2 * Copyright (c) 2000-2017 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993
30 * The Regents of the University of California. All rights reserved.
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94
63 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
64 * support for mandatory and extensible security protections. This notice
65 * is included in support of clause 2.2 (b) of the Apple Public License,
71 #include <sys/param.h>
72 #include <sys/systm.h>
73 #include <sys/kernel.h>
74 #include <sys/malloc.h>
76 #include <sys/protosw.h>
77 #include <sys/socket.h>
78 #include <sys/socketvar.h>
79 #include <kern/locks.h>
80 #include <sys/sysctl.h>
81 #include <sys/mcache.h>
82 #include <sys/kdebug.h>
84 #include <machine/endian.h>
85 #include <pexpert/pexpert.h>
88 #include <libkern/OSAtomic.h>
89 #include <libkern/OSByteOrder.h>
92 #include <net/if_dl.h>
93 #include <net/if_types.h>
94 #include <net/route.h>
95 #include <net/ntstat.h>
96 #include <net/net_osdep.h>
98 #include <net/net_perf.h>
100 #include <netinet/in.h>
101 #include <netinet/in_systm.h>
102 #include <netinet/ip.h>
103 #include <netinet/in_pcb.h>
104 #include <netinet/in_var.h>
105 #include <netinet/ip_var.h>
106 #include <netinet/kpi_ipfilter_var.h>
107 #include <netinet/in_tclass.h>
110 #include <security/mac_framework.h>
111 #endif /* CONFIG_MACF_NET */
113 #define DBG_LAYER_BEG NETDBG_CODE(DBG_NETIP, 1)
114 #define DBG_LAYER_END NETDBG_CODE(DBG_NETIP, 3)
115 #define DBG_FNC_IP_OUTPUT NETDBG_CODE(DBG_NETIP, (1 << 8) | 1)
116 #define DBG_FNC_IPSEC4_OUTPUT NETDBG_CODE(DBG_NETIP, (2 << 8) | 1)
119 #include <netinet6/ipsec.h>
120 #include <netkey/key.h>
122 #include <netkey/key_debug.h>
124 #define KEYDEBUG(lev, arg)
129 #include <net/necp.h>
133 #include <netinet/ip_fw.h>
135 #include <netinet/ip_divert.h>
136 #endif /* IPDIVERT */
137 #endif /* IPFIREWALL */
140 #include <netinet/ip_dummynet.h>
144 #include <net/pfvar.h>
147 #if IPFIREWALL_FORWARD && IPFIREWALL_FORWARD_DEBUG
148 #define print_ip(a) \
149 printf("%ld.%ld.%ld.%ld", (ntohl(a.s_addr) >> 24) & 0xFF, \
150 (ntohl(a.s_addr) >> 16) & 0xFF, \
151 (ntohl(a.s_addr) >> 8) & 0xFF, \
152 (ntohl(a.s_addr)) & 0xFF);
153 #endif /* IPFIREWALL_FORWARD && IPFIREWALL_FORWARD_DEBUG */
157 static int sysctl_reset_ip_output_stats SYSCTL_HANDLER_ARGS
;
158 static int sysctl_ip_output_measure_bins SYSCTL_HANDLER_ARGS
;
159 static int sysctl_ip_output_getperf SYSCTL_HANDLER_ARGS
;
160 static void ip_out_cksum_stats(int, u_int32_t
);
161 static struct mbuf
*ip_insertoptions(struct mbuf
*, struct mbuf
*, int *);
162 static int ip_optcopy(struct ip
*, struct ip
*);
163 static int ip_pcbopts(int, struct mbuf
**, struct mbuf
*);
164 static void imo_trace(struct ip_moptions
*, int);
165 static void ip_mloopback(struct ifnet
*, struct ifnet
*, struct mbuf
*,
166 struct sockaddr_in
*, int);
167 static struct ifaddr
*in_selectsrcif(struct ip
*, struct route
*, unsigned int);
169 extern struct ip_linklocal_stat ip_linklocal_stat
;
171 /* temporary: for testing */
173 extern int ipsec_bypass
;
176 static int ip_maxchainsent
= 0;
177 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, maxchainsent
,
178 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip_maxchainsent
, 0,
179 "use dlil_output_list");
181 static int forge_ce
= 0;
182 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, forge_ce
,
183 CTLFLAG_RW
| CTLFLAG_LOCKED
, &forge_ce
, 0,
187 static int ip_select_srcif_debug
= 0;
188 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, select_srcif_debug
,
189 CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip_select_srcif_debug
, 0,
190 "log source interface selection debug info");
192 static int ip_output_measure
= 0;
193 SYSCTL_PROC(_net_inet_ip
, OID_AUTO
, output_perf
,
194 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
,
195 &ip_output_measure
, 0, sysctl_reset_ip_output_stats
, "I",
196 "Do time measurement");
198 static uint64_t ip_output_measure_bins
= 0;
199 SYSCTL_PROC(_net_inet_ip
, OID_AUTO
, output_perf_bins
,
200 CTLTYPE_QUAD
| CTLFLAG_RW
| CTLFLAG_LOCKED
, &ip_output_measure_bins
, 0,
201 sysctl_ip_output_measure_bins
, "I",
202 "bins for chaining performance data histogram");
204 static net_perf_t net_perf
;
205 SYSCTL_PROC(_net_inet_ip
, OID_AUTO
, output_perf_data
,
206 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
207 0, 0, sysctl_ip_output_getperf
, "S,net_perf",
208 "IP output performance data (struct net_perf, net/net_perf.h)");
210 __private_extern__
int rfc6864
= 1;
211 SYSCTL_INT(_net_inet_ip
, OID_AUTO
, rfc6864
, CTLFLAG_RW
| CTLFLAG_LOCKED
,
212 &rfc6864
, 0, "updated ip id field behavior");
214 #define IMO_TRACE_HIST_SIZE 32 /* size of trace history */
217 __private_extern__
unsigned int imo_trace_hist_size
= IMO_TRACE_HIST_SIZE
;
219 struct ip_moptions_dbg
{
220 struct ip_moptions imo
; /* ip_moptions */
221 u_int16_t imo_refhold_cnt
; /* # of IMO_ADDREF */
222 u_int16_t imo_refrele_cnt
; /* # of IMO_REMREF */
224 * Alloc and free callers.
229 * Circular lists of IMO_ADDREF and IMO_REMREF callers.
231 ctrace_t imo_refhold
[IMO_TRACE_HIST_SIZE
];
232 ctrace_t imo_refrele
[IMO_TRACE_HIST_SIZE
];
236 static unsigned int imo_debug
= 1; /* debugging (enabled) */
238 static unsigned int imo_debug
; /* debugging (disabled) */
240 static unsigned int imo_size
; /* size of zone element */
241 static struct zone
*imo_zone
; /* zone for ip_moptions */
243 #define IMO_ZONE_MAX 64 /* maximum elements in zone */
244 #define IMO_ZONE_NAME "ip_moptions" /* zone name */
247 * IP output. The packet in mbuf chain m contains a skeletal IP
248 * header (with len, off, ttl, proto, tos, src, dst).
249 * The mbuf chain containing the packet will be freed.
250 * The mbuf opt, if present, will not be freed.
253 ip_output(struct mbuf
*m0
, struct mbuf
*opt
, struct route
*ro
, int flags
,
254 struct ip_moptions
*imo
, struct ip_out_args
*ipoa
)
256 return (ip_output_list(m0
, 0, opt
, ro
, flags
, imo
, ipoa
));
260 * IP output. The packet in mbuf chain m contains a skeletal IP
261 * header (with len, off, ttl, proto, tos, src, dst).
262 * The mbuf chain containing the packet will be freed.
263 * The mbuf opt, if present, will not be freed.
265 * Route ro MUST be non-NULL; if ro->ro_rt is valid, route lookup would be
266 * skipped and ro->ro_rt would be used. Otherwise the result of route
267 * lookup is stored in ro->ro_rt.
269 * In the IP forwarding case, the packet will arrive with options already
270 * inserted, so must have a NULL opt pointer.
273 ip_output_list(struct mbuf
*m0
, int packetchain
, struct mbuf
*opt
,
274 struct route
*ro
, int flags
, struct ip_moptions
*imo
,
275 struct ip_out_args
*ipoa
)
278 struct ifnet
*ifp
= NULL
; /* not refcnt'd */
279 struct mbuf
*m
= m0
, *prevnxt
= NULL
, **mppn
= &prevnxt
;
280 int hlen
= sizeof (struct ip
);
281 int len
= 0, error
= 0;
282 struct sockaddr_in
*dst
= NULL
;
283 struct in_ifaddr
*ia
= NULL
, *src_ia
= NULL
;
284 struct in_addr pkt_dst
;
285 struct ipf_pktopts
*ippo
= NULL
;
286 ipfilter_t inject_filter_ref
= NULL
;
287 struct mbuf
*packetlist
;
288 uint32_t sw_csum
, pktcnt
= 0, scnt
= 0, bytecnt
= 0;
289 uint32_t packets_processed
= 0;
290 unsigned int ifscope
= IFSCOPE_NONE
;
291 struct flowadv
*adv
= NULL
;
292 struct timeval start_tv
;
294 struct socket
*so
= NULL
;
295 struct secpolicy
*sp
= NULL
;
298 necp_kernel_policy_result necp_result
= 0;
299 necp_kernel_policy_result_parameter necp_result_parameter
;
300 necp_kernel_policy_id necp_matched_policy_id
= 0;
304 struct sockaddr_in
*next_hop_from_ipfwd_tag
= NULL
;
305 #endif /* IPFIREWALL */
306 #if IPFIREWALL || DUMMYNET
308 #endif /* IPFIREWALL || DUMMYNET */
310 struct ip_out_args saved_ipoa
;
311 struct sockaddr_in dst_buf
;
312 #endif /* DUMMYNET */
315 struct ipsec_output_state ipsec_state
;
318 struct route necp_route
;
320 #if IPFIREWALL || DUMMYNET
321 struct ip_fw_args args
;
322 #endif /* IPFIREWALL || DUMMYNET */
323 #if IPFIREWALL_FORWARD
324 struct route sro_fwd
;
325 #endif /* IPFIREWALL_FORWARD */
327 struct route saved_route
;
328 #endif /* DUMMYNET */
329 struct ipf_pktopts ipf_pktopts
;
331 #define ipsec_state ipobz.ipsec_state
332 #define necp_route ipobz.necp_route
333 #define args ipobz.args
334 #define sro_fwd ipobz.sro_fwd
335 #define saved_route ipobz.saved_route
336 #define ipf_pktopts ipobz.ipf_pktopts
339 boolean_t select_srcif
: 1; /* set once */
340 boolean_t srcbound
: 1; /* set once */
341 boolean_t nocell
: 1; /* set once */
342 boolean_t isbroadcast
: 1;
343 boolean_t didfilter
: 1;
344 boolean_t noexpensive
: 1; /* set once */
345 boolean_t awdl_unrestricted
: 1; /* set once */
346 #if IPFIREWALL_FORWARD
347 boolean_t fwd_rewrite_src
: 1;
348 #endif /* IPFIREWALL_FORWARD */
351 } ipobf
= { .raw
= 0 };
354 * Here we check for restrictions when sending frames.
355 * N.B.: IPv4 over internal co-processor interfaces is not allowed.
357 #define IP_CHECK_RESTRICTIONS(_ifp, _ipobf) \
358 (((_ipobf).nocell && IFNET_IS_CELLULAR(_ifp)) || \
359 ((_ipobf).noexpensive && IFNET_IS_EXPENSIVE(_ifp)) || \
360 (IFNET_IS_INTCOPROC(_ifp)) || \
361 (!(_ipobf).awdl_unrestricted && IFNET_IS_AWDL_RESTRICTED(_ifp)))
363 if (ip_output_measure
)
364 net_perf_start_time(&net_perf
, &start_tv
);
365 KERNEL_DEBUG(DBG_FNC_IP_OUTPUT
| DBG_FUNC_START
, 0, 0, 0, 0, 0);
367 VERIFY(m0
->m_flags
& M_PKTHDR
);
370 /* zero out {ipsec_state, args, sro_fwd, saved_route, ipf_pktops} */
371 bzero(&ipobz
, sizeof (ipobz
));
374 #if IPFIREWALL || DUMMYNET
375 if (SLIST_EMPTY(&m0
->m_pkthdr
.tags
))
378 /* Grab info from mtags prepended to the chain */
380 if ((tag
= m_tag_locate(m0
, KERNEL_MODULE_TAG_ID
,
381 KERNEL_TAG_TYPE_DUMMYNET
, NULL
)) != NULL
) {
382 struct dn_pkt_tag
*dn_tag
;
384 dn_tag
= (struct dn_pkt_tag
*)(tag
+1);
385 args
.fwa_ipfw_rule
= dn_tag
->dn_ipfw_rule
;
386 args
.fwa_pf_rule
= dn_tag
->dn_pf_rule
;
388 saved_route
= dn_tag
->dn_ro
;
392 bcopy(&dn_tag
->dn_dst
, &dst_buf
, sizeof (dst_buf
));
394 ifp
= dn_tag
->dn_ifp
;
395 flags
= dn_tag
->dn_flags
;
396 if ((dn_tag
->dn_flags
& IP_OUTARGS
)) {
397 saved_ipoa
= dn_tag
->dn_ipoa
;
401 m_tag_delete(m0
, tag
);
403 #endif /* DUMMYNET */
406 if ((tag
= m_tag_locate(m0
, KERNEL_MODULE_TAG_ID
,
407 KERNEL_TAG_TYPE_DIVERT
, NULL
)) != NULL
) {
408 struct divert_tag
*div_tag
;
410 div_tag
= (struct divert_tag
*)(tag
+1);
411 args
.fwa_divert_rule
= div_tag
->cookie
;
413 m_tag_delete(m0
, tag
);
415 #endif /* IPDIVERT */
418 if ((tag
= m_tag_locate(m0
, KERNEL_MODULE_TAG_ID
,
419 KERNEL_TAG_TYPE_IPFORWARD
, NULL
)) != NULL
) {
420 struct ip_fwd_tag
*ipfwd_tag
;
422 ipfwd_tag
= (struct ip_fwd_tag
*)(tag
+1);
423 next_hop_from_ipfwd_tag
= ipfwd_tag
->next_hop
;
425 m_tag_delete(m0
, tag
);
427 #endif /* IPFIREWALL */
430 #endif /* IPFIREWALL || DUMMYNET */
433 m
->m_pkthdr
.pkt_flags
&= ~(PKTF_LOOP
|PKTF_IFAINFO
);
436 if (ipsec_bypass
== 0 && !(flags
& IP_NOIPSEC
)) {
437 /* If packet is bound to an interface, check bound policies */
438 if ((flags
& IP_OUTARGS
) && (ipoa
!= NULL
) &&
439 (ipoa
->ipoa_flags
& IPOAF_BOUND_IF
) &&
440 ipoa
->ipoa_boundif
!= IFSCOPE_NONE
) {
441 if (ipsec4_getpolicybyinterface(m
, IPSEC_DIR_OUTBOUND
,
442 &flags
, ipoa
, &sp
) != 0)
450 if (flags
& IP_OUTARGS
) {
452 * In the forwarding case, only the ifscope value is used,
453 * as source interface selection doesn't take place.
