]> git.saurik.com Git - apple/xnu.git/blob - osfmk/vm/vm_object.c
xnu-2782.10.72.tar.gz
[apple/xnu.git] / osfmk / vm / vm_object.c
1 /*
2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58 /*
59 * File: vm/vm_object.c
60 * Author: Avadis Tevanian, Jr., Michael Wayne Young
61 *
62 * Virtual memory object module.
63 */
64
65 #include <debug.h>
66 #include <mach_pagemap.h>
67 #include <task_swapper.h>
68
69 #include <mach/mach_types.h>
70 #include <mach/memory_object.h>
71 #include <mach/memory_object_default.h>
72 #include <mach/memory_object_control_server.h>
73 #include <mach/vm_param.h>
74
75 #include <mach/sdt.h>
76
77 #include <ipc/ipc_types.h>
78 #include <ipc/ipc_port.h>
79
80 #include <kern/kern_types.h>
81 #include <kern/assert.h>
82 #include <kern/queue.h>
83 #include <kern/xpr.h>
84 #include <kern/kalloc.h>
85 #include <kern/zalloc.h>
86 #include <kern/host.h>
87 #include <kern/host_statistics.h>
88 #include <kern/processor.h>
89 #include <kern/misc_protos.h>
90
91 #include <vm/memory_object.h>
92 #include <vm/vm_compressor_pager.h>
93 #include <vm/vm_fault.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_pageout.h>
98 #include <vm/vm_protos.h>
99 #include <vm/vm_purgeable_internal.h>
100
101 #include <vm/vm_compressor.h>
102
103 #if CONFIG_PHANTOM_CACHE
104 #include <vm/vm_phantom_cache.h>
105 #endif
106
107 boolean_t vm_object_collapse_compressor_allowed = TRUE;
108
109 struct vm_counters vm_counters;
110
111 #if VM_OBJECT_TRACKING
112 boolean_t vm_object_tracking_inited = FALSE;
113 decl_simple_lock_data(static,vm_object_tracking_lock_data);
114 btlog_t *vm_object_tracking_btlog;
115 static void
116 vm_object_tracking_lock(void *context)
117 {
118 simple_lock((simple_lock_t)context);
119 }
120 static void
121 vm_object_tracking_unlock(void *context)
122 {
123 simple_unlock((simple_lock_t)context);
124 }
125 void
126 vm_object_tracking_init(void)
127 {
128 int vm_object_tracking;
129
130 vm_object_tracking = 1;
131 PE_parse_boot_argn("vm_object_tracking", &vm_object_tracking,
132 sizeof (vm_object_tracking));
133
134 if (vm_object_tracking) {
135 simple_lock_init(&vm_object_tracking_lock_data, 0);
136 vm_object_tracking_btlog = btlog_create(
137 50000,
138 VM_OBJECT_TRACKING_BTDEPTH,
139 vm_object_tracking_lock,
140 vm_object_tracking_unlock,
141 &vm_object_tracking_lock_data);
142 assert(vm_object_tracking_btlog);
143 vm_object_tracking_inited = TRUE;
144 }
145 }
146 #endif /* VM_OBJECT_TRACKING */
147
148 /*
149 * Virtual memory objects maintain the actual data
150 * associated with allocated virtual memory. A given
151 * page of memory exists within exactly one object.
152 *
153 * An object is only deallocated when all "references"
154 * are given up.
155 *
156 * Associated with each object is a list of all resident
157 * memory pages belonging to that object; this list is
158 * maintained by the "vm_page" module, but locked by the object's
159 * lock.
160 *
161 * Each object also records the memory object reference
162 * that is used by the kernel to request and write
163 * back data (the memory object, field "pager"), etc...
164 *
165 * Virtual memory objects are allocated to provide
166 * zero-filled memory (vm_allocate) or map a user-defined
167 * memory object into a virtual address space (vm_map).
168 *
169 * Virtual memory objects that refer to a user-defined
170 * memory object are called "permanent", because all changes
171 * made in virtual memory are reflected back to the
172 * memory manager, which may then store it permanently.
173 * Other virtual memory objects are called "temporary",
174 * meaning that changes need be written back only when
175 * necessary to reclaim pages, and that storage associated
176 * with the object can be discarded once it is no longer
177 * mapped.
178 *
179 * A permanent memory object may be mapped into more
180 * than one virtual address space. Moreover, two threads
181 * may attempt to make the first mapping of a memory
182 * object concurrently. Only one thread is allowed to
183 * complete this mapping; all others wait for the
184 * "pager_initialized" field is asserted, indicating
185 * that the first thread has initialized all of the
186 * necessary fields in the virtual memory object structure.
187 *
188 * The kernel relies on a *default memory manager* to
189 * provide backing storage for the zero-filled virtual
190 * memory objects. The pager memory objects associated
191 * with these temporary virtual memory objects are only
192 * requested from the default memory manager when it
193 * becomes necessary. Virtual memory objects
194 * that depend on the default memory manager are called
195 * "internal". The "pager_created" field is provided to
196 * indicate whether these ports have ever been allocated.
197 *
198 * The kernel may also create virtual memory objects to
199 * hold changed pages after a copy-on-write operation.
200 * In this case, the virtual memory object (and its
201 * backing storage -- its memory object) only contain
202 * those pages that have been changed. The "shadow"
203 * field refers to the virtual memory object that contains
204 * the remainder of the contents. The "shadow_offset"
205 * field indicates where in the "shadow" these contents begin.
206 * The "copy" field refers to a virtual memory object
207 * to which changed pages must be copied before changing
208 * this object, in order to implement another form
209 * of copy-on-write optimization.
210 *
211 * The virtual memory object structure also records
212 * the attributes associated with its memory object.
213 * The "pager_ready", "can_persist" and "copy_strategy"
214 * fields represent those attributes. The "cached_list"
215 * field is used in the implementation of the persistence
216 * attribute.
217 *
218 * ZZZ Continue this comment.
