]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/in_mcast.c
xnu-4570.51.1.tar.gz
[apple/xnu.git] / bsd / netinet / in_mcast.c
1 /*
2 * Copyright (c) 2010-2017 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*-
29 * Copyright (c) 2007-2009 Bruce Simpson.
30 * Copyright (c) 2005 Robert N. M. Watson.
31 * All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. The name of the author may not be used to endorse or promote
42 * products derived from this software without specific prior written
43 * permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58 /*
59 * IPv4 multicast socket, group, and socket option processing module.
60 */
61
62 #include <sys/cdefs.h>
63
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/kernel.h>
67 #include <sys/malloc.h>
68 #include <sys/mbuf.h>
69 #include <sys/protosw.h>
70 #include <sys/socket.h>
71 #include <sys/socketvar.h>
72 #include <sys/protosw.h>
73 #include <sys/sysctl.h>
74 #include <sys/tree.h>
75 #include <sys/mcache.h>
76
77 #include <kern/zalloc.h>
78
79 #include <pexpert/pexpert.h>
80
81 #include <net/if.h>
82 #include <net/if_dl.h>
83 #include <net/net_api_stats.h>
84 #include <net/route.h>
85
86 #include <netinet/in.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/in_var.h>
90 #include <netinet/ip_var.h>
91 #include <netinet/igmp_var.h>
92
93 /*
94 * Functions with non-static linkage defined in this file should be
95 * declared in in_var.h:
96 * imo_multi_filter()
97 * in_addmulti()
98 * in_delmulti()
99 * in_joingroup()
100 * in_leavegroup()
101 * and ip_var.h:
102 * inp_freemoptions()
103 * inp_getmoptions()
104 * inp_setmoptions()
105 *
106 * XXX: Both carp and pf need to use the legacy (*,G) KPIs in_addmulti()
107 * and in_delmulti().
108 */
109 static void imf_commit(struct in_mfilter *);
110 static int imf_get_source(struct in_mfilter *imf,
111 const struct sockaddr_in *psin,
112 struct in_msource **);
113 static struct in_msource *
114 imf_graft(struct in_mfilter *, const uint8_t,
115 const struct sockaddr_in *);
116 static int imf_prune(struct in_mfilter *, const struct sockaddr_in *);
117 static void imf_rollback(struct in_mfilter *);
118 static void imf_reap(struct in_mfilter *);
119 static int imo_grow(struct ip_moptions *, size_t);
120 static size_t imo_match_group(const struct ip_moptions *,
121 const struct ifnet *, const struct sockaddr_in *);
122 static struct in_msource *
123 imo_match_source(const struct ip_moptions *, const size_t,
124 const struct sockaddr_in *);
125 static void ims_merge(struct ip_msource *ims,
126 const struct in_msource *lims, const int rollback);
127 static int in_getmulti(struct ifnet *, const struct in_addr *,
128 struct in_multi **);
129 static int in_joingroup(struct ifnet *, const struct in_addr *,
130 struct in_mfilter *, struct in_multi **);
131 static int inm_get_source(struct in_multi *inm, const in_addr_t haddr,
132 const int noalloc, struct ip_msource **pims);
133 static int inm_is_ifp_detached(const struct in_multi *);
134 static int inm_merge(struct in_multi *, /*const*/ struct in_mfilter *);
135 static void inm_reap(struct in_multi *);
136 static struct ip_moptions *
137 inp_findmoptions(struct inpcb *);
138 static int inp_get_source_filters(struct inpcb *, struct sockopt *);
139 static struct ifnet *
140 inp_lookup_mcast_ifp(const struct inpcb *,
141 const struct sockaddr_in *, const struct in_addr);
142 static int inp_block_unblock_source(struct inpcb *, struct sockopt *);
143 static int inp_set_multicast_if(struct inpcb *, struct sockopt *);
144 static int inp_set_source_filters(struct inpcb *, struct sockopt *);
145 static int sysctl_ip_mcast_filters SYSCTL_HANDLER_ARGS;
146 static struct ifnet * ip_multicast_if(struct in_addr *, unsigned int *);
147 static __inline__ int ip_msource_cmp(const struct ip_msource *,
148 const struct ip_msource *);
149
150 SYSCTL_NODE(_net_inet_ip, OID_AUTO, mcast, CTLFLAG_RW | CTLFLAG_LOCKED, 0, "IPv4 multicast");
151
152 static u_long in_mcast_maxgrpsrc = IP_MAX_GROUP_SRC_FILTER;
153 SYSCTL_LONG(_net_inet_ip_mcast, OID_AUTO, maxgrpsrc,
154 CTLFLAG_RW | CTLFLAG_LOCKED, &in_mcast_maxgrpsrc, "Max source filters per group");
155
156 static u_long in_mcast_maxsocksrc = IP_MAX_SOCK_SRC_FILTER;
157 SYSCTL_LONG(_net_inet_ip_mcast, OID_AUTO, maxsocksrc,
158 CTLFLAG_RW | CTLFLAG_LOCKED, &in_mcast_maxsocksrc,
159 "Max source filters per socket");
160
161 int in_mcast_loop = IP_DEFAULT_MULTICAST_LOOP;
162 SYSCTL_INT(_net_inet_ip_mcast, OID_AUTO, loop, CTLFLAG_RW | CTLFLAG_LOCKED,
163 &in_mcast_loop, 0, "Loopback multicast datagrams by default");
164
165 SYSCTL_NODE(_net_inet_ip_mcast, OID_AUTO, filters,
166 CTLFLAG_RD | CTLFLAG_LOCKED, sysctl_ip_mcast_filters,
167 "Per-interface stack-wide source filters");
168
169 RB_GENERATE_PREV(ip_msource_tree, ip_msource, ims_link, ip_msource_cmp);
170
171 #define INM_TRACE_HIST_SIZE 32 /* size of trace history */
172
173 /* For gdb */
174 __private_extern__ unsigned int inm_trace_hist_size = INM_TRACE_HIST_SIZE;
175
176 struct in_multi_dbg {
177 struct in_multi inm; /* in_multi */
178 u_int16_t inm_refhold_cnt; /* # of ref */
179 u_int16_t inm_refrele_cnt; /* # of rele */
180 /*
181 * Circular lists of inm_addref and inm_remref callers.
182 */
183 ctrace_t inm_refhold[INM_TRACE_HIST_SIZE];
184 ctrace_t inm_refrele[INM_TRACE_HIST_SIZE];
185 /*
186 * Trash list linkage
187 */
188 TAILQ_ENTRY(in_multi_dbg) inm_trash_link;
189 };
190
191 /* List of trash in_multi entries protected by inm_trash_lock */
192 static TAILQ_HEAD(, in_multi_dbg) inm_trash_head;
193 static decl_lck_mtx_data(, inm_trash_lock);
194
195 #define INM_ZONE_MAX 64 /* maximum elements in zone */
196 #define INM_ZONE_NAME "in_multi" /* zone name */
197
198 #if DEBUG
199 static unsigned int inm_debug = 1; /* debugging (enabled) */
200 #else
201 static unsigned int inm_debug; /* debugging (disabled) */
202 #endif /* !DEBUG */
203 static unsigned int inm_size; /* size of zone element */
204 static struct zone *inm_zone; /* zone for in_multi */
205
206 #define IPMS_ZONE_MAX 64 /* maximum elements in zone */
207 #define IPMS_ZONE_NAME "ip_msource" /* zone name */
208
209 static unsigned int ipms_size; /* size of zone element */
210 static struct zone *ipms_zone; /* zone for ip_msource */
211
212 #define INMS_ZONE_MAX 64 /* maximum elements in zone */
213 #define INMS_ZONE_NAME "in_msource" /* zone name */
214
215 static unsigned int inms_size; /* size of zone element */
216 static struct zone *inms_zone; /* zone for in_msource */
217
218 /* Lock group and attribute for in_multihead_lock lock */
219 static lck_attr_t *in_multihead_lock_attr;
220 static lck_grp_t *in_multihead_lock_grp;
221 static lck_grp_attr_t *in_multihead_lock_grp_attr;
222
223 static decl_lck_rw_data(, in_multihead_lock);
224 struct in_multihead in_multihead;
225
226 static struct in_multi *in_multi_alloc(int);
227 static void in_multi_free(struct in_multi *);
228 static void in_multi_attach(struct in_multi *);
229 static void inm_trace(struct in_multi *, int);
230
231 static struct ip_msource *ipms_alloc(int);
232 static void ipms_free(struct ip_msource *);
233 static struct in_msource *inms_alloc(int);
234 static void inms_free(struct in_msource *);
235
236 static __inline int
237 ip_msource_cmp(const struct ip_msource *a, const struct ip_msource *b)
238 {
239
240 if (a->ims_haddr < b->ims_haddr)
241 return (-1);
242 if (a->ims_haddr == b->ims_haddr)
243 return (0);
244 return (1);
245 }
246
247 /*
248 * Inline function which wraps assertions for a valid ifp.
249 */
250 static __inline__ int
251 inm_is_ifp_detached(const struct in_multi *inm)
252 {
253 VERIFY(inm->inm_ifma != NULL);
254 VERIFY(inm->inm_ifp == inm->inm_ifma->ifma_ifp);
255
256 return (!ifnet_is_attached(inm->inm_ifp, 0));
257 }
258
259 /*
260 * Initialize an in_mfilter structure to a known state at t0, t1
261 * with an empty source filter list.
262 */
263 static __inline__ void
264 imf_init(struct in_mfilter *imf, const int st0, const int st1)
265 {
266 memset(imf, 0, sizeof(struct in_mfilter));
267 RB_INIT(&imf->imf_sources);
268 imf->imf_st[0] = st0;
269 imf->imf_st[1] = st1;
270 }
271
272 /*
273 * Resize the ip_moptions vector to the next power-of-two minus 1.
274 */
275 static int
276 imo_grow(struct ip_moptions *imo, size_t newmax)
277 {
278 struct in_multi **nmships;
279 struct in_multi **omships;
280 struct in_mfilter *nmfilters;
281 struct in_mfilter *omfilters;
282 size_t idx;
283 size_t oldmax;
284
285 IMO_LOCK_ASSERT_HELD(imo);
286
287 nmships = NULL;
288 nmfilters = NULL;
289 omships = imo->imo_membership;
290 omfilters = imo->imo_mfilters;
291 oldmax = imo->imo_max_memberships;
292 if (newmax == 0)
293 newmax = ((oldmax + 1) * 2) - 1;
294
295 if (newmax > IP_MAX_MEMBERSHIPS)
296 return (ETOOMANYREFS);
297
298 if ((nmships = (struct in_multi **)_REALLOC(omships,
299 sizeof (struct in_multi *) * newmax, M_IPMOPTS,
300 M_WAITOK | M_ZERO)) == NULL)
301 return (ENOMEM);
302
303 imo->imo_membership = nmships;
304
305 if ((nmfilters = (struct in_mfilter *)_REALLOC(omfilters,
306 sizeof (struct in_mfilter) * newmax, M_INMFILTER,
307 M_WAITOK | M_ZERO)) == NULL)
308 return (ENOMEM);
309
310 imo->imo_mfilters = nmfilters;
311
312 /* Initialize newly allocated source filter heads. */
313 for (idx = oldmax; idx < newmax; idx++)
314 imf_init(&nmfilters[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
315
316 imo->imo_max_memberships = newmax;
317
318 return (0);
319 }
320
321 /*
322 * Find an IPv4 multicast group entry for this ip_moptions instance
323 * which matches the specified group, and optionally an interface.
324 * Return its index into the array, or -1 if not found.
325 */
326 static size_t
327 imo_match_group(const struct ip_moptions *imo, const struct ifnet *ifp,
328 const struct sockaddr_in *group)
329 {
330 struct in_multi *pinm;
331 int idx;
332 int nmships;
333
334 IMO_LOCK_ASSERT_HELD(__DECONST(struct ip_moptions *, imo));
335
336
337 /* The imo_membership array may be lazy allocated. */
338 if (imo->imo_membership == NULL || imo->imo_num_memberships == 0)
339 return (-1);
340
341 nmships = imo->imo_num_memberships;
342 for (idx = 0; idx < nmships; idx++) {
343 pinm = imo->imo_membership[idx];
344 if (pinm == NULL)
345 continue;
346 INM_LOCK(pinm);
347 if ((ifp == NULL || (pinm->inm_ifp == ifp)) &&
348 in_hosteq(pinm->inm_addr, group->sin_addr)) {
349 INM_UNLOCK(pinm);
350 break;
351 }
352 INM_UNLOCK(pinm);
353 }
354 if (idx >= nmships)
355 idx = -1;
356
357 return (idx);
358 }
359
360 /*
361 * Find an IPv4 multicast source entry for this imo which matches
362 * the given group index for this socket, and source address.
363 *
364 * NOTE: This does not check if the entry is in-mode, merely if
365 * it exists, which may not be the desired behaviour.
366 */
367 static struct in_msource *
368 imo_match_source(const struct ip_moptions *imo, const size_t gidx,
369 const struct sockaddr_in *src)
370 {
371 struct ip_msource find;
372 struct in_mfilter *imf;
373 struct ip_msource *ims;
374
375 IMO_LOCK_ASSERT_HELD(__DECONST(struct ip_moptions *, imo));
376
377 VERIFY(src->sin_family == AF_INET);
378 VERIFY(gidx != (size_t)-1 && gidx < imo->imo_num_memberships);
379
380 /* The imo_mfilters array may be lazy allocated. */
381 if (imo->imo_mfilters == NULL)
382 return (NULL);
383 imf = &imo->imo_mfilters[gidx];
384
385 /* Source trees are keyed in host byte order. */
386 find.ims_haddr = ntohl(src->sin_addr.s_addr);
387 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
388
389 return ((struct in_msource *)ims);
390 }
391
392 /*
393 * Perform filtering for multicast datagrams on a socket by group and source.
394 *
395 * Returns 0 if a datagram should be allowed through, or various error codes
396 * if the socket was not a member of the group, or the source was muted, etc.
397 */
398 int
399 imo_multi_filter(const struct ip_moptions *imo, const struct ifnet *ifp,
400 const struct sockaddr_in *group, const struct sockaddr_in *src)
401 {
402 size_t gidx;
403 struct in_msource *ims;
404 int mode;
405
406 IMO_LOCK_ASSERT_HELD(__DECONST(struct ip_moptions *, imo));
407 VERIFY(ifp != NULL);
408
409 gidx = imo_match_group(imo, ifp, group);
410 if (gidx == (size_t)-1)
411 return (MCAST_NOTGMEMBER);
412
413 /*
414 * Check if the source was included in an (S,G) join.
415 * Allow reception on exclusive memberships by default,
416 * reject reception on inclusive memberships by default.
417 * Exclude source only if an in-mode exclude filter exists.
418 * Include source only if an in-mode include filter exists.
419 * NOTE: We are comparing group state here at IGMP t1 (now)
420 * with socket-layer t0 (since last downcall).
421 */
422 mode = imo->imo_mfilters[gidx].imf_st[1];
423 ims = imo_match_source(imo, gidx, src);
424
425 if ((ims == NULL && mode == MCAST_INCLUDE) ||
426 (ims != NULL && ims->imsl_st[0] != mode)) {
427 return (MCAST_NOTSMEMBER);
428 }
429
430 return (MCAST_PASS);
431 }
432
433 int
434 imo_clone(struct inpcb *from_inp, struct inpcb *to_inp)
435 {
436 int i, err = 0;
437 struct ip_moptions *from;
438 struct ip_moptions *to;
439
440 from = inp_findmoptions(from_inp);
441 if (from == NULL)
442 return (ENOMEM);
443
444 to = inp_findmoptions(to_inp);
445 if (to == NULL) {
446 IMO_REMREF(from);
447 return (ENOMEM);
448 }
449
450 IMO_LOCK(from);
451 IMO_LOCK(to);
452
453 to->imo_multicast_ifp = from->imo_multicast_ifp;
454 to->imo_multicast_vif = from->imo_multicast_vif;
455 to->imo_multicast_ttl = from->imo_multicast_ttl;
456 to->imo_multicast_loop = from->imo_multicast_loop;
457
458 /*
459 * We're cloning, so drop any existing memberships and source
460 * filters on the destination ip_moptions.
461 */
462 for (i = 0; i < to->imo_num_memberships; ++i) {
463 struct in_mfilter *imf;
464
465 imf = to->imo_mfilters ? &to->imo_mfilters[i] : NULL;
466 if (imf != NULL)
467 imf_leave(imf);
468
469 (void) in_leavegroup(to->imo_membership[i], imf);
470
471 if (imf != NULL)
472 imf_purge(imf);
473
474 INM_REMREF(to->imo_membership[i]);
475 to->imo_membership[i] = NULL;
476 }
477 to->imo_num_memberships = 0;
478
479 VERIFY(to->imo_max_memberships != 0 && from->imo_max_memberships != 0);
480 if (to->imo_max_memberships < from->imo_max_memberships) {
481 /*
482 * Ensure source and destination ip_moptions memberships
483 * and source filters arrays are at least equal in size.
484 */
485 err = imo_grow(to, from->imo_max_memberships);
486 if (err != 0)
487 goto done;
488 }
489 VERIFY(to->imo_max_memberships >= from->imo_max_memberships);
490
491 /*
492 * Source filtering doesn't apply to OpenTransport socket,
493 * so simply hold additional reference count per membership.
