch candidates. So only provide limited protection to them. In the other
384 * aging policies, return the default aging idle time.
385 */
386 if (jetsam_aging_policy != kJetsamAgingPolicySysProcsReclaimedFirst) {
387 return memorystatus_apps_idle_delay_time;
388 }
389
390 return memorystatus_apps_idle_delay_time / kJetsamAppsIdleDelayTimeRatio;
391 }
392
393
394 #if 0
395
396 /* Keeping around for future use if we need a utility that can do this OR an app that needs a dynamic adjustment. */
397
398 static int
399 sysctl_set_jetsam_aging_policy SYSCTL_HANDLER_ARGS
400 {
401 #pragma unused(oidp, arg1, arg2)
402
403 int error = 0, val = 0;
404 memstat_bucket_t *old_bucket = 0;
405 int old_system_procs_aging_band = 0, new_system_procs_aging_band = 0;
406 int old_applications_aging_band = 0, new_applications_aging_band = 0;
407 proc_t p = NULL, next_proc = NULL;
408
409
410 error = sysctl_io_number(req, jetsam_aging_policy, sizeof(int), &val, NULL);
411 if (error || !req->newptr) {
412 return error;
413 }
414
415 if ((val < 0) || (val > kJetsamAgingPolicyMax)) {
416 printf("jetsam: ordering policy sysctl has invalid value - %d\n", val);
417 return EINVAL;
418 }
419
420 /*
421 * We need to synchronize with any potential adding/removal from aging bands
422 * that might be in progress currently. We use the proc_list_lock() just for
423 * consistency with all the routines dealing with 'aging' processes. We need
424 * a lighterweight lock.
425 */
426 proc_list_lock();
427
428 old_system_procs_aging_band = system_procs_aging_band;
429 old_applications_aging_band = applications_aging_band;
430
431 switch (val) {
432 case kJetsamAgingPolicyNone:
433 new_system_procs_aging_band = JETSAM_PRIORITY_IDLE;
434 new_applications_aging_band = JETSAM_PRIORITY_IDLE;
435 break;
436
437 case kJetsamAgingPolicyLegacy:
438 /*
439 * Legacy behavior where some daemons get a 10s protection once and only before the first clean->dirty->clean transition before going into IDLE band.
440 */
441 new_system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1;
442 new_applications_aging_band = JETSAM_PRIORITY_IDLE;
443 break;
444
445 case kJetsamAgingPolicySysProcsReclaimedFirst:
446 new_system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1;
447 new_applications_aging_band = JETSAM_PRIORITY_AGING_BAND2;
448 break;
449
450 case kJetsamAgingPolicyAppsReclaimedFirst:
451 new_system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND2;
452 new_applications_aging_band = JETSAM_PRIORITY_AGING_BAND1;
453 break;
454
455 default:
456 break;
457 }
458
459 if (old_system_procs_aging_band && (old_system_procs_aging_band != new_system_procs_aging_band)) {
460 old_bucket = &memstat_bucket[old_system_procs_aging_band];
461 p = TAILQ_FIRST(&old_bucket->list);
462
463 while (p) {
464 next_proc = TAILQ_NEXT(p, p_memstat_list);
465
466 if (isSysProc(p)) {
467 if (new_system_procs_aging_band == JETSAM_PRIORITY_IDLE) {
468 memorystatus_invalidate_idle_demotion_locked(p, TRUE);
469 }
470
471 memorystatus_update_priority_locked(p, new_system_procs_aging_band, false, true);
472 }
473
474 p = next_proc;
475 continue;
476 }
477 }
478
479 if (old_applications_aging_band && (old_applications_aging_band != new_applications_aging_band)) {
480 old_bucket = &memstat_bucket[old_applications_aging_band];
481 p = TAILQ_FIRST(&old_bucket->list);
482
483 while (p) {
484 next_proc = TAILQ_NEXT(p, p_memstat_list);
485
486 if (isApp(p)) {
487 if (new_applications_aging_band == JETSAM_PRIORITY_IDLE) {
488 memorystatus_invalidate_idle_demotion_locked(p, TRUE);
489 }
490
491 memorystatus_update_priority_locked(p, new_applications_aging_band, false, true);
492 }
493
494 p = next_proc;
495 continue;
496 }
497 }
498
499 jetsam_aging_policy = val;
500 system_procs_aging_band = new_system_procs_aging_band;
501 applications_aging_band = new_applications_aging_band;
502
503 proc_list_unlock();
504
505 return 0;
506 }
507
508 SYSCTL_PROC(_kern, OID_AUTO, set_jetsam_aging_policy, CTLTYPE_INT | CTLFLAG_RW,
509 0, 0, sysctl_set_jetsam_aging_policy, "I", "Jetsam Aging Policy");
510 #endif /*0*/
511
512 static int
513 sysctl_jetsam_set_sysprocs_idle_delay_time SYSCTL_HANDLER_ARGS
514 {
515 #pragma unused(oidp, arg1, arg2)
516
517 int error = 0, val = 0, old_time_in_secs = 0;
518 uint64_t old_time_in_ns = 0;
519
520 absolutetime_to_nanoseconds(memorystatus_sysprocs_idle_delay_time, &old_time_in_ns);
521 old_time_in_secs = (int) (old_time_in_ns / NSEC_PER_SEC);
522
523 error = sysctl_io_number(req, old_time_in_secs, sizeof(int), &val, NULL);
524 if (error || !req->newptr) {
525 return error;
526 }
527
528 if ((val < 0) || (val > INT32_MAX)) {
529 printf("jetsam: new idle delay interval has invalid value.\n");
530 return EINVAL;
531 }
532
533 nanoseconds_to_absolutetime((uint64_t)val * NSEC_PER_SEC, &memorystatus_sysprocs_idle_delay_time);
534
535 return 0;
536 }
537
538 SYSCTL_PROC(_kern, OID_AUTO, memorystatus_sysprocs_idle_delay_time, CTLTYPE_INT | CTLFLAG_RW,
539 0, 0, sysctl_jetsam_set_sysprocs_idle_delay_time, "I", "Aging window for system processes");
540
541
542 static int
543 sysctl_jetsam_set_apps_idle_delay_time SYSCTL_HANDLER_ARGS
544 {
545 #pragma unused(oidp, arg1, arg2)
546
547 int error = 0, val = 0, old_time_in_secs = 0;
548 uint64_t old_time_in_ns = 0;
549
550 absolutetime_to_nanoseconds(memorystatus_apps_idle_delay_time, &old_time_in_ns);
551 old_time_in_secs = (int) (old_time_in_ns / NSEC_PER_SEC);
552
553 error = sysctl_io_number(req, old_time_in_secs, sizeof(int), &val, NULL);
554 if (error || !req->newptr) {
555 return error;
556 }
557
558 if ((val < 0) || (val > INT32_MAX)) {
559 printf("jetsam: new idle delay interval has invalid value.\n");
560 return EINVAL;
561 }
562
563 nanoseconds_to_absolutetime((uint64_t)val * NSEC_PER_SEC, &memorystatus_apps_idle_delay_time);
564
565 return 0;
566 }
567
568 SYSCTL_PROC(_kern, OID_AUTO, memorystatus_apps_idle_delay_time, CTLTYPE_INT | CTLFLAG_RW,
569 0, 0, sysctl_jetsam_set_apps_idle_delay_time, "I", "Aging window for applications");
570
571 SYSCTL_INT(_kern, OID_AUTO, jetsam_aging_policy, CTLTYPE_INT | CTLFLAG_RD, &jetsam_aging_policy, 0, "");
572
573 static unsigned int memorystatus_dirty_count = 0;
574
575 SYSCTL_INT(_kern, OID_AUTO, max_task_pmem, CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_MASKED, &max_task_footprint_mb, 0, "");
576
577 static int memorystatus_highwater_enabled = 1; /* Update the cached memlimit data. */
578 static boolean_t proc_jetsam_state_is_active_locked(proc_t);
579
580 #if __arm64__
581 int legacy_footprint_bonus_mb = 50; /* This value was chosen after looking at the top 30 apps
582 * that needed the additional room in their footprint when
583 * the 'correct' accounting methods were applied to them.
584 */
585
586 #if DEVELOPMENT || DEBUG
587 SYSCTL_INT(_kern, OID_AUTO, legacy_footprint_bonus_mb, CTLFLAG_RW | CTLFLAG_LOCKED, &legacy_footprint_bonus_mb, 0, "");
588 #endif /* DEVELOPMENT || DEBUG */
589 /*
590 * Raise the inactive and active memory limits to new values.
591 * Will only raise the limits and will do nothing if either of the current
592 * limits are 0.
593 * Caller must hold the proc_list_lock
594 */
595 static void
596 memorystatus_raise_memlimit(proc_t p, int new_memlimit_active, int new_memlimit_inactive)
597 {
598 int memlimit_mb_active = 0, memlimit_mb_inactive = 0;
599 boolean_t memlimit_active_is_fatal = FALSE, memlimit_inactive_is_fatal = FALSE, use_active_limit = FALSE;
600
601 LCK_MTX_ASSERT(proc_list_mlock, LCK_MTX_ASSERT_OWNED);
602
603 if (p->p_memstat_memlimit_active > 0) {
604 memlimit_mb_active = p->p_memstat_memlimit_active;
605 } else if (p->p_memstat_memlimit_active == -1) {
606 memlimit_mb_active = max_task_footprint_mb;
607 } else {
608 /*
609 * Nothing to do for '0' which is
610 * a special value only used internally
611 * to test 'no limits'.
612 */
613 return;
614 }
615
616 if (p->p_memstat_memlimit_inactive > 0) {
617 memlimit_mb_inactive = p->p_memstat_memlimit_inactive;
618 } else if (p->p_memstat_memlimit_inactive == -1) {
619 memlimit_mb_inactive = max_task_footprint_mb;
620 } else {
621 /*
622 * Nothing to do for '0' which is
623 * a special value only used internally
624 * to test 'no limits'.
625 */
626 return;
627 }
628
629 memlimit_mb_active = MAX(new_memlimit_active, memlimit_mb_active);
630 memlimit_mb_inactive = MAX(new_memlimit_inactive, memlimit_mb_inactive);
631
632 memlimit_active_is_fatal = (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL);
633 memlimit_inactive_is_fatal = (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL);
634
635 SET_ACTIVE_LIMITS_LOCKED(p, memlimit_mb_active, memlimit_active_is_fatal);
636 SET_INACTIVE_LIMITS_LOCKED(p, memlimit_mb_inactive, memlimit_inactive_is_fatal);
637
638 if (proc_jetsam_state_is_active_locked(p) == TRUE) {
639 use_active_limit = TRUE;
640 CACHE_ACTIVE_LIMITS_LOCKED(p, memlimit_active_is_fatal);
641 } else {
642 CACHE_INACTIVE_LIMITS_LOCKED(p, memlimit_inactive_is_fatal);
643 }
644
645 if (memorystatus_highwater_enabled) {
646 task_set_phys_footprint_limit_internal(p->task,
647 (p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1,
648 NULL, /*return old value */
649 use_active_limit, /*active limit?*/
650 (use_active_limit ? memlimit_active_is_fatal : memlimit_inactive_is_fatal));
651 }
652 }
653
654 void
655 memorystatus_act_on_legacy_footprint_entitlement(proc_t p, boolean_t footprint_increase)
656 {
657 int memlimit_mb_active = 0, memlimit_mb_inactive = 0;
658
659 if (p == NULL) {
660 return;
661 }
662
663 proc_list_lock();
664
665 if (p->p_memstat_memlimit_active > 0) {
666 memlimit_mb_active = p->p_memstat_memlimit_active;
667 } else if (p->p_memstat_memlimit_active == -1) {
668 memlimit_mb_active = max_task_footprint_mb;
669 } else {
670 /*
671 * Nothing to do for '0' which is
672 * a special value only used internally
673 * to test 'no limits'.
674 */
675 proc_list_unlock();
676 return;
677 }
678
679 if (p->p_memstat_memlimit_inactive > 0) {
680 memlimit_mb_inactive = p->p_memstat_memlimit_inactive;
681 } else if (p->p_memstat_memlimit_inactive == -1) {
682 memlimit_mb_inactive = max_task_footprint_mb;
683 } else {
684 /*
685 * Nothing to do for '0' which is
686 * a special value only used internally
687 * to test 'no limits'.
688 */
689 proc_list_unlock();
690 return;
691 }
692
693 if (footprint_increase) {
694 memlimit_mb_active += legacy_footprint_bonus_mb;
695 memlimit_mb_inactive += legacy_footprint_bonus_mb;
696 } else {
697 memlimit_mb_active -= legacy_footprint_bonus_mb;
698 if (memlimit_mb_active == max_task_footprint_mb) {
699 memlimit_mb_active = -1; /* reverting back to default system limit */
700 }
701
702 memlimit_mb_inactive -= legacy_footprint_bonus_mb;
703 if (memlimit_mb_inactive == max_task_footprint_mb) {
704 memlimit_mb_inactive = -1; /* reverting back to default system limit */
705 }
706 }
707 memorystatus_raise_memlimit(p, memlimit_mb_active, memlimit_mb_inactive);
708
709 proc_list_unlock();
710 }
711
712 void
713 memorystatus_act_on_ios13extended_footprint_entitlement(proc_t p)
714 {
715 if (max_mem < 1500ULL * 1024 * 1024 ||
716 max_mem > 2ULL * 1024 * 1024 * 1024) {
717 /* ios13extended_footprint is only for 2GB devices */
718 return;
719 }
720 /* limit to "almost 2GB" */
721 proc_list_lock();
722 memorystatus_raise_memlimit(p, 1800, 1800);
723 proc_list_unlock();
724 }
725
726 void
727 memorystatus_act_on_entitled_task_limit(proc_t p)
728 {
729 if (memorystatus_entitled_max_task_footprint_mb == 0) {
730 // Entitlement is not supported on this device.
731 return;
732 }
733 proc_list_lock();
734 memorystatus_raise_memlimit(p, memorystatus_entitled_max_task_footprint_mb, memorystatus_entitled_max_task_footprint_mb);
735 proc_list_unlock();
736 }
737 #endif /* __arm64__ */
738
739 SYSCTL_INT(_kern, OID_AUTO, memorystatus_level, CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_level, 0, "");
740
741 int
742 memorystatus_get_level(__unused struct proc *p, struct memorystatus_get_level_args *args, __unused int *ret)
743 {
744 user_addr_t level = 0;
745
746 level = args->level;
747
748 if (copyout(&memorystatus_level, level, sizeof(memorystatus_level)) != 0) {
749 return EFAULT;
750 }
751
752 return 0;
753 }
754
755 static void memorystatus_thread(void *param __unused, wait_result_t wr __unused);
756
757 /* Memory Limits */
758
759 static boolean_t memorystatus_kill_specific_process(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason);
760 static boolean_t memorystatus_kill_process_sync(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason);
761
762
763 static int memorystatus_cmd_set_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval);
764
765 static int memorystatus_set_memlimit_properties(pid_t pid, memorystatus_memlimit_properties_t *entry);
766
767 static int memorystatus_cmd_get_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval);
768
769 static int memorystatus_cmd_get_memlimit_excess_np(pid_t pid, uint32_t flags, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval);
770
771 static void memorystatus_get_memlimit_properties_internal(proc_t p, memorystatus_memlimit_properties_t *p_entry);
772 static int memorystatus_set_memlimit_properties_internal(proc_t p, memorystatus_memlimit_properties_t *p_entry);
773
774 int proc_get_memstat_priority(proc_t, boolean_t);
775
776 static boolean_t memorystatus_idle_snapshot = 0;
777
778 unsigned int memorystatus_delta = 0;
779
780 /* Jetsam Loop Detection */
781 static boolean_t memorystatus_jld_enabled = FALSE; /* Enable jetsam loop detection */
782 static uint32_t memorystatus_jld_eval_period_msecs = 0; /* Init pass sets this based on device memory size */
783 static int memorystatus_jld_eval_aggressive_count = 3; /* Raise the priority max after 'n' aggressive loops */
784 static int memorystatus_jld_eval_aggressive_priority_band_max = 15; /* Kill aggressively up through this band */
785
786 /*
787 * A FG app can request that the aggressive jetsam mechanism display some leniency in the FG band. This 'lenient' mode is described as:
788 * --- if aggressive jetsam kills an app in the FG band and gets back >=AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD memory, it will stop the aggressive march further into and up the jetsam bands.
789 *
790 * RESTRICTIONS:
791 * - Such a request is respected/acknowledged only once while that 'requesting' app is in the FG band i.e. if aggressive jetsam was
792 * needed and the 'lenient' mode was deployed then that's it for this special mode while the app is in the FG band.
793 *
794 * - If the app is still in the FG band and aggressive jetsam is needed again, there will be no stop-and-check the next time around.
795 *
796 * - Also, the transition of the 'requesting' app away from the FG band will void this special behavior.
797 */
798
799 #define AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD 25
800 boolean_t memorystatus_aggressive_jetsam_lenient_allowed = FALSE;
801 boolean_t memorystatus_aggressive_jetsam_lenient = FALSE;
802
803 #if DEVELOPMENT || DEBUG
804 /*
805 * Jetsam Loop Detection tunables.
806 */
807
808 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jld_eval_period_msecs, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_jld_eval_period_msecs, 0, "");
809 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jld_eval_aggressive_count, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_jld_eval_aggressive_count, 0, "");
810 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_jld_eval_aggressive_priority_band_max, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_jld_eval_aggressive_priority_band_max, 0, "");
811 #endif /* DEVELOPMENT || DEBUG */
812
813 static uint32_t kill_under_pressure_cause = 0;
814
815 /*
816 * snapshot support for memstats collected at boot.
817 */
818 static memorystatus_jetsam_snapshot_t memorystatus_at_boot_snapshot;
819
820 static void memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t *od_snapshot, uint32_t ods_list_count);
821 static boolean_t memorystatus_init_jetsam_snapshot_entry_locked(proc_t p, memorystatus_jetsam_snapshot_entry_t *entry, uint64_t gencount);
822 static void memorystatus_update_jetsam_snapshot_entry_locked(proc_t p, uint32_t kill_cause, uint64_t killtime);
823
824 static void memorystatus_clear_errors(void);
825 static void memorystatus_get_task_phys_footprint_page_counts(task_t task,
826 uint64_t *internal_pages, uint64_t *internal_compressed_pages,
827 uint64_t *purgeable_nonvolatile_pages, uint64_t *purgeable_nonvolatile_compressed_pages,
828 uint64_t *alternate_accounting_pages, uint64_t *alternate_accounting_compressed_pages,
829 uint64_t *iokit_mapped_pages, uint64_t *page_table_pages, uint64_t *frozen_to_swap_pages);
830
831 static void memorystatus_get_task_memory_region_count(task_t task, uint64_t *count);
832
833 static uint32_t memorystatus_build_state(proc_t p);
834 //static boolean_t memorystatus_issue_pressure_kevent(boolean_t pressured);
835
836 static boolean_t memorystatus_kill_top_process(boolean_t any, boolean_t sort_flag, uint32_t cause, os_reason_t jetsam_reason, int32_t *priority,
837 uint32_t *errors, uint64_t *memory_reclaimed);
838 static boolean_t memorystatus_kill_processes_aggressive(uint32_t cause, int aggr_count, int32_t priority_max, uint32_t *errors, uint64_t *memory_reclaimed);
839 static boolean_t memorystatus_kill_hiwat_proc(uint32_t *errors, boolean_t *purged, uint64_t *memory_reclaimed);
840
841 static boolean_t memorystatus_kill_process_async(pid_t victim_pid, uint32_t cause);
842
843 /* Priority Band Sorting Routines */
844 static int memorystatus_sort_bucket(unsigned int bucket_index, int sort_order);
845 static int memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index, int coal_sort_order);
846 static void memorystatus_sort_by_largest_process_locked(unsigned int bucket_index);
847 static int memorystatus_move_list_locked(unsigned int bucket_index, pid_t *pid_list, int list_sz);
848
849 /* qsort routines */
850 typedef int (*cmpfunc_t)(const void *a, const void *b);
851 extern void qsort(void *a, size_t n, size_t es, cmpfunc_t cmp);
852 static int memstat_asc_cmp(const void *a, const void *b);
853
854 /* VM pressure */
855
856 extern unsigned int vm_page_free_count;
857 extern unsigned int vm_page_active_count;
858 extern unsigned int vm_page_inactive_count;
859 extern unsigned int vm_page_throttled_count;
860 extern unsigned int vm_page_purgeable_count;
861 extern unsigned int vm_page_wire_count;
862 extern unsigned int vm_page_speculative_count;
863
864 #if CONFIG_JETSAM
865 #define MEMORYSTATUS_LOG_AVAILABLE_PAGES memorystatus_available_pages
866 #else /* CONFIG_JETSAM */
867 #define MEMORYSTATUS_LOG_AVAILABLE_PAGES (vm_page_active_count + vm_page_inactive_count + vm_page_free_count + vm_page_speculative_count)
868 #endif /* CONFIG_JETSAM */
869 #if CONFIG_SECLUDED_MEMORY
870 extern unsigned int vm_page_secluded_count;
871 extern unsigned int vm_page_secluded_count_over_target;
872 #endif /* CONFIG_SECLUDED_MEMORY */
873
874 /* Aggressive jetsam pages threshold for sysproc aging policy */
875 unsigned int memorystatus_sysproc_aging_aggr_pages = 0;
876
877 #if CONFIG_JETSAM
878 unsigned int memorystatus_available_pages = (unsigned int)-1;
879 unsigned int memorystatus_available_pages_pressure = 0;
880 unsigned int memorystatus_available_pages_critical = 0;
881 unsigned int memorystatus_available_pages_critical_base = 0;
882 unsigned int memorystatus_available_pages_critical_idle_offset = 0;
883
884 #if DEVELOPMENT || DEBUG
885 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages, CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_available_pages, 0, "");
886 #else
887 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages, CTLFLAG_RD | CTLFLAG_MASKED | CTLFLAG_LOCKED, &memorystatus_available_pages, 0, "");
888 #endif /* DEVELOPMENT || DEBUG */
889
890 static unsigned int memorystatus_jetsam_policy = kPolicyDefault;
891 unsigned int memorystatus_policy_more_free_offset_pages = 0;
892 static void memorystatus_update_levels_locked(boolean_t critical_only);
893 static unsigned int memorystatus_thread_wasted_wakeup = 0;
894
895 /* Callback into vm_compressor.c to signal that thrashing has been mitigated. */
896 extern void vm_thrashing_jetsam_done(void);
897 static int memorystatus_cmd_set_jetsam_memory_limit(pid_t pid, int32_t high_water_mark, __unused int32_t *retval, boolean_t is_fatal_limit);
898 #if DEVELOPMENT || DEBUG
899 static inline uint32_t
900 roundToNearestMB(uint32_t in)
901 {
902 return (in + ((1 << 20) - 1)) >> 20;
903 }
904
905 static int memorystatus_cmd_increase_jetsam_task_limit(pid_t pid, uint32_t byte_increase);
906 #endif
907
908 int32_t max_kill_priority = JETSAM_PRIORITY_MAX;
909
910 #else /* CONFIG_JETSAM */
911
912 uint64_t memorystatus_available_pages = (uint64_t)-1;
913 uint64_t memorystatus_available_pages_pressure = (uint64_t)-1;
914 uint64_t memorystatus_available_pages_critical = (uint64_t)-1;
915
916 int32_t max_kill_priority = JETSAM_PRIORITY_IDLE;
917 #endif /* CONFIG_JETSAM */
918
919 #if DEVELOPMENT || DEBUG
920
921 lck_grp_attr_t *disconnect_page_mappings_lck_grp_attr;
922 lck_grp_t *disconnect_page_mappings_lck_grp;
923 static lck_mtx_t disconnect_page_mappings_mutex;
924
925 extern bool kill_on_no_paging_space;
926 #endif /* DEVELOPMENT || DEBUG */
927
928
929 /* Debug */
930
931 extern struct knote *vm_find_knote_from_pid(pid_t, struct klist *);
932
933 #if DEVELOPMENT || DEBUG
934
935 static unsigned int memorystatus_debug_dump_this_bucket = 0;
936
937 static void
938 memorystatus_debug_dump_bucket_locked(unsigned int bucket_index)
939 {
940 proc_t p = NULL;
941 uint64_t bytes = 0;
942 int ledger_limit = 0;
943 unsigned int b = bucket_index;
944 boolean_t traverse_all_buckets = FALSE;
945
946 if (bucket_index >= MEMSTAT_BUCKET_COUNT) {
947 traverse_all_buckets = TRUE;
948 b = 0;
949 } else {
950 traverse_all_buckets = FALSE;
951 b = bucket_index;
952 }
953
954 /*
955 * footprint reported in [pages / MB ]
956 * limits reported as:
957 * L-limit proc's Ledger limit
958 * C-limit proc's Cached limit, should match Ledger
959 * A-limit proc's Active limit
960 * IA-limit proc's Inactive limit
961 * F==Fatal, NF==NonFatal
962 */
963
964 printf("memorystatus_debug_dump ***START*(PAGE_SIZE_64=%llu)**\n", PAGE_SIZE_64);
965 printf("bucket [pid] [pages / MB] [state] [EP / RP / AP] dirty deadline [L-limit / C-limit / A-limit / IA-limit] name\n");
966 p = memorystatus_get_first_proc_locked(&b, traverse_all_buckets);
967 while (p) {
968 bytes = get_task_phys_footprint(p->task);
969 task_get_phys_footprint_limit(p->task, &ledger_limit);
970 printf("%2d [%5d] [%5lld /%3lldMB] 0x%-8x [%2d / %2d / %2d] 0x%-3x %10lld [%3d / %3d%s / %3d%s / %3d%s] %s\n",
971 b, p->p_pid,
972 (bytes / PAGE_SIZE_64), /* task's footprint converted from bytes to pages */
973 (bytes / (1024ULL * 1024ULL)), /* task's footprint converted from bytes to MB */
974 p->p_memstat_state, p->p_memstat_effectivepriority, p->p_memstat_requestedpriority, p->p_memstat_assertionpriority,
975 p->p_memstat_dirty, p->p_memstat_idledeadline,
976 ledger_limit,
977 p->p_memstat_memlimit,
978 (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF"),
979 p->p_memstat_memlimit_active,
980 (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL ? "F " : "NF"),
981 p->p_memstat_memlimit_inactive,
982 (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL ? "F " : "NF"),
983 (*p->p_name ? p->p_name : "unknown"));
984 p = memorystatus_get_next_proc_locked(&b, p, traverse_all_buckets);
985 }
986 printf("memorystatus_debug_dump ***END***\n");
987 }
988
989 static int
990 sysctl_memorystatus_debug_dump_bucket SYSCTL_HANDLER_ARGS
991 {
992 #pragma unused(oidp, arg2)
993 int bucket_index = 0;
994 int error;
995 error = SYSCTL_OUT(req, arg1, sizeof(int));
996 if (error || !req->newptr) {
997 return error;
998 }
999 error = SYSCTL_IN(req, &bucket_index, sizeof(int));
1000 if (error || !req->newptr) {
1001 return error;
1002 }
1003 if (bucket_index >= MEMSTAT_BUCKET_COUNT) {
1004 /*
1005 * All jetsam buckets will be dumped.
1006 */
1007 } else {
1008 /*
1009 * Only a single bucket will be dumped.
1010 */
1011 }
1012
1013 proc_list_lock();
1014 memorystatus_debug_dump_bucket_locked(bucket_index);
1015 proc_list_unlock();
1016 memorystatus_debug_dump_this_bucket = bucket_index;
1017 return error;
1018 }
1019
1020 /*
1021 * Debug aid to look at jetsam buckets and proc jetsam fields.
1022 * Use this sysctl to act on a particular jetsam bucket.
1023 * Writing the sysctl triggers the dump.
1024 * Usage: sysctl kern.memorystatus_debug_dump_this_bucket=<bucket_index>
1025 */
1026
1027 SYSCTL_PROC(_kern, OID_AUTO, memorystatus_debug_dump_this_bucket, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_debug_dump_this_bucket, 0, sysctl_memorystatus_debug_dump_bucket, "I", "");
1028
1029
1030 /* Debug aid to aid determination of limit */
1031
1032 static int
1033 sysctl_memorystatus_highwater_enable SYSCTL_HANDLER_ARGS
1034 {
1035 #pragma unused(oidp, arg2)
1036 proc_t p;
1037 unsigned int b = 0;
1038 int error, enable = 0;
1039 boolean_t use_active; /* use the active limit and active limit attributes */
1040 boolean_t is_fatal;
1041
1042 error = SYSCTL_OUT(req, arg1, sizeof(int));
1043 if (error || !req->newptr) {
1044 return error;
1045 }
1046
1047 error = SYSCTL_IN(req, &enable, sizeof(int));
1048 if (error || !req->newptr) {
1049 return error;
1050 }
1051
1052 if (!(enable == 0 || enable == 1)) {
1053 return EINVAL;
1054 }
1055
1056 proc_list_lock();
1057
1058 p = memorystatus_get_first_proc_locked(&b, TRUE);
1059 while (p) {
1060 use_active = proc_jetsam_state_is_active_locked(p);
1061
1062 if (enable) {
1063 if (use_active == TRUE) {
1064 CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal);
1065 } else {
1066 CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal);
1067 }
1068 } else {
1069 /*
1070 * Disabling limits does not touch the stored variants.
1071 * Set the cached limit fields to system_wide defaults.
1072 */
1073 p->p_memstat_memlimit = -1;
1074 p->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT;
1075 is_fatal = TRUE;
1076 }
1077
1078 /*
1079 * Enforce the cached limit by writing to the ledger.
1080 */
1081 task_set_phys_footprint_limit_internal(p->task, (p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit: -1, NULL, use_active, is_fatal);
1082
1083 p = memorystatus_get_next_proc_locked(&b, p, TRUE);
1084 }
1085
1086 memorystatus_highwater_enabled = enable;
1087
1088 proc_list_unlock();
1089
1090 return 0;
1091 }
1092
1093 SYSCTL_PROC(_kern, OID_AUTO, memorystatus_highwater_enabled, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_highwater_enabled, 0, sysctl_memorystatus_highwater_enable, "I", "");
1094
1095 SYSCTL_INT(_kern, OID_AUTO, memorystatus_idle_snapshot, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_idle_snapshot, 0, "");
1096
1097 #if CONFIG_JETSAM
1098 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_critical, CTLFLAG_RD | CTLFLAG_LOCKED, &memorystatus_available_pages_critical, 0, "");
1099 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_critical_base, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_available_pages_critical_base, 0, "");
1100 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_critical_idle_offset, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_available_pages_critical_idle_offset, 0, "");
1101 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_policy_more_free_offset_pages, CTLFLAG_RW, &memorystatus_policy_more_free_offset_pages, 0, "");
1102
1103 static unsigned int memorystatus_jetsam_panic_debug = 0;
1104
1105 #if VM_PRESSURE_EVENTS
1106
1107 SYSCTL_UINT(_kern, OID_AUTO, memorystatus_available_pages_pressure, CTLFLAG_RW | CTLFLAG_LOCKED, &memorystatus_available_pages_pressure, 0, "");
1108
1109 #endif /* VM_PRESSURE_EVENTS */
1110
1111 #endif /* CONFIG_JETSAM */
1112
1113 #endif /* DEVELOPMENT || DEBUG */
1114
1115 extern kern_return_t kernel_thread_start_priority(thread_continue_t continuation,
1116 void *parameter,
1117 integer_t priority,
1118 thread_t *new_thread);
1119
1120 #if DEVELOPMENT || DEBUG
1121
1122 static int
1123 sysctl_memorystatus_disconnect_page_mappings SYSCTL_HANDLER_ARGS
1124 {
1125 #pragma unused(arg1, arg2)
1126 int error = 0, pid = 0;
1127 proc_t p;
1128
1129 error = sysctl_handle_int(oidp, &pid, 0, req);
1130 if (error || !req->newptr) {
1131 return error;
1132 }
1133
1134 lck_mtx_lock(&disconnect_page_mappings_mutex);
1135
1136 if (pid == -1) {
1137 vm_pageout_disconnect_all_pages();
1138 } else {
1139 p = proc_find(pid);
1140
1141 if (p != NULL) {
1142 error = task_disconnect_page_mappings(p->task);
1143
1144 proc_rele(p);
1145
1146 if (error) {
1147 error = EIO;
1148 }
1149 } else {
1150 error = EINVAL;
1151 }
1152 }
1153 lck_mtx_unlock(&disconnect_page_mappings_mutex);
1154
1155 return error;
1156 }
1157
1158 SYSCTL_PROC(_kern, OID_AUTO, memorystatus_disconnect_page_mappings, CTLTYPE_INT | CTLFLAG_WR | CTLFLAG_LOCKED | CTLFLAG_MASKED,
1159 0, 0, &sysctl_memorystatus_disconnect_page_mappings, "I", "");
1160
1161 #endif /* DEVELOPMENT || DEBUG */
1162
1163 /*
1164 * Sorts the given bucket.
1165 *
1166 * Input:
1167 * bucket_index - jetsam priority band to be sorted.
1168 * sort_order - JETSAM_SORT_xxx from kern_memorystatus.h
1169 * Currently sort_order is only meaningful when handling
1170 * coalitions.
1171 *
1172 * proc_list_lock must be held by the caller.
1173 */
1174 static void
1175 memorystatus_sort_bucket_locked(unsigned int bucket_index, int sort_order)
1176 {
1177 LCK_MTX_ASSERT(proc_list_mlock, LCK_MTX_ASSERT_OWNED);
1178 if (memstat_bucket[bucket_index].count == 0) {
1179 return;
1180 }
1181
1182 switch (bucket_index) {
1183 case JETSAM_PRIORITY_FOREGROUND:
1184 if (memorystatus_sort_by_largest_coalition_locked(bucket_index, sort_order) == 0) {
1185 /*
1186 * Fall back to per process sorting when zero coalitions are found.
1187 */
1188 memorystatus_sort_by_largest_process_locked(bucket_index);
1189 }
1190 break;
1191 default:
1192 memorystatus_sort_by_largest_process_locked(bucket_index);
1193 break;
1194 }
1195 }
1196
1197 /*
1198 * Picks the sorting routine for a given jetsam priority band.
1199 *
1200 * Input:
1201 * bucket_index - jetsam priority band to be sorted.
1202 * sort_order - JETSAM_SORT_xxx from kern_memorystatus.h
1203 * Currently sort_order is only meaningful when handling
1204 * coalitions.
1205 *
1206 * Return:
1207 * 0 on success
1208 * non-0 on failure
1209 */
1210 static int
1211 memorystatus_sort_bucket(unsigned int bucket_index, int sort_order)
1212 {
1213 int coal_sort_order;
1214
1215 /*
1216 * Verify the jetsam priority
1217 */
1218 if (bucket_index >= MEMSTAT_BUCKET_COUNT) {
1219 return EINVAL;
1220 }
1221
1222 #if DEVELOPMENT || DEBUG
1223 if (sort_order == JETSAM_SORT_DEFAULT) {
1224 coal_sort_order = COALITION_SORT_DEFAULT;
1225 } else {
1226 coal_sort_order = sort_order; /* only used for testing scenarios */
1227 }
1228 #else
1229 /* Verify default */
1230 if (sort_order == JETSAM_SORT_DEFAULT) {
1231 coal_sort_order = COALITION_SORT_DEFAULT;
1232 } else {
1233 return EINVAL;
1234 }
1235 #endif
1236
1237 proc_list_lock();
1238 memorystatus_sort_bucket_locked(bucket_index, coal_sort_order);
1239 proc_list_unlock();
1240
1241 return 0;
1242 }
1243
1244 /*
1245 * Sort processes by size for a single jetsam bucket.
1246 */
1247
1248 static void
1249 memorystatus_sort_by_largest_process_locked(unsigned int bucket_index)
1250 {
1251 proc_t p = NULL, insert_after_proc = NULL, max_proc = NULL;
1252 proc_t next_p = NULL, prev_max_proc = NULL;
1253 uint32_t pages = 0, max_pages = 0;
1254 memstat_bucket_t *current_bucket;
1255
1256 if (bucket_index >= MEMSTAT_BUCKET_COUNT) {
1257 return;
1258 }
1259
1260 current_bucket = &memstat_bucket[bucket_index];
1261
1262 p = TAILQ_FIRST(&current_bucket->list);
1263
1264 while (p) {
1265 memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL);
1266 max_pages = pages;
1267 max_proc = p;
1268 prev_max_proc = p;
1269
1270 while ((next_p = TAILQ_NEXT(p, p_memstat_list)) != NULL) {
1271 /* traversing list until we find next largest process */
1272 p = next_p;
1273 memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL);
1274 if (pages > max_pages) {
1275 max_pages = pages;
1276 max_proc = p;
1277 }
1278 }
1279
1280 if (prev_max_proc != max_proc) {
1281 /* found a larger process, place it in the list */
1282 TAILQ_REMOVE(&current_bucket->list, max_proc, p_memstat_list);
1283 if (insert_after_proc == NULL) {
1284 TAILQ_INSERT_HEAD(&current_bucket->list, max_proc, p_memstat_list);
1285 } else {
1286 TAILQ_INSERT_AFTER(&current_bucket->list, insert_after_proc, max_proc, p_memstat_list);
1287 }
1288 prev_max_proc = max_proc;
1289 }
1290
1291 insert_after_proc = max_proc;
1292
1293 p = TAILQ_NEXT(max_proc, p_memstat_list);
1294 }
1295 }
1296
1297 proc_t
1298 memorystatus_get_first_proc_locked(unsigned int *bucket_index, boolean_t search)
1299 {
1300 memstat_bucket_t *current_bucket;
1301 proc_t next_p;
1302
1303 if ((*bucket_index) >= MEMSTAT_BUCKET_COUNT) {
1304 return NULL;
1305 }
1306
1307 current_bucket = &memstat_bucket[*bucket_index];
1308 next_p = TAILQ_FIRST(&current_bucket->list);
1309 if (!next_p && search) {
1310 while (!next_p && (++(*bucket_index) < MEMSTAT_BUCKET_COUNT)) {
1311 current_bucket = &memstat_bucket[*bucket_index];
1312 next_p = TAILQ_FIRST(&current_bucket->list);
1313 }
1314 }
1315
1316 return next_p;
1317 }
1318
1319 proc_t
1320 memorystatus_get_next_proc_locked(unsigned int *bucket_index, proc_t p, boolean_t search)
1321 {
1322 memstat_bucket_t *current_bucket;
1323 proc_t next_p;
1324
1325 if (!p || ((*bucket_index) >= MEMSTAT_BUCKET_COUNT)) {
1326 return NULL;
1327 }
1328
1329 next_p = TAILQ_NEXT(p, p_memstat_list);
1330 while (!next_p && search && (++(*bucket_index) < MEMSTAT_BUCKET_COUNT)) {
1331 current_bucket = &memstat_bucket[*bucket_index];
1332 next_p = TAILQ_FIRST(&current_bucket->list);
1333 }
1334
1335 return next_p;
1336 }
1337
1338 /*
1339 * Structure to hold state for a jetsam thread.
1340 * Typically there should be a single jetsam thread
1341 * unless parallel jetsam is enabled.