219 */
220
221 /* Forward declarations for internal functions. */
222 static kern_return_t vm_object_terminate(
223 vm_object_t object);
224
225 extern void vm_object_remove(
226 vm_object_t object);
227
228 static kern_return_t vm_object_copy_call(
229 vm_object_t src_object,
230 vm_object_offset_t src_offset,
231 vm_object_size_t size,
232 vm_object_t *_result_object);
233
234 static void vm_object_do_collapse(
235 vm_object_t object,
236 vm_object_t backing_object);
237
238 static void vm_object_do_bypass(
239 vm_object_t object,
240 vm_object_t backing_object);
241
242 static void vm_object_release_pager(
243 memory_object_t pager,
244 boolean_t hashed);
245
246 static zone_t vm_object_zone; /* vm backing store zone */
247
248 /*
249 * All wired-down kernel memory belongs to a single virtual
250 * memory object (kernel_object) to avoid wasting data structures.
251 */
252 static struct vm_object kernel_object_store;
253 vm_object_t kernel_object;
254
255 static struct vm_object compressor_object_store;
256 vm_object_t compressor_object = &compressor_object_store;
257
258 /*
259 * The submap object is used as a placeholder for vm_map_submap
260 * operations. The object is declared in vm_map.c because it
261 * is exported by the vm_map module. The storage is declared
262 * here because it must be initialized here.
263 */
264 static struct vm_object vm_submap_object_store;
265
266 /*
267 * Virtual memory objects are initialized from
268 * a template (see vm_object_allocate).
269 *
270 * When adding a new field to the virtual memory
271 * object structure, be sure to add initialization
272 * (see _vm_object_allocate()).
273 */
274 static struct vm_object vm_object_template;
275
276 unsigned int vm_page_purged_wired = 0;
277 unsigned int vm_page_purged_busy = 0;
278 unsigned int vm_page_purged_others = 0;
279
280 #if VM_OBJECT_CACHE
281 /*
282 * Virtual memory objects that are not referenced by
283 * any address maps, but that are allowed to persist
284 * (an attribute specified by the associated memory manager),
285 * are kept in a queue (vm_object_cached_list).
286 *
287 * When an object from this queue is referenced again,
288 * for example to make another address space mapping,
289 * it must be removed from the queue. That is, the
290 * queue contains *only* objects with zero references.
291 *
292 * The kernel may choose to terminate objects from this
293 * queue in order to reclaim storage. The current policy
294 * is to permit a fixed maximum number of unreferenced
295 * objects (vm_object_cached_max).
296 *
297 * A spin lock (accessed by routines
298 * vm_object_cache_{lock,lock_try,unlock}) governs the
299 * object cache. It must be held when objects are
300 * added to or removed from the cache (in vm_object_terminate).
301 * The routines that acquire a reference to a virtual
302 * memory object based on one of the memory object ports
303 * must also lock the cache.
304 *
305 * Ideally, the object cache should be more isolated
306 * from the reference mechanism, so that the lock need
307 * not be held to make simple references.
308 */
309 static vm_object_t vm_object_cache_trim(
310 boolean_t called_from_vm_object_deallocate);
311
312 static void vm_object_deactivate_all_pages(
313 vm_object_t object);
314
315 static int vm_object_cached_high; /* highest # cached objects */
316 static int vm_object_cached_max = 512; /* may be patched*/
317
318 #define vm_object_cache_lock() \
319 lck_mtx_lock(&vm_object_cached_lock_data)
320 #define vm_object_cache_lock_try() \
321 lck_mtx_try_lock(&vm_object_cached_lock_data)
322
323 #endif /* VM_OBJECT_CACHE */
324
325 static queue_head_t vm_object_cached_list;
326 static uint32_t vm_object_cache_pages_freed = 0;
327 static uint32_t vm_object_cache_pages_moved = 0;
328 static uint32_t vm_object_cache_pages_skipped = 0;
329 static uint32_t vm_object_cache_adds = 0;
330 static uint32_t vm_object_cached_count = 0;
331 static lck_mtx_t vm_object_cached_lock_data;
332 static lck_mtx_ext_t vm_object_cached_lock_data_ext;
333
334 static uint32_t vm_object_page_grab_failed = 0;
335 static uint32_t vm_object_page_grab_skipped = 0;
336 static uint32_t vm_object_page_grab_returned = 0;
337 static uint32_t vm_object_page_grab_pmapped = 0;
338 static uint32_t vm_object_page_grab_reactivations = 0;
339
340 #define vm_object_cache_lock_spin() \
341 lck_mtx_lock_spin(&vm_object_cached_lock_data)
342 #define vm_object_cache_unlock() \
343 lck_mtx_unlock(&vm_object_cached_lock_data)
344
345 static void vm_object_cache_remove_locked(vm_object_t);
346
347
348 #define VM_OBJECT_HASH_COUNT 1024
349 #define VM_OBJECT_HASH_LOCK_COUNT 512
350
351 static lck_mtx_t vm_object_hashed_lock_data[VM_OBJECT_HASH_LOCK_COUNT];
352 static lck_mtx_ext_t vm_object_hashed_lock_data_ext[VM_OBJECT_HASH_LOCK_COUNT];
353
354 static queue_head_t vm_object_hashtable[VM_OBJECT_HASH_COUNT];