494 */
495 for (i = 0; i < from->imo_num_memberships; i++) {
496 to->imo_membership[i] =
497 in_addmulti(&from->imo_membership[i]->inm_addr,
498 from->imo_membership[i]->inm_ifp);
499 if (to->imo_membership[i] == NULL)
500 break;
501 to->imo_num_memberships++;
502 }
503 VERIFY(to->imo_num_memberships == from->imo_num_memberships);
504
505 done:
506 IMO_UNLOCK(to);
507 IMO_REMREF(to);
508 IMO_UNLOCK(from);
509 IMO_REMREF(from);
510
511 return (err);
512 }
513
514 /*
515 * Find and return a reference to an in_multi record for (ifp, group),
516 * and bump its reference count.
517 * If one does not exist, try to allocate it, and update link-layer multicast
518 * filters on ifp to listen for group.
519 * Return 0 if successful, otherwise return an appropriate error code.
520 */
521 static int
522 in_getmulti(struct ifnet *ifp, const struct in_addr *group,
523 struct in_multi **pinm)
524 {
525 struct sockaddr_in gsin;
526 struct ifmultiaddr *ifma;
527 struct in_multi *inm;
528 int error;
529
530 in_multihead_lock_shared();
531 IN_LOOKUP_MULTI(group, ifp, inm);
532 if (inm != NULL) {
533 INM_LOCK(inm);
534 VERIFY(inm->inm_reqcnt >= 1);
535 inm->inm_reqcnt++;
536 VERIFY(inm->inm_reqcnt != 0);
537 *pinm = inm;
538 INM_UNLOCK(inm);
539 in_multihead_lock_done();
540 /*
541 * We already joined this group; return the inm
542 * with a refcount held (via lookup) for caller.
543 */
544 return (0);
545 }
546 in_multihead_lock_done();
547
548 bzero(&gsin, sizeof(gsin));
549 gsin.sin_family = AF_INET;
550 gsin.sin_len = sizeof(struct sockaddr_in);
551 gsin.sin_addr = *group;
552
553 /*
554 * Check if a link-layer group is already associated
555 * with this network-layer group on the given ifnet.
556 */
557 error = if_addmulti(ifp, (struct sockaddr *)&gsin, &ifma);
558 if (error != 0)
559 return (error);
560
561 /*
562 * See comments in inm_remref() for access to ifma_protospec.
563 */
564 in_multihead_lock_exclusive();
565 IFMA_LOCK(ifma);
566 if ((inm = ifma->ifma_protospec) != NULL) {
567 VERIFY(ifma->ifma_addr != NULL);
568 VERIFY(ifma->ifma_addr->sa_family == AF_INET);
569 INM_ADDREF(inm); /* for caller */
570 IFMA_UNLOCK(ifma);
571 INM_LOCK(inm);
572 VERIFY(inm->inm_ifma == ifma);
573 VERIFY(inm->inm_ifp == ifp);
574 VERIFY(in_hosteq(inm->inm_addr, *group));
575 if (inm->inm_debug & IFD_ATTACHED) {
576 VERIFY(inm->inm_reqcnt >= 1);
577 inm->inm_reqcnt++;
578 VERIFY(inm->inm_reqcnt != 0);
579 *pinm = inm;
580 INM_UNLOCK(inm);
581 in_multihead_lock_done();
582 IFMA_REMREF(ifma);
583 /*
584 * We lost the race with another thread doing
585 * in_getmulti(); since this group has already
586 * been joined; return the inm with a refcount
587 * held for caller.
588 */
589 return (0);
590 }
591 /*
592 * We lost the race with another thread doing in_delmulti();
593 * the inm referring to the ifma has been detached, thus we
594 * reattach it back to the in_multihead list and return the
595 * inm with a refcount held for the caller.
596 */
597 in_multi_attach(inm);
598 VERIFY((inm->inm_debug &
599 (IFD_ATTACHED | IFD_TRASHED)) == IFD_ATTACHED);
600 *pinm = inm;
601 INM_UNLOCK(inm);
602 in_multihead_lock_done();
603 IFMA_REMREF(ifma);
604 return (0);
605 }
606 IFMA_UNLOCK(ifma);
607
608 /*
609 * A new in_multi record is needed; allocate and initialize it.
610 * We DO NOT perform an IGMP join as the in_ layer may need to
611 * push an initial source list down to IGMP to support SSM.
612 *
613 * The initial source filter state is INCLUDE, {} as per the RFC.
614 */
615 inm = in_multi_alloc(M_WAITOK);
616 if (inm == NULL) {
617 in_multihead_lock_done();
618 IFMA_REMREF(ifma);
619 return (ENOMEM);
620 }
621 INM_LOCK(inm);
622 inm->inm_addr = *group;
623 inm->inm_ifp = ifp;
624 inm->inm_igi = IGMP_IFINFO(ifp);
625 VERIFY(inm->inm_igi != NULL);
626 IGI_ADDREF(inm->inm_igi);
627 inm->inm_ifma = ifma; /* keep refcount from if_addmulti() */
628 inm->inm_state = IGMP_NOT_MEMBER;
629 /*
630 * Pending state-changes per group are subject to a bounds check.
631 */
632 inm->inm_scq.ifq_maxlen = IGMP_MAX_STATE_CHANGES;
633 inm->inm_st[0].iss_fmode = MCAST_UNDEFINED;
634 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
635 RB_INIT(&inm->inm_srcs);
636 *pinm = inm;
637 in_multi_attach(inm);
638 VERIFY((inm->inm_debug & (IFD_ATTACHED | IFD_TRASHED)) == IFD_ATTACHED);
639 INM_ADDREF_LOCKED(inm); /* for caller */
640 INM_UNLOCK(inm);
641
642 IFMA_LOCK(ifma);
643 VERIFY(ifma->ifma_protospec == NULL);
644 ifma->ifma_protospec = inm;
645 IFMA_UNLOCK(ifma);
646 in_multihead_lock_done();
647
648 return (0);
649 }
650
651 /*
652 * Clear recorded source entries for a group.
653 * Used by the IGMP code.
654 * FIXME: Should reap.
655 */
656 void
657 inm_clear_recorded(struct in_multi *inm)
658 {
659 struct ip_msource *ims;
660
661 INM_LOCK_ASSERT_HELD(inm);
662
663 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
664 if (ims->ims_stp) {
665 ims->ims_stp = 0;
666 --inm->inm_st[1].iss_rec;
667 }
668 }
669 VERIFY(inm->inm_st[1].iss_rec == 0);
670 }
671
672 /*
673 * Record a source as pending for a Source-Group IGMPv3 query.
674 * This lives here as it modifies the shared tree.
675 *
676 * inm is the group descriptor.
677 * naddr is the address of the source to record in network-byte order.
678 *
679 * If the net.inet.igmp.sgalloc sysctl is non-zero, we will
680 * lazy-allocate a source node in response to an SG query.
681 * Otherwise, no allocation is performed. This saves some memory
682 * with the trade-off that the source will not be reported to the
683 * router if joined in the window between the query response and
684 * the group actually being joined on the local host.
685 *
686 * Return 0 if the source didn't exist or was already marked as recorded.
687 * Return 1 if the source was marked as recorded by this function.
688 * Return <0 if any error occured (negated errno code).
689 */
690 int
691 inm_record_source(struct in_multi *inm, const in_addr_t naddr)
692 {
693 struct ip_msource find;
694 struct ip_msource *ims, *nims;
695
696 INM_LOCK_ASSERT_HELD(inm);
697
698 find.ims_haddr = ntohl(naddr);
699 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
700 if (ims && ims->ims_stp)
701 return (0);
702 if (ims == NULL) {
703 if (inm->inm_nsrc == in_mcast_maxgrpsrc)
704 return (-ENOSPC);
705 nims = ipms_alloc(M_WAITOK);
706 if (nims == NULL)
707 return (-ENOMEM);
708 nims->ims_haddr = find.ims_haddr;
709 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
710 ++inm->inm_nsrc;
711 ims = nims;
712 }
713
714 /*
715 * Mark the source as recorded and update the recorded
716 * source count.
717 */
718 ++ims->ims_stp;
719 ++inm->inm_st[1].iss_rec;
720
721 return (1);
722 }
723
724 /*
725 * Return a pointer to an in_msource owned by an in_mfilter,
726 * given its source address.
727 * Lazy-allocate if needed. If this is a new entry its filter state is
728 * undefined at t0.
729 *
730 * imf is the filter set being modified.
731 * haddr is the source address in *host* byte-order.
732 *
733 * Caller is expected to be holding imo_lock.
734 */
735 static int
736 imf_get_source(struct in_mfilter *imf, const struct sockaddr_in *psin,
737 struct in_msource **plims)
738 {
739 struct ip_msource find;
740 struct ip_msource *ims;
741 struct in_msource *lims;
742 int error;
743
744 error = 0;
745 ims = NULL;
746 lims = NULL;
747
748 /* key is host byte order */
749 find.ims_haddr = ntohl(psin->sin_addr.s_addr);
750 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
751 lims = (struct in_msource *)ims;
752 if (lims == NULL) {
753 if (imf->imf_nsrc == in_mcast_maxsocksrc)
754 return (ENOSPC);
755 lims = inms_alloc(M_WAITOK);
756 if (lims == NULL)
757 return (ENOMEM);
758 lims->ims_haddr = find.ims_haddr;
759 lims->imsl_st[0] = MCAST_UNDEFINED;
760 RB_INSERT(ip_msource_tree, &imf->imf_sources,
761 (struct ip_msource *)lims);
762 ++imf->imf_nsrc;
763 }
764
765 *plims = lims;
766
767 return (error);
768 }
769
770 /*
771 * Graft a source entry into an existing socket-layer filter set,
772 * maintaining any required invariants and checking allocations.
773 *
774 * The source is marked as being in the new filter mode at t1.
775 *
776 * Return the pointer to the new node, otherwise return NULL.
777 *
778 * Caller is expected to be holding imo_lock.
779 */
780 static struct in_msource *
781 imf_graft(struct in_mfilter *imf, const uint8_t st1,
782 const struct sockaddr_in *psin)
783 {
784 struct in_msource *lims;
785
786 lims = inms_alloc(M_WAITOK);
787 if (lims == NULL)
788 return (NULL);
789 lims->ims_haddr = ntohl(psin->sin_addr.s_addr);
790 lims->imsl_st[0] = MCAST_UNDEFINED;
791 lims->imsl_st[1] = st1;
792 RB_INSERT(ip_msource_tree, &imf->imf_sources,
793 (struct ip_msource *)lims);
794 ++imf->imf_nsrc;
795
796 return (lims);
797 }
798
799 /*
800 * Prune a source entry from an existing socket-layer filter set,
801 * maintaining any required invariants and checking allocations.
802 *
803 * The source is marked as being left at t1, it is not freed.
804 *
805 * Return 0 if no error occurred, otherwise return an errno value.
806 *
807 * Caller is expected to be holding imo_lock.
808 */
809 static int
810 imf_prune(struct in_mfilter *imf, const struct sockaddr_in *psin)
811 {
812 struct ip_msource find;
813 struct ip_msource *ims;
814 struct in_msource *lims;
815
816 /* key is host byte order */
817 find.ims_haddr = ntohl(psin->sin_addr.s_addr);
818 ims = RB_FIND(ip_msource_tree, &imf->imf_sources, &find);
819 if (ims == NULL)
820 return (ENOENT);
821 lims = (struct in_msource *)ims;
822 lims->imsl_st[1] = MCAST_UNDEFINED;
823 return (0);
824 }
825
826 /*
827 * Revert socket-layer filter set deltas at t1 to t0 state.
828 *
829 * Caller is expected to be holding imo_lock.
830 */
831 static void
832 imf_rollback(struct in_mfilter *imf)
833 {
834 struct ip_msource *ims, *tims;
835 struct in_msource *lims;
836
837 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
838 lims = (struct in_msource *)ims;
839 if (lims->imsl_st[0] == lims->imsl_st[1]) {
840 /* no change at t1 */
841 continue;
842 } else if (lims->imsl_st[0] != MCAST_UNDEFINED) {
843 /* revert change to existing source at t1 */
844 lims->imsl_st[1] = lims->imsl_st[0];
845 } else {
846 /* revert source added t1 */
847 IGMP_PRINTF(("%s: free inms 0x%llx\n", __func__,
848 (uint64_t)VM_KERNEL_ADDRPERM(lims)));
849 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
850 inms_free(lims);
851 imf->imf_nsrc--;
852 }
853 }
854 imf->imf_st[1] = imf->imf_st[0];
855 }
856
857 /*
858 * Mark socket-layer filter set as INCLUDE {} at t1.
859 *
860 * Caller is expected to be holding imo_lock.
861 */
862 void
863 imf_leave(struct in_mfilter *imf)
864 {
865 struct ip_msource *ims;
866 struct in_msource *lims;
867
868 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
869 lims = (struct in_msource *)ims;
870 lims->imsl_st[1] = MCAST_UNDEFINED;
871 }
872 imf->imf_st[1] = MCAST_INCLUDE;
873 }
874
875 /*
876 * Mark socket-layer filter set deltas as committed.
877 *
878 * Caller is expected to be holding imo_lock.
879 */
880 static void
881 imf_commit(struct in_mfilter *imf)
882 {
883 struct ip_msource *ims;
884 struct in_msource *lims;
885
886 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
887 lims = (struct in_msource *)ims;
888 lims->imsl_st[0] = lims->imsl_st[1];
889 }
890 imf->imf_st[0] = imf->imf_st[1];
891 }
892
893 /*
894 * Reap unreferenced sources from socket-layer filter set.
895 *
896 * Caller is expected to be holding imo_lock.
897 */
898 static void
899 imf_reap(struct in_mfilter *imf)
900 {
901 struct ip_msource *ims, *tims;
902 struct in_msource *lims;
903
904 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
905 lims = (struct in_msource *)ims;
906 if ((lims->imsl_st[0] == MCAST_UNDEFINED) &&
907 (lims->imsl_st[1] == MCAST_UNDEFINED)) {
908 IGMP_PRINTF(("%s: free inms 0x%llx\n", __func__,
909 (uint64_t)VM_KERNEL_ADDRPERM(lims)));
910 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
911 inms_free(lims);
912 imf->imf_nsrc--;
913 }
914 }
915 }
916
917 /*
918 * Purge socket-layer filter set.
919 *
920 * Caller is expected to be holding imo_lock.
921 */
922 void
923 imf_purge(struct in_mfilter *imf)
924 {
925 struct ip_msource *ims, *tims;
926 struct in_msource *lims;
927
928 RB_FOREACH_SAFE(ims, ip_msource_tree, &imf->imf_sources, tims) {
929 lims = (struct in_msource *)ims;
930 IGMP_PRINTF(("%s: free inms 0x%llx\n", __func__,
931 (uint64_t)VM_KERNEL_ADDRPERM(lims)));
932 RB_REMOVE(ip_msource_tree, &imf->imf_sources, ims);
933 inms_free(lims);
934 imf->imf_nsrc--;
935 }
936 imf->imf_st[0] = imf->imf_st[1] = MCAST_UNDEFINED;
937 VERIFY(RB_EMPTY(&imf->imf_sources));
938 }
939
940 /*
941 * Look up a source filter entry for a multicast group.
942 *
943 * inm is the group descriptor to work with.
944 * haddr is the host-byte-order IPv4 address to look up.
945 * noalloc may be non-zero to suppress allocation of sources.
946 * *pims will be set to the address of the retrieved or allocated source.
947 *
948 * Return 0 if successful, otherwise return a non-zero error code.
949 */
950 static int
951 inm_get_source(struct in_multi *inm, const in_addr_t haddr,
952 const int noalloc, struct ip_msource **pims)
953 {
954 struct ip_msource find;
955 struct ip_msource *ims, *nims;
956 #ifdef IGMP_DEBUG
957 struct in_addr ia;
958 char buf[MAX_IPv4_STR_LEN];
959 #endif
960 INM_LOCK_ASSERT_HELD(inm);
961
962 find.ims_haddr = haddr;
963 ims = RB_FIND(ip_msource_tree, &inm->inm_srcs, &find);
964 if (ims == NULL && !noalloc) {
965 if (inm->inm_nsrc == in_mcast_maxgrpsrc)
966 return (ENOSPC);
967 nims = ipms_alloc(M_WAITOK);
968 if (nims == NULL)
969 return (ENOMEM);
970 nims->ims_haddr = haddr;
971 RB_INSERT(ip_msource_tree, &inm->inm_srcs, nims);
972 ++inm->inm_nsrc;
973 ims = nims;
974 #ifdef IGMP_DEBUG
975 ia.s_addr = htonl(haddr);
976 inet_ntop(AF_INET, &ia, buf, sizeof(buf));
977 IGMP_PRINTF(("%s: allocated %s as 0x%llx\n", __func__,
978 buf, (uint64_t)VM_KERNEL_ADDRPERM(ims)));
979 #endif
980 }
981
982 *pims = ims;
983 return (0);
984 }
985
986 /*
987 * Helper function to derive the filter mode on a source entry
988 * from its internal counters. Predicates are:
989 * A source is only excluded if all listeners exclude it.
990 * A source is only included if no listeners exclude it,
991 * and at least one listener includes it.
992 * May be used by ifmcstat(8).