1342 */
1343 struct jetsam_thread_state {
1344 uint8_t inited; /* boolean - if the thread is initialized */
1345 uint8_t limit_to_low_bands; /* boolean */
1346 int memorystatus_wakeup; /* wake channel */
1347 int index; /* jetsam thread index */
1348 thread_t thread; /* jetsam thread pointer */
1349 } *jetsam_threads;
1350
1351 /* Maximum number of jetsam threads allowed */
1352 #define JETSAM_THREADS_LIMIT 3
1353
1354 /* Number of active jetsam threads */
1355 _Atomic int active_jetsam_threads = 1;
1356
1357 /* Number of maximum jetsam threads configured */
1358 int max_jetsam_threads = JETSAM_THREADS_LIMIT;
1359
1360 /*
1361 * Global switch for enabling fast jetsam. Fast jetsam is
1362 * hooked up via the system_override() system call. It has the
1363 * following effects:
1364 * - Raise the jetsam threshold ("clear-the-deck")
1365 * - Enabled parallel jetsam on eligible devices
1366 */
1367 #if __AMP__
1368 int fast_jetsam_enabled = 1;
1369 #else /* __AMP__ */
1370 int fast_jetsam_enabled = 0;
1371 #endif /* __AMP__ */
1372
1373 #if CONFIG_DIRTYSTATUS_TRACKING
1374 int dirtystatus_tracking_enabled = 0;
1375 SYSCTL_INT(_kern, OID_AUTO, dirtystatus_tracking_enabled, CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &dirtystatus_tracking_enabled, 0, "");
1376 #endif
1377
1378 /* Routine to find the jetsam state structure for the current jetsam thread */
1379 static inline struct jetsam_thread_state *
1380 jetsam_current_thread(void)
1381 {
1382 for (int thr_id = 0; thr_id < max_jetsam_threads; thr_id++) {
1383 if (jetsam_threads[thr_id].thread == current_thread()) {
1384 return &(jetsam_threads[thr_id]);
1385 }
1386 }
1387 return NULL;
1388 }
1389
1390
1391 __private_extern__ void
1392 memorystatus_init(void)
1393 {
1394 kern_return_t result;
1395 int i;
1396
1397 #if CONFIG_FREEZE
1398 memorystatus_freeze_jetsam_band = JETSAM_PRIORITY_UI_SUPPORT;
1399 memorystatus_frozen_processes_max = FREEZE_PROCESSES_MAX;
1400 memorystatus_frozen_shared_mb_max = ((MAX_FROZEN_SHARED_MB_PERCENT * max_task_footprint_mb) / 100); /* 10% of the system wide task limit */
1401 memorystatus_freeze_shared_mb_per_process_max = (memorystatus_frozen_shared_mb_max / 4);
1402 memorystatus_freeze_pages_min = FREEZE_PAGES_MIN;
1403 memorystatus_freeze_pages_max = FREEZE_PAGES_MAX;
1404 memorystatus_max_frozen_demotions_daily = MAX_FROZEN_PROCESS_DEMOTIONS;
1405 memorystatus_thaw_count_demotion_threshold = MIN_THAW_DEMOTION_THRESHOLD;
1406 #endif
1407
1408 #if DEVELOPMENT || DEBUG
1409 disconnect_page_mappings_lck_grp_attr = lck_grp_attr_alloc_init();
1410 disconnect_page_mappings_lck_grp = lck_grp_alloc_init("disconnect_page_mappings", disconnect_page_mappings_lck_grp_attr);
1411
1412 lck_mtx_init(&disconnect_page_mappings_mutex, disconnect_page_mappings_lck_grp, NULL);
1413
1414 if (kill_on_no_paging_space) {
1415 max_kill_priority = JETSAM_PRIORITY_MAX;
1416 }
1417 #endif
1418
1419 memorystatus_jetsam_fg_band_lock_grp_attr = lck_grp_attr_alloc_init();
1420 memorystatus_jetsam_fg_band_lock_grp =
1421 lck_grp_alloc_init("memorystatus_jetsam_fg_band", memorystatus_jetsam_fg_band_lock_grp_attr);
1422 lck_mtx_init(&memorystatus_jetsam_fg_band_lock, memorystatus_jetsam_fg_band_lock_grp, NULL);
1423
1424 /* Init buckets */
1425 for (i = 0; i < MEMSTAT_BUCKET_COUNT; i++) {
1426 TAILQ_INIT(&memstat_bucket[i].list);
1427 memstat_bucket[i].count = 0;
1428 memstat_bucket[i].relaunch_high_count = 0;
1429 }
1430 memorystatus_idle_demotion_call = thread_call_allocate((thread_call_func_t)memorystatus_perform_idle_demotion, NULL);
1431
1432 nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS * NSEC_PER_SEC, &memorystatus_sysprocs_idle_delay_time);
1433 nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS * NSEC_PER_SEC, &memorystatus_apps_idle_delay_time);
1434
1435 #if CONFIG_JETSAM
1436 /* Apply overrides */
1437 if (!PE_parse_boot_argn("kern.jetsam_delta", &delta_percentage, sizeof(delta_percentage))) {
1438 PE_get_default("kern.jetsam_delta", &delta_percentage, sizeof(delta_percentage));
1439 }
1440 if (delta_percentage == 0) {
1441 delta_percentage = 5;
1442 }
1443 if (max_mem > config_jetsam_large_memory_cutoff) {
1444 critical_threshold_percentage = critical_threshold_percentage_larger_devices;
1445 delta_percentage = delta_percentage_larger_devices;
1446 }
1447 assert(delta_percentage < 100);
1448 if (!PE_parse_boot_argn("kern.jetsam_critical_threshold", &critical_threshold_percentage, sizeof(critical_threshold_percentage))) {
1449 PE_get_default("kern.jetsam_critical_threshold", &critical_threshold_percentage, sizeof(critical_threshold_percentage));
1450 }
1451 assert(critical_threshold_percentage < 100);
1452 PE_get_default("kern.jetsam_idle_offset", &idle_offset_percentage, sizeof(idle_offset_percentage));
1453 assert(idle_offset_percentage < 100);
1454 PE_get_default("kern.jetsam_pressure_threshold", &pressure_threshold_percentage, sizeof(pressure_threshold_percentage));
1455 assert(pressure_threshold_percentage < 100);
1456 PE_get_default("kern.jetsam_freeze_threshold", &freeze_threshold_percentage, sizeof(freeze_threshold_percentage));
1457 assert(freeze_threshold_percentage < 100);
1458
1459
1460 if (!PE_parse_boot_argn("jetsam_aging_policy", &jetsam_aging_policy,
1461 sizeof(jetsam_aging_policy))) {
1462 if (!PE_get_default("kern.jetsam_aging_policy", &jetsam_aging_policy,
1463 sizeof(jetsam_aging_policy))) {
1464 jetsam_aging_policy = kJetsamAgingPolicySysProcsReclaimedFirst;
1465 }
1466 }
1467
1468 if (jetsam_aging_policy > kJetsamAgingPolicyMax) {
1469 jetsam_aging_policy = kJetsamAgingPolicySysProcsReclaimedFirst;
1470 }
1471
1472 switch (jetsam_aging_policy) {
1473 case kJetsamAgingPolicyNone:
1474 system_procs_aging_band = JETSAM_PRIORITY_IDLE;
1475 applications_aging_band = JETSAM_PRIORITY_IDLE;
1476 break;
1477
1478 case kJetsamAgingPolicyLegacy:
1479 /*
1480 * Legacy behavior where some daemons get a 10s protection once
1481 * AND only before the first clean->dirty->clean transition before
1482 * going into IDLE band.
1483 */
1484 system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1;
1485 applications_aging_band = JETSAM_PRIORITY_IDLE;
1486 break;
1487
1488 case kJetsamAgingPolicySysProcsReclaimedFirst:
1489 system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND1;
1490 applications_aging_band = JETSAM_PRIORITY_AGING_BAND2;
1491 break;
1492
1493 case kJetsamAgingPolicyAppsReclaimedFirst:
1494 system_procs_aging_band = JETSAM_PRIORITY_AGING_BAND2;
1495 applications_aging_band = JETSAM_PRIORITY_AGING_BAND1;
1496 break;
1497
1498 default:
1499 break;
1500 }
1501
1502 /*
1503 * The aging bands cannot overlap with the JETSAM_PRIORITY_ELEVATED_INACTIVE
1504 * band and must be below it in priority. This is so that we don't have to make
1505 * our 'aging' code worry about a mix of processes, some of which need to age
1506 * and some others that need to stay elevated in the jetsam bands.
1507 */
1508 assert(JETSAM_PRIORITY_ELEVATED_INACTIVE > system_procs_aging_band);
1509 assert(JETSAM_PRIORITY_ELEVATED_INACTIVE > applications_aging_band);
1510
1511 /* Take snapshots for idle-exit kills by default? First check the boot-arg... */
1512 if (!PE_parse_boot_argn("jetsam_idle_snapshot", &memorystatus_idle_snapshot, sizeof(memorystatus_idle_snapshot))) {
1513 /* ...no boot-arg, so check the device tree */
1514 PE_get_default("kern.jetsam_idle_snapshot", &memorystatus_idle_snapshot, sizeof(memorystatus_idle_snapshot));
1515 }
1516
1517 memorystatus_delta = (unsigned int) (delta_percentage * atop_64(max_mem) / 100);
1518 memorystatus_available_pages_critical_idle_offset = (unsigned int) (idle_offset_percentage * atop_64(max_mem) / 100);
1519 memorystatus_available_pages_critical_base = (unsigned int) ((critical_threshold_percentage / delta_percentage) * memorystatus_delta);
1520 memorystatus_policy_more_free_offset_pages = (unsigned int) ((policy_more_free_offset_percentage / delta_percentage) * memorystatus_delta);
1521 memorystatus_sysproc_aging_aggr_pages = (unsigned int) (sysproc_aging_aggr_threshold_percentage * atop_64(max_mem) / 100);
1522
1523 /* Jetsam Loop Detection */
1524 if (max_mem <= (512 * 1024 * 1024)) {
1525 /* 512 MB devices */
1526 memorystatus_jld_eval_period_msecs = 8000; /* 8000 msecs == 8 second window */
1527 } else {
1528 /* 1GB and larger devices */
1529 memorystatus_jld_eval_period_msecs = 6000; /* 6000 msecs == 6 second window */
1530 }
1531
1532 memorystatus_jld_enabled = TRUE;
1533
1534 /* No contention at this point */
1535 memorystatus_update_levels_locked(FALSE);
1536
1537 #endif /* CONFIG_JETSAM */
1538
1539 #if __arm64__
1540 if (!PE_parse_boot_argn("entitled_max_task_pmem", &memorystatus_entitled_max_task_footprint_mb,
1541 sizeof(memorystatus_entitled_max_task_footprint_mb))) {
1542 if (!PE_get_default("kern.entitled_max_task_pmem", &memorystatus_entitled_max_task_footprint_mb,
1543 sizeof(memorystatus_entitled_max_task_footprint_mb))) {
1544 // entitled_max_task_pmem is not supported on this system.
1545 memorystatus_entitled_max_task_footprint_mb = 0;
1546 }
1547 }
1548 if (memorystatus_entitled_max_task_footprint_mb > max_mem / (1UL << 20) || memorystatus_entitled_max_task_footprint_mb < 0) {
1549 os_log_with_startup_serial(OS_LOG_DEFAULT, "Invalid value (%d) for entitled_max_task_pmem. Setting to 0",
1550 memorystatus_entitled_max_task_footprint_mb);
1551 }
1552 #endif /* __arm64__ */
1553
1554 memorystatus_jetsam_snapshot_max = maxproc;
1555
1556 memorystatus_jetsam_snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) +
1557 (sizeof(memorystatus_jetsam_snapshot_entry_t) * memorystatus_jetsam_snapshot_max);
1558
1559 memorystatus_jetsam_snapshot = kalloc_flags(memorystatus_jetsam_snapshot_size, Z_WAITOK | Z_ZERO);
1560 if (!memorystatus_jetsam_snapshot) {
1561 panic("Could not allocate memorystatus_jetsam_snapshot");
1562 }
1563
1564 memorystatus_jetsam_snapshot_copy = kalloc_flags(memorystatus_jetsam_snapshot_size, Z_WAITOK | Z_ZERO);
1565 if (!memorystatus_jetsam_snapshot_copy) {
1566 panic("Could not allocate memorystatus_jetsam_snapshot_copy");
1567 }
1568
1569 #if CONFIG_FREEZE
1570 memorystatus_jetsam_snapshot_freezer_max = memorystatus_jetsam_snapshot_max / JETSAM_SNAPSHOT_FREEZER_MAX_FACTOR;
1571 memorystatus_jetsam_snapshot_freezer_size = sizeof(memorystatus_jetsam_snapshot_t) +
1572 (sizeof(memorystatus_jetsam_snapshot_entry_t) * memorystatus_jetsam_snapshot_freezer_max);
1573
1574 memorystatus_jetsam_snapshot_freezer = kalloc_flags(memorystatus_jetsam_snapshot_freezer_size, Z_WAITOK | Z_ZERO);
1575 if (!memorystatus_jetsam_snapshot_freezer) {
1576 panic("Could not allocate memorystatus_jetsam_snapshot_freezer");
1577 }
1578 #endif /* CONFIG_FREEZE */
1579
1580 nanoseconds_to_absolutetime((uint64_t)JETSAM_SNAPSHOT_TIMEOUT_SECS * NSEC_PER_SEC, &memorystatus_jetsam_snapshot_timeout);
1581
1582 memset(&memorystatus_at_boot_snapshot, 0, sizeof(memorystatus_jetsam_snapshot_t));
1583
1584 #if CONFIG_FREEZE
1585 memorystatus_freeze_threshold = (unsigned int) ((freeze_threshold_percentage / delta_percentage) * memorystatus_delta);
1586 #endif
1587
1588 /* Check the boot-arg to see if fast jetsam is allowed */
1589 if (!PE_parse_boot_argn("fast_jetsam_enabled", &fast_jetsam_enabled, sizeof(fast_jetsam_enabled))) {
1590 fast_jetsam_enabled = 0;
1591 }
1592
1593 /* Check the boot-arg to configure the maximum number of jetsam threads */
1594 if (!PE_parse_boot_argn("max_jetsam_threads", &max_jetsam_threads, sizeof(max_jetsam_threads))) {
1595 max_jetsam_threads = JETSAM_THREADS_LIMIT;
1596 }
1597
1598 /* Restrict the maximum number of jetsam threads to JETSAM_THREADS_LIMIT */
1599 if (max_jetsam_threads > JETSAM_THREADS_LIMIT) {
1600 max_jetsam_threads = JETSAM_THREADS_LIMIT;
1601 }
1602
1603 /* For low CPU systems disable fast jetsam mechanism */
1604 if (vm_pageout_state.vm_restricted_to_single_processor == TRUE) {
1605 max_jetsam_threads = 1;
1606 fast_jetsam_enabled = 0;
1607 }
1608
1609 /* Initialize the jetsam_threads state array */
1610 jetsam_threads = zalloc_permanent(sizeof(struct jetsam_thread_state) *
1611 max_jetsam_threads, ZALIGN(struct jetsam_thread_state));
1612
1613 /* Initialize all the jetsam threads */
1614 for (i = 0; i < max_jetsam_threads; i++) {
1615 jetsam_threads[i].inited = FALSE;
1616 jetsam_threads[i].index = i;
1617 result = kernel_thread_start_priority(memorystatus_thread, NULL, 95 /* MAXPRI_KERNEL */, &jetsam_threads[i].thread);
1618 if (result != KERN_SUCCESS) {
1619 panic("Could not create memorystatus_thread %d", i);
1620 }
1621 thread_deallocate(jetsam_threads[i].thread);
1622 }
1623 }
1624
1625 /* Centralised for the purposes of allowing panic-on-jetsam */
1626 extern void
1627 vm_run_compactor(void);
1628
1629 /*
1630 * The jetsam no frills kill call
1631 * Return: 0 on success
1632 * error code on failure (EINVAL...)
1633 */
1634 static int
1635 jetsam_do_kill(proc_t p, int jetsam_flags, os_reason_t jetsam_reason)
1636 {
1637 int error = 0;
1638 error = exit_with_reason(p, W_EXITCODE(0, SIGKILL), (int *)NULL, FALSE, FALSE, jetsam_flags, jetsam_reason);
1639 return error;
1640 }
1641
1642 /*
1643 * Wrapper for processes exiting with memorystatus details
1644 */
1645 static boolean_t
1646 memorystatus_do_kill(proc_t p, uint32_t cause, os_reason_t jetsam_reason, uint64_t *footprint_of_killed_proc)
1647 {
1648 int error = 0;
1649 __unused pid_t victim_pid = p->p_pid;
1650 uint64_t footprint = get_task_phys_footprint(p->task);
1651 #if (KDEBUG_LEVEL >= KDEBUG_LEVEL_STANDARD)
1652 int32_t memstat_effectivepriority = p->p_memstat_effectivepriority;
1653 #endif /* (KDEBUG_LEVEL >= KDEBUG_LEVEL_STANDARD) */
1654
1655 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DO_KILL)) | DBG_FUNC_START,
1656 victim_pid, cause, vm_page_free_count, footprint, 0);
1657 DTRACE_MEMORYSTATUS4(memorystatus_do_kill, proc_t, p, os_reason_t, jetsam_reason, uint32_t, cause, uint64_t, footprint);
1658 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
1659 if (memorystatus_jetsam_panic_debug & (1 << cause)) {
1660 panic("memorystatus_do_kill(): jetsam debug panic (cause: %d)", cause);
1661 }
1662 #else
1663 #pragma unused(cause)
1664 #endif
1665
1666 if (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND) {
1667 printf("memorystatus: killing process %d [%s] in high band %s (%d) - memorystatus_available_pages: %llu\n", p->p_pid,
1668 (*p->p_name ? p->p_name : "unknown"),
1669 memorystatus_priority_band_name(p->p_memstat_effectivepriority), p->p_memstat_effectivepriority,
1670 (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES);
1671 }
1672
1673 /*
1674 * The jetsam_reason (os_reason_t) has enough information about the kill cause.
1675 * We don't really need jetsam_flags anymore, so it's okay that not all possible kill causes have been mapped.
1676 */
1677 int jetsam_flags = P_LTERM_JETSAM;
1678 switch (cause) {
1679 case kMemorystatusKilledHiwat: jetsam_flags |= P_JETSAM_HIWAT; break;
1680 case kMemorystatusKilledVnodes: jetsam_flags |= P_JETSAM_VNODE; break;
1681 case kMemorystatusKilledVMPageShortage: jetsam_flags |= P_JETSAM_VMPAGESHORTAGE; break;
1682 case kMemorystatusKilledVMCompressorThrashing:
1683 case kMemorystatusKilledVMCompressorSpaceShortage: jetsam_flags |= P_JETSAM_VMTHRASHING; break;
1684 case kMemorystatusKilledFCThrashing: jetsam_flags |= P_JETSAM_FCTHRASHING; break;
1685 case kMemorystatusKilledPerProcessLimit: jetsam_flags |= P_JETSAM_PID; break;
1686 case kMemorystatusKilledIdleExit: jetsam_flags |= P_JETSAM_IDLEEXIT; break;
1687 }
1688 error = jetsam_do_kill(p, jetsam_flags, jetsam_reason);
1689 *footprint_of_killed_proc = ((error == 0) ? footprint : 0);
1690
1691 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DO_KILL)) | DBG_FUNC_END,
1692 victim_pid, memstat_effectivepriority, vm_page_free_count, error, 0);
1693
1694 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_COMPACTOR_RUN)) | DBG_FUNC_START,
1695 victim_pid, cause, vm_page_free_count, *footprint_of_killed_proc, 0);
1696
1697 vm_run_compactor();
1698
1699 KERNEL_DEBUG_CONSTANT((BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_COMPACTOR_RUN)) | DBG_FUNC_END,
1700 victim_pid, cause, vm_page_free_count, 0, 0);
1701
1702 return error == 0;
1703 }
1704
1705 /*
1706 * Node manipulation
1707 */
1708
1709 static void
1710 memorystatus_check_levels_locked(void)
1711 {
1712 #if CONFIG_JETSAM
1713 /* Update levels */
1714 memorystatus_update_levels_locked(TRUE);
1715 #else /* CONFIG_JETSAM */
1716 /*
1717 * Nothing to do here currently since we update
1718 * memorystatus_available_pages in vm_pressure_response.
1719 */
1720 #endif /* CONFIG_JETSAM */
1721 }
1722
1723 /*
1724 * Pin a process to a particular jetsam band when it is in the background i.e. not doing active work.
1725 * For an application: that means no longer in the FG band
1726 * For a daemon: that means no longer in its 'requested' jetsam priority band
1727 */
1728
1729 int
1730 memorystatus_update_inactive_jetsam_priority_band(pid_t pid, uint32_t op_flags, int jetsam_prio, boolean_t effective_now)
1731 {
1732 int error = 0;
1733 boolean_t enable = FALSE;
1734 proc_t p = NULL;
1735
1736 if (op_flags == MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE) {
1737 enable = TRUE;
1738 } else if (op_flags == MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE) {
1739 enable = FALSE;
1740 } else {
1741 return EINVAL;
1742 }
1743
1744 p = proc_find(pid);
1745 if (p != NULL) {
1746 if ((enable && ((p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) == P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND)) ||
1747 (!enable && ((p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) == 0))) {
1748 /*
1749 * No change in state.
1750 */
1751 } else {
1752 proc_list_lock();
1753
1754 if (enable) {
1755 p->p_memstat_state |= P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND;
1756 memorystatus_invalidate_idle_demotion_locked(p, TRUE);
1757
1758 if (effective_now) {
1759 if (p->p_memstat_effectivepriority < jetsam_prio) {
1760 if (memorystatus_highwater_enabled) {
1761 /*
1762 * Process is about to transition from
1763 * inactive --> active
1764 * assign active state
1765 */
1766 boolean_t is_fatal;
1767 boolean_t use_active = TRUE;
1768 CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal);
1769 task_set_phys_footprint_limit_internal(p->task, (p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1, NULL, use_active, is_fatal);
1770 }
1771 memorystatus_update_priority_locked(p, jetsam_prio, FALSE, FALSE);
1772 }
1773 } else {
1774 if (isProcessInAgingBands(p)) {
1775 memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE);
1776 }
1777 }
1778 } else {
1779 p->p_memstat_state &= ~P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND;
1780 memorystatus_invalidate_idle_demotion_locked(p, TRUE);
1781
1782 if (effective_now) {
1783 if (p->p_memstat_effectivepriority == jetsam_prio) {
1784 memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE);
1785 }
1786 } else {
1787 if (isProcessInAgingBands(p)) {
1788 memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE);
1789 }
1790 }
1791 }
1792
1793 proc_list_unlock();
1794 }
1795 proc_rele(p);
1796 error = 0;
1797 } else {
1798 error = ESRCH;
1799 }
1800
1801 return error;
1802 }
1803
1804 static void
1805 memorystatus_perform_idle_demotion(__unused void *spare1, __unused void *spare2)
1806 {
1807 proc_t p;
1808 uint64_t current_time = 0, idle_delay_time = 0;
1809 int demote_prio_band = 0;
1810 memstat_bucket_t *demotion_bucket;
1811
1812 MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion()\n");
1813
1814 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_IDLE_DEMOTE) | DBG_FUNC_START, 0, 0, 0, 0, 0);
1815
1816 current_time = mach_absolute_time();
1817
1818 proc_list_lock();
1819
1820 demote_prio_band = JETSAM_PRIORITY_IDLE + 1;
1821
1822 for (; demote_prio_band < JETSAM_PRIORITY_MAX; demote_prio_band++) {
1823 if (demote_prio_band != system_procs_aging_band && demote_prio_band != applications_aging_band) {
1824 continue;
1825 }
1826
1827 demotion_bucket = &memstat_bucket[demote_prio_band];
1828 p = TAILQ_FIRST(&demotion_bucket->list);
1829
1830 while (p) {
1831 MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion() found %d\n", p->p_pid);
1832
1833 assert(p->p_memstat_idledeadline);
1834
1835 assert(p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS);
1836
1837 if (current_time >= p->p_memstat_idledeadline) {
1838 if ((isSysProc(p) &&
1839 ((p->p_memstat_dirty & (P_DIRTY_IDLE_EXIT_ENABLED | P_DIRTY_IS_DIRTY)) != P_DIRTY_IDLE_EXIT_ENABLED)) || /* system proc marked dirty*/
1840 task_has_assertions((struct task *)(p->task))) { /* has outstanding assertions which might indicate outstanding work too */
1841 idle_delay_time = (isSysProc(p)) ? memorystatus_sysprocs_idle_time(p) : memorystatus_apps_idle_time(p);
1842
1843 p->p_memstat_idledeadline += idle_delay_time;
1844 p = TAILQ_NEXT(p, p_memstat_list);
1845 } else {
1846 proc_t next_proc = NULL;
1847
1848 next_proc = TAILQ_NEXT(p, p_memstat_list);
1849 memorystatus_invalidate_idle_demotion_locked(p, TRUE);
1850
1851 memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, false, true);
1852
1853 p = next_proc;
1854 continue;
1855 }
1856 } else {
1857 // No further candidates
1858 break;
1859 }
1860 }
1861 }
1862
1863 memorystatus_reschedule_idle_demotion_locked();
1864
1865 proc_list_unlock();
1866
1867 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_IDLE_DEMOTE) | DBG_FUNC_END, 0, 0, 0, 0, 0);
1868 }
1869
1870 static void
1871 memorystatus_schedule_idle_demotion_locked(proc_t p, boolean_t set_state)
1872 {
1873 boolean_t present_in_sysprocs_aging_bucket = FALSE;
1874 boolean_t present_in_apps_aging_bucket = FALSE;
1875 uint64_t idle_delay_time = 0;
1876
1877 if (jetsam_aging_policy == kJetsamAgingPolicyNone) {
1878 return;
1879 }
1880
1881 if ((p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) ||
1882 (p->p_memstat_state & P_MEMSTAT_PRIORITY_ASSERTION)) {
1883 /*
1884 * This process isn't going to be making the trip to the lower bands.
1885 */
1886 return;
1887 }
1888
1889 if (isProcessInAgingBands(p)) {
1890 if (jetsam_aging_policy != kJetsamAgingPolicyLegacy) {
1891 assert((p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) != P_DIRTY_AGING_IN_PROGRESS);
1892 }
1893
1894 if (isSysProc(p) && system_procs_aging_band) {
1895 present_in_sysprocs_aging_bucket = TRUE;
1896 } else if (isApp(p) && applications_aging_band) {
1897 present_in_apps_aging_bucket = TRUE;
1898 }
1899 }
1900
1901 assert(!present_in_sysprocs_aging_bucket);
1902 assert(!present_in_apps_aging_bucket);
1903
1904 MEMORYSTATUS_DEBUG(1, "memorystatus_schedule_idle_demotion_locked: scheduling demotion to idle band for pid %d (dirty:0x%x, set_state %d, demotions %d).\n",
1905 p->p_pid, p->p_memstat_dirty, set_state, (memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps));
1906
1907 if (isSysProc(p)) {
1908 assert((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED);
1909 }
1910
1911 idle_delay_time = (isSysProc(p)) ? memorystatus_sysprocs_idle_time(p) : memorystatus_apps_idle_time(p);
1912 if (set_state) {
1913 p->p_memstat_dirty |= P_DIRTY_AGING_IN_PROGRESS;
1914 p->p_memstat_idledeadline = mach_absolute_time() + idle_delay_time;
1915 }
1916
1917 assert(p->p_memstat_idledeadline);
1918
1919 if (isSysProc(p) && present_in_sysprocs_aging_bucket == FALSE) {
1920 memorystatus_scheduled_idle_demotions_sysprocs++;
1921 } else if (isApp(p) && present_in_apps_aging_bucket == FALSE) {
1922 memorystatus_scheduled_idle_demotions_apps++;
1923 }
1924 }
1925
1926 void
1927 memorystatus_invalidate_idle_demotion_locked(proc_t p, boolean_t clear_state)
1928 {
1929 boolean_t present_in_sysprocs_aging_bucket = FALSE;
1930 boolean_t present_in_apps_aging_bucket = FALSE;
1931
1932 if (!system_procs_aging_band && !applications_aging_band) {
1933 return;
1934 }
1935
1936 if ((p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) == 0) {
1937 return;
1938 }
1939
1940 if (isProcessInAgingBands(p)) {
1941 if (jetsam_aging_policy != kJetsamAgingPolicyLegacy) {
1942 assert((p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) == P_DIRTY_AGING_IN_PROGRESS);
1943 }
1944
1945 if (isSysProc(p) && system_procs_aging_band) {
1946 assert(p->p_memstat_effectivepriority == system_procs_aging_band);
1947 assert(p->p_memstat_idledeadline);
1948 present_in_sysprocs_aging_bucket = TRUE;
1949 } else if (isApp(p) && applications_aging_band) {
1950 assert(p->p_memstat_effectivepriority == applications_aging_band);
1951 assert(p->p_memstat_idledeadline);
1952 present_in_apps_aging_bucket = TRUE;
1953 }
1954 }
1955
1956 MEMORYSTATUS_DEBUG(1, "memorystatus_invalidate_idle_demotion(): invalidating demotion to idle band for pid %d (clear_state %d, demotions %d).\n",
1957 p->p_pid, clear_state, (memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps));
1958
1959
1960 if (clear_state) {
1961 p->p_memstat_idledeadline = 0;
1962 p->p_memstat_dirty &= ~P_DIRTY_AGING_IN_PROGRESS;
1963 }
1964
1965 if (isSysProc(p) && present_in_sysprocs_aging_bucket == TRUE) {
1966 memorystatus_scheduled_idle_demotions_sysprocs--;
1967 assert(memorystatus_scheduled_idle_demotions_sysprocs >= 0);
1968 } else if (isApp(p) && present_in_apps_aging_bucket == TRUE) {
1969 memorystatus_scheduled_idle_demotions_apps--;
1970 assert(memorystatus_scheduled_idle_demotions_apps >= 0);
1971 }
1972
1973 assert((memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps) >= 0);
1974 }
1975
1976 static void
1977 memorystatus_reschedule_idle_demotion_locked(void)
1978 {
1979 if (0 == (memorystatus_scheduled_idle_demotions_sysprocs + memorystatus_scheduled_idle_demotions_apps)) {
1980 if (memstat_idle_demotion_deadline) {
1981 /* Transitioned 1->0, so cancel next call */
1982 thread_call_cancel(memorystatus_idle_demotion_call);
1983 memstat_idle_demotion_deadline = 0;
1984 }
1985 } else {
1986 memstat_bucket_t *demotion_bucket;
1987 proc_t p = NULL, p1 = NULL, p2 = NULL;
1988
1989 if (system_procs_aging_band) {
1990 demotion_bucket = &memstat_bucket[system_procs_aging_band];
1991 p1 = TAILQ_FIRST(&demotion_bucket->list);
1992
1993 p = p1;
1994 }
1995
1996 if (applications_aging_band) {
1997 demotion_bucket = &memstat_bucket[applications_aging_band];
1998 p2 = TAILQ_FIRST(&demotion_bucket->list);
1999
2000 if (p1 && p2) {
2001 p = (p1->p_memstat_idledeadline > p2->p_memstat_idledeadline) ? p2 : p1;
2002 } else {
2003 p = (p1 == NULL) ? p2 : p1;
2004 }
2005 }
2006
2007 assert(p);
2008
2009 if (p != NULL) {
2010 assert(p && p->p_memstat_idledeadline);
2011 if (memstat_idle_demotion_deadline != p->p_memstat_idledeadline) {
2012 thread_call_enter_delayed(memorystatus_idle_demotion_call, p->p_memstat_idledeadline);
2013 memstat_idle_demotion_deadline = p->p_memstat_idledeadline;
2014 }
2015 }
2016 }
2017 }
2018
2019 /*
2020 * List manipulation
2021 */
2022
2023 int
2024 memorystatus_add(proc_t p, boolean_t locked)
2025 {
2026 memstat_bucket_t *bucket;
2027
2028 MEMORYSTATUS_DEBUG(1, "memorystatus_list_add(): adding pid %d with priority %d.\n", p->p_pid, p->p_memstat_effectivepriority);
2029
2030 if (!locked) {
2031 proc_list_lock();
2032 }
2033
2034 DTRACE_MEMORYSTATUS2(memorystatus_add, proc_t, p, int32_t, p->p_memstat_effectivepriority);
2035
2036 /* Processes marked internal do not have priority tracked */
2037 if (p->p_memstat_state & P_MEMSTAT_INTERNAL) {
2038 goto exit;
2039 }
2040
2041 /*
2042 * Opt out system processes from being frozen by default.
2043 * For coalition-based freezing, we only want to freeze sysprocs that have specifically opted in.
2044 */
2045 if (isSysProc(p)) {
2046 p->p_memstat_state |= P_MEMSTAT_FREEZE_DISABLED;
2047 }
2048 #if CONFIG_FREEZE
2049 memorystatus_freeze_init_proc(p);
2050 #endif
2051
2052 bucket = &memstat_bucket[p->p_memstat_effectivepriority];
2053
2054 if (isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) {
2055 assert(bucket->count == memorystatus_scheduled_idle_demotions_sysprocs - 1);
2056 } else if (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)) {
2057 assert(bucket->count == memorystatus_scheduled_idle_demotions_apps - 1);
2058 } else if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) {
2059 /*
2060 * Entering the idle band.
2061 * Record idle start time.
2062 */
2063 p->p_memstat_idle_start = mach_absolute_time();
2064 }
2065
2066 TAILQ_INSERT_TAIL(&bucket->list, p, p_memstat_list);
2067 bucket->count++;
2068 if (p->p_memstat_relaunch_flags & (P_MEMSTAT_RELAUNCH_HIGH)) {
2069 bucket->relaunch_high_count++;
2070 }
2071
2072 memorystatus_list_count++;
2073
2074 memorystatus_check_levels_locked();
2075
2076 exit:
2077 if (!locked) {
2078 proc_list_unlock();
2079 }
2080
2081 return 0;
2082 }
2083
2084 /*
2085 * Description:
2086 * Moves a process from one jetsam bucket to another.
2087 * which changes the LRU position of the process.
2088 *
2089 * Monitors transition between buckets and if necessary
2090 * will update cached memory limits accordingly.
2091 *
2092 * skip_demotion_check:
2093 * - if the 'jetsam aging policy' is NOT 'legacy':
2094 * When this flag is TRUE, it means we are going
2095 * to age the ripe processes out of the aging bands and into the
2096 * IDLE band and apply their inactive memory limits.
2097 *
2098 * - if the 'jetsam aging policy' is 'legacy':
2099 * When this flag is TRUE, it might mean the above aging mechanism
2100 * OR
2101 * It might be that we have a process that has used up its 'idle deferral'
2102 * stay that is given to it once per lifetime. And in this case, the process
2103 * won't be going through any aging codepaths. But we still need to apply
2104 * the right inactive limits and so we explicitly set this to TRUE if the
2105 * new priority for the process is the IDLE band.
2106 */
2107 void
2108 memorystatus_update_priority_locked(proc_t p, int priority, boolean_t head_insert, boolean_t skip_demotion_check)
2109 {
2110 memstat_bucket_t *old_bucket, *new_bucket;
2111
2112 assert(priority < MEMSTAT_BUCKET_COUNT);
2113
2114 /* Ensure that exit isn't underway, leaving the proc retained but removed from its bucket */
2115 if ((p->p_listflag & P_LIST_EXITED) != 0) {
2116 return;
2117 }
2118
2119 MEMORYSTATUS_DEBUG(1, "memorystatus_update_priority_locked(): setting %s(%d) to priority %d, inserting at %s\n",
2120 (*p->p_name ? p->p_name : "unknown"), p->p_pid, priority, head_insert ? "head" : "tail");
2121
2122 DTRACE_MEMORYSTATUS3(memorystatus_update_priority, proc_t, p, int32_t, p->p_memstat_effectivepriority, int, priority);
2123
2124 old_bucket = &memstat_bucket[p->p_memstat_effectivepriority];
2125
2126 if (skip_demotion_check == FALSE) {
2127 if (isSysProc(p)) {
2128 /*
2129 * For system processes, the memorystatus_dirty_* routines take care of adding/removing
2130 * the processes from the aging bands and balancing the demotion counts.
2131 * We can, however, override that if the process has an 'elevated inactive jetsam band' attribute.
2132 */
2133
2134 if (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) {
2135 /*
2136 * 2 types of processes can use the non-standard elevated inactive band:
2137 * - Frozen processes that always land in memorystatus_freeze_jetsam_band
2138 * OR
2139 * - processes that specifically opt-in to the elevated inactive support e.g. docked processes.
2140 */
2141 #if CONFIG_FREEZE
2142 if (p->p_memstat_state & P_MEMSTAT_FROZEN) {
2143 if (priority <= memorystatus_freeze_jetsam_band) {
2144 priority = memorystatus_freeze_jetsam_band;
2145 }
2146 } else
2147 #endif /* CONFIG_FREEZE */
2148 {
2149 if (priority <= JETSAM_PRIORITY_ELEVATED_INACTIVE) {
2150 priority = JETSAM_PRIORITY_ELEVATED_INACTIVE;
2151 }
2152 }
2153 assert(!(p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS));
2154 }
2155 } else if (isApp(p)) {
2156 /*
2157 * Check to see if the application is being lowered in jetsam priority. If so, and:
2158 * - it has an 'elevated inactive jetsam band' attribute, then put it in the appropriate band.
2159 * - it is a normal application, then let it age in the aging band if that policy is in effect.
2160 */
2161
2162 if (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) {
2163 #if CONFIG_FREEZE
2164 if (p->p_memstat_state & P_MEMSTAT_FROZEN) {
2165 if (priority <= memorystatus_freeze_jetsam_band) {
2166 priority = memorystatus_freeze_jetsam_band;
2167 }
2168 } else
2169 #endif /* CONFIG_FREEZE */
2170 {
2171 if (priority <= JETSAM_PRIORITY_ELEVATED_INACTIVE) {
2172 priority = JETSAM_PRIORITY_ELEVATED_INACTIVE;
2173 }
2174 }
2175 } else {
2176 if (applications_aging_band) {
2177 if (p->p_memstat_effectivepriority == applications_aging_band) {
2178 assert(old_bucket->count == (memorystatus_scheduled_idle_demotions_apps + 1));
2179 }
2180
2181 if ((jetsam_aging_policy != kJetsamAgingPolicyLegacy) && (priority <= applications_aging_band)) {
2182 assert(!(p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS));
2183 priority = applications_aging_band;
2184 memorystatus_schedule_idle_demotion_locked(p, TRUE);
2185 }
2186 }
2187 }
2188 }
2189 }
2190
2191 if ((system_procs_aging_band && (priority == system_procs_aging_band)) || (applications_aging_band && (priority == applications_aging_band))) {
2192 assert(p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS);
2193 }
2194
2195 #if DEVELOPMENT || DEBUG
2196 if (priority == JETSAM_PRIORITY_IDLE && /* if the process is on its way into the IDLE band */
2197 skip_demotion_check == FALSE && /* and it isn't via the path that will set the INACTIVE memlimits */
2198 (p->p_memstat_dirty & P_DIRTY_TRACK) && /* and it has 'DIRTY' tracking enabled */
2199 ((p->p_memstat_memlimit != p->p_memstat_memlimit_inactive) || /* and we notice that the current limit isn't the right value (inactive) */
2200 ((p->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) ? (!(p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT)) : (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT)))) { /* OR type (fatal vs non-fatal) */
2201 printf("memorystatus_update_priority_locked: on %s with 0x%x, prio: %d and %d\n", p->p_name, p->p_memstat_state, priority, p->p_memstat_memlimit); /* then we must catch this */
2202 }
2203 #endif /* DEVELOPMENT || DEBUG */
2204
2205 TAILQ_REMOVE(&old_bucket->list, p, p_memstat_list);
2206 old_bucket->count--;
2207 if (p->p_memstat_relaunch_flags & (P_MEMSTAT_RELAUNCH_HIGH)) {
2208 old_bucket->relaunch_high_count--;
2209 }
2210
2211 new_bucket = &memstat_bucket[priority];
2212 if (head_insert) {
2213 TAILQ_INSERT_HEAD(&new_bucket->list, p, p_memstat_list);
2214 } else {
2215 TAILQ_INSERT_TAIL(&new_bucket->list, p, p_memstat_list);
2216 }
2217 new_bucket->count++;
2218 if (p->p_memstat_relaunch_flags & (P_MEMSTAT_RELAUNCH_HIGH)) {
2219 new_bucket->relaunch_high_count++;
2220 }
2221
2222 if (memorystatus_highwater_enabled) {
2223 boolean_t is_fatal;
2224 boolean_t use_active;
2225
2226 /*
2227 * If cached limit data is updated, then the limits
2228 * will be enforced by writing to the ledgers.
2229 */
2230 boolean_t ledger_update_needed = TRUE;
2231
2232 /*
2233 * Here, we must update the cached memory limit if the task
2234 * is transitioning between:
2235 * active <--> inactive
2236 * FG <--> BG
2237 * but:
2238 * dirty <--> clean is ignored
2239 *
2240 * We bypass non-idle processes that have opted into dirty tracking because
2241 * a move between buckets does not imply a transition between the
2242 * dirty <--> clean state.
2243 */
2244
2245 if (p->p_memstat_dirty & P_DIRTY_TRACK) {
2246 if (skip_demotion_check == TRUE && priority == JETSAM_PRIORITY_IDLE) {
2247 CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal);
2248 use_active = FALSE;
2249 } else {
2250 ledger_update_needed = FALSE;
2251 }
2252 } else if ((priority >= JETSAM_PRIORITY_FOREGROUND) && (p->p_memstat_effectivepriority < JETSAM_PRIORITY_FOREGROUND)) {
2253 /*
2254 * inactive --> active
2255 * BG --> FG
2256 * assign active state
2257 */
2258 CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal);
2259 use_active = TRUE;
2260 } else if ((priority < JETSAM_PRIORITY_FOREGROUND) && (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND)) {
2261 /*
2262 * active --> inactive
2263 * FG --> BG
2264 * assign inactive state
2265 */
2266 CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal);
2267 use_active = FALSE;
2268 } else {
2269 /*
2270 * The transition between jetsam priority buckets apparently did
2271 * not affect active/inactive state.
2272 * This is not unusual... especially during startup when
2273 * processes are getting established in their respective bands.
2274 */
2275 ledger_update_needed = FALSE;
2276 }
2277
2278 /*
2279 * Enforce the new limits by writing to the ledger
2280 */
2281 if (ledger_update_needed) {
2282 task_set_phys_footprint_limit_internal(p->task, (p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1, NULL, use_active, is_fatal);
2283
2284 MEMORYSTATUS_DEBUG(3, "memorystatus_update_priority_locked: new limit on pid %d (%dMB %s) priority old --> new (%d --> %d) dirty?=0x%x %s\n",
2285 p->p_pid, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1),
2286 (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF"), p->p_memstat_effectivepriority, priority, p->p_memstat_dirty,
2287 (p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean") : ""));
2288 }
2289 }
2290
2291 /*
2292 * Record idle start or idle delta.
2293 */
2294 if (p->p_memstat_effectivepriority == priority) {
2295 /*
2296 * This process is not transitioning between
2297 * jetsam priority buckets. Do nothing.
2298 */
2299 } else if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) {
2300 uint64_t now;
2301 /*
2302 * Transitioning out of the idle priority bucket.
2303 * Record idle delta.
2304 */
2305 assert(p->p_memstat_idle_start != 0);
2306 now = mach_absolute_time();
2307 if (now > p->p_memstat_idle_start) {
2308 p->p_memstat_idle_delta = now - p->p_memstat_idle_start;
2309 }
2310
2311 /*
2312 * About to become active and so memory footprint could change.
2313 * So mark it eligible for freeze-considerations next time around.
2314 */
2315 if (p->p_memstat_state & P_MEMSTAT_FREEZE_IGNORE) {
2316 p->p_memstat_state &= ~P_MEMSTAT_FREEZE_IGNORE;
2317 }
2318 } else if (priority == JETSAM_PRIORITY_IDLE) {
2319 /*
2320 * Transitioning into the idle priority bucket.