355 static struct zone *vm_object_hash_zone;
356
357 struct vm_object_hash_entry {
358 queue_chain_t hash_link; /* hash chain link */
359 memory_object_t pager; /* pager we represent */
360 vm_object_t object; /* corresponding object */
361 boolean_t waiting; /* someone waiting for
362 * termination */
363 };
364
365 typedef struct vm_object_hash_entry *vm_object_hash_entry_t;
366 #define VM_OBJECT_HASH_ENTRY_NULL ((vm_object_hash_entry_t) 0)
367
368 #define VM_OBJECT_HASH_SHIFT 5
369 #define vm_object_hash(pager) \
370 ((int)((((uintptr_t)pager) >> VM_OBJECT_HASH_SHIFT) % VM_OBJECT_HASH_COUNT))
371
372 #define vm_object_lock_hash(pager) \
373 ((int)((((uintptr_t)pager) >> VM_OBJECT_HASH_SHIFT) % VM_OBJECT_HASH_LOCK_COUNT))
374
375 void vm_object_hash_entry_free(
376 vm_object_hash_entry_t entry);
377
378 static void vm_object_reap(vm_object_t object);
379 static void vm_object_reap_async(vm_object_t object);
380 static void vm_object_reaper_thread(void);
381
382 static lck_mtx_t vm_object_reaper_lock_data;
383 static lck_mtx_ext_t vm_object_reaper_lock_data_ext;
384
385 static queue_head_t vm_object_reaper_queue; /* protected by vm_object_reaper_lock() */
386 unsigned int vm_object_reap_count = 0;
387 unsigned int vm_object_reap_count_async = 0;
388
389 #define vm_object_reaper_lock() \
390 lck_mtx_lock(&vm_object_reaper_lock_data)
391 #define vm_object_reaper_lock_spin() \
392 lck_mtx_lock_spin(&vm_object_reaper_lock_data)
393 #define vm_object_reaper_unlock() \
394 lck_mtx_unlock(&vm_object_reaper_lock_data)
395
396 #if CONFIG_IOSCHED
397 /* I/O Re-prioritization request list */
398 queue_head_t io_reprioritize_list;
399 lck_spin_t io_reprioritize_list_lock;
400
401 #define IO_REPRIORITIZE_LIST_LOCK() \
402 lck_spin_lock(&io_reprioritize_list_lock)
403 #define IO_REPRIORITIZE_LIST_UNLOCK() \
404 lck_spin_unlock(&io_reprioritize_list_lock)
405
406 #define MAX_IO_REPRIORITIZE_REQS 8192
407 zone_t io_reprioritize_req_zone;
408
409 /* I/O Re-prioritization thread */
410 int io_reprioritize_wakeup = 0;
411 static void io_reprioritize_thread(void *param __unused, wait_result_t wr __unused);
412
413 #define IO_REPRIO_THREAD_WAKEUP() thread_wakeup((event_t)&io_reprioritize_wakeup)
414 #define IO_REPRIO_THREAD_CONTINUATION() \
415 { \
416 assert_wait(&io_reprioritize_wakeup, THREAD_UNINT); \
417 thread_block(io_reprioritize_thread); \
418 }
419
420 void vm_page_request_reprioritize(vm_object_t, uint64_t, uint32_t, int);
421 void vm_page_handle_prio_inversion(vm_object_t, vm_page_t);
422 void vm_decmp_upl_reprioritize(upl_t, int);
423 #endif
424
425 #if 0
426 #undef KERNEL_DEBUG
427 #define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT
428 #endif
429
430
431 static lck_mtx_t *
432 vm_object_hash_lock_spin(
433 memory_object_t pager)
434 {
435 int index;
436
437 index = vm_object_lock_hash(pager);
438
439 lck_mtx_lock_spin(&vm_object_hashed_lock_data[index]);
440
441 return (&vm_object_hashed_lock_data[index]);
442 }
443
444 static void
445 vm_object_hash_unlock(lck_mtx_t *lck)
446 {
447 lck_mtx_unlock(lck);
448 }
449
450
451 /*
452 * vm_object_hash_lookup looks up a pager in the hashtable
453 * and returns the corresponding entry, with optional removal.
454 */
455 static vm_object_hash_entry_t
456 vm_object_hash_lookup(
457 memory_object_t pager,
458 boolean_t remove_entry)
459 {
460 queue_t bucket;
461 vm_object_hash_entry_t entry;
462
463 bucket = &vm_object_hashtable[vm_object_hash(pager)];
464
465 entry = (vm_object_hash_entry_t)queue_first(bucket);
466 while (!queue_end(bucket, (queue_entry_t)entry)) {
467 if (entry->pager == pager) {
468 if (remove_entry) {
469 queue_remove(bucket, entry,
470 vm_object_hash_entry_t, hash_link);
471 }
472 return(entry);
473 }
474 entry = (vm_object_hash_entry_t)queue_next(&entry->hash_link);
475 }
476 return(VM_OBJECT_HASH_ENTRY_NULL);
477 }
478
479 /*
480 * vm_object_hash_enter enters the specified
481 * pager / cache object association in the hashtable.
482 */
483
484 static void
485 vm_object_hash_insert(
486 vm_object_hash_entry_t entry,
487 vm_object_t object)
488 {
489 queue_t bucket;
490
491 vm_object_lock_assert_exclusive(object);
492
493 bucket = &vm_object_hashtable[vm_object_hash(entry->pager)];
494
495 queue_enter(bucket, entry, vm_object_hash_entry_t, hash_link);
496
497 entry->object = object;
498 object->hashed = TRUE;
499 }
500
501 static vm_object_hash_entry_t
502 vm_object_hash_entry_alloc(
503 memory_object_t pager)
504 {
505 vm_object_hash_entry_t entry;
506
507 entry = (vm_object_hash_entry_t)zalloc(vm_object_hash_zone);
508 entry->pager = pager;
509 entry->object = VM_OBJECT_NULL;
510 entry->waiting = FALSE;
511
512 return(entry);
513 }
514
515 void
516 vm_object_hash_entry_free(
517 vm_object_hash_entry_t entry)
518 {
519 zfree(vm_object_hash_zone, entry);
520 }
521
522 /*
523 * vm_object_allocate:
524 *
525 * Returns a new object with the given size.