455 if ((ipobf
.select_srcif
= (!(flags
& IP_FORWARDING
) &&
456 (ipoa
->ipoa_flags
& IPOAF_SELECT_SRCIF
)))) {
457 ipf_pktopts
.ippo_flags
|= IPPOF_SELECT_SRCIF
;
460 if ((ipoa
->ipoa_flags
& IPOAF_BOUND_IF
) &&
461 ipoa
->ipoa_boundif
!= IFSCOPE_NONE
) {
462 ifscope
= ipoa
->ipoa_boundif
;
463 ipf_pktopts
.ippo_flags
|=
464 (IPPOF_BOUND_IF
| (ifscope
<< IPPOF_SHIFT_IFSCOPE
));
467 /* double negation needed for bool bit field */
468 ipobf
.srcbound
= !!(ipoa
->ipoa_flags
& IPOAF_BOUND_SRCADDR
);
470 ipf_pktopts
.ippo_flags
|= IPPOF_BOUND_SRCADDR
;
472 ipobf
.select_srcif
= FALSE
;
473 ipobf
.srcbound
= FALSE
;
474 ifscope
= IFSCOPE_NONE
;
475 if (flags
& IP_OUTARGS
) {
476 ipoa
->ipoa_boundif
= IFSCOPE_NONE
;
477 ipoa
->ipoa_flags
&= ~(IPOAF_SELECT_SRCIF
|
478 IPOAF_BOUND_IF
| IPOAF_BOUND_SRCADDR
);
482 if (flags
& IP_OUTARGS
) {
483 if (ipoa
->ipoa_flags
& IPOAF_NO_CELLULAR
) {
485 ipf_pktopts
.ippo_flags
|= IPPOF_NO_IFT_CELLULAR
;
487 if (ipoa
->ipoa_flags
& IPOAF_NO_EXPENSIVE
) {
488 ipobf
.noexpensive
= TRUE
;
489 ipf_pktopts
.ippo_flags
|= IPPOF_NO_IFF_EXPENSIVE
;
491 if (ipoa
->ipoa_flags
& IPOAF_AWDL_UNRESTRICTED
)
492 ipobf
.awdl_unrestricted
= TRUE
;
493 adv
= &ipoa
->ipoa_flowadv
;
494 adv
->code
= FADV_SUCCESS
;
495 ipoa
->ipoa_retflags
= 0;
499 if (ipsec_bypass
== 0 && !(flags
& IP_NOIPSEC
)) {
500 so
= ipsec_getsocket(m
);
502 (void) ipsec_setsocket(m
, NULL
);
508 if (args
.fwa_ipfw_rule
!= NULL
|| args
.fwa_pf_rule
!= NULL
) {
509 /* dummynet already saw us */
510 ip
= mtod(m
, struct ip
*);
511 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
512 pkt_dst
= ip
->ip_dst
;
513 if (ro
->ro_rt
!= NULL
) {
514 RT_LOCK_SPIN(ro
->ro_rt
);
515 ia
= (struct in_ifaddr
*)ro
->ro_rt
->rt_ifa
;
517 /* Become a regular mutex */
518 RT_CONVERT_LOCK(ro
->ro_rt
);
519 IFA_ADDREF(&ia
->ia_ifa
);
521 RT_UNLOCK(ro
->ro_rt
);
525 if (args
.fwa_ipfw_rule
!= NULL
)
527 #endif /* IPFIREWALL */
528 if (args
.fwa_pf_rule
!= NULL
)
531 #endif /* DUMMYNET */
535 ipobf
.isbroadcast
= FALSE
;
536 ipobf
.didfilter
= FALSE
;
537 #if IPFIREWALL_FORWARD
538 ipobf
.fwd_rewrite_src
= FALSE
;
539 #endif /* IPFIREWALL_FORWARD */
541 VERIFY(m
->m_flags
& M_PKTHDR
);
543 * No need to proccess packet twice if we've already seen it.
545 if (!SLIST_EMPTY(&m
->m_pkthdr
.tags
))
546 inject_filter_ref
= ipf_get_inject_filter(m
);
548 inject_filter_ref
= NULL
;
551 m
= ip_insertoptions(m
, opt
, &len
);
553 /* Update the chain */
555 if (m0
== packetlist
)
560 ip
= mtod(m
, struct ip
*);
566 * When dealing with a packet chain, we need to reset "next_hop"
567 * because "dst" may have been changed to the gateway address below
568 * for the previous packet of the chain. This could cause the route
569 * to be inavertandly changed to the route to the gateway address
570 * (instead of the route to the destination).
572 args
.fwa_next_hop
= next_hop_from_ipfwd_tag
;
573 pkt_dst
= args
.fwa_next_hop
? args
.fwa_next_hop
->sin_addr
: ip
->ip_dst
;
574 #else /* !IPFIREWALL */
575 pkt_dst
= ip
->ip_dst
;
576 #endif /* !IPFIREWALL */
579 * We must not send if the packet is destined to network zero.
580 * RFC1122 3.2.1.3 (a) and (b).
582 if (IN_ZERONET(ntohl(pkt_dst
.s_addr
))) {
583 error
= EHOSTUNREACH
;
590 if (!(flags
& (IP_FORWARDING
|IP_RAWOUTPUT
))) {
591 ip
->ip_vhl
= IP_MAKE_VHL(IPVERSION
, hlen
>> 2);
593 if (rfc6864
&& IP_OFF_IS_ATOMIC(ip
->ip_off
)) {
594 // Per RFC6864, value of ip_id is undefined for atomic ip packets
597 ip
->ip_id
= ip_randomid();
599 OSAddAtomic(1, &ipstat
.ips_localout
);
601 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
605 /* For debugging, we let the stack forge congestion */
607 ((ip
->ip_tos
& IPTOS_ECN_MASK
) == IPTOS_ECN_ECT1
||
608 (ip
->ip_tos
& IPTOS_ECN_MASK
) == IPTOS_ECN_ECT0
)) {
609 ip
->ip_tos
= (ip
->ip_tos
& ~IPTOS_ECN_MASK
) | IPTOS_ECN_CE
;
614 KERNEL_DEBUG(DBG_LAYER_BEG
, ip
->ip_dst
.s_addr
, ip
->ip_src
.s_addr
,
615 ip
->ip_p
, ip
->ip_off
, ip
->ip_len
);
617 dst
= SIN(&ro
->ro_dst
);
620 * If there is a cached route,
621 * check that it is to the same destination
622 * and is still up. If not, free it and try again.
623 * The address family should also be checked in case of sharing the
627 if (ro
->ro_rt
!= NULL
) {
628 if (ROUTE_UNUSABLE(ro
) && ip
->ip_src
.s_addr
!= INADDR_ANY
&&
629 !(flags
& (IP_ROUTETOIF
| IP_FORWARDING
))) {
630 src_ia
= ifa_foraddr(ip
->ip_src
.s_addr
);
631 if (src_ia
== NULL
) {
632 error
= EADDRNOTAVAIL
;
635 IFA_REMREF(&src_ia
->ia_ifa
);
639 * Test rt_flags without holding rt_lock for performance
640 * reasons; if the route is down it will hopefully be
641 * caught by the layer below (since it uses this route
642 * as a hint) or during the next transmit.
644 if (ROUTE_UNUSABLE(ro
) || dst
->sin_family
!= AF_INET
||
645 dst
->sin_addr
.s_addr
!= pkt_dst
.s_addr
)
649 * If we're doing source interface selection, we may not
650 * want to use this route; only synch up the generation
653 if (!ipobf
.select_srcif
&& ro
->ro_rt
!= NULL
&&
654 RT_GENID_OUTOFSYNC(ro
->ro_rt
))
655 RT_GENID_SYNC(ro
->ro_rt
);
657 if (ro
->ro_rt
== NULL
) {
658 bzero(dst
, sizeof (*dst
));
659 dst
->sin_family
= AF_INET
;
660 dst
->sin_len
= sizeof (*dst
);
661 dst
->sin_addr
= pkt_dst
;
664 * If routing to interface only,
665 * short circuit routing lookup.
667 if (flags
& IP_ROUTETOIF
) {
669 IFA_REMREF(&ia
->ia_ifa
);
670 if ((ia
= ifatoia(ifa_ifwithdstaddr(sintosa(dst
)))) == NULL
) {
671 ia
= ifatoia(ifa_ifwithnet(sintosa(dst
)));
673 OSAddAtomic(1, &ipstat
.ips_noroute
);
675 /* XXX IPv6 APN fallback notification?? */
681 ipobf
.isbroadcast
= in_broadcast(dst
->sin_addr
, ifp
);
683 * For consistency with other cases below. Loopback
684 * multicast case is handled separately by ip_mloopback().
686 if ((ifp
->if_flags
& IFF_LOOPBACK
) &&
687 !IN_MULTICAST(ntohl(pkt_dst
.s_addr
))) {
688 m
->m_pkthdr
.rcvif
= ifp
;
689 ip_setsrcifaddr_info(m
, ifp
->if_index
, NULL
);
690 ip_setdstifaddr_info(m
, ifp
->if_index
, NULL
);
692 } else if (IN_MULTICAST(ntohl(pkt_dst
.s_addr
)) &&
693 imo
!= NULL
&& (ifp
= imo
->imo_multicast_ifp
) != NULL
) {
695 * Bypass the normal routing lookup for multicast
696 * packets if the interface is specified.
698 ipobf
.isbroadcast
= FALSE
;
700 IFA_REMREF(&ia
->ia_ifa
);
702 /* Macro takes reference on ia */
705 struct ifaddr
*ia0
= NULL
;
706 boolean_t cloneok
= FALSE
;
708 * Perform source interface selection; the source IP address
709 * must belong to one of the addresses of the interface used
710 * by the route. For performance reasons, do this only if
711 * there is no route, or if the routing table has changed,
712 * or if we haven't done source interface selection on this
713 * route (for this PCB instance) before.
715 if (ipobf
.select_srcif
&&
716 ip
->ip_src
.s_addr
!= INADDR_ANY
&& (ROUTE_UNUSABLE(ro
) ||
717 !(ro
->ro_flags
& ROF_SRCIF_SELECTED
))) {
718 /* Find the source interface */
719 ia0
= in_selectsrcif(ip
, ro
, ifscope
);
722 * If the source address belongs to a restricted
723 * interface and the caller forbids our using
724 * interfaces of such type, pretend that there is no
728 IP_CHECK_RESTRICTIONS(ia0
->ifa_ifp
, ipobf
)) {
731 error
= EHOSTUNREACH
;
732 if (flags
& IP_OUTARGS
)
733 ipoa
->ipoa_retflags
|= IPOARF_IFDENIED
;
738 * If the source address is spoofed (in the case of
739 * IP_RAWOUTPUT on an unbounded socket), or if this
740 * is destined for local/loopback, just let it go out
741 * using the interface of the route. Otherwise,
742 * there's no interface having such an address,
745 if (ia0
== NULL
&& (!(flags
& IP_RAWOUTPUT
) ||
746 ipobf
.srcbound
) && ifscope
!= lo_ifp
->if_index
) {
747 error
= EADDRNOTAVAIL
;
752 * If the caller didn't explicitly specify the scope,
753 * pick it up from the source interface. If the cached
754 * route was wrong and was blown away as part of source
755 * interface selection, don't mask out RTF_PRCLONING
756 * since that route may have been allocated by the ULP,
757 * unless the IP header was created by the caller or
758 * the destination is IPv4 LLA. The check for the
759 * latter is needed because IPv4 LLAs are never scoped
760 * in the current implementation, and we don't want to
761 * replace the resolved IPv4 LLA route with one whose
762 * gateway points to that of the default gateway on
763 * the primary interface of the system.
766 if (ifscope
== IFSCOPE_NONE
)
767 ifscope
= ia0
->ifa_ifp
->if_index
;
768 cloneok
= (!(flags
& IP_RAWOUTPUT
) &&
769 !(IN_LINKLOCAL(ntohl(ip
->ip_dst
.s_addr
))));
774 * If this is the case, we probably don't want to allocate
775 * a protocol-cloned route since we didn't get one from the
776 * ULP. This lets TCP do its thing, while not burdening
777 * forwarding or ICMP with the overhead of cloning a route.
778 * Of course, we still want to do any cloning requested by
779 * the link layer, as this is probably required in all cases
780 * for correct operation (as it is for ARP).
782 if (ro
->ro_rt
== NULL
) {
783 unsigned long ign
= RTF_PRCLONING
;
785 * We make an exception here: if the destination
786 * address is INADDR_BROADCAST, allocate a protocol-
787 * cloned host route so that we end up with a route
788 * marked with the RTF_BROADCAST flag. Otherwise,
789 * we would end up referring to the default route,
790 * instead of creating a cloned host route entry.
791 * That would introduce inconsistencies between ULPs
792 * that allocate a route and those that don't. The
793 * RTF_BROADCAST route is important since we'd want
794 * to send out undirected IP broadcast packets using
795 * link-level broadcast address. Another exception
796 * is for ULP-created routes that got blown away by
797 * source interface selection (see above).
799 * These exceptions will no longer be necessary when
800 * the RTF_PRCLONING scheme is no longer present.
802 if (cloneok
|| dst
->sin_addr
.s_addr
== INADDR_BROADCAST
)
803 ign
&= ~RTF_PRCLONING
;
806 * Loosen the route lookup criteria if the ifscope
807 * corresponds to the loopback interface; this is
808 * needed to support Application Layer Gateways
809 * listening on loopback, in conjunction with packet
810 * filter redirection rules. The final source IP
811 * address will be rewritten by the packet filter
812 * prior to the RFC1122 loopback check below.
814 if (ifscope
== lo_ifp
->if_index
)
815 rtalloc_ign(ro
, ign
);
817 rtalloc_scoped_ign(ro
, ign
, ifscope
);
820 * If the route points to a cellular/expensive interface
821 * and the caller forbids our using interfaces of such type,
822 * pretend that there is no route.