2321 * Record idle start.
2322 */
2323 p->p_memstat_idle_start = mach_absolute_time();
2324 }
2325
2326 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_CHANGE_PRIORITY), p->p_pid, priority, p->p_memstat_effectivepriority, 0, 0);
2327
2328 p->p_memstat_effectivepriority = priority;
2329
2330 #if CONFIG_SECLUDED_MEMORY
2331 if (secluded_for_apps &&
2332 task_could_use_secluded_mem(p->task)) {
2333 task_set_can_use_secluded_mem(
2334 p->task,
2335 (priority >= JETSAM_PRIORITY_FOREGROUND));
2336 }
2337 #endif /* CONFIG_SECLUDED_MEMORY */
2338
2339 memorystatus_check_levels_locked();
2340 }
2341
2342 int
2343 memorystatus_relaunch_flags_update(proc_t p, int relaunch_flags)
2344 {
2345 p->p_memstat_relaunch_flags = relaunch_flags;
2346 KDBG(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_RELAUNCH_FLAGS), p->p_pid, relaunch_flags, 0, 0, 0);
2347 return 0;
2348 }
2349
2350 /*
2351 *
2352 * Description: Update the jetsam priority and memory limit attributes for a given process.
2353 *
2354 * Parameters:
2355 * p init this process's jetsam information.
2356 * priority The jetsam priority band
2357 * user_data user specific data, unused by the kernel
2358 * is_assertion When true, a priority update is driven by an assertion.
2359 * effective guards against race if process's update already occurred
2360 * update_memlimit When true we know this is the init step via the posix_spawn path.
2361 *
2362 * memlimit_active Value in megabytes; The monitored footprint level while the
2363 * process is active. Exceeding it may result in termination
2364 * based on it's associated fatal flag.
2365 *
2366 * memlimit_active_is_fatal When a process is active and exceeds its memory footprint,
2367 * this describes whether or not it should be immediately fatal.
2368 *
2369 * memlimit_inactive Value in megabytes; The monitored footprint level while the
2370 * process is inactive. Exceeding it may result in termination
2371 * based on it's associated fatal flag.
2372 *
2373 * memlimit_inactive_is_fatal When a process is inactive and exceeds its memory footprint,
2374 * this describes whether or not it should be immediatly fatal.
2375 *
2376 * Returns: 0 Success
2377 * non-0 Failure
2378 */
2379
2380 int
2381 memorystatus_update(proc_t p, int priority, uint64_t user_data, boolean_t is_assertion, boolean_t effective, boolean_t update_memlimit,
2382 int32_t memlimit_active, boolean_t memlimit_active_is_fatal,
2383 int32_t memlimit_inactive, boolean_t memlimit_inactive_is_fatal)
2384 {
2385 int ret;
2386 boolean_t head_insert = false;
2387
2388 MEMORYSTATUS_DEBUG(1, "memorystatus_update: changing (%s) pid %d: priority %d, user_data 0x%llx\n", (*p->p_name ? p->p_name : "unknown"), p->p_pid, priority, user_data);
2389
2390 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_UPDATE) | DBG_FUNC_START, p->p_pid, priority, user_data, effective, 0);
2391
2392 if (priority == -1) {
2393 /* Use as shorthand for default priority */
2394 priority = JETSAM_PRIORITY_DEFAULT;
2395 } else if ((priority == system_procs_aging_band) || (priority == applications_aging_band)) {
2396 /* Both the aging bands are reserved for internal use; if requested, adjust to JETSAM_PRIORITY_IDLE. */
2397 priority = JETSAM_PRIORITY_IDLE;
2398 } else if (priority == JETSAM_PRIORITY_IDLE_HEAD) {
2399 /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle queue */
2400 priority = JETSAM_PRIORITY_IDLE;
2401 head_insert = TRUE;
2402 } else if ((priority < 0) || (priority >= MEMSTAT_BUCKET_COUNT)) {
2403 /* Sanity check */
2404 ret = EINVAL;
2405 goto out;
2406 }
2407
2408 proc_list_lock();
2409
2410 assert(!(p->p_memstat_state & P_MEMSTAT_INTERNAL));
2411
2412 if (effective && (p->p_memstat_state & P_MEMSTAT_PRIORITYUPDATED)) {
2413 ret = EALREADY;
2414 proc_list_unlock();
2415 MEMORYSTATUS_DEBUG(1, "memorystatus_update: effective change specified for pid %d, but change already occurred.\n", p->p_pid);
2416 goto out;
2417 }
2418
2419 if ((p->p_memstat_state & P_MEMSTAT_TERMINATED) || ((p->p_listflag & P_LIST_EXITED) != 0)) {
2420 /*
2421 * This could happen when a process calling posix_spawn() is exiting on the jetsam thread.
2422 */
2423 ret = EBUSY;
2424 proc_list_unlock();
2425 goto out;
2426 }
2427
2428 p->p_memstat_state |= P_MEMSTAT_PRIORITYUPDATED;
2429 p->p_memstat_userdata = user_data;
2430
2431 if (is_assertion) {
2432 if (priority == JETSAM_PRIORITY_IDLE) {
2433 /*
2434 * Assertions relinquish control when the process is heading to IDLE.
2435 */
2436 if (p->p_memstat_state & P_MEMSTAT_PRIORITY_ASSERTION) {
2437 /*
2438 * Mark the process as no longer being managed by assertions.
2439 */
2440 p->p_memstat_state &= ~P_MEMSTAT_PRIORITY_ASSERTION;
2441 } else {
2442 /*
2443 * Ignore an idle priority transition if the process is not
2444 * already managed by assertions. We won't treat this as
2445 * an error, but we will log the unexpected behavior and bail.
2446 */
2447 os_log(OS_LOG_DEFAULT, "memorystatus: Ignore assertion driven idle priority. Process not previously controlled %s:%d\n",
2448 (*p->p_name ? p->p_name : "unknown"), p->p_pid);
2449
2450 ret = 0;
2451 proc_list_unlock();
2452 goto out;
2453 }
2454 } else {
2455 /*
2456 * Process is now being managed by assertions,
2457 */
2458 p->p_memstat_state |= P_MEMSTAT_PRIORITY_ASSERTION;
2459 }
2460
2461 /* Always update the assertion priority in this path */
2462
2463 p->p_memstat_assertionpriority = priority;
2464
2465 int memstat_dirty_flags = memorystatus_dirty_get(p, TRUE); /* proc_list_lock is held */
2466
2467 if (memstat_dirty_flags != 0) {
2468 /*
2469 * Calculate maximum priority only when dirty tracking processes are involved.
2470 */
2471 int maxpriority;
2472 if (memstat_dirty_flags & PROC_DIRTY_IS_DIRTY) {
2473 maxpriority = MAX(p->p_memstat_assertionpriority, p->p_memstat_requestedpriority);
2474 } else {
2475 /* clean */
2476
2477 if (memstat_dirty_flags & PROC_DIRTY_ALLOWS_IDLE_EXIT) {
2478 /*
2479 * The aging policy must be evaluated and applied here because runnningboardd
2480 * has relinquished its hold on the jetsam priority by attempting to move a
2481 * clean process to the idle band.
2482 */
2483
2484 int newpriority = JETSAM_PRIORITY_IDLE;
2485 if ((p->p_memstat_dirty & (P_DIRTY_IDLE_EXIT_ENABLED | P_DIRTY_IS_DIRTY)) == P_DIRTY_IDLE_EXIT_ENABLED) {
2486 newpriority = (p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) ? system_procs_aging_band : JETSAM_PRIORITY_IDLE;
2487 }
2488
2489 maxpriority = MAX(p->p_memstat_assertionpriority, newpriority );
2490
2491 if (newpriority == system_procs_aging_band) {
2492 memorystatus_schedule_idle_demotion_locked(p, FALSE);
2493 }
2494 } else {
2495 /*
2496 * Preserves requestedpriority when the process does not support pressured exit.
2497 */
2498 maxpriority = MAX(p->p_memstat_assertionpriority, p->p_memstat_requestedpriority);
2499 }
2500 }
2501 priority = maxpriority;
2502 }
2503 } else {
2504 p->p_memstat_requestedpriority = priority;
2505 }
2506
2507 if (update_memlimit) {
2508 boolean_t is_fatal;
2509 boolean_t use_active;
2510
2511 /*
2512 * Posix_spawn'd processes come through this path to instantiate ledger limits.
2513 * Forked processes do not come through this path, so no ledger limits exist.
2514 * (That's why forked processes can consume unlimited memory.)
2515 */
2516
2517 MEMORYSTATUS_DEBUG(3, "memorystatus_update(enter): pid %d, priority %d, dirty=0x%x, Active(%dMB %s), Inactive(%dMB, %s)\n",
2518 p->p_pid, priority, p->p_memstat_dirty,
2519 memlimit_active, (memlimit_active_is_fatal ? "F " : "NF"),
2520 memlimit_inactive, (memlimit_inactive_is_fatal ? "F " : "NF"));
2521
2522 if (memlimit_active <= 0) {
2523 /*
2524 * This process will have a system_wide task limit when active.
2525 * System_wide task limit is always fatal.
2526 * It's quite common to see non-fatal flag passed in here.
2527 * It's not an error, we just ignore it.
2528 */
2529
2530 /*
2531 * For backward compatibility with some unexplained launchd behavior,
2532 * we allow a zero sized limit. But we still enforce system_wide limit
2533 * when written to the ledgers.
2534 */
2535
2536 if (memlimit_active < 0) {
2537 memlimit_active = -1; /* enforces system_wide task limit */
2538 }
2539 memlimit_active_is_fatal = TRUE;
2540 }
2541
2542 if (memlimit_inactive <= 0) {
2543 /*
2544 * This process will have a system_wide task limit when inactive.
2545 * System_wide task limit is always fatal.
2546 */
2547
2548 memlimit_inactive = -1;
2549 memlimit_inactive_is_fatal = TRUE;
2550 }
2551
2552 /*
2553 * Initialize the active limit variants for this process.
2554 */
2555 SET_ACTIVE_LIMITS_LOCKED(p, memlimit_active, memlimit_active_is_fatal);
2556
2557 /*
2558 * Initialize the inactive limit variants for this process.
2559 */
2560 SET_INACTIVE_LIMITS_LOCKED(p, memlimit_inactive, memlimit_inactive_is_fatal);
2561
2562 /*
2563 * Initialize the cached limits for target process.
2564 * When the target process is dirty tracked, it's typically
2565 * in a clean state. Non dirty tracked processes are
2566 * typically active (Foreground or above).
2567 * But just in case, we don't make assumptions...
2568 */
2569
2570 if (proc_jetsam_state_is_active_locked(p) == TRUE) {
2571 CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal);
2572 use_active = TRUE;
2573 } else {
2574 CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal);
2575 use_active = FALSE;
2576 }
2577
2578 /*
2579 * Enforce the cached limit by writing to the ledger.
2580 */
2581 if (memorystatus_highwater_enabled) {
2582 /* apply now */
2583 task_set_phys_footprint_limit_internal(p->task, ((p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1), NULL, use_active, is_fatal);
2584
2585 MEMORYSTATUS_DEBUG(3, "memorystatus_update: init: limit on pid %d (%dMB %s) targeting priority(%d) dirty?=0x%x %s\n",
2586 p->p_pid, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1),
2587 (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF"), priority, p->p_memstat_dirty,
2588 (p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean") : ""));
2589 }
2590 }
2591
2592 /*
2593 * We can't add to the aging bands buckets here.
2594 * But, we could be removing it from those buckets.
2595 * Check and take appropriate steps if so.
2596 */
2597
2598 if (isProcessInAgingBands(p)) {
2599 if ((jetsam_aging_policy != kJetsamAgingPolicyLegacy) && isApp(p) && (priority > applications_aging_band)) {
2600 /*
2601 * Runningboardd is pulling up an application that is in the aging band.
2602 * We reset the app's state here so that it'll get a fresh stay in the
2603 * aging band on the way back.
2604 *
2605 * We always handled the app 'aging' in the memorystatus_update_priority_locked()
2606 * function. Daemons used to be handled via the dirty 'set/clear/track' path.
2607 * But with extensions (daemon-app hybrid), runningboardd is now going through
2608 * this routine for daemons too and things have gotten a bit tangled. This should
2609 * be simplified/untangled at some point and might require some assistance from
2610 * runningboardd.
2611 */
2612 memorystatus_invalidate_idle_demotion_locked(p, TRUE);
2613 } else {
2614 memorystatus_invalidate_idle_demotion_locked(p, FALSE);
2615 }
2616 memorystatus_update_priority_locked(p, JETSAM_PRIORITY_IDLE, FALSE, TRUE);
2617 } else {
2618 if (jetsam_aging_policy == kJetsamAgingPolicyLegacy && priority == JETSAM_PRIORITY_IDLE) {
2619 /*
2620 * Daemons with 'inactive' limits will go through the dirty tracking codepath.
2621 * This path deals with apps that may have 'inactive' limits e.g. WebContent processes.
2622 * If this is the legacy aging policy we explicitly need to apply those limits. If it
2623 * is any other aging policy, then we don't need to worry because all processes
2624 * will go through the aging bands and then the demotion thread will take care to
2625 * move them into the IDLE band and apply the required limits.
2626 */
2627 memorystatus_update_priority_locked(p, priority, head_insert, TRUE);
2628 }
2629 }
2630
2631 memorystatus_update_priority_locked(p, priority, head_insert, FALSE);
2632
2633 proc_list_unlock();
2634 ret = 0;
2635
2636 out:
2637 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_UPDATE) | DBG_FUNC_END, ret, 0, 0, 0, 0);
2638
2639 return ret;
2640 }
2641
2642 int
2643 memorystatus_remove(proc_t p)
2644 {
2645 int ret;
2646 memstat_bucket_t *bucket;
2647 boolean_t reschedule = FALSE;
2648
2649 MEMORYSTATUS_DEBUG(1, "memorystatus_list_remove: removing pid %d\n", p->p_pid);
2650
2651 /*
2652 * Check if this proc is locked (because we're performing a freeze).
2653 * If so, we fail and instruct the caller to try again later.
2654 */
2655 if (p->p_memstat_state & P_MEMSTAT_LOCKED) {
2656 return EAGAIN;
2657 }
2658
2659 assert(!(p->p_memstat_state & P_MEMSTAT_INTERNAL));
2660
2661 bucket = &memstat_bucket[p->p_memstat_effectivepriority];
2662
2663 if (isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) {
2664 assert(bucket->count == memorystatus_scheduled_idle_demotions_sysprocs);
2665 reschedule = TRUE;
2666 } else if (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)) {
2667 assert(bucket->count == memorystatus_scheduled_idle_demotions_apps);
2668 reschedule = TRUE;
2669 }
2670
2671 /*
2672 * Record idle delta
2673 */
2674
2675 if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) {
2676 uint64_t now = mach_absolute_time();
2677 if (now > p->p_memstat_idle_start) {
2678 p->p_memstat_idle_delta = now - p->p_memstat_idle_start;
2679 }
2680 }
2681
2682 TAILQ_REMOVE(&bucket->list, p, p_memstat_list);
2683 bucket->count--;
2684 if (p->p_memstat_relaunch_flags & (P_MEMSTAT_RELAUNCH_HIGH)) {
2685 bucket->relaunch_high_count--;
2686 }
2687
2688 memorystatus_list_count--;
2689
2690 /* If awaiting demotion to the idle band, clean up */
2691 if (reschedule) {
2692 memorystatus_invalidate_idle_demotion_locked(p, TRUE);
2693 memorystatus_reschedule_idle_demotion_locked();
2694 }
2695
2696 memorystatus_check_levels_locked();
2697
2698 #if CONFIG_FREEZE
2699 if (p->p_memstat_state & (P_MEMSTAT_FROZEN)) {
2700 if (p->p_memstat_state & P_MEMSTAT_REFREEZE_ELIGIBLE) {
2701 p->p_memstat_state &= ~P_MEMSTAT_REFREEZE_ELIGIBLE;
2702 memorystatus_refreeze_eligible_count--;
2703 }
2704
2705 memorystatus_frozen_count--;
2706 memorystatus_frozen_shared_mb -= p->p_memstat_freeze_sharedanon_pages;
2707 p->p_memstat_freeze_sharedanon_pages = 0;
2708 }
2709
2710 if (p->p_memstat_state & P_MEMSTAT_SUSPENDED) {
2711 memorystatus_suspended_count--;
2712 }
2713 #endif
2714
2715 #if DEVELOPMENT || DEBUG
2716 if (p->p_pid == memorystatus_snapshot_owner) {
2717 memorystatus_snapshot_owner = 0;
2718 }
2719 #endif /* DEVELOPMENT || DEBUG */
2720
2721 if (p) {
2722 ret = 0;
2723 } else {
2724 ret = ESRCH;
2725 }
2726
2727 return ret;
2728 }
2729
2730 /*
2731 * Validate dirty tracking flags with process state.
2732 *
2733 * Return:
2734 * 0 on success
2735 * non-0 on failure
2736 *
2737 * The proc_list_lock is held by the caller.
2738 */
2739
2740 static int
2741 memorystatus_validate_track_flags(struct proc *target_p, uint32_t pcontrol)
2742 {
2743 /* See that the process isn't marked for termination */
2744 if (target_p->p_memstat_dirty & P_DIRTY_TERMINATED) {
2745 return EBUSY;
2746 }
2747
2748 /* Idle exit requires that process be tracked */
2749 if ((pcontrol & PROC_DIRTY_ALLOW_IDLE_EXIT) &&
2750 !(pcontrol & PROC_DIRTY_TRACK)) {
2751 return EINVAL;
2752 }
2753
2754 /* 'Launch in progress' tracking requires that process have enabled dirty tracking too. */
2755 if ((pcontrol & PROC_DIRTY_LAUNCH_IN_PROGRESS) &&
2756 !(pcontrol & PROC_DIRTY_TRACK)) {
2757 return EINVAL;
2758 }
2759
2760 /* Only one type of DEFER behavior is allowed.*/
2761 if ((pcontrol & PROC_DIRTY_DEFER) &&
2762 (pcontrol & PROC_DIRTY_DEFER_ALWAYS)) {
2763 return EINVAL;
2764 }
2765
2766 /* Deferral is only relevant if idle exit is specified */
2767 if (((pcontrol & PROC_DIRTY_DEFER) ||
2768 (pcontrol & PROC_DIRTY_DEFER_ALWAYS)) &&
2769 !(pcontrol & PROC_DIRTY_ALLOWS_IDLE_EXIT)) {
2770 return EINVAL;
2771 }
2772
2773 return 0;
2774 }
2775
2776 static void
2777 memorystatus_update_idle_priority_locked(proc_t p)
2778 {
2779 int32_t priority;
2780
2781 MEMORYSTATUS_DEBUG(1, "memorystatus_update_idle_priority_locked(): pid %d dirty 0x%X\n", p->p_pid, p->p_memstat_dirty);
2782
2783 assert(isSysProc(p));
2784
2785 if ((p->p_memstat_dirty & (P_DIRTY_IDLE_EXIT_ENABLED | P_DIRTY_IS_DIRTY)) == P_DIRTY_IDLE_EXIT_ENABLED) {
2786 priority = (p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) ? system_procs_aging_band : JETSAM_PRIORITY_IDLE;
2787 } else {
2788 priority = p->p_memstat_requestedpriority;
2789 }
2790
2791 if (p->p_memstat_state & P_MEMSTAT_PRIORITY_ASSERTION) {
2792 /*
2793 * This process has a jetsam priority managed by an assertion.
2794 * Policy is to choose the max priority.
2795 */
2796 if (p->p_memstat_assertionpriority > priority) {
2797 os_log(OS_LOG_DEFAULT, "memorystatus: assertion priority %d overrides priority %d for %s:%d\n",
2798 p->p_memstat_assertionpriority, priority,
2799 (*p->p_name ? p->p_name : "unknown"), p->p_pid);
2800 priority = p->p_memstat_assertionpriority;
2801 }
2802 }
2803
2804 if (priority != p->p_memstat_effectivepriority) {
2805 if ((jetsam_aging_policy == kJetsamAgingPolicyLegacy) &&
2806 (priority == JETSAM_PRIORITY_IDLE)) {
2807 /*
2808 * This process is on its way into the IDLE band. The system is
2809 * using 'legacy' jetsam aging policy. That means, this process
2810 * has already used up its idle-deferral aging time that is given
2811 * once per its lifetime. So we need to set the INACTIVE limits
2812 * explicitly because it won't be going through the demotion paths
2813 * that take care to apply the limits appropriately.
2814 */
2815
2816 if (p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) {
2817 /*
2818 * This process has the 'elevated inactive jetsam band' attribute.
2819 * So, there will be no trip to IDLE after all.
2820 * Instead, we pin the process in the elevated band,
2821 * where its ACTIVE limits will apply.
2822 */
2823
2824 priority = JETSAM_PRIORITY_ELEVATED_INACTIVE;
2825 }
2826
2827 memorystatus_update_priority_locked(p, priority, false, true);
2828 } else {
2829 memorystatus_update_priority_locked(p, priority, false, false);
2830 }
2831 }
2832 }
2833
2834 /*
2835 * Processes can opt to have their state tracked by the kernel, indicating when they are busy (dirty) or idle
2836 * (clean). They may also indicate that they support termination when idle, with the result that they are promoted
2837 * to their desired, higher, jetsam priority when dirty (and are therefore killed later), and demoted to the low
2838 * priority idle band when clean (and killed earlier, protecting higher priority procesess).
2839 *
2840 * If the deferral flag is set, then newly tracked processes will be protected for an initial period (as determined by
2841 * memorystatus_sysprocs_idle_delay_time); if they go clean during this time, then they will be moved to a deferred-idle band
2842 * with a slightly higher priority, guarding against immediate termination under memory pressure and being unable to
2843 * make forward progress. Finally, when the guard expires, they will be moved to the standard, lowest-priority, idle
2844 * band. The deferral can be cleared early by clearing the appropriate flag.
2845 *
2846 * The deferral timer is active only for the duration that the process is marked as guarded and clean; if the process
2847 * is marked dirty, the timer will be cancelled. Upon being subsequently marked clean, the deferment will either be
2848 * re-enabled or the guard state cleared, depending on whether the guard deadline has passed.
2849 */
2850
2851 int
2852 memorystatus_dirty_track(proc_t p, uint32_t pcontrol)
2853 {
2854 unsigned int old_dirty;
2855 boolean_t reschedule = FALSE;
2856 boolean_t already_deferred = FALSE;
2857 boolean_t defer_now = FALSE;
2858 int ret = 0;
2859
2860 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DIRTY_TRACK),
2861 p->p_pid, p->p_memstat_dirty, pcontrol, 0, 0);
2862
2863 proc_list_lock();
2864
2865 if ((p->p_listflag & P_LIST_EXITED) != 0) {
2866 /*
2867 * Process is on its way out.
2868 */
2869 ret = EBUSY;
2870 goto exit;
2871 }
2872
2873 if (p->p_memstat_state & P_MEMSTAT_INTERNAL) {
2874 ret = EPERM;
2875 goto exit;
2876 }
2877
2878 if ((ret = memorystatus_validate_track_flags(p, pcontrol)) != 0) {
2879 /* error */
2880 goto exit;
2881 }
2882
2883 old_dirty = p->p_memstat_dirty;
2884
2885 /* These bits are cumulative, as per <rdar://problem/11159924> */
2886 if (pcontrol & PROC_DIRTY_TRACK) {
2887 p->p_memstat_dirty |= P_DIRTY_TRACK;
2888 }
2889
2890 if (pcontrol & PROC_DIRTY_ALLOW_IDLE_EXIT) {
2891 p->p_memstat_dirty |= P_DIRTY_ALLOW_IDLE_EXIT;
2892 }
2893
2894 if (pcontrol & PROC_DIRTY_LAUNCH_IN_PROGRESS) {
2895 p->p_memstat_dirty |= P_DIRTY_LAUNCH_IN_PROGRESS;
2896 }
2897
2898 if (old_dirty & P_DIRTY_AGING_IN_PROGRESS) {
2899 already_deferred = TRUE;
2900 }
2901
2902
2903 /* This can be set and cleared exactly once. */
2904 if (pcontrol & (PROC_DIRTY_DEFER | PROC_DIRTY_DEFER_ALWAYS)) {
2905 if ((pcontrol & (PROC_DIRTY_DEFER)) &&
2906 !(old_dirty & P_DIRTY_DEFER)) {
2907 p->p_memstat_dirty |= P_DIRTY_DEFER;
2908 }
2909
2910 if ((pcontrol & (PROC_DIRTY_DEFER_ALWAYS)) &&
2911 !(old_dirty & P_DIRTY_DEFER_ALWAYS)) {
2912 p->p_memstat_dirty |= P_DIRTY_DEFER_ALWAYS;
2913 }
2914
2915 defer_now = TRUE;
2916 }
2917
2918 MEMORYSTATUS_DEBUG(1, "memorystatus_on_track_dirty(): set idle-exit %s / defer %s / dirty %s for pid %d\n",
2919 ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) ? "Y" : "N",
2920 defer_now ? "Y" : "N",
2921 p->p_memstat_dirty & P_DIRTY ? "Y" : "N",
2922 p->p_pid);
2923
2924 /* Kick off or invalidate the idle exit deferment if there's a state transition. */
2925 if (!(p->p_memstat_dirty & P_DIRTY_IS_DIRTY)) {
2926 if ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) {
2927 if (defer_now && !already_deferred) {
2928 /*
2929 * Request to defer a clean process that's idle-exit enabled
2930 * and not already in the jetsam deferred band. Most likely a
2931 * new launch.
2932 */
2933 memorystatus_schedule_idle_demotion_locked(p, TRUE);
2934 reschedule = TRUE;
2935 } else if (!defer_now) {
2936 /*
2937 * The process isn't asking for the 'aging' facility.
2938 * Could be that it is:
2939 */
2940
2941 if (already_deferred) {
2942 /*
2943 * already in the aging bands. Traditionally,
2944 * some processes have tried to use this to
2945 * opt out of the 'aging' facility.
2946 */
2947
2948 memorystatus_invalidate_idle_demotion_locked(p, TRUE);
2949 } else {
2950 /*
2951 * agnostic to the 'aging' facility. In that case,
2952 * we'll go ahead and opt it in because this is likely
2953 * a new launch (clean process, dirty tracking enabled)
2954 */
2955
2956 memorystatus_schedule_idle_demotion_locked(p, TRUE);
2957 }
2958
2959 reschedule = TRUE;
2960 }
2961 }
2962 } else {
2963 /*
2964 * We are trying to operate on a dirty process. Dirty processes have to
2965 * be removed from the deferred band. The question is do we reset the
2966 * deferred state or not?
2967 *
2968 * This could be a legal request like:
2969 * - this process had opted into the 'aging' band
2970 * - but it's now dirty and requests to opt out.
2971 * In this case, we remove the process from the band and reset its
2972 * state too. It'll opt back in properly when needed.
2973 *
2974 * OR, this request could be a user-space bug. E.g.:
2975 * - this process had opted into the 'aging' band when clean
2976 * - and, then issues another request to again put it into the band except
2977 * this time the process is dirty.
2978 * The process going dirty, as a transition in memorystatus_dirty_set(), will pull the process out of
2979 * the deferred band with its state intact. So our request below is no-op.
2980 * But we do it here anyways for coverage.
2981 *
2982 * memorystatus_update_idle_priority_locked()
2983 * single-mindedly treats a dirty process as "cannot be in the aging band".
2984 */
2985
2986 if (!defer_now && already_deferred) {
2987 memorystatus_invalidate_idle_demotion_locked(p, TRUE);
2988 reschedule = TRUE;
2989 } else {
2990 boolean_t reset_state = (jetsam_aging_policy != kJetsamAgingPolicyLegacy) ? TRUE : FALSE;
2991
2992 memorystatus_invalidate_idle_demotion_locked(p, reset_state);
2993 reschedule = TRUE;
2994 }
2995 }
2996
2997 memorystatus_update_idle_priority_locked(p);
2998
2999 if (reschedule) {
3000 memorystatus_reschedule_idle_demotion_locked();
3001 }
3002
3003 ret = 0;
3004
3005 exit:
3006 proc_list_unlock();
3007
3008 return ret;
3009 }
3010
3011 int
3012 memorystatus_dirty_set(proc_t p, boolean_t self, uint32_t pcontrol)
3013 {
3014 int ret;
3015 boolean_t kill = false;
3016 boolean_t reschedule = FALSE;
3017 boolean_t was_dirty = FALSE;
3018 boolean_t now_dirty = FALSE;
3019 #if CONFIG_DIRTYSTATUS_TRACKING
3020 boolean_t notify_change = FALSE;
3021 dirty_status_change_event_t change_event;
3022 #endif
3023
3024 MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_set(): %d %d 0x%x 0x%x\n", self, p->p_pid, pcontrol, p->p_memstat_dirty);
3025 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DIRTY_SET), p->p_pid, self, pcontrol, 0, 0);
3026
3027 proc_list_lock();
3028
3029 if ((p->p_listflag & P_LIST_EXITED) != 0) {
3030 /*
3031 * Process is on its way out.
3032 */
3033 ret = EBUSY;
3034 goto exit;
3035 }
3036
3037 if (p->p_memstat_state & P_MEMSTAT_INTERNAL) {
3038 ret = EPERM;
3039 goto exit;
3040 }
3041
3042 if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) {
3043 was_dirty = TRUE;
3044 }
3045
3046 if (!(p->p_memstat_dirty & P_DIRTY_TRACK)) {
3047 /* Dirty tracking not enabled */
3048 ret = EINVAL;
3049 } else if (pcontrol && (p->p_memstat_dirty & P_DIRTY_TERMINATED)) {
3050 /*
3051 * Process is set to be terminated and we're attempting to mark it dirty.
3052 * Set for termination and marking as clean is OK - see <rdar://problem/10594349>.
3053 */
3054 ret = EBUSY;
3055 } else {
3056 int flag = (self == TRUE) ? P_DIRTY : P_DIRTY_SHUTDOWN;
3057 if (pcontrol && !(p->p_memstat_dirty & flag)) {
3058 /* Mark the process as having been dirtied at some point */
3059 p->p_memstat_dirty |= (flag | P_DIRTY_MARKED);
3060 memorystatus_dirty_count++;
3061 ret = 0;
3062 } else if ((pcontrol == 0) && (p->p_memstat_dirty & flag)) {
3063 if ((flag == P_DIRTY_SHUTDOWN) && (!(p->p_memstat_dirty & P_DIRTY))) {
3064 /* Clearing the dirty shutdown flag, and the process is otherwise clean - kill */
3065 p->p_memstat_dirty |= P_DIRTY_TERMINATED;
3066 kill = true;
3067 } else if ((flag == P_DIRTY) && (p->p_memstat_dirty & P_DIRTY_TERMINATED)) {
3068 /* Kill previously terminated processes if set clean */
3069 kill = true;
3070 }
3071 p->p_memstat_dirty &= ~flag;
3072 memorystatus_dirty_count--;
3073 ret = 0;
3074 } else {
3075 /* Already set */
3076 ret = EALREADY;
3077 }
3078 }
3079
3080 if (ret != 0) {
3081 goto exit;
3082 }
3083
3084 if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) {
3085 now_dirty = TRUE;
3086 }
3087
3088 if ((was_dirty == TRUE && now_dirty == FALSE) ||
3089 (was_dirty == FALSE && now_dirty == TRUE)) {
3090 #if CONFIG_DIRTYSTATUS_TRACKING
3091 if (dirtystatus_tracking_enabled) {
3092 uint32_t pages = 0;
3093 memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL);
3094 change_event.dsc_pid = p->p_pid;
3095 change_event.dsc_event_type = (now_dirty == TRUE) ? kDirtyStatusChangedDirty : kDirtyStatusChangedClean;
3096 change_event.dsc_time = mach_absolute_time();
3097 change_event.dsc_pages = pages;
3098 change_event.dsc_priority = p->p_memstat_effectivepriority;
3099 strlcpy(&change_event.dsc_process_name[0], p->p_name, sizeof(change_event.dsc_process_name));
3100 notify_change = TRUE;
3101 }
3102 #endif
3103
3104 /* Manage idle exit deferral, if applied */
3105 if ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) {
3106 /*
3107 * Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band OR it might be heading back
3108 * there once it's clean again. For the legacy case, this only applies if it has some protection window left.
3109 * P_DIRTY_DEFER: one-time protection window given at launch
3110 * P_DIRTY_DEFER_ALWAYS: protection window given for every dirty->clean transition. Like non-legacy mode.
3111 *
3112 * Non-Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band. It will always stop over
3113 * in that band on it's way to IDLE.
3114 */
3115
3116 if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) {
3117 /*
3118 * New dirty process i.e. "was_dirty == FALSE && now_dirty == TRUE"
3119 *
3120 * The process will move from its aging band to its higher requested
3121 * jetsam band.
3122 */
3123 boolean_t reset_state = (jetsam_aging_policy != kJetsamAgingPolicyLegacy) ? TRUE : FALSE;
3124
3125 memorystatus_invalidate_idle_demotion_locked(p, reset_state);
3126 reschedule = TRUE;
3127 } else {
3128 /*
3129 * Process is back from "dirty" to "clean".
3130 */
3131
3132 if (jetsam_aging_policy == kJetsamAgingPolicyLegacy) {
3133 if (((p->p_memstat_dirty & P_DIRTY_DEFER_ALWAYS) == FALSE) &&
3134 (mach_absolute_time() >= p->p_memstat_idledeadline)) {
3135 /*
3136 * The process' hasn't enrolled in the "always defer after dirty"
3137 * mode and its deadline has expired. It currently
3138 * does not reside in any of the aging buckets.
3139 *
3140 * It's on its way to the JETSAM_PRIORITY_IDLE
3141 * bucket via memorystatus_update_idle_priority_locked()
3142 * below.
3143 *
3144 * So all we need to do is reset all the state on the
3145 * process that's related to the aging bucket i.e.
3146 * the AGING_IN_PROGRESS flag and the timer deadline.
3147 */
3148
3149 memorystatus_invalidate_idle_demotion_locked(p, TRUE);
3150 reschedule = TRUE;
3151 } else {
3152 /*
3153 * Process enrolled in "always stop in deferral band after dirty" OR
3154 * it still has some protection window left and so
3155 * we just re-arm the timer without modifying any
3156 * state on the process iff it still wants into that band.
3157 */
3158
3159 if (p->p_memstat_dirty & P_DIRTY_DEFER_ALWAYS) {
3160 memorystatus_schedule_idle_demotion_locked(p, TRUE);
3161 reschedule = TRUE;
3162 } else if (p->p_memstat_dirty & P_DIRTY_AGING_IN_PROGRESS) {
3163 memorystatus_schedule_idle_demotion_locked(p, FALSE);
3164 reschedule = TRUE;
3165 }
3166 }
3167 } else {
3168 memorystatus_schedule_idle_demotion_locked(p, TRUE);
3169 reschedule = TRUE;
3170 }
3171 }
3172 }
3173
3174 memorystatus_update_idle_priority_locked(p);
3175
3176 if (memorystatus_highwater_enabled) {
3177 boolean_t ledger_update_needed = TRUE;
3178 boolean_t use_active;
3179 boolean_t is_fatal;
3180 /*
3181 * We are in this path because this process transitioned between
3182 * dirty <--> clean state. Update the cached memory limits.
3183 */
3184
3185 if (proc_jetsam_state_is_active_locked(p) == TRUE) {
3186 /*
3187 * process is pinned in elevated band
3188 * or
3189 * process is dirty
3190 */
3191 CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal);
3192 use_active = TRUE;
3193 ledger_update_needed = TRUE;
3194 } else {
3195 /*
3196 * process is clean...but if it has opted into pressured-exit
3197 * we don't apply the INACTIVE limit till the process has aged
3198 * out and is entering the IDLE band.
3199 * See memorystatus_update_priority_locked() for that.
3200 */
3201
3202 if (p->p_memstat_dirty & P_DIRTY_ALLOW_IDLE_EXIT) {
3203 ledger_update_needed = FALSE;
3204 } else {
3205 CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal);
3206 use_active = FALSE;
3207 ledger_update_needed = TRUE;
3208 }
3209 }
3210
3211 /*
3212 * Enforce the new limits by writing to the ledger.
3213 *
3214 * This is a hot path and holding the proc_list_lock while writing to the ledgers,
3215 * (where the task lock is taken) is bad. So, we temporarily drop the proc_list_lock.
3216 * We aren't traversing the jetsam bucket list here, so we should be safe.
3217 * See rdar://21394491.
3218 */
3219
3220 if (ledger_update_needed && proc_ref_locked(p) == p) {
3221 int ledger_limit;
3222 if (p->p_memstat_memlimit > 0) {
3223 ledger_limit = p->p_memstat_memlimit;
3224 } else {
3225 ledger_limit = -1;
3226 }
3227 proc_list_unlock();
3228 task_set_phys_footprint_limit_internal(p->task, ledger_limit, NULL, use_active, is_fatal);
3229 proc_list_lock();
3230 proc_rele_locked(p);
3231
3232 MEMORYSTATUS_DEBUG(3, "memorystatus_dirty_set: new limit on pid %d (%dMB %s) priority(%d) dirty?=0x%x %s\n",
3233 p->p_pid, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1),
3234 (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF"), p->p_memstat_effectivepriority, p->p_memstat_dirty,
3235 (p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean") : ""));
3236 }
3237 }
3238
3239 /* If the deferral state changed, reschedule the demotion timer */
3240 if (reschedule) {
3241 memorystatus_reschedule_idle_demotion_locked();
3242 }
3243 }
3244
3245 if (kill) {
3246 if (proc_ref_locked(p) == p) {
3247 proc_list_unlock();
3248 psignal(p, SIGKILL);
3249 proc_list_lock();
3250 proc_rele_locked(p);
3251 }
3252 }
3253
3254 exit:
3255 proc_list_unlock();
3256
3257 #if CONFIG_DIRTYSTATUS_TRACKING
3258 // Before returning, let's notify the dirtiness status if we have to
3259 if (notify_change) {
3260 memorystatus_send_dirty_status_change_note(&change_event, sizeof(change_event));
3261 }
3262 #endif
3263
3264 return ret;
3265 }
3266
3267 int
3268 memorystatus_dirty_clear(proc_t p, uint32_t pcontrol)
3269 {
3270 int ret = 0;
3271
3272 MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_clear(): %d 0x%x 0x%x\n", p->p_pid, pcontrol, p->p_memstat_dirty);
3273
3274 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_DIRTY_CLEAR), p->p_pid, pcontrol, 0, 0, 0);
3275
3276 proc_list_lock();
3277
3278 if ((p->p_listflag & P_LIST_EXITED) != 0) {
3279 /*
3280 * Process is on its way out.
3281 */
3282 ret = EBUSY;
3283 goto exit;
3284 }
3285
3286 if (p->p_memstat_state & P_MEMSTAT_INTERNAL) {
3287 ret = EPERM;
3288 goto exit;
3289 }
3290
3291 if (!(p->p_memstat_dirty & P_DIRTY_TRACK)) {
3292 /* Dirty tracking not enabled */
3293 ret = EINVAL;
3294 goto exit;
3295 }
3296
3297 if (!pcontrol || (pcontrol & (PROC_DIRTY_LAUNCH_IN_PROGRESS | PROC_DIRTY_DEFER | PROC_DIRTY_DEFER_ALWAYS)) == 0) {
3298 ret = EINVAL;
3299 goto exit;
3300 }
3301
3302 if (pcontrol & PROC_DIRTY_LAUNCH_IN_PROGRESS) {
3303 p->p_memstat_dirty &= ~P_DIRTY_LAUNCH_IN_PROGRESS;
3304 }
3305
3306 /* This can be set and cleared exactly once. */
3307 if (pcontrol & (PROC_DIRTY_DEFER | PROC_DIRTY_DEFER_ALWAYS)) {
3308 if (p->p_memstat_dirty & P_DIRTY_DEFER) {
3309 p->p_memstat_dirty &= ~(P_DIRTY_DEFER);
3310 }
3311
3312 if (p->p_memstat_dirty & P_DIRTY_DEFER_ALWAYS) {
3313 p->p_memstat_dirty &= ~(P_DIRTY_DEFER_ALWAYS);
3314 }
3315
3316 memorystatus_invalidate_idle_demotion_locked(p, TRUE);
3317 memorystatus_update_idle_priority_locked(p);
3318 memorystatus_reschedule_idle_demotion_locked();
3319 }
3320
3321 ret = 0;
3322 exit:
3323 proc_list_unlock();
3324
3325 return ret;
3326 }
3327
3328 int
3329 memorystatus_dirty_get(proc_t p, boolean_t locked)
3330 {
3331 int ret = 0;
3332
3333 if (!locked) {
3334 proc_list_lock();
3335 }
3336
3337 if (p->p_memstat_dirty & P_DIRTY_TRACK) {
3338 ret |= PROC_DIRTY_TRACKED;
3339 if (p->p_memstat_dirty & P_DIRTY_ALLOW_IDLE_EXIT) {
3340 ret |= PROC_DIRTY_ALLOWS_IDLE_EXIT;
3341 }
3342 if (p->p_memstat_dirty & P_DIRTY) {
3343 ret |= PROC_DIRTY_IS_DIRTY;
3344 }
3345 if (p->p_memstat_dirty & P_DIRTY_LAUNCH_IN_PROGRESS) {
3346 ret |= PROC_DIRTY_LAUNCH_IS_IN_PROGRESS;
3347 }
3348 }
3349
3350 if (!locked) {
3351 proc_list_unlock();
3352 }
3353
3354 return ret;
3355 }
3356
3357 int
3358 memorystatus_on_terminate(proc_t p)
3359 {
3360 int sig;
3361
3362 proc_list_lock();
3363
3364 p->p_memstat_dirty |= P_DIRTY_TERMINATED;
3365
3366 if (((p->p_memstat_dirty & (P_DIRTY_TRACK | P_DIRTY_IS_DIRTY)) == P_DIRTY_TRACK) ||
3367 (p->p_memstat_state & P_MEMSTAT_SUSPENDED)) {
3368 /*
3369 * Mark as terminated and issue SIGKILL if:-
3370 * - process is clean, or,
3371 * - if process is dirty but suspended. This case is likely
3372 * an extension because apps don't opt into dirty-tracking
3373 * and daemons aren't suspended.