993 */
994 uint8_t
995 ims_get_mode(const struct in_multi *inm, const struct ip_msource *ims,
996 uint8_t t)
997 {
998 INM_LOCK_ASSERT_HELD(__DECONST(struct in_multi *, inm));
999
1000 t = !!t;
1001 if (inm->inm_st[t].iss_ex > 0 &&
1002 inm->inm_st[t].iss_ex == ims->ims_st[t].ex)
1003 return (MCAST_EXCLUDE);
1004 else if (ims->ims_st[t].in > 0 && ims->ims_st[t].ex == 0)
1005 return (MCAST_INCLUDE);
1006 return (MCAST_UNDEFINED);
1007 }
1008
1009 /*
1010 * Merge socket-layer source into IGMP-layer source.
1011 * If rollback is non-zero, perform the inverse of the merge.
1012 */
1013 static void
1014 ims_merge(struct ip_msource *ims, const struct in_msource *lims,
1015 const int rollback)
1016 {
1017 int n = rollback ? -1 : 1;
1018 #ifdef IGMP_DEBUG
1019 struct in_addr ia;
1020
1021 ia.s_addr = htonl(ims->ims_haddr);
1022 #endif
1023
1024 if (lims->imsl_st[0] == MCAST_EXCLUDE) {
1025 IGMP_INET_PRINTF(ia,
1026 ("%s: t1 ex -= %d on %s\n",
1027 __func__, n, _igmp_inet_buf));
1028 ims->ims_st[1].ex -= n;
1029 } else if (lims->imsl_st[0] == MCAST_INCLUDE) {
1030 IGMP_INET_PRINTF(ia,
1031 ("%s: t1 in -= %d on %s\n",
1032 __func__, n, _igmp_inet_buf));
1033 ims->ims_st[1].in -= n;
1034 }
1035
1036 if (lims->imsl_st[1] == MCAST_EXCLUDE) {
1037 IGMP_INET_PRINTF(ia,
1038 ("%s: t1 ex += %d on %s\n",
1039 __func__, n, _igmp_inet_buf));
1040 ims->ims_st[1].ex += n;
1041 } else if (lims->imsl_st[1] == MCAST_INCLUDE) {
1042 IGMP_INET_PRINTF(ia,
1043 ("%s: t1 in += %d on %s\n",
1044 __func__, n, _igmp_inet_buf));
1045 ims->ims_st[1].in += n;
1046 }
1047 }
1048
1049 /*
1050 * Atomically update the global in_multi state, when a membership's
1051 * filter list is being updated in any way.
1052 *
1053 * imf is the per-inpcb-membership group filter pointer.
1054 * A fake imf may be passed for in-kernel consumers.
1055 *
1056 * XXX This is a candidate for a set-symmetric-difference style loop
1057 * which would eliminate the repeated lookup from root of ims nodes,
1058 * as they share the same key space.
1059 *
1060 * If any error occurred this function will back out of refcounts
1061 * and return a non-zero value.
1062 */
1063 static int
1064 inm_merge(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1065 {
1066 struct ip_msource *ims, *nims = NULL;
1067 struct in_msource *lims;
1068 int schanged, error;
1069 int nsrc0, nsrc1;
1070
1071 INM_LOCK_ASSERT_HELD(inm);
1072
1073 schanged = 0;
1074 error = 0;
1075 nsrc1 = nsrc0 = 0;
1076
1077 /*
1078 * Update the source filters first, as this may fail.
1079 * Maintain count of in-mode filters at t0, t1. These are
1080 * used to work out if we transition into ASM mode or not.
1081 * Maintain a count of source filters whose state was
1082 * actually modified by this operation.
1083 */
1084 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1085 lims = (struct in_msource *)ims;
1086 if (lims->imsl_st[0] == imf->imf_st[0]) nsrc0++;
1087 if (lims->imsl_st[1] == imf->imf_st[1]) nsrc1++;
1088 if (lims->imsl_st[0] == lims->imsl_st[1]) continue;
1089 error = inm_get_source(inm, lims->ims_haddr, 0, &nims);
1090 ++schanged;
1091 if (error)
1092 break;
1093 ims_merge(nims, lims, 0);
1094 }
1095 if (error) {
1096 struct ip_msource *bims;
1097
1098 RB_FOREACH_REVERSE_FROM(ims, ip_msource_tree, nims) {
1099 lims = (struct in_msource *)ims;
1100 if (lims->imsl_st[0] == lims->imsl_st[1])
1101 continue;
1102 (void) inm_get_source(inm, lims->ims_haddr, 1, &bims);
1103 if (bims == NULL)
1104 continue;
1105 ims_merge(bims, lims, 1);
1106 }
1107 goto out_reap;
1108 }
1109
1110 IGMP_PRINTF(("%s: imf filters in-mode: %d at t0, %d at t1\n",
1111 __func__, nsrc0, nsrc1));
1112
1113 /* Handle transition between INCLUDE {n} and INCLUDE {} on socket. */
1114 if (imf->imf_st[0] == imf->imf_st[1] &&
1115 imf->imf_st[1] == MCAST_INCLUDE) {
1116 if (nsrc1 == 0) {
1117 IGMP_PRINTF(("%s: --in on inm at t1\n", __func__));
1118 --inm->inm_st[1].iss_in;
1119 }
1120 }
1121
1122 /* Handle filter mode transition on socket. */
1123 if (imf->imf_st[0] != imf->imf_st[1]) {
1124 IGMP_PRINTF(("%s: imf transition %d to %d\n",
1125 __func__, imf->imf_st[0], imf->imf_st[1]));
1126
1127 if (imf->imf_st[0] == MCAST_EXCLUDE) {
1128 IGMP_PRINTF(("%s: --ex on inm at t1\n", __func__));
1129 --inm->inm_st[1].iss_ex;
1130 } else if (imf->imf_st[0] == MCAST_INCLUDE) {
1131 IGMP_PRINTF(("%s: --in on inm at t1\n", __func__));
1132 --inm->inm_st[1].iss_in;
1133 }
1134
1135 if (imf->imf_st[1] == MCAST_EXCLUDE) {
1136 IGMP_PRINTF(("%s: ex++ on inm at t1\n", __func__));
1137 inm->inm_st[1].iss_ex++;
1138 } else if (imf->imf_st[1] == MCAST_INCLUDE && nsrc1 > 0) {
1139 IGMP_PRINTF(("%s: in++ on inm at t1\n", __func__));
1140 inm->inm_st[1].iss_in++;
1141 }
1142 }
1143
1144 /*
1145 * Track inm filter state in terms of listener counts.
1146 * If there are any exclusive listeners, stack-wide
1147 * membership is exclusive.
1148 * Otherwise, if only inclusive listeners, stack-wide is inclusive.
1149 * If no listeners remain, state is undefined at t1,
1150 * and the IGMP lifecycle for this group should finish.
1151 */
1152 if (inm->inm_st[1].iss_ex > 0) {
1153 IGMP_PRINTF(("%s: transition to EX\n", __func__));
1154 inm->inm_st[1].iss_fmode = MCAST_EXCLUDE;
1155 } else if (inm->inm_st[1].iss_in > 0) {
1156 IGMP_PRINTF(("%s: transition to IN\n", __func__));
1157 inm->inm_st[1].iss_fmode = MCAST_INCLUDE;
1158 } else {
1159 IGMP_PRINTF(("%s: transition to UNDEF\n", __func__));
1160 inm->inm_st[1].iss_fmode = MCAST_UNDEFINED;
1161 }
1162
1163 /* Decrement ASM listener count on transition out of ASM mode. */
1164 if (imf->imf_st[0] == MCAST_EXCLUDE && nsrc0 == 0) {
1165 if ((imf->imf_st[1] != MCAST_EXCLUDE) ||
1166 (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 > 0)) {
1167 IGMP_PRINTF(("%s: --asm on inm at t1\n", __func__));
1168 --inm->inm_st[1].iss_asm;
1169 }
1170 }
1171
1172 /* Increment ASM listener count on transition to ASM mode. */
1173 if (imf->imf_st[1] == MCAST_EXCLUDE && nsrc1 == 0) {
1174 IGMP_PRINTF(("%s: asm++ on inm at t1\n", __func__));
1175 inm->inm_st[1].iss_asm++;
1176 }
1177
1178 IGMP_PRINTF(("%s: merged imf 0x%llx to inm 0x%llx\n", __func__,
1179 (uint64_t)VM_KERNEL_ADDRPERM(imf),
1180 (uint64_t)VM_KERNEL_ADDRPERM(inm)));
1181 inm_print(inm);
1182
1183 out_reap:
1184 if (schanged > 0) {
1185 IGMP_PRINTF(("%s: sources changed; reaping\n", __func__));
1186 inm_reap(inm);
1187 }
1188 return (error);
1189 }
1190
1191 /*
1192 * Mark an in_multi's filter set deltas as committed.
1193 * Called by IGMP after a state change has been enqueued.
1194 */
1195 void
1196 inm_commit(struct in_multi *inm)
1197 {
1198 struct ip_msource *ims;
1199
1200 INM_LOCK_ASSERT_HELD(inm);
1201
1202 IGMP_PRINTF(("%s: commit inm 0x%llx\n", __func__,
1203 (uint64_t)VM_KERNEL_ADDRPERM(inm)));
1204 IGMP_PRINTF(("%s: pre commit:\n", __func__));
1205 inm_print(inm);
1206
1207 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
1208 ims->ims_st[0] = ims->ims_st[1];
1209 }
1210 inm->inm_st[0] = inm->inm_st[1];
1211 }
1212
1213 /*
1214 * Reap unreferenced nodes from an in_multi's filter set.
1215 */
1216 static void
1217 inm_reap(struct in_multi *inm)
1218 {
1219 struct ip_msource *ims, *tims;
1220
1221 INM_LOCK_ASSERT_HELD(inm);
1222
1223 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1224 if (ims->ims_st[0].ex > 0 || ims->ims_st[0].in > 0 ||
1225 ims->ims_st[1].ex > 0 || ims->ims_st[1].in > 0 ||
1226 ims->ims_stp != 0)
1227 continue;
1228 IGMP_PRINTF(("%s: free ims 0x%llx\n", __func__,
1229 (uint64_t)VM_KERNEL_ADDRPERM(ims)));
1230 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1231 ipms_free(ims);
1232 inm->inm_nsrc--;
1233 }
1234 }
1235
1236 /*
1237 * Purge all source nodes from an in_multi's filter set.
1238 */
1239 void
1240 inm_purge(struct in_multi *inm)
1241 {
1242 struct ip_msource *ims, *tims;
1243
1244 INM_LOCK_ASSERT_HELD(inm);
1245
1246 RB_FOREACH_SAFE(ims, ip_msource_tree, &inm->inm_srcs, tims) {
1247 IGMP_PRINTF(("%s: free ims 0x%llx\n", __func__,
1248 (uint64_t)VM_KERNEL_ADDRPERM(ims)));
1249 RB_REMOVE(ip_msource_tree, &inm->inm_srcs, ims);
1250 ipms_free(ims);
1251 inm->inm_nsrc--;
1252 }
1253 }
1254
1255 /*
1256 * Join a multicast group; real entry point.
1257 *
1258 * Only preserves atomicity at inm level.
1259 * NOTE: imf argument cannot be const due to sys/tree.h limitations.
1260 *
1261 * If the IGMP downcall fails, the group is not joined, and an error
1262 * code is returned.
1263 */
1264 static int
1265 in_joingroup(struct ifnet *ifp, const struct in_addr *gina,
1266 /*const*/ struct in_mfilter *imf, struct in_multi **pinm)
1267 {
1268 struct in_mfilter timf;
1269 struct in_multi *inm = NULL;
1270 int error = 0;
1271 struct igmp_tparams itp;
1272
1273 IGMP_INET_PRINTF(*gina, ("%s: join %s on 0x%llx(%s))\n", __func__,
1274 _igmp_inet_buf, (uint64_t)VM_KERNEL_ADDRPERM(ifp), if_name(ifp)));
1275
1276 bzero(&itp, sizeof (itp));
1277 *pinm = NULL;
1278
1279 /*
1280 * If no imf was specified (i.e. kernel consumer),
1281 * fake one up and assume it is an ASM join.
1282 */
1283 if (imf == NULL) {
1284 imf_init(&timf, MCAST_UNDEFINED, MCAST_EXCLUDE);
1285 imf = &timf;
1286 }
1287
1288 error = in_getmulti(ifp, gina, &inm);
1289 if (error) {
1290 IGMP_PRINTF(("%s: in_getmulti() failure\n", __func__));
1291 return (error);
1292 }
1293
1294 IGMP_PRINTF(("%s: merge inm state\n", __func__));
1295
1296 INM_LOCK(inm);
1297 error = inm_merge(inm, imf);
1298 if (error) {
1299 IGMP_PRINTF(("%s: failed to merge inm state\n", __func__));
1300 goto out_inm_release;
1301 }
1302
1303 IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
1304 error = igmp_change_state(inm, &itp);
1305 if (error) {
1306 IGMP_PRINTF(("%s: failed to update source\n", __func__));
1307 imf_rollback(imf);
1308 goto out_inm_release;
1309 }
1310
1311 out_inm_release:
1312 if (error) {
1313 IGMP_PRINTF(("%s: dropping ref on 0x%llx\n", __func__,
1314 (uint64_t)VM_KERNEL_ADDRPERM(inm)));
1315 INM_UNLOCK(inm);
1316 INM_REMREF(inm);
1317 } else {
1318 INM_UNLOCK(inm);
1319 *pinm = inm; /* keep refcount from in_getmulti() */
1320 }
1321
1322 /* schedule timer now that we've dropped the lock(s) */
1323 igmp_set_timeout(&itp);
1324
1325 return (error);
1326 }
1327
1328 /*
1329 * Leave a multicast group; real entry point.
1330 * All source filters will be expunged.
1331 *
1332 * Only preserves atomicity at inm level.
1333 *
1334 * Note: This is not the same as inm_release(*) as this function also
1335 * makes a state change downcall into IGMP.
1336 */
1337 int
1338 in_leavegroup(struct in_multi *inm, /*const*/ struct in_mfilter *imf)
1339 {
1340 struct in_mfilter timf;
1341 int error, lastref;
1342 struct igmp_tparams itp;
1343
1344 bzero(&itp, sizeof (itp));
1345 error = 0;
1346
1347 INM_LOCK_ASSERT_NOTHELD(inm);
1348
1349 in_multihead_lock_exclusive();
1350 INM_LOCK(inm);
1351
1352 IGMP_INET_PRINTF(inm->inm_addr,
1353 ("%s: leave inm 0x%llx, %s/%s%d, imf 0x%llx\n", __func__,
1354 (uint64_t)VM_KERNEL_ADDRPERM(inm), _igmp_inet_buf,
1355 (inm_is_ifp_detached(inm) ? "null" : inm->inm_ifp->if_name),
1356 inm->inm_ifp->if_unit, (uint64_t)VM_KERNEL_ADDRPERM(imf)));
1357
1358 /*
1359 * If no imf was specified (i.e. kernel consumer),
1360 * fake one up and assume it is an ASM join.
1361 */
1362 if (imf == NULL) {
1363 imf_init(&timf, MCAST_EXCLUDE, MCAST_UNDEFINED);
1364 imf = &timf;
1365 }
1366
1367 /*
1368 * Begin state merge transaction at IGMP layer.
1369 *
1370 * As this particular invocation should not cause any memory
1371 * to be allocated, and there is no opportunity to roll back
1372 * the transaction, it MUST NOT fail.
1373 */
1374 IGMP_PRINTF(("%s: merge inm state\n", __func__));
1375
1376 error = inm_merge(inm, imf);
1377 KASSERT(error == 0, ("%s: failed to merge inm state\n", __func__));
1378
1379 IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
1380 error = igmp_change_state(inm, &itp);
1381 #if IGMP_DEBUG
1382 if (error)
1383 IGMP_PRINTF(("%s: failed igmp downcall\n", __func__));
1384 #endif
1385 lastref = in_multi_detach(inm);
1386 VERIFY(!lastref || (!(inm->inm_debug & IFD_ATTACHED) &&
1387 inm->inm_reqcnt == 0));
1388 INM_UNLOCK(inm);
1389 in_multihead_lock_done();
1390
1391 if (lastref)
1392 INM_REMREF(inm); /* for in_multihead list */
1393
1394 /* schedule timer now that we've dropped the lock(s) */
1395 igmp_set_timeout(&itp);
1396
1397 return (error);
1398 }
1399
1400 /*
1401 * Join an IPv4 multicast group in (*,G) exclusive mode.
1402 * The group must be a 224.0.0.0/24 link-scope group.
1403 * This KPI is for legacy kernel consumers only.
1404 */
1405 struct in_multi *
1406 in_addmulti(struct in_addr *ap, struct ifnet *ifp)
1407 {
1408 struct in_multi *pinm = NULL;
1409 int error;
1410
1411 KASSERT(IN_LOCAL_GROUP(ntohl(ap->s_addr)),
1412 ("%s: %s not in 224.0.0.0/24\n", __func__, inet_ntoa(*ap)));
1413
1414 error = in_joingroup(ifp, ap, NULL, &pinm);
1415 VERIFY(pinm != NULL || error != 0);
1416
1417 return (pinm);
1418 }
1419
1420 /*
1421 * Leave an IPv4 multicast group, assumed to be in exclusive (*,G) mode.
1422 * This KPI is for legacy kernel consumers only.