824 if (ro
->ro_rt
!= NULL
) {
825 RT_LOCK_SPIN(ro
->ro_rt
);
826 if (IP_CHECK_RESTRICTIONS(ro
->ro_rt
->rt_ifp
,
828 RT_UNLOCK(ro
->ro_rt
);
830 if (flags
& IP_OUTARGS
) {
831 ipoa
->ipoa_retflags
|=
835 RT_UNLOCK(ro
->ro_rt
);
840 if (ro
->ro_rt
== NULL
) {
841 OSAddAtomic(1, &ipstat
.ips_noroute
);
842 error
= EHOSTUNREACH
;
851 IFA_REMREF(&ia
->ia_ifa
);
852 RT_LOCK_SPIN(ro
->ro_rt
);
853 ia
= ifatoia(ro
->ro_rt
->rt_ifa
);
855 /* Become a regular mutex */
856 RT_CONVERT_LOCK(ro
->ro_rt
);
857 IFA_ADDREF(&ia
->ia_ifa
);
860 * Note: ia_ifp may not be the same as rt_ifp; the latter
861 * is what we use for determining outbound i/f, mtu, etc.
863 ifp
= ro
->ro_rt
->rt_ifp
;
865 if (ro
->ro_rt
->rt_flags
& RTF_GATEWAY
) {
866 dst
= SIN(ro
->ro_rt
->rt_gateway
);
868 if (ro
->ro_rt
->rt_flags
& RTF_HOST
) {
869 /* double negation needed for bool bit field */
871 !!(ro
->ro_rt
->rt_flags
& RTF_BROADCAST
);
873 /* Become a regular mutex */
874 RT_CONVERT_LOCK(ro
->ro_rt
);
875 ipobf
.isbroadcast
= in_broadcast(dst
->sin_addr
, ifp
);
878 * For consistency with IPv6, as well as to ensure that
879 * IP_RECVIF is set correctly for packets that are sent
880 * to one of the local addresses. ia (rt_ifa) would have
881 * been fixed up by rt_setif for local routes. This
882 * would make it appear as if the packet arrives on the
883 * interface which owns the local address. Loopback
884 * multicast case is handled separately by ip_mloopback().
886 if (ia
!= NULL
&& (ifp
->if_flags
& IFF_LOOPBACK
) &&
887 !IN_MULTICAST(ntohl(pkt_dst
.s_addr
))) {
890 m
->m_pkthdr
.rcvif
= ia
->ia_ifa
.ifa_ifp
;
893 srcidx
= ia0
->ifa_ifp
->if_index
;
894 else if ((ro
->ro_flags
& ROF_SRCIF_SELECTED
) &&
895 ro
->ro_srcia
!= NULL
)
896 srcidx
= ro
->ro_srcia
->ifa_ifp
->if_index
;
900 ip_setsrcifaddr_info(m
, srcidx
, NULL
);
901 ip_setdstifaddr_info(m
, 0, ia
);
903 RT_UNLOCK(ro
->ro_rt
);
910 if (IN_MULTICAST(ntohl(pkt_dst
.s_addr
))) {
911 struct ifnet
*srcifp
= NULL
;
912 struct in_multi
*inm
;
914 u_int8_t ttl
= IP_DEFAULT_MULTICAST_TTL
;
915 u_int8_t loop
= IP_DEFAULT_MULTICAST_LOOP
;
917 m
->m_flags
|= M_MCAST
;
919 * IP destination address is multicast. Make sure "dst"
920 * still points to the address in "ro". (It may have been
921 * changed to point to a gateway address, above.)
923 dst
= SIN(&ro
->ro_dst
);
925 * See if the caller provided any multicast options
929 vif
= imo
->imo_multicast_vif
;
930 ttl
= imo
->imo_multicast_ttl
;
931 loop
= imo
->imo_multicast_loop
;
932 if (!(flags
& IP_RAWOUTPUT
))
934 if (imo
->imo_multicast_ifp
!= NULL
)
935 ifp
= imo
->imo_multicast_ifp
;
937 } else if (!(flags
& IP_RAWOUTPUT
)) {
942 * Confirm that the outgoing interface supports multicast.
944 if (imo
== NULL
|| vif
== -1) {
945 if (!(ifp
->if_flags
& IFF_MULTICAST
)) {
946 OSAddAtomic(1, &ipstat
.ips_noroute
);
952 * If source address not specified yet, use address
953 * of outgoing interface.
955 if (ip
->ip_src
.s_addr
== INADDR_ANY
) {
956 struct in_ifaddr
*ia1
;
957 lck_rw_lock_shared(in_ifaddr_rwlock
);
958 TAILQ_FOREACH(ia1
, &in_ifaddrhead
, ia_link
) {
959 IFA_LOCK_SPIN(&ia1
->ia_ifa
);
960 if (ia1
->ia_ifp
== ifp
) {
961 ip
->ip_src
= IA_SIN(ia1
)->sin_addr
;
963 IFA_UNLOCK(&ia1
->ia_ifa
);
966 IFA_UNLOCK(&ia1
->ia_ifa
);
968 lck_rw_done(in_ifaddr_rwlock
);
969 if (ip
->ip_src
.s_addr
== INADDR_ANY
) {
975 in_multihead_lock_shared();
976 IN_LOOKUP_MULTI(&pkt_dst
, ifp
, inm
);
977 in_multihead_lock_done();
978 if (inm
!= NULL
&& (imo
== NULL
|| loop
)) {
980 * If we belong to the destination multicast group
981 * on the outgoing interface, and the caller did not
982 * forbid loopback, loop back a copy.
984 if (!TAILQ_EMPTY(&ipv4_filters
)) {
985 struct ipfilter
*filter
;
986 int seen
= (inject_filter_ref
== NULL
);
989 ipf_pktopts
.ippo_flags
|=
991 ipf_pktopts
.ippo_mcast_ifnet
= ifp
;
992 ipf_pktopts
.ippo_mcast_ttl
= ttl
;
993 ipf_pktopts
.ippo_mcast_loop
= loop
;
999 * 4135317 - always pass network byte
1002 #if BYTE_ORDER != BIG_ENDIAN
1006 TAILQ_FOREACH(filter
, &ipv4_filters
, ipf_link
) {
1008 if ((struct ipfilter
*)
1009 inject_filter_ref
== filter
)
1011 } else if (filter
->ipf_filter
.
1012 ipf_output
!= NULL
) {
1014 result
= filter
->ipf_filter
.
1017 (mbuf_t
*)&m
, ippo
);
1018 if (result
== EJUSTRETURN
) {
1031 /* set back to host byte order */
1032 ip
= mtod(m
, struct ip
*);
1033 #if BYTE_ORDER != BIG_ENDIAN
1038 ipobf
.didfilter
= TRUE
;
1040 ip_mloopback(srcifp
, ifp
, m
, dst
, hlen
);
1045 * Multicasts with a time-to-live of zero may be looped-
1046 * back, above, but must not be transmitted on a network.
1047 * Also, multicasts addressed to the loopback interface
1048 * are not sent -- the above call to ip_mloopback() will
1049 * loop back a copy if this host actually belongs to the
1050 * destination group on the loopback interface.
1052 if (ip
->ip_ttl
== 0 || ifp
->if_flags
& IFF_LOOPBACK
) {
1060 * If source address not specified yet, use address
1061 * of outgoing interface.
1063 if (ip
->ip_src
.s_addr
== INADDR_ANY
) {
1064 IFA_LOCK_SPIN(&ia
->ia_ifa
);
1065 ip
->ip_src
= IA_SIN(ia
)->sin_addr
;
1066 IFA_UNLOCK(&ia
->ia_ifa
);
1067 #if IPFIREWALL_FORWARD
1069 * Keep note that we did this - if the firewall changes
1070 * the next-hop, our interface may change, changing the
1071 * default source IP. It's a shame so much effort happens
1074 ipobf
.fwd_rewrite_src
= TRUE
;
1075 #endif /* IPFIREWALL_FORWARD */
1079 * Look for broadcast address and
1080 * and verify user is allowed to send
1083 if (ipobf
.isbroadcast
) {
1084 if (!(ifp
->if_flags
& IFF_BROADCAST
)) {
1085 error
= EADDRNOTAVAIL
;
1088 if (!(flags
& IP_ALLOWBROADCAST
)) {
1092 /* don't allow broadcast messages to be fragmented */
1093 if ((u_short
)ip
->ip_len
> ifp
->if_mtu
) {
1097 m
->m_flags
|= M_BCAST
;
1099 m
->m_flags
&= ~M_BCAST
;
1104 /* Invoke outbound packet filter */
1105 if (PF_IS_ENABLED
) {
1108 m0
= m
; /* Save for later */
1111 args
.fwa_next_hop
= dst
;
1115 args
.fwa_oflags
= flags
;
1116 if (flags
& IP_OUTARGS
)
1117 args
.fwa_ipoa
= ipoa
;
1118 rc
= pf_af_hook(ifp
, mppn
, &m
, AF_INET
, FALSE
, &args
);
1119 #else /* DUMMYNET */
1120 rc
= pf_af_hook(ifp
, mppn
, &m
, AF_INET
, FALSE
, NULL
);
1121 #endif /* DUMMYNET */
1122 if (rc
!= 0 || m
== NULL
) {
1123 /* Move to the next packet */
1126 /* Skip ahead if first packet in list got dropped */
1127 if (packetlist
== m0
)
1132 /* Next packet in the chain */
1134 } else if (packetlist
!= NULL
) {
1135 /* No more packet; send down the chain */
1138 /* Nothing left; we're done */
1142 ip
= mtod(m
, struct ip
*);
1143 pkt_dst
= ip
->ip_dst
;
1144 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
1148 * Force IP TTL to 255 following draft-ietf-zeroconf-ipv4-linklocal.txt
1150 if (IN_LINKLOCAL(ntohl(ip
->ip_src
.s_addr
)) ||
1151 IN_LINKLOCAL(ntohl(ip
->ip_dst
.s_addr
))) {
1152 ip_linklocal_stat
.iplls_out_total
++;
1153 if (ip
->ip_ttl
!= MAXTTL
) {
1154 ip_linklocal_stat
.iplls_out_badttl
++;
1155 ip
->ip_ttl
= MAXTTL
;
1159 if (!ipobf
.didfilter
&& !TAILQ_EMPTY(&ipv4_filters
)) {
1160 struct ipfilter
*filter
;
1161 int seen
= (inject_filter_ref
== NULL
);
1162 ipf_pktopts
.ippo_flags
&= ~IPPOF_MCAST_OPTS
;
1165 * Check that a TSO frame isn't passed to a filter.
1166 * This could happen if a filter is inserted while
1167 * TCP is sending the TSO packet.
1169 if (m
->m_pkthdr
.csum_flags
& CSUM_TSO_IPV4
) {
1176 /* 4135317 - always pass network byte order to filter */
1177 #if BYTE_ORDER != BIG_ENDIAN
1181 TAILQ_FOREACH(filter
, &ipv4_filters
, ipf_link
) {
1183 if ((struct ipfilter
*)inject_filter_ref
==
1186 } else if (filter
->ipf_filter
.ipf_output
) {
1188 result
= filter
->ipf_filter
.
1189 ipf_output(filter
->ipf_filter
.cookie
,
1190 (mbuf_t
*)&m
, ippo
);
1191 if (result
== EJUSTRETURN
) {
1201 /* set back to host byte order */
1202 ip
= mtod(m
, struct ip
*);
1203 #if BYTE_ORDER != BIG_ENDIAN
1211 /* Process Network Extension Policy. Will Pass, Drop, or Rebind packet. */
1212 necp_matched_policy_id
= necp_ip_output_find_policy_match (m
,
1213 flags
, (flags
& IP_OUTARGS
) ? ipoa
: NULL
, &necp_result
, &necp_result_parameter
);
1214 if (necp_matched_policy_id
) {
1215 necp_mark_packet_from_ip(m
, necp_matched_policy_id
);
1216 switch (necp_result
) {
1217 case NECP_KERNEL_POLICY_RESULT_PASS
:
1218 /* Check if the interface is allowed */
1219 if (!necp_packet_is_allowed_over_interface(m
, ifp
)) {
1220 error
= EHOSTUNREACH
;
1221 OSAddAtomic(1, &ipstat
.ips_necp_policy_drop
);
1225 case NECP_KERNEL_POLICY_RESULT_DROP
:
1226 case NECP_KERNEL_POLICY_RESULT_SOCKET_DIVERT
:
1227 /* Flow divert packets should be blocked at the IP layer */
1228 error
= EHOSTUNREACH
;
1229 OSAddAtomic(1, &ipstat
.ips_necp_policy_drop
);
1231 case NECP_KERNEL_POLICY_RESULT_IP_TUNNEL
: {
1232 /* Verify that the packet is being routed to the tunnel */
1233 struct ifnet
*policy_ifp
= necp_get_ifnet_from_result_parameter(&necp_result_parameter
);
1234 if (policy_ifp
== ifp
) {
1235 /* Check if the interface is allowed */
1236 if (!necp_packet_is_allowed_over_interface(m
, ifp
)) {
1237 error
= EHOSTUNREACH
;
1238 OSAddAtomic(1, &ipstat
.ips_necp_policy_drop
);
1243 if (necp_packet_can_rebind_to_ifnet(m
, policy_ifp
, &necp_route
, AF_INET
)) {
1244 /* Check if the interface is allowed */
1245 if (!necp_packet_is_allowed_over_interface(m
, policy_ifp
)) {
1246 error
= EHOSTUNREACH
;
1247 OSAddAtomic(1, &ipstat
.ips_necp_policy_drop
);
1251 /* Set ifp to the tunnel interface, since it is compatible with the packet */
1256 error
= ENETUNREACH
;
1257 OSAddAtomic(1, &ipstat
.ips_necp_policy_drop
);
1266 /* Catch-all to check if the interface is allowed */
1267 if (!necp_packet_is_allowed_over_interface(m
, ifp
)) {
1268 error
= EHOSTUNREACH
;
1269 OSAddAtomic(1, &ipstat
.ips_necp_policy_drop
);
1275 if (ipsec_bypass
!= 0 || (flags
& IP_NOIPSEC
))
1278 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_START
, 0, 0, 0, 0, 0);
1281 /* get SP for this packet */
1283 sp
= ipsec4_getpolicybysock(m
, IPSEC_DIR_OUTBOUND
,
1286 sp
= ipsec4_getpolicybyaddr(m
, IPSEC_DIR_OUTBOUND
,
1290 IPSEC_STAT_INCREMENT(ipsecstat
.out_inval
);
1291 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1300 switch (sp
->policy
) {
1301 case IPSEC_POLICY_DISCARD
:
1302 case IPSEC_POLICY_GENERATE
:
1304 * This packet is just discarded.