3374 */
3375 #if DEVELOPMENT || DEBUG
3376 if (p->p_memstat_state & P_MEMSTAT_SUSPENDED) {
3377 os_log(OS_LOG_DEFAULT, "memorystatus: sending suspended process %s (pid %d) SIGKILL",
3378 (*p->p_name ? p->p_name : "unknown"), p->p_pid);
3379 }
3380 #endif /* DEVELOPMENT || DEBUG */
3381 sig = SIGKILL;
3382 } else {
3383 /* Dirty, terminated, or state tracking is unsupported; issue SIGTERM to allow cleanup */
3384 sig = SIGTERM;
3385 }
3386
3387 proc_list_unlock();
3388
3389 return sig;
3390 }
3391
3392 void
3393 memorystatus_on_suspend(proc_t p)
3394 {
3395 #if CONFIG_FREEZE
3396 uint32_t pages;
3397 memorystatus_get_task_page_counts(p->task, &pages, NULL, NULL);
3398 #endif
3399 proc_list_lock();
3400 #if CONFIG_FREEZE
3401 memorystatus_suspended_count++;
3402 #endif
3403 p->p_memstat_state |= P_MEMSTAT_SUSPENDED;
3404 proc_list_unlock();
3405 }
3406
3407 extern uint64_t memorystatus_thaw_count_since_boot;
3408
3409 void
3410 memorystatus_on_resume(proc_t p)
3411 {
3412 #if CONFIG_FREEZE
3413 boolean_t frozen;
3414 pid_t pid;
3415 #endif
3416
3417 proc_list_lock();
3418
3419 #if CONFIG_FREEZE
3420 frozen = (p->p_memstat_state & P_MEMSTAT_FROZEN);
3421 if (frozen) {
3422 /*
3423 * Now that we don't _thaw_ a process completely,
3424 * resuming it (and having some on-demand swapins)
3425 * shouldn't preclude it from being counted as frozen.
3426 *
3427 * memorystatus_frozen_count--;
3428 *
3429 * We preserve the P_MEMSTAT_FROZEN state since the process
3430 * could have state on disk AND so will deserve some protection
3431 * in the jetsam bands.
3432 */
3433 if ((p->p_memstat_state & P_MEMSTAT_REFREEZE_ELIGIBLE) == 0) {
3434 p->p_memstat_state |= P_MEMSTAT_REFREEZE_ELIGIBLE;
3435 memorystatus_refreeze_eligible_count++;
3436 }
3437 p->p_memstat_thaw_count++;
3438
3439 memorystatus_thaw_count++;
3440 memorystatus_thaw_count_since_boot++;
3441 }
3442
3443 memorystatus_suspended_count--;
3444
3445 pid = p->p_pid;
3446 #endif
3447
3448 /*
3449 * P_MEMSTAT_FROZEN will remain unchanged. This used to be:
3450 * p->p_memstat_state &= ~(P_MEMSTAT_SUSPENDED | P_MEMSTAT_FROZEN);
3451 */
3452 p->p_memstat_state &= ~P_MEMSTAT_SUSPENDED;
3453
3454 proc_list_unlock();
3455
3456 #if CONFIG_FREEZE
3457 if (frozen) {
3458 memorystatus_freeze_entry_t data = { pid, FALSE, 0 };
3459 memorystatus_send_note(kMemorystatusFreezeNote, &data, sizeof(data));
3460 }
3461 #endif
3462 }
3463
3464 void
3465 memorystatus_on_inactivity(proc_t p)
3466 {
3467 #pragma unused(p)
3468 #if CONFIG_FREEZE
3469 /* Wake the freeze thread */
3470 thread_wakeup((event_t)&memorystatus_freeze_wakeup);
3471 #endif
3472 }
3473
3474 /*
3475 * The proc_list_lock is held by the caller.
3476 */
3477 static uint32_t
3478 memorystatus_build_state(proc_t p)
3479 {
3480 uint32_t snapshot_state = 0;
3481
3482 /* General */
3483 if (p->p_memstat_state & P_MEMSTAT_SUSPENDED) {
3484 snapshot_state |= kMemorystatusSuspended;
3485 }
3486 if (p->p_memstat_state & P_MEMSTAT_FROZEN) {
3487 snapshot_state |= kMemorystatusFrozen;
3488 }
3489 if (p->p_memstat_state & P_MEMSTAT_REFREEZE_ELIGIBLE) {
3490 snapshot_state |= kMemorystatusWasThawed;
3491 }
3492 if (p->p_memstat_state & P_MEMSTAT_PRIORITY_ASSERTION) {
3493 snapshot_state |= kMemorystatusAssertion;
3494 }
3495
3496 /* Tracking */
3497 if (p->p_memstat_dirty & P_DIRTY_TRACK) {
3498 snapshot_state |= kMemorystatusTracked;
3499 }
3500 if ((p->p_memstat_dirty & P_DIRTY_IDLE_EXIT_ENABLED) == P_DIRTY_IDLE_EXIT_ENABLED) {
3501 snapshot_state |= kMemorystatusSupportsIdleExit;
3502 }
3503 if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) {
3504 snapshot_state |= kMemorystatusDirty;
3505 }
3506
3507 return snapshot_state;
3508 }
3509
3510 static boolean_t
3511 kill_idle_exit_proc(void)
3512 {
3513 proc_t p, victim_p = PROC_NULL;
3514 uint64_t current_time, footprint_of_killed_proc;
3515 boolean_t killed = FALSE;
3516 unsigned int i = 0;
3517 os_reason_t jetsam_reason = OS_REASON_NULL;
3518
3519 /* Pick next idle exit victim. */
3520 current_time = mach_absolute_time();
3521
3522 jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_IDLE_EXIT);
3523 if (jetsam_reason == OS_REASON_NULL) {
3524 printf("kill_idle_exit_proc: failed to allocate jetsam reason\n");
3525 }
3526
3527 proc_list_lock();
3528
3529 p = memorystatus_get_first_proc_locked(&i, FALSE);
3530 while (p) {
3531 /* No need to look beyond the idle band */
3532 if (p->p_memstat_effectivepriority != JETSAM_PRIORITY_IDLE) {
3533 break;
3534 }
3535
3536 if ((p->p_memstat_dirty & (P_DIRTY_ALLOW_IDLE_EXIT | P_DIRTY_IS_DIRTY | P_DIRTY_TERMINATED)) == (P_DIRTY_ALLOW_IDLE_EXIT)) {
3537 if (current_time >= p->p_memstat_idledeadline) {
3538 p->p_memstat_dirty |= P_DIRTY_TERMINATED;
3539 victim_p = proc_ref_locked(p);
3540 break;
3541 }
3542 }
3543
3544 p = memorystatus_get_next_proc_locked(&i, p, FALSE);
3545 }
3546
3547 proc_list_unlock();
3548
3549 if (victim_p) {
3550 printf("memorystatus: killing_idle_process pid %d [%s] jetsam_reason->osr_code: %llu\n", victim_p->p_pid, (*victim_p->p_name ? victim_p->p_name : "unknown"), jetsam_reason->osr_code);
3551 killed = memorystatus_do_kill(victim_p, kMemorystatusKilledIdleExit, jetsam_reason, &footprint_of_killed_proc);
3552 proc_rele(victim_p);
3553 } else {
3554 os_reason_free(jetsam_reason);
3555 }
3556
3557 return killed;
3558 }
3559
3560 static void
3561 memorystatus_thread_wake(void)
3562 {
3563 int thr_id = 0;
3564 int active_thr = atomic_load(&active_jetsam_threads);
3565
3566 /* Wakeup all the jetsam threads */
3567 for (thr_id = 0; thr_id < active_thr; thr_id++) {
3568 thread_wakeup((event_t)&jetsam_threads[thr_id].memorystatus_wakeup);
3569 }
3570 }
3571
3572 #if CONFIG_JETSAM
3573
3574 static void
3575 memorystatus_thread_pool_max()
3576 {
3577 /* Increase the jetsam thread pool to max_jetsam_threads */
3578 int max_threads = max_jetsam_threads;
3579 printf("Expanding memorystatus pool to %d!\n", max_threads);
3580 atomic_store(&active_jetsam_threads, max_threads);
3581 }
3582
3583 static void
3584 memorystatus_thread_pool_default()
3585 {
3586 /* Restore the jetsam thread pool to a single thread */
3587 printf("Reverting memorystatus pool back to 1\n");
3588 atomic_store(&active_jetsam_threads, 1);
3589 }
3590
3591 #endif /* CONFIG_JETSAM */
3592
3593 extern void vm_pressure_response(void);
3594
3595 static int
3596 memorystatus_thread_block(uint32_t interval_ms, thread_continue_t continuation)
3597 {
3598 struct jetsam_thread_state *jetsam_thread = jetsam_current_thread();
3599
3600 assert(jetsam_thread != NULL);
3601 if (interval_ms) {
3602 assert_wait_timeout(&jetsam_thread->memorystatus_wakeup, THREAD_UNINT, interval_ms, NSEC_PER_MSEC);
3603 } else {
3604 assert_wait(&jetsam_thread->memorystatus_wakeup, THREAD_UNINT);
3605 }
3606
3607 return thread_block(continuation);
3608 }
3609
3610 static boolean_t
3611 memorystatus_avail_pages_below_pressure(void)
3612 {
3613 #if CONFIG_JETSAM
3614 return memorystatus_available_pages <= memorystatus_available_pages_pressure;
3615 #else /* CONFIG_JETSAM */
3616 return FALSE;
3617 #endif /* CONFIG_JETSAM */
3618 }
3619
3620 static boolean_t
3621 memorystatus_avail_pages_below_critical(void)
3622 {
3623 #if CONFIG_JETSAM
3624 return memorystatus_available_pages <= memorystatus_available_pages_critical;
3625 #else /* CONFIG_JETSAM */
3626 return FALSE;
3627 #endif /* CONFIG_JETSAM */
3628 }
3629
3630 static boolean_t
3631 memorystatus_post_snapshot(int32_t priority, uint32_t cause)
3632 {
3633 boolean_t is_idle_priority;
3634
3635 if (jetsam_aging_policy == kJetsamAgingPolicyLegacy) {
3636 is_idle_priority = (priority == JETSAM_PRIORITY_IDLE);
3637 } else {
3638 is_idle_priority = (priority == JETSAM_PRIORITY_IDLE || priority == JETSAM_PRIORITY_IDLE_DEFERRED);
3639 }
3640 #if CONFIG_JETSAM
3641 #pragma unused(cause)
3642 /*
3643 * Don't generate logs for steady-state idle-exit kills,
3644 * unless it is overridden for debug or by the device
3645 * tree.
3646 */
3647
3648 return !is_idle_priority || memorystatus_idle_snapshot;
3649
3650 #else /* CONFIG_JETSAM */
3651 /*
3652 * Don't generate logs for steady-state idle-exit kills,
3653 * unless
3654 * - it is overridden for debug or by the device
3655 * tree.
3656 * OR
3657 * - the kill causes are important i.e. not kMemorystatusKilledIdleExit
3658 */
3659
3660 boolean_t snapshot_eligible_kill_cause = (is_reason_thrashing(cause) || is_reason_zone_map_exhaustion(cause));
3661 return !is_idle_priority || memorystatus_idle_snapshot || snapshot_eligible_kill_cause;
3662 #endif /* CONFIG_JETSAM */
3663 }
3664
3665 static boolean_t
3666 memorystatus_action_needed(void)
3667 {
3668 #if CONFIG_JETSAM
3669 return is_reason_thrashing(kill_under_pressure_cause) ||
3670 is_reason_zone_map_exhaustion(kill_under_pressure_cause) ||
3671 memorystatus_available_pages <= memorystatus_available_pages_pressure;
3672 #else /* CONFIG_JETSAM */
3673 return is_reason_thrashing(kill_under_pressure_cause) ||
3674 is_reason_zone_map_exhaustion(kill_under_pressure_cause);
3675 #endif /* CONFIG_JETSAM */
3676 }
3677
3678 static boolean_t
3679 memorystatus_act_on_hiwat_processes(uint32_t *errors, uint32_t *hwm_kill, boolean_t *post_snapshot, __unused boolean_t *is_critical, uint64_t *memory_reclaimed)
3680 {
3681 boolean_t purged = FALSE, killed = FALSE;
3682
3683 *memory_reclaimed = 0;
3684 killed = memorystatus_kill_hiwat_proc(errors, &purged, memory_reclaimed);
3685
3686 if (killed) {
3687 *hwm_kill = *hwm_kill + 1;
3688 *post_snapshot = TRUE;
3689 return TRUE;
3690 } else {
3691 if (purged == FALSE) {
3692 /* couldn't purge and couldn't kill */
3693 memorystatus_hwm_candidates = FALSE;
3694 }
3695 }
3696
3697 #if CONFIG_JETSAM
3698 /* No highwater processes to kill. Continue or stop for now? */
3699 if (!is_reason_thrashing(kill_under_pressure_cause) &&
3700 !is_reason_zone_map_exhaustion(kill_under_pressure_cause) &&
3701 (memorystatus_available_pages > memorystatus_available_pages_critical)) {
3702 /*
3703 * We are _not_ out of pressure but we are above the critical threshold and there's:
3704 * - no compressor thrashing
3705 * - enough zone memory
3706 * - no more HWM processes left.
3707 * For now, don't kill any other processes.
3708 */
3709
3710 if (*hwm_kill == 0) {
3711 memorystatus_thread_wasted_wakeup++;
3712 }
3713
3714 *is_critical = FALSE;
3715
3716 return TRUE;
3717 }
3718 #endif /* CONFIG_JETSAM */
3719
3720 return FALSE;
3721 }
3722
3723 /*
3724 * kJetsamHighRelaunchCandidatesThreshold defines the percentage of candidates
3725 * in the idle & deferred bands that need to be bad candidates in order to trigger
3726 * aggressive jetsam.
3727 */
3728 #define kJetsamHighRelaunchCandidatesThreshold (100)
3729
3730 /* kJetsamMinCandidatesThreshold defines the minimum number of candidates in the
3731 * idle/deferred bands to trigger aggressive jetsam. This value basically decides
3732 * how much memory the system is ready to hold in the lower bands without triggering
3733 * aggressive jetsam. This number should ideally be tuned based on the memory config
3734 * of the device.
3735 */
3736 #define kJetsamMinCandidatesThreshold (5)
3737
3738 static boolean_t
3739 memorystatus_aggressive_jetsam_needed_sysproc_aging(__unused int jld_eval_aggressive_count, __unused int *jld_idle_kills, __unused int jld_idle_kill_candidates, int *total_candidates, int *elevated_bucket_count)
3740 {
3741 boolean_t aggressive_jetsam_needed = false;
3742
3743 /*
3744 * For the kJetsamAgingPolicySysProcsReclaimedFirst aging policy, we maintain the jetsam
3745 * relaunch behavior for all daemons. Also, daemons and apps are aged in deferred bands on
3746 * every dirty->clean transition. For this aging policy, the best way to determine if
3747 * aggressive jetsam is needed, is to see if the kill candidates are mostly bad candidates.
3748 * If yes, then we need to go to higher bands to reclaim memory.
3749 */
3750 proc_list_lock();
3751 /* Get total candidate counts for idle and idle deferred bands */
3752 *total_candidates = memstat_bucket[JETSAM_PRIORITY_IDLE].count + memstat_bucket[system_procs_aging_band].count;
3753 /* Get counts of bad kill candidates in idle and idle deferred bands */
3754 int bad_candidates = memstat_bucket[JETSAM_PRIORITY_IDLE].relaunch_high_count + memstat_bucket[system_procs_aging_band].relaunch_high_count;
3755
3756 *elevated_bucket_count = memstat_bucket[JETSAM_PRIORITY_ELEVATED_INACTIVE].count;
3757
3758 proc_list_unlock();
3759
3760 /* Check if the number of bad candidates is greater than kJetsamHighRelaunchCandidatesThreshold % */
3761 aggressive_jetsam_needed = (((bad_candidates * 100) / *total_candidates) >= kJetsamHighRelaunchCandidatesThreshold);
3762
3763 /*
3764 * Since the new aging policy bases the aggressive jetsam trigger on percentage of
3765 * bad candidates, it is prone to being overly aggressive. In order to mitigate that,
3766 * make sure the system is really under memory pressure before triggering aggressive
3767 * jetsam.
3768 */
3769 if (memorystatus_available_pages > memorystatus_sysproc_aging_aggr_pages) {
3770 aggressive_jetsam_needed = false;
3771 }
3772
3773 #if DEVELOPMENT || DEBUG
3774 printf("memorystatus: aggressive%d: [%s] Bad Candidate Threshold Check (total: %d, bad: %d, threshold: %d %%); Memory Pressure Check (available_pgs: %llu, threshold_pgs: %llu)\n",
3775 jld_eval_aggressive_count, aggressive_jetsam_needed ? "PASSED" : "FAILED", *total_candidates, bad_candidates,
3776 kJetsamHighRelaunchCandidatesThreshold, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES, (uint64_t)memorystatus_sysproc_aging_aggr_pages);
3777 #endif /* DEVELOPMENT || DEBUG */
3778 return aggressive_jetsam_needed;
3779 }
3780
3781 /*
3782 * Gets memory back from various system caches.
3783 * Called before jetsamming in the foreground band in the hope that we'll
3784 * avoid a jetsam.
3785 */
3786 static void
3787 memorystatus_approaching_fg_band(boolean_t *corpse_list_purged)
3788 {
3789 assert(corpse_list_purged != NULL);
3790 pmap_release_pages_fast();
3791 memorystatus_issue_fg_band_notify();
3792 if (total_corpses_count() > 0 && !*corpse_list_purged) {
3793 task_purge_all_corpses();
3794 *corpse_list_purged = TRUE;
3795 }
3796 }
3797
3798 static boolean_t
3799 memorystatus_aggressive_jetsam_needed_default(__unused int jld_eval_aggressive_count, int *jld_idle_kills, int jld_idle_kill_candidates, int *total_candidates, int *elevated_bucket_count)
3800 {
3801 boolean_t aggressive_jetsam_needed = false;
3802 /* Jetsam Loop Detection - locals */
3803 memstat_bucket_t *bucket;
3804 int jld_bucket_count = 0;
3805
3806 proc_list_lock();
3807 switch (jetsam_aging_policy) {
3808 case kJetsamAgingPolicyLegacy:
3809 bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE];
3810 jld_bucket_count = bucket->count;
3811 bucket = &memstat_bucket[JETSAM_PRIORITY_AGING_BAND1];
3812 jld_bucket_count += bucket->count;
3813 break;
3814 case kJetsamAgingPolicyAppsReclaimedFirst:
3815 bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE];
3816 jld_bucket_count = bucket->count;
3817 bucket = &memstat_bucket[system_procs_aging_band];
3818 jld_bucket_count += bucket->count;
3819 bucket = &memstat_bucket[applications_aging_band];
3820 jld_bucket_count += bucket->count;
3821 break;
3822 case kJetsamAgingPolicyNone:
3823 default:
3824 bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE];
3825 jld_bucket_count = bucket->count;
3826 break;
3827 }
3828
3829 bucket = &memstat_bucket[JETSAM_PRIORITY_ELEVATED_INACTIVE];
3830 *elevated_bucket_count = bucket->count;
3831 *total_candidates = jld_bucket_count;
3832 proc_list_unlock();
3833
3834 aggressive_jetsam_needed = (*jld_idle_kills > jld_idle_kill_candidates);
3835
3836 #if DEVELOPMENT || DEBUG
3837 if (aggressive_jetsam_needed) {
3838 printf("memorystatus: aggressive%d: idle candidates: %d, idle kills: %d\n",
3839 jld_eval_aggressive_count,
3840 jld_idle_kill_candidates,
3841 *jld_idle_kills);
3842 }
3843 #endif /* DEVELOPMENT || DEBUG */
3844 return aggressive_jetsam_needed;
3845 }
3846
3847 static boolean_t
3848 memorystatus_act_aggressive(uint32_t cause, os_reason_t jetsam_reason, int *jld_idle_kills, boolean_t *corpse_list_purged, boolean_t *post_snapshot, uint64_t *memory_reclaimed)
3849 {
3850 boolean_t aggressive_jetsam_needed = false;
3851 boolean_t killed;
3852 uint32_t errors = 0;
3853 uint64_t footprint_of_killed_proc = 0;
3854 int elevated_bucket_count = 0;
3855 int total_candidates = 0;
3856 *memory_reclaimed = 0;
3857
3858 /*
3859 * The aggressive jetsam logic looks at the number of times it has been in the
3860 * aggressive loop to determine the max priority band it should kill upto. The
3861 * static variables below are used to track that property.
3862 *
3863 * To reset those values, the implementation checks if it has been
3864 * memorystatus_jld_eval_period_msecs since the parameters were reset.
3865 */
3866 static int jld_eval_aggressive_count = 0;
3867 static int32_t jld_priority_band_max = JETSAM_PRIORITY_UI_SUPPORT;
3868 static uint64_t jld_timestamp_msecs = 0;
3869 static int jld_idle_kill_candidates = 0;
3870
3871 if (memorystatus_jld_enabled == FALSE) {
3872 /* If aggressive jetsam is disabled, nothing to do here */
3873 return FALSE;
3874 }
3875
3876 /* Get current timestamp (msecs only) */
3877 struct timeval jld_now_tstamp = {0, 0};
3878 uint64_t jld_now_msecs = 0;
3879 microuptime(&jld_now_tstamp);
3880 jld_now_msecs = (jld_now_tstamp.tv_sec * 1000);
3881
3882 /*
3883 * The aggressive jetsam logic looks at the number of candidates and their
3884 * properties to decide if aggressive jetsam should be engaged.
3885 */
3886 if (jetsam_aging_policy == kJetsamAgingPolicySysProcsReclaimedFirst) {
3887 /*
3888 * For the kJetsamAgingPolicySysProcsReclaimedFirst aging policy, the logic looks at the number of
3889 * candidates in the idle and deferred band and how many out of them are marked as high relaunch
3890 * probability.
3891 */
3892 aggressive_jetsam_needed = memorystatus_aggressive_jetsam_needed_sysproc_aging(jld_eval_aggressive_count,
3893 jld_idle_kills, jld_idle_kill_candidates, &total_candidates, &elevated_bucket_count);
3894 } else {
3895 /*
3896 * The other aging policies look at number of candidate processes over a specific time window and
3897 * evaluate if the system is in a jetsam loop. If yes, aggressive jetsam is triggered.
3898 */
3899 aggressive_jetsam_needed = memorystatus_aggressive_jetsam_needed_default(jld_eval_aggressive_count,
3900 jld_idle_kills, jld_idle_kill_candidates, &total_candidates, &elevated_bucket_count);
3901 }
3902
3903 /*
3904 * Check if its been really long since the aggressive jetsam evaluation
3905 * parameters have been refreshed. This logic also resets the jld_eval_aggressive_count
3906 * counter to make sure we reset the aggressive jetsam severity.
3907 */
3908 boolean_t param_reval = false;
3909
3910 if ((total_candidates == 0) ||
3911 (jld_now_msecs > (jld_timestamp_msecs + memorystatus_jld_eval_period_msecs))) {
3912 jld_timestamp_msecs = jld_now_msecs;
3913 jld_idle_kill_candidates = total_candidates;
3914 *jld_idle_kills = 0;
3915 jld_eval_aggressive_count = 0;
3916 jld_priority_band_max = JETSAM_PRIORITY_UI_SUPPORT;
3917 param_reval = true;
3918 }
3919
3920 /*
3921 * If the parameters have been updated, re-evaluate the aggressive_jetsam_needed condition for
3922 * the non kJetsamAgingPolicySysProcsReclaimedFirst policy since its based on jld_idle_kill_candidates etc.
3923 */
3924 if ((param_reval == true) && (jetsam_aging_policy != kJetsamAgingPolicySysProcsReclaimedFirst)) {
3925 aggressive_jetsam_needed = (*jld_idle_kills > jld_idle_kill_candidates);
3926 }
3927
3928 /*
3929 * It is also possible that the system is down to a very small number of processes in the candidate
3930 * bands. In that case, the decisions made by the memorystatus_aggressive_jetsam_needed_* routines
3931 * would not be useful. In that case, do not trigger aggressive jetsam.
3932 */
3933 if (total_candidates < kJetsamMinCandidatesThreshold) {
3934 #if DEVELOPMENT || DEBUG
3935 printf("memorystatus: aggressive: [FAILED] Low Candidate Count (current: %d, threshold: %d)\n", total_candidates, kJetsamMinCandidatesThreshold);
3936 #endif /* DEVELOPMENT || DEBUG */
3937 aggressive_jetsam_needed = false;
3938 }
3939
3940 if (aggressive_jetsam_needed == false) {
3941 /* Either the aging policy or the candidate count decided that aggressive jetsam is not needed. Nothing more to do here. */
3942 return FALSE;
3943 }
3944
3945 /* Looks like aggressive jetsam is needed */
3946 jld_eval_aggressive_count++;
3947
3948 if (jld_eval_aggressive_count == memorystatus_jld_eval_aggressive_count) {
3949 memorystatus_approaching_fg_band(corpse_list_purged);
3950 } else if (jld_eval_aggressive_count > memorystatus_jld_eval_aggressive_count) {
3951 /*
3952 * Bump up the jetsam priority limit (eg: the bucket index)
3953 * Enforce bucket index sanity.
3954 */
3955 if ((memorystatus_jld_eval_aggressive_priority_band_max < 0) ||
3956 (memorystatus_jld_eval_aggressive_priority_band_max >= MEMSTAT_BUCKET_COUNT)) {
3957 /*
3958 * Do nothing. Stick with the default level.
3959 */
3960 } else {
3961 jld_priority_band_max = memorystatus_jld_eval_aggressive_priority_band_max;
3962 }
3963 }
3964
3965 /* Visit elevated processes first */
3966 while (elevated_bucket_count) {
3967 elevated_bucket_count--;
3968
3969 /*
3970 * memorystatus_kill_elevated_process() drops a reference,
3971 * so take another one so we can continue to use this exit reason
3972 * even after it returns.
3973 */
3974
3975 os_reason_ref(jetsam_reason);
3976 killed = memorystatus_kill_elevated_process(
3977 cause,
3978 jetsam_reason,
3979 JETSAM_PRIORITY_ELEVATED_INACTIVE,
3980 jld_eval_aggressive_count,
3981 &errors, &footprint_of_killed_proc);
3982 if (killed) {
3983 *post_snapshot = TRUE;
3984 *memory_reclaimed += footprint_of_killed_proc;
3985 if (memorystatus_avail_pages_below_pressure()) {
3986 /*
3987 * Still under pressure.
3988 * Find another pinned processes.
3989 */
3990 continue;
3991 } else {
3992 return TRUE;
3993 }
3994 } else {
3995 /*
3996 * No pinned processes left to kill.
3997 * Abandon elevated band.
3998 */
3999 break;
4000 }
4001 }
4002
4003 /*
4004 * memorystatus_kill_processes_aggressive() allocates its own
4005 * jetsam_reason so the kMemorystatusKilledProcThrashing cause
4006 * is consistent throughout the aggressive march.
4007 */
4008 killed = memorystatus_kill_processes_aggressive(
4009 kMemorystatusKilledProcThrashing,
4010 jld_eval_aggressive_count,
4011 jld_priority_band_max,
4012 &errors, &footprint_of_killed_proc);
4013
4014 if (killed) {
4015 /* Always generate logs after aggressive kill */
4016 *post_snapshot = TRUE;
4017 *memory_reclaimed += footprint_of_killed_proc;
4018 *jld_idle_kills = 0;
4019 return TRUE;
4020 }
4021
4022 return FALSE;
4023 }
4024
4025
4026 static void
4027 memorystatus_thread(void *param __unused, wait_result_t wr __unused)
4028 {
4029 boolean_t post_snapshot = FALSE;
4030 uint32_t errors = 0;
4031 uint32_t hwm_kill = 0;
4032 boolean_t sort_flag = TRUE;
4033 boolean_t corpse_list_purged = FALSE;
4034 int jld_idle_kills = 0;
4035 struct jetsam_thread_state *jetsam_thread = jetsam_current_thread();
4036 uint64_t total_memory_reclaimed = 0;
4037
4038 assert(jetsam_thread != NULL);
4039 if (jetsam_thread->inited == FALSE) {
4040 /*
4041 * It's the first time the thread has run, so just mark the thread as privileged and block.
4042 * This avoids a spurious pass with unset variables, as set out in <rdar://problem/9609402>.
4043 */
4044
4045 char name[32];
4046 thread_wire(host_priv_self(), current_thread(), TRUE);
4047 snprintf(name, 32, "VM_memorystatus_%d", jetsam_thread->index + 1);
4048
4049 /* Limit all but one thread to the lower jetsam bands, as that's where most of the victims are. */
4050 if (jetsam_thread->index == 0) {
4051 if (vm_pageout_state.vm_restricted_to_single_processor == TRUE) {
4052 thread_vm_bind_group_add();
4053 }
4054 jetsam_thread->limit_to_low_bands = FALSE;
4055 } else {
4056 jetsam_thread->limit_to_low_bands = TRUE;
4057 }
4058 #if CONFIG_THREAD_GROUPS
4059 thread_group_vm_add();
4060 #endif
4061 thread_set_thread_name(current_thread(), name);
4062 jetsam_thread->inited = TRUE;
4063 memorystatus_thread_block(0, memorystatus_thread);
4064 }
4065
4066 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_SCAN) | DBG_FUNC_START,
4067 MEMORYSTATUS_LOG_AVAILABLE_PAGES, memorystatus_jld_enabled, memorystatus_jld_eval_period_msecs, memorystatus_jld_eval_aggressive_count, 0);
4068
4069 /*
4070 * Jetsam aware version.
4071 *
4072 * The VM pressure notification thread is working it's way through clients in parallel.
4073 *
4074 * So, while the pressure notification thread is targeting processes in order of
4075 * increasing jetsam priority, we can hopefully reduce / stop it's work by killing
4076 * any processes that have exceeded their highwater mark.
4077 *
4078 * If we run out of HWM processes and our available pages drops below the critical threshold, then,
4079 * we target the least recently used process in order of increasing jetsam priority (exception: the FG band).
4080 */
4081 while (memorystatus_action_needed()) {
4082 boolean_t killed;
4083 int32_t priority;
4084 uint32_t cause;
4085 uint64_t memory_reclaimed = 0;
4086 uint64_t jetsam_reason_code = JETSAM_REASON_INVALID;
4087 os_reason_t jetsam_reason = OS_REASON_NULL;
4088
4089 cause = kill_under_pressure_cause;
4090 switch (cause) {
4091 case kMemorystatusKilledFCThrashing:
4092 jetsam_reason_code = JETSAM_REASON_MEMORY_FCTHRASHING;
4093 break;
4094 case kMemorystatusKilledVMCompressorThrashing:
4095 jetsam_reason_code = JETSAM_REASON_MEMORY_VMCOMPRESSOR_THRASHING;
4096 break;
4097 case kMemorystatusKilledVMCompressorSpaceShortage:
4098 jetsam_reason_code = JETSAM_REASON_MEMORY_VMCOMPRESSOR_SPACE_SHORTAGE;
4099 break;
4100 case kMemorystatusKilledZoneMapExhaustion:
4101 jetsam_reason_code = JETSAM_REASON_ZONE_MAP_EXHAUSTION;
4102 break;
4103 case kMemorystatusKilledVMPageShortage:
4104 /* falls through */
4105 default:
4106 jetsam_reason_code = JETSAM_REASON_MEMORY_VMPAGESHORTAGE;
4107 cause = kMemorystatusKilledVMPageShortage;
4108 break;
4109 }
4110
4111 /* Highwater */
4112 boolean_t is_critical = TRUE;
4113 if (memorystatus_act_on_hiwat_processes(&errors, &hwm_kill, &post_snapshot, &is_critical, &memory_reclaimed)) {
4114 total_memory_reclaimed += memory_reclaimed;
4115 if (is_critical == FALSE) {
4116 /*
4117 * For now, don't kill any other processes.
4118 */
4119 break;
4120 } else {
4121 goto done;
4122 }
4123 }
4124
4125 jetsam_reason = os_reason_create(OS_REASON_JETSAM, jetsam_reason_code);
4126 if (jetsam_reason == OS_REASON_NULL) {
4127 printf("memorystatus_thread: failed to allocate jetsam reason\n");
4128 }
4129
4130 /* Only unlimited jetsam threads should act aggressive */
4131 if (!jetsam_thread->limit_to_low_bands &&
4132 memorystatus_act_aggressive(cause, jetsam_reason, &jld_idle_kills, &corpse_list_purged, &post_snapshot, &memory_reclaimed)) {
4133 total_memory_reclaimed += memory_reclaimed;
4134 goto done;
4135 }
4136
4137 /*
4138 * memorystatus_kill_top_process() drops a reference,
4139 * so take another one so we can continue to use this exit reason
4140 * even after it returns
4141 */
4142 os_reason_ref(jetsam_reason);
4143
4144 /* LRU */
4145 killed = memorystatus_kill_top_process(TRUE, sort_flag, cause, jetsam_reason, &priority, &errors, &memory_reclaimed);
4146 sort_flag = FALSE;
4147
4148 if (killed) {
4149 total_memory_reclaimed += memory_reclaimed;
4150 if (memorystatus_post_snapshot(priority, cause) == TRUE) {
4151 post_snapshot = TRUE;
4152 }
4153
4154 /* Jetsam Loop Detection */
4155 if (memorystatus_jld_enabled == TRUE) {
4156 if ((priority == JETSAM_PRIORITY_IDLE) || (priority == system_procs_aging_band) || (priority == applications_aging_band)) {
4157 jld_idle_kills++;
4158 } else {
4159 /*
4160 * We've reached into bands beyond idle deferred.
4161 * We make no attempt to monitor them
4162 */
4163 }
4164 }
4165
4166 /*
4167 * If we have jetsammed a process in or above JETSAM_PRIORITY_UI_SUPPORT
4168 * then we attempt to relieve pressure by purging corpse memory and notifying
4169 * anybody wanting to know this.
4170 */
4171 if (priority >= JETSAM_PRIORITY_UI_SUPPORT) {
4172 memorystatus_approaching_fg_band(&corpse_list_purged);
4173 }
4174 goto done;
4175 }
4176
4177 if (memorystatus_avail_pages_below_critical()) {
4178 /*
4179 * Still under pressure and unable to kill a process - purge corpse memory
4180 * and get everything back from the pmap.
4181 */
4182 pmap_release_pages_fast();
4183 if (total_corpses_count() > 0) {
4184 task_purge_all_corpses();
4185 corpse_list_purged = TRUE;
4186 }
4187
4188 if (!jetsam_thread->limit_to_low_bands && memorystatus_avail_pages_below_critical()) {
4189 /*
4190 * Still under pressure and unable to kill a process - panic
4191 */
4192 panic("memorystatus_jetsam_thread: no victim! available pages:%llu\n", (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES);
4193 }
4194 }
4195
4196 done:
4197
4198 /*
4199 * We do not want to over-kill when thrashing has been detected.
4200 * To avoid that, we reset the flag here and notify the
4201 * compressor.
4202 */
4203 if (is_reason_thrashing(kill_under_pressure_cause)) {
4204 kill_under_pressure_cause = 0;
4205 #if CONFIG_JETSAM
4206 vm_thrashing_jetsam_done();
4207 #endif /* CONFIG_JETSAM */
4208 } else if (is_reason_zone_map_exhaustion(kill_under_pressure_cause)) {
4209 kill_under_pressure_cause = 0;
4210 }
4211
4212 os_reason_free(jetsam_reason);
4213 }
4214
4215 kill_under_pressure_cause = 0;
4216
4217 if (errors) {
4218 memorystatus_clear_errors();
4219 }
4220
4221 if (post_snapshot) {
4222 proc_list_lock();
4223 size_t snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) +
4224 sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_count);
4225 uint64_t timestamp_now = mach_absolute_time();
4226 memorystatus_jetsam_snapshot->notification_time = timestamp_now;
4227 memorystatus_jetsam_snapshot->js_gencount++;
4228 if (memorystatus_jetsam_snapshot_count > 0 && (memorystatus_jetsam_snapshot_last_timestamp == 0 ||
4229 timestamp_now > memorystatus_jetsam_snapshot_last_timestamp + memorystatus_jetsam_snapshot_timeout)) {
4230 proc_list_unlock();
4231 int ret = memorystatus_send_note(kMemorystatusSnapshotNote, &snapshot_size, sizeof(snapshot_size));
4232 if (!ret) {
4233 proc_list_lock();
4234 memorystatus_jetsam_snapshot_last_timestamp = timestamp_now;
4235 proc_list_unlock();
4236 }
4237 } else {
4238 proc_list_unlock();
4239 }
4240 }
4241
4242 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_SCAN) | DBG_FUNC_END,
4243 MEMORYSTATUS_LOG_AVAILABLE_PAGES, total_memory_reclaimed, 0, 0, 0);
4244
4245 memorystatus_thread_block(0, memorystatus_thread);
4246 }
4247
4248 /*
4249 * Returns TRUE:
4250 * when an idle-exitable proc was killed
4251 * Returns FALSE:
4252 * when there are no more idle-exitable procs found
4253 * when the attempt to kill an idle-exitable proc failed
4254 */
4255 boolean_t
4256 memorystatus_idle_exit_from_VM(void)
4257 {
4258 /*
4259 * This routine should no longer be needed since we are
4260 * now using jetsam bands on all platforms and so will deal
4261 * with IDLE processes within the memorystatus thread itself.
4262 *
4263 * But we still use it because we observed that macos systems
4264 * started heavy compression/swapping with a bunch of
4265 * idle-exitable processes alive and doing nothing. We decided
4266 * to rather kill those processes than start swapping earlier.
4267 */
4268
4269 return kill_idle_exit_proc();
4270 }
4271
4272 /*
4273 * Callback invoked when allowable physical memory footprint exceeded
4274 * (dirty pages + IOKit mappings)
4275 *
4276 * This is invoked for both advisory, non-fatal per-task high watermarks,
4277 * as well as the fatal task memory limits.
4278 */
4279 void
4280 memorystatus_on_ledger_footprint_exceeded(boolean_t warning, boolean_t memlimit_is_active, boolean_t memlimit_is_fatal)
4281 {
4282 os_reason_t jetsam_reason = OS_REASON_NULL;
4283
4284 proc_t p = current_proc();
4285
4286 #if VM_PRESSURE_EVENTS
4287 if (warning == TRUE) {
4288 /*
4289 * This is a warning path which implies that the current process is close, but has
4290 * not yet exceeded its per-process memory limit.
4291 */
4292 if (memorystatus_warn_process(p, memlimit_is_active, memlimit_is_fatal, FALSE /* not exceeded */) != TRUE) {
4293 /* Print warning, since it's possible that task has not registered for pressure notifications */
4294 os_log(OS_LOG_DEFAULT, "memorystatus_on_ledger_footprint_exceeded: failed to warn the current task (%d exiting, or no handler registered?).\n", p->p_pid);
4295 }
4296 return;
4297 }
4298 #endif /* VM_PRESSURE_EVENTS */
4299
4300 if (memlimit_is_fatal) {
4301 /*
4302 * If this process has no high watermark or has a fatal task limit, then we have been invoked because the task
4303 * has violated either the system-wide per-task memory limit OR its own task limit.
4304 */
4305 jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_PERPROCESSLIMIT);
4306 if (jetsam_reason == NULL) {
4307 printf("task_exceeded footprint: failed to allocate jetsam reason\n");
4308 } else if (corpse_for_fatal_memkill != 0 && proc_send_synchronous_EXC_RESOURCE(p) == FALSE) {
4309 /* Set OS_REASON_FLAG_GENERATE_CRASH_REPORT to generate corpse */
4310 jetsam_reason->osr_flags |= OS_REASON_FLAG_GENERATE_CRASH_REPORT;
4311 }
4312
4313 if (memorystatus_kill_process_sync(p->p_pid, kMemorystatusKilledPerProcessLimit, jetsam_reason) != TRUE) {
4314 printf("task_exceeded_footprint: failed to kill the current task (exiting?).\n");
4315 }
4316 } else {
4317 /*
4318 * HWM offender exists. Done without locks or synchronization.
4319 * See comment near its declaration for more details.
4320 */
4321 memorystatus_hwm_candidates = TRUE;
4322
4323 #if VM_PRESSURE_EVENTS
4324 /*
4325 * The current process is not in the warning path.
4326 * This path implies the current process has exceeded a non-fatal (soft) memory limit.
4327 * Failure to send note is ignored here.
4328 */
4329 (void)memorystatus_warn_process(p, memlimit_is_active, memlimit_is_fatal, TRUE /* exceeded */);
4330
4331 #endif /* VM_PRESSURE_EVENTS */
4332 }
4333 }
4334
4335 void
4336 memorystatus_log_exception(const int max_footprint_mb, boolean_t memlimit_is_active, boolean_t memlimit_is_fatal)
4337 {
4338 proc_t p = current_proc();
4339
4340 /*
4341 * The limit violation is logged here, but only once per process per limit.
4342 * Soft memory limit is a non-fatal high-water-mark
4343 * Hard memory limit is a fatal custom-task-limit or system-wide per-task memory limit.