1423 */
1424 void
1425 in_delmulti(struct in_multi *inm)
1426 {
1427
1428 (void) in_leavegroup(inm, NULL);
1429 }
1430
1431 /*
1432 * Block or unblock an ASM multicast source on an inpcb.
1433 * This implements the delta-based API described in RFC 3678.
1434 *
1435 * The delta-based API applies only to exclusive-mode memberships.
1436 * An IGMP downcall will be performed.
1437 *
1438 * Return 0 if successful, otherwise return an appropriate error code.
1439 */
1440 static int
1441 inp_block_unblock_source(struct inpcb *inp, struct sockopt *sopt)
1442 {
1443 struct group_source_req gsr;
1444 struct sockaddr_in *gsa, *ssa;
1445 struct ifnet *ifp;
1446 struct in_mfilter *imf;
1447 struct ip_moptions *imo;
1448 struct in_msource *ims;
1449 struct in_multi *inm;
1450 size_t idx;
1451 uint16_t fmode;
1452 int error, doblock;
1453 unsigned int ifindex = 0;
1454 struct igmp_tparams itp;
1455
1456 bzero(&itp, sizeof (itp));
1457 ifp = NULL;
1458 error = 0;
1459 doblock = 0;
1460
1461 memset(&gsr, 0, sizeof(struct group_source_req));
1462 gsa = (struct sockaddr_in *)&gsr.gsr_group;
1463 ssa = (struct sockaddr_in *)&gsr.gsr_source;
1464
1465 switch (sopt->sopt_name) {
1466 case IP_BLOCK_SOURCE:
1467 case IP_UNBLOCK_SOURCE: {
1468 struct ip_mreq_source mreqs;
1469
1470 error = sooptcopyin(sopt, &mreqs,
1471 sizeof(struct ip_mreq_source),
1472 sizeof(struct ip_mreq_source));
1473 if (error)
1474 return (error);
1475
1476 gsa->sin_family = AF_INET;
1477 gsa->sin_len = sizeof(struct sockaddr_in);
1478 gsa->sin_addr = mreqs.imr_multiaddr;
1479
1480 ssa->sin_family = AF_INET;
1481 ssa->sin_len = sizeof(struct sockaddr_in);
1482 ssa->sin_addr = mreqs.imr_sourceaddr;
1483
1484 if (!in_nullhost(mreqs.imr_interface))
1485 ifp = ip_multicast_if(&mreqs.imr_interface, &ifindex);
1486
1487 if (sopt->sopt_name == IP_BLOCK_SOURCE)
1488 doblock = 1;
1489
1490 IGMP_INET_PRINTF(mreqs.imr_interface,
1491 ("%s: imr_interface = %s, ifp = 0x%llx\n", __func__,
1492 _igmp_inet_buf, (uint64_t)VM_KERNEL_ADDRPERM(ifp)));
1493 break;
1494 }
1495
1496 case MCAST_BLOCK_SOURCE:
1497 case MCAST_UNBLOCK_SOURCE:
1498 error = sooptcopyin(sopt, &gsr,
1499 sizeof(struct group_source_req),
1500 sizeof(struct group_source_req));
1501 if (error)
1502 return (error);
1503
1504 if (gsa->sin_family != AF_INET ||
1505 gsa->sin_len != sizeof(struct sockaddr_in))
1506 return (EINVAL);
1507
1508 if (ssa->sin_family != AF_INET ||
1509 ssa->sin_len != sizeof(struct sockaddr_in))
1510 return (EINVAL);
1511
1512 ifnet_head_lock_shared();
1513 if (gsr.gsr_interface == 0 ||
1514 (u_int)if_index < gsr.gsr_interface) {
1515 ifnet_head_done();
1516 return (EADDRNOTAVAIL);
1517 }
1518
1519 ifp = ifindex2ifnet[gsr.gsr_interface];
1520 ifnet_head_done();
1521
1522 if (ifp == NULL)
1523 return (EADDRNOTAVAIL);
1524
1525 if (sopt->sopt_name == MCAST_BLOCK_SOURCE)
1526 doblock = 1;
1527 break;
1528
1529 default:
1530 IGMP_PRINTF(("%s: unknown sopt_name %d\n",
1531 __func__, sopt->sopt_name));
1532 return (EOPNOTSUPP);
1533 }
1534
1535 if (!IN_MULTICAST(ntohl(gsa->sin_addr.s_addr)))
1536 return (EINVAL);
1537
1538 /*
1539 * Check if we are actually a member of this group.
1540 */
1541 imo = inp_findmoptions(inp);
1542 if (imo == NULL)
1543 return (ENOMEM);
1544
1545 IMO_LOCK(imo);
1546 idx = imo_match_group(imo, ifp, gsa);
1547 if (idx == (size_t)-1 || imo->imo_mfilters == NULL) {
1548 error = EADDRNOTAVAIL;
1549 goto out_imo_locked;
1550 }
1551
1552 VERIFY(imo->imo_mfilters != NULL);
1553 imf = &imo->imo_mfilters[idx];
1554 inm = imo->imo_membership[idx];
1555
1556 /*
1557 * Attempting to use the delta-based API on an
1558 * non exclusive-mode membership is an error.
1559 */
1560 fmode = imf->imf_st[0];
1561 if (fmode != MCAST_EXCLUDE) {
1562 error = EINVAL;
1563 goto out_imo_locked;
1564 }
1565
1566 /*
1567 * Deal with error cases up-front:
1568 * Asked to block, but already blocked; or
1569 * Asked to unblock, but nothing to unblock.
1570 * If adding a new block entry, allocate it.
1571 */
1572 ims = imo_match_source(imo, idx, ssa);
1573 if ((ims != NULL && doblock) || (ims == NULL && !doblock)) {
1574 IGMP_INET_PRINTF(ssa->sin_addr,
1575 ("%s: source %s %spresent\n", __func__,
1576 _igmp_inet_buf, doblock ? "" : "not "));
1577 error = EADDRNOTAVAIL;
1578 goto out_imo_locked;
1579 }
1580
1581 /*
1582 * Begin state merge transaction at socket layer.
1583 */
1584 if (doblock) {
1585 IGMP_PRINTF(("%s: %s source\n", __func__, "block"));
1586 ims = imf_graft(imf, fmode, ssa);
1587 if (ims == NULL)
1588 error = ENOMEM;
1589 } else {
1590 IGMP_PRINTF(("%s: %s source\n", __func__, "allow"));
1591 error = imf_prune(imf, ssa);
1592 }
1593
1594 if (error) {
1595 IGMP_PRINTF(("%s: merge imf state failed\n", __func__));
1596 goto out_imf_rollback;
1597 }
1598
1599 /*
1600 * Begin state merge transaction at IGMP layer.
1601 */
1602 INM_LOCK(inm);
1603 IGMP_PRINTF(("%s: merge inm state\n", __func__));
1604 error = inm_merge(inm, imf);
1605 if (error) {
1606 IGMP_PRINTF(("%s: failed to merge inm state\n", __func__));
1607 INM_UNLOCK(inm);
1608 goto out_imf_rollback;
1609 }
1610
1611 IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
1612 error = igmp_change_state(inm, &itp);
1613 INM_UNLOCK(inm);
1614 #if IGMP_DEBUG
1615 if (error)
1616 IGMP_PRINTF(("%s: failed igmp downcall\n", __func__));
1617 #endif
1618
1619 out_imf_rollback:
1620 if (error)
1621 imf_rollback(imf);
1622 else
1623 imf_commit(imf);
1624
1625 imf_reap(imf);
1626
1627 out_imo_locked:
1628 IMO_UNLOCK(imo);
1629 IMO_REMREF(imo); /* from inp_findmoptions() */
1630
1631 /* schedule timer now that we've dropped the lock(s) */
1632 igmp_set_timeout(&itp);
1633
1634 return (error);
1635 }
1636
1637 /*
1638 * Given an inpcb, return its multicast options structure pointer.
1639 *
1640 * Caller is responsible for locking the inpcb, and releasing the
1641 * extra reference held on the imo, upon a successful return.
1642 */
1643 static struct ip_moptions *
1644 inp_findmoptions(struct inpcb *inp)
1645 {
1646 struct ip_moptions *imo;
1647 struct in_multi **immp;
1648 struct in_mfilter *imfp;
1649 size_t idx;
1650
1651 if ((imo = inp->inp_moptions) != NULL) {
1652 IMO_ADDREF(imo); /* for caller */
1653 return (imo);
1654 }
1655
1656 imo = ip_allocmoptions(M_WAITOK);
1657 if (imo == NULL)
1658 return (NULL);
1659
1660 immp = _MALLOC(sizeof (*immp) * IP_MIN_MEMBERSHIPS, M_IPMOPTS,
1661 M_WAITOK | M_ZERO);
1662 if (immp == NULL) {
1663 IMO_REMREF(imo);
1664 return (NULL);
1665 }
1666
1667 imfp = _MALLOC(sizeof (struct in_mfilter) * IP_MIN_MEMBERSHIPS,
1668 M_INMFILTER, M_WAITOK | M_ZERO);
1669 if (imfp == NULL) {
1670 _FREE(immp, M_IPMOPTS);
1671 IMO_REMREF(imo);
1672 return (NULL);
1673 }
1674
1675 imo->imo_multicast_ifp = NULL;
1676 imo->imo_multicast_addr.s_addr = INADDR_ANY;
1677 imo->imo_multicast_vif = -1;
1678 imo->imo_multicast_ttl = IP_DEFAULT_MULTICAST_TTL;
1679 imo->imo_multicast_loop = in_mcast_loop;
1680 imo->imo_num_memberships = 0;
1681 imo->imo_max_memberships = IP_MIN_MEMBERSHIPS;
1682 imo->imo_membership = immp;
1683
1684 /* Initialize per-group source filters. */
1685 for (idx = 0; idx < IP_MIN_MEMBERSHIPS; idx++)
1686 imf_init(&imfp[idx], MCAST_UNDEFINED, MCAST_EXCLUDE);
1687
1688 imo->imo_mfilters = imfp;
1689 inp->inp_moptions = imo; /* keep reference from ip_allocmoptions() */
1690 IMO_ADDREF(imo); /* for caller */
1691
1692 return (imo);
1693 }
1694 /*
1695 * Atomically get source filters on a socket for an IPv4 multicast group.
1696 */
1697 static int
1698 inp_get_source_filters(struct inpcb *inp, struct sockopt *sopt)
1699 {
1700 struct __msfilterreq64 msfr = {}, msfr64;
1701 struct __msfilterreq32 msfr32;
1702 struct sockaddr_in *gsa;
1703 struct ifnet *ifp;
1704 struct ip_moptions *imo;
1705 struct in_mfilter *imf;
1706 struct ip_msource *ims;
1707 struct in_msource *lims;
1708 struct sockaddr_in *psin;
1709 struct sockaddr_storage *ptss;
1710 struct sockaddr_storage *tss;
1711 int error;
1712 size_t idx, nsrcs, ncsrcs;
1713 user_addr_t tmp_ptr;
1714
1715 imo = inp->inp_moptions;
1716 VERIFY(imo != NULL);
1717
1718 if (IS_64BIT_PROCESS(current_proc())) {
1719 error = sooptcopyin(sopt, &msfr64,
1720 sizeof(struct __msfilterreq64),
1721 sizeof(struct __msfilterreq64));
1722 if (error)
1723 return (error);
1724 /* we never use msfr.msfr_srcs; */
1725 memcpy(&msfr, &msfr64, sizeof(msfr64));
1726 } else {
1727 error = sooptcopyin(sopt, &msfr32,
1728 sizeof(struct __msfilterreq32),
1729 sizeof(struct __msfilterreq32));
1730 if (error)
1731 return (error);
1732 /* we never use msfr.msfr_srcs; */
1733 memcpy(&msfr, &msfr32, sizeof(msfr32));
1734 }
1735
1736 ifnet_head_lock_shared();
1737 if (msfr.msfr_ifindex == 0 || (u_int)if_index < msfr.msfr_ifindex) {
1738 ifnet_head_done();
1739 return (EADDRNOTAVAIL);
1740 }
1741
1742 ifp = ifindex2ifnet[msfr.msfr_ifindex];
1743 ifnet_head_done();
1744
1745 if (ifp == NULL)
1746 return (EADDRNOTAVAIL);
1747
1748 if ((size_t) msfr.msfr_nsrcs >
1749 UINT32_MAX / sizeof(struct sockaddr_storage))
1750 msfr.msfr_nsrcs = UINT32_MAX / sizeof(struct sockaddr_storage);
1751
1752 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
1753 msfr.msfr_nsrcs = in_mcast_maxsocksrc;
1754
1755 IMO_LOCK(imo);
1756 /*
1757 * Lookup group on the socket.
1758 */
1759 gsa = (struct sockaddr_in *)&msfr.msfr_group;
1760
1761 idx = imo_match_group(imo, ifp, gsa);
1762 if (idx == (size_t)-1 || imo->imo_mfilters == NULL) {
1763 IMO_UNLOCK(imo);
1764 return (EADDRNOTAVAIL);
1765 }
1766 imf = &imo->imo_mfilters[idx];
1767
1768 /*
1769 * Ignore memberships which are in limbo.
1770 */
1771 if (imf->imf_st[1] == MCAST_UNDEFINED) {
1772 IMO_UNLOCK(imo);
1773 return (EAGAIN);
1774 }
1775 msfr.msfr_fmode = imf->imf_st[1];
1776
1777 /*
1778 * If the user specified a buffer, copy out the source filter
1779 * entries to userland gracefully.
1780 * We only copy out the number of entries which userland
1781 * has asked for, but we always tell userland how big the
1782 * buffer really needs to be.
1783 */
1784
1785 if (IS_64BIT_PROCESS(current_proc()))
1786 tmp_ptr = msfr64.msfr_srcs;
1787 else
1788 tmp_ptr = CAST_USER_ADDR_T(msfr32.msfr_srcs);
1789
1790 tss = NULL;
1791 if (tmp_ptr != USER_ADDR_NULL && msfr.msfr_nsrcs > 0) {
1792 tss = _MALLOC((size_t) msfr.msfr_nsrcs * sizeof(*tss),
1793 M_TEMP, M_WAITOK | M_ZERO);
1794 if (tss == NULL) {
1795 IMO_UNLOCK(imo);
1796 return (ENOBUFS);
1797 }
1798 }
1799
1800 /*
1801 * Count number of sources in-mode at t0.
1802 * If buffer space exists and remains, copy out source entries.
1803 */
1804 nsrcs = msfr.msfr_nsrcs;
1805 ncsrcs = 0;
1806 ptss = tss;
1807 RB_FOREACH(ims, ip_msource_tree, &imf->imf_sources) {
1808 lims = (struct in_msource *)ims;
1809 if (lims->imsl_st[0] == MCAST_UNDEFINED ||
1810 lims->imsl_st[0] != imf->imf_st[0])
1811 continue;
1812 if (tss != NULL && nsrcs > 0) {
1813 psin = (struct sockaddr_in *)ptss;
1814 psin->sin_family = AF_INET;
1815 psin->sin_len = sizeof(struct sockaddr_in);
1816 psin->sin_addr.s_addr = htonl(lims->ims_haddr);
1817 psin->sin_port = 0;
1818 ++ptss;
1819 --nsrcs;
1820 ++ncsrcs;
1821 }
1822 }
1823
1824 IMO_UNLOCK(imo);
1825
1826 if (tss != NULL) {
1827 error = copyout(tss, tmp_ptr, ncsrcs * sizeof(*tss));
1828 FREE(tss, M_TEMP);
1829 if (error)
1830 return (error);
1831 }
1832
1833 msfr.msfr_nsrcs = ncsrcs;
1834 if (IS_64BIT_PROCESS(current_proc())) {
1835 msfr64.msfr_ifindex = msfr.msfr_ifindex;
1836 msfr64.msfr_fmode = msfr.msfr_fmode;
1837 msfr64.msfr_nsrcs = msfr.msfr_nsrcs;
1838 memcpy(&msfr64.msfr_group, &msfr.msfr_group,
1839 sizeof(struct sockaddr_storage));
1840 error = sooptcopyout(sopt, &msfr64,
1841 sizeof(struct __msfilterreq64));
1842 } else {
1843 msfr32.msfr_ifindex = msfr.msfr_ifindex;
1844 msfr32.msfr_fmode = msfr.msfr_fmode;
1845 msfr32.msfr_nsrcs = msfr.msfr_nsrcs;
1846 memcpy(&msfr32.msfr_group, &msfr.msfr_group,
1847 sizeof(struct sockaddr_storage));
1848 error = sooptcopyout(sopt, &msfr32,
1849 sizeof(struct __msfilterreq32));
1850 }
1851
1852 return (error);
1853 }
1854
1855 /*
1856 * Return the IP multicast options in response to user getsockopt().
1857 */
1858 int
1859 inp_getmoptions(struct inpcb *inp, struct sockopt *sopt)
1860 {
1861 struct ip_mreqn mreqn;
1862 struct ip_moptions *imo;
1863 struct ifnet *ifp;
1864 struct in_ifaddr *ia;
1865 int error, optval;
1866 unsigned int ifindex;
1867 u_char coptval;
1868
1869 imo = inp->inp_moptions;
1870 /*
1871 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
1872 * or is a divert socket, reject it.