1306 IPSEC_STAT_INCREMENT(ipsecstat
.out_polvio
);
1307 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1311 case IPSEC_POLICY_BYPASS
:
1312 case IPSEC_POLICY_NONE
:
1313 /* no need to do IPsec. */
1314 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1318 case IPSEC_POLICY_IPSEC
:
1319 if (sp
->req
== NULL
) {
1320 /* acquire a policy */
1321 error
= key_spdacquire(sp
);
1322 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1327 /* Verify the redirect to ipsec interface */
1328 if (sp
->ipsec_if
== ifp
) {
1335 case IPSEC_POLICY_ENTRUST
:
1337 printf("ip_output: Invalid policy found. %d\n", sp
->policy
);
1341 if (flags
& IP_ROUTETOIF
) {
1342 bzero(&ipsec_state
.ro
, sizeof (ipsec_state
.ro
));
1344 route_copyout((struct route
*)&ipsec_state
.ro
, ro
, sizeof (struct route
));
1346 ipsec_state
.dst
= SA(dst
);
1352 * delayed checksums are not currently compatible with IPsec
1354 if (m
->m_pkthdr
.csum_flags
& CSUM_DELAY_DATA
)
1355 in_delayed_cksum(m
);
1357 #if BYTE_ORDER != BIG_ENDIAN
1362 DTRACE_IP6(send
, struct mbuf
*, m
, struct inpcb
*, NULL
,
1363 struct ip
*, ip
, struct ifnet
*, ifp
,
1364 struct ip
*, ip
, struct ip6_hdr
*, NULL
);
1366 error
= ipsec4_output(&ipsec_state
, sp
, flags
);
1367 if (ipsec_state
.tunneled
== 6) {
1373 m0
= m
= ipsec_state
.m
;
1377 * If we're about to use the route in ipsec_state
1378 * and this came from dummynet, cleaup now.
1380 if (ro
== &saved_route
&&
1381 (!(flags
& IP_ROUTETOIF
) || ipsec_state
.tunneled
))
1383 #endif /* DUMMYNET */
1385 if (flags
& IP_ROUTETOIF
) {
1387 * if we have tunnel mode SA, we may need to ignore
1390 if (ipsec_state
.tunneled
) {
1391 flags
&= ~IP_ROUTETOIF
;
1392 ro
= (struct route
*)&ipsec_state
.ro
;
1395 ro
= (struct route
*)&ipsec_state
.ro
;
1397 dst
= SIN(ipsec_state
.dst
);
1399 /* mbuf is already reclaimed in ipsec4_output. */
1409 printf("ip4_output (ipsec): error code %d\n", error
);
1412 /* don't show these error codes to the user */
1416 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1422 /* be sure to update variables that are affected by ipsec4_output() */
1423 ip
= mtod(m
, struct ip
*);
1426 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
1427 #else /* !_IP_VHL */
1428 hlen
= ip
->ip_hl
<< 2;
1429 #endif /* !_IP_VHL */
1430 /* Check that there wasn't a route change and src is still valid */
1431 if (ROUTE_UNUSABLE(ro
)) {
1433 VERIFY(src_ia
== NULL
);
1434 if (ip
->ip_src
.s_addr
!= INADDR_ANY
&&
1435 !(flags
& (IP_ROUTETOIF
| IP_FORWARDING
)) &&
1436 (src_ia
= ifa_foraddr(ip
->ip_src
.s_addr
)) == NULL
) {
1437 error
= EADDRNOTAVAIL
;
1438 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1442 if (src_ia
!= NULL
) {
1443 IFA_REMREF(&src_ia
->ia_ifa
);
1448 if (ro
->ro_rt
== NULL
) {
1449 if (!(flags
& IP_ROUTETOIF
)) {
1450 printf("%s: can't update route after "
1451 "IPsec processing\n", __func__
);
1452 error
= EHOSTUNREACH
; /* XXX */
1453 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1459 IFA_REMREF(&ia
->ia_ifa
);
1460 RT_LOCK_SPIN(ro
->ro_rt
);
1461 ia
= ifatoia(ro
->ro_rt
->rt_ifa
);
1463 /* Become a regular mutex */
1464 RT_CONVERT_LOCK(ro
->ro_rt
);
1465 IFA_ADDREF(&ia
->ia_ifa
);
1467 ifp
= ro
->ro_rt
->rt_ifp
;
1468 RT_UNLOCK(ro
->ro_rt
);
1471 /* make it flipped, again. */
1472 #if BYTE_ORDER != BIG_ENDIAN
1476 KERNEL_DEBUG(DBG_FNC_IPSEC4_OUTPUT
| DBG_FUNC_END
,
1477 7, 0xff, 0xff, 0xff, 0xff);
1479 /* Pass to filters again */
1480 if (!TAILQ_EMPTY(&ipv4_filters
)) {
1481 struct ipfilter
*filter
;
1483 ipf_pktopts
.ippo_flags
&= ~IPPOF_MCAST_OPTS
;
1486 * Check that a TSO frame isn't passed to a filter.
1487 * This could happen if a filter is inserted while
1488 * TCP is sending the TSO packet.
1490 if (m
->m_pkthdr
.csum_flags
& CSUM_TSO_IPV4
) {
1497 /* 4135317 - always pass network byte order to filter */
1498 #if BYTE_ORDER != BIG_ENDIAN
1502 TAILQ_FOREACH(filter
, &ipv4_filters
, ipf_link
) {
1503 if (filter
->ipf_filter
.ipf_output
) {
1505 result
= filter
->ipf_filter
.
1506 ipf_output(filter
->ipf_filter
.cookie
,
1507 (mbuf_t
*)&m
, ippo
);
1508 if (result
== EJUSTRETURN
) {
1518 /* set back to host byte order */
1519 ip
= mtod(m
, struct ip
*);
1520 #if BYTE_ORDER != BIG_ENDIAN
1531 * Check with the firewall...
1532 * but not if we are already being fwd'd from a firewall.
1534 if (fw_enable
&& IPFW_LOADED
&& !args
.fwa_next_hop
) {
1535 struct sockaddr_in
*old
= dst
;
1538 args
.fwa_next_hop
= dst
;
1540 ipfwoff
= ip_fw_chk_ptr(&args
);
1542 dst
= args
.fwa_next_hop
;
1545 * On return we must do the following:
1546 * IP_FW_PORT_DENY_FLAG -> drop the pkt (XXX new)
1547 * 1<=off<= 0xffff -> DIVERT
1548 * (off & IP_FW_PORT_DYNT_FLAG) -> send to a DUMMYNET pipe
1549 * (off & IP_FW_PORT_TEE_FLAG) -> TEE the packet
1550 * dst != old -> IPFIREWALL_FORWARD
1551 * off==0, dst==old -> accept
1552 * If some of the above modules is not compiled in, then
1553 * we should't have to check the corresponding condition
1554 * (because the ipfw control socket should not accept
1555 * unsupported rules), but better play safe and drop
1556 * packets in case of doubt.
1559 if ((ipfwoff
& IP_FW_PORT_DENY_FLAG
) || m
== NULL
) {
1565 ip
= mtod(m
, struct ip
*);
1567 if (ipfwoff
== 0 && dst
== old
) { /* common case */
1571 if (DUMMYNET_LOADED
&& (ipfwoff
& IP_FW_PORT_DYNT_FLAG
) != 0) {
1573 * pass the pkt to dummynet. Need to include
1574 * pipe number, m, ifp, ro, dst because these are
1575 * not recomputed in the next pass.
1576 * All other parameters have been already used and
1577 * so they are not needed anymore.
1578 * XXX note: if the ifp or ro entry are deleted
1579 * while a pkt is in dummynet, we are in trouble!
1583 args
.fwa_oflags
= flags
;
1584 if (flags
& IP_OUTARGS
)
1585 args
.fwa_ipoa
= ipoa
;
1587 error
= ip_dn_io_ptr(m
, ipfwoff
& 0xffff, DN_TO_IP_OUT
,
1588 &args
, DN_CLIENT_IPFW
);
1591 #endif /* DUMMYNET */
1593 if (ipfwoff
!= 0 && (ipfwoff
& IP_FW_PORT_DYNT_FLAG
) == 0) {
1594 struct mbuf
*clone
= NULL
;
1596 /* Clone packet if we're doing a 'tee' */
1597 if ((ipfwoff
& IP_FW_PORT_TEE_FLAG
) != 0)
1598 clone
= m_dup(m
, M_DONTWAIT
);
1601 * delayed checksums are not currently compatible
1602 * with divert sockets.
1604 if (m
->m_pkthdr
.csum_flags
& CSUM_DELAY_DATA
)
1605 in_delayed_cksum(m
);
1607 /* Restore packet header fields to original values */
1609 #if BYTE_ORDER != BIG_ENDIAN
1614 /* Deliver packet to divert input routine */
1615 divert_packet(m
, 0, ipfwoff
& 0xffff,
1616 args
.fwa_divert_rule
);
1618 /* If 'tee', continue with original packet */
1619 if (clone
!= NULL
) {
1621 ip
= mtod(m
, struct ip
*);
1626 #endif /* IPDIVERT */
1627 #if IPFIREWALL_FORWARD
1629 * Here we check dst to make sure it's directly reachable on
1630 * the interface we previously thought it was.
1631 * If it isn't (which may be likely in some situations) we have
1632 * to re-route it (ie, find a route for the next-hop and the
1633 * associated interface) and set them here. This is nested
1634 * forwarding which in most cases is undesirable, except where
1635 * such control is nigh impossible. So we do it here.
1638 if (ipfwoff
== 0 && old
!= dst
) {
1639 struct in_ifaddr
*ia_fw
;
1640 struct route
*ro_fwd
= &sro_fwd
;
1642 #if IPFIREWALL_FORWARD_DEBUG
1643 printf("IPFIREWALL_FORWARD: New dst ip: ");
1644 print_ip(dst
->sin_addr
);
1646 #endif /* IPFIREWALL_FORWARD_DEBUG */
1648 * We need to figure out if we have been forwarded
1649 * to a local socket. If so then we should somehow
1650 * "loop back" to ip_input, and get directed to the
1651 * PCB as if we had received this packet. This is
1652 * because it may be dificult to identify the packets
1653 * you want to forward until they are being output
1654 * and have selected an interface. (e.g. locally
1655 * initiated packets) If we used the loopback inteface,
1656 * we would not be able to control what happens
1657 * as the packet runs through ip_input() as
1658 * it is done through a ISR.
1660 lck_rw_lock_shared(in_ifaddr_rwlock
);
1661 TAILQ_FOREACH(ia_fw
, &in_ifaddrhead
, ia_link
) {
1663 * If the addr to forward to is one
1664 * of ours, we pretend to
1665 * be the destination for this packet.
1667 IFA_LOCK_SPIN(&ia_fw
->ia_ifa
);
1668 if (IA_SIN(ia_fw
)->sin_addr
.s_addr
==
1669 dst
->sin_addr
.s_addr
) {
1670 IFA_UNLOCK(&ia_fw
->ia_ifa
);
1673 IFA_UNLOCK(&ia_fw
->ia_ifa
);
1675 lck_rw_done(in_ifaddr_rwlock
);
1677 /* tell ip_input "dont filter" */
1678 struct m_tag
*fwd_tag
;
1679 struct ip_fwd_tag
*ipfwd_tag
;
1681 fwd_tag
= m_tag_create(KERNEL_MODULE_TAG_ID
,
1682 KERNEL_TAG_TYPE_IPFORWARD
,
1683 sizeof (*ipfwd_tag
), M_NOWAIT
, m
);
1684 if (fwd_tag
== NULL
) {
1689 ipfwd_tag
= (struct ip_fwd_tag
*)(fwd_tag
+1);
1690 ipfwd_tag
->next_hop
= args
.fwa_next_hop
;
1692 m_tag_prepend(m
, fwd_tag
);
1694 if (m
->m_pkthdr
.rcvif
== NULL
)
1695 m
->m_pkthdr
.rcvif
= lo_ifp
;
1697 #if BYTE_ORDER != BIG_ENDIAN
1701 mbuf_outbound_finalize(m
, PF_INET
, 0);
1704 * we need to call dlil_output to run filters
1705 * and resync to avoid recursion loops.
1708 dlil_output(lo_ifp
, PF_INET
, m
, NULL
,
1711 printf("%s: no loopback ifp for "
1712 "forwarding!!!\n", __func__
);
1717 * Some of the logic for this was nicked from above.
1719 * This rewrites the cached route in a local PCB.
1720 * Is this what we want to do?
1722 ROUTE_RELEASE(ro_fwd
);
1723 bcopy(dst
, &ro_fwd
->ro_dst
, sizeof (*dst
));
1725 rtalloc_ign(ro_fwd
, RTF_PRCLONING
, false);
1727 if (ro_fwd
->ro_rt
== NULL
) {
1728 OSAddAtomic(1, &ipstat
.ips_noroute
);
1729 error
= EHOSTUNREACH
;
1733 RT_LOCK_SPIN(ro_fwd
->ro_rt
);
1734 ia_fw
= ifatoia(ro_fwd
->ro_rt
->rt_ifa
);
1735 if (ia_fw
!= NULL
) {
1736 /* Become a regular mutex */
1737 RT_CONVERT_LOCK(ro_fwd
->ro_rt
);
1738 IFA_ADDREF(&ia_fw
->ia_ifa
);
1740 ifp
= ro_fwd
->ro_rt
->rt_ifp
;
1741 ro_fwd
->ro_rt
->rt_use
++;
1742 if (ro_fwd
->ro_rt
->rt_flags
& RTF_GATEWAY
)
1743 dst
= SIN(ro_fwd
->ro_rt
->rt_gateway
);
1744 if (ro_fwd
->ro_rt
->rt_flags
& RTF_HOST
) {
1745 /* double negation needed for bool bit field */
1747 !!(ro_fwd
->ro_rt
->rt_flags
& RTF_BROADCAST
);
1749 /* Become a regular mutex */
1750 RT_CONVERT_LOCK(ro_fwd
->ro_rt
);
1752 in_broadcast(dst
->sin_addr
, ifp
);
1754 RT_UNLOCK(ro_fwd
->ro_rt
);
1756 ro
->ro_rt
= ro_fwd
->ro_rt
;
1757 ro_fwd
->ro_rt
= NULL
;
1758 dst
= SIN(&ro_fwd
->ro_dst
);
1761 * If we added a default src ip earlier,
1762 * which would have been gotten from the-then
1763 * interface, do it again, from the new one.