4344 */
4345
4346 os_log_with_startup_serial(OS_LOG_DEFAULT, "EXC_RESOURCE -> %s[%d] exceeded mem limit: %s%s %d MB (%s)\n",
4347 ((p && *p->p_name) ? p->p_name : "unknown"), (p ? p->p_pid : -1), (memlimit_is_active ? "Active" : "Inactive"),
4348 (memlimit_is_fatal ? "Hard" : "Soft"), max_footprint_mb,
4349 (memlimit_is_fatal ? "fatal" : "non-fatal"));
4350
4351 return;
4352 }
4353
4354
4355 /*
4356 * Description:
4357 * Evaluates process state to determine which limit
4358 * should be applied (active vs. inactive limit).
4359 *
4360 * Processes that have the 'elevated inactive jetsam band' attribute
4361 * are first evaluated based on their current priority band.
4362 * presently elevated ==> active
4363 *
4364 * Processes that opt into dirty tracking are evaluated
4365 * based on clean vs dirty state.
4366 * dirty ==> active
4367 * clean ==> inactive
4368 *
4369 * Process that do not opt into dirty tracking are
4370 * evalulated based on priority level.
4371 * Foreground or above ==> active
4372 * Below Foreground ==> inactive
4373 *
4374 * Return: TRUE if active
4375 * False if inactive
4376 */
4377
4378 static boolean_t
4379 proc_jetsam_state_is_active_locked(proc_t p)
4380 {
4381 if ((p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND) &&
4382 (p->p_memstat_effectivepriority == JETSAM_PRIORITY_ELEVATED_INACTIVE)) {
4383 /*
4384 * process has the 'elevated inactive jetsam band' attribute
4385 * and process is present in the elevated band
4386 * implies active state
4387 */
4388 return TRUE;
4389 } else if (p->p_memstat_dirty & P_DIRTY_TRACK) {
4390 /*
4391 * process has opted into dirty tracking
4392 * active state is based on dirty vs. clean
4393 */
4394 if (p->p_memstat_dirty & P_DIRTY_IS_DIRTY) {
4395 /*
4396 * process is dirty
4397 * implies active state
4398 */
4399 return TRUE;
4400 } else {
4401 /*
4402 * process is clean
4403 * implies inactive state
4404 */
4405 return FALSE;
4406 }
4407 } else if (p->p_memstat_effectivepriority >= JETSAM_PRIORITY_FOREGROUND) {
4408 /*
4409 * process is Foreground or higher
4410 * implies active state
4411 */
4412 return TRUE;
4413 } else {
4414 /*
4415 * process found below Foreground
4416 * implies inactive state
4417 */
4418 return FALSE;
4419 }
4420 }
4421
4422 static boolean_t
4423 memorystatus_kill_process_sync(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason)
4424 {
4425 boolean_t res;
4426
4427 uint32_t errors = 0;
4428 uint64_t memory_reclaimed = 0;
4429
4430 if (victim_pid == -1) {
4431 /* No pid, so kill first process */
4432 res = memorystatus_kill_top_process(TRUE, TRUE, cause, jetsam_reason, NULL, &errors, &memory_reclaimed);
4433 } else {
4434 res = memorystatus_kill_specific_process(victim_pid, cause, jetsam_reason);
4435 }
4436
4437 if (errors) {
4438 memorystatus_clear_errors();
4439 }
4440
4441 if (res == TRUE) {
4442 /* Fire off snapshot notification */
4443 proc_list_lock();
4444 size_t snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) +
4445 sizeof(memorystatus_jetsam_snapshot_entry_t) * memorystatus_jetsam_snapshot_count;
4446 uint64_t timestamp_now = mach_absolute_time();
4447 memorystatus_jetsam_snapshot->notification_time = timestamp_now;
4448 if (memorystatus_jetsam_snapshot_count > 0 && (memorystatus_jetsam_snapshot_last_timestamp == 0 ||
4449 timestamp_now > memorystatus_jetsam_snapshot_last_timestamp + memorystatus_jetsam_snapshot_timeout)) {
4450 proc_list_unlock();
4451 int ret = memorystatus_send_note(kMemorystatusSnapshotNote, &snapshot_size, sizeof(snapshot_size));
4452 if (!ret) {
4453 proc_list_lock();
4454 memorystatus_jetsam_snapshot_last_timestamp = timestamp_now;
4455 proc_list_unlock();
4456 }
4457 } else {
4458 proc_list_unlock();
4459 }
4460 }
4461
4462 return res;
4463 }
4464
4465 /*
4466 * Jetsam a specific process.
4467 */
4468 static boolean_t
4469 memorystatus_kill_specific_process(pid_t victim_pid, uint32_t cause, os_reason_t jetsam_reason)
4470 {
4471 boolean_t killed;
4472 proc_t p;
4473 uint64_t killtime = 0;
4474 uint64_t footprint_of_killed_proc;
4475 clock_sec_t tv_sec;
4476 clock_usec_t tv_usec;
4477 uint32_t tv_msec;
4478
4479 /* TODO - add a victim queue and push this into the main jetsam thread */
4480
4481 p = proc_find(victim_pid);
4482 if (!p) {
4483 os_reason_free(jetsam_reason);
4484 return FALSE;
4485 }
4486
4487 proc_list_lock();
4488
4489 if (memorystatus_jetsam_snapshot_count == 0) {
4490 memorystatus_init_jetsam_snapshot_locked(NULL, 0);
4491 }
4492
4493 killtime = mach_absolute_time();
4494 absolutetime_to_microtime(killtime, &tv_sec, &tv_usec);
4495 tv_msec = tv_usec / 1000;
4496
4497 memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime);
4498
4499 proc_list_unlock();
4500
4501 killed = memorystatus_do_kill(p, cause, jetsam_reason, &footprint_of_killed_proc);
4502
4503 os_log_with_startup_serial(OS_LOG_DEFAULT, "%lu.%03d memorystatus: killing_specific_process pid %d [%s] (%s %d) %lluKB - memorystatus_available_pages: %llu\n",
4504 (unsigned long)tv_sec, tv_msec, victim_pid, ((p && *p->p_name) ? p->p_name : "unknown"),
4505 memorystatus_kill_cause_name[cause], (p ? p->p_memstat_effectivepriority: -1),
4506 footprint_of_killed_proc >> 10, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES);
4507
4508 proc_rele(p);
4509
4510 return killed;
4511 }
4512
4513
4514 /*
4515 * Toggle the P_MEMSTAT_TERMINATED state.
4516 * Takes the proc_list_lock.
4517 */
4518 void
4519 proc_memstat_terminated(proc_t p, boolean_t set)
4520 {
4521 #if DEVELOPMENT || DEBUG
4522 if (p) {
4523 proc_list_lock();
4524 if (set == TRUE) {
4525 p->p_memstat_state |= P_MEMSTAT_TERMINATED;
4526 } else {
4527 p->p_memstat_state &= ~P_MEMSTAT_TERMINATED;
4528 }
4529 proc_list_unlock();
4530 }
4531 #else
4532 #pragma unused(p, set)
4533 /*
4534 * do nothing
4535 */
4536 #endif /* DEVELOPMENT || DEBUG */
4537 return;
4538 }
4539
4540
4541 #if CONFIG_JETSAM
4542 /*
4543 * This is invoked when cpulimits have been exceeded while in fatal mode.
4544 * The jetsam_flags do not apply as those are for memory related kills.
4545 * We call this routine so that the offending process is killed with
4546 * a non-zero exit status.
4547 */
4548 void
4549 jetsam_on_ledger_cpulimit_exceeded(void)
4550 {
4551 int retval = 0;
4552 int jetsam_flags = 0; /* make it obvious */
4553 proc_t p = current_proc();
4554 os_reason_t jetsam_reason = OS_REASON_NULL;
4555
4556 printf("task_exceeded_cpulimit: killing pid %d [%s]\n",
4557 p->p_pid, (*p->p_name ? p->p_name : "(unknown)"));
4558
4559 jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_CPULIMIT);
4560 if (jetsam_reason == OS_REASON_NULL) {
4561 printf("task_exceeded_cpulimit: unable to allocate memory for jetsam reason\n");
4562 }
4563
4564 retval = jetsam_do_kill(p, jetsam_flags, jetsam_reason);
4565
4566 if (retval) {
4567 printf("task_exceeded_cpulimit: failed to kill current task (exiting?).\n");
4568 }
4569 }
4570
4571 #endif /* CONFIG_JETSAM */
4572
4573 static void
4574 memorystatus_get_task_memory_region_count(task_t task, uint64_t *count)
4575 {
4576 assert(task);
4577 assert(count);
4578
4579 *count = get_task_memory_region_count(task);
4580 }
4581
4582
4583 #define MEMORYSTATUS_VM_MAP_FORK_ALLOWED 0x100000000
4584 #define MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED 0x200000000
4585
4586 #if DEVELOPMENT || DEBUG
4587
4588 /*
4589 * Sysctl only used to test memorystatus_allowed_vm_map_fork() path.
4590 * set a new pidwatch value
4591 * or
4592 * get the current pidwatch value
4593 *
4594 * The pidwatch_val starts out with a PID to watch for in the map_fork path.
4595 * Its value is:
4596 * - OR'd with MEMORYSTATUS_VM_MAP_FORK_ALLOWED if we allow the map_fork.
4597 * - OR'd with MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED if we disallow the map_fork.
4598 * - set to -1ull if the map_fork() is aborted for other reasons.
4599 */
4600
4601 uint64_t memorystatus_vm_map_fork_pidwatch_val = 0;
4602
4603 static int sysctl_memorystatus_vm_map_fork_pidwatch SYSCTL_HANDLER_ARGS {
4604 #pragma unused(oidp, arg1, arg2)
4605
4606 uint64_t new_value = 0;
4607 uint64_t old_value = 0;
4608 int error = 0;
4609
4610 /*
4611 * The pid is held in the low 32 bits.
4612 * The 'allowed' flags are in the upper 32 bits.
4613 */
4614 old_value = memorystatus_vm_map_fork_pidwatch_val;
4615
4616 error = sysctl_io_number(req, old_value, sizeof(old_value), &new_value, NULL);
4617
4618 if (error || !req->newptr) {
4619 /*
4620 * No new value passed in.
4621 */
4622 return error;
4623 }
4624
4625 /*
4626 * A new pid was passed in via req->newptr.
4627 * Ignore any attempt to set the higher order bits.
4628 */
4629 memorystatus_vm_map_fork_pidwatch_val = new_value & 0xFFFFFFFF;
4630 printf("memorystatus: pidwatch old_value = 0x%llx, new_value = 0x%llx \n", old_value, new_value);
4631
4632 return error;
4633 }
4634
4635 SYSCTL_PROC(_kern, OID_AUTO, memorystatus_vm_map_fork_pidwatch, CTLTYPE_QUAD | CTLFLAG_RW | CTLFLAG_LOCKED | CTLFLAG_MASKED,
4636 0, 0, sysctl_memorystatus_vm_map_fork_pidwatch, "Q", "get/set pid watched for in vm_map_fork");
4637
4638
4639 /*
4640 * Record if a watched process fails to qualify for a vm_map_fork().
4641 */
4642 void
4643 memorystatus_abort_vm_map_fork(task_t task)
4644 {
4645 if (memorystatus_vm_map_fork_pidwatch_val != 0) {
4646 proc_t p = get_bsdtask_info(task);
4647 if (p != NULL && memorystatus_vm_map_fork_pidwatch_val == (uint64_t)p->p_pid) {
4648 memorystatus_vm_map_fork_pidwatch_val = -1ull;
4649 }
4650 }
4651 }
4652
4653 static void
4654 set_vm_map_fork_pidwatch(task_t task, uint64_t x)
4655 {
4656 if (memorystatus_vm_map_fork_pidwatch_val != 0) {
4657 proc_t p = get_bsdtask_info(task);
4658 if (p && (memorystatus_vm_map_fork_pidwatch_val == (uint64_t)p->p_pid)) {
4659 memorystatus_vm_map_fork_pidwatch_val |= x;
4660 }
4661 }
4662 }
4663
4664 #else /* DEVELOPMENT || DEBUG */
4665
4666
4667 static void
4668 set_vm_map_fork_pidwatch(task_t task, uint64_t x)
4669 {
4670 #pragma unused(task)
4671 #pragma unused(x)
4672 }
4673
4674 #endif /* DEVELOPMENT || DEBUG */
4675
4676 /*
4677 * Called during EXC_RESOURCE handling when a process exceeds a soft
4678 * memory limit. This is the corpse fork path and here we decide if
4679 * vm_map_fork will be allowed when creating the corpse.
4680 * The task being considered is suspended.
4681 *
4682 * By default, a vm_map_fork is allowed to proceed.
4683 *
4684 * A few simple policy assumptions:
4685 * If the device has a zero system-wide task limit,
4686 * then the vm_map_fork is allowed. macOS always has a zero
4687 * system wide task limit (unless overriden by a boot-arg).
4688 *
4689 * And if a process's memory footprint calculates less
4690 * than or equal to quarter of the system-wide task limit,
4691 * then the vm_map_fork is allowed. This calculation
4692 * is based on the assumption that a process can
4693 * munch memory up to the system-wide task limit.
4694 */
4695 extern boolean_t corpse_threshold_system_limit;
4696 boolean_t
4697 memorystatus_allowed_vm_map_fork(task_t task)
4698 {
4699 boolean_t is_allowed = TRUE; /* default */
4700
4701 uint64_t footprint_in_bytes;
4702 uint64_t max_allowed_bytes;
4703
4704 if (max_task_footprint_mb == 0) {
4705 set_vm_map_fork_pidwatch(task, MEMORYSTATUS_VM_MAP_FORK_ALLOWED);
4706 return is_allowed;
4707 }
4708
4709 footprint_in_bytes = get_task_phys_footprint(task);
4710
4711 /*
4712 * Maximum is 1/4 of the system-wide task limit by default.
4713 */
4714 max_allowed_bytes = ((uint64_t)max_task_footprint_mb * 1024 * 1024) >> 2;
4715
4716 #if DEBUG || DEVELOPMENT
4717 if (corpse_threshold_system_limit) {
4718 max_allowed_bytes = (uint64_t)max_task_footprint_mb * (1UL << 20);
4719 }
4720 #endif /* DEBUG || DEVELOPMENT */
4721
4722 if (footprint_in_bytes > max_allowed_bytes) {
4723 printf("memorystatus disallowed vm_map_fork %lld %lld\n", footprint_in_bytes, max_allowed_bytes);
4724 set_vm_map_fork_pidwatch(task, MEMORYSTATUS_VM_MAP_FORK_NOT_ALLOWED);
4725 return !is_allowed;
4726 }
4727
4728 set_vm_map_fork_pidwatch(task, MEMORYSTATUS_VM_MAP_FORK_ALLOWED);
4729 return is_allowed;
4730 }
4731
4732 void
4733 memorystatus_get_task_page_counts(task_t task, uint32_t *footprint, uint32_t *max_footprint_lifetime, uint32_t *purgeable_pages)
4734 {
4735 assert(task);
4736 assert(footprint);
4737
4738 uint64_t pages;
4739
4740 pages = (get_task_phys_footprint(task) / PAGE_SIZE_64);
4741 assert(((uint32_t)pages) == pages);
4742 *footprint = (uint32_t)pages;
4743
4744 if (max_footprint_lifetime) {
4745 pages = (get_task_phys_footprint_lifetime_max(task) / PAGE_SIZE_64);
4746 assert(((uint32_t)pages) == pages);
4747 *max_footprint_lifetime = (uint32_t)pages;
4748 }
4749 if (purgeable_pages) {
4750 pages = (get_task_purgeable_size(task) / PAGE_SIZE_64);
4751 assert(((uint32_t)pages) == pages);
4752 *purgeable_pages = (uint32_t)pages;
4753 }
4754 }
4755
4756 static void
4757 memorystatus_get_task_phys_footprint_page_counts(task_t task,
4758 uint64_t *internal_pages, uint64_t *internal_compressed_pages,
4759 uint64_t *purgeable_nonvolatile_pages, uint64_t *purgeable_nonvolatile_compressed_pages,
4760 uint64_t *alternate_accounting_pages, uint64_t *alternate_accounting_compressed_pages,
4761 uint64_t *iokit_mapped_pages, uint64_t *page_table_pages, uint64_t *frozen_to_swap_pages)
4762 {
4763 assert(task);
4764
4765 if (internal_pages) {
4766 *internal_pages = (get_task_internal(task) / PAGE_SIZE_64);
4767 }
4768
4769 if (internal_compressed_pages) {
4770 *internal_compressed_pages = (get_task_internal_compressed(task) / PAGE_SIZE_64);
4771 }
4772
4773 if (purgeable_nonvolatile_pages) {
4774 *purgeable_nonvolatile_pages = (get_task_purgeable_nonvolatile(task) / PAGE_SIZE_64);
4775 }
4776
4777 if (purgeable_nonvolatile_compressed_pages) {
4778 *purgeable_nonvolatile_compressed_pages = (get_task_purgeable_nonvolatile_compressed(task) / PAGE_SIZE_64);
4779 }
4780
4781 if (alternate_accounting_pages) {
4782 *alternate_accounting_pages = (get_task_alternate_accounting(task) / PAGE_SIZE_64);
4783 }
4784
4785 if (alternate_accounting_compressed_pages) {
4786 *alternate_accounting_compressed_pages = (get_task_alternate_accounting_compressed(task) / PAGE_SIZE_64);
4787 }
4788
4789 if (iokit_mapped_pages) {
4790 *iokit_mapped_pages = (get_task_iokit_mapped(task) / PAGE_SIZE_64);
4791 }
4792
4793 if (page_table_pages) {
4794 *page_table_pages = (get_task_page_table(task) / PAGE_SIZE_64);
4795 }
4796
4797 #if CONFIG_FREEZE
4798 if (frozen_to_swap_pages) {
4799 *frozen_to_swap_pages = (get_task_frozen_to_swap(task) / PAGE_SIZE_64);
4800 }
4801 #else /* CONFIG_FREEZE */
4802 #pragma unused(frozen_to_swap_pages)
4803 #endif /* CONFIG_FREEZE */
4804 }
4805
4806 #if CONFIG_FREEZE
4807 /*
4808 * Copies the source entry into the destination snapshot.
4809 * Returns true on success. Fails if the destination snapshot is full.
4810 * Caller must hold the proc list lock.
4811 */
4812 static bool
4813 memorystatus_jetsam_snapshot_copy_entry_locked(memorystatus_jetsam_snapshot_t *dst_snapshot, unsigned int dst_snapshot_size, const memorystatus_jetsam_snapshot_entry_t *src_entry)
4814 {
4815 LCK_MTX_ASSERT(proc_list_mlock, LCK_MTX_ASSERT_OWNED);
4816 assert(dst_snapshot);
4817
4818 if (dst_snapshot->entry_count == dst_snapshot_size) {
4819 /* Destination snapshot is full. Can not be updated until it is consumed. */
4820 return false;
4821 }
4822 if (dst_snapshot->entry_count == 0) {
4823 memorystatus_init_jetsam_snapshot_header(dst_snapshot);
4824 }
4825 memorystatus_jetsam_snapshot_entry_t *dst_entry = &dst_snapshot->entries[dst_snapshot->entry_count++];
4826 memcpy(dst_entry, src_entry, sizeof(memorystatus_jetsam_snapshot_entry_t));
4827 return true;
4828 }
4829 #endif /* CONFIG_FREEZE */
4830
4831 static bool
4832 memorystatus_init_jetsam_snapshot_entry_with_kill_locked(memorystatus_jetsam_snapshot_t *snapshot, proc_t p, uint32_t kill_cause, uint64_t killtime, memorystatus_jetsam_snapshot_entry_t **entry)
4833 {
4834 LCK_MTX_ASSERT(proc_list_mlock, LCK_MTX_ASSERT_OWNED);
4835 memorystatus_jetsam_snapshot_entry_t *snapshot_list = snapshot->entries;
4836 size_t i = snapshot->entry_count;
4837
4838 if (memorystatus_init_jetsam_snapshot_entry_locked(p, &snapshot_list[i], (snapshot->js_gencount)) == TRUE) {
4839 *entry = &snapshot_list[i];
4840 (*entry)->killed = kill_cause;
4841 (*entry)->jse_killtime = killtime;
4842
4843 snapshot->entry_count = i + 1;
4844 return true;
4845 }
4846 return false;
4847 }
4848
4849 /*
4850 * This routine only acts on the global jetsam event snapshot.
4851 * Updating the process's entry can race when the memorystatus_thread
4852 * has chosen to kill a process that is racing to exit on another core.
4853 */
4854 static void
4855 memorystatus_update_jetsam_snapshot_entry_locked(proc_t p, uint32_t kill_cause, uint64_t killtime)
4856 {
4857 memorystatus_jetsam_snapshot_entry_t *entry = NULL;
4858 memorystatus_jetsam_snapshot_t *snapshot = NULL;
4859 memorystatus_jetsam_snapshot_entry_t *snapshot_list = NULL;
4860
4861 unsigned int i;
4862 #if CONFIG_FREEZE
4863 bool copied_to_freezer_snapshot = false;
4864 #endif /* CONFIG_FREEZE */
4865
4866 LCK_MTX_ASSERT(proc_list_mlock, LCK_MTX_ASSERT_OWNED);
4867
4868 if (memorystatus_jetsam_snapshot_count == 0) {
4869 /*
4870 * No active snapshot.
4871 * Nothing to do.
4872 */
4873 goto exit;
4874 }
4875
4876 /*
4877 * Sanity check as this routine should only be called
4878 * from a jetsam kill path.
4879 */
4880 assert(kill_cause != 0 && killtime != 0);
4881
4882 snapshot = memorystatus_jetsam_snapshot;
4883 snapshot_list = memorystatus_jetsam_snapshot->entries;
4884
4885 for (i = 0; i < memorystatus_jetsam_snapshot_count; i++) {
4886 if (snapshot_list[i].pid == p->p_pid) {
4887 entry = &snapshot_list[i];
4888
4889 if (entry->killed || entry->jse_killtime) {
4890 /*
4891 * We apparently raced on the exit path
4892 * for this process, as it's snapshot entry
4893 * has already recorded a kill.
4894 */
4895 assert(entry->killed && entry->jse_killtime);
4896 break;
4897 }
4898
4899 /*
4900 * Update the entry we just found in the snapshot.
4901 */
4902
4903 entry->killed = kill_cause;
4904 entry->jse_killtime = killtime;
4905 entry->jse_gencount = snapshot->js_gencount;
4906 entry->jse_idle_delta = p->p_memstat_idle_delta;
4907 #if CONFIG_FREEZE
4908 entry->jse_thaw_count = p->p_memstat_thaw_count;
4909 entry->jse_freeze_skip_reason = p->p_memstat_freeze_skip_reason;
4910 #else /* CONFIG_FREEZE */
4911 entry->jse_thaw_count = 0;
4912 entry->jse_freeze_skip_reason = kMemorystatusFreezeSkipReasonNone;
4913 #endif /* CONFIG_FREEZE */
4914
4915 /*
4916 * If a process has moved between bands since snapshot was
4917 * initialized, then likely these fields changed too.
4918 */
4919 if (entry->priority != p->p_memstat_effectivepriority) {
4920 strlcpy(entry->name, p->p_name, sizeof(entry->name));
4921 entry->priority = p->p_memstat_effectivepriority;
4922 entry->state = memorystatus_build_state(p);
4923 entry->user_data = p->p_memstat_userdata;
4924 entry->fds = p->p_fd->fd_nfiles;
4925 }
4926
4927 /*
4928 * Always update the page counts on a kill.
4929 */
4930
4931 uint32_t pages = 0;
4932 uint32_t max_pages_lifetime = 0;
4933 uint32_t purgeable_pages = 0;
4934
4935 memorystatus_get_task_page_counts(p->task, &pages, &max_pages_lifetime, &purgeable_pages);
4936 entry->pages = (uint64_t)pages;
4937 entry->max_pages_lifetime = (uint64_t)max_pages_lifetime;
4938 entry->purgeable_pages = (uint64_t)purgeable_pages;
4939
4940 uint64_t internal_pages = 0;
4941 uint64_t internal_compressed_pages = 0;
4942 uint64_t purgeable_nonvolatile_pages = 0;
4943 uint64_t purgeable_nonvolatile_compressed_pages = 0;
4944 uint64_t alternate_accounting_pages = 0;
4945 uint64_t alternate_accounting_compressed_pages = 0;
4946 uint64_t iokit_mapped_pages = 0;
4947 uint64_t page_table_pages = 0;
4948 uint64_t frozen_to_swap_pages = 0;
4949
4950 memorystatus_get_task_phys_footprint_page_counts(p->task, &internal_pages, &internal_compressed_pages,
4951 &purgeable_nonvolatile_pages, &purgeable_nonvolatile_compressed_pages,
4952 &alternate_accounting_pages, &alternate_accounting_compressed_pages,
4953 &iokit_mapped_pages, &page_table_pages, &frozen_to_swap_pages);
4954
4955 entry->jse_internal_pages = internal_pages;
4956 entry->jse_internal_compressed_pages = internal_compressed_pages;
4957 entry->jse_purgeable_nonvolatile_pages = purgeable_nonvolatile_pages;
4958 entry->jse_purgeable_nonvolatile_compressed_pages = purgeable_nonvolatile_compressed_pages;
4959 entry->jse_alternate_accounting_pages = alternate_accounting_pages;
4960 entry->jse_alternate_accounting_compressed_pages = alternate_accounting_compressed_pages;
4961 entry->jse_iokit_mapped_pages = iokit_mapped_pages;
4962 entry->jse_page_table_pages = page_table_pages;
4963 entry->jse_frozen_to_swap_pages = frozen_to_swap_pages;
4964
4965 uint64_t region_count = 0;
4966 memorystatus_get_task_memory_region_count(p->task, &region_count);
4967 entry->jse_memory_region_count = region_count;
4968
4969 goto exit;
4970 }
4971 }
4972
4973 if (entry == NULL) {
4974 /*
4975 * The entry was not found in the snapshot, so the process must have
4976 * launched after the snapshot was initialized.
4977 * Let's try to append the new entry.
4978 */
4979 if (memorystatus_jetsam_snapshot_count < memorystatus_jetsam_snapshot_max) {
4980 /*
4981 * A populated snapshot buffer exists
4982 * and there is room to init a new entry.
4983 */
4984 assert(memorystatus_jetsam_snapshot_count == snapshot->entry_count);
4985
4986 if (memorystatus_init_jetsam_snapshot_entry_with_kill_locked(snapshot, p, kill_cause, killtime, &entry)) {
4987 memorystatus_jetsam_snapshot_count++;
4988
4989 if (memorystatus_jetsam_snapshot_count >= memorystatus_jetsam_snapshot_max) {
4990 /*
4991 * We just used the last slot in the snapshot buffer.
4992 * We only want to log it once... so we do it here
4993 * when we notice we've hit the max.
4994 */
4995 printf("memorystatus: WARNING snapshot buffer is full, count %d\n",
4996 memorystatus_jetsam_snapshot_count);
4997 }
4998 }
4999 }
5000 }
5001
5002 exit:
5003 if (entry) {
5004 #if CONFIG_FREEZE
5005 if (memorystatus_jetsam_use_freezer_snapshot && isApp(p)) {
5006 /* This is an app kill. Record it in the freezer snapshot so dasd can incorporate this in its recommendations. */
5007 copied_to_freezer_snapshot = memorystatus_jetsam_snapshot_copy_entry_locked(memorystatus_jetsam_snapshot_freezer, memorystatus_jetsam_snapshot_freezer_max, entry);
5008 if (copied_to_freezer_snapshot && memorystatus_jetsam_snapshot_freezer->entry_count == memorystatus_jetsam_snapshot_freezer_max) {
5009 /*
5010 * We just used the last slot in the freezer snapshot buffer.
5011 * We only want to log it once... so we do it here
5012 * when we notice we've hit the max.
5013 */
5014 os_log_error(OS_LOG_DEFAULT, "memorystatus: WARNING freezer snapshot buffer is full, count %zu",
5015 memorystatus_jetsam_snapshot_freezer->entry_count);
5016 }
5017 }
5018 #endif /* CONFIG_FREEZE */
5019 } else {
5020 /*
5021 * If we reach here, the snapshot buffer could not be updated.
5022 * Most likely, the buffer is full, in which case we would have
5023 * logged a warning in the previous call.
5024 *
5025 * For now, we will stop appending snapshot entries.
5026 * When the buffer is consumed, the snapshot state will reset.
5027 */
5028
5029 MEMORYSTATUS_DEBUG(4, "memorystatus_update_jetsam_snapshot_entry_locked: failed to update pid %d, priority %d, count %d\n",
5030 p->p_pid, p->p_memstat_effectivepriority, memorystatus_jetsam_snapshot_count);
5031
5032 #if CONFIG_FREEZE
5033 /* We still attempt to record this in the freezer snapshot */
5034 if (memorystatus_jetsam_use_freezer_snapshot && isApp(p)) {
5035 snapshot = memorystatus_jetsam_snapshot_freezer;
5036 if (snapshot->entry_count < memorystatus_jetsam_snapshot_freezer_max) {
5037 copied_to_freezer_snapshot = memorystatus_init_jetsam_snapshot_entry_with_kill_locked(snapshot, p, kill_cause, killtime, &entry);
5038 if (copied_to_freezer_snapshot && memorystatus_jetsam_snapshot_freezer->entry_count == memorystatus_jetsam_snapshot_freezer_max) {
5039 /*
5040 * We just used the last slot in the freezer snapshot buffer.
5041 * We only want to log it once... so we do it here
5042 * when we notice we've hit the max.
5043 */
5044 os_log_error(OS_LOG_DEFAULT, "memorystatus: WARNING freezer snapshot buffer is full, count %zu",
5045 memorystatus_jetsam_snapshot_freezer->entry_count);
5046 }
5047 }
5048 }
5049 #endif /* CONFIG_FREEZE */
5050 }
5051
5052 return;
5053 }
5054
5055 #if CONFIG_JETSAM
5056 void
5057 memorystatus_pages_update(unsigned int pages_avail)
5058 {
5059 memorystatus_available_pages = pages_avail;
5060
5061 #if VM_PRESSURE_EVENTS
5062 /*
5063 * Since memorystatus_available_pages changes, we should
5064 * re-evaluate the pressure levels on the system and
5065 * check if we need to wake the pressure thread.
5066 * We also update memorystatus_level in that routine.
5067 */
5068 vm_pressure_response();
5069
5070 if (memorystatus_available_pages <= memorystatus_available_pages_pressure) {
5071 if (memorystatus_hwm_candidates || (memorystatus_available_pages <= memorystatus_available_pages_critical)) {
5072 memorystatus_thread_wake();
5073 }
5074 }
5075 #if CONFIG_FREEZE
5076 /*
5077 * We can't grab the freezer_mutex here even though that synchronization would be correct to inspect
5078 * the # of frozen processes and wakeup the freezer thread. Reason being that we come here into this
5079 * code with (possibly) the page-queue locks held and preemption disabled. So trying to grab a mutex here
5080 * will result in the "mutex with preemption disabled" panic.
5081 */
5082
5083 if (memorystatus_freeze_thread_should_run() == TRUE) {
5084 /*
5085 * The freezer thread is usually woken up by some user-space call i.e. pid_hibernate(any process).
5086 * That trigger isn't invoked often enough and so we are enabling this explicit wakeup here.
5087 */
5088 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE) {
5089 thread_wakeup((event_t)&memorystatus_freeze_wakeup);
5090 }
5091 }
5092 #endif /* CONFIG_FREEZE */
5093
5094 #else /* VM_PRESSURE_EVENTS */
5095
5096 boolean_t critical, delta;
5097
5098 if (!memorystatus_delta) {
5099 return;
5100 }
5101
5102 critical = (pages_avail < memorystatus_available_pages_critical) ? TRUE : FALSE;
5103 delta = ((pages_avail >= (memorystatus_available_pages + memorystatus_delta))
5104 || (memorystatus_available_pages >= (pages_avail + memorystatus_delta))) ? TRUE : FALSE;
5105
5106 if (critical || delta) {
5107 unsigned int total_pages;
5108
5109 total_pages = (unsigned int) atop_64(max_mem);
5110 #if CONFIG_SECLUDED_MEMORY
5111 total_pages -= vm_page_secluded_count;
5112 #endif /* CONFIG_SECLUDED_MEMORY */
5113 memorystatus_level = memorystatus_available_pages * 100 / total_pages;
5114 memorystatus_thread_wake();
5115 }
5116 #endif /* VM_PRESSURE_EVENTS */
5117 }
5118 #endif /* CONFIG_JETSAM */
5119
5120 static boolean_t
5121 memorystatus_init_jetsam_snapshot_entry_locked(proc_t p, memorystatus_jetsam_snapshot_entry_t *entry, uint64_t gencount)
5122 {
5123 clock_sec_t tv_sec;
5124 clock_usec_t tv_usec;
5125 uint32_t pages = 0;
5126 uint32_t max_pages_lifetime = 0;
5127 uint32_t purgeable_pages = 0;
5128 uint64_t internal_pages = 0;
5129 uint64_t internal_compressed_pages = 0;
5130 uint64_t purgeable_nonvolatile_pages = 0;
5131 uint64_t purgeable_nonvolatile_compressed_pages = 0;
5132 uint64_t alternate_accounting_pages = 0;
5133 uint64_t alternate_accounting_compressed_pages = 0;
5134 uint64_t iokit_mapped_pages = 0;
5135 uint64_t page_table_pages = 0;
5136 uint64_t frozen_to_swap_pages = 0;
5137 uint64_t region_count = 0;
5138 uint64_t cids[COALITION_NUM_TYPES];
5139
5140 memset(entry, 0, sizeof(memorystatus_jetsam_snapshot_entry_t));
5141
5142 entry->pid = p->p_pid;
5143 strlcpy(&entry->name[0], p->p_name, sizeof(entry->name));
5144 entry->priority = p->p_memstat_effectivepriority;
5145
5146 memorystatus_get_task_page_counts(p->task, &pages, &max_pages_lifetime, &purgeable_pages);
5147 entry->pages = (uint64_t)pages;
5148 entry->max_pages_lifetime = (uint64_t)max_pages_lifetime;
5149 entry->purgeable_pages = (uint64_t)purgeable_pages;
5150
5151 memorystatus_get_task_phys_footprint_page_counts(p->task, &internal_pages, &internal_compressed_pages,
5152 &purgeable_nonvolatile_pages, &purgeable_nonvolatile_compressed_pages,
5153 &alternate_accounting_pages, &alternate_accounting_compressed_pages,
5154 &iokit_mapped_pages, &page_table_pages, &frozen_to_swap_pages);
5155
5156 entry->jse_internal_pages = internal_pages;
5157 entry->jse_internal_compressed_pages = internal_compressed_pages;
5158 entry->jse_purgeable_nonvolatile_pages = purgeable_nonvolatile_pages;
5159 entry->jse_purgeable_nonvolatile_compressed_pages = purgeable_nonvolatile_compressed_pages;
5160 entry->jse_alternate_accounting_pages = alternate_accounting_pages;
5161 entry->jse_alternate_accounting_compressed_pages = alternate_accounting_compressed_pages;
5162 entry->jse_iokit_mapped_pages = iokit_mapped_pages;
5163 entry->jse_page_table_pages = page_table_pages;
5164 entry->jse_frozen_to_swap_pages = frozen_to_swap_pages;
5165
5166 memorystatus_get_task_memory_region_count(p->task, &region_count);
5167 entry->jse_memory_region_count = region_count;
5168
5169 entry->state = memorystatus_build_state(p);
5170 entry->user_data = p->p_memstat_userdata;
5171 memcpy(&entry->uuid[0], &p->p_uuid[0], sizeof(p->p_uuid));
5172 entry->fds = p->p_fd->fd_nfiles;
5173
5174 absolutetime_to_microtime(get_task_cpu_time(p->task), &tv_sec, &tv_usec);
5175 entry->cpu_time.tv_sec = (int64_t)tv_sec;
5176 entry->cpu_time.tv_usec = (int64_t)tv_usec;
5177
5178 assert(p->p_stats != NULL);
5179 entry->jse_starttime = p->p_stats->ps_start; /* abstime process started */
5180 entry->jse_killtime = 0; /* abstime jetsam chose to kill process */
5181 entry->killed = 0; /* the jetsam kill cause */
5182 entry->jse_gencount = gencount; /* indicates a pass through jetsam thread, when process was targeted to be killed */
5183
5184 entry->jse_idle_delta = p->p_memstat_idle_delta; /* Most recent timespan spent in idle-band */
5185
5186 #if CONFIG_FREEZE
5187 entry->jse_freeze_skip_reason = p->p_memstat_freeze_skip_reason;
5188 entry->jse_thaw_count = p->p_memstat_thaw_count;
5189 #else /* CONFIG_FREEZE */
5190 entry->jse_thaw_count = 0;
5191 entry->jse_freeze_skip_reason = kMemorystatusFreezeSkipReasonNone;
5192 #endif /* CONFIG_FREEZE */
5193
5194 proc_coalitionids(p, cids);
5195 entry->jse_coalition_jetsam_id = cids[COALITION_TYPE_JETSAM];
5196
5197 return TRUE;
5198 }
5199
5200 static void
5201 memorystatus_init_snapshot_vmstats(memorystatus_jetsam_snapshot_t *snapshot)
5202 {
5203 kern_return_t kr = KERN_SUCCESS;
5204 mach_msg_type_number_t count = HOST_VM_INFO64_COUNT;
5205 vm_statistics64_data_t vm_stat;
5206
5207 if ((kr = host_statistics64(host_self(), HOST_VM_INFO64, (host_info64_t)&vm_stat, &count)) != KERN_SUCCESS) {
5208 printf("memorystatus_init_jetsam_snapshot_stats: host_statistics64 failed with %d\n", kr);
5209 memset(&snapshot->stats, 0, sizeof(snapshot->stats));
5210 } else {
5211 snapshot->stats.free_pages = vm_stat.free_count;
5212 snapshot->stats.active_pages = vm_stat.active_count;
5213 snapshot->stats.inactive_pages = vm_stat.inactive_count;
5214 snapshot->stats.throttled_pages = vm_stat.throttled_count;
5215 snapshot->stats.purgeable_pages = vm_stat.purgeable_count;
5216 snapshot->stats.wired_pages = vm_stat.wire_count;
5217
5218 snapshot->stats.speculative_pages = vm_stat.speculative_count;
5219 snapshot->stats.filebacked_pages = vm_stat.external_page_count;
5220 snapshot->stats.anonymous_pages = vm_stat.internal_page_count;
5221 snapshot->stats.compressions = vm_stat.compressions;
5222 snapshot->stats.decompressions = vm_stat.decompressions;
5223 snapshot->stats.compressor_pages = vm_stat.compressor_page_count;
5224 snapshot->stats.total_uncompressed_pages_in_compressor = vm_stat.total_uncompressed_pages_in_compressor;
5225 }
5226
5227 get_zone_map_size(&snapshot->stats.zone_map_size, &snapshot->stats.zone_map_capacity);
5228
5229 bzero(snapshot->stats.largest_zone_name, sizeof(snapshot->stats.largest_zone_name));
5230 get_largest_zone_info(snapshot->stats.largest_zone_name, sizeof(snapshot->stats.largest_zone_name),
5231 &snapshot->stats.largest_zone_size);
5232 }
5233
5234 /*
5235 * Collect vm statistics at boot.
5236 * Called only once (see kern_exec.c)
5237 * Data can be consumed at any time.
5238 */
5239 void
5240 memorystatus_init_at_boot_snapshot()
5241 {
5242 memorystatus_init_snapshot_vmstats(&memorystatus_at_boot_snapshot);
5243 memorystatus_at_boot_snapshot.entry_count = 0;
5244 memorystatus_at_boot_snapshot.notification_time = 0; /* updated when consumed */
5245 memorystatus_at_boot_snapshot.snapshot_time = mach_absolute_time();
5246 }
5247
5248 static void
5249 memorystatus_init_jetsam_snapshot_header(memorystatus_jetsam_snapshot_t *snapshot)
5250 {
5251 memorystatus_init_snapshot_vmstats(snapshot);
5252 snapshot->snapshot_time = mach_absolute_time();
5253 snapshot->notification_time = 0;
5254 snapshot->js_gencount = 0;
5255 }
5256
5257 static void
5258 memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t *od_snapshot, uint32_t ods_list_count )
5259 {
5260 proc_t p, next_p;
5261 unsigned int b = 0, i = 0;
5262
5263 memorystatus_jetsam_snapshot_t *snapshot = NULL;
5264 memorystatus_jetsam_snapshot_entry_t *snapshot_list = NULL;
5265 unsigned int snapshot_max = 0;
5266
5267 LCK_MTX_ASSERT(proc_list_mlock, LCK_MTX_ASSERT_OWNED);
5268
5269 if (od_snapshot) {
5270 /*
5271 * This is an on_demand snapshot
5272 */
5273 snapshot = od_snapshot;
5274 snapshot_list = od_snapshot->entries;
5275 snapshot_max = ods_list_count;
5276 } else {
5277 /*
5278 * This is a jetsam event snapshot
5279 */
5280 snapshot = memorystatus_jetsam_snapshot;
5281 snapshot_list = memorystatus_jetsam_snapshot->entries;
5282 snapshot_max = memorystatus_jetsam_snapshot_max;
5283 }
5284
5285 memorystatus_init_jetsam_snapshot_header(snapshot);
5286
5287 next_p = memorystatus_get_first_proc_locked(&b, TRUE);
5288 while (next_p) {
5289 p = next_p;
5290 next_p = memorystatus_get_next_proc_locked(&b, p, TRUE);
5291
5292 if (FALSE == memorystatus_init_jetsam_snapshot_entry_locked(p, &snapshot_list[i], snapshot->js_gencount)) {
5293 continue;
5294 }
5295
5296 MEMORYSTATUS_DEBUG(0, "jetsam snapshot pid %d, uuid = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5297 p->p_pid,
5298 p->p_uuid[0], p->p_uuid[1], p->p_uuid[2], p->p_uuid[3], p->p_uuid[4], p->p_uuid[5], p->p_uuid[6], p->p_uuid[7],
5299 p->p_uuid[8], p->p_uuid[9], p->p_uuid[10], p->p_uuid[11], p->p_uuid[12], p->p_uuid[13], p->p_uuid[14], p->p_uuid[15]);
5300
5301 if (++i == snapshot_max) {
5302 break;
5303 }
5304 }
5305
5306 snapshot->entry_count = i;
5307
5308 if (!od_snapshot) {
5309 /* update the system buffer count */
5310 memorystatus_jetsam_snapshot_count = i;
5311 }
5312 }
5313
5314 #if DEVELOPMENT || DEBUG
5315
5316 #if CONFIG_JETSAM
5317 static int
5318 memorystatus_cmd_set_panic_bits(user_addr_t buffer, size_t buffer_size)
5319 {
5320 int ret;
5321 memorystatus_jetsam_panic_options_t debug;
5322
5323 if (buffer_size != sizeof(memorystatus_jetsam_panic_options_t)) {
5324 return EINVAL;
5325 }
5326
5327 ret = copyin(buffer, &debug, buffer_size);
5328 if (ret) {
5329 return ret;
5330 }
5331
5332 /* Panic bits match kMemorystatusKilled* enum */
5333 memorystatus_jetsam_panic_debug = (memorystatus_jetsam_panic_debug & ~debug.mask) | (debug.data & debug.mask);
5334
5335 /* Copyout new value */
5336 debug.data = memorystatus_jetsam_panic_debug;
5337 ret = copyout(&debug, buffer, sizeof(memorystatus_jetsam_panic_options_t));
5338
5339 return ret;
5340 }
5341 #endif /* CONFIG_JETSAM */
5342
5343 /*
5344 * Verify that the given bucket has been sorted correctly.