1873 */
1874 if (SOCK_PROTO(inp->inp_socket) == IPPROTO_DIVERT ||
1875 (SOCK_TYPE(inp->inp_socket) != SOCK_RAW &&
1876 SOCK_TYPE(inp->inp_socket) != SOCK_DGRAM)) {
1877 return (EOPNOTSUPP);
1878 }
1879
1880 error = 0;
1881 switch (sopt->sopt_name) {
1882 case IP_MULTICAST_IF:
1883 memset(&mreqn, 0, sizeof(struct ip_mreqn));
1884 if (imo != NULL) {
1885 IMO_LOCK(imo);
1886 ifp = imo->imo_multicast_ifp;
1887 if (!in_nullhost(imo->imo_multicast_addr)) {
1888 mreqn.imr_address = imo->imo_multicast_addr;
1889 } else if (ifp != NULL) {
1890 mreqn.imr_ifindex = ifp->if_index;
1891 IFP_TO_IA(ifp, ia);
1892 if (ia != NULL) {
1893 IFA_LOCK_SPIN(&ia->ia_ifa);
1894 mreqn.imr_address =
1895 IA_SIN(ia)->sin_addr;
1896 IFA_UNLOCK(&ia->ia_ifa);
1897 IFA_REMREF(&ia->ia_ifa);
1898 }
1899 }
1900 IMO_UNLOCK(imo);
1901 }
1902 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
1903 error = sooptcopyout(sopt, &mreqn,
1904 sizeof(struct ip_mreqn));
1905 } else {
1906 error = sooptcopyout(sopt, &mreqn.imr_address,
1907 sizeof(struct in_addr));
1908 }
1909 break;
1910
1911 case IP_MULTICAST_IFINDEX:
1912 if (imo != NULL)
1913 IMO_LOCK(imo);
1914 if (imo == NULL || imo->imo_multicast_ifp == NULL) {
1915 ifindex = 0;
1916 } else {
1917 ifindex = imo->imo_multicast_ifp->if_index;
1918 }
1919 if (imo != NULL)
1920 IMO_UNLOCK(imo);
1921 error = sooptcopyout(sopt, &ifindex, sizeof (ifindex));
1922 break;
1923
1924 case IP_MULTICAST_TTL:
1925 if (imo == NULL)
1926 optval = coptval = IP_DEFAULT_MULTICAST_TTL;
1927 else {
1928 IMO_LOCK(imo);
1929 optval = coptval = imo->imo_multicast_ttl;
1930 IMO_UNLOCK(imo);
1931 }
1932 if (sopt->sopt_valsize == sizeof(u_char))
1933 error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1934 else
1935 error = sooptcopyout(sopt, &optval, sizeof(int));
1936 break;
1937
1938 case IP_MULTICAST_LOOP:
1939 if (imo == 0)
1940 optval = coptval = IP_DEFAULT_MULTICAST_LOOP;
1941 else {
1942 IMO_LOCK(imo);
1943 optval = coptval = imo->imo_multicast_loop;
1944 IMO_UNLOCK(imo);
1945 }
1946 if (sopt->sopt_valsize == sizeof(u_char))
1947 error = sooptcopyout(sopt, &coptval, sizeof(u_char));
1948 else
1949 error = sooptcopyout(sopt, &optval, sizeof(int));
1950 break;
1951
1952 case IP_MSFILTER:
1953 if (imo == NULL) {
1954 error = EADDRNOTAVAIL;
1955 } else {
1956 error = inp_get_source_filters(inp, sopt);
1957 }
1958 break;
1959
1960 default:
1961 error = ENOPROTOOPT;
1962 break;
1963 }
1964
1965 return (error);
1966 }
1967
1968 /*
1969 * Look up the ifnet to use for a multicast group membership,
1970 * given the IPv4 address of an interface, and the IPv4 group address.
1971 *
1972 * This routine exists to support legacy multicast applications
1973 * which do not understand that multicast memberships are scoped to
1974 * specific physical links in the networking stack, or which need
1975 * to join link-scope groups before IPv4 addresses are configured.
1976 *
1977 * If inp is non-NULL and is bound to an interface, use this socket's
1978 * inp_boundif for any required routing table lookup.
1979 *
1980 * If the route lookup fails, attempt to use the first non-loopback
1981 * interface with multicast capability in the system as a
1982 * last resort. The legacy IPv4 ASM API requires that we do
1983 * this in order to allow groups to be joined when the routing
1984 * table has not yet been populated during boot.
1985 *
1986 * Returns NULL if no ifp could be found.
1987 *
1988 */
1989 static struct ifnet *
1990 inp_lookup_mcast_ifp(const struct inpcb *inp,
1991 const struct sockaddr_in *gsin, const struct in_addr ina)
1992 {
1993 struct ifnet *ifp;
1994 unsigned int ifindex = 0;
1995
1996 VERIFY(gsin->sin_family == AF_INET);
1997 VERIFY(IN_MULTICAST(ntohl(gsin->sin_addr.s_addr)));
1998
1999 ifp = NULL;
2000 if (!in_nullhost(ina)) {
2001 struct in_addr new_ina;
2002 memcpy(&new_ina, &ina, sizeof(struct in_addr));
2003 ifp = ip_multicast_if(&new_ina, &ifindex);
2004 } else {
2005 struct route ro;
2006 unsigned int ifscope = IFSCOPE_NONE;
2007
2008 if (inp != NULL && (inp->inp_flags & INP_BOUND_IF))
2009 ifscope = inp->inp_boundifp->if_index;
2010
2011 bzero(&ro, sizeof (ro));
2012 memcpy(&ro.ro_dst, gsin, sizeof(struct sockaddr_in));
2013 rtalloc_scoped_ign(&ro, 0, ifscope);
2014 if (ro.ro_rt != NULL) {
2015 ifp = ro.ro_rt->rt_ifp;
2016 VERIFY(ifp != NULL);
2017 } else {
2018 struct in_ifaddr *ia;
2019 struct ifnet *mifp;
2020
2021 mifp = NULL;
2022 lck_rw_lock_shared(in_ifaddr_rwlock);
2023 TAILQ_FOREACH(ia, &in_ifaddrhead, ia_link) {
2024 IFA_LOCK_SPIN(&ia->ia_ifa);
2025 mifp = ia->ia_ifp;
2026 IFA_UNLOCK(&ia->ia_ifa);
2027 if (!(mifp->if_flags & IFF_LOOPBACK) &&
2028 (mifp->if_flags & IFF_MULTICAST)) {
2029 ifp = mifp;
2030 break;
2031 }
2032 }
2033 lck_rw_done(in_ifaddr_rwlock);
2034 }
2035 ROUTE_RELEASE(&ro);
2036 }
2037
2038 return (ifp);
2039 }
2040
2041 /*
2042 * Join an IPv4 multicast group, possibly with a source.
2043 *
2044 * NB: sopt->sopt_val might point to the kernel address space. This means that
2045 * we were called by the IPv6 stack due to the presence of an IPv6 v4 mapped
2046 * address. In this scenario, sopt_p points to kernproc and sooptcopyin() will
2047 * just issue an in-kernel memcpy.
2048 */
2049 int
2050 inp_join_group(struct inpcb *inp, struct sockopt *sopt)
2051 {
2052 struct group_source_req gsr;
2053 struct sockaddr_in *gsa, *ssa;
2054 struct ifnet *ifp;
2055 struct in_mfilter *imf;
2056 struct ip_moptions *imo;
2057 struct in_multi *inm = NULL;
2058 struct in_msource *lims;
2059 size_t idx;
2060 int error, is_new;
2061 struct igmp_tparams itp;
2062
2063 bzero(&itp, sizeof (itp));
2064 ifp = NULL;
2065 imf = NULL;
2066 error = 0;
2067 is_new = 0;
2068
2069 memset(&gsr, 0, sizeof(struct group_source_req));
2070 gsa = (struct sockaddr_in *)&gsr.gsr_group;
2071 gsa->sin_family = AF_UNSPEC;
2072 ssa = (struct sockaddr_in *)&gsr.gsr_source;
2073 ssa->sin_family = AF_UNSPEC;
2074
2075 switch (sopt->sopt_name) {
2076 case IP_ADD_MEMBERSHIP:
2077 case IP_ADD_SOURCE_MEMBERSHIP: {
2078 struct ip_mreq_source mreqs;
2079
2080 if (sopt->sopt_name == IP_ADD_MEMBERSHIP) {
2081 error = sooptcopyin(sopt, &mreqs,
2082 sizeof(struct ip_mreq),
2083 sizeof(struct ip_mreq));
2084 /*
2085 * Do argument switcharoo from ip_mreq into
2086 * ip_mreq_source to avoid using two instances.
2087 */
2088 mreqs.imr_interface = mreqs.imr_sourceaddr;
2089 mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2090 } else if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
2091 error = sooptcopyin(sopt, &mreqs,
2092 sizeof(struct ip_mreq_source),
2093 sizeof(struct ip_mreq_source));
2094 }
2095 if (error) {
2096 IGMP_PRINTF(("%s: error copyin IP_ADD_MEMBERSHIP/"
2097 "IP_ADD_SOURCE_MEMBERSHIP %d err=%d\n",
2098 __func__, sopt->sopt_name, error));
2099 return (error);
2100 }
2101
2102 gsa->sin_family = AF_INET;
2103 gsa->sin_len = sizeof(struct sockaddr_in);
2104 gsa->sin_addr = mreqs.imr_multiaddr;
2105
2106 if (sopt->sopt_name == IP_ADD_SOURCE_MEMBERSHIP) {
2107 ssa->sin_family = AF_INET;
2108 ssa->sin_len = sizeof(struct sockaddr_in);
2109 ssa->sin_addr = mreqs.imr_sourceaddr;
2110 }
2111
2112 if (!IN_MULTICAST(ntohl(gsa->sin_addr.s_addr)))
2113 return (EINVAL);
2114
2115 ifp = inp_lookup_mcast_ifp(inp, gsa, mreqs.imr_interface);
2116 IGMP_INET_PRINTF(mreqs.imr_interface,
2117 ("%s: imr_interface = %s, ifp = 0x%llx\n", __func__,
2118 _igmp_inet_buf, (uint64_t)VM_KERNEL_ADDRPERM(ifp)));
2119 break;
2120 }
2121
2122 case MCAST_JOIN_GROUP:
2123 case MCAST_JOIN_SOURCE_GROUP:
2124 if (sopt->sopt_name == MCAST_JOIN_GROUP) {
2125 error = sooptcopyin(sopt, &gsr,
2126 sizeof(struct group_req),
2127 sizeof(struct group_req));
2128 } else if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2129 error = sooptcopyin(sopt, &gsr,
2130 sizeof(struct group_source_req),
2131 sizeof(struct group_source_req));
2132 }
2133 if (error)
2134 return (error);
2135
2136 if (gsa->sin_family != AF_INET ||
2137 gsa->sin_len != sizeof(struct sockaddr_in))
2138 return (EINVAL);
2139
2140 /*
2141 * Overwrite the port field if present, as the sockaddr
2142 * being copied in may be matched with a binary comparison.
2143 */
2144 gsa->sin_port = 0;
2145 if (sopt->sopt_name == MCAST_JOIN_SOURCE_GROUP) {
2146 if (ssa->sin_family != AF_INET ||
2147 ssa->sin_len != sizeof(struct sockaddr_in))
2148 return (EINVAL);
2149 ssa->sin_port = 0;
2150 }
2151
2152 if (!IN_MULTICAST(ntohl(gsa->sin_addr.s_addr)))
2153 return (EINVAL);
2154
2155 ifnet_head_lock_shared();
2156 if (gsr.gsr_interface == 0 ||
2157 (u_int)if_index < gsr.gsr_interface) {
2158 ifnet_head_done();
2159 return (EADDRNOTAVAIL);
2160 }
2161 ifp = ifindex2ifnet[gsr.gsr_interface];
2162 ifnet_head_done();
2163
2164 break;
2165
2166 default:
2167 IGMP_PRINTF(("%s: unknown sopt_name %d\n",
2168 __func__, sopt->sopt_name));
2169 return (EOPNOTSUPP);
2170 }
2171
2172 if (ifp == NULL || (ifp->if_flags & IFF_MULTICAST) == 0)
2173 return (EADDRNOTAVAIL);
2174
2175 INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_mcast_join_total);
2176 /*
2177 * TBD: revisit the criteria for non-OS initiated joins
2178 */
2179 if (inp->inp_lport == htons(5353)) {
2180 INC_ATOMIC_INT64_LIM(net_api_stats.nas_socket_mcast_join_os_total);
2181 }
2182
2183 imo = inp_findmoptions(inp);
2184 if (imo == NULL)
2185 return (ENOMEM);
2186
2187 IMO_LOCK(imo);
2188 idx = imo_match_group(imo, ifp, gsa);
2189 if (idx == (size_t)-1) {
2190 is_new = 1;
2191 } else {
2192 inm = imo->imo_membership[idx];
2193 imf = &imo->imo_mfilters[idx];
2194 if (ssa->sin_family != AF_UNSPEC) {
2195 /*
2196 * MCAST_JOIN_SOURCE_GROUP on an exclusive membership
2197 * is an error. On an existing inclusive membership,
2198 * it just adds the source to the filter list.
2199 */
2200 if (imf->imf_st[1] != MCAST_INCLUDE) {
2201 error = EINVAL;
2202 goto out_imo_locked;
2203 }
2204 /*
2205 * Throw out duplicates.
2206 *
2207 * XXX FIXME: This makes a naive assumption that
2208 * even if entries exist for *ssa in this imf,
2209 * they will be rejected as dupes, even if they
2210 * are not valid in the current mode (in-mode).
2211 *
2212 * in_msource is transactioned just as for anything
2213 * else in SSM -- but note naive use of inm_graft()
2214 * below for allocating new filter entries.
2215 *
2216 * This is only an issue if someone mixes the
2217 * full-state SSM API with the delta-based API,
2218 * which is discouraged in the relevant RFCs.
2219 */
2220 lims = imo_match_source(imo, idx, ssa);
2221 if (lims != NULL /*&&
2222 lims->imsl_st[1] == MCAST_INCLUDE*/) {
2223 error = EADDRNOTAVAIL;
2224 goto out_imo_locked;
2225 }
2226 } else {
2227 /*
2228 * MCAST_JOIN_GROUP on an existing exclusive
2229 * membership is an error; return EADDRINUSE
2230 * to preserve 4.4BSD API idempotence, and
2231 * avoid tedious detour to code below.
2232 * NOTE: This is bending RFC 3678 a bit.
2233 *
2234 * On an existing inclusive membership, this is also
2235 * an error; if you want to change filter mode,
2236 * you must use the userland API setsourcefilter().
2237 * XXX We don't reject this for imf in UNDEFINED
2238 * state at t1, because allocation of a filter
2239 * is atomic with allocation of a membership.
2240 */
2241 error = EINVAL;
2242 /* See comments above for EADDRINUSE */
2243 if (imf->imf_st[1] == MCAST_EXCLUDE)
2244 error = EADDRINUSE;
2245 goto out_imo_locked;
2246 }
2247 }
2248
2249 /*
2250 * Begin state merge transaction at socket layer.
2251 */
2252
2253 if (is_new) {
2254 if (imo->imo_num_memberships == imo->imo_max_memberships) {
2255 error = imo_grow(imo, 0);
2256 if (error)
2257 goto out_imo_locked;
2258 }
2259 /*
2260 * Allocate the new slot upfront so we can deal with
2261 * grafting the new source filter in same code path
2262 * as for join-source on existing membership.
2263 */
2264 idx = imo->imo_num_memberships;
2265 imo->imo_membership[idx] = NULL;
2266 imo->imo_num_memberships++;
2267 VERIFY(imo->imo_mfilters != NULL);
2268 imf = &imo->imo_mfilters[idx];
2269 VERIFY(RB_EMPTY(&imf->imf_sources));
2270 }
2271
2272 /*
2273 * Graft new source into filter list for this inpcb's
2274 * membership of the group. The in_multi may not have
2275 * been allocated yet if this is a new membership, however,
2276 * the in_mfilter slot will be allocated and must be initialized.
2277 */
2278 if (ssa->sin_family != AF_UNSPEC) {
2279 /* Membership starts in IN mode */
2280 if (is_new) {
2281 IGMP_PRINTF(("%s: new join w/source\n", __func__));
2282 imf_init(imf, MCAST_UNDEFINED, MCAST_INCLUDE);
2283 } else {
2284 IGMP_PRINTF(("%s: %s source\n", __func__, "allow"));
2285 }
2286 lims = imf_graft(imf, MCAST_INCLUDE, ssa);
2287 if (lims == NULL) {
2288 IGMP_PRINTF(("%s: merge imf state failed\n",
2289 __func__));
2290 error = ENOMEM;
2291 goto out_imo_free;
2292 }
2293 } else {
2294 /* No address specified; Membership starts in EX mode */
2295 if (is_new) {
2296 IGMP_PRINTF(("%s: new join w/o source\n", __func__));
2297 imf_init(imf, MCAST_UNDEFINED, MCAST_EXCLUDE);
2298 }
2299 }
2300
2301 /*
2302 * Begin state merge transaction at IGMP layer.