526 */
527
528 __private_extern__ void
529 _vm_object_allocate(
530 vm_object_size_t size,
531 vm_object_t object)
532 {
533 XPR(XPR_VM_OBJECT,
534 "vm_object_allocate, object 0x%X size 0x%X\n",
535 object, size, 0,0,0);
536
537 *object = vm_object_template;
538 queue_init(&object->memq);
539 queue_init(&object->msr_q);
540 #if UPL_DEBUG || CONFIG_IOSCHED
541 queue_init(&object->uplq);
542 #endif
543 vm_object_lock_init(object);
544 object->vo_size = size;
545
546 #if VM_OBJECT_TRACKING_OP_CREATED
547 if (vm_object_tracking_inited) {
548 void *bt[VM_OBJECT_TRACKING_BTDEPTH];
549 int numsaved = 0;
550
551 numsaved = OSBacktrace(bt, VM_OBJECT_TRACKING_BTDEPTH);
552 btlog_add_entry(vm_object_tracking_btlog,
553 object,
554 VM_OBJECT_TRACKING_OP_CREATED,
555 bt,
556 numsaved);
557 }
558 #endif /* VM_OBJECT_TRACKING_OP_CREATED */
559 }
560
561 __private_extern__ vm_object_t
562 vm_object_allocate(
563 vm_object_size_t size)
564 {
565 register vm_object_t object;
566
567 object = (vm_object_t) zalloc(vm_object_zone);
568
569 // dbgLog(object, size, 0, 2); /* (TEST/DEBUG) */
570
571 if (object != VM_OBJECT_NULL)
572 _vm_object_allocate(size, object);
573
574 return object;
575 }
576
577
578 lck_grp_t vm_object_lck_grp;
579 lck_grp_t vm_object_cache_lck_grp;
580 lck_grp_attr_t vm_object_lck_grp_attr;
581 lck_attr_t vm_object_lck_attr;
582 lck_attr_t kernel_object_lck_attr;
583 lck_attr_t compressor_object_lck_attr;
584
585 /*
586 * vm_object_bootstrap:
587 *
588 * Initialize the VM objects module.
589 */
590 __private_extern__ void
591 vm_object_bootstrap(void)
592 {
593 register int i;
594
595 vm_object_zone = zinit((vm_size_t) sizeof(struct vm_object),
596 round_page(512*1024),
597 round_page(12*1024),
598 "vm objects");
599 zone_change(vm_object_zone, Z_CALLERACCT, FALSE); /* don't charge caller */
600 zone_change(vm_object_zone, Z_NOENCRYPT, TRUE);
601
602 vm_object_init_lck_grp();
603
604 queue_init(&vm_object_cached_list);
605
606 lck_mtx_init_ext(&vm_object_cached_lock_data,
607 &vm_object_cached_lock_data_ext,
608 &vm_object_cache_lck_grp,
609 &vm_object_lck_attr);
610
611 queue_init(&vm_object_reaper_queue);
612
613 for (i = 0; i < VM_OBJECT_HASH_LOCK_COUNT; i++) {
614 lck_mtx_init_ext(&vm_object_hashed_lock_data[i],
615 &vm_object_hashed_lock_data_ext[i],
616 &vm_object_lck_grp,
617 &vm_object_lck_attr);
618 }
619 lck_mtx_init_ext(&vm_object_reaper_lock_data,
620 &vm_object_reaper_lock_data_ext,
621 &vm_object_lck_grp,
622 &vm_object_lck_attr);
623
624 vm_object_hash_zone =
625 zinit((vm_size_t) sizeof (struct vm_object_hash_entry),
626 round_page(512*1024),
627 round_page(12*1024),
628 "vm object hash entries");
629 zone_change(vm_object_hash_zone, Z_CALLERACCT, FALSE);
630 zone_change(vm_object_hash_zone, Z_NOENCRYPT, TRUE);
631
632 for (i = 0; i < VM_OBJECT_HASH_COUNT; i++)
633 queue_init(&vm_object_hashtable[i]);
634
635
636 /*
637 * Fill in a template object, for quick initialization
638 */
639
640 /* memq; Lock; init after allocation */
641 vm_object_template.memq.prev = NULL;
642 vm_object_template.memq.next = NULL;
643 #if 0
644 /*
645 * We can't call vm_object_lock_init() here because that will
646 * allocate some memory and VM is not fully initialized yet.
647 * The lock will be initialized for each allocated object in
648 * _vm_object_allocate(), so we don't need to initialize it in
649 * the vm_object_template.
650 */
651 vm_object_lock_init(&vm_object_template);
652 #endif
653 vm_object_template.vo_size = 0;
654 vm_object_template.memq_hint = VM_PAGE_NULL;
655 vm_object_template.ref_count = 1;
656 #if TASK_SWAPPER
657 vm_object_template.res_count = 1;
658 #endif /* TASK_SWAPPER */
659 vm_object_template.resident_page_count = 0;
660 vm_object_template.wired_page_count = 0;
661 vm_object_template.reusable_page_count = 0;
662 vm_object_template.copy = VM_OBJECT_NULL;
663 vm_object_template.shadow = VM_OBJECT_NULL;
664 vm_object_template.vo_shadow_offset = (vm_object_offset_t) 0;
665 vm_object_template.pager = MEMORY_OBJECT_NULL;
666 vm_object_template.paging_offset = 0;
667 vm_object_template.pager_control = MEMORY_OBJECT_CONTROL_NULL;
668 vm_object_template.copy_strategy = MEMORY_OBJECT_COPY_SYMMETRIC;
669 vm_object_template.paging_in_progress = 0;
670 #if __LP64__
671 vm_object_template.__object1_unused_bits = 0;
672 #endif /* __LP64__ */
673 vm_object_template.activity_in_progress = 0;
674
675 /* Begin bitfields */
676 vm_object_template.all_wanted = 0; /* all bits FALSE */
677 vm_object_template.pager_created = FALSE;
678 vm_object_template.pager_initialized = FALSE;
679 vm_object_template.pager_ready = FALSE;
680 vm_object_template.pager_trusted = FALSE;
681 vm_object_template.can_persist = FALSE;
682 vm_object_template.internal = TRUE;
683 vm_object_template.temporary = TRUE;
684 vm_object_template.private = FALSE;
685 vm_object_template.pageout = FALSE;
686 vm_object_template.alive = TRUE;
687 vm_object_template.purgable = VM_PURGABLE_DENY;
688 vm_object_template.purgeable_when_ripe = FALSE;
689 vm_object_template.shadowed = FALSE;
690 vm_object_template.advisory_pageout = FALSE;
691 vm_object_template.true_share = FALSE;
692 vm_object_template.terminating = FALSE;