5345 *
5346 * Walks through the bucket and verifies that all pids in the
5347 * expected_order buffer are in that bucket and in the same
5348 * relative order.
5349 *
5350 * The proc_list_lock must be held by the caller.
5351 */
5352 static int
5353 memorystatus_verify_sort_order(unsigned int bucket_index, pid_t *expected_order, size_t num_pids)
5354 {
5355 LCK_MTX_ASSERT(proc_list_mlock, LCK_MTX_ASSERT_OWNED);
5356
5357 int error = 0;
5358 proc_t p = NULL;
5359 size_t i = 0;
5360
5361 /*
5362 * NB: We allow other procs to be mixed in within the expected ones.
5363 * We just need the expected procs to be in the right order relative to each other.
5364 */
5365 p = memorystatus_get_first_proc_locked(&bucket_index, FALSE);
5366 while (p) {
5367 if (p->p_pid == expected_order[i]) {
5368 i++;
5369 }
5370 if (i == num_pids) {
5371 break;
5372 }
5373 p = memorystatus_get_next_proc_locked(&bucket_index, p, FALSE);
5374 }
5375 if (i != num_pids) {
5376 char buffer[128];
5377 size_t len = sizeof(buffer);
5378 size_t buffer_idx = 0;
5379 os_log_error(OS_LOG_DEFAULT, "memorystatus_verify_sort_order: Processes in bucket %d were not sorted properly\n", bucket_index);
5380 for (i = 0; i < num_pids; i++) {
5381 int num_written = snprintf(buffer + buffer_idx, len - buffer_idx, "%d,", expected_order[i]);
5382 if (num_written <= 0) {
5383 break;
5384 }
5385 if (buffer_idx + (unsigned int) num_written >= len) {
5386 break;
5387 }
5388 buffer_idx += num_written;
5389 }
5390 os_log_error(OS_LOG_DEFAULT, "memorystatus_verify_sort_order: Expected order [%s]", buffer);
5391 memset(buffer, 0, len);
5392 buffer_idx = 0;
5393 p = memorystatus_get_first_proc_locked(&bucket_index, FALSE);
5394 i = 0;
5395 os_log_error(OS_LOG_DEFAULT, "memorystatus_verify_sort_order: Actual order:");
5396 while (p) {
5397 int num_written;
5398 if (buffer_idx == 0) {
5399 num_written = snprintf(buffer + buffer_idx, len - buffer_idx, "%zu: %d,", i, p->p_pid);
5400 } else {
5401 num_written = snprintf(buffer + buffer_idx, len - buffer_idx, "%d,", p->p_pid);
5402 }
5403 if (num_written <= 0) {
5404 break;
5405 }
5406 buffer_idx += (unsigned int) num_written;
5407 assert(buffer_idx <= len);
5408 if (i % 10 == 0) {
5409 os_log_error(OS_LOG_DEFAULT, "memorystatus_verify_sort_order: %s", buffer);
5410 buffer_idx = 0;
5411 }
5412 p = memorystatus_get_next_proc_locked(&bucket_index, p, FALSE);
5413 i++;
5414 }
5415 if (buffer_idx != 0) {
5416 os_log_error(OS_LOG_DEFAULT, "memorystatus_verify_sort_order: %s", buffer);
5417 }
5418 error = EINVAL;
5419 }
5420 return error;
5421 }
5422
5423 /*
5424 * Triggers a sort_order on a specified jetsam priority band.
5425 * This is for testing only, used to force a path through the sort
5426 * function.
5427 */
5428 static int
5429 memorystatus_cmd_test_jetsam_sort(int priority,
5430 int sort_order,
5431 user_addr_t expected_order_user,
5432 size_t expected_order_user_len)
5433 {
5434 int error = 0;
5435 unsigned int bucket_index = 0;
5436 static size_t kMaxPids = 8;
5437 pid_t expected_order[kMaxPids];
5438 size_t copy_size = sizeof(expected_order);
5439 size_t num_pids;
5440
5441 if (expected_order_user_len < copy_size) {
5442 copy_size = expected_order_user_len;
5443 }
5444 num_pids = copy_size / sizeof(pid_t);
5445
5446 error = copyin(expected_order_user, expected_order, copy_size);
5447 if (error != 0) {
5448 return error;
5449 }
5450
5451 if (priority == -1) {
5452 /* Use as shorthand for default priority */
5453 bucket_index = JETSAM_PRIORITY_DEFAULT;
5454 } else {
5455 bucket_index = (unsigned int)priority;
5456 }
5457
5458 /*
5459 * Acquire lock before sorting so we can check the sort order
5460 * while still holding the lock.
5461 */
5462 proc_list_lock();
5463
5464 memorystatus_sort_bucket_locked(bucket_index, sort_order);
5465
5466 if (expected_order_user != CAST_USER_ADDR_T(NULL) && expected_order_user_len > 0) {
5467 error = memorystatus_verify_sort_order(bucket_index, expected_order, num_pids);
5468 }
5469
5470 proc_list_unlock();
5471
5472 return error;
5473 }
5474
5475 #endif /* DEVELOPMENT || DEBUG */
5476
5477 /*
5478 * Prepare the process to be killed (set state, update snapshot) and kill it.
5479 */
5480 static uint64_t memorystatus_purge_before_jetsam_success = 0;
5481
5482 static boolean_t
5483 memorystatus_kill_proc(proc_t p, uint32_t cause, os_reason_t jetsam_reason, boolean_t *killed, uint64_t *footprint_of_killed_proc)
5484 {
5485 pid_t aPid = 0;
5486 uint32_t aPid_ep = 0;
5487
5488 uint64_t killtime = 0;
5489 clock_sec_t tv_sec;
5490 clock_usec_t tv_usec;
5491 uint32_t tv_msec;
5492 boolean_t retval = FALSE;
5493
5494 aPid = p->p_pid;
5495 aPid_ep = p->p_memstat_effectivepriority;
5496
5497 if (cause != kMemorystatusKilledVnodes && cause != kMemorystatusKilledZoneMapExhaustion) {
5498 /*
5499 * Genuine memory pressure and not other (vnode/zone) resource exhaustion.
5500 */
5501 boolean_t success = FALSE;
5502 uint64_t num_pages_purged;
5503 uint64_t num_pages_reclaimed = 0;
5504 uint64_t num_pages_unsecluded = 0;
5505
5506 networking_memstatus_callout(p, cause);
5507 num_pages_purged = vm_purgeable_purge_task_owned(p->task);
5508 num_pages_reclaimed += num_pages_purged;
5509 #if CONFIG_SECLUDED_MEMORY
5510 if (cause == kMemorystatusKilledVMPageShortage &&
5511 vm_page_secluded_count > 0 &&
5512 task_can_use_secluded_mem(p->task, FALSE)) {
5513 /*
5514 * We're about to kill a process that has access
5515 * to the secluded pool. Drain that pool into the
5516 * free or active queues to make these pages re-appear
5517 * as "available", which might make us no longer need
5518 * to kill that process.
5519 * Since the secluded pool does not get refilled while
5520 * a process has access to it, it should remain
5521 * drained.
5522 */
5523 num_pages_unsecluded = vm_page_secluded_drain();
5524 num_pages_reclaimed += num_pages_unsecluded;
5525 }
5526 #endif /* CONFIG_SECLUDED_MEMORY */
5527
5528 if (num_pages_reclaimed) {
5529 /*
5530 * We actually reclaimed something and so let's
5531 * check if we need to continue with the kill.
5532 */
5533 if (cause == kMemorystatusKilledHiwat) {
5534 uint64_t footprint_in_bytes = get_task_phys_footprint(p->task);
5535 uint64_t memlimit_in_bytes = (((uint64_t)p->p_memstat_memlimit) * 1024ULL * 1024ULL); /* convert MB to bytes */
5536 success = (footprint_in_bytes <= memlimit_in_bytes);
5537 } else {
5538 success = (memorystatus_avail_pages_below_pressure() == FALSE);
5539 #if CONFIG_SECLUDED_MEMORY
5540 if (!success && num_pages_unsecluded) {
5541 /*
5542 * We just drained the secluded pool
5543 * because we're about to kill a
5544 * process that has access to it.
5545 * This is an important process and
5546 * we'd rather not kill it unless
5547 * absolutely necessary, so declare
5548 * success even if draining the pool
5549 * did not quite get us out of the
5550 * "pressure" level but still got
5551 * us out of the "critical" level.
5552 */
5553 success = (memorystatus_avail_pages_below_critical() == FALSE);
5554 }
5555 #endif /* CONFIG_SECLUDED_MEMORY */
5556 }
5557
5558 if (success) {
5559 memorystatus_purge_before_jetsam_success++;
5560
5561 os_log_with_startup_serial(OS_LOG_DEFAULT, "memorystatus: reclaimed %llu pages (%llu purged, %llu unsecluded) from pid %d [%s] and avoided %s\n",
5562 num_pages_reclaimed, num_pages_purged, num_pages_unsecluded, aPid, ((p && *p->p_name) ? p->p_name : "unknown"), memorystatus_kill_cause_name[cause]);
5563
5564 *killed = FALSE;
5565
5566 return TRUE;
5567 }
5568 }
5569 }
5570
5571 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
5572 MEMORYSTATUS_DEBUG(1, "jetsam: killing pid %d [%s] - %lld Mb > 1 (%d Mb)\n",
5573 aPid, (*p->p_name ? p->p_name : "unknown"),
5574 (footprint_in_bytes / (1024ULL * 1024ULL)), /* converted bytes to MB */
5575 p->p_memstat_memlimit);
5576 #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
5577
5578 killtime = mach_absolute_time();
5579 absolutetime_to_microtime(killtime, &tv_sec, &tv_usec);
5580 tv_msec = tv_usec / 1000;
5581
5582 proc_list_lock();
5583 memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime);
5584 proc_list_unlock();
5585
5586 char kill_reason_string[128];
5587
5588 if (cause == kMemorystatusKilledHiwat) {
5589 strlcpy(kill_reason_string, "killing_highwater_process", 128);
5590 } else {
5591 if (aPid_ep == JETSAM_PRIORITY_IDLE) {
5592 strlcpy(kill_reason_string, "killing_idle_process", 128);
5593 } else {
5594 strlcpy(kill_reason_string, "killing_top_process", 128);
5595 }
5596 }
5597
5598 /*
5599 * memorystatus_do_kill drops a reference, so take another one so we can
5600 * continue to use this exit reason even after memorystatus_do_kill()
5601 * returns
5602 */
5603 os_reason_ref(jetsam_reason);
5604
5605 retval = memorystatus_do_kill(p, cause, jetsam_reason, footprint_of_killed_proc);
5606 *killed = retval;
5607
5608 os_log_with_startup_serial(OS_LOG_DEFAULT, "%lu.%03d memorystatus: %s pid %d [%s] (%s %d) %lluKB - memorystatus_available_pages: %llu",
5609 (unsigned long)tv_sec, tv_msec, kill_reason_string,
5610 aPid, ((p && *p->p_name) ? p->p_name : "unknown"),
5611 memorystatus_kill_cause_name[cause], aPid_ep,
5612 (*footprint_of_killed_proc) >> 10, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES);
5613
5614 return retval;
5615 }
5616
5617 /*
5618 * Jetsam the first process in the queue.
5619 */
5620 static boolean_t
5621 memorystatus_kill_top_process(boolean_t any, boolean_t sort_flag, uint32_t cause, os_reason_t jetsam_reason,
5622 int32_t *priority, uint32_t *errors, uint64_t *memory_reclaimed)
5623 {
5624 pid_t aPid;
5625 proc_t p = PROC_NULL, next_p = PROC_NULL;
5626 boolean_t new_snapshot = FALSE, force_new_snapshot = FALSE, killed = FALSE, freed_mem = FALSE;
5627 unsigned int i = 0;
5628 uint32_t aPid_ep;
5629 int32_t local_max_kill_prio = JETSAM_PRIORITY_IDLE;
5630 uint64_t footprint_of_killed_proc = 0;
5631
5632 #ifndef CONFIG_FREEZE
5633 #pragma unused(any)
5634 #endif
5635
5636 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_START,
5637 MEMORYSTATUS_LOG_AVAILABLE_PAGES, 0, 0, 0, 0);
5638
5639
5640 #if CONFIG_JETSAM
5641 if (sort_flag == TRUE) {
5642 (void)memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND, JETSAM_SORT_DEFAULT);
5643 }
5644
5645 local_max_kill_prio = max_kill_priority;
5646
5647 force_new_snapshot = FALSE;
5648
5649 #else /* CONFIG_JETSAM */
5650
5651 if (sort_flag == TRUE) {
5652 (void)memorystatus_sort_bucket(JETSAM_PRIORITY_IDLE, JETSAM_SORT_DEFAULT);
5653 }
5654
5655 /*
5656 * On macos, we currently only have 2 reasons to be here:
5657 *
5658 * kMemorystatusKilledZoneMapExhaustion
5659 * AND
5660 * kMemorystatusKilledVMCompressorSpaceShortage
5661 *
5662 * If we are here because of kMemorystatusKilledZoneMapExhaustion, we will consider
5663 * any and all processes as eligible kill candidates since we need to avoid a panic.
5664 *
5665 * Since this function can be called async. it is harder to toggle the max_kill_priority
5666 * value before and after a call. And so we use this local variable to set the upper band
5667 * on the eligible kill bands.
5668 */
5669 if (cause == kMemorystatusKilledZoneMapExhaustion) {
5670 local_max_kill_prio = JETSAM_PRIORITY_MAX;
5671 } else {
5672 local_max_kill_prio = max_kill_priority;
5673 }
5674
5675 /*
5676 * And, because we are here under extreme circumstances, we force a snapshot even for
5677 * IDLE kills.
5678 */
5679 force_new_snapshot = TRUE;
5680
5681 #endif /* CONFIG_JETSAM */
5682
5683 if (cause != kMemorystatusKilledZoneMapExhaustion &&
5684 jetsam_current_thread() != NULL &&
5685 jetsam_current_thread()->limit_to_low_bands &&
5686 local_max_kill_prio > JETSAM_PRIORITY_BACKGROUND) {
5687 local_max_kill_prio = JETSAM_PRIORITY_BACKGROUND;
5688 }
5689
5690 proc_list_lock();
5691
5692 next_p = memorystatus_get_first_proc_locked(&i, TRUE);
5693 while (next_p && (next_p->p_memstat_effectivepriority <= local_max_kill_prio)) {
5694 p = next_p;
5695 next_p = memorystatus_get_next_proc_locked(&i, p, TRUE);
5696
5697
5698 aPid = p->p_pid;
5699 aPid_ep = p->p_memstat_effectivepriority;
5700
5701 if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) {
5702 continue; /* with lock held */
5703 }
5704
5705 if (cause == kMemorystatusKilledVnodes) {
5706 /*
5707 * If the system runs out of vnodes, we systematically jetsam
5708 * processes in hopes of stumbling onto a vnode gain that helps
5709 * the system recover. The process that happens to trigger
5710 * this path has no known relationship to the vnode shortage.
5711 * Deadlock avoidance: attempt to safeguard the caller.
5712 */
5713
5714 if (p == current_proc()) {
5715 /* do not jetsam the current process */
5716 continue;
5717 }
5718 }
5719
5720 #if CONFIG_FREEZE
5721 boolean_t skip;
5722 boolean_t reclaim_proc = !(p->p_memstat_state & P_MEMSTAT_LOCKED);
5723 if (any || reclaim_proc) {
5724 skip = FALSE;
5725 } else {
5726 skip = TRUE;
5727 }
5728
5729 if (skip) {
5730 continue;
5731 } else
5732 #endif
5733 {
5734 if (proc_ref_locked(p) == p) {
5735 /*
5736 * Mark as terminated so that if exit1() indicates success, but the process (for example)
5737 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
5738 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
5739 * acquisition of the proc lock.
5740 */
5741 p->p_memstat_state |= P_MEMSTAT_TERMINATED;
5742 } else {
5743 /*
5744 * We need to restart the search again because
5745 * proc_ref_locked _can_ drop the proc_list lock
5746 * and we could have lost our stored next_p via
5747 * an exit() on another core.
5748 */
5749 i = 0;
5750 next_p = memorystatus_get_first_proc_locked(&i, TRUE);
5751 continue;
5752 }
5753
5754 /*
5755 * Capture a snapshot if none exists and:
5756 * - we are forcing a new snapshot creation, either because:
5757 * - on a particular platform we need these snapshots every time, OR
5758 * - a boot-arg/embedded device tree property has been set.
5759 * - priority was not requested (this is something other than an ambient kill)
5760 * - the priority was requested *and* the targeted process is not at idle priority
5761 */
5762 if ((memorystatus_jetsam_snapshot_count == 0) &&
5763 (force_new_snapshot || memorystatus_idle_snapshot || ((!priority) || (priority && (aPid_ep != JETSAM_PRIORITY_IDLE))))) {
5764 memorystatus_init_jetsam_snapshot_locked(NULL, 0);
5765 new_snapshot = TRUE;
5766 }
5767
5768 proc_list_unlock();
5769
5770 freed_mem = memorystatus_kill_proc(p, cause, jetsam_reason, &killed, &footprint_of_killed_proc); /* purged and/or killed 'p' */
5771 /* Success? */
5772 if (freed_mem) {
5773 if (killed) {
5774 *memory_reclaimed = footprint_of_killed_proc;
5775 if (priority) {
5776 *priority = aPid_ep;
5777 }
5778 } else {
5779 /* purged */
5780 proc_list_lock();
5781 p->p_memstat_state &= ~P_MEMSTAT_TERMINATED;
5782 proc_list_unlock();
5783 }
5784 proc_rele(p);
5785 goto exit;
5786 }
5787
5788 /*
5789 * Failure - first unwind the state,
5790 * then fall through to restart the search.
5791 */
5792 proc_list_lock();
5793 proc_rele_locked(p);
5794 p->p_memstat_state &= ~P_MEMSTAT_TERMINATED;
5795 p->p_memstat_state |= P_MEMSTAT_ERROR;
5796 *errors += 1;
5797
5798 i = 0;
5799 next_p = memorystatus_get_first_proc_locked(&i, TRUE);
5800 }
5801 }
5802
5803 proc_list_unlock();
5804
5805 exit:
5806 os_reason_free(jetsam_reason);
5807
5808 if (!killed) {
5809 *memory_reclaimed = 0;
5810
5811 /* Clear snapshot if freshly captured and no target was found */
5812 if (new_snapshot) {
5813 proc_list_lock();
5814 memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0;
5815 proc_list_unlock();
5816 }
5817 }
5818
5819 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_END,
5820 MEMORYSTATUS_LOG_AVAILABLE_PAGES, killed ? aPid : 0, killed, *memory_reclaimed, 0);
5821
5822 return killed;
5823 }
5824
5825 /*
5826 * Jetsam aggressively
5827 */
5828 static boolean_t
5829 memorystatus_kill_processes_aggressive(uint32_t cause, int aggr_count,
5830 int32_t priority_max, uint32_t *errors, uint64_t *memory_reclaimed)
5831 {
5832 pid_t aPid;
5833 proc_t p = PROC_NULL, next_p = PROC_NULL;
5834 boolean_t new_snapshot = FALSE, killed = FALSE;
5835 int kill_count = 0;
5836 unsigned int i = 0;
5837 int32_t aPid_ep = 0;
5838 unsigned int memorystatus_level_snapshot = 0;
5839 uint64_t killtime = 0;
5840 clock_sec_t tv_sec;
5841 clock_usec_t tv_usec;
5842 uint32_t tv_msec;
5843 os_reason_t jetsam_reason = OS_REASON_NULL;
5844 uint64_t footprint_of_killed_proc = 0;
5845
5846 *memory_reclaimed = 0;
5847
5848 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_START,
5849 MEMORYSTATUS_LOG_AVAILABLE_PAGES, priority_max, 0, 0, 0);
5850
5851 if (priority_max >= JETSAM_PRIORITY_FOREGROUND) {
5852 /*
5853 * Check if aggressive jetsam has been asked to kill upto or beyond the
5854 * JETSAM_PRIORITY_FOREGROUND bucket. If yes, sort the FG band based on
5855 * coalition footprint.
5856 */
5857 memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND, JETSAM_SORT_DEFAULT);
5858 }
5859
5860 jetsam_reason = os_reason_create(OS_REASON_JETSAM, cause);
5861 if (jetsam_reason == OS_REASON_NULL) {
5862 printf("memorystatus_kill_processes_aggressive: failed to allocate exit reason\n");
5863 }
5864
5865 proc_list_lock();
5866
5867 next_p = memorystatus_get_first_proc_locked(&i, TRUE);
5868 while (next_p) {
5869 if (((next_p->p_listflag & P_LIST_EXITED) != 0) ||
5870 ((unsigned int)(next_p->p_memstat_effectivepriority) != i)) {
5871 /*
5872 * We have raced with next_p running on another core.
5873 * It may be exiting or it may have moved to a different
5874 * jetsam priority band. This means we have lost our
5875 * place in line while traversing the jetsam list. We
5876 * attempt to recover by rewinding to the beginning of the band
5877 * we were already traversing. By doing this, we do not guarantee
5878 * that no process escapes this aggressive march, but we can make
5879 * skipping an entire range of processes less likely. (PR-21069019)
5880 */
5881
5882 MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: rewinding band %d, %s(%d) moved or exiting.\n",
5883 aggr_count, i, (*next_p->p_name ? next_p->p_name : "unknown"), next_p->p_pid);
5884
5885 next_p = memorystatus_get_first_proc_locked(&i, TRUE);
5886 continue;
5887 }
5888
5889 p = next_p;
5890 next_p = memorystatus_get_next_proc_locked(&i, p, TRUE);
5891
5892 if (p->p_memstat_effectivepriority > priority_max) {
5893 /*
5894 * Bail out of this killing spree if we have
5895 * reached beyond the priority_max jetsam band.
5896 * That is, we kill up to and through the
5897 * priority_max jetsam band.
5898 */
5899 proc_list_unlock();
5900 goto exit;
5901 }
5902
5903 aPid = p->p_pid;
5904 aPid_ep = p->p_memstat_effectivepriority;
5905
5906 if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) {
5907 continue;
5908 }
5909
5910 /*
5911 * Capture a snapshot if none exists.
5912 */
5913 if (memorystatus_jetsam_snapshot_count == 0) {
5914 memorystatus_init_jetsam_snapshot_locked(NULL, 0);
5915 new_snapshot = TRUE;
5916 }
5917
5918 /*
5919 * Mark as terminated so that if exit1() indicates success, but the process (for example)
5920 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
5921 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
5922 * acquisition of the proc lock.
5923 */
5924 p->p_memstat_state |= P_MEMSTAT_TERMINATED;
5925
5926 killtime = mach_absolute_time();
5927 absolutetime_to_microtime(killtime, &tv_sec, &tv_usec);
5928 tv_msec = tv_usec / 1000;
5929
5930 /* Shift queue, update stats */
5931 memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime);
5932
5933 /*
5934 * In order to kill the target process, we will drop the proc_list_lock.
5935 * To guaranteee that p and next_p don't disappear out from under the lock,
5936 * we must take a ref on both.
5937 * If we cannot get a reference, then it's likely we've raced with
5938 * that process exiting on another core.
5939 */
5940 if (proc_ref_locked(p) == p) {
5941 if (next_p) {
5942 while (next_p && (proc_ref_locked(next_p) != next_p)) {
5943 proc_t temp_p;
5944
5945 /*
5946 * We must have raced with next_p exiting on another core.
5947 * Recover by getting the next eligible process in the band.
5948 */
5949
5950 MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: skipping %d [%s] (exiting?)\n",
5951 aggr_count, next_p->p_pid, (*next_p->p_name ? next_p->p_name : "(unknown)"));
5952
5953 temp_p = next_p;
5954 next_p = memorystatus_get_next_proc_locked(&i, temp_p, TRUE);
5955 }
5956 }
5957 proc_list_unlock();
5958
5959 printf("%lu.%03d memorystatus: %s%d pid %d [%s] (%s %d) - memorystatus_available_pages: %llu\n",
5960 (unsigned long)tv_sec, tv_msec,
5961 ((aPid_ep == JETSAM_PRIORITY_IDLE) ? "killing_idle_process_aggressive" : "killing_top_process_aggressive"),
5962 aggr_count, aPid, (*p->p_name ? p->p_name : "unknown"),
5963 memorystatus_kill_cause_name[cause], aPid_ep, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES);
5964
5965 memorystatus_level_snapshot = memorystatus_level;
5966
5967 /*
5968 * memorystatus_do_kill() drops a reference, so take another one so we can
5969 * continue to use this exit reason even after memorystatus_do_kill()
5970 * returns.
5971 */
5972 os_reason_ref(jetsam_reason);
5973 killed = memorystatus_do_kill(p, cause, jetsam_reason, &footprint_of_killed_proc);
5974
5975 /* Success? */
5976 if (killed) {
5977 *memory_reclaimed += footprint_of_killed_proc;
5978 proc_rele(p);
5979 kill_count++;
5980 p = NULL;
5981 killed = FALSE;
5982
5983 /*
5984 * Continue the killing spree.
5985 */
5986 proc_list_lock();
5987 if (next_p) {
5988 proc_rele_locked(next_p);
5989 }
5990
5991 if (aPid_ep == JETSAM_PRIORITY_FOREGROUND && memorystatus_aggressive_jetsam_lenient == TRUE) {
5992 if (memorystatus_level > memorystatus_level_snapshot && ((memorystatus_level - memorystatus_level_snapshot) >= AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD)) {
5993 #if DEVELOPMENT || DEBUG
5994 printf("Disabling Lenient mode after one-time deployment.\n");
5995 #endif /* DEVELOPMENT || DEBUG */
5996 memorystatus_aggressive_jetsam_lenient = FALSE;
5997 break;
5998 }
5999 }
6000
6001 continue;
6002 }
6003
6004 /*
6005 * Failure - first unwind the state,
6006 * then fall through to restart the search.
6007 */
6008 proc_list_lock();
6009 proc_rele_locked(p);
6010 if (next_p) {
6011 proc_rele_locked(next_p);
6012 }
6013 p->p_memstat_state &= ~P_MEMSTAT_TERMINATED;
6014 p->p_memstat_state |= P_MEMSTAT_ERROR;
6015 *errors += 1;
6016 p = NULL;
6017 }
6018
6019 /*
6020 * Failure - restart the search at the beginning of
6021 * the band we were already traversing.
6022 *
6023 * We might have raced with "p" exiting on another core, resulting in no
6024 * ref on "p". Or, we may have failed to kill "p".
6025 *
6026 * Either way, we fall thru to here, leaving the proc in the
6027 * P_MEMSTAT_TERMINATED or P_MEMSTAT_ERROR state.
6028 *
6029 * And, we hold the the proc_list_lock at this point.
6030 */
6031
6032 next_p = memorystatus_get_first_proc_locked(&i, TRUE);
6033 }
6034
6035 proc_list_unlock();
6036
6037 exit:
6038 os_reason_free(jetsam_reason);
6039
6040 /* Clear snapshot if freshly captured and no target was found */
6041 if (new_snapshot && (kill_count == 0)) {
6042 proc_list_lock();
6043 memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0;
6044 proc_list_unlock();
6045 }
6046
6047 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_END,
6048 MEMORYSTATUS_LOG_AVAILABLE_PAGES, 0, kill_count, *memory_reclaimed, 0);
6049
6050 if (kill_count > 0) {
6051 return TRUE;
6052 } else {
6053 return FALSE;
6054 }
6055 }
6056
6057 static boolean_t
6058 memorystatus_kill_hiwat_proc(uint32_t *errors, boolean_t *purged, uint64_t *memory_reclaimed)
6059 {
6060 pid_t aPid = 0;
6061 proc_t p = PROC_NULL, next_p = PROC_NULL;
6062 boolean_t new_snapshot = FALSE, killed = FALSE, freed_mem = FALSE;
6063 unsigned int i = 0;
6064 uint32_t aPid_ep;
6065 os_reason_t jetsam_reason = OS_REASON_NULL;
6066 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM_HIWAT) | DBG_FUNC_START,
6067 MEMORYSTATUS_LOG_AVAILABLE_PAGES, 0, 0, 0, 0);
6068
6069 jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_HIGHWATER);
6070 if (jetsam_reason == OS_REASON_NULL) {
6071 printf("memorystatus_kill_hiwat_proc: failed to allocate exit reason\n");
6072 }
6073
6074 proc_list_lock();
6075
6076 next_p = memorystatus_get_first_proc_locked(&i, TRUE);
6077 while (next_p) {
6078 uint64_t footprint_in_bytes = 0;
6079 uint64_t memlimit_in_bytes = 0;
6080 boolean_t skip = 0;
6081
6082 p = next_p;
6083 next_p = memorystatus_get_next_proc_locked(&i, p, TRUE);
6084
6085 aPid = p->p_pid;
6086 aPid_ep = p->p_memstat_effectivepriority;
6087
6088 if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) {
6089 continue;
6090 }
6091
6092 /* skip if no limit set */
6093 if (p->p_memstat_memlimit <= 0) {
6094 continue;
6095 }
6096
6097 footprint_in_bytes = get_task_phys_footprint(p->task);
6098 memlimit_in_bytes = (((uint64_t)p->p_memstat_memlimit) * 1024ULL * 1024ULL); /* convert MB to bytes */
6099 skip = (footprint_in_bytes <= memlimit_in_bytes);
6100
6101 #if CONFIG_FREEZE
6102 if (!skip) {
6103 if (p->p_memstat_state & P_MEMSTAT_LOCKED) {
6104 skip = TRUE;
6105 } else {
6106 skip = FALSE;
6107 }
6108 }
6109 #endif
6110
6111 if (skip) {
6112 continue;
6113 } else {
6114 if (memorystatus_jetsam_snapshot_count == 0) {
6115 memorystatus_init_jetsam_snapshot_locked(NULL, 0);
6116 new_snapshot = TRUE;
6117 }
6118
6119 if (proc_ref_locked(p) == p) {
6120 /*
6121 * Mark as terminated so that if exit1() indicates success, but the process (for example)
6122 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
6123 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
6124 * acquisition of the proc lock.
6125 */
6126 p->p_memstat_state |= P_MEMSTAT_TERMINATED;
6127
6128 proc_list_unlock();
6129 } else {
6130 /*
6131 * We need to restart the search again because
6132 * proc_ref_locked _can_ drop the proc_list lock
6133 * and we could have lost our stored next_p via
6134 * an exit() on another core.
6135 */
6136 i = 0;
6137 next_p = memorystatus_get_first_proc_locked(&i, TRUE);
6138 continue;
6139 }
6140
6141 footprint_in_bytes = 0;
6142 freed_mem = memorystatus_kill_proc(p, kMemorystatusKilledHiwat, jetsam_reason, &killed, &footprint_in_bytes); /* purged and/or killed 'p' */
6143
6144 /* Success? */
6145 if (freed_mem) {
6146 if (killed == FALSE) {
6147 /* purged 'p'..don't reset HWM candidate count */
6148 *purged = TRUE;
6149
6150 proc_list_lock();
6151 p->p_memstat_state &= ~P_MEMSTAT_TERMINATED;
6152 proc_list_unlock();
6153 } else {
6154 *memory_reclaimed = footprint_in_bytes;
6155 }
6156 proc_rele(p);
6157 goto exit;
6158 }
6159 /*
6160 * Failure - first unwind the state,
6161 * then fall through to restart the search.
6162 */
6163 proc_list_lock();
6164 proc_rele_locked(p);
6165 p->p_memstat_state &= ~P_MEMSTAT_TERMINATED;
6166 p->p_memstat_state |= P_MEMSTAT_ERROR;
6167 *errors += 1;
6168
6169 i = 0;
6170 next_p = memorystatus_get_first_proc_locked(&i, TRUE);
6171 }
6172 }
6173
6174 proc_list_unlock();
6175
6176 exit:
6177 os_reason_free(jetsam_reason);
6178
6179 if (!killed) {
6180 *memory_reclaimed = 0;
6181
6182 /* Clear snapshot if freshly captured and no target was found */
6183 if (new_snapshot) {
6184 proc_list_lock();
6185 memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0;
6186 proc_list_unlock();
6187 }
6188 }
6189
6190 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM_HIWAT) | DBG_FUNC_END,
6191 MEMORYSTATUS_LOG_AVAILABLE_PAGES, killed ? aPid : 0, killed, *memory_reclaimed, 0);
6192
6193 return killed;
6194 }
6195
6196 /*
6197 * Jetsam a process pinned in the elevated band.
6198 *
6199 * Return: true -- a pinned process was jetsammed
6200 * false -- no pinned process was jetsammed
6201 */
6202 boolean_t
6203 memorystatus_kill_elevated_process(uint32_t cause, os_reason_t jetsam_reason, unsigned int band, int aggr_count, uint32_t *errors, uint64_t *memory_reclaimed)
6204 {
6205 pid_t aPid = 0;
6206 proc_t p = PROC_NULL, next_p = PROC_NULL;
6207 boolean_t new_snapshot = FALSE, killed = FALSE;
6208 int kill_count = 0;
6209 uint32_t aPid_ep;
6210 uint64_t killtime = 0;
6211 clock_sec_t tv_sec;
6212 clock_usec_t tv_usec;
6213 uint32_t tv_msec;
6214 uint64_t footprint_of_killed_proc = 0;
6215
6216
6217 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_START,
6218 MEMORYSTATUS_LOG_AVAILABLE_PAGES, 0, 0, 0, 0);
6219
6220 #if CONFIG_FREEZE
6221 boolean_t consider_frozen_only = FALSE;
6222
6223 if (band == (unsigned int) memorystatus_freeze_jetsam_band) {
6224 consider_frozen_only = TRUE;
6225 }
6226 #endif /* CONFIG_FREEZE */
6227
6228 proc_list_lock();
6229
6230 next_p = memorystatus_get_first_proc_locked(&band, FALSE);
6231 while (next_p) {
6232 p = next_p;
6233 next_p = memorystatus_get_next_proc_locked(&band, p, FALSE);
6234
6235 aPid = p->p_pid;
6236 aPid_ep = p->p_memstat_effectivepriority;
6237
6238 /*
6239 * Only pick a process pinned in this elevated band
6240 */
6241 if (!(p->p_memstat_state & P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND)) {
6242 continue;
6243 }
6244
6245 if (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED)) {
6246 continue;
6247 }
6248
6249 #if CONFIG_FREEZE
6250 if (consider_frozen_only && !(p->p_memstat_state & P_MEMSTAT_FROZEN)) {
6251 continue;
6252 }
6253
6254 if (p->p_memstat_state & P_MEMSTAT_LOCKED) {
6255 continue;
6256 }
6257 #endif /* CONFIG_FREEZE */
6258
6259 #if DEVELOPMENT || DEBUG
6260 MEMORYSTATUS_DEBUG(1, "jetsam: elevated%d process pid %d [%s] - memorystatus_available_pages: %d\n",
6261 aggr_count,
6262 aPid, (*p->p_name ? p->p_name : "unknown"),
6263 MEMORYSTATUS_LOG_AVAILABLE_PAGES);
6264 #endif /* DEVELOPMENT || DEBUG */
6265
6266 if (memorystatus_jetsam_snapshot_count == 0) {
6267 memorystatus_init_jetsam_snapshot_locked(NULL, 0);
6268 new_snapshot = TRUE;
6269 }
6270
6271 p->p_memstat_state |= P_MEMSTAT_TERMINATED;
6272
6273 killtime = mach_absolute_time();
6274 absolutetime_to_microtime(killtime, &tv_sec, &tv_usec);
6275 tv_msec = tv_usec / 1000;
6276
6277 memorystatus_update_jetsam_snapshot_entry_locked(p, cause, killtime);
6278
6279 if (proc_ref_locked(p) == p) {
6280 proc_list_unlock();
6281
6282 /*
6283 * memorystatus_do_kill drops a reference, so take another one so we can
6284 * continue to use this exit reason even after memorystatus_do_kill()
6285 * returns
6286 */
6287 os_reason_ref(jetsam_reason);
6288 killed = memorystatus_do_kill(p, cause, jetsam_reason, &footprint_of_killed_proc);
6289
6290 os_log_with_startup_serial(OS_LOG_DEFAULT, "%lu.%03d memorystatus: killing_top_process_elevated%d pid %d [%s] (%s %d) %lluKB - memorystatus_available_pages: %llu\n",
6291 (unsigned long)tv_sec, tv_msec,
6292 aggr_count,
6293 aPid, ((p && *p->p_name) ? p->p_name : "unknown"),
6294 memorystatus_kill_cause_name[cause], aPid_ep,
6295 footprint_of_killed_proc >> 10, (uint64_t)MEMORYSTATUS_LOG_AVAILABLE_PAGES);
6296
6297 /* Success? */
6298 if (killed) {
6299 *memory_reclaimed = footprint_of_killed_proc;
6300 proc_rele(p);
6301 kill_count++;
6302 goto exit;
6303 }
6304
6305 /*
6306 * Failure - first unwind the state,
6307 * then fall through to restart the search.
6308 */
6309 proc_list_lock();
6310 proc_rele_locked(p);
6311 p->p_memstat_state &= ~P_MEMSTAT_TERMINATED;
6312 p->p_memstat_state |= P_MEMSTAT_ERROR;
6313 *errors += 1;
6314 }
6315
6316 /*
6317 * Failure - restart the search.
6318 *
6319 * We might have raced with "p" exiting on another core, resulting in no
6320 * ref on "p". Or, we may have failed to kill "p".
6321 *
6322 * Either way, we fall thru to here, leaving the proc in the
6323 * P_MEMSTAT_TERMINATED state or P_MEMSTAT_ERROR state.
6324 *
6325 * And, we hold the the proc_list_lock at this point.
6326 */
6327
6328 next_p = memorystatus_get_first_proc_locked(&band, FALSE);
6329 }
6330
6331 proc_list_unlock();
6332
6333 exit:
6334 os_reason_free(jetsam_reason);
6335
6336 if (kill_count == 0) {
6337 *memory_reclaimed = 0;
6338
6339 /* Clear snapshot if freshly captured and no target was found */
6340 if (new_snapshot) {
6341 proc_list_lock();
6342 memorystatus_jetsam_snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0;
6343 proc_list_unlock();
6344 }
6345 }
6346
6347 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_JETSAM) | DBG_FUNC_END,
6348 MEMORYSTATUS_LOG_AVAILABLE_PAGES, killed ? aPid : 0, kill_count, *memory_reclaimed, 0);
6349
6350 return killed;
6351 }
6352
6353 static boolean_t
6354 memorystatus_kill_process_async(pid_t victim_pid, uint32_t cause)
6355 {
6356 /*
6357 * TODO: allow a general async path
6358 *
6359 * NOTE: If a new async kill cause is added, make sure to update memorystatus_thread() to
6360 * add the appropriate exit reason code mapping.