2303 */
2304 if (is_new) {
2305 /*
2306 * Unlock socket as we may end up calling ifnet_ioctl() to join (or leave)
2307 * the multicast group and we run the risk of a lock ordering issue
2308 * if the ifnet thread calls into the socket layer to acquire the pcb list
2309 * lock while the input thread delivers multicast packets
2310 */
2311 IMO_ADDREF_LOCKED(imo);
2312 IMO_UNLOCK(imo);
2313 socket_unlock(inp->inp_socket, 0);
2314
2315 VERIFY(inm == NULL);
2316 error = in_joingroup(ifp, &gsa->sin_addr, imf, &inm);
2317
2318 socket_lock(inp->inp_socket, 0);
2319 IMO_REMREF(imo);
2320 IMO_LOCK(imo);
2321
2322 VERIFY(inm != NULL || error != 0);
2323 if (error)
2324 goto out_imo_free;
2325 imo->imo_membership[idx] = inm; /* from in_joingroup() */
2326 } else {
2327 IGMP_PRINTF(("%s: merge inm state\n", __func__));
2328 INM_LOCK(inm);
2329 error = inm_merge(inm, imf);
2330 if (error) {
2331 IGMP_PRINTF(("%s: failed to merge inm state\n",
2332 __func__));
2333 INM_UNLOCK(inm);
2334 goto out_imf_rollback;
2335 }
2336 IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
2337 error = igmp_change_state(inm, &itp);
2338 INM_UNLOCK(inm);
2339 if (error) {
2340 IGMP_PRINTF(("%s: failed igmp downcall\n",
2341 __func__));
2342 goto out_imf_rollback;
2343 }
2344 }
2345
2346 out_imf_rollback:
2347 if (error) {
2348 imf_rollback(imf);
2349 if (is_new)
2350 imf_purge(imf);
2351 else
2352 imf_reap(imf);
2353 } else {
2354 imf_commit(imf);
2355 }
2356
2357 out_imo_free:
2358 if (error && is_new) {
2359 VERIFY(inm == NULL);
2360 imo->imo_membership[idx] = NULL;
2361 --imo->imo_num_memberships;
2362 }
2363
2364 out_imo_locked:
2365 IMO_UNLOCK(imo);
2366 IMO_REMREF(imo); /* from inp_findmoptions() */
2367
2368 /* schedule timer now that we've dropped the lock(s) */
2369 igmp_set_timeout(&itp);
2370
2371 return (error);
2372 }
2373
2374 /*
2375 * Leave an IPv4 multicast group on an inpcb, possibly with a source.
2376 *
2377 * NB: sopt->sopt_val might point to the kernel address space. Refer to the
2378 * block comment on top of inp_join_group() for more information.
2379 */
2380 int
2381 inp_leave_group(struct inpcb *inp, struct sockopt *sopt)
2382 {
2383 struct group_source_req gsr;
2384 struct ip_mreq_source mreqs;
2385 struct sockaddr_in *gsa, *ssa;
2386 struct ifnet *ifp;
2387 struct in_mfilter *imf;
2388 struct ip_moptions *imo;
2389 struct in_msource *ims;
2390 struct in_multi *inm = NULL;
2391 size_t idx;
2392 int error, is_final;
2393 unsigned int ifindex = 0;
2394 struct igmp_tparams itp;
2395
2396 bzero(&itp, sizeof (itp));
2397 ifp = NULL;
2398 error = 0;
2399 is_final = 1;
2400
2401 memset(&gsr, 0, sizeof(struct group_source_req));
2402 gsa = (struct sockaddr_in *)&gsr.gsr_group;
2403 ssa = (struct sockaddr_in *)&gsr.gsr_source;
2404
2405 switch (sopt->sopt_name) {
2406 case IP_DROP_MEMBERSHIP:
2407 case IP_DROP_SOURCE_MEMBERSHIP:
2408 if (sopt->sopt_name == IP_DROP_MEMBERSHIP) {
2409 error = sooptcopyin(sopt, &mreqs,
2410 sizeof(struct ip_mreq),
2411 sizeof(struct ip_mreq));
2412 /*
2413 * Swap interface and sourceaddr arguments,
2414 * as ip_mreq and ip_mreq_source are laid
2415 * out differently.
2416 */
2417 mreqs.imr_interface = mreqs.imr_sourceaddr;
2418 mreqs.imr_sourceaddr.s_addr = INADDR_ANY;
2419 } else if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2420 error = sooptcopyin(sopt, &mreqs,
2421 sizeof(struct ip_mreq_source),
2422 sizeof(struct ip_mreq_source));
2423 }
2424 if (error)
2425 return (error);
2426
2427 gsa->sin_family = AF_INET;
2428 gsa->sin_len = sizeof(struct sockaddr_in);
2429 gsa->sin_addr = mreqs.imr_multiaddr;
2430
2431 if (sopt->sopt_name == IP_DROP_SOURCE_MEMBERSHIP) {
2432 ssa->sin_family = AF_INET;
2433 ssa->sin_len = sizeof(struct sockaddr_in);
2434 ssa->sin_addr = mreqs.imr_sourceaddr;
2435 }
2436 /*
2437 * Attempt to look up hinted ifp from interface address.
2438 * Fallthrough with null ifp iff lookup fails, to
2439 * preserve 4.4BSD mcast API idempotence.
2440 * XXX NOTE WELL: The RFC 3678 API is preferred because
2441 * using an IPv4 address as a key is racy.
2442 */
2443 if (!in_nullhost(mreqs.imr_interface))
2444 ifp = ip_multicast_if(&mreqs.imr_interface, &ifindex);
2445
2446 IGMP_INET_PRINTF(mreqs.imr_interface,
2447 ("%s: imr_interface = %s, ifp = 0x%llx\n", __func__,
2448 _igmp_inet_buf, (uint64_t)VM_KERNEL_ADDRPERM(ifp)));
2449
2450 break;
2451
2452 case MCAST_LEAVE_GROUP:
2453 case MCAST_LEAVE_SOURCE_GROUP:
2454 if (sopt->sopt_name == MCAST_LEAVE_GROUP) {
2455 error = sooptcopyin(sopt, &gsr,
2456 sizeof(struct group_req),
2457 sizeof(struct group_req));
2458 } else if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2459 error = sooptcopyin(sopt, &gsr,
2460 sizeof(struct group_source_req),
2461 sizeof(struct group_source_req));
2462 }
2463 if (error)
2464 return (error);
2465
2466 if (gsa->sin_family != AF_INET ||
2467 gsa->sin_len != sizeof(struct sockaddr_in))
2468 return (EINVAL);
2469
2470 if (sopt->sopt_name == MCAST_LEAVE_SOURCE_GROUP) {
2471 if (ssa->sin_family != AF_INET ||
2472 ssa->sin_len != sizeof(struct sockaddr_in))
2473 return (EINVAL);
2474 }
2475
2476 ifnet_head_lock_shared();
2477 if (gsr.gsr_interface == 0 ||
2478 (u_int)if_index < gsr.gsr_interface) {
2479 ifnet_head_done();
2480 return (EADDRNOTAVAIL);
2481 }
2482
2483 ifp = ifindex2ifnet[gsr.gsr_interface];
2484 ifnet_head_done();
2485 break;
2486
2487 default:
2488 IGMP_PRINTF(("%s: unknown sopt_name %d\n",
2489 __func__, sopt->sopt_name));
2490 return (EOPNOTSUPP);
2491 }
2492
2493 if (!IN_MULTICAST(ntohl(gsa->sin_addr.s_addr)))
2494 return (EINVAL);
2495
2496 /*
2497 * Find the membership in the membership array.
2498 */
2499 imo = inp_findmoptions(inp);
2500 if (imo == NULL)
2501 return (ENOMEM);
2502
2503 IMO_LOCK(imo);
2504 idx = imo_match_group(imo, ifp, gsa);
2505 if (idx == (size_t)-1) {
2506 error = EADDRNOTAVAIL;
2507 goto out_locked;
2508 }
2509 inm = imo->imo_membership[idx];
2510 imf = &imo->imo_mfilters[idx];
2511
2512 if (ssa->sin_family != AF_UNSPEC) {
2513 IGMP_PRINTF(("%s: opt=%d is_final=0\n", __func__,
2514 sopt->sopt_name));
2515 is_final = 0;
2516 }
2517
2518 /*
2519 * Begin state merge transaction at socket layer.
2520 */
2521
2522 /*
2523 * If we were instructed only to leave a given source, do so.
2524 * MCAST_LEAVE_SOURCE_GROUP is only valid for inclusive memberships.
2525 */
2526 if (is_final) {
2527 imf_leave(imf);
2528 } else {
2529 if (imf->imf_st[0] == MCAST_EXCLUDE) {
2530 error = EADDRNOTAVAIL;
2531 goto out_locked;
2532 }
2533 ims = imo_match_source(imo, idx, ssa);
2534 if (ims == NULL) {
2535 IGMP_INET_PRINTF(ssa->sin_addr,
2536 ("%s: source %s %spresent\n", __func__,
2537 _igmp_inet_buf, "not "));
2538 error = EADDRNOTAVAIL;
2539 goto out_locked;
2540 }
2541 IGMP_PRINTF(("%s: %s source\n", __func__, "block"));
2542 error = imf_prune(imf, ssa);
2543 if (error) {
2544 IGMP_PRINTF(("%s: merge imf state failed\n",
2545 __func__));
2546 goto out_locked;
2547 }
2548 }
2549
2550 /*
2551 * Begin state merge transaction at IGMP layer.
2552 */
2553
2554
2555 if (is_final) {
2556 /*
2557 * Give up the multicast address record to which
2558 * the membership points. Reference held in imo
2559 * will be released below.
2560 */
2561 (void) in_leavegroup(inm, imf);
2562 } else {
2563 IGMP_PRINTF(("%s: merge inm state\n", __func__));
2564 INM_LOCK(inm);
2565 error = inm_merge(inm, imf);
2566 if (error) {
2567 IGMP_PRINTF(("%s: failed to merge inm state\n",
2568 __func__));
2569 INM_UNLOCK(inm);
2570 goto out_imf_rollback;
2571 }
2572
2573 IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
2574 error = igmp_change_state(inm, &itp);
2575 if (error) {
2576 IGMP_PRINTF(("%s: failed igmp downcall\n", __func__));
2577 }
2578 INM_UNLOCK(inm);
2579 }
2580
2581 out_imf_rollback:
2582 if (error)
2583 imf_rollback(imf);
2584 else
2585 imf_commit(imf);
2586
2587 imf_reap(imf);
2588
2589 if (is_final) {
2590 /* Remove the gap in the membership array. */
2591 VERIFY(inm == imo->imo_membership[idx]);
2592 imo->imo_membership[idx] = NULL;
2593
2594 /*
2595 * See inp_join_group() for why we need to unlock
2596 */
2597 IMO_ADDREF_LOCKED(imo);
2598 IMO_UNLOCK(imo);
2599 socket_unlock(inp->inp_socket, 0);
2600
2601 INM_REMREF(inm);
2602
2603 socket_lock(inp->inp_socket, 0);
2604 IMO_REMREF(imo);
2605 IMO_LOCK(imo);
2606
2607 for (++idx; idx < imo->imo_num_memberships; ++idx) {
2608 imo->imo_membership[idx-1] = imo->imo_membership[idx];
2609 imo->imo_mfilters[idx-1] = imo->imo_mfilters[idx];
2610 }
2611 imo->imo_num_memberships--;
2612 }
2613
2614 out_locked:
2615 IMO_UNLOCK(imo);
2616 IMO_REMREF(imo); /* from inp_findmoptions() */
2617
2618 /* schedule timer now that we've dropped the lock(s) */
2619 igmp_set_timeout(&itp);
2620
2621 return (error);
2622 }
2623
2624 /*
2625 * Select the interface for transmitting IPv4 multicast datagrams.
2626 *
2627 * Either an instance of struct in_addr or an instance of struct ip_mreqn
2628 * may be passed to this socket option. An address of INADDR_ANY or an
2629 * interface index of 0 is used to remove a previous selection.
2630 * When no interface is selected, one is chosen for every send.
2631 */
2632 static int
2633 inp_set_multicast_if(struct inpcb *inp, struct sockopt *sopt)
2634 {
2635 struct in_addr addr;
2636 struct ip_mreqn mreqn;
2637 struct ifnet *ifp;
2638 struct ip_moptions *imo;
2639 int error = 0 ;
2640 unsigned int ifindex = 0;
2641
2642 bzero(&addr, sizeof(addr));
2643 if (sopt->sopt_valsize == sizeof(struct ip_mreqn)) {
2644 /*
2645 * An interface index was specified using the
2646 * Linux-derived ip_mreqn structure.
2647 */
2648 error = sooptcopyin(sopt, &mreqn, sizeof(struct ip_mreqn),
2649 sizeof(struct ip_mreqn));
2650 if (error)
2651 return (error);
2652
2653 ifnet_head_lock_shared();
2654 if (mreqn.imr_ifindex < 0 || if_index < mreqn.imr_ifindex) {
2655 ifnet_head_done();
2656 return (EINVAL);
2657 }
2658
2659 if (mreqn.imr_ifindex == 0) {
2660 ifp = NULL;
2661 } else {
2662 ifp = ifindex2ifnet[mreqn.imr_ifindex];
2663 if (ifp == NULL) {
2664 ifnet_head_done();
2665 return (EADDRNOTAVAIL);
2666 }
2667 }
2668 ifnet_head_done();
2669 } else {
2670 /*
2671 * An interface was specified by IPv4 address.
2672 * This is the traditional BSD usage.
2673 */
2674 error = sooptcopyin(sopt, &addr, sizeof(struct in_addr),
2675 sizeof(struct in_addr));
2676 if (error)
2677 return (error);
2678 if (in_nullhost(addr)) {
2679 ifp = NULL;
2680 } else {
2681 ifp = ip_multicast_if(&addr, &ifindex);
2682 if (ifp == NULL) {
2683 IGMP_INET_PRINTF(addr,
2684 ("%s: can't find ifp for addr=%s\n",
2685 __func__, _igmp_inet_buf));
2686 return (EADDRNOTAVAIL);
2687 }
2688 }
2689 /* XXX remove? */
2690 #ifdef IGMP_DEBUG0
2691 IGMP_PRINTF(("%s: ifp = 0x%llx, addr = %s\n", __func__,
2692 (uint64_t)VM_KERNEL_ADDRPERM(ifp), inet_ntoa(addr)));
2693 #endif
2694 }
2695
2696 /* Reject interfaces which do not support multicast. */
2697 if (ifp != NULL && (ifp->if_flags & IFF_MULTICAST) == 0)
2698 return (EOPNOTSUPP);
2699
2700 imo = inp_findmoptions(inp);
2701 if (imo == NULL)
2702 return (ENOMEM);
2703
2704 IMO_LOCK(imo);
2705 imo->imo_multicast_ifp = ifp;
2706 if (ifindex)
2707 imo->imo_multicast_addr = addr;
2708 else
2709 imo->imo_multicast_addr.s_addr = INADDR_ANY;
2710 IMO_UNLOCK(imo);
2711 IMO_REMREF(imo); /* from inp_findmoptions() */
2712
2713 return (0);
2714 }
2715
2716 /*
2717 * Atomically set source filters on a socket for an IPv4 multicast group.
2718 */
2719 static int
2720 inp_set_source_filters(struct inpcb *inp, struct sockopt *sopt)
2721 {
2722 struct __msfilterreq64 msfr = {}, msfr64;
2723 struct __msfilterreq32 msfr32;
2724 struct sockaddr_in *gsa;
2725 struct ifnet *ifp;
2726 struct in_mfilter *imf;
2727 struct ip_moptions *imo;
2728 struct in_multi *inm;
2729 size_t idx;
2730 int error;
2731 user_addr_t tmp_ptr;
2732 struct igmp_tparams itp;
2733
2734 bzero(&itp, sizeof (itp));
2735
2736 if (IS_64BIT_PROCESS(current_proc())) {
2737 error = sooptcopyin(sopt, &msfr64,
2738 sizeof(struct __msfilterreq64),
2739 sizeof(struct __msfilterreq64));
2740 if (error)
2741 return (error);
2742 /* we never use msfr.msfr_srcs; */
2743 memcpy(&msfr, &msfr64, sizeof(msfr64));
2744 } else {
2745 error = sooptcopyin(sopt, &msfr32,
2746 sizeof(struct __msfilterreq32),
2747 sizeof(struct __msfilterreq32));
2748 if (error)
2749 return (error);
2750 /* we never use msfr.msfr_srcs; */
2751 memcpy(&msfr, &msfr32, sizeof(msfr32));
2752 }
2753
2754 if ((size_t) msfr.msfr_nsrcs >
2755 UINT32_MAX / sizeof(struct sockaddr_storage))
2756 msfr.msfr_nsrcs = UINT32_MAX / sizeof(struct sockaddr_storage);
2757
2758 if (msfr.msfr_nsrcs > in_mcast_maxsocksrc)
2759 return (ENOBUFS);
2760
2761 if ((msfr.msfr_fmode != MCAST_EXCLUDE &&
2762 msfr.msfr_fmode != MCAST_INCLUDE))
2763 return (EINVAL);
2764
2765 if (msfr.msfr_group.ss_family != AF_INET ||
2766 msfr.msfr_group.ss_len != sizeof(struct sockaddr_in))
2767 return (EINVAL);
2768
2769 gsa = (struct sockaddr_in *)&msfr.msfr_group;
2770 if (!IN_MULTICAST(ntohl(gsa->sin_addr.s_addr)))
2771 return (EINVAL);
2772
2773 gsa->sin_port = 0; /* ignore port */
2774
2775 ifnet_head_lock_shared();
2776 if (msfr.msfr_ifindex == 0 || (u_int)if_index < msfr.msfr_ifindex) {
2777 ifnet_head_done();
2778 return (EADDRNOTAVAIL);
2779 }
2780
2781 ifp = ifindex2ifnet[msfr.msfr_ifindex];
2782 ifnet_head_done();
2783 if (ifp == NULL)
2784 return (EADDRNOTAVAIL);
2785
2786 /*
2787 * Check if this socket is a member of this group.