693 vm_object_template.named = FALSE;
694 vm_object_template.shadow_severed = FALSE;
695 vm_object_template.phys_contiguous = FALSE;
696 vm_object_template.nophyscache = FALSE;
697 /* End bitfields */
698
699 vm_object_template.cached_list.prev = NULL;
700 vm_object_template.cached_list.next = NULL;
701 vm_object_template.msr_q.prev = NULL;
702 vm_object_template.msr_q.next = NULL;
703
704 vm_object_template.last_alloc = (vm_object_offset_t) 0;
705 vm_object_template.sequential = (vm_object_offset_t) 0;
706 vm_object_template.pages_created = 0;
707 vm_object_template.pages_used = 0;
708 vm_object_template.scan_collisions = 0;
709 #if CONFIG_PHANTOM_CACHE
710 vm_object_template.phantom_object_id = 0;
711 #endif
712 #if MACH_PAGEMAP
713 vm_object_template.existence_map = VM_EXTERNAL_NULL;
714 #endif /* MACH_PAGEMAP */
715 vm_object_template.cow_hint = ~(vm_offset_t)0;
716 #if MACH_ASSERT
717 vm_object_template.paging_object = VM_OBJECT_NULL;
718 #endif /* MACH_ASSERT */
719
720 /* cache bitfields */
721 vm_object_template.wimg_bits = VM_WIMG_USE_DEFAULT;
722 vm_object_template.set_cache_attr = FALSE;
723 vm_object_template.object_slid = FALSE;
724 vm_object_template.code_signed = FALSE;
725 vm_object_template.hashed = FALSE;
726 vm_object_template.transposed = FALSE;
727 vm_object_template.mapping_in_progress = FALSE;
728 vm_object_template.phantom_isssd = FALSE;
729 vm_object_template.volatile_empty = FALSE;
730 vm_object_template.volatile_fault = FALSE;
731 vm_object_template.all_reusable = FALSE;
732 vm_object_template.blocked_access = FALSE;
733 vm_object_template.__object2_unused_bits = 0;
734 #if CONFIG_IOSCHED || UPL_DEBUG
735 vm_object_template.uplq.prev = NULL;
736 vm_object_template.uplq.next = NULL;
737 #endif /* UPL_DEBUG */
738 #ifdef VM_PIP_DEBUG
739 bzero(&vm_object_template.pip_holders,
740 sizeof (vm_object_template.pip_holders));
741 #endif /* VM_PIP_DEBUG */
742
743 vm_object_template.objq.next = NULL;
744 vm_object_template.objq.prev = NULL;
745
746 vm_object_template.purgeable_queue_type = PURGEABLE_Q_TYPE_MAX;
747 vm_object_template.purgeable_queue_group = 0;
748
749 vm_object_template.vo_cache_ts = 0;
750
751 #if DEBUG
752 bzero(&vm_object_template.purgeable_owner_bt[0],
753 sizeof (vm_object_template.purgeable_owner_bt));
754 vm_object_template.vo_purgeable_volatilizer = NULL;
755 bzero(&vm_object_template.purgeable_volatilizer_bt[0],
756 sizeof (vm_object_template.purgeable_volatilizer_bt));
757 #endif /* DEBUG */
758
759 /*
760 * Initialize the "kernel object"
761 */
762
763 kernel_object = &kernel_object_store;
764
765 /*
766 * Note that in the following size specifications, we need to add 1 because
767 * VM_MAX_KERNEL_ADDRESS (vm_last_addr) is a maximum address, not a size.
768 */
769
770 #ifdef ppc
771 _vm_object_allocate(vm_last_addr + 1,
772 kernel_object);
773 #else
774 _vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1,
775 kernel_object);
776
777 _vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1,
778 compressor_object);
779 #endif
780 kernel_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
781 compressor_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
782
783 /*
784 * Initialize the "submap object". Make it as large as the
785 * kernel object so that no limit is imposed on submap sizes.
786 */
787
788 vm_submap_object = &vm_submap_object_store;
789 #ifdef ppc
790 _vm_object_allocate(vm_last_addr + 1,
791 vm_submap_object);
792 #else
793 _vm_object_allocate(VM_MAX_KERNEL_ADDRESS + 1,
794 vm_submap_object);
795 #endif
796 vm_submap_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
797
798 /*
799 * Create an "extra" reference to this object so that we never
800 * try to deallocate it; zfree doesn't like to be called with
801 * non-zone memory.
802 */
803 vm_object_reference(vm_submap_object);
804
805 #if MACH_PAGEMAP
806 vm_external_module_initialize();
807 #endif /* MACH_PAGEMAP */
808 }
809
810 #if CONFIG_IOSCHED
811 void
812 vm_io_reprioritize_init(void)
813 {
814 kern_return_t result;
815 thread_t thread = THREAD_NULL;
816
817 /* Initialze the I/O reprioritization subsystem */
818 lck_spin_init(&io_reprioritize_list_lock, &vm_object_lck_grp, &vm_object_lck_attr);
819 queue_init(&io_reprioritize_list);
820
821 io_reprioritize_req_zone = zinit(sizeof(struct io_reprioritize_req),
822 MAX_IO_REPRIORITIZE_REQS * sizeof(struct io_reprioritize_req),
823 4096, "io_reprioritize_req");
824
825 result = kernel_thread_start_priority(io_reprioritize_thread, NULL, 95 /* MAXPRI_KERNEL */, &thread);
826 if (result == KERN_SUCCESS) {
827 thread_deallocate(thread);
828 } else {
829 panic("Could not create io_reprioritize_thread");
830 }
831 }
832 #endif
833
834 void
835 vm_object_reaper_init(void)
836 {
837 kern_return_t kr;
838 thread_t thread;
839
840 kr = kernel_thread_start_priority(
841 (thread_continue_t) vm_object_reaper_thread,
842 NULL,
843 BASEPRI_PREEMPT - 1,
844 &thread);
845 if (kr != KERN_SUCCESS) {
846 panic("failed to launch vm_object_reaper_thread kr=0x%x", kr);
847 }
848 thread_deallocate(thread);
849 }
850
851 __private_extern__ void
852 vm_object_init(void)
853 {
854 /*
855 * Finish initializing the kernel object.