6361 */
6362 if ((victim_pid != -1) ||
6363 (cause != kMemorystatusKilledVMPageShortage &&
6364 cause != kMemorystatusKilledVMCompressorThrashing &&
6365 cause != kMemorystatusKilledVMCompressorSpaceShortage &&
6366 cause != kMemorystatusKilledFCThrashing &&
6367 cause != kMemorystatusKilledZoneMapExhaustion)) {
6368 return FALSE;
6369 }
6370
6371 kill_under_pressure_cause = cause;
6372 memorystatus_thread_wake();
6373 return TRUE;
6374 }
6375
6376 boolean_t
6377 memorystatus_kill_on_VM_compressor_space_shortage(boolean_t async)
6378 {
6379 if (async) {
6380 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMCompressorSpaceShortage);
6381 } else {
6382 os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_VMCOMPRESSOR_SPACE_SHORTAGE);
6383 if (jetsam_reason == OS_REASON_NULL) {
6384 printf("memorystatus_kill_on_VM_compressor_space_shortage -- sync: failed to allocate jetsam reason\n");
6385 }
6386
6387 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMCompressorSpaceShortage, jetsam_reason);
6388 }
6389 }
6390
6391 #if CONFIG_JETSAM
6392 boolean_t
6393 memorystatus_kill_on_VM_compressor_thrashing(boolean_t async)
6394 {
6395 if (async) {
6396 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMCompressorThrashing);
6397 } else {
6398 os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_VMCOMPRESSOR_THRASHING);
6399 if (jetsam_reason == OS_REASON_NULL) {
6400 printf("memorystatus_kill_on_VM_compressor_thrashing -- sync: failed to allocate jetsam reason\n");
6401 }
6402
6403 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMCompressorThrashing, jetsam_reason);
6404 }
6405 }
6406
6407 boolean_t
6408 memorystatus_kill_on_VM_page_shortage(boolean_t async)
6409 {
6410 if (async) {
6411 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMPageShortage);
6412 } else {
6413 os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_VMPAGESHORTAGE);
6414 if (jetsam_reason == OS_REASON_NULL) {
6415 printf("memorystatus_kill_on_VM_page_shortage -- sync: failed to allocate jetsam reason\n");
6416 }
6417
6418 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMPageShortage, jetsam_reason);
6419 }
6420 }
6421
6422 boolean_t
6423 memorystatus_kill_on_FC_thrashing(boolean_t async)
6424 {
6425 if (async) {
6426 return memorystatus_kill_process_async(-1, kMemorystatusKilledFCThrashing);
6427 } else {
6428 os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_MEMORY_FCTHRASHING);
6429 if (jetsam_reason == OS_REASON_NULL) {
6430 printf("memorystatus_kill_on_FC_thrashing -- sync: failed to allocate jetsam reason\n");
6431 }
6432
6433 return memorystatus_kill_process_sync(-1, kMemorystatusKilledFCThrashing, jetsam_reason);
6434 }
6435 }
6436
6437 boolean_t
6438 memorystatus_kill_on_vnode_limit(void)
6439 {
6440 os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_VNODE);
6441 if (jetsam_reason == OS_REASON_NULL) {
6442 printf("memorystatus_kill_on_vnode_limit: failed to allocate jetsam reason\n");
6443 }
6444
6445 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVnodes, jetsam_reason);
6446 }
6447
6448 #endif /* CONFIG_JETSAM */
6449
6450 boolean_t
6451 memorystatus_kill_on_zone_map_exhaustion(pid_t pid)
6452 {
6453 boolean_t res = FALSE;
6454 if (pid == -1) {
6455 res = memorystatus_kill_process_async(-1, kMemorystatusKilledZoneMapExhaustion);
6456 } else {
6457 os_reason_t jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_ZONE_MAP_EXHAUSTION);
6458 if (jetsam_reason == OS_REASON_NULL) {
6459 printf("memorystatus_kill_on_zone_map_exhaustion: failed to allocate jetsam reason\n");
6460 }
6461
6462 res = memorystatus_kill_process_sync(pid, kMemorystatusKilledZoneMapExhaustion, jetsam_reason);
6463 }
6464 return res;
6465 }
6466
6467 void
6468 memorystatus_on_pageout_scan_end(void)
6469 {
6470 /* No-op */
6471 }
6472
6473 /* Return both allocated and actual size, since there's a race between allocation and list compilation */
6474 static int
6475 memorystatus_get_priority_list(memorystatus_priority_entry_t **list_ptr, size_t *buffer_size, size_t *list_size, boolean_t size_only)
6476 {
6477 uint32_t list_count, i = 0;
6478 memorystatus_priority_entry_t *list_entry;
6479 proc_t p;
6480
6481 list_count = memorystatus_list_count;
6482 *list_size = sizeof(memorystatus_priority_entry_t) * list_count;
6483
6484 /* Just a size check? */
6485 if (size_only) {
6486 return 0;
6487 }
6488
6489 /* Otherwise, validate the size of the buffer */
6490 if (*buffer_size < *list_size) {
6491 return EINVAL;
6492 }
6493
6494 *list_ptr = kheap_alloc(KHEAP_TEMP, *list_size, Z_WAITOK | Z_ZERO);
6495 if (!*list_ptr) {
6496 return ENOMEM;
6497 }
6498
6499 *buffer_size = *list_size;
6500 *list_size = 0;
6501
6502 list_entry = *list_ptr;
6503
6504 proc_list_lock();
6505
6506 p = memorystatus_get_first_proc_locked(&i, TRUE);
6507 while (p && (*list_size < *buffer_size)) {
6508 list_entry->pid = p->p_pid;
6509 list_entry->priority = p->p_memstat_effectivepriority;
6510 list_entry->user_data = p->p_memstat_userdata;
6511
6512 if (p->p_memstat_memlimit <= 0) {
6513 task_get_phys_footprint_limit(p->task, &list_entry->limit);
6514 } else {
6515 list_entry->limit = p->p_memstat_memlimit;
6516 }
6517
6518 list_entry->state = memorystatus_build_state(p);
6519 list_entry++;
6520
6521 *list_size += sizeof(memorystatus_priority_entry_t);
6522
6523 p = memorystatus_get_next_proc_locked(&i, p, TRUE);
6524 }
6525
6526 proc_list_unlock();
6527
6528 MEMORYSTATUS_DEBUG(1, "memorystatus_get_priority_list: returning %lu for size\n", (unsigned long)*list_size);
6529
6530 return 0;
6531 }
6532
6533 static int
6534 memorystatus_get_priority_pid(pid_t pid, user_addr_t buffer, size_t buffer_size)
6535 {
6536 int error = 0;
6537 memorystatus_priority_entry_t mp_entry;
6538 kern_return_t ret;
6539
6540 /* Validate inputs */
6541 if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_priority_entry_t))) {
6542 return EINVAL;
6543 }
6544
6545 proc_t p = proc_find(pid);
6546 if (!p) {
6547 return ESRCH;
6548 }
6549
6550 memset(&mp_entry, 0, sizeof(memorystatus_priority_entry_t));
6551
6552 mp_entry.pid = p->p_pid;
6553 mp_entry.priority = p->p_memstat_effectivepriority;
6554 mp_entry.user_data = p->p_memstat_userdata;
6555 if (p->p_memstat_memlimit <= 0) {
6556 ret = task_get_phys_footprint_limit(p->task, &mp_entry.limit);
6557 if (ret != KERN_SUCCESS) {
6558 proc_rele(p);
6559 return EINVAL;
6560 }
6561 } else {
6562 mp_entry.limit = p->p_memstat_memlimit;
6563 }
6564 mp_entry.state = memorystatus_build_state(p);
6565
6566 proc_rele(p);
6567
6568 error = copyout(&mp_entry, buffer, buffer_size);
6569
6570 return error;
6571 }
6572
6573 static int
6574 memorystatus_cmd_get_priority_list(pid_t pid, user_addr_t buffer, size_t buffer_size, int32_t *retval)
6575 {
6576 int error = 0;
6577 boolean_t size_only;
6578 size_t list_size;
6579
6580 /*
6581 * When a non-zero pid is provided, the 'list' has only one entry.
6582 */
6583
6584 size_only = ((buffer == USER_ADDR_NULL) ? TRUE: FALSE);
6585
6586 if (pid != 0) {
6587 list_size = sizeof(memorystatus_priority_entry_t) * 1;
6588 if (!size_only) {
6589 error = memorystatus_get_priority_pid(pid, buffer, buffer_size);
6590 }
6591 } else {
6592 memorystatus_priority_entry_t *list = NULL;
6593 error = memorystatus_get_priority_list(&list, &buffer_size, &list_size, size_only);
6594
6595 if (error == 0) {
6596 if (!size_only) {
6597 error = copyout(list, buffer, list_size);
6598 }
6599 }
6600
6601 if (list) {
6602 kheap_free(KHEAP_TEMP, list, buffer_size);
6603 }
6604 }
6605
6606 if (error == 0) {
6607 assert(list_size <= INT32_MAX);
6608 *retval = (int32_t) list_size;
6609 }
6610
6611 return error;
6612 }
6613
6614 static void
6615 memorystatus_clear_errors(void)
6616 {
6617 proc_t p;
6618 unsigned int i = 0;
6619
6620 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_CLEAR_ERRORS) | DBG_FUNC_START, 0, 0, 0, 0, 0);
6621
6622 proc_list_lock();
6623
6624 p = memorystatus_get_first_proc_locked(&i, TRUE);
6625 while (p) {
6626 if (p->p_memstat_state & P_MEMSTAT_ERROR) {
6627 p->p_memstat_state &= ~P_MEMSTAT_ERROR;
6628 }
6629 p = memorystatus_get_next_proc_locked(&i, p, TRUE);
6630 }
6631
6632 proc_list_unlock();
6633
6634 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_CLEAR_ERRORS) | DBG_FUNC_END, 0, 0, 0, 0, 0);
6635 }
6636
6637 #if CONFIG_JETSAM
6638 static void
6639 memorystatus_update_levels_locked(boolean_t critical_only)
6640 {
6641 memorystatus_available_pages_critical = memorystatus_available_pages_critical_base;
6642
6643 /*
6644 * If there's an entry in the first bucket, we have idle processes.
6645 */
6646
6647 memstat_bucket_t *first_bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE];
6648 if (first_bucket->count) {
6649 memorystatus_available_pages_critical += memorystatus_available_pages_critical_idle_offset;
6650
6651 if (memorystatus_available_pages_critical > memorystatus_available_pages_pressure) {
6652 /*
6653 * The critical threshold must never exceed the pressure threshold
6654 */
6655 memorystatus_available_pages_critical = memorystatus_available_pages_pressure;
6656 }
6657 }
6658
6659 if (memorystatus_jetsam_policy & kPolicyMoreFree) {
6660 memorystatus_available_pages_critical += memorystatus_policy_more_free_offset_pages;
6661 }
6662
6663 if (critical_only) {
6664 return;
6665 }
6666
6667 #if VM_PRESSURE_EVENTS
6668 memorystatus_available_pages_pressure = (int32_t)(pressure_threshold_percentage * (atop_64(max_mem) / 100));
6669 #endif
6670 }
6671
6672 void
6673 memorystatus_fast_jetsam_override(boolean_t enable_override)
6674 {
6675 /* If fast jetsam is not enabled, simply return */
6676 if (!fast_jetsam_enabled) {
6677 return;
6678 }
6679
6680 if (enable_override) {
6681 if ((memorystatus_jetsam_policy & kPolicyMoreFree) == kPolicyMoreFree) {
6682 return;
6683 }
6684 proc_list_lock();
6685 memorystatus_jetsam_policy |= kPolicyMoreFree;
6686 memorystatus_thread_pool_max();
6687 memorystatus_update_levels_locked(TRUE);
6688 proc_list_unlock();
6689 } else {
6690 if ((memorystatus_jetsam_policy & kPolicyMoreFree) == 0) {
6691 return;
6692 }
6693 proc_list_lock();
6694 memorystatus_jetsam_policy &= ~kPolicyMoreFree;
6695 memorystatus_thread_pool_default();
6696 memorystatus_update_levels_locked(TRUE);
6697 proc_list_unlock();
6698 }
6699 }
6700
6701
6702 static int
6703 sysctl_kern_memorystatus_policy_more_free SYSCTL_HANDLER_ARGS
6704 {
6705 #pragma unused(arg1, arg2, oidp)
6706 int error = 0, more_free = 0;
6707
6708 /*
6709 * TODO: Enable this privilege check?
6710 *
6711 * error = priv_check_cred(kauth_cred_get(), PRIV_VM_JETSAM, 0);
6712 * if (error)
6713 * return (error);
6714 */
6715
6716 error = sysctl_handle_int(oidp, &more_free, 0, req);
6717 if (error || !req->newptr) {
6718 return error;
6719 }
6720
6721 if (more_free) {
6722 memorystatus_fast_jetsam_override(true);
6723 } else {
6724 memorystatus_fast_jetsam_override(false);
6725 }
6726
6727 return 0;
6728 }
6729 SYSCTL_PROC(_kern, OID_AUTO, memorystatus_policy_more_free, CTLTYPE_INT | CTLFLAG_WR | CTLFLAG_LOCKED | CTLFLAG_MASKED,
6730 0, 0, &sysctl_kern_memorystatus_policy_more_free, "I", "");
6731
6732 #endif /* CONFIG_JETSAM */
6733
6734 /*
6735 * Get the at_boot snapshot
6736 */
6737 static int
6738 memorystatus_get_at_boot_snapshot(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only)
6739 {
6740 size_t input_size = *snapshot_size;
6741
6742 /*
6743 * The at_boot snapshot has no entry list.
6744 */
6745 *snapshot_size = sizeof(memorystatus_jetsam_snapshot_t);
6746
6747 if (size_only) {
6748 return 0;
6749 }
6750
6751 /*
6752 * Validate the size of the snapshot buffer
6753 */
6754 if (input_size < *snapshot_size) {
6755 return EINVAL;
6756 }
6757
6758 /*
6759 * Update the notification_time only
6760 */
6761 memorystatus_at_boot_snapshot.notification_time = mach_absolute_time();
6762 *snapshot = &memorystatus_at_boot_snapshot;
6763
6764 MEMORYSTATUS_DEBUG(7, "memorystatus_get_at_boot_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%d)\n",
6765 (long)input_size, (long)*snapshot_size, 0);
6766 return 0;
6767 }
6768
6769 /*
6770 * Get the previous fully populated snapshot
6771 */
6772 static int
6773 memorystatus_get_jetsam_snapshot_copy(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only)
6774 {
6775 size_t input_size = *snapshot_size;
6776
6777 if (memorystatus_jetsam_snapshot_copy_count > 0) {
6778 *snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + (sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_copy_count));
6779 } else {
6780 *snapshot_size = 0;
6781 }
6782
6783 if (size_only) {
6784 return 0;
6785 }
6786
6787 if (input_size < *snapshot_size) {
6788 return EINVAL;
6789 }
6790
6791 *snapshot = memorystatus_jetsam_snapshot_copy;
6792
6793 MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot_copy: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6794 (long)input_size, (long)*snapshot_size, (long)memorystatus_jetsam_snapshot_copy_count);
6795
6796 return 0;
6797 }
6798
6799 #if CONFIG_FREEZE
6800 static int
6801 memorystatus_get_jetsam_snapshot_freezer(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only)
6802 {
6803 size_t input_size = *snapshot_size;
6804
6805 if (memorystatus_jetsam_snapshot_freezer->entry_count > 0) {
6806 *snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + (sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_freezer->entry_count));
6807 } else {
6808 *snapshot_size = 0;
6809 }
6810 assert(*snapshot_size <= memorystatus_jetsam_snapshot_freezer_size);
6811
6812 if (size_only) {
6813 return 0;
6814 }
6815
6816 if (input_size < *snapshot_size) {
6817 return EINVAL;
6818 }
6819
6820 *snapshot = memorystatus_jetsam_snapshot_freezer;
6821
6822 MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot_freezer: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6823 (long)input_size, (long)*snapshot_size, (long)memorystatus_jetsam_snapshot_freezer->entry_count);
6824
6825 return 0;
6826 }
6827 #endif /* CONFIG_FREEZE */
6828
6829 static int
6830 memorystatus_get_on_demand_snapshot(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only)
6831 {
6832 size_t input_size = *snapshot_size;
6833 uint32_t ods_list_count = memorystatus_list_count;
6834 memorystatus_jetsam_snapshot_t *ods = NULL; /* The on_demand snapshot buffer */
6835
6836 *snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + (sizeof(memorystatus_jetsam_snapshot_entry_t) * (ods_list_count));
6837
6838 if (size_only) {
6839 return 0;
6840 }
6841
6842 /*
6843 * Validate the size of the snapshot buffer.
6844 * This is inherently racey. May want to revisit
6845 * this error condition and trim the output when
6846 * it doesn't fit.
6847 */
6848 if (input_size < *snapshot_size) {
6849 return EINVAL;
6850 }
6851
6852 /*
6853 * Allocate and initialize a snapshot buffer.
6854 */
6855 ods = kalloc(*snapshot_size);
6856 if (!ods) {
6857 return ENOMEM;
6858 }
6859
6860 memset(ods, 0, *snapshot_size);
6861
6862 proc_list_lock();
6863 memorystatus_init_jetsam_snapshot_locked(ods, ods_list_count);
6864 proc_list_unlock();
6865
6866 /*
6867 * Return the kernel allocated, on_demand buffer.
6868 * The caller of this routine will copy the data out
6869 * to user space and then free the kernel allocated
6870 * buffer.
6871 */
6872 *snapshot = ods;
6873
6874 MEMORYSTATUS_DEBUG(7, "memorystatus_get_on_demand_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6875 (long)input_size, (long)*snapshot_size, (long)ods_list_count);
6876
6877 return 0;
6878 }
6879
6880 static int
6881 memorystatus_get_jetsam_snapshot(memorystatus_jetsam_snapshot_t **snapshot, size_t *snapshot_size, boolean_t size_only)
6882 {
6883 size_t input_size = *snapshot_size;
6884
6885 if (memorystatus_jetsam_snapshot_count > 0) {
6886 *snapshot_size = sizeof(memorystatus_jetsam_snapshot_t) + (sizeof(memorystatus_jetsam_snapshot_entry_t) * (memorystatus_jetsam_snapshot_count));
6887 } else {
6888 *snapshot_size = 0;
6889 }
6890
6891 if (size_only) {
6892 return 0;
6893 }
6894
6895 if (input_size < *snapshot_size) {
6896 return EINVAL;
6897 }
6898
6899 *snapshot = memorystatus_jetsam_snapshot;
6900
6901 MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
6902 (long)input_size, (long)*snapshot_size, (long)memorystatus_jetsam_snapshot_count);
6903
6904 return 0;
6905 }
6906
6907
6908 static int
6909 memorystatus_cmd_get_jetsam_snapshot(int32_t flags, user_addr_t buffer, size_t buffer_size, int32_t *retval)
6910 {
6911 int error = EINVAL;
6912 boolean_t size_only;
6913 boolean_t is_default_snapshot = FALSE;
6914 boolean_t is_on_demand_snapshot = FALSE;
6915 boolean_t is_at_boot_snapshot = FALSE;
6916 #if CONFIG_FREEZE
6917 bool is_freezer_snapshot = false;
6918 #endif /* CONFIG_FREEZE */
6919 memorystatus_jetsam_snapshot_t *snapshot;
6920
6921 size_only = ((buffer == USER_ADDR_NULL) ? TRUE : FALSE);
6922
6923 if (flags == 0) {
6924 /* Default */
6925 is_default_snapshot = TRUE;
6926 error = memorystatus_get_jetsam_snapshot(&snapshot, &buffer_size, size_only);
6927 } else {
6928 if (flags & ~(MEMORYSTATUS_SNAPSHOT_ON_DEMAND | MEMORYSTATUS_SNAPSHOT_AT_BOOT | MEMORYSTATUS_SNAPSHOT_COPY | MEMORYSTATUS_FLAGS_SNAPSHOT_FREEZER)) {
6929 /*
6930 * Unsupported bit set in flag.
6931 */
6932 return EINVAL;
6933 }
6934
6935 if (flags & (flags - 0x1)) {
6936 /*
6937 * Can't have multiple flags set at the same time.
6938 */
6939 return EINVAL;
6940 }
6941
6942 if (flags & MEMORYSTATUS_SNAPSHOT_ON_DEMAND) {
6943 is_on_demand_snapshot = TRUE;
6944 /*
6945 * When not requesting the size only, the following call will allocate
6946 * an on_demand snapshot buffer, which is freed below.
6947 */
6948 error = memorystatus_get_on_demand_snapshot(&snapshot, &buffer_size, size_only);
6949 } else if (flags & MEMORYSTATUS_SNAPSHOT_AT_BOOT) {
6950 is_at_boot_snapshot = TRUE;
6951 error = memorystatus_get_at_boot_snapshot(&snapshot, &buffer_size, size_only);
6952 } else if (flags & MEMORYSTATUS_SNAPSHOT_COPY) {
6953 error = memorystatus_get_jetsam_snapshot_copy(&snapshot, &buffer_size, size_only);
6954 #if CONFIG_FREEZE
6955 } else if (flags & MEMORYSTATUS_FLAGS_SNAPSHOT_FREEZER) {
6956 is_freezer_snapshot = true;
6957 error = memorystatus_get_jetsam_snapshot_freezer(&snapshot, &buffer_size, size_only);
6958 #endif /* CONFIG_FREEZE */
6959 } else {
6960 /*
6961 * Invalid flag setting.
6962 */
6963 return EINVAL;
6964 }
6965 }
6966
6967 if (error) {
6968 goto out;
6969 }
6970
6971 /*
6972 * Copy the data out to user space and clear the snapshot buffer.
6973 * If working with the jetsam snapshot,
6974 * clearing the buffer means, reset the count.
6975 * If working with an on_demand snapshot
6976 * clearing the buffer means, free it.
6977 * If working with the at_boot snapshot
6978 * there is nothing to clear or update.
6979 * If working with a copy of the snapshot
6980 * there is nothing to clear or update.
6981 * If working with the freezer snapshot
6982 * clearing the buffer means, reset the count.
6983 */
6984 if (!size_only) {
6985 if ((error = copyout(snapshot, buffer, buffer_size)) == 0) {
6986 #if CONFIG_FREEZE
6987 if (is_default_snapshot || is_freezer_snapshot) {
6988 #else
6989 if (is_default_snapshot) {
6990 #endif /* CONFIG_FREEZE */
6991 /*
6992 * The jetsam snapshot is never freed, its count is simply reset.
6993 * However, we make a copy for any parties that might be interested
6994 * in the previous fully populated snapshot.
6995 */
6996 proc_list_lock();
6997 #if DEVELOPMENT || DEBUG
6998 if (memorystatus_snapshot_owner != 0 && memorystatus_snapshot_owner != current_proc()->p_pid) {
6999 /* Snapshot is currently owned by someone else. Don't consume it. */
7000 proc_list_unlock();
7001 goto out;
7002 }
7003 #endif /* (DEVELOPMENT || DEBUG)*/
7004 if (is_default_snapshot) {
7005 memcpy(memorystatus_jetsam_snapshot_copy, memorystatus_jetsam_snapshot, memorystatus_jetsam_snapshot_size);
7006 memorystatus_jetsam_snapshot_copy_count = memorystatus_jetsam_snapshot_count;
7007 snapshot->entry_count = memorystatus_jetsam_snapshot_count = 0;
7008 memorystatus_jetsam_snapshot_last_timestamp = 0;
7009 }
7010 #if CONFIG_FREEZE
7011 else if (is_freezer_snapshot) {
7012 memorystatus_jetsam_snapshot_freezer->entry_count = 0;
7013 }
7014 #endif /* CONFIG_FREEZE */
7015 proc_list_unlock();
7016 }
7017 }
7018
7019 if (is_on_demand_snapshot) {
7020 /*
7021 * The on_demand snapshot is always freed,
7022 * even if the copyout failed.
7023 */
7024 if (snapshot) {
7025 kfree(snapshot, buffer_size);
7026 }
7027 }
7028 }
7029
7030 out:
7031 if (error == 0) {
7032 assert(buffer_size <= INT32_MAX);
7033 *retval = (int32_t) buffer_size;
7034 }
7035 return error;
7036 }
7037
7038 #if DEVELOPMENT || DEBUG
7039 static int
7040 memorystatus_cmd_set_jetsam_snapshot_ownership(int32_t flags)
7041 {
7042 int error = EINVAL;
7043 proc_t caller = current_proc();
7044 assert(caller != kernproc);
7045 proc_list_lock();
7046 if (flags & MEMORYSTATUS_FLAGS_SNAPSHOT_TAKE_OWNERSHIP) {
7047 if (memorystatus_snapshot_owner == 0) {
7048 memorystatus_snapshot_owner = caller->p_pid;
7049 error = 0;
7050 } else if (memorystatus_snapshot_owner == caller->p_pid) {
7051 error = 0;
7052 } else {
7053 /* We don't allow ownership to be taken from another proc. */
7054 error = EBUSY;
7055 }
7056 } else if (flags & MEMORYSTATUS_FLAGS_SNAPSHOT_DROP_OWNERSHIP) {
7057 if (memorystatus_snapshot_owner == caller->p_pid) {
7058 memorystatus_snapshot_owner = 0;
7059 error = 0;
7060 } else if (memorystatus_snapshot_owner != 0) {
7061 /* We don't allow ownership to be taken from another proc. */
7062 error = EPERM;
7063 }
7064 }
7065 proc_list_unlock();
7066
7067 return error;
7068 }
7069 #endif /* DEVELOPMENT || DEBUG */
7070
7071 /*
7072 * Routine: memorystatus_cmd_grp_set_priorities
7073 * Purpose: Update priorities for a group of processes.
7074 *
7075 * [priority]
7076 * Move each process out of its effective priority
7077 * band and into a new priority band.
7078 * Maintains relative order from lowest to highest priority.
7079 * In single band, maintains relative order from head to tail.
7080 *
7081 * eg: before [effectivepriority | pid]
7082 * [18 | p101 ]
7083 * [17 | p55, p67, p19 ]
7084 * [12 | p103 p10 ]
7085 * [ 7 | p25 ]
7086 * [ 0 | p71, p82, ]
7087 *
7088 * after [ new band | pid]
7089 * [ xxx | p71, p82, p25, p103, p10, p55, p67, p19, p101]
7090 *
7091 * Returns: 0 on success, else non-zero.
7092 *
7093 * Caveat: We know there is a race window regarding recycled pids.
7094 * A process could be killed before the kernel can act on it here.
7095 * If a pid cannot be found in any of the jetsam priority bands,
7096 * then we simply ignore it. No harm.
7097 * But, if the pid has been recycled then it could be an issue.
7098 * In that scenario, we might move an unsuspecting process to the new
7099 * priority band. It's not clear how the kernel can safeguard
7100 * against this, but it would be an extremely rare case anyway.
7101 * The caller of this api might avoid such race conditions by
7102 * ensuring that the processes passed in the pid list are suspended.
7103 */
7104
7105
7106 static int
7107 memorystatus_cmd_grp_set_priorities(user_addr_t buffer, size_t buffer_size)
7108 {
7109 /*
7110 * We only handle setting priority
7111 * per process
7112 */
7113
7114 int error = 0;
7115 memorystatus_properties_entry_v1_t *entries = NULL;
7116 size_t entry_count = 0;
7117
7118 /* This will be the ordered proc list */
7119 typedef struct memorystatus_internal_properties {
7120 proc_t proc;
7121 int32_t priority;
7122 } memorystatus_internal_properties_t;
7123
7124 memorystatus_internal_properties_t *table = NULL;
7125 size_t table_size = 0;
7126 uint32_t table_count = 0;
7127
7128 size_t i = 0;
7129 uint32_t bucket_index = 0;
7130 boolean_t head_insert;
7131 int32_t new_priority;
7132
7133 proc_t p;
7134
7135 /* Verify inputs */
7136 if ((buffer == USER_ADDR_NULL) || (buffer_size == 0)) {
7137 error = EINVAL;
7138 goto out;
7139 }
7140
7141 entry_count = (buffer_size / sizeof(memorystatus_properties_entry_v1_t));
7142 if (entry_count == 0) {
7143 /* buffer size was not large enough for a single entry */
7144 error = EINVAL;
7145 goto out;
7146 }
7147
7148 if ((entries = kheap_alloc(KHEAP_TEMP, buffer_size, Z_WAITOK)) == NULL) {
7149 error = ENOMEM;
7150 goto out;
7151 }
7152
7153 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_START, MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY, entry_count, 0, 0, 0);
7154
7155 if ((error = copyin(buffer, entries, buffer_size)) != 0) {
7156 goto out;
7157 }
7158
7159 /* Verify sanity of input priorities */
7160 if (entries[0].version == MEMORYSTATUS_MPE_VERSION_1) {
7161 if ((buffer_size % MEMORYSTATUS_MPE_VERSION_1_SIZE) != 0) {
7162 error = EINVAL;
7163 goto out;
7164 }
7165 } else {
7166 error = EINVAL;
7167 goto out;
7168 }
7169
7170 for (i = 0; i < entry_count; i++) {
7171 if (entries[i].priority == -1) {
7172 /* Use as shorthand for default priority */
7173 entries[i].priority = JETSAM_PRIORITY_DEFAULT;
7174 } else if ((entries[i].priority == system_procs_aging_band) || (entries[i].priority == applications_aging_band)) {
7175 /* Both the aging bands are reserved for internal use;
7176 * if requested, adjust to JETSAM_PRIORITY_IDLE. */
7177 entries[i].priority = JETSAM_PRIORITY_IDLE;
7178 } else if (entries[i].priority == JETSAM_PRIORITY_IDLE_HEAD) {
7179 /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle
7180 * queue */
7181 /* Deal with this later */
7182 } else if ((entries[i].priority < 0) || (entries[i].priority >= MEMSTAT_BUCKET_COUNT)) {
7183 /* Sanity check */
7184 error = EINVAL;
7185 goto out;
7186 }
7187 }
7188
7189 table_size = sizeof(memorystatus_internal_properties_t) * entry_count;
7190 if ((table = kheap_alloc(KHEAP_TEMP, table_size, Z_WAITOK | Z_ZERO)) == NULL) {
7191 error = ENOMEM;
7192 goto out;
7193 }
7194
7195
7196 /*
7197 * For each jetsam bucket entry, spin through the input property list.
7198 * When a matching pid is found, populate an adjacent table with the
7199 * appropriate proc pointer and new property values.
7200 * This traversal automatically preserves order from lowest
7201 * to highest priority.
7202 */
7203
7204 bucket_index = 0;
7205
7206 proc_list_lock();
7207
7208 /* Create the ordered table */
7209 p = memorystatus_get_first_proc_locked(&bucket_index, TRUE);
7210 while (p && (table_count < entry_count)) {
7211 for (i = 0; i < entry_count; i++) {
7212 if (p->p_pid == entries[i].pid) {
7213 /* Build the table data */
7214 table[table_count].proc = p;
7215 table[table_count].priority = entries[i].priority;
7216 table_count++;
7217 break;
7218 }
7219 }
7220 p = memorystatus_get_next_proc_locked(&bucket_index, p, TRUE);
7221 }
7222
7223 /* We now have ordered list of procs ready to move */
7224 for (i = 0; i < table_count; i++) {
7225 p = table[i].proc;
7226 assert(p != NULL);
7227
7228 /* Allow head inserts -- but relative order is now */
7229 if (table[i].priority == JETSAM_PRIORITY_IDLE_HEAD) {
7230 new_priority = JETSAM_PRIORITY_IDLE;
7231 head_insert = true;
7232 } else {
7233 new_priority = table[i].priority;
7234 head_insert = false;
7235 }
7236
7237 /* Not allowed */
7238 if (p->p_memstat_state & P_MEMSTAT_INTERNAL) {
7239 continue;
7240 }
7241
7242 /*
7243 * Take appropriate steps if moving proc out of
7244 * either of the aging bands.
7245 */
7246 if ((p->p_memstat_effectivepriority == system_procs_aging_band) || (p->p_memstat_effectivepriority == applications_aging_band)) {
7247 memorystatus_invalidate_idle_demotion_locked(p, TRUE);
7248 }
7249
7250 memorystatus_update_priority_locked(p, new_priority, head_insert, false);
7251 }
7252
7253 proc_list_unlock();
7254
7255 /*
7256 * if (table_count != entry_count)
7257 * then some pids were not found in a jetsam band.
7258 * harmless but interesting...
7259 */
7260 out:
7261 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_END, MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY, entry_count, table_count, 0, 0);
7262
7263 if (entries) {
7264 kheap_free(KHEAP_TEMP, entries, buffer_size);
7265 }
7266 if (table) {
7267 kheap_free(KHEAP_TEMP, table, table_size);
7268 }
7269
7270 return error;
7271 }
7272
7273 memorystatus_internal_probabilities_t *memorystatus_global_probabilities_table = NULL;
7274 size_t memorystatus_global_probabilities_size = 0;
7275
7276 static int
7277 memorystatus_cmd_grp_set_probabilities(user_addr_t buffer, size_t buffer_size)
7278 {
7279 int error = 0;
7280 memorystatus_properties_entry_v1_t *entries = NULL;
7281 size_t entry_count = 0, i = 0;
7282 memorystatus_internal_probabilities_t *tmp_table_new = NULL, *tmp_table_old = NULL;
7283 size_t tmp_table_new_size = 0, tmp_table_old_size = 0;
7284
7285 /* Verify inputs */
7286 if ((buffer == USER_ADDR_NULL) || (buffer_size == 0)) {
7287 error = EINVAL;
7288 goto out;
7289 }
7290
7291 entry_count = (buffer_size / sizeof(memorystatus_properties_entry_v1_t));
7292
7293 if ((entries = kheap_alloc(KHEAP_TEMP, buffer_size, Z_WAITOK)) == NULL) {
7294 error = ENOMEM;
7295 goto out;
7296 }
7297
7298 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_START, MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY, entry_count, 0, 0, 0);
7299
7300 if ((error = copyin(buffer, entries, buffer_size)) != 0) {
7301 goto out;
7302 }
7303
7304 if (entries[0].version == MEMORYSTATUS_MPE_VERSION_1) {
7305 if ((buffer_size % MEMORYSTATUS_MPE_VERSION_1_SIZE) != 0) {
7306 error = EINVAL;
7307 goto out;
7308 }
7309 } else {
7310 error = EINVAL;
7311 goto out;
7312 }
7313
7314 /* Verify sanity of input priorities */
7315 for (i = 0; i < entry_count; i++) {
7316 /*
7317 * 0 - low probability of use.
7318 * 1 - high probability of use.
7319 *
7320 * Keeping this field an int (& not a bool) to allow
7321 * us to experiment with different values/approaches
7322 * later on.
7323 */
7324 if (entries[i].use_probability > 1) {
7325 error = EINVAL;
7326 goto out;
7327 }
7328 }
7329
7330 tmp_table_new_size = sizeof(memorystatus_internal_probabilities_t) * entry_count;
7331
7332 if ((tmp_table_new = kalloc_flags(tmp_table_new_size, Z_WAITOK | Z_ZERO)) == NULL) {
7333 error = ENOMEM;
7334 goto out;
7335 }
7336
7337 proc_list_lock();
7338
7339 if (memorystatus_global_probabilities_table) {
7340 tmp_table_old = memorystatus_global_probabilities_table;
7341 tmp_table_old_size = memorystatus_global_probabilities_size;
7342 }
7343
7344 memorystatus_global_probabilities_table = tmp_table_new;
7345 memorystatus_global_probabilities_size = tmp_table_new_size;
7346 tmp_table_new = NULL;
7347
7348 for (i = 0; i < entry_count; i++) {
7349 /* Build the table data */
7350 strlcpy(memorystatus_global_probabilities_table[i].proc_name, entries[i].proc_name, MAXCOMLEN + 1);
7351 memorystatus_global_probabilities_table[i].use_probability = entries[i].use_probability;
7352 }
7353
7354 proc_list_unlock();
7355
7356 out:
7357 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_GRP_SET_PROP) | DBG_FUNC_END, MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY, entry_count, tmp_table_new_size, 0, 0);
7358
7359 if (entries) {
7360 kheap_free(KHEAP_TEMP, entries, buffer_size);
7361 entries = NULL;
7362 }
7363
7364 if (tmp_table_old) {
7365 kfree(tmp_table_old, tmp_table_old_size);
7366 tmp_table_old = NULL;
7367 }
7368
7369 return error;
7370 }
7371
7372 static int
7373 memorystatus_cmd_grp_set_properties(int32_t flags, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval)
7374 {
7375 int error = 0;
7376
7377 if ((flags & MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY) == MEMORYSTATUS_FLAGS_GRP_SET_PRIORITY) {
7378 error = memorystatus_cmd_grp_set_priorities(buffer, buffer_size);
7379 } else if ((flags & MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY) == MEMORYSTATUS_FLAGS_GRP_SET_PROBABILITY) {
7380 error = memorystatus_cmd_grp_set_probabilities(buffer, buffer_size);
7381 } else {
7382 error = EINVAL;
7383 }
7384
7385 return error;
7386 }
7387
7388 /*
7389 * This routine is used to update a process's jetsam priority position and stored user_data.
7390 * It is not used for the setting of memory limits, which is why the last 6 args to the
7391 * memorystatus_update() call are 0 or FALSE.
7392 *
7393 * Flags passed into this call are used to distinguish the motivation behind a jetsam priority
7394 * transition. By default, the kernel updates the process's original requested priority when
7395 * no flag is passed. But when the MEMORYSTATUS_SET_PRIORITY_ASSERTION flag is used, the kernel
7396 * updates the process's assertion driven priority.
7397 *
7398 * The assertion flag was introduced for use by the device's assertion mediator (eg: runningboardd).
7399 * When an assertion is controlling a process's jetsam priority, it may conflict with that process's
7400 * dirty/clean (active/inactive) jetsam state. The kernel attempts to resolve a priority transition
7401 * conflict by reviewing the process state and then choosing the maximum jetsam band at play,
7402 * eg: requested priority versus assertion priority.
7403 */
7404
7405 static int
7406 memorystatus_cmd_set_priority_properties(pid_t pid, uint32_t flags, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval)
7407 {
7408 int error = 0;
7409 boolean_t is_assertion = FALSE; /* priority is driven by an assertion */
7410 memorystatus_priority_properties_t mpp_entry;
7411
7412 /* Validate inputs */
7413 if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_priority_properties_t))) {
7414 return EINVAL;
7415 }
7416
7417 /* Validate flags */
7418 if (flags == 0) {
7419 /*
7420 * Default. This path updates requestedpriority.
7421 */
7422 } else {
7423 if (flags & ~(MEMORYSTATUS_SET_PRIORITY_ASSERTION)) {
7424 /*
7425 * Unsupported bit set in flag.
7426 */
7427 return EINVAL;
7428 } else if (flags & MEMORYSTATUS_SET_PRIORITY_ASSERTION) {
7429 is_assertion = TRUE;
7430 }
7431 }
7432
7433 error = copyin(buffer, &mpp_entry, buffer_size);
7434
7435 if (error == 0) {
7436 proc_t p;
7437
7438 p = proc_find(pid);
7439 if (!p) {
7440 return ESRCH;
7441 }
7442
7443 if (p->p_memstat_state & P_MEMSTAT_INTERNAL) {
7444 proc_rele(p);
7445 return EPERM;
7446 }
7447
7448 if (is_assertion) {
7449 os_log(OS_LOG_DEFAULT, "memorystatus: set assertion priority(%d) target %s:%d\n",
7450 mpp_entry.priority, (*p->p_name ? p->p_name : "unknown"), p->p_pid);
7451 }
7452
7453 error = memorystatus_update(p, mpp_entry.priority, mpp_entry.user_data, is_assertion, FALSE, FALSE, 0, 0, FALSE, FALSE);
7454 proc_rele(p);
7455 }
7456
7457 return error;
7458 }
7459
7460 static int
7461 memorystatus_cmd_set_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval)
7462 {
7463 int error = 0;
7464 memorystatus_memlimit_properties_t mmp_entry;
7465
7466 /* Validate inputs */
7467 if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(memorystatus_memlimit_properties_t))) {
7468 return EINVAL;
7469 }
7470
7471 error = copyin(buffer, &mmp_entry, buffer_size);
7472
7473 if (error == 0) {
7474 error = memorystatus_set_memlimit_properties(pid, &mmp_entry);
7475 }
7476
7477 return error;
7478 }
7479
7480 static void
7481 memorystatus_get_memlimit_properties_internal(proc_t p, memorystatus_memlimit_properties_t* p_entry)
7482 {
7483 memset(p_entry, 0, sizeof(memorystatus_memlimit_properties_t));
7484
7485 if (p->p_memstat_memlimit_active > 0) {
7486 p_entry->memlimit_active = p->p_memstat_memlimit_active;
7487 } else {
7488 task_convert_phys_footprint_limit(-1, &p_entry->memlimit_active);
7489 }
7490
7491 if (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL) {
7492 p_entry->memlimit_active_attr |= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL;
7493 }
7494
7495 /*
7496 * Get the inactive limit and attributes
7497 */
7498 if (p->p_memstat_memlimit_inactive <= 0) {
7499 task_convert_phys_footprint_limit(-1, &p_entry->memlimit_inactive);
7500 } else {
7501 p_entry->memlimit_inactive = p->p_memstat_memlimit_inactive;
7502 }
7503 if (p->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) {
7504 p_entry->memlimit_inactive_attr |= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL;
7505 }
7506 }
7507
7508 /*
7509 * When getting the memlimit settings, we can't simply call task_get_phys_footprint_limit().
7510 * That gets the proc's cached memlimit and there is no guarantee that the active/inactive
7511 * limits will be the same in the no-limit case. Instead we convert limits <= 0 using
7512 * task_convert_phys_footprint_limit(). It computes the same limit value that would be written
7513 * to the task's ledgers via task_set_phys_footprint_limit().
7514 */
7515 static int
7516 memorystatus_cmd_get_memlimit_properties(pid_t pid, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval)
7517 {
7518 memorystatus_memlimit_properties2_t mmp_entry;
7519
7520 /* Validate inputs */
7521 if ((pid == 0) || (buffer == USER_ADDR_NULL) ||
7522 ((buffer_size != sizeof(memorystatus_memlimit_properties_t)) &&
7523 (buffer_size != sizeof(memorystatus_memlimit_properties2_t)))) {
7524 return EINVAL;
7525 }
7526
7527 memset(&mmp_entry, 0, sizeof(memorystatus_memlimit_properties2_t));
7528
7529 proc_t p = proc_find(pid);
7530 if (!p) {
7531 return ESRCH;
7532 }
7533
7534 /*
7535 * Get the active limit and attributes.