1765 if (ia_fw
!= NULL
) {
1766 if (ipobf
.fwd_rewrite_src
) {
1767 IFA_LOCK_SPIN(&ia_fw
->ia_ifa
);
1768 ip
->ip_src
= IA_SIN(ia_fw
)->sin_addr
;
1769 IFA_UNLOCK(&ia_fw
->ia_ifa
);
1771 IFA_REMREF(&ia_fw
->ia_ifa
);
1775 #endif /* IPFIREWALL_FORWARD */
1777 * if we get here, none of the above matches, and
1778 * we have to drop the pkt
1781 error
= EACCES
; /* not sure this is the right error msg */
1786 #endif /* IPFIREWALL */
1788 /* 127/8 must not appear on wire - RFC1122 */
1789 if (!(ifp
->if_flags
& IFF_LOOPBACK
) &&
1790 ((ntohl(ip
->ip_src
.s_addr
) >> IN_CLASSA_NSHIFT
) == IN_LOOPBACKNET
||
1791 (ntohl(ip
->ip_dst
.s_addr
) >> IN_CLASSA_NSHIFT
) == IN_LOOPBACKNET
)) {
1792 OSAddAtomic(1, &ipstat
.ips_badaddr
);
1793 error
= EADDRNOTAVAIL
;
1798 u_int8_t dscp
= ip
->ip_tos
>> IPTOS_DSCP_SHIFT
;
1800 error
= set_packet_qos(m
, ifp
,
1801 ipoa
->ipoa_flags
& IPOAF_QOSMARKING_ALLOWED
? TRUE
: FALSE
,
1802 ipoa
->ipoa_sotc
, ipoa
->ipoa_netsvctype
, &dscp
);
1804 ip
->ip_tos
&= IPTOS_ECN_MASK
;
1805 ip
->ip_tos
|= dscp
<< IPTOS_DSCP_SHIFT
;
1807 printf("%s if_dscp_for_mbuf() error %d\n", __func__
, error
);
1813 * Some Wi-Fi AP implementations do not correctly handle multicast IP
1814 * packets with DSCP bits set -- see radr://9331522 -- so as a
1815 * workaround we clear the DSCP bits and set the service class to BE
1817 if (IN_MULTICAST(ntohl(pkt_dst
.s_addr
)) && IFNET_IS_WIFI_INFRA(ifp
)) {
1818 ip
->ip_tos
&= IPTOS_ECN_MASK
;
1819 mbuf_set_service_class(m
, MBUF_SC_BE
);
1822 ip_output_checksum(ifp
, m
, (IP_VHL_HL(ip
->ip_vhl
) << 2),
1823 ip
->ip_len
, &sw_csum
);
1826 * If small enough for interface, or the interface will take
1827 * care of the fragmentation for us, can just send directly.
1829 if ((u_short
)ip
->ip_len
<= ifp
->if_mtu
|| TSO_IPV4_OK(ifp
, m
) ||
1830 (!(ip
->ip_off
& IP_DF
) && (ifp
->if_hwassist
& CSUM_FRAGMENT
))) {
1831 #if BYTE_ORDER != BIG_ENDIAN
1837 if (sw_csum
& CSUM_DELAY_IP
) {
1838 ip
->ip_sum
= ip_cksum_hdr_out(m
, hlen
);
1839 sw_csum
&= ~CSUM_DELAY_IP
;
1840 m
->m_pkthdr
.csum_flags
&= ~CSUM_DELAY_IP
;
1844 /* clean ipsec history once it goes out of the node */
1845 if (ipsec_bypass
== 0 && !(flags
& IP_NOIPSEC
))
1848 if ((m
->m_pkthdr
.csum_flags
& CSUM_TSO_IPV4
) &&
1849 (m
->m_pkthdr
.tso_segsz
> 0))
1850 scnt
+= m
->m_pkthdr
.len
/ m
->m_pkthdr
.tso_segsz
;
1854 if (packetchain
== 0) {
1855 if (ro
->ro_rt
!= NULL
&& nstat_collect
)
1856 nstat_route_tx(ro
->ro_rt
, scnt
,
1857 m
->m_pkthdr
.len
, 0);
1859 error
= dlil_output(ifp
, PF_INET
, m
, ro
->ro_rt
,
1861 if (dlil_verbose
&& error
) {
1862 printf("dlil_output error on interface %s: %d\n",
1863 ifp
->if_xname
, error
);
1869 * packet chaining allows us to reuse the
1870 * route for all packets
1872 bytecnt
+= m
->m_pkthdr
.len
;
1873 mppn
= &m
->m_nextpkt
;
1879 if (pktcnt
> ip_maxchainsent
)
1880 ip_maxchainsent
= pktcnt
;
1881 if (ro
->ro_rt
!= NULL
&& nstat_collect
)
1882 nstat_route_tx(ro
->ro_rt
, scnt
,
1885 error
= dlil_output(ifp
, PF_INET
, packetlist
,
1886 ro
->ro_rt
, SA(dst
), 0, adv
);
1887 if (dlil_verbose
&& error
) {
1888 printf("dlil_output error on interface %s: %d\n",
1889 ifp
->if_xname
, error
);
1903 * Too large for interface; fragment if possible.
1904 * Must be able to put at least 8 bytes per fragment.
1905 * Balk when DF bit is set or the interface didn't support TSO.
1907 if ((ip
->ip_off
& IP_DF
) || pktcnt
> 0 ||
1908 (m
->m_pkthdr
.csum_flags
& CSUM_TSO_IPV4
)) {
1911 * This case can happen if the user changed the MTU
1912 * of an interface after enabling IP on it. Because
1913 * most netifs don't keep track of routes pointing to
1914 * them, there is no way for one to update all its
1915 * routes when the MTU is changed.
1918 RT_LOCK_SPIN(ro
->ro_rt
);
1919 if ((ro
->ro_rt
->rt_flags
& (RTF_UP
| RTF_HOST
)) &&
1920 !(ro
->ro_rt
->rt_rmx
.rmx_locks
& RTV_MTU
) &&
1921 (ro
->ro_rt
->rt_rmx
.rmx_mtu
> ifp
->if_mtu
)) {
1922 ro
->ro_rt
->rt_rmx
.rmx_mtu
= ifp
->if_mtu
;
1924 RT_UNLOCK(ro
->ro_rt
);
1929 OSAddAtomic(1, &ipstat
.ips_cantfrag
);
1933 error
= ip_fragment(m
, ifp
, ifp
->if_mtu
, sw_csum
);
1939 KERNEL_DEBUG(DBG_LAYER_END
, ip
->ip_dst
.s_addr
,
1940 ip
->ip_src
.s_addr
, ip
->ip_p
, ip
->ip_off
, ip
->ip_len
);
1942 for (m
= m0
; m
; m
= m0
) {
1946 /* clean ipsec history once it goes out of the node */
1947 if (ipsec_bypass
== 0 && !(flags
& IP_NOIPSEC
))
1951 if ((packetchain
!= 0) && (pktcnt
> 0)) {
1952 panic("%s: mix of packet in packetlist is "
1953 "wrong=%p", __func__
, packetlist
);
1956 if (ro
->ro_rt
!= NULL
&& nstat_collect
) {
1957 nstat_route_tx(ro
->ro_rt
, 1,
1958 m
->m_pkthdr
.len
, 0);
1960 error
= dlil_output(ifp
, PF_INET
, m
, ro
->ro_rt
,
1962 if (dlil_verbose
&& error
) {
1963 printf("dlil_output error on interface %s: %d\n",
1964 ifp
->if_xname
, error
);
1972 OSAddAtomic(1, &ipstat
.ips_fragmented
);
1976 IFA_REMREF(&ia
->ia_ifa
);
1980 ROUTE_RELEASE(&ipsec_state
.ro
);
1982 KEYDEBUG(KEYDEBUG_IPSEC_STAMP
,
1983 printf("DP ip_output call free SP:%x\n", sp
));
1984 key_freesp(sp
, KEY_SADB_UNLOCKED
);
1988 ROUTE_RELEASE(&necp_route
);
1991 ROUTE_RELEASE(&saved_route
);
1992 #endif /* DUMMYNET */
1993 #if IPFIREWALL_FORWARD
1994 ROUTE_RELEASE(&sro_fwd
);
1995 #endif /* IPFIREWALL_FORWARD */
1997 KERNEL_DEBUG(DBG_FNC_IP_OUTPUT
| DBG_FUNC_END
, error
, 0, 0, 0, 0);
1998 if (ip_output_measure
) {
1999 net_perf_measure_time(&net_perf
, &start_tv
, packets_processed
);
2000 net_perf_histogram(&net_perf
, packets_processed
);
2014 #undef IP_CHECK_RESTRICTIONS
2018 ip_fragment(struct mbuf
*m
, struct ifnet
*ifp
, unsigned long mtu
, int sw_csum
)
2020 struct ip
*ip
, *mhip
;
2021 int len
, hlen
, mhlen
, firstlen
, off
, error
= 0;
2022 struct mbuf
**mnext
= &m
->m_nextpkt
, *m0
;
2025 ip
= mtod(m
, struct ip
*);
2027 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2;
2028 #else /* !_IP_VHL */
2029 hlen
= ip
->ip_hl
<< 2;
2030 #endif /* !_IP_VHL */
2032 firstlen
= len
= (mtu
- hlen
) &~ 7;
2039 * if the interface will not calculate checksums on
2040 * fragmented packets, then do it here.
2042 if ((m
->m_pkthdr
.csum_flags
& CSUM_DELAY_DATA
) &&
2043 !(ifp
->if_hwassist
& CSUM_IP_FRAGS
))
2044 in_delayed_cksum(m
);
2047 * Loop through length of segment after first fragment,
2048 * make new header and copy data of each part and link onto chain.
2051 mhlen
= sizeof (struct ip
);
2052 for (off
= hlen
+ len
; off
< (u_short
)ip
->ip_len
; off
+= len
) {
2053 MGETHDR(m
, M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
2056 OSAddAtomic(1, &ipstat
.ips_odropped
);
2059 m
->m_flags
|= (m0
->m_flags
& M_MCAST
) | M_FRAG
;
2060 m
->m_data
+= max_linkhdr
;
2061 mhip
= mtod(m
, struct ip
*);
2063 if (hlen
> sizeof (struct ip
)) {
2064 mhlen
= ip_optcopy(ip
, mhip
) + sizeof (struct ip
);
2065 mhip
->ip_vhl
= IP_MAKE_VHL(IPVERSION
, mhlen
>> 2);
2068 mhip
->ip_off
= ((off
- hlen
) >> 3) + (ip
->ip_off
& ~IP_MF
);
2069 if (ip
->ip_off
& IP_MF
)
2070 mhip
->ip_off
|= IP_MF
;
2071 if (off
+ len
>= (u_short
)ip
->ip_len
)
2072 len
= (u_short
)ip
->ip_len
- off
;
2074 mhip
->ip_off
|= IP_MF
;
2075 mhip
->ip_len
= htons((u_short
)(len
+ mhlen
));
2076 m
->m_next
= m_copy(m0
, off
, len
);
2077 if (m
->m_next
== NULL
) {
2079 error
= ENOBUFS
; /* ??? */
2080 OSAddAtomic(1, &ipstat
.ips_odropped
);
2083 m
->m_pkthdr
.len
= mhlen
+ len
;
2084 m
->m_pkthdr
.rcvif
= NULL
;
2085 m
->m_pkthdr
.csum_flags
= m0
->m_pkthdr
.csum_flags
;
2087 M_COPY_CLASSIFIER(m
, m0
);
2088 M_COPY_PFTAG(m
, m0
);
2091 mac_netinet_fragment(m0
, m
);
2092 #endif /* CONFIG_MACF_NET */
2094 #if BYTE_ORDER != BIG_ENDIAN
2095 HTONS(mhip
->ip_off
);
2099 if (sw_csum
& CSUM_DELAY_IP
) {
2100 mhip
->ip_sum
= ip_cksum_hdr_out(m
, mhlen
);
2101 m
->m_pkthdr
.csum_flags
&= ~CSUM_DELAY_IP
;
2104 mnext
= &m
->m_nextpkt
;
2107 OSAddAtomic(nfrags
, &ipstat
.ips_ofragments
);
2109 /* set first/last markers for fragment chain */
2110 m
->m_flags
|= M_LASTFRAG
;
2111 m0
->m_flags
|= M_FIRSTFRAG
| M_FRAG
;
2112 m0
->m_pkthdr
.csum_data
= nfrags
;
2115 * Update first fragment by trimming what's been copied out
2116 * and updating header, then send each fragment (in order).
2119 m_adj(m
, hlen
+ firstlen
- (u_short
)ip
->ip_len
);
2120 m
->m_pkthdr
.len
= hlen
+ firstlen
;
2121 ip
->ip_len
= htons((u_short
)m
->m_pkthdr
.len
);
2122 ip
->ip_off
|= IP_MF
;
2124 #if BYTE_ORDER != BIG_ENDIAN
2129 if (sw_csum
& CSUM_DELAY_IP
) {
2130 ip
->ip_sum
= ip_cksum_hdr_out(m
, hlen
);
2131 m
->m_pkthdr
.csum_flags
&= ~CSUM_DELAY_IP
;
2141 ip_out_cksum_stats(int proto
, u_int32_t len
)
2145 tcp_out_cksum_stats(len
);
2148 udp_out_cksum_stats(len
);
2151 /* keep only TCP or UDP stats for now */
2157 * Process a delayed payload checksum calculation (outbound path.)
2159 * hoff is the number of bytes beyond the mbuf data pointer which
2160 * points to the IP header.
2162 * Returns a bitmask representing all the work done in software.
2165 in_finalize_cksum(struct mbuf
*m
, uint32_t hoff
, uint32_t csum_flags
)
2167 unsigned char buf
[15 << 2] __attribute__((aligned(8)));
2169 uint32_t offset
, _hlen
, mlen
, hlen
, len
, sw_csum
;
2170 uint16_t csum
, ip_len
;
2172 _CASSERT(sizeof (csum
) == sizeof (uint16_t));
2173 VERIFY(m
->m_flags
& M_PKTHDR
);
2175 sw_csum
= (csum_flags
& m
->m_pkthdr
.csum_flags
);
2177 if ((sw_csum
&= (CSUM_DELAY_IP
| CSUM_DELAY_DATA
)) == 0)
2180 mlen
= m
->m_pkthdr
.len
; /* total mbuf len */
2182 /* sanity check (need at least simple IP header) */
2183 if (mlen
< (hoff
+ sizeof (*ip
))) {
2184 panic("%s: mbuf %p pkt len (%u) < hoff+ip_hdr "
2185 "(%u+%u)\n", __func__
, m
, mlen
, hoff
,
2186 (uint32_t)sizeof (*ip
));
2191 * In case the IP header is not contiguous, or not 32-bit aligned,
2192 * or if we're computing the IP header checksum, copy it to a local
2193 * buffer. Copy only the simple IP header here (IP options case
2194 * is handled below.)