856 */
857 }
858
859
860 __private_extern__ void
861 vm_object_init_lck_grp(void)
862 {
863 /*
864 * initialze the vm_object lock world
865 */
866 lck_grp_attr_setdefault(&vm_object_lck_grp_attr);
867 lck_grp_init(&vm_object_lck_grp, "vm_object", &vm_object_lck_grp_attr);
868 lck_grp_init(&vm_object_cache_lck_grp, "vm_object_cache", &vm_object_lck_grp_attr);
869 lck_attr_setdefault(&vm_object_lck_attr);
870 lck_attr_setdefault(&kernel_object_lck_attr);
871 lck_attr_cleardebug(&kernel_object_lck_attr);
872 lck_attr_setdefault(&compressor_object_lck_attr);
873 lck_attr_cleardebug(&compressor_object_lck_attr);
874 }
875
876 #if VM_OBJECT_CACHE
877 #define MIGHT_NOT_CACHE_SHADOWS 1
878 #if MIGHT_NOT_CACHE_SHADOWS
879 static int cache_shadows = TRUE;
880 #endif /* MIGHT_NOT_CACHE_SHADOWS */
881 #endif
882
883 /*
884 * vm_object_deallocate:
885 *
886 * Release a reference to the specified object,
887 * gained either through a vm_object_allocate
888 * or a vm_object_reference call. When all references
889 * are gone, storage associated with this object
890 * may be relinquished.
891 *
892 * No object may be locked.
893 */
894 unsigned long vm_object_deallocate_shared_successes = 0;
895 unsigned long vm_object_deallocate_shared_failures = 0;
896 unsigned long vm_object_deallocate_shared_swap_failures = 0;
897 __private_extern__ void
898 vm_object_deallocate(
899 register vm_object_t object)
900 {
901 #if VM_OBJECT_CACHE
902 boolean_t retry_cache_trim = FALSE;
903 uint32_t try_failed_count = 0;
904 #endif
905 vm_object_t shadow = VM_OBJECT_NULL;
906
907 // if(object)dbgLog(object, object->ref_count, object->can_persist, 3); /* (TEST/DEBUG) */
908 // else dbgLog(object, 0, 0, 3); /* (TEST/DEBUG) */
909
910 if (object == VM_OBJECT_NULL)
911 return;
912
913 if (object == kernel_object || object == compressor_object) {
914 vm_object_lock_shared(object);
915
916 OSAddAtomic(-1, &object->ref_count);
917
918 if (object->ref_count == 0) {
919 if (object == kernel_object)
920 panic("vm_object_deallocate: losing kernel_object\n");
921 else
922 panic("vm_object_deallocate: losing compressor_object\n");
923 }
924 vm_object_unlock(object);
925 return;
926 }
927
928 if (object->ref_count == 2 &&
929 object->named) {
930 /*
931 * This "named" object's reference count is about to
932 * drop from 2 to 1:
933 * we'll need to call memory_object_last_unmap().
934 */
935 } else if (object->ref_count == 2 &&
936 object->internal &&
937 object->shadow != VM_OBJECT_NULL) {
938 /*
939 * This internal object's reference count is about to
940 * drop from 2 to 1 and it has a shadow object:
941 * we'll want to try and collapse this object with its
942 * shadow.
943 */
944 } else if (object->ref_count >= 2) {
945 UInt32 original_ref_count;
946 volatile UInt32 *ref_count_p;
947 Boolean atomic_swap;
948
949 /*
950 * The object currently looks like it is not being
951 * kept alive solely by the reference we're about to release.
952 * Let's try and release our reference without taking
953 * all the locks we would need if we had to terminate the
954 * object (cache lock + exclusive object lock).
955 * Lock the object "shared" to make sure we don't race with
956 * anyone holding it "exclusive".
957 */
958 vm_object_lock_shared(object);
959 ref_count_p = (volatile UInt32 *) &object->ref_count;
960 original_ref_count = object->ref_count;
961 /*
962 * Test again as "ref_count" could have changed.
963 * "named" shouldn't change.
964 */
965 if (original_ref_count == 2 &&
966 object->named) {
967 /* need to take slow path for m_o_last_unmap() */
968 atomic_swap = FALSE;
969 } else if (original_ref_count == 2 &&
970 object->internal &&
971 object->shadow != VM_OBJECT_NULL) {
972 /* need to take slow path for vm_object_collapse() */
973 atomic_swap = FALSE;
974 } else if (original_ref_count < 2) {
975 /* need to take slow path for vm_object_terminate() */
976 atomic_swap = FALSE;
977 } else {
978 /* try an atomic update with the shared lock */
979 atomic_swap = OSCompareAndSwap(
980 original_ref_count,
981 original_ref_count - 1,
982 (UInt32 *) &object->ref_count);
983 if (atomic_swap == FALSE) {
984 vm_object_deallocate_shared_swap_failures++;
985 /* fall back to the slow path... */
986 }
987 }
988
989 vm_object_unlock(object);
990
991 if (atomic_swap) {
992 /*
993 * ref_count was updated atomically !
994 */
995 vm_object_deallocate_shared_successes++;
996 return;
997 }
998
999 /*
1000 * Someone else updated the ref_count at the same
1001 * time and we lost the race. Fall back to the usual
1002 * slow but safe path...
1003 */
1004 vm_object_deallocate_shared_failures++;
1005 }
1006
1007 while (object != VM_OBJECT_NULL) {
1008
1009 vm_object_lock(object);
1010
1011 assert(object->ref_count > 0);
1012
1013 /*
1014 * If the object has a named reference, and only
1015 * that reference would remain, inform the pager
1016 * about the last "mapping" reference going away.
1017 */
1018 if ((object->ref_count == 2) && (object->named)) {
1019 memory_object_t pager = object->pager;
1020
1021 /* Notify the Pager that there are no */
1022 /* more mappers for this object */
1023
1024 if (pager != MEMORY_OBJECT_NULL) {
1025 vm_object_mapping_wait(object, THREAD_UNINT);
1026 vm_object_mapping_begin(object);
1027 vm_object_unlock(object);
1028
1029 memory_object_last_unmap(pager);
1030
1031 vm_object_lock(object);
1032 vm_object_mapping_end(object);
1033 }
1034 assert(object->ref_count > 0);
1035 }
1036
1037 /*
1038 * Lose the reference. If other references
1039 * remain, then we are done, unless we need
1040 * to retry a cache trim.