2788 */
2789 imo = inp_findmoptions(inp);
2790 if (imo == NULL)
2791 return (ENOMEM);
2792
2793 IMO_LOCK(imo);
2794 idx = imo_match_group(imo, ifp, gsa);
2795 if (idx == (size_t)-1 || imo->imo_mfilters == NULL) {
2796 error = EADDRNOTAVAIL;
2797 goto out_imo_locked;
2798 }
2799 inm = imo->imo_membership[idx];
2800 imf = &imo->imo_mfilters[idx];
2801
2802 /*
2803 * Begin state merge transaction at socket layer.
2804 */
2805
2806 imf->imf_st[1] = msfr.msfr_fmode;
2807
2808 /*
2809 * Apply any new source filters, if present.
2810 * Make a copy of the user-space source vector so
2811 * that we may copy them with a single copyin. This
2812 * allows us to deal with page faults up-front.
2813 */
2814 if (msfr.msfr_nsrcs > 0) {
2815 struct in_msource *lims;
2816 struct sockaddr_in *psin;
2817 struct sockaddr_storage *kss, *pkss;
2818 int i;
2819
2820 if (IS_64BIT_PROCESS(current_proc()))
2821 tmp_ptr = msfr64.msfr_srcs;
2822 else
2823 tmp_ptr = CAST_USER_ADDR_T(msfr32.msfr_srcs);
2824
2825 IGMP_PRINTF(("%s: loading %lu source list entries\n",
2826 __func__, (unsigned long)msfr.msfr_nsrcs));
2827 kss = _MALLOC((size_t) msfr.msfr_nsrcs * sizeof(*kss),
2828 M_TEMP, M_WAITOK);
2829 if (kss == NULL) {
2830 error = ENOMEM;
2831 goto out_imo_locked;
2832 }
2833 error = copyin(tmp_ptr, kss,
2834 (size_t) msfr.msfr_nsrcs * sizeof(*kss));
2835 if (error) {
2836 FREE(kss, M_TEMP);
2837 goto out_imo_locked;
2838 }
2839
2840 /*
2841 * Mark all source filters as UNDEFINED at t1.
2842 * Restore new group filter mode, as imf_leave()
2843 * will set it to INCLUDE.
2844 */
2845 imf_leave(imf);
2846 imf->imf_st[1] = msfr.msfr_fmode;
2847
2848 /*
2849 * Update socket layer filters at t1, lazy-allocating
2850 * new entries. This saves a bunch of memory at the
2851 * cost of one RB_FIND() per source entry; duplicate
2852 * entries in the msfr_nsrcs vector are ignored.
2853 * If we encounter an error, rollback transaction.
2854 *
2855 * XXX This too could be replaced with a set-symmetric
2856 * difference like loop to avoid walking from root
2857 * every time, as the key space is common.
2858 */
2859 for (i = 0, pkss = kss; (u_int)i < msfr.msfr_nsrcs;
2860 i++, pkss++) {
2861 psin = (struct sockaddr_in *)pkss;
2862 if (psin->sin_family != AF_INET) {
2863 error = EAFNOSUPPORT;
2864 break;
2865 }
2866 if (psin->sin_len != sizeof(struct sockaddr_in)) {
2867 error = EINVAL;
2868 break;
2869 }
2870 error = imf_get_source(imf, psin, &lims);
2871 if (error)
2872 break;
2873 lims->imsl_st[1] = imf->imf_st[1];
2874 }
2875 FREE(kss, M_TEMP);
2876 }
2877
2878 if (error)
2879 goto out_imf_rollback;
2880
2881 /*
2882 * Begin state merge transaction at IGMP layer.
2883 */
2884 INM_LOCK(inm);
2885 IGMP_PRINTF(("%s: merge inm state\n", __func__));
2886 error = inm_merge(inm, imf);
2887 if (error) {
2888 IGMP_PRINTF(("%s: failed to merge inm state\n", __func__));
2889 INM_UNLOCK(inm);
2890 goto out_imf_rollback;
2891 }
2892
2893 IGMP_PRINTF(("%s: doing igmp downcall\n", __func__));
2894 error = igmp_change_state(inm, &itp);
2895 INM_UNLOCK(inm);
2896 #ifdef IGMP_DEBUG
2897 if (error)
2898 IGMP_PRINTF(("%s: failed igmp downcall\n", __func__));
2899 #endif
2900
2901 out_imf_rollback:
2902 if (error)
2903 imf_rollback(imf);
2904 else
2905 imf_commit(imf);
2906
2907 imf_reap(imf);
2908
2909 out_imo_locked:
2910 IMO_UNLOCK(imo);
2911 IMO_REMREF(imo); /* from inp_findmoptions() */
2912
2913 /* schedule timer now that we've dropped the lock(s) */
2914 igmp_set_timeout(&itp);
2915
2916 return (error);
2917 }
2918
2919 /*
2920 * Set the IP multicast options in response to user setsockopt().
2921 *
2922 * Many of the socket options handled in this function duplicate the
2923 * functionality of socket options in the regular unicast API. However,
2924 * it is not possible to merge the duplicate code, because the idempotence
2925 * of the IPv4 multicast part of the BSD Sockets API must be preserved;
2926 * the effects of these options must be treated as separate and distinct.
2927 */
2928 int
2929 inp_setmoptions(struct inpcb *inp, struct sockopt *sopt)
2930 {
2931 struct ip_moptions *imo;
2932 int error;
2933 unsigned int ifindex;
2934 struct ifnet *ifp;
2935
2936 error = 0;
2937
2938 /*
2939 * If socket is neither of type SOCK_RAW or SOCK_DGRAM,
2940 * or is a divert socket, reject it.
2941 */
2942 if (SOCK_PROTO(inp->inp_socket) == IPPROTO_DIVERT ||
2943 (SOCK_TYPE(inp->inp_socket) != SOCK_RAW &&
2944 SOCK_TYPE(inp->inp_socket) != SOCK_DGRAM))
2945 return (EOPNOTSUPP);
2946
2947 switch (sopt->sopt_name) {
2948 case IP_MULTICAST_IF:
2949 error = inp_set_multicast_if(inp, sopt);
2950 break;
2951
2952 case IP_MULTICAST_IFINDEX:
2953 /*
2954 * Select the interface for outgoing multicast packets.
2955 */
2956 error = sooptcopyin(sopt, &ifindex, sizeof (ifindex),
2957 sizeof (ifindex));
2958 if (error)
2959 break;
2960
2961 imo = inp_findmoptions(inp);
2962 if (imo == NULL) {
2963 error = ENOMEM;
2964 break;
2965 }
2966 /*
2967 * Index 0 is used to remove a previous selection.
2968 * When no interface is selected, a default one is
2969 * chosen every time a multicast packet is sent.
2970 */
2971 if (ifindex == 0) {
2972 IMO_LOCK(imo);
2973 imo->imo_multicast_ifp = NULL;
2974 IMO_UNLOCK(imo);
2975 IMO_REMREF(imo); /* from inp_findmoptions() */
2976 break;
2977 }
2978
2979 ifnet_head_lock_shared();
2980 /* Don't need to check is ifindex is < 0 since it's unsigned */
2981 if ((unsigned int)if_index < ifindex) {
2982 ifnet_head_done();
2983 IMO_REMREF(imo); /* from inp_findmoptions() */
2984 error = ENXIO; /* per IPV6_MULTICAST_IF */
2985 break;
2986 }
2987 ifp = ifindex2ifnet[ifindex];
2988 ifnet_head_done();
2989
2990 /* If it's detached or isn't a multicast interface, bail out */
2991 if (ifp == NULL || !(ifp->if_flags & IFF_MULTICAST)) {
2992 IMO_REMREF(imo); /* from inp_findmoptions() */
2993 error = EADDRNOTAVAIL;
2994 break;
2995 }
2996 IMO_LOCK(imo);
2997 imo->imo_multicast_ifp = ifp;
2998 /*
2999 * Clear out any remnants of past IP_MULTICAST_IF. The addr
3000 * isn't really used anywhere in the kernel; we could have
3001 * iterated thru the addresses of the interface and pick one
3002 * here, but that is redundant since ip_getmoptions() already
3003 * takes care of that for INADDR_ANY.
3004 */
3005 imo->imo_multicast_addr.s_addr = INADDR_ANY;
3006 IMO_UNLOCK(imo);
3007 IMO_REMREF(imo); /* from inp_findmoptions() */
3008 break;
3009
3010 case IP_MULTICAST_TTL: {
3011 u_char ttl;
3012
3013 /*
3014 * Set the IP time-to-live for outgoing multicast packets.
3015 * The original multicast API required a char argument,
3016 * which is inconsistent with the rest of the socket API.
3017 * We allow either a char or an int.
3018 */
3019 if (sopt->sopt_valsize == sizeof(u_char)) {
3020 error = sooptcopyin(sopt, &ttl, sizeof(u_char),
3021 sizeof(u_char));
3022 if (error)
3023 break;
3024 } else {
3025 u_int ittl;
3026
3027 error = sooptcopyin(sopt, &ittl, sizeof(u_int),
3028 sizeof(u_int));
3029 if (error)
3030 break;
3031 if (ittl > 255) {
3032 error = EINVAL;
3033 break;
3034 }
3035 ttl = (u_char)ittl;
3036 }
3037 imo = inp_findmoptions(inp);
3038 if (imo == NULL) {
3039 error = ENOMEM;
3040 break;
3041 }
3042 IMO_LOCK(imo);
3043 imo->imo_multicast_ttl = ttl;
3044 IMO_UNLOCK(imo);
3045 IMO_REMREF(imo); /* from inp_findmoptions() */
3046 break;
3047 }
3048
3049 case IP_MULTICAST_LOOP: {
3050 u_char loop;
3051
3052 /*
3053 * Set the loopback flag for outgoing multicast packets.
3054 * Must be zero or one. The original multicast API required a
3055 * char argument, which is inconsistent with the rest
3056 * of the socket API. We allow either a char or an int.
3057 */
3058 if (sopt->sopt_valsize == sizeof(u_char)) {
3059 error = sooptcopyin(sopt, &loop, sizeof(u_char),
3060 sizeof(u_char));
3061 if (error)
3062 break;
3063 } else {
3064 u_int iloop;
3065
3066 error = sooptcopyin(sopt, &iloop, sizeof(u_int),
3067 sizeof(u_int));
3068 if (error)
3069 break;
3070 loop = (u_char)iloop;
3071 }
3072 imo = inp_findmoptions(inp);
3073 if (imo == NULL) {
3074 error = ENOMEM;
3075 break;
3076 }
3077 IMO_LOCK(imo);
3078 imo->imo_multicast_loop = !!loop;
3079 IMO_UNLOCK(imo);
3080 IMO_REMREF(imo); /* from inp_findmoptions() */
3081 break;
3082 }
3083
3084 case IP_ADD_MEMBERSHIP:
3085 case IP_ADD_SOURCE_MEMBERSHIP:
3086 case MCAST_JOIN_GROUP:
3087 case MCAST_JOIN_SOURCE_GROUP:
3088 error = inp_join_group(inp, sopt);
3089 break;
3090
3091 case IP_DROP_MEMBERSHIP:
3092 case IP_DROP_SOURCE_MEMBERSHIP:
3093 case MCAST_LEAVE_GROUP:
3094 case MCAST_LEAVE_SOURCE_GROUP:
3095 error = inp_leave_group(inp, sopt);
3096 break;
3097
3098 case IP_BLOCK_SOURCE:
3099 case IP_UNBLOCK_SOURCE:
3100 case MCAST_BLOCK_SOURCE:
3101 case MCAST_UNBLOCK_SOURCE:
3102 error = inp_block_unblock_source(inp, sopt);
3103 break;
3104
3105 case IP_MSFILTER:
3106 error = inp_set_source_filters(inp, sopt);
3107 break;
3108
3109 default:
3110 error = EOPNOTSUPP;
3111 break;
3112 }
3113
3114 return (error);
3115 }
3116
3117 /*
3118 * Expose IGMP's multicast filter mode and source list(s) to userland,
3119 * keyed by (ifindex, group).
3120 * The filter mode is written out as a uint32_t, followed by
3121 * 0..n of struct in_addr.
3122 * For use by ifmcstat(8).
3123 */
3124 static int
3125 sysctl_ip_mcast_filters SYSCTL_HANDLER_ARGS
3126 {
3127 #pragma unused(oidp)
3128
3129 struct in_addr src = {}, group;
3130 struct ifnet *ifp;
3131 struct in_multi *inm;
3132 struct in_multistep step;
3133 struct ip_msource *ims;
3134 int *name;
3135 int retval = 0;
3136 u_int namelen;
3137 uint32_t fmode, ifindex;
3138
3139 name = (int *)arg1;
3140 namelen = (u_int)arg2;
3141
3142 if (req->newptr != USER_ADDR_NULL)
3143 return (EPERM);
3144
3145 if (namelen != 2)
3146 return (EINVAL);
3147
3148 ifindex = name[0];
3149 ifnet_head_lock_shared();
3150 if (ifindex <= 0 || ifindex > (u_int)if_index) {
3151 IGMP_PRINTF(("%s: ifindex %u out of range\n",
3152 __func__, ifindex));
3153 ifnet_head_done();
3154 return (ENOENT);
3155 }
3156
3157 group.s_addr = name[1];
3158 if (!IN_MULTICAST(ntohl(group.s_addr))) {
3159 IGMP_INET_PRINTF(group,
3160 ("%s: group %s is not multicast\n",
3161 __func__, _igmp_inet_buf));
3162 ifnet_head_done();
3163 return (EINVAL);
3164 }
3165
3166 ifp = ifindex2ifnet[ifindex];
3167 ifnet_head_done();
3168 if (ifp == NULL) {
3169 IGMP_PRINTF(("%s: no ifp for ifindex %u\n", __func__, ifindex));
3170 return (ENOENT);
3171 }
3172
3173 in_multihead_lock_shared();
3174 IN_FIRST_MULTI(step, inm);
3175 while (inm != NULL) {
3176 INM_LOCK(inm);
3177 if (inm->inm_ifp != ifp)
3178 goto next;
3179
3180 if (!in_hosteq(inm->inm_addr, group))
3181 goto next;
3182
3183 fmode = inm->inm_st[1].iss_fmode;
3184 retval = SYSCTL_OUT(req, &fmode, sizeof(uint32_t));
3185 if (retval != 0) {
3186 INM_UNLOCK(inm);
3187 break; /* abort */
3188 }
3189 RB_FOREACH(ims, ip_msource_tree, &inm->inm_srcs) {
3190 #ifdef IGMP_DEBUG
3191 struct in_addr ina;
3192 ina.s_addr = htonl(ims->ims_haddr);
3193 IGMP_INET_PRINTF(ina,
3194 ("%s: visit node %s\n", __func__, _igmp_inet_buf));
3195 #endif
3196 /*
3197 * Only copy-out sources which are in-mode.
3198 */
3199 if (fmode != ims_get_mode(inm, ims, 1)) {
3200 IGMP_PRINTF(("%s: skip non-in-mode\n",
3201 __func__));
3202 continue; /* process next source */
3203 }
3204 src.s_addr = htonl(ims->ims_haddr);
3205 retval = SYSCTL_OUT(req, &src, sizeof(struct in_addr));
3206 if (retval != 0)
3207 break; /* process next inm */
3208 }
3209 next:
3210 INM_UNLOCK(inm);
3211 IN_NEXT_MULTI(step, inm);
3212 }
3213 in_multihead_lock_done();
3214
3215 return (retval);
3216 }
3217
3218 /*
3219 * XXX
3220 * The whole multicast option thing needs to be re-thought.
3221 * Several of these options are equally applicable to non-multicast
3222 * transmission, and one (IP_MULTICAST_TTL) totally duplicates a
3223 * standard option (IP_TTL).
3224 */
3225 /*
3226 * following RFC1724 section 3.3, 0.0.0.0/8 is interpreted as interface index.