2196 if ((sw_csum
& CSUM_DELAY_IP
) || (hoff
+ sizeof (*ip
)) > m
->m_len
||
2197 !IP_HDR_ALIGNED_P(mtod(m
, caddr_t
) + hoff
)) {
2198 m_copydata(m
, hoff
, sizeof (*ip
), (caddr_t
)buf
);
2199 ip
= (struct ip
*)(void *)buf
;
2200 _hlen
= sizeof (*ip
);
2202 ip
= (struct ip
*)(void *)(m
->m_data
+ hoff
);
2206 hlen
= IP_VHL_HL(ip
->ip_vhl
) << 2; /* IP header len */
2209 if (mlen
< (hoff
+ hlen
)) {
2210 panic("%s: mbuf %p pkt too short (%d) for IP header (%u), "
2211 "hoff %u", __func__
, m
, mlen
, hlen
, hoff
);
2216 * We could be in the context of an IP or interface filter; in the
2217 * former case, ip_len would be in host (correct) order while for
2218 * the latter it would be in network order. Because of this, we
2219 * attempt to interpret the length field by comparing it against
2220 * the actual packet length. If the comparison fails, byte swap
2221 * the length and check again. If it still fails, use the actual
2222 * packet length. This also covers the trailing bytes case.
2224 ip_len
= ip
->ip_len
;
2225 if (ip_len
!= (mlen
- hoff
)) {
2226 ip_len
= OSSwapInt16(ip_len
);
2227 if (ip_len
!= (mlen
- hoff
)) {
2228 printf("%s: mbuf 0x%llx proto %d IP len %d (%x) "
2229 "[swapped %d (%x)] doesn't match actual packet "
2230 "length; %d is used instead\n", __func__
,
2231 (uint64_t)VM_KERNEL_ADDRPERM(m
), ip
->ip_p
,
2232 ip
->ip_len
, ip
->ip_len
, ip_len
, ip_len
,
2234 ip_len
= mlen
- hoff
;
2238 len
= ip_len
- hlen
; /* csum span */
2240 if (sw_csum
& CSUM_DELAY_DATA
) {
2244 * offset is added to the lower 16-bit value of csum_data,
2245 * which is expected to contain the ULP offset; therefore
2246 * CSUM_PARTIAL offset adjustment must be undone.
2248 if ((m
->m_pkthdr
.csum_flags
& (CSUM_PARTIAL
|CSUM_DATA_VALID
)) ==
2249 (CSUM_PARTIAL
|CSUM_DATA_VALID
)) {
2251 * Get back the original ULP offset (this will
2252 * undo the CSUM_PARTIAL logic in ip_output.)
2254 m
->m_pkthdr
.csum_data
= (m
->m_pkthdr
.csum_tx_stuff
-
2255 m
->m_pkthdr
.csum_tx_start
);
2258 ulpoff
= (m
->m_pkthdr
.csum_data
& 0xffff); /* ULP csum offset */
2259 offset
= hoff
+ hlen
; /* ULP header */
2261 if (mlen
< (ulpoff
+ sizeof (csum
))) {
2262 panic("%s: mbuf %p pkt len (%u) proto %d invalid ULP "
2263 "cksum offset (%u) cksum flags 0x%x\n", __func__
,
2264 m
, mlen
, ip
->ip_p
, ulpoff
, m
->m_pkthdr
.csum_flags
);
2268 csum
= inet_cksum(m
, 0, offset
, len
);
2271 ip_out_cksum_stats(ip
->ip_p
, len
);
2273 /* RFC1122 4.1.3.4 */
2275 (m
->m_pkthdr
.csum_flags
& (CSUM_UDP
|CSUM_ZERO_INVERT
)))
2278 /* Insert the checksum in the ULP csum field */
2280 if (offset
+ sizeof (csum
) > m
->m_len
) {
2281 m_copyback(m
, offset
, sizeof (csum
), &csum
);
2282 } else if (IP_HDR_ALIGNED_P(mtod(m
, char *) + hoff
)) {
2283 *(uint16_t *)(void *)(mtod(m
, char *) + offset
) = csum
;
2285 bcopy(&csum
, (mtod(m
, char *) + offset
), sizeof (csum
));
2287 m
->m_pkthdr
.csum_flags
&= ~(CSUM_DELAY_DATA
| CSUM_DATA_VALID
|
2288 CSUM_PARTIAL
| CSUM_ZERO_INVERT
);
2291 if (sw_csum
& CSUM_DELAY_IP
) {
2292 /* IP header must be in the local buffer */
2293 VERIFY(_hlen
== sizeof (*ip
));
2294 if (_hlen
!= hlen
) {
2295 VERIFY(hlen
<= sizeof (buf
));
2296 m_copydata(m
, hoff
, hlen
, (caddr_t
)buf
);
2297 ip
= (struct ip
*)(void *)buf
;
2302 * Compute the IP header checksum as if the IP length
2303 * is the length which we believe is "correct"; see
2304 * how ip_len gets calculated above. Note that this
2305 * is done on the local copy and not on the real one.
2307 ip
->ip_len
= htons(ip_len
);
2309 csum
= in_cksum_hdr_opt(ip
);
2312 ipstat
.ips_snd_swcsum
++;
2313 ipstat
.ips_snd_swcsum_bytes
+= hlen
;
2316 * Insert only the checksum in the existing IP header
2317 * csum field; all other fields are left unchanged.
2319 offset
= hoff
+ offsetof(struct ip
, ip_sum
);
2320 if (offset
+ sizeof (csum
) > m
->m_len
) {
2321 m_copyback(m
, offset
, sizeof (csum
), &csum
);
2322 } else if (IP_HDR_ALIGNED_P(mtod(m
, char *) + hoff
)) {
2323 *(uint16_t *)(void *)(mtod(m
, char *) + offset
) = csum
;
2325 bcopy(&csum
, (mtod(m
, char *) + offset
), sizeof (csum
));
2327 m
->m_pkthdr
.csum_flags
&= ~CSUM_DELAY_IP
;
2335 * Insert IP options into preformed packet.
2336 * Adjust IP destination as required for IP source routing,
2337 * as indicated by a non-zero in_addr at the start of the options.
2339 * XXX This routine assumes that the packet has no options in place.
2341 static struct mbuf
*
2342 ip_insertoptions(struct mbuf
*m
, struct mbuf
*opt
, int *phlen
)
2344 struct ipoption
*p
= mtod(opt
, struct ipoption
*);
2346 struct ip
*ip
= mtod(m
, struct ip
*);
2349 optlen
= opt
->m_len
- sizeof (p
->ipopt_dst
);
2350 if (optlen
+ (u_short
)ip
->ip_len
> IP_MAXPACKET
)
2351 return (m
); /* XXX should fail */
2352 if (p
->ipopt_dst
.s_addr
)
2353 ip
->ip_dst
= p
->ipopt_dst
;
2354 if (m
->m_flags
& M_EXT
|| m
->m_data
- optlen
< m
->m_pktdat
) {
2355 MGETHDR(n
, M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
2358 n
->m_pkthdr
.rcvif
= 0;
2360 mac_mbuf_label_copy(m
, n
);
2361 #endif /* CONFIG_MACF_NET */
2362 n
->m_pkthdr
.len
= m
->m_pkthdr
.len
+ optlen
;
2363 m
->m_len
-= sizeof (struct ip
);
2364 m
->m_data
+= sizeof (struct ip
);
2367 m
->m_len
= optlen
+ sizeof (struct ip
);
2368 m
->m_data
+= max_linkhdr
;
2369 (void) memcpy(mtod(m
, void *), ip
, sizeof (struct ip
));
2371 m
->m_data
-= optlen
;
2373 m
->m_pkthdr
.len
+= optlen
;
2374 ovbcopy((caddr_t
)ip
, mtod(m
, caddr_t
), sizeof (struct ip
));
2376 ip
= mtod(m
, struct ip
*);
2377 bcopy(p
->ipopt_list
, ip
+ 1, optlen
);
2378 *phlen
= sizeof (struct ip
) + optlen
;
2379 ip
->ip_vhl
= IP_MAKE_VHL(IPVERSION
, *phlen
>> 2);
2380 ip
->ip_len
+= optlen
;
2385 * Copy options from ip to jp,
2386 * omitting those not copied during fragmentation.
2389 ip_optcopy(struct ip
*ip
, struct ip
*jp
)
2392 int opt
, optlen
, cnt
;
2394 cp
= (u_char
*)(ip
+ 1);
2395 dp
= (u_char
*)(jp
+ 1);
2396 cnt
= (IP_VHL_HL(ip
->ip_vhl
) << 2) - sizeof (struct ip
);
2397 for (; cnt
> 0; cnt
-= optlen
, cp
+= optlen
) {
2399 if (opt
== IPOPT_EOL
)
2401 if (opt
== IPOPT_NOP
) {
2402 /* Preserve for IP mcast tunnel's LSRR alignment. */
2408 if (cnt
< IPOPT_OLEN
+ sizeof (*cp
)) {
2409 panic("malformed IPv4 option passed to ip_optcopy");
2413 optlen
= cp
[IPOPT_OLEN
];
2415 if (optlen
< IPOPT_OLEN
+ sizeof (*cp
) || optlen
> cnt
) {
2416 panic("malformed IPv4 option passed to ip_optcopy");
2420 /* bogus lengths should have been caught by ip_dooptions */
2423 if (IPOPT_COPIED(opt
)) {
2424 bcopy(cp
, dp
, optlen
);
2428 for (optlen
= dp
- (u_char
*)(jp
+1); optlen
& 0x3; optlen
++)
2434 * IP socket option processing.
2437 ip_ctloutput(struct socket
*so
, struct sockopt
*sopt
)
2439 struct inpcb
*inp
= sotoinpcb(so
);
2443 if (sopt
->sopt_level
!= IPPROTO_IP
)
2446 switch (sopt
->sopt_dir
) {
2448 switch (sopt
->sopt_name
) {
2455 if (sopt
->sopt_valsize
> MLEN
) {
2459 MGET(m
, sopt
->sopt_p
!= kernproc
? M_WAIT
: M_DONTWAIT
,
2465 m
->m_len
= sopt
->sopt_valsize
;
2466 error
= sooptcopyin(sopt
, mtod(m
, char *),
2467 m
->m_len
, m
->m_len
);
2473 return (ip_pcbopts(sopt
->sopt_name
,
2474 &inp
->inp_options
, m
));
2480 case IP_RECVRETOPTS
:
2481 case IP_RECVDSTADDR
:
2484 case IP_RECVPKTINFO
:
2486 error
= sooptcopyin(sopt
, &optval
, sizeof (optval
),
2491 switch (sopt
->sopt_name
) {
2493 inp
->inp_ip_tos
= optval
;
2497 inp
->inp_ip_ttl
= optval
;
2499 #define OPTSET(bit) \
2501 inp->inp_flags |= bit; \
2503 inp->inp_flags &= ~bit;
2506 OPTSET(INP_RECVOPTS
);
2509 case IP_RECVRETOPTS
:
2510 OPTSET(INP_RECVRETOPTS
);
2513 case IP_RECVDSTADDR
:
2514 OPTSET(INP_RECVDSTADDR
);
2522 OPTSET(INP_RECVTTL
);
2525 case IP_RECVPKTINFO
:
2526 OPTSET(INP_PKTINFO
);
2530 OPTSET(INP_RECVTOS
);
2536 * Multicast socket options are processed by the in_mcast
2539 case IP_MULTICAST_IF
:
2540 case IP_MULTICAST_IFINDEX
:
2541 case IP_MULTICAST_VIF
:
2542 case IP_MULTICAST_TTL
:
2543 case IP_MULTICAST_LOOP
:
2544 case IP_ADD_MEMBERSHIP
:
2545 case IP_DROP_MEMBERSHIP
:
2546 case IP_ADD_SOURCE_MEMBERSHIP
:
2547 case IP_DROP_SOURCE_MEMBERSHIP
:
2548 case IP_BLOCK_SOURCE
:
2549 case IP_UNBLOCK_SOURCE
:
2551 case MCAST_JOIN_GROUP
:
2552 case MCAST_LEAVE_GROUP
:
2553 case MCAST_JOIN_SOURCE_GROUP
:
2554 case MCAST_LEAVE_SOURCE_GROUP
:
2555 case MCAST_BLOCK_SOURCE
:
2556 case MCAST_UNBLOCK_SOURCE
:
2557 error
= inp_setmoptions(inp
, sopt
);
2561 error
= sooptcopyin(sopt
, &optval
, sizeof (optval
),
2567 case IP_PORTRANGE_DEFAULT
:
2568 inp
->inp_flags
&= ~(INP_LOWPORT
);
2569 inp
->inp_flags
&= ~(INP_HIGHPORT
);
2572 case IP_PORTRANGE_HIGH
:
2573 inp
->inp_flags
&= ~(INP_LOWPORT
);
2574 inp
->inp_flags
|= INP_HIGHPORT
;
2577 case IP_PORTRANGE_LOW
:
2578 inp
->inp_flags
&= ~(INP_HIGHPORT
);
2579 inp
->inp_flags
|= INP_LOWPORT
;
2589 case IP_IPSEC_POLICY
: {
2596 if ((error
= soopt_getm(sopt
, &m
)) != 0) /* XXX */
2598 if ((error
= soopt_mcopyin(sopt
, m
)) != 0) /* XXX */
2600 priv
= (proc_suser(sopt
->sopt_p
) == 0);
2602 req
= mtod(m
, caddr_t
);
2605 optname
= sopt
->sopt_name
;
2606 error
= ipsec4_set_policy(inp
, optname
, req
, len
, priv
);
2613 case IP_TRAFFIC_MGT_BACKGROUND
: {
2614 unsigned background
= 0;
2616 error
= sooptcopyin(sopt
, &background
,
2617 sizeof (background
), sizeof (background
));
2622 socket_set_traffic_mgt_flags_locked(so
,
2623 TRAFFIC_MGT_SO_BACKGROUND
);
2625 socket_clear_traffic_mgt_flags_locked(so
,
2626 TRAFFIC_MGT_SO_BACKGROUND
);
2631 #endif /* TRAFFIC_MGT */
2634 * On a multihomed system, scoped routing can be used to
2635 * restrict the source interface used for sending packets.
2636 * The socket option IP_BOUND_IF binds a particular AF_INET
2637 * socket to an interface such that data sent on the socket
2638 * is restricted to that interface. This is unlike the
2639 * SO_DONTROUTE option where the routing table is bypassed;
2640 * therefore it allows for a greater flexibility and control
2641 * over the system behavior, and does not place any restriction
2642 * on the destination address type (e.g. unicast, multicast,
2643 * or broadcast if applicable) or whether or not the host is
2644 * directly reachable. Note that in the multicast transmit
2645 * case, IP_MULTICAST_{IF,IFINDEX} takes precedence over
2646 * IP_BOUND_IF, since the former practically bypasses the
2647 * routing table; in this case, IP_BOUND_IF sets the default
2648 * interface used for sending multicast packets in the absence
2649 * of an explicit multicast transmit interface.