1041 * If it is the last reference, then keep it
1042 * until any pending initialization is completed.
1043 */
1044
1045 /* if the object is terminating, it cannot go into */
1046 /* the cache and we obviously should not call */
1047 /* terminate again. */
1048
1049 if ((object->ref_count > 1) || object->terminating) {
1050 vm_object_lock_assert_exclusive(object);
1051 object->ref_count--;
1052 vm_object_res_deallocate(object);
1053
1054 if (object->ref_count == 1 &&
1055 object->shadow != VM_OBJECT_NULL) {
1056 /*
1057 * There's only one reference left on this
1058 * VM object. We can't tell if it's a valid
1059 * one (from a mapping for example) or if this
1060 * object is just part of a possibly stale and
1061 * useless shadow chain.
1062 * We would like to try and collapse it into
1063 * its parent, but we don't have any pointers
1064 * back to this parent object.
1065 * But we can try and collapse this object with
1066 * its own shadows, in case these are useless
1067 * too...
1068 * We can't bypass this object though, since we
1069 * don't know if this last reference on it is
1070 * meaningful or not.
1071 */
1072 vm_object_collapse(object, 0, FALSE);
1073 }
1074 vm_object_unlock(object);
1075 #if VM_OBJECT_CACHE
1076 if (retry_cache_trim &&
1077 ((object = vm_object_cache_trim(TRUE)) !=
1078 VM_OBJECT_NULL)) {
1079 continue;
1080 }
1081 #endif
1082 return;
1083 }
1084
1085 /*
1086 * We have to wait for initialization
1087 * before destroying or caching the object.
1088 */
1089
1090 if (object->pager_created && ! object->pager_initialized) {
1091 assert(! object->can_persist);
1092 vm_object_assert_wait(object,
1093 VM_OBJECT_EVENT_INITIALIZED,
1094 THREAD_UNINT);
1095 vm_object_unlock(object);
1096
1097 thread_block(THREAD_CONTINUE_NULL);
1098 continue;
1099 }
1100
1101 #if VM_OBJECT_CACHE
1102 /*
1103 * If this object can persist, then enter it in
1104 * the cache. Otherwise, terminate it.
1105 *
1106 * NOTE: Only permanent objects are cached, and
1107 * permanent objects cannot have shadows. This
1108 * affects the residence counting logic in a minor
1109 * way (can do it in-line, mostly).
1110 */
1111
1112 if ((object->can_persist) && (object->alive)) {
1113 /*
1114 * Now it is safe to decrement reference count,
1115 * and to return if reference count is > 0.
1116 */
1117
1118 vm_object_lock_assert_exclusive(object);
1119 if (--object->ref_count > 0) {
1120 vm_object_res_deallocate(object);
1121 vm_object_unlock(object);
1122
1123 if (retry_cache_trim &&
1124 ((object = vm_object_cache_trim(TRUE)) !=
1125 VM_OBJECT_NULL)) {
1126 continue;
1127 }
1128 return;
1129 }
1130
1131 #if MIGHT_NOT_CACHE_SHADOWS
1132 /*
1133 * Remove shadow now if we don't
1134 * want to cache shadows.
1135 */
1136 if (! cache_shadows) {
1137 shadow = object->shadow;
1138 object->shadow = VM_OBJECT_NULL;
1139 }
1140 #endif /* MIGHT_NOT_CACHE_SHADOWS */
1141
1142 /*
1143 * Enter the object onto the queue of
1144 * cached objects, and deactivate
1145 * all of its pages.
1146 */
1147 assert(object->shadow == VM_OBJECT_NULL);
1148 VM_OBJ_RES_DECR(object);
1149 XPR(XPR_VM_OBJECT,
1150 "vm_o_deallocate: adding %x to cache, queue = (%x, %x)\n",
1151 object,
1152 vm_object_cached_list.next,
1153 vm_object_cached_list.prev,0,0);
1154
1155
1156 vm_object_unlock(object);
1157
1158 try_failed_count = 0;
1159 for (;;) {
1160 vm_object_cache_lock();
1161
1162 /*
1163 * if we try to take a regular lock here
1164 * we risk deadlocking against someone
1165 * holding a lock on this object while
1166 * trying to vm_object_deallocate a different
1167 * object
1168 */
1169 if (vm_object_lock_try(object))
1170 break;
1171 vm_object_cache_unlock();
1172 try_failed_count++;
1173
1174 mutex_pause(try_failed_count); /* wait a bit */
1175 }
1176 vm_object_cached_count++;
1177 if (vm_object_cached_count > vm_object_cached_high)
1178 vm_object_cached_high = vm_object_cached_count;
1179 queue_enter(&vm_object_cached_list, object,
1180 vm_object_t, cached_list);
1181 vm_object_cache_unlock();
1182
1183 vm_object_deactivate_all_pages(object);
1184 vm_object_unlock(object);
1185
1186 #if MIGHT_NOT_CACHE_SHADOWS
1187 /*
1188 * If we have a shadow that we need
1189 * to deallocate, do so now, remembering
1190 * to trim the cache later.
1191 */
1192 if (! cache_shadows && shadow != VM_OBJECT_NULL) {
1193 object = shadow;
1194 retry_cache_trim = TRUE;
1195 continue;
1196 }
1197 #endif /* MIGHT_NOT_CACHE_SHADOWS */
1198
1199 /*
1200 * Trim the cache. If the cache trim
1201 * returns with a shadow for us to deallocate,
1202 * then remember to retry the cache trim
1203 * when we are done deallocating the shadow.
1204 * Otherwise, we are done.
1205 */
1206
1207 object = vm_object_cache_trim(TRUE);
1208 if (object == VM_OBJECT_NULL) {
1209 return;
1210 }
1211 retry_cache_trim = TRUE;
1212 } else
1213 #endif /* VM_OBJECT_CACHE */
1214 {
1215 /*
1216 * This object is not cachable; terminate it.