7536 * No locks taken since we hold a reference to the proc.
7537 */
7538
7539 memorystatus_get_memlimit_properties_internal(p, &mmp_entry.v1);
7540
7541 #if CONFIG_JETSAM
7542 #if DEVELOPMENT || DEBUG
7543 /*
7544 * Get the limit increased via SPI
7545 */
7546 mmp_entry.memlimit_increase = roundToNearestMB(p->p_memlimit_increase);
7547 mmp_entry.memlimit_increase_bytes = p->p_memlimit_increase;
7548 #endif /* DEVELOPMENT || DEBUG */
7549 #endif /* CONFIG_JETSAM */
7550
7551 proc_rele(p);
7552
7553 int error = copyout(&mmp_entry, buffer, buffer_size);
7554
7555 return error;
7556 }
7557
7558
7559 /*
7560 * SPI for kbd - pr24956468
7561 * This is a very simple snapshot that calculates how much a
7562 * process's phys_footprint exceeds a specific memory limit.
7563 * Only the inactive memory limit is supported for now.
7564 * The delta is returned as bytes in excess or zero.
7565 */
7566 static int
7567 memorystatus_cmd_get_memlimit_excess_np(pid_t pid, uint32_t flags, user_addr_t buffer, size_t buffer_size, __unused int32_t *retval)
7568 {
7569 int error = 0;
7570 uint64_t footprint_in_bytes = 0;
7571 uint64_t delta_in_bytes = 0;
7572 int32_t memlimit_mb = 0;
7573 uint64_t memlimit_bytes = 0;
7574
7575 /* Validate inputs */
7576 if ((pid == 0) || (buffer == USER_ADDR_NULL) || (buffer_size != sizeof(uint64_t)) || (flags != 0)) {
7577 return EINVAL;
7578 }
7579
7580 proc_t p = proc_find(pid);
7581 if (!p) {
7582 return ESRCH;
7583 }
7584
7585 /*
7586 * Get the inactive limit.
7587 * No locks taken since we hold a reference to the proc.
7588 */
7589
7590 if (p->p_memstat_memlimit_inactive <= 0) {
7591 task_convert_phys_footprint_limit(-1, &memlimit_mb);
7592 } else {
7593 memlimit_mb = p->p_memstat_memlimit_inactive;
7594 }
7595
7596 footprint_in_bytes = get_task_phys_footprint(p->task);
7597
7598 proc_rele(p);
7599
7600 memlimit_bytes = memlimit_mb * 1024 * 1024; /* MB to bytes */
7601
7602 /*
7603 * Computed delta always returns >= 0 bytes
7604 */
7605 if (footprint_in_bytes > memlimit_bytes) {
7606 delta_in_bytes = footprint_in_bytes - memlimit_bytes;
7607 }
7608
7609 error = copyout(&delta_in_bytes, buffer, sizeof(delta_in_bytes));
7610
7611 return error;
7612 }
7613
7614
7615 static int
7616 memorystatus_cmd_get_pressure_status(int32_t *retval)
7617 {
7618 int error;
7619
7620 /* Need privilege for check */
7621 error = priv_check_cred(kauth_cred_get(), PRIV_VM_PRESSURE, 0);
7622 if (error) {
7623 return error;
7624 }
7625
7626 /* Inherently racy, so it's not worth taking a lock here */
7627 *retval = (kVMPressureNormal != memorystatus_vm_pressure_level) ? 1 : 0;
7628
7629 return error;
7630 }
7631
7632 int
7633 memorystatus_get_pressure_status_kdp()
7634 {
7635 return (kVMPressureNormal != memorystatus_vm_pressure_level) ? 1 : 0;
7636 }
7637
7638 /*
7639 * Every process, including a P_MEMSTAT_INTERNAL process (currently only pid 1), is allowed to set a HWM.
7640 *
7641 * This call is inflexible -- it does not distinguish between active/inactive, fatal/non-fatal
7642 * So, with 2-level HWM preserving previous behavior will map as follows.
7643 * - treat the limit passed in as both an active and inactive limit.
7644 * - treat the is_fatal_limit flag as though it applies to both active and inactive limits.
7645 *
7646 * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK
7647 * - the is_fatal_limit is FALSE, meaning the active and inactive limits are non-fatal/soft
7648 * - so mapping is (active/non-fatal, inactive/non-fatal)
7649 *
7650 * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT
7651 * - the is_fatal_limit is TRUE, meaning the process's active and inactive limits are fatal/hard
7652 * - so mapping is (active/fatal, inactive/fatal)
7653 */
7654
7655 #if CONFIG_JETSAM
7656 static int
7657 memorystatus_cmd_set_jetsam_memory_limit(pid_t pid, int32_t high_water_mark, __unused int32_t *retval, boolean_t is_fatal_limit)
7658 {
7659 int error = 0;
7660 memorystatus_memlimit_properties_t entry;
7661
7662 entry.memlimit_active = high_water_mark;
7663 entry.memlimit_active_attr = 0;
7664 entry.memlimit_inactive = high_water_mark;
7665 entry.memlimit_inactive_attr = 0;
7666
7667 if (is_fatal_limit == TRUE) {
7668 entry.memlimit_active_attr |= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL;
7669 entry.memlimit_inactive_attr |= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL;
7670 }
7671
7672 error = memorystatus_set_memlimit_properties(pid, &entry);
7673 return error;
7674 }
7675 #endif /* CONFIG_JETSAM */
7676
7677 static int
7678 memorystatus_set_memlimit_properties_internal(proc_t p, memorystatus_memlimit_properties_t *p_entry)
7679 {
7680 int error = 0;
7681
7682 LCK_MTX_ASSERT(proc_list_mlock, LCK_MTX_ASSERT_OWNED);
7683
7684 /*
7685 * Store the active limit variants in the proc.
7686 */
7687 SET_ACTIVE_LIMITS_LOCKED(p, p_entry->memlimit_active, p_entry->memlimit_active_attr);
7688
7689 /*
7690 * Store the inactive limit variants in the proc.
7691 */
7692 SET_INACTIVE_LIMITS_LOCKED(p, p_entry->memlimit_inactive, p_entry->memlimit_inactive_attr);
7693
7694 /*
7695 * Enforce appropriate limit variant by updating the cached values
7696 * and writing the ledger.
7697 * Limit choice is based on process active/inactive state.
7698 */
7699
7700 if (memorystatus_highwater_enabled) {
7701 boolean_t is_fatal;
7702 boolean_t use_active;
7703
7704 if (proc_jetsam_state_is_active_locked(p) == TRUE) {
7705 CACHE_ACTIVE_LIMITS_LOCKED(p, is_fatal);
7706 use_active = TRUE;
7707 } else {
7708 CACHE_INACTIVE_LIMITS_LOCKED(p, is_fatal);
7709 use_active = FALSE;
7710 }
7711
7712 /* Enforce the limit by writing to the ledgers */
7713 error = (task_set_phys_footprint_limit_internal(p->task, ((p->p_memstat_memlimit > 0) ? p->p_memstat_memlimit : -1), NULL, use_active, is_fatal) == 0) ? 0 : EINVAL;
7714
7715 MEMORYSTATUS_DEBUG(3, "memorystatus_set_memlimit_properties: new limit on pid %d (%dMB %s) current priority (%d) dirty_state?=0x%x %s\n",
7716 p->p_pid, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1),
7717 (p->p_memstat_state & P_MEMSTAT_FATAL_MEMLIMIT ? "F " : "NF"), p->p_memstat_effectivepriority, p->p_memstat_dirty,
7718 (p->p_memstat_dirty ? ((p->p_memstat_dirty & P_DIRTY) ? "isdirty" : "isclean") : ""));
7719 DTRACE_MEMORYSTATUS2(memorystatus_set_memlimit, proc_t, p, int32_t, (p->p_memstat_memlimit > 0 ? p->p_memstat_memlimit : -1));
7720 }
7721
7722 return error;
7723 }
7724
7725 static int
7726 memorystatus_set_memlimit_properties(pid_t pid, memorystatus_memlimit_properties_t *entry)
7727 {
7728 memorystatus_memlimit_properties_t set_entry;
7729
7730 proc_t p = proc_find(pid);
7731 if (!p) {
7732 return ESRCH;
7733 }
7734
7735 /*
7736 * Check for valid attribute flags.
7737 */
7738 const uint32_t valid_attrs = MEMORYSTATUS_MEMLIMIT_ATTR_FATAL;
7739 if ((entry->memlimit_active_attr & (~valid_attrs)) != 0) {
7740 proc_rele(p);
7741 return EINVAL;
7742 }
7743 if ((entry->memlimit_inactive_attr & (~valid_attrs)) != 0) {
7744 proc_rele(p);
7745 return EINVAL;
7746 }
7747
7748 /*
7749 * Setup the active memlimit properties
7750 */
7751 set_entry.memlimit_active = entry->memlimit_active;
7752 set_entry.memlimit_active_attr = entry->memlimit_active_attr & MEMORYSTATUS_MEMLIMIT_ATTR_FATAL;
7753
7754 /*
7755 * Setup the inactive memlimit properties
7756 */
7757 set_entry.memlimit_inactive = entry->memlimit_inactive;
7758 set_entry.memlimit_inactive_attr = entry->memlimit_inactive_attr & MEMORYSTATUS_MEMLIMIT_ATTR_FATAL;
7759
7760 /*
7761 * Setting a limit of <= 0 implies that the process has no
7762 * high-water-mark and has no per-task-limit. That means
7763 * the system_wide task limit is in place, which by the way,
7764 * is always fatal.
7765 */
7766
7767 if (set_entry.memlimit_active <= 0) {
7768 /*
7769 * Enforce the fatal system_wide task limit while process is active.
7770 */
7771 set_entry.memlimit_active = -1;
7772 set_entry.memlimit_active_attr = MEMORYSTATUS_MEMLIMIT_ATTR_FATAL;
7773 }
7774 #if CONFIG_JETSAM
7775 #if DEVELOPMENT || DEBUG
7776 else {
7777 /* add the current increase to it, for roots */
7778 set_entry.memlimit_active += roundToNearestMB(p->p_memlimit_increase);
7779 }
7780 #endif /* DEVELOPMENT || DEBUG */
7781 #endif /* CONFIG_JETSAM */
7782
7783 if (set_entry.memlimit_inactive <= 0) {
7784 /*
7785 * Enforce the fatal system_wide task limit while process is inactive.
7786 */
7787 set_entry.memlimit_inactive = -1;
7788 set_entry.memlimit_inactive_attr = MEMORYSTATUS_MEMLIMIT_ATTR_FATAL;
7789 }
7790 #if CONFIG_JETSAM
7791 #if DEVELOPMENT || DEBUG
7792 else {
7793 /* add the current increase to it, for roots */
7794 set_entry.memlimit_inactive += roundToNearestMB(p->p_memlimit_increase);
7795 }
7796 #endif /* DEVELOPMENT || DEBUG */
7797 #endif /* CONFIG_JETSAM */
7798
7799 proc_list_lock();
7800
7801 int error = memorystatus_set_memlimit_properties_internal(p, &set_entry);
7802
7803 proc_list_unlock();
7804 proc_rele(p);
7805
7806 return error;
7807 }
7808
7809 /*
7810 * Returns the jetsam priority (effective or requested) of the process
7811 * associated with this task.
7812 */
7813 int
7814 proc_get_memstat_priority(proc_t p, boolean_t effective_priority)
7815 {
7816 if (p) {
7817 if (effective_priority) {
7818 return p->p_memstat_effectivepriority;
7819 } else {
7820 return p->p_memstat_requestedpriority;
7821 }
7822 }
7823 return 0;
7824 }
7825
7826 static int
7827 memorystatus_get_process_is_managed(pid_t pid, int *is_managed)
7828 {
7829 proc_t p = NULL;
7830
7831 /* Validate inputs */
7832 if (pid == 0) {
7833 return EINVAL;
7834 }
7835
7836 p = proc_find(pid);
7837 if (!p) {
7838 return ESRCH;
7839 }
7840
7841 proc_list_lock();
7842 *is_managed = ((p->p_memstat_state & P_MEMSTAT_MANAGED) ? 1 : 0);
7843 proc_rele_locked(p);
7844 proc_list_unlock();
7845
7846 return 0;
7847 }
7848
7849 static int
7850 memorystatus_set_process_is_managed(pid_t pid, boolean_t set_managed)
7851 {
7852 proc_t p = NULL;
7853
7854 /* Validate inputs */
7855 if (pid == 0) {
7856 return EINVAL;
7857 }
7858
7859 p = proc_find(pid);
7860 if (!p) {
7861 return ESRCH;
7862 }
7863
7864 proc_list_lock();
7865 if (set_managed == TRUE) {
7866 p->p_memstat_state |= P_MEMSTAT_MANAGED;
7867 /*
7868 * The P_MEMSTAT_MANAGED bit is set by assertiond for Apps.
7869 * Also opt them in to being frozen (they might have started
7870 * off with the P_MEMSTAT_FREEZE_DISABLED bit set.)
7871 */
7872 p->p_memstat_state &= ~P_MEMSTAT_FREEZE_DISABLED;
7873 } else {
7874 p->p_memstat_state &= ~P_MEMSTAT_MANAGED;
7875 }
7876 proc_rele_locked(p);
7877 proc_list_unlock();
7878
7879 return 0;
7880 }
7881
7882 int
7883 memorystatus_control(struct proc *p __unused, struct memorystatus_control_args *args, int *ret)
7884 {
7885 int error = EINVAL;
7886 boolean_t skip_auth_check = FALSE;
7887 os_reason_t jetsam_reason = OS_REASON_NULL;
7888
7889 #if !CONFIG_JETSAM
7890 #pragma unused(ret)
7891 #pragma unused(jetsam_reason)
7892 #endif
7893
7894 /* We don't need entitlements if we're setting / querying the freeze preference or frozen status for a process. */
7895 if (args->command == MEMORYSTATUS_CMD_SET_PROCESS_IS_FREEZABLE ||
7896 args->command == MEMORYSTATUS_CMD_GET_PROCESS_IS_FREEZABLE ||
7897 args->command == MEMORYSTATUS_CMD_GET_PROCESS_IS_FROZEN) {
7898 skip_auth_check = TRUE;
7899 }
7900
7901 /* Need to be root or have entitlement. */
7902 if (!kauth_cred_issuser(kauth_cred_get()) && !IOTaskHasEntitlement(current_task(), MEMORYSTATUS_ENTITLEMENT) && !skip_auth_check) {
7903 error = EPERM;
7904 goto out;
7905 }
7906
7907 /*
7908 * Sanity check.
7909 * Do not enforce it for snapshots.
7910 */
7911 if (args->command != MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT) {
7912 if (args->buffersize > MEMORYSTATUS_BUFFERSIZE_MAX) {
7913 error = EINVAL;
7914 goto out;
7915 }
7916 }
7917
7918 switch (args->command) {
7919 case MEMORYSTATUS_CMD_GET_PRIORITY_LIST:
7920 error = memorystatus_cmd_get_priority_list(args->pid, args->buffer, args->buffersize, ret);
7921 break;
7922 case MEMORYSTATUS_CMD_SET_PRIORITY_PROPERTIES:
7923 error = memorystatus_cmd_set_priority_properties(args->pid, args->flags, args->buffer, args->buffersize, ret);
7924 break;
7925 case MEMORYSTATUS_CMD_SET_MEMLIMIT_PROPERTIES:
7926 error = memorystatus_cmd_set_memlimit_properties(args->pid, args->buffer, args->buffersize, ret);
7927 break;
7928 case MEMORYSTATUS_CMD_GET_MEMLIMIT_PROPERTIES:
7929 error = memorystatus_cmd_get_memlimit_properties(args->pid, args->buffer, args->buffersize, ret);
7930 break;
7931 case MEMORYSTATUS_CMD_GET_MEMLIMIT_EXCESS:
7932 error = memorystatus_cmd_get_memlimit_excess_np(args->pid, args->flags, args->buffer, args->buffersize, ret);
7933 break;
7934 case MEMORYSTATUS_CMD_GRP_SET_PROPERTIES:
7935 error = memorystatus_cmd_grp_set_properties((int32_t)args->flags, args->buffer, args->buffersize, ret);
7936 break;
7937 case MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT:
7938 error = memorystatus_cmd_get_jetsam_snapshot((int32_t)args->flags, args->buffer, args->buffersize, ret);
7939 break;
7940 #if DEVELOPMENT || DEBUG
7941 case MEMORYSTATUS_CMD_SET_JETSAM_SNAPSHOT_OWNERSHIP:
7942 error = memorystatus_cmd_set_jetsam_snapshot_ownership((int32_t) args->flags);
7943 break;
7944 #endif
7945 case MEMORYSTATUS_CMD_GET_PRESSURE_STATUS:
7946 error = memorystatus_cmd_get_pressure_status(ret);
7947 break;
7948 #if CONFIG_JETSAM
7949 case MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK:
7950 /*
7951 * This call does not distinguish between active and inactive limits.
7952 * Default behavior in 2-level HWM world is to set both.
7953 * Non-fatal limit is also assumed for both.
7954 */
7955 error = memorystatus_cmd_set_jetsam_memory_limit(args->pid, (int32_t)args->flags, ret, FALSE);
7956 break;
7957 case MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT:
7958 /*
7959 * This call does not distinguish between active and inactive limits.
7960 * Default behavior in 2-level HWM world is to set both.
7961 * Fatal limit is also assumed for both.
7962 */
7963 error = memorystatus_cmd_set_jetsam_memory_limit(args->pid, (int32_t)args->flags, ret, TRUE);
7964 break;
7965 #endif /* CONFIG_JETSAM */
7966 /* Test commands */
7967 #if DEVELOPMENT || DEBUG
7968 case MEMORYSTATUS_CMD_TEST_JETSAM:
7969 jetsam_reason = os_reason_create(OS_REASON_JETSAM, JETSAM_REASON_GENERIC);
7970 if (jetsam_reason == OS_REASON_NULL) {
7971 printf("memorystatus_control: failed to allocate jetsam reason\n");
7972 }
7973
7974 error = memorystatus_kill_process_sync(args->pid, kMemorystatusKilled, jetsam_reason) ? 0 : EINVAL;
7975 break;
7976 case MEMORYSTATUS_CMD_TEST_JETSAM_SORT:
7977 error = memorystatus_cmd_test_jetsam_sort(args->pid, (int32_t)args->flags, args->buffer, args->buffersize);
7978 break;
7979 #if CONFIG_JETSAM
7980 case MEMORYSTATUS_CMD_SET_JETSAM_PANIC_BITS:
7981 error = memorystatus_cmd_set_panic_bits(args->buffer, args->buffersize);
7982 break;
7983 #endif /* CONFIG_JETSAM */
7984 #else /* DEVELOPMENT || DEBUG */
7985 #pragma unused(jetsam_reason)
7986 #endif /* DEVELOPMENT || DEBUG */
7987 case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_ENABLE:
7988 if (memorystatus_aggressive_jetsam_lenient_allowed == FALSE) {
7989 #if DEVELOPMENT || DEBUG
7990 printf("Enabling Lenient Mode\n");
7991 #endif /* DEVELOPMENT || DEBUG */
7992
7993 memorystatus_aggressive_jetsam_lenient_allowed = TRUE;
7994 memorystatus_aggressive_jetsam_lenient = TRUE;
7995 error = 0;
7996 }
7997 break;
7998 case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_DISABLE:
7999 #if DEVELOPMENT || DEBUG
8000 printf("Disabling Lenient mode\n");
8001 #endif /* DEVELOPMENT || DEBUG */
8002 memorystatus_aggressive_jetsam_lenient_allowed = FALSE;
8003 memorystatus_aggressive_jetsam_lenient = FALSE;
8004 error = 0;
8005 break;
8006 case MEMORYSTATUS_CMD_GET_AGGRESSIVE_JETSAM_LENIENT_MODE:
8007 *ret = (memorystatus_aggressive_jetsam_lenient ? 1 : 0);
8008 error = 0;
8009 break;
8010 case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_ENABLE:
8011 case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_DISABLE:
8012 error = memorystatus_low_mem_privileged_listener(args->command);
8013 break;
8014
8015 case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE:
8016 case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE:
8017 error = memorystatus_update_inactive_jetsam_priority_band(args->pid, args->command, JETSAM_PRIORITY_ELEVATED_INACTIVE, args->flags ? TRUE : FALSE);
8018 break;
8019 case MEMORYSTATUS_CMD_SET_PROCESS_IS_MANAGED:
8020 error = memorystatus_set_process_is_managed(args->pid, args->flags);
8021 break;
8022
8023 case MEMORYSTATUS_CMD_GET_PROCESS_IS_MANAGED:
8024 error = memorystatus_get_process_is_managed(args->pid, ret);
8025 break;
8026
8027 #if CONFIG_FREEZE
8028 case MEMORYSTATUS_CMD_SET_PROCESS_IS_FREEZABLE:
8029 error = memorystatus_set_process_is_freezable(args->pid, args->flags ? TRUE : FALSE);
8030 break;
8031
8032 case MEMORYSTATUS_CMD_GET_PROCESS_IS_FREEZABLE:
8033 error = memorystatus_get_process_is_freezable(args->pid, ret);
8034 break;
8035 case MEMORYSTATUS_CMD_GET_PROCESS_IS_FROZEN:
8036 error = memorystatus_get_process_is_frozen(args->pid, ret);
8037 break;
8038
8039 case MEMORYSTATUS_CMD_FREEZER_CONTROL:
8040 error = memorystatus_freezer_control(args->flags, args->buffer, args->buffersize, ret);
8041 break;
8042 #endif /* CONFIG_FREEZE */
8043
8044 #if CONFIG_JETSAM
8045 #if DEVELOPMENT || DEBUG
8046 case MEMORYSTATUS_CMD_INCREASE_JETSAM_TASK_LIMIT:
8047 error = memorystatus_cmd_increase_jetsam_task_limit(args->pid, args->flags);
8048 break;
8049 #endif /* DEVELOPMENT || DEBUG */
8050 #endif /* CONFIG_JETSAM */
8051
8052 default:
8053 break;
8054 }
8055
8056 out:
8057 return error;
8058 }
8059
8060 /* Coalition support */
8061
8062 /* sorting info for a particular priority bucket */
8063 typedef struct memstat_sort_info {
8064 coalition_t msi_coal;
8065 uint64_t msi_page_count;
8066 pid_t msi_pid;
8067 int msi_ntasks;
8068 } memstat_sort_info_t;
8069
8070 /*
8071 * qsort from smallest page count to largest page count
8072 *
8073 * return < 0 for a < b
8074 * 0 for a == b
8075 * > 0 for a > b
8076 */
8077 static int
8078 memstat_asc_cmp(const void *a, const void *b)
8079 {
8080 const memstat_sort_info_t *msA = (const memstat_sort_info_t *)a;
8081 const memstat_sort_info_t *msB = (const memstat_sort_info_t *)b;
8082
8083 return (int)((uint64_t)msA->msi_page_count - (uint64_t)msB->msi_page_count);
8084 }
8085
8086 /*
8087 * Return the number of pids rearranged during this sort.
8088 */
8089 static int
8090 memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index, int coal_sort_order)
8091 {
8092 #define MAX_SORT_PIDS 80
8093 #define MAX_COAL_LEADERS 10
8094
8095 unsigned int b = bucket_index;
8096 int nleaders = 0;
8097 int ntasks = 0;
8098 proc_t p = NULL;
8099 coalition_t coal = COALITION_NULL;
8100 int pids_moved = 0;
8101 int total_pids_moved = 0;
8102 int i;
8103
8104 /*
8105 * The system is typically under memory pressure when in this
8106 * path, hence, we want to avoid dynamic memory allocation.
8107 */
8108 memstat_sort_info_t leaders[MAX_COAL_LEADERS];
8109 pid_t pid_list[MAX_SORT_PIDS];
8110
8111 if (bucket_index >= MEMSTAT_BUCKET_COUNT) {
8112 return 0;
8113 }
8114
8115 /*
8116 * Clear the array that holds coalition leader information
8117 */
8118 for (i = 0; i < MAX_COAL_LEADERS; i++) {
8119 leaders[i].msi_coal = COALITION_NULL;
8120 leaders[i].msi_page_count = 0; /* will hold total coalition page count */
8121 leaders[i].msi_pid = 0; /* will hold coalition leader pid */
8122 leaders[i].msi_ntasks = 0; /* will hold the number of tasks in a coalition */
8123 }
8124
8125 p = memorystatus_get_first_proc_locked(&b, FALSE);
8126 while (p) {
8127 coal = task_get_coalition(p->task, COALITION_TYPE_JETSAM);
8128 if (coalition_is_leader(p->task, coal)) {
8129 if (nleaders < MAX_COAL_LEADERS) {
8130 int coal_ntasks = 0;
8131 uint64_t coal_page_count = coalition_get_page_count(coal, &coal_ntasks);
8132 leaders[nleaders].msi_coal = coal;
8133 leaders[nleaders].msi_page_count = coal_page_count;
8134 leaders[nleaders].msi_pid = p->p_pid; /* the coalition leader */
8135 leaders[nleaders].msi_ntasks = coal_ntasks;
8136 nleaders++;
8137 } else {
8138 /*
8139 * We've hit MAX_COAL_LEADERS meaning we can handle no more coalitions.
8140 * Abandoned coalitions will linger at the tail of the priority band
8141 * when this sort session ends.
8142 * TODO: should this be an assert?
8143 */
8144 printf("%s: WARNING: more than %d leaders in priority band [%d]\n",
8145 __FUNCTION__, MAX_COAL_LEADERS, bucket_index);
8146 break;
8147 }
8148 }
8149 p = memorystatus_get_next_proc_locked(&b, p, FALSE);
8150 }
8151
8152 if (nleaders == 0) {
8153 /* Nothing to sort */
8154 return 0;
8155 }
8156
8157 /*
8158 * Sort the coalition leader array, from smallest coalition page count
8159 * to largest coalition page count. When inserted in the priority bucket,
8160 * smallest coalition is handled first, resulting in the last to be jetsammed.
8161 */
8162 if (nleaders > 1) {
8163 qsort(leaders, nleaders, sizeof(memstat_sort_info_t), memstat_asc_cmp);
8164 }
8165
8166 #if 0
8167 for (i = 0; i < nleaders; i++) {
8168 printf("%s: coal_leader[%d of %d] pid[%d] pages[%llu] ntasks[%d]\n",
8169 __FUNCTION__, i, nleaders, leaders[i].msi_pid, leaders[i].msi_page_count,
8170 leaders[i].msi_ntasks);
8171 }
8172 #endif
8173
8174 /*
8175 * During coalition sorting, processes in a priority band are rearranged
8176 * by being re-inserted at the head of the queue. So, when handling a
8177 * list, the first process that gets moved to the head of the queue,
8178 * ultimately gets pushed toward the queue tail, and hence, jetsams last.
8179 *
8180 * So, for example, the coalition leader is expected to jetsam last,
8181 * after its coalition members. Therefore, the coalition leader is
8182 * inserted at the head of the queue first.
8183 *
8184 * After processing a coalition, the jetsam order is as follows:
8185 * undefs(jetsam first), extensions, xpc services, leader(jetsam last)
8186 */
8187
8188 /*
8189 * Coalition members are rearranged in the priority bucket here,
8190 * based on their coalition role.
8191 */
8192 total_pids_moved = 0;
8193 for (i = 0; i < nleaders; i++) {
8194 /* a bit of bookkeeping */
8195 pids_moved = 0;
8196
8197 /* Coalition leaders are jetsammed last, so move into place first */
8198 pid_list[0] = leaders[i].msi_pid;
8199 pids_moved += memorystatus_move_list_locked(bucket_index, pid_list, 1);
8200
8201 /* xpc services should jetsam after extensions */
8202 ntasks = coalition_get_pid_list(leaders[i].msi_coal, COALITION_ROLEMASK_XPC,
8203 coal_sort_order, pid_list, MAX_SORT_PIDS);
8204
8205 if (ntasks > 0) {
8206 pids_moved += memorystatus_move_list_locked(bucket_index, pid_list,
8207 (ntasks <= MAX_SORT_PIDS ? ntasks : MAX_SORT_PIDS));
8208 }
8209
8210 /* extensions should jetsam after unmarked processes */
8211 ntasks = coalition_get_pid_list(leaders[i].msi_coal, COALITION_ROLEMASK_EXT,
8212 coal_sort_order, pid_list, MAX_SORT_PIDS);
8213
8214 if (ntasks > 0) {
8215 pids_moved += memorystatus_move_list_locked(bucket_index, pid_list,
8216 (ntasks <= MAX_SORT_PIDS ? ntasks : MAX_SORT_PIDS));
8217 }
8218
8219 /* undefined coalition members should be the first to jetsam */
8220 ntasks = coalition_get_pid_list(leaders[i].msi_coal, COALITION_ROLEMASK_UNDEF,
8221 coal_sort_order, pid_list, MAX_SORT_PIDS);
8222
8223 if (ntasks > 0) {
8224 pids_moved += memorystatus_move_list_locked(bucket_index, pid_list,
8225 (ntasks <= MAX_SORT_PIDS ? ntasks : MAX_SORT_PIDS));
8226 }
8227
8228 #if 0
8229 if (pids_moved == leaders[i].msi_ntasks) {
8230 /*
8231 * All the pids in the coalition were found in this band.
8232 */
8233 printf("%s: pids_moved[%d] equal total coalition ntasks[%d] \n", __FUNCTION__,
8234 pids_moved, leaders[i].msi_ntasks);
8235 } else if (pids_moved > leaders[i].msi_ntasks) {
8236 /*
8237 * Apparently new coalition members showed up during the sort?
8238 */
8239 printf("%s: pids_moved[%d] were greater than expected coalition ntasks[%d] \n", __FUNCTION__,
8240 pids_moved, leaders[i].msi_ntasks);
8241 } else {
8242 /*
8243 * Apparently not all the pids in the coalition were found in this band?
8244 */
8245 printf("%s: pids_moved[%d] were less than expected coalition ntasks[%d] \n", __FUNCTION__,
8246 pids_moved, leaders[i].msi_ntasks);
8247 }
8248 #endif
8249
8250 total_pids_moved += pids_moved;
8251 } /* end for */
8252
8253 return total_pids_moved;
8254 }
8255
8256
8257 /*
8258 * Traverse a list of pids, searching for each within the priority band provided.
8259 * If pid is found, move it to the front of the priority band.
8260 * Never searches outside the priority band provided.
8261 *
8262 * Input:
8263 * bucket_index - jetsam priority band.
8264 * pid_list - pointer to a list of pids.
8265 * list_sz - number of pids in the list.
8266 *
8267 * Pid list ordering is important in that,
8268 * pid_list[n] is expected to jetsam ahead of pid_list[n+1].
8269 * The sort_order is set by the coalition default.
8270 *
8271 * Return:
8272 * the number of pids found and hence moved within the priority band.
8273 */
8274 static int
8275 memorystatus_move_list_locked(unsigned int bucket_index, pid_t *pid_list, int list_sz)
8276 {
8277 memstat_bucket_t *current_bucket;
8278 int i;
8279 int found_pids = 0;
8280
8281 if ((pid_list == NULL) || (list_sz <= 0)) {
8282 return 0;
8283 }
8284
8285 if (bucket_index >= MEMSTAT_BUCKET_COUNT) {
8286 return 0;
8287 }
8288
8289 current_bucket = &memstat_bucket[bucket_index];
8290 for (i = 0; i < list_sz; i++) {
8291 unsigned int b = bucket_index;
8292 proc_t p = NULL;
8293 proc_t aProc = NULL;
8294 pid_t aPid;
8295 int list_index;
8296
8297 list_index = ((list_sz - 1) - i);
8298 aPid = pid_list[list_index];
8299
8300 /* never search beyond bucket_index provided */
8301 p = memorystatus_get_first_proc_locked(&b, FALSE);
8302 while (p) {
8303 if (p->p_pid == aPid) {
8304 aProc = p;
8305 break;
8306 }
8307 p = memorystatus_get_next_proc_locked(&b, p, FALSE);
8308 }
8309
8310 if (aProc == NULL) {
8311 /* pid not found in this band, just skip it */
8312 continue;
8313 } else {
8314 TAILQ_REMOVE(&current_bucket->list, aProc, p_memstat_list);
8315 TAILQ_INSERT_HEAD(&current_bucket->list, aProc, p_memstat_list);
8316 found_pids++;
8317 }
8318 }
8319 return found_pids;
8320 }
8321
8322 int
8323 memorystatus_get_proccnt_upto_priority(int32_t max_bucket_index)
8324 {
8325 int32_t i = JETSAM_PRIORITY_IDLE;
8326 int count = 0;
8327
8328 if (max_bucket_index >= MEMSTAT_BUCKET_COUNT) {
8329 return -1;
8330 }
8331
8332 while (i <= max_bucket_index) {
8333 count += memstat_bucket[i++].count;
8334 }
8335
8336 return count;
8337 }
8338
8339 int
8340 memorystatus_update_priority_for_appnap(proc_t p, boolean_t is_appnap)
8341 {
8342 #if !CONFIG_JETSAM
8343 if (!p || (!isApp(p)) || (p->p_memstat_state & (P_MEMSTAT_INTERNAL | P_MEMSTAT_MANAGED))) {
8344 /*
8345 * Ineligible processes OR system processes e.g. launchd.
8346 *
8347 * We also skip processes that have the P_MEMSTAT_MANAGED bit set, i.e.
8348 * they're managed by assertiond. These are iOS apps that have been ported
8349 * to macOS. assertiond might be in the process of modifying the app's
8350 * priority / memory limit - so it might have the proc_list lock, and then try
8351 * to take the task lock. Meanwhile we've entered this function with the task lock
8352 * held, and we need the proc_list lock below. So we'll deadlock with assertiond.
8353 *
8354 * It should be fine to read the P_MEMSTAT_MANAGED bit without the proc_list
8355 * lock here, since assertiond only sets this bit on process launch.
8356 */
8357 return -1;
8358 }
8359
8360 /*
8361 * For macOS only:
8362 * We would like to use memorystatus_update() here to move the processes
8363 * within the bands. Unfortunately memorystatus_update() calls
8364 * memorystatus_update_priority_locked() which uses any band transitions
8365 * as an indication to modify ledgers. For that it needs the task lock
8366 * and since we came into this function with the task lock held, we'll deadlock.
8367 *
8368 * Unfortunately we can't completely disable ledger updates because we still
8369 * need the ledger updates for a subset of processes i.e. daemons.
8370 * When all processes on all platforms support memory limits, we can simply call
8371 * memorystatus_update().
8372 *
8373 * It also has some logic to deal with 'aging' which, currently, is only applicable
8374 * on CONFIG_JETSAM configs. So, till every platform has CONFIG_JETSAM we'll need
8375 * to do this explicit band transition.
8376 */
8377
8378 memstat_bucket_t *current_bucket, *new_bucket;
8379 int32_t priority = 0;
8380
8381 proc_list_lock();
8382
8383 if (((p->p_listflag & P_LIST_EXITED) != 0) ||
8384 (p->p_memstat_state & (P_MEMSTAT_ERROR | P_MEMSTAT_TERMINATED))) {
8385 /*
8386 * If the process is on its way out OR
8387 * jetsam has alread tried and failed to kill this process,
8388 * let's skip the whole jetsam band transition.
8389 */
8390 proc_list_unlock();
8391 return 0;
8392 }
8393
8394 if (is_appnap) {
8395 current_bucket = &memstat_bucket[p->p_memstat_effectivepriority];
8396 new_bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE];
8397 priority = JETSAM_PRIORITY_IDLE;
8398 } else {
8399 if (p->p_memstat_effectivepriority != JETSAM_PRIORITY_IDLE) {
8400 /*
8401 * It is possible that someone pulled this process
8402 * out of the IDLE band without updating its app-nap
8403 * parameters.
8404 */
8405 proc_list_unlock();
8406 return 0;
8407 }
8408
8409 current_bucket = &memstat_bucket[JETSAM_PRIORITY_IDLE];
8410 new_bucket = &memstat_bucket[p->p_memstat_requestedpriority];
8411 priority = p->p_memstat_requestedpriority;
8412 }
8413
8414 TAILQ_REMOVE(&current_bucket->list, p, p_memstat_list);
8415 current_bucket->count--;
8416 if (p->p_memstat_relaunch_flags & (P_MEMSTAT_RELAUNCH_HIGH)) {
8417 current_bucket->relaunch_high_count--;
8418 }
8419 TAILQ_INSERT_TAIL(&new_bucket->list, p, p_memstat_list);
8420 new_bucket->count++;
8421 if (p->p_memstat_relaunch_flags & (P_MEMSTAT_RELAUNCH_HIGH)) {
8422 new_bucket->relaunch_high_count++;
8423 }
8424 /*
8425 * Record idle start or idle delta.
8426 */
8427 if (p->p_memstat_effectivepriority == priority) {
8428 /*
8429 * This process is not transitioning between
8430 * jetsam priority buckets. Do nothing.
8431 */
8432 } else if (p->p_memstat_effectivepriority == JETSAM_PRIORITY_IDLE) {
8433 uint64_t now;
8434 /*
8435 * Transitioning out of the idle priority bucket.
8436 * Record idle delta.
8437 */
8438 assert(p->p_memstat_idle_start != 0);
8439 now = mach_absolute_time();
8440 if (now > p->p_memstat_idle_start) {
8441 p->p_memstat_idle_delta = now - p->p_memstat_idle_start;
8442 }
8443 } else if (priority == JETSAM_PRIORITY_IDLE) {
8444 /*
8445 * Transitioning into the idle priority bucket.
8446 * Record idle start.
8447 */
8448 p->p_memstat_idle_start = mach_absolute_time();
8449 }
8450
8451 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT, BSD_MEMSTAT_CHANGE_PRIORITY), p->p_pid, priority, p->p_memstat_effectivepriority, 0, 0);
8452
8453 p->p_memstat_effectivepriority = priority;
8454
8455 proc_list_unlock();
8456
8457 return 0;
8458
8459 #else /* !CONFIG_JETSAM */
8460 #pragma unused(p)
8461 #pragma unused(is_appnap)
8462 return -1;
8463 #endif /* !CONFIG_JETSAM */
8464 }
8465
8466 uint64_t
8467 memorystatus_available_memory_internal(struct proc *p)
8468 {
8469 #ifdef XNU_TARGET_OS_OSX
8470 if (p->p_memstat_memlimit <= 0) {
8471 return 0;
8472 }
8473 #endif /* XNU_TARGET_OS_OSX */
8474 const uint64_t footprint_in_bytes = get_task_phys_footprint(p->task);
8475 int32_t memlimit_mb;
8476 int64_t memlimit_bytes;
8477 int64_t rc;
8478
8479 if (isApp(p) == FALSE) {
8480 return 0;
8481 }
8482
8483 if (p->p_memstat_memlimit > 0) {
8484 memlimit_mb = p->p_memstat_memlimit;
8485 } else if (task_convert_phys_footprint_limit(-1, &memlimit_mb) != KERN_SUCCESS) {
8486 return 0;
8487 }
8488
8489 if (memlimit_mb <= 0) {
8490 memlimit_bytes = INT_MAX & ~((1 << 20) - 1);
8491 } else {
8492 memlimit_bytes = ((int64_t) memlimit_mb) << 20;
8493 }
8494
8495 rc = memlimit_bytes - footprint_in_bytes;
8496
8497 return (rc >= 0) ? rc : 0;
8498 }
8499
8500 int
8501 memorystatus_available_memory(struct proc *p, __unused struct memorystatus_available_memory_args *args, uint64_t *ret)
8502 {
8503 *ret = memorystatus_available_memory_internal(p);
8504
8505 return 0;
8506 }
8507
8508 #if CONFIG_JETSAM
8509 #if DEVELOPMENT || DEBUG
8510 static int
8511 memorystatus_cmd_increase_jetsam_task_limit(pid_t pid, uint32_t byte_increase)
8512 {
8513 memorystatus_memlimit_properties_t mmp_entry;
8514
8515 /* Validate inputs */
8516 if ((pid == 0) || (byte_increase == 0)) {
8517 return EINVAL;
8518 }
8519
8520 proc_t p = proc_find(pid);
8521
8522 if (!p) {
8523 return ESRCH;
8524 }
8525
8526 const uint32_t current_memlimit_increase = roundToNearestMB(p->p_memlimit_increase);
8527 /* round to page */
8528 const int32_t page_aligned_increase = (int32_t) MIN(round_page(p->p_memlimit_increase + byte_increase), INT32_MAX);
8529
8530 proc_list_lock();
8531
8532 memorystatus_get_memlimit_properties_internal(p, &mmp_entry);
8533
8534 if (mmp_entry.memlimit_active > 0) {
8535 mmp_entry.memlimit_active -= current_memlimit_increase;
8536 mmp_entry.memlimit_active += roundToNearestMB(page_aligned_increase);
8537 }
8538
8539 if (mmp_entry.memlimit_inactive > 0) {
8540 mmp_entry.memlimit_inactive -= current_memlimit_increase;
8541 mmp_entry.memlimit_inactive += roundToNearestMB(page_aligned_increase);
8542 }
8543
8544 /*
8545 * Store the updated delta limit in the proc.
8546 */
8547 p->p_memlimit_increase = page_aligned_increase;
8548
8549 int error = memorystatus_set_memlimit_properties_internal(p, &mmp_entry);
8550
8551 proc_list_unlock();
8552 proc_rele(p);
8553
8554 return error;
8555 }
8556 #endif /* DEVELOPMENT */
8557 #endif /* CONFIG_JETSAM */