2652 /* This option is settable only for IPv4 */
2653 if (!(inp
->inp_vflag
& INP_IPV4
)) {
2658 error
= sooptcopyin(sopt
, &optval
, sizeof (optval
),
2664 error
= inp_bindif(inp
, optval
, NULL
);
2667 case IP_NO_IFT_CELLULAR
:
2668 /* This option is settable only for IPv4 */
2669 if (!(inp
->inp_vflag
& INP_IPV4
)) {
2674 error
= sooptcopyin(sopt
, &optval
, sizeof (optval
),
2680 /* once set, it cannot be unset */
2681 if (!optval
&& INP_NO_CELLULAR(inp
)) {
2686 error
= so_set_restrictions(so
,
2687 SO_RESTRICT_DENY_CELLULAR
);
2691 /* This option is not settable */
2696 error
= ENOPROTOOPT
;
2702 switch (sopt
->sopt_name
) {
2705 if (inp
->inp_options
) {
2706 error
= sooptcopyout(sopt
,
2707 mtod(inp
->inp_options
, char *),
2708 inp
->inp_options
->m_len
);
2710 sopt
->sopt_valsize
= 0;
2717 case IP_RECVRETOPTS
:
2718 case IP_RECVDSTADDR
:
2722 case IP_RECVPKTINFO
:
2724 switch (sopt
->sopt_name
) {
2726 optval
= inp
->inp_ip_tos
;
2730 optval
= inp
->inp_ip_ttl
;
2733 #define OPTBIT(bit) (inp->inp_flags & bit ? 1 : 0)
2736 optval
= OPTBIT(INP_RECVOPTS
);
2739 case IP_RECVRETOPTS
:
2740 optval
= OPTBIT(INP_RECVRETOPTS
);
2743 case IP_RECVDSTADDR
:
2744 optval
= OPTBIT(INP_RECVDSTADDR
);
2748 optval
= OPTBIT(INP_RECVIF
);
2752 optval
= OPTBIT(INP_RECVTTL
);
2756 if (inp
->inp_flags
& INP_HIGHPORT
)
2757 optval
= IP_PORTRANGE_HIGH
;
2758 else if (inp
->inp_flags
& INP_LOWPORT
)
2759 optval
= IP_PORTRANGE_LOW
;
2764 case IP_RECVPKTINFO
:
2765 optval
= OPTBIT(INP_PKTINFO
);
2769 optval
= OPTBIT(INP_RECVTOS
);
2772 error
= sooptcopyout(sopt
, &optval
, sizeof (optval
));
2775 case IP_MULTICAST_IF
:
2776 case IP_MULTICAST_IFINDEX
:
2777 case IP_MULTICAST_VIF
:
2778 case IP_MULTICAST_TTL
:
2779 case IP_MULTICAST_LOOP
:
2781 error
= inp_getmoptions(inp
, sopt
);
2785 case IP_IPSEC_POLICY
: {
2786 error
= 0; /* This option is no longer supported */
2792 case IP_TRAFFIC_MGT_BACKGROUND
: {
2793 unsigned background
= (so
->so_flags1
&
2794 SOF1_TRAFFIC_MGT_SO_BACKGROUND
) ? 1 : 0;
2795 return (sooptcopyout(sopt
, &background
,
2796 sizeof (background
)));
2798 #endif /* TRAFFIC_MGT */
2801 if (inp
->inp_flags
& INP_BOUND_IF
)
2802 optval
= inp
->inp_boundifp
->if_index
;
2803 error
= sooptcopyout(sopt
, &optval
, sizeof (optval
));
2806 case IP_NO_IFT_CELLULAR
:
2807 optval
= INP_NO_CELLULAR(inp
) ? 1 : 0;
2808 error
= sooptcopyout(sopt
, &optval
, sizeof (optval
));
2812 optval
= (inp
->inp_last_outifp
!= NULL
) ?
2813 inp
->inp_last_outifp
->if_index
: 0;
2814 error
= sooptcopyout(sopt
, &optval
, sizeof (optval
));
2818 error
= ENOPROTOOPT
;
2827 * Set up IP options in pcb for insertion in output packets.
2828 * Store in mbuf with pointer in pcbopt, adding pseudo-option
2829 * with destination address if source routed.
2832 ip_pcbopts(int optname
, struct mbuf
**pcbopt
, struct mbuf
*m
)
2834 #pragma unused(optname)
2839 /* turn off any old options */
2841 (void) m_free(*pcbopt
);
2843 if (m
== (struct mbuf
*)0 || m
->m_len
== 0) {
2845 * Only turning off any previous options.
2852 if (m
->m_len
% sizeof (int32_t))
2856 * IP first-hop destination address will be stored before
2857 * actual options; move other options back
2858 * and clear it when none present.
2860 if (m
->m_data
+ m
->m_len
+ sizeof (struct in_addr
) >= &m
->m_dat
[MLEN
])
2863 m
->m_len
+= sizeof (struct in_addr
);
2864 cp
= mtod(m
, u_char
*) + sizeof (struct in_addr
);
2865 ovbcopy(mtod(m
, caddr_t
), (caddr_t
)cp
, (unsigned)cnt
);
2866 bzero(mtod(m
, caddr_t
), sizeof (struct in_addr
));
2868 for (; cnt
> 0; cnt
-= optlen
, cp
+= optlen
) {
2869 opt
= cp
[IPOPT_OPTVAL
];
2870 if (opt
== IPOPT_EOL
)
2872 if (opt
== IPOPT_NOP
)
2875 if (cnt
< IPOPT_OLEN
+ sizeof (*cp
))
2877 optlen
= cp
[IPOPT_OLEN
];
2878 if (optlen
< IPOPT_OLEN
+ sizeof (*cp
) || optlen
> cnt
)
2889 * user process specifies route as:
2891 * D must be our final destination (but we can't
2892 * check that since we may not have connected yet).
2893 * A is first hop destination, which doesn't appear in
2894 * actual IP option, but is stored before the options.
2896 if (optlen
< IPOPT_MINOFF
- 1 + sizeof (struct in_addr
))
2898 m
->m_len
-= sizeof (struct in_addr
);
2899 cnt
-= sizeof (struct in_addr
);
2900 optlen
-= sizeof (struct in_addr
);
2901 cp
[IPOPT_OLEN
] = optlen
;
2903 * Move first hop before start of options.
2905 bcopy((caddr_t
)&cp
[IPOPT_OFFSET
+1], mtod(m
, caddr_t
),
2906 sizeof (struct in_addr
));
2908 * Then copy rest of options back
2909 * to close up the deleted entry.
2911 ovbcopy((caddr_t
)(&cp
[IPOPT_OFFSET
+1] +
2912 sizeof (struct in_addr
)),
2913 (caddr_t
)&cp
[IPOPT_OFFSET
+1],
2914 (unsigned)cnt
+ sizeof (struct in_addr
));
2918 if (m
->m_len
> MAX_IPOPTLEN
+ sizeof (struct in_addr
))
2929 ip_moptions_init(void)
2931 PE_parse_boot_argn("ifa_debug", &imo_debug
, sizeof (imo_debug
));
2933 imo_size
= (imo_debug
== 0) ? sizeof (struct ip_moptions
) :
2934 sizeof (struct ip_moptions_dbg
);
2936 imo_zone
= zinit(imo_size
, IMO_ZONE_MAX
* imo_size
, 0,
2938 if (imo_zone
== NULL
) {
2939 panic("%s: failed allocating %s", __func__
, IMO_ZONE_NAME
);
2942 zone_change(imo_zone
, Z_EXPAND
, TRUE
);
2946 imo_addref(struct ip_moptions
*imo
, int locked
)
2951 IMO_LOCK_ASSERT_HELD(imo
);
2953 if (++imo
->imo_refcnt
== 0) {
2954 panic("%s: imo %p wraparound refcnt\n", __func__
, imo
);
2956 } else if (imo
->imo_trace
!= NULL
) {
2957 (*imo
->imo_trace
)(imo
, TRUE
);
2965 imo_remref(struct ip_moptions
*imo
)
2970 if (imo
->imo_refcnt
== 0) {
2971 panic("%s: imo %p negative refcnt", __func__
, imo
);
2973 } else if (imo
->imo_trace
!= NULL
) {
2974 (*imo
->imo_trace
)(imo
, FALSE
);
2978 if (imo
->imo_refcnt
> 0) {
2983 for (i
= 0; i
< imo
->imo_num_memberships
; ++i
) {
2984 struct in_mfilter
*imf
;
2986 imf
= imo
->imo_mfilters
? &imo
->imo_mfilters
[i
] : NULL
;
2990 (void) in_leavegroup(imo
->imo_membership
[i
], imf
);
2995 INM_REMREF(imo
->imo_membership
[i
]);
2996 imo
->imo_membership
[i
] = NULL
;
2998 imo
->imo_num_memberships
= 0;
2999 if (imo
->imo_mfilters
!= NULL
) {
3000 FREE(imo
->imo_mfilters
, M_INMFILTER
);
3001 imo
->imo_mfilters
= NULL
;
3003 if (imo
->imo_membership
!= NULL
) {
3004 FREE(imo
->imo_membership
, M_IPMOPTS
);
3005 imo
->imo_membership
= NULL
;
3009 lck_mtx_destroy(&imo
->imo_lock
, ifa_mtx_grp
);
3011 if (!(imo
->imo_debug
& IFD_ALLOC
)) {
3012 panic("%s: imo %p cannot be freed", __func__
, imo
);
3015 zfree(imo_zone
, imo
);
3019 imo_trace(struct ip_moptions
*imo
, int refhold
)
3021 struct ip_moptions_dbg
*imo_dbg
= (struct ip_moptions_dbg
*)imo
;
3026 if (!(imo
->imo_debug
& IFD_DEBUG
)) {
3027 panic("%s: imo %p has no debug structure", __func__
, imo
);
3031 cnt
= &imo_dbg
->imo_refhold_cnt
;
3032 tr
= imo_dbg
->imo_refhold
;
3034 cnt
= &imo_dbg
->imo_refrele_cnt
;
3035 tr
= imo_dbg
->imo_refrele
;
3038 idx
= atomic_add_16_ov(cnt
, 1) % IMO_TRACE_HIST_SIZE
;
3039 ctrace_record(&tr
[idx
]);
3042 struct ip_moptions
*
3043 ip_allocmoptions(int how
)
3045 struct ip_moptions
*imo
;
3047 imo
= (how
== M_WAITOK
) ? zalloc(imo_zone
) : zalloc_noblock(imo_zone
);
3049 bzero(imo
, imo_size
);
3050 lck_mtx_init(&imo
->imo_lock
, ifa_mtx_grp
, ifa_mtx_attr
);
3051 imo
->imo_debug
|= IFD_ALLOC
;
3052 if (imo_debug
!= 0) {
3053 imo
->imo_debug
|= IFD_DEBUG
;
3054 imo
->imo_trace
= imo_trace
;
3063 * Routine called from ip_output() to loop back a copy of an IP multicast
3064 * packet to the input queue of a specified interface. Note that this
3065 * calls the output routine of the loopback "driver", but with an interface
3066 * pointer that might NOT be a loopback interface -- evil, but easier than
3067 * replicating that code here.
3070 ip_mloopback(struct ifnet
*srcifp
, struct ifnet
*origifp
, struct mbuf
*m
,
3071 struct sockaddr_in
*dst
, int hlen
)
3080 * Copy the packet header as it's needed for the checksum
3081 * Make sure to deep-copy IP header portion in case the data
3082 * is in an mbuf cluster, so that we can safely override the IP
3083 * header portion later.
3085 copym
= m_copym_mode(m
, 0, M_COPYALL
, M_DONTWAIT
, M_COPYM_COPY_HDR
);
3086 if (copym
!= NULL
&& ((copym
->m_flags
& M_EXT
) || copym
->m_len
< hlen
))
3087 copym
= m_pullup(copym
, hlen
);
3093 * We don't bother to fragment if the IP length is greater
3094 * than the interface's MTU. Can this possibly matter?
3096 ip
= mtod(copym
, struct ip
*);
3097 #if BYTE_ORDER != BIG_ENDIAN
3102 ip
->ip_sum
= ip_cksum_hdr_out(copym
, hlen
);
3105 * Mark checksum as valid unless receive checksum offload is
3106 * disabled; if so, compute checksum in software. If the
3107 * interface itself is lo0, this will be overridden by if_loop.
3110 copym
->m_pkthdr
.csum_flags
&= ~(CSUM_PARTIAL
|CSUM_ZERO_INVERT
);
3111 copym
->m_pkthdr
.csum_flags
|=
3112 CSUM_DATA_VALID
| CSUM_PSEUDO_HDR
;
3113 copym
->m_pkthdr
.csum_data
= 0xffff;
3114 } else if (copym
->m_pkthdr
.csum_flags
& CSUM_DELAY_DATA
) {
3115 #if BYTE_ORDER != BIG_ENDIAN
3118 in_delayed_cksum(copym
);
3119 #if BYTE_ORDER != BIG_ENDIAN
3125 * Stuff the 'real' ifp into the pkthdr, to be used in matching
3126 * in ip_input(); we need the loopback ifp/dl_tag passed as args
3127 * to make the loopback driver compliant with the data link
3130 copym
->m_pkthdr
.rcvif
= origifp
;
3133 * Also record the source interface (which owns the source address).
3134 * This is basically a stripped down version of ifa_foraddr().
3136 if (srcifp
== NULL
) {
3137 struct in_ifaddr
*ia
;
3139 lck_rw_lock_shared(in_ifaddr_rwlock
);
3140 TAILQ_FOREACH(ia
, INADDR_HASH(ip
->ip_src
.s_addr
), ia_hash
) {
3141 IFA_LOCK_SPIN(&ia
->ia_ifa
);
3142 if (IA_SIN(ia
)->sin_addr
.s_addr
== ip
->ip_src
.s_addr
) {
3143 srcifp
= ia
->ia_ifp
;
3144 IFA_UNLOCK(&ia
->ia_ifa
);
3147 IFA_UNLOCK(&ia
->ia_ifa
);
3149 lck_rw_done(in_ifaddr_rwlock
);
3152 ip_setsrcifaddr_info(copym
, srcifp
->if_index
, NULL
);
3153 ip_setdstifaddr_info(copym
, origifp
->if_index
, NULL
);
3155 dlil_output(lo_ifp
, PF_INET
, copym
, NULL
, SA(dst
), 0, NULL
);
3159 * Given a source IP address (and route, if available), determine the best
3160 * interface to send the packet from. Checking for (and updating) the
3161 * ROF_SRCIF_SELECTED flag in the pcb-supplied route placeholder is done
3162 * without any locks based on the assumption that ip_output() is single-
3163 * threaded per-pcb, i.e. for any given pcb there can only be one thread
3164 * performing output at the IP layer.