3227 */
3228 static struct ifnet *
3229 ip_multicast_if(struct in_addr *a, unsigned int *ifindexp)
3230 {
3231 unsigned int ifindex;
3232 struct ifnet *ifp;
3233
3234 if (ifindexp != NULL)
3235 *ifindexp = 0;
3236 if (ntohl(a->s_addr) >> 24 == 0) {
3237 ifindex = ntohl(a->s_addr) & 0xffffff;
3238 ifnet_head_lock_shared();
3239 /* Don't need to check is ifindex is < 0 since it's unsigned */
3240 if ((unsigned int)if_index < ifindex) {
3241 ifnet_head_done();
3242 return (NULL);
3243 }
3244 ifp = ifindex2ifnet[ifindex];
3245 ifnet_head_done();
3246 if (ifp != NULL && ifindexp != NULL)
3247 *ifindexp = ifindex;
3248 } else {
3249 INADDR_TO_IFP(*a, ifp);
3250 }
3251 return (ifp);
3252 }
3253
3254 void
3255 in_multi_init(void)
3256 {
3257 PE_parse_boot_argn("ifa_debug", &inm_debug, sizeof (inm_debug));
3258
3259 /* Setup lock group and attribute for in_multihead */
3260 in_multihead_lock_grp_attr = lck_grp_attr_alloc_init();
3261 in_multihead_lock_grp = lck_grp_alloc_init("in_multihead",
3262 in_multihead_lock_grp_attr);
3263 in_multihead_lock_attr = lck_attr_alloc_init();
3264 lck_rw_init(&in_multihead_lock, in_multihead_lock_grp,
3265 in_multihead_lock_attr);
3266
3267 lck_mtx_init(&inm_trash_lock, in_multihead_lock_grp,
3268 in_multihead_lock_attr);
3269 TAILQ_INIT(&inm_trash_head);
3270
3271 inm_size = (inm_debug == 0) ? sizeof (struct in_multi) :
3272 sizeof (struct in_multi_dbg);
3273 inm_zone = zinit(inm_size, INM_ZONE_MAX * inm_size,
3274 0, INM_ZONE_NAME);
3275 if (inm_zone == NULL) {
3276 panic("%s: failed allocating %s", __func__, INM_ZONE_NAME);
3277 /* NOTREACHED */
3278 }
3279 zone_change(inm_zone, Z_EXPAND, TRUE);
3280
3281 ipms_size = sizeof (struct ip_msource);
3282 ipms_zone = zinit(ipms_size, IPMS_ZONE_MAX * ipms_size,
3283 0, IPMS_ZONE_NAME);
3284 if (ipms_zone == NULL) {
3285 panic("%s: failed allocating %s", __func__, IPMS_ZONE_NAME);
3286 /* NOTREACHED */
3287 }
3288 zone_change(ipms_zone, Z_EXPAND, TRUE);
3289
3290 inms_size = sizeof (struct in_msource);
3291 inms_zone = zinit(inms_size, INMS_ZONE_MAX * inms_size,
3292 0, INMS_ZONE_NAME);
3293 if (inms_zone == NULL) {
3294 panic("%s: failed allocating %s", __func__, INMS_ZONE_NAME);
3295 /* NOTREACHED */
3296 }
3297 zone_change(inms_zone, Z_EXPAND, TRUE);
3298 }
3299
3300 static struct in_multi *
3301 in_multi_alloc(int how)
3302 {
3303 struct in_multi *inm;
3304
3305 inm = (how == M_WAITOK) ? zalloc(inm_zone) : zalloc_noblock(inm_zone);
3306 if (inm != NULL) {
3307 bzero(inm, inm_size);
3308 lck_mtx_init(&inm->inm_lock, in_multihead_lock_grp,
3309 in_multihead_lock_attr);
3310 inm->inm_debug |= IFD_ALLOC;
3311 if (inm_debug != 0) {
3312 inm->inm_debug |= IFD_DEBUG;
3313 inm->inm_trace = inm_trace;
3314 }
3315 }
3316 return (inm);
3317 }
3318
3319 static void
3320 in_multi_free(struct in_multi *inm)
3321 {
3322 INM_LOCK(inm);
3323 if (inm->inm_debug & IFD_ATTACHED) {
3324 panic("%s: attached inm=%p is being freed", __func__, inm);
3325 /* NOTREACHED */
3326 } else if (inm->inm_ifma != NULL) {
3327 panic("%s: ifma not NULL for inm=%p", __func__, inm);
3328 /* NOTREACHED */
3329 } else if (!(inm->inm_debug & IFD_ALLOC)) {
3330 panic("%s: inm %p cannot be freed", __func__, inm);
3331 /* NOTREACHED */
3332 } else if (inm->inm_refcount != 0) {
3333 panic("%s: non-zero refcount inm=%p", __func__, inm);
3334 /* NOTREACHED */
3335 } else if (inm->inm_reqcnt != 0) {
3336 panic("%s: non-zero reqcnt inm=%p", __func__, inm);
3337 /* NOTREACHED */
3338 }
3339
3340 /* Free any pending IGMPv3 state-change records */
3341 IF_DRAIN(&inm->inm_scq);
3342
3343 inm->inm_debug &= ~IFD_ALLOC;
3344 if ((inm->inm_debug & (IFD_DEBUG | IFD_TRASHED)) ==
3345 (IFD_DEBUG | IFD_TRASHED)) {
3346 lck_mtx_lock(&inm_trash_lock);
3347 TAILQ_REMOVE(&inm_trash_head, (struct in_multi_dbg *)inm,
3348 inm_trash_link);
3349 lck_mtx_unlock(&inm_trash_lock);
3350 inm->inm_debug &= ~IFD_TRASHED;
3351 }
3352 INM_UNLOCK(inm);
3353
3354 lck_mtx_destroy(&inm->inm_lock, in_multihead_lock_grp);
3355 zfree(inm_zone, inm);
3356 }
3357
3358 static void
3359 in_multi_attach(struct in_multi *inm)
3360 {
3361 in_multihead_lock_assert(LCK_RW_ASSERT_EXCLUSIVE);
3362 INM_LOCK_ASSERT_HELD(inm);
3363
3364 if (inm->inm_debug & IFD_ATTACHED) {
3365 panic("%s: Attempt to attach an already attached inm=%p",
3366 __func__, inm);
3367 /* NOTREACHED */
3368 } else if (inm->inm_debug & IFD_TRASHED) {
3369 panic("%s: Attempt to reattach a detached inm=%p",
3370 __func__, inm);
3371 /* NOTREACHED */
3372 }
3373
3374 inm->inm_reqcnt++;
3375 VERIFY(inm->inm_reqcnt == 1);
3376 INM_ADDREF_LOCKED(inm);
3377 inm->inm_debug |= IFD_ATTACHED;
3378 /*
3379 * Reattach case: If debugging is enabled, take it
3380 * out of the trash list and clear IFD_TRASHED.
3381 */
3382 if ((inm->inm_debug & (IFD_DEBUG | IFD_TRASHED)) ==
3383 (IFD_DEBUG | IFD_TRASHED)) {
3384 /* Become a regular mutex, just in case */
3385 INM_CONVERT_LOCK(inm);
3386 lck_mtx_lock(&inm_trash_lock);
3387 TAILQ_REMOVE(&inm_trash_head, (struct in_multi_dbg *)inm,
3388 inm_trash_link);
3389 lck_mtx_unlock(&inm_trash_lock);
3390 inm->inm_debug &= ~IFD_TRASHED;
3391 }
3392
3393 LIST_INSERT_HEAD(&in_multihead, inm, inm_link);
3394 }
3395
3396 int
3397 in_multi_detach(struct in_multi *inm)
3398 {
3399 in_multihead_lock_assert(LCK_RW_ASSERT_EXCLUSIVE);
3400 INM_LOCK_ASSERT_HELD(inm);
3401
3402 if (inm->inm_reqcnt == 0) {
3403 panic("%s: inm=%p negative reqcnt", __func__, inm);
3404 /* NOTREACHED */
3405 }
3406
3407 --inm->inm_reqcnt;
3408 if (inm->inm_reqcnt > 0)
3409 return (0);
3410
3411 if (!(inm->inm_debug & IFD_ATTACHED)) {
3412 panic("%s: Attempt to detach an unattached record inm=%p",
3413 __func__, inm);
3414 /* NOTREACHED */
3415 } else if (inm->inm_debug & IFD_TRASHED) {
3416 panic("%s: inm %p is already in trash list", __func__, inm);
3417 /* NOTREACHED */
3418 }
3419
3420 /*
3421 * NOTE: Caller calls IFMA_REMREF
3422 */
3423 inm->inm_debug &= ~IFD_ATTACHED;
3424 LIST_REMOVE(inm, inm_link);
3425
3426 if (inm->inm_debug & IFD_DEBUG) {
3427 /* Become a regular mutex, just in case */
3428 INM_CONVERT_LOCK(inm);
3429 lck_mtx_lock(&inm_trash_lock);
3430 TAILQ_INSERT_TAIL(&inm_trash_head,
3431 (struct in_multi_dbg *)inm, inm_trash_link);
3432 lck_mtx_unlock(&inm_trash_lock);
3433 inm->inm_debug |= IFD_TRASHED;
3434 }
3435
3436 return (1);
3437 }
3438
3439 void
3440 inm_addref(struct in_multi *inm, int locked)
3441 {
3442 if (!locked)
3443 INM_LOCK_SPIN(inm);
3444 else
3445 INM_LOCK_ASSERT_HELD(inm);
3446
3447 if (++inm->inm_refcount == 0) {
3448 panic("%s: inm=%p wraparound refcnt", __func__, inm);
3449 /* NOTREACHED */
3450 } else if (inm->inm_trace != NULL) {
3451 (*inm->inm_trace)(inm, TRUE);
3452 }
3453 if (!locked)
3454 INM_UNLOCK(inm);
3455 }
3456
3457 void
3458 inm_remref(struct in_multi *inm, int locked)
3459 {
3460 struct ifmultiaddr *ifma;
3461 struct igmp_ifinfo *igi;
3462
3463 if (!locked)
3464 INM_LOCK_SPIN(inm);
3465 else
3466 INM_LOCK_ASSERT_HELD(inm);
3467
3468 if (inm->inm_refcount == 0 || (inm->inm_refcount == 1 && locked)) {
3469 panic("%s: inm=%p negative/missing refcnt", __func__, inm);
3470 /* NOTREACHED */
3471 } else if (inm->inm_trace != NULL) {
3472 (*inm->inm_trace)(inm, FALSE);
3473 }
3474
3475 --inm->inm_refcount;
3476 if (inm->inm_refcount > 0) {
3477 if (!locked)
3478 INM_UNLOCK(inm);
3479 return;
3480 }
3481
3482 /*
3483 * Synchronization with in_getmulti(). In the event the inm has been
3484 * detached, the underlying ifma would still be in the if_multiaddrs
3485 * list, and thus can be looked up via if_addmulti(). At that point,
3486 * the only way to find this inm is via ifma_protospec. To avoid
3487 * race conditions between the last inm_remref() of that inm and its
3488 * use via ifma_protospec, in_multihead lock is used for serialization.
3489 * In order to avoid violating the lock order, we must drop inm_lock
3490 * before acquiring in_multihead lock. To prevent the inm from being
3491 * freed prematurely, we hold an extra reference.
3492 */
3493 ++inm->inm_refcount;
3494 INM_UNLOCK(inm);
3495 in_multihead_lock_shared();
3496 INM_LOCK_SPIN(inm);
3497 --inm->inm_refcount;
3498 if (inm->inm_refcount > 0) {
3499 /* We've lost the race, so abort since inm is still in use */
3500 INM_UNLOCK(inm);
3501 in_multihead_lock_done();
3502 /* If it was locked, return it as such */
3503 if (locked)
3504 INM_LOCK(inm);
3505 return;
3506 }
3507 inm_purge(inm);
3508 ifma = inm->inm_ifma;
3509 inm->inm_ifma = NULL;
3510 inm->inm_ifp = NULL;
3511 igi = inm->inm_igi;
3512 inm->inm_igi = NULL;
3513 INM_UNLOCK(inm);
3514 IFMA_LOCK_SPIN(ifma);
3515 ifma->ifma_protospec = NULL;
3516 IFMA_UNLOCK(ifma);
3517 in_multihead_lock_done();
3518
3519 in_multi_free(inm);
3520 if_delmulti_ifma(ifma);
3521 /* Release reference held to the underlying ifmultiaddr */
3522 IFMA_REMREF(ifma);
3523
3524 if (igi != NULL)
3525 IGI_REMREF(igi);
3526 }
3527
3528 static void
3529 inm_trace(struct in_multi *inm, int refhold)
3530 {
3531 struct in_multi_dbg *inm_dbg = (struct in_multi_dbg *)inm;
3532 ctrace_t *tr;
3533 u_int32_t idx;
3534 u_int16_t *cnt;
3535
3536 if (!(inm->inm_debug & IFD_DEBUG)) {
3537 panic("%s: inm %p has no debug structure", __func__, inm);
3538 /* NOTREACHED */
3539 }
3540 if (refhold) {
3541 cnt = &inm_dbg->inm_refhold_cnt;
3542 tr = inm_dbg->inm_refhold;
3543 } else {
3544 cnt = &inm_dbg->inm_refrele_cnt;
3545 tr = inm_dbg->inm_refrele;
3546 }
3547
3548 idx = atomic_add_16_ov(cnt, 1) % INM_TRACE_HIST_SIZE;
3549 ctrace_record(&tr[idx]);
3550 }
3551
3552 void
3553 in_multihead_lock_exclusive(void)
3554 {
3555 lck_rw_lock_exclusive(&in_multihead_lock);
3556 }
3557
3558 void
3559 in_multihead_lock_shared(void)
3560 {
3561 lck_rw_lock_shared(&in_multihead_lock);
3562 }
3563
3564 void
3565 in_multihead_lock_assert(int what)
3566 {
3567 #if !MACH_ASSERT
3568 #pragma unused(what)
3569 #endif
3570 LCK_RW_ASSERT(&in_multihead_lock, what);
3571 }
3572
3573 void
3574 in_multihead_lock_done(void)
3575 {
3576 lck_rw_done(&in_multihead_lock);
3577 }
3578
3579 static struct ip_msource *
3580 ipms_alloc(int how)
3581 {
3582 struct ip_msource *ims;
3583
3584 ims = (how == M_WAITOK) ? zalloc(ipms_zone) : zalloc_noblock(ipms_zone);
3585 if (ims != NULL)
3586 bzero(ims, ipms_size);
3587
3588 return (ims);
3589 }
3590
3591 static void
3592 ipms_free(struct ip_msource *ims)
3593 {
3594 zfree(ipms_zone, ims);
3595 }
3596
3597 static struct in_msource *
3598 inms_alloc(int how)
3599 {
3600 struct in_msource *inms;
3601
3602 inms = (how == M_WAITOK) ? zalloc(inms_zone) :
3603 zalloc_noblock(inms_zone);
3604 if (inms != NULL)
3605 bzero(inms, inms_size);
3606
3607 return (inms);
3608 }
3609
3610 static void
3611 inms_free(struct in_msource *inms)
3612 {
3613 zfree(inms_zone, inms);
3614 }
3615
3616 #ifdef IGMP_DEBUG
3617
3618 static const char *inm_modestrs[] = { "un\n", "in", "ex" };
3619
3620 static const char *
3621 inm_mode_str(const int mode)
3622 {
3623 if (mode >= MCAST_UNDEFINED && mode <= MCAST_EXCLUDE)
3624 return (inm_modestrs[mode]);
3625 return ("??");
3626 }
3627
3628 static const char *inm_statestrs[] = {
3629 "not-member\n",
3630 "silent\n",
3631 "reporting\n",
3632 "idle\n",
3633 "lazy\n",
3634 "sleeping\n",
3635 "awakening\n",
3636 "query-pending\n",
3637 "sg-query-pending\n",
3638 "leaving"
3639 };
3640
3641 static const char *
3642 inm_state_str(const int state)
3643 {
3644 if (state >= IGMP_NOT_MEMBER && state <= IGMP_LEAVING_MEMBER)
3645 return (inm_statestrs[state]);
3646 return ("??");
3647 }
3648
3649 /*
3650 * Dump an in_multi structure to the console.
3651 */
3652 void
3653 inm_print(const struct in_multi *inm)
3654 {
3655 int t;
3656 char buf[MAX_IPv4_STR_LEN];
3657
3658 INM_LOCK_ASSERT_HELD(__DECONST(struct in_multi *, inm));
3659
3660 if (igmp_debug == 0)
3661 return;
3662
3663 inet_ntop(AF_INET, &inm->inm_addr, buf, sizeof(buf));
3664 printf("%s: --- begin inm 0x%llx ---\n", __func__,
3665 (uint64_t)VM_KERNEL_ADDRPERM(inm));
3666 printf("addr %s ifp 0x%llx(%s) ifma 0x%llx\n",
3667 buf,
3668 (uint64_t)VM_KERNEL_ADDRPERM(inm->inm_ifp),
3669 if_name(inm->inm_ifp),
3670 (uint64_t)VM_KERNEL_ADDRPERM(inm->inm_ifma));
3671 printf("timer %u state %s refcount %u scq.len %u\n",
3672 inm->inm_timer,
3673 inm_state_str(inm->inm_state),
3674 inm->inm_refcount,
3675 inm->inm_scq.ifq_len);
3676 printf("igi 0x%llx nsrc %lu sctimer %u scrv %u\n",
3677 (uint64_t)VM_KERNEL_ADDRPERM(inm->inm_igi),
3678 inm->inm_nsrc,
3679 inm->inm_sctimer,
3680 inm->inm_scrv);
3681 for (t = 0; t < 2; t++) {
3682 printf("t%d: fmode %s asm %u ex %u in %u rec %u\n", t,
3683 inm_mode_str(inm->inm_st[t].iss_fmode),
3684 inm->inm_st[t].iss_asm,
3685 inm->inm_st[t].iss_ex,
3686 inm->inm_st[t].iss_in,
3687 inm->inm_st[t].iss_rec);
3688 }
3689 printf("%s: --- end inm 0x%llx ---\n", __func__,
3690 (uint64_t)VM_KERNEL_ADDRPERM(inm));
3691 }
3692
3693 #else
3694
3695 void
3696 inm_print(__unused const struct in_multi *inm)
3697 {
3698
3699 }
3700
3701 #endif