3166 * This routine is analogous to in6_selectroute() for IPv6.
3168 static struct ifaddr
*
3169 in_selectsrcif(struct ip
*ip
, struct route
*ro
, unsigned int ifscope
)
3171 struct ifaddr
*ifa
= NULL
;
3172 struct in_addr src
= ip
->ip_src
;
3173 struct in_addr dst
= ip
->ip_dst
;
3174 struct ifnet
*rt_ifp
;
3175 char s_src
[MAX_IPv4_STR_LEN
], s_dst
[MAX_IPv4_STR_LEN
];
3177 VERIFY(src
.s_addr
!= INADDR_ANY
);
3179 if (ip_select_srcif_debug
) {
3180 (void) inet_ntop(AF_INET
, &src
.s_addr
, s_src
, sizeof (s_src
));
3181 (void) inet_ntop(AF_INET
, &dst
.s_addr
, s_dst
, sizeof (s_dst
));
3184 if (ro
->ro_rt
!= NULL
)
3187 rt_ifp
= (ro
->ro_rt
!= NULL
) ? ro
->ro_rt
->rt_ifp
: NULL
;
3190 * Given the source IP address, find a suitable source interface
3191 * to use for transmission; if the caller has specified a scope,
3192 * optimize the search by looking at the addresses only for that
3193 * interface. This is still suboptimal, however, as we need to
3194 * traverse the per-interface list.
3196 if (ifscope
!= IFSCOPE_NONE
|| ro
->ro_rt
!= NULL
) {
3197 unsigned int scope
= ifscope
;
3200 * If no scope is specified and the route is stale (pointing
3201 * to a defunct interface) use the current primary interface;
3202 * this happens when switching between interfaces configured
3203 * with the same IP address. Otherwise pick up the scope
3204 * information from the route; the ULP may have looked up a
3205 * correct route and we just need to verify it here and mark
3206 * it with the ROF_SRCIF_SELECTED flag below.
3208 if (scope
== IFSCOPE_NONE
) {
3209 scope
= rt_ifp
->if_index
;
3210 if (scope
!= get_primary_ifscope(AF_INET
) &&
3212 scope
= get_primary_ifscope(AF_INET
);
3215 ifa
= (struct ifaddr
*)ifa_foraddr_scoped(src
.s_addr
, scope
);
3217 if (ifa
== NULL
&& ip
->ip_p
!= IPPROTO_UDP
&&
3218 ip
->ip_p
!= IPPROTO_TCP
&& ipforwarding
) {
3220 * If forwarding is enabled, and if the packet isn't
3221 * TCP or UDP, check if the source address belongs
3222 * to one of our own interfaces; if so, demote the
3223 * interface scope and do a route lookup right below.
3225 ifa
= (struct ifaddr
*)ifa_foraddr(src
.s_addr
);
3229 ifscope
= IFSCOPE_NONE
;
3233 if (ip_select_srcif_debug
&& ifa
!= NULL
) {
3234 if (ro
->ro_rt
!= NULL
) {
3235 printf("%s->%s ifscope %d->%d ifa_if %s "
3236 "ro_if %s\n", s_src
, s_dst
, ifscope
,
3237 scope
, if_name(ifa
->ifa_ifp
),
3240 printf("%s->%s ifscope %d->%d ifa_if %s\n",
3241 s_src
, s_dst
, ifscope
, scope
,
3242 if_name(ifa
->ifa_ifp
));
3248 * Slow path; search for an interface having the corresponding source
3249 * IP address if the scope was not specified by the caller, and:
3251 * 1) There currently isn't any route, or,
3252 * 2) The interface used by the route does not own that source
3253 * IP address; in this case, the route will get blown away
3254 * and we'll do a more specific scoped search using the newly
3257 if (ifa
== NULL
&& ifscope
== IFSCOPE_NONE
) {
3258 ifa
= (struct ifaddr
*)ifa_foraddr(src
.s_addr
);
3261 * If we have the IP address, but not the route, we don't
3262 * really know whether or not it belongs to the correct
3263 * interface (it could be shared across multiple interfaces.)
3264 * The only way to find out is to do a route lookup.
3266 if (ifa
!= NULL
&& ro
->ro_rt
== NULL
) {
3268 struct sockaddr_in sin
;
3269 struct ifaddr
*oifa
= NULL
;
3271 bzero(&sin
, sizeof (sin
));
3272 sin
.sin_family
= AF_INET
;
3273 sin
.sin_len
= sizeof (sin
);
3276 lck_mtx_lock(rnh_lock
);
3277 if ((rt
= rt_lookup(TRUE
, SA(&sin
), NULL
,
3278 rt_tables
[AF_INET
], IFSCOPE_NONE
)) != NULL
) {
3281 * If the route uses a different interface,
3282 * use that one instead. The IP address of
3283 * the ifaddr that we pick up here is not
3286 if (ifa
->ifa_ifp
!= rt
->rt_ifp
) {
3296 lck_mtx_unlock(rnh_lock
);
3299 struct ifaddr
*iifa
;
3302 * See if the interface pointed to by the
3303 * route is configured with the source IP
3304 * address of the packet.
3306 iifa
= (struct ifaddr
*)ifa_foraddr_scoped(
3307 src
.s_addr
, ifa
->ifa_ifp
->if_index
);
3311 * Found it; drop the original one
3312 * as well as the route interface
3313 * address, and use this instead.
3318 } else if (!ipforwarding
||
3319 (rt
->rt_flags
& RTF_GATEWAY
)) {
3321 * This interface doesn't have that
3322 * source IP address; drop the route
3323 * interface address and just use the
3324 * original one, and let the caller
3325 * do a scoped route lookup.
3331 * Forwarding is enabled and the source
3332 * address belongs to one of our own
3333 * interfaces which isn't the outgoing
3334 * interface, and we have a route, and
3335 * the destination is on a network that
3336 * is directly attached (onlink); drop
3337 * the original one and use the route
3338 * interface address instead.
3343 } else if (ifa
!= NULL
&& ro
->ro_rt
!= NULL
&&
3344 !(ro
->ro_rt
->rt_flags
& RTF_GATEWAY
) &&
3345 ifa
->ifa_ifp
!= ro
->ro_rt
->rt_ifp
&& ipforwarding
) {
3347 * Forwarding is enabled and the source address belongs
3348 * to one of our own interfaces which isn't the same
3349 * as the interface used by the known route; drop the
3350 * original one and use the route interface address.
3353 ifa
= ro
->ro_rt
->rt_ifa
;
3357 if (ip_select_srcif_debug
&& ifa
!= NULL
) {
3358 printf("%s->%s ifscope %d ifa_if %s\n",
3359 s_src
, s_dst
, ifscope
, if_name(ifa
->ifa_ifp
));
3363 if (ro
->ro_rt
!= NULL
)
3364 RT_LOCK_ASSERT_HELD(ro
->ro_rt
);
3366 * If there is a non-loopback route with the wrong interface, or if
3367 * there is no interface configured with such an address, blow it
3368 * away. Except for local/loopback, we look for one with a matching
3369 * interface scope/index.
3371 if (ro
->ro_rt
!= NULL
&&
3372 (ifa
== NULL
|| (ifa
->ifa_ifp
!= rt_ifp
&& rt_ifp
!= lo_ifp
) ||
3373 !(ro
->ro_rt
->rt_flags
& RTF_UP
))) {
3374 if (ip_select_srcif_debug
) {
3376 printf("%s->%s ifscope %d ro_if %s != "
3377 "ifa_if %s (cached route cleared)\n",
3378 s_src
, s_dst
, ifscope
, if_name(rt_ifp
),
3379 if_name(ifa
->ifa_ifp
));
3381 printf("%s->%s ifscope %d ro_if %s "
3382 "(no ifa_if found)\n",
3383 s_src
, s_dst
, ifscope
, if_name(rt_ifp
));
3387 RT_UNLOCK(ro
->ro_rt
);
3391 * If the destination is IPv4 LLA and the route's interface
3392 * doesn't match the source interface, then the source IP
3393 * address is wrong; it most likely belongs to the primary
3394 * interface associated with the IPv4 LL subnet. Drop the
3395 * packet rather than letting it go out and return an error
3396 * to the ULP. This actually applies not only to IPv4 LL
3397 * but other shared subnets; for now we explicitly test only
3398 * for the former case and save the latter for future.
3400 if (IN_LINKLOCAL(ntohl(dst
.s_addr
)) &&
3401 !IN_LINKLOCAL(ntohl(src
.s_addr
)) && ifa
!= NULL
) {
3407 if (ip_select_srcif_debug
&& ifa
== NULL
) {
3408 printf("%s->%s ifscope %d (neither ro_if/ifa_if found)\n",
3409 s_src
, s_dst
, ifscope
);
3413 * If there is a route, mark it accordingly. If there isn't one,
3414 * we'll get here again during the next transmit (possibly with a
3415 * route) and the flag will get set at that point. For IPv4 LLA
3416 * destination, mark it only if the route has been fully resolved;
3417 * otherwise we want to come back here again when the route points
3418 * to the interface over which the ARP reply arrives on.
3420 if (ro
->ro_rt
!= NULL
&& (!IN_LINKLOCAL(ntohl(dst
.s_addr
)) ||
3421 (ro
->ro_rt
->rt_gateway
->sa_family
== AF_LINK
&&
3422 SDL(ro
->ro_rt
->rt_gateway
)->sdl_alen
!= 0))) {
3424 IFA_ADDREF(ifa
); /* for route */
3425 if (ro
->ro_srcia
!= NULL
)
3426 IFA_REMREF(ro
->ro_srcia
);
3428 ro
->ro_flags
|= ROF_SRCIF_SELECTED
;
3429 RT_GENID_SYNC(ro
->ro_rt
);
3432 if (ro
->ro_rt
!= NULL
)
3433 RT_UNLOCK(ro
->ro_rt
);
3439 ip_output_checksum(struct ifnet
*ifp
, struct mbuf
*m
, int hlen
, int ip_len
,
3442 int tso
= TSO_IPV4_OK(ifp
, m
);
3443 uint32_t hwcap
= ifp
->if_hwassist
;
3445 m
->m_pkthdr
.csum_flags
|= CSUM_IP
;
3448 /* do all in software; hardware checksum offload is disabled */
3449 *sw_csum
= (CSUM_DELAY_DATA
| CSUM_DELAY_IP
) &
3450 m
->m_pkthdr
.csum_flags
;
3452 /* do in software what the hardware cannot */
3453 *sw_csum
= m
->m_pkthdr
.csum_flags
&
3454 ~IF_HWASSIST_CSUM_FLAGS(hwcap
);
3457 if (hlen
!= sizeof (struct ip
)) {
3458 *sw_csum
|= ((CSUM_DELAY_DATA
| CSUM_DELAY_IP
) &
3459 m
->m_pkthdr
.csum_flags
);
3460 } else if (!(*sw_csum
& CSUM_DELAY_DATA
) && (hwcap
& CSUM_PARTIAL
)) {
3462 * Partial checksum offload, if non-IP fragment, and TCP only
3463 * (no UDP support, as the hardware may not be able to convert
3464 * +0 to -0 (0xffff) per RFC1122 4.1.3.4. unless the interface
3465 * supports "invert zero" capability.)
3467 if (hwcksum_tx
&& !tso
&&
3468 ((m
->m_pkthdr
.csum_flags
& CSUM_TCP
) ||
3469 ((hwcap
& CSUM_ZERO_INVERT
) &&
3470 (m
->m_pkthdr
.csum_flags
& CSUM_ZERO_INVERT
))) &&
3471 ip_len
<= ifp
->if_mtu
) {
3472 uint16_t start
= sizeof (struct ip
);
3473 uint16_t ulpoff
= m
->m_pkthdr
.csum_data
& 0xffff;
3474 m
->m_pkthdr
.csum_flags
|=
3475 (CSUM_DATA_VALID
| CSUM_PARTIAL
);
3476 m
->m_pkthdr
.csum_tx_stuff
= (ulpoff
+ start
);
3477 m
->m_pkthdr
.csum_tx_start
= start
;
3478 /* do IP hdr chksum in software */
3479 *sw_csum
= CSUM_DELAY_IP
;
3481 *sw_csum
|= (CSUM_DELAY_DATA
& m
->m_pkthdr
.csum_flags
);
3485 if (*sw_csum
& CSUM_DELAY_DATA
) {
3486 in_delayed_cksum(m
);
3487 *sw_csum
&= ~CSUM_DELAY_DATA
;
3492 * Drop off bits that aren't supported by hardware;
3493 * also make sure to preserve non-checksum related bits.
3495 m
->m_pkthdr
.csum_flags
=
3496 ((m
->m_pkthdr
.csum_flags
&
3497 (IF_HWASSIST_CSUM_FLAGS(hwcap
) | CSUM_DATA_VALID
)) |
3498 (m
->m_pkthdr
.csum_flags
& ~IF_HWASSIST_CSUM_MASK
));
3500 /* drop all bits; hardware checksum offload is disabled */
3501 m
->m_pkthdr
.csum_flags
= 0;
3506 * GRE protocol output for PPP/PPTP
3509 ip_gre_output(struct mbuf
*m
)
3514 bzero(&ro
, sizeof (ro
));
3516 error
= ip_output(m
, NULL
, &ro
, 0, NULL
, NULL
);
3524 sysctl_reset_ip_output_stats SYSCTL_HANDLER_ARGS
3526 #pragma unused(arg1, arg2)
3529 i
= ip_output_measure
;
3530 error
= sysctl_handle_int(oidp
, &i
, 0, req
);
3531 if (error
|| req
->newptr
== USER_ADDR_NULL
)
3534 if (i
< 0 || i
> 1) {
3538 if (ip_output_measure
!= i
&& i
== 1) {
3539 net_perf_initialize(&net_perf
, ip_output_measure_bins
);
3541 ip_output_measure
= i
;
3547 sysctl_ip_output_measure_bins SYSCTL_HANDLER_ARGS
3549 #pragma unused(arg1, arg2)
3553 i
= ip_output_measure_bins
;
3554 error
= sysctl_handle_quad(oidp
, &i
, 0, req
);
3555 if (error
|| req
->newptr
== USER_ADDR_NULL
)
3558 if (!net_perf_validate_bins(i
)) {
3562 ip_output_measure_bins
= i
;
3568 sysctl_ip_output_getperf SYSCTL_HANDLER_ARGS
3570 #pragma unused(oidp, arg1, arg2)
3571 if (req
->oldptr
== USER_ADDR_NULL
)
3572 req
->oldlen
= (size_t)sizeof (struct ipstat
);
3574 return (SYSCTL_OUT(req
, &net_perf
, MIN(sizeof (net_perf
), req
->oldlen
)));