1217 */
1218 XPR(XPR_VM_OBJECT,
1219 "vm_o_deallocate: !cacheable 0x%X res %d paging_ops %d thread 0x%p ref %d\n",
1220 object, object->resident_page_count,
1221 object->paging_in_progress,
1222 (void *)current_thread(),object->ref_count);
1223
1224 VM_OBJ_RES_DECR(object); /* XXX ? */
1225 /*
1226 * Terminate this object. If it had a shadow,
1227 * then deallocate it; otherwise, if we need
1228 * to retry a cache trim, do so now; otherwise,
1229 * we are done. "pageout" objects have a shadow,
1230 * but maintain a "paging reference" rather than
1231 * a normal reference.
1232 */
1233 shadow = object->pageout?VM_OBJECT_NULL:object->shadow;
1234
1235 if (vm_object_terminate(object) != KERN_SUCCESS) {
1236 return;
1237 }
1238 if (shadow != VM_OBJECT_NULL) {
1239 object = shadow;
1240 continue;
1241 }
1242 #if VM_OBJECT_CACHE
1243 if (retry_cache_trim &&
1244 ((object = vm_object_cache_trim(TRUE)) !=
1245 VM_OBJECT_NULL)) {
1246 continue;
1247 }
1248 #endif
1249 return;
1250 }
1251 }
1252 #if VM_OBJECT_CACHE
1253 assert(! retry_cache_trim);
1254 #endif
1255 }
1256
1257
1258
1259 vm_page_t
1260 vm_object_page_grab(
1261 vm_object_t object)
1262 {
1263 vm_page_t p, next_p;
1264 int p_limit = 0;
1265 int p_skipped = 0;
1266
1267 vm_object_lock_assert_exclusive(object);
1268
1269 next_p = (vm_page_t)queue_first(&object->memq);
1270 p_limit = MIN(50, object->resident_page_count);
1271
1272 while (!queue_end(&object->memq, (queue_entry_t)next_p) && --p_limit > 0) {
1273
1274 p = next_p;
1275 next_p = (vm_page_t)queue_next(&next_p->listq);
1276
1277 if (VM_PAGE_WIRED(p) || p->busy || p->cleaning || p->laundry || p->fictitious)
1278 goto move_page_in_obj;
1279
1280 if (p->pmapped || p->dirty || p->precious) {
1281 vm_page_lockspin_queues();
1282
1283 if (p->pmapped) {
1284 int refmod_state;
1285
1286 vm_object_page_grab_pmapped++;
1287
1288 if (p->reference == FALSE || p->dirty == FALSE) {
1289
1290 refmod_state = pmap_get_refmod(p->phys_page);
1291
1292 if (refmod_state & VM_MEM_REFERENCED)
1293 p->reference = TRUE;
1294 if (refmod_state & VM_MEM_MODIFIED) {
1295 SET_PAGE_DIRTY(p, FALSE);
1296 }
1297 }
1298 if (p->dirty == FALSE && p->precious == FALSE) {
1299
1300 refmod_state = pmap_disconnect(p->phys_page);
1301
1302 if (refmod_state & VM_MEM_REFERENCED)
1303 p->reference = TRUE;
1304 if (refmod_state & VM_MEM_MODIFIED) {
1305 SET_PAGE_DIRTY(p, FALSE);
1306 }
1307
1308 if (p->dirty == FALSE)
1309 goto take_page;
1310 }
1311 }
1312 if (p->inactive && p->reference == TRUE) {
1313 vm_page_activate(p);
1314
1315 VM_STAT_INCR(reactivations);
1316 vm_object_page_grab_reactivations++;
1317 }
1318 vm_page_unlock_queues();
1319 move_page_in_obj:
1320 queue_remove(&object->memq, p, vm_page_t, listq);
1321 queue_enter(&object->memq, p, vm_page_t, listq);
1322
1323 p_skipped++;
1324 continue;
1325 }
1326 vm_page_lockspin_queues();
1327 take_page:
1328 vm_page_free_prepare_queues(p);
1329 vm_object_page_grab_returned++;
1330 vm_object_page_grab_skipped += p_skipped;
1331
1332 vm_page_unlock_queues();
1333
1334 vm_page_free_prepare_object(p, TRUE);
1335
1336 return (p);
1337 }
1338 vm_object_page_grab_skipped += p_skipped;
1339 vm_object_page_grab_failed++;
1340
1341 return (NULL);
1342 }
1343
1344
1345
1346 #define EVICT_PREPARE_LIMIT 64
1347 #define EVICT_AGE 10
1348
1349 static clock_sec_t vm_object_cache_aging_ts = 0;
1350
1351 static void
1352 vm_object_cache_remove_locked(
1353 vm_object_t object)
1354 {
1355 queue_remove(&vm_object_cached_list, object, vm_object_t, objq);
1356 object->objq.next = NULL;
1357 object->objq.prev = NULL;
1358
1359 vm_object_cached_count--;
1360 }
1361
1362 void
1363 vm_object_cache_remove(
1364 vm_object_t object)
1365 {
1366 vm_object_cache_lock_spin();
1367
1368 if (object->objq.next || object->objq.prev)
1369 vm_object_cache_remove_locked(object);
1370
1371 vm_object_cache_unlock();
1372 }
1373
1374 void
1375 vm_object_cache_add(
1376 vm_object_t object)
1377 {
1378 clock_sec_t sec;
1379 clock_nsec_t nsec;
1380
1381 if (object->resident_page_count == 0)
1382 return;
1383 clock_get_system_nanotime(&sec, &nsec);
1384
1385 vm_object_cache_lock_spin();
1386
1387 if (object->objq.next == NULL && object->objq.prev == NULL) {
1388 queue_enter(&vm_object_cached_list, object, vm_object_t, objq);
1389 object->vo_cache_ts = sec + EVICT_AGE;
1390 object->vo_cache_pages_to_scan = object->resident_page_count;
1391
1392 vm_object_cached_count++;
1393 vm_object_cache_adds++;
1394 }
1395 vm_object_cache_unlock();
1396 }
1397
1398 int
1399 vm_object_cache_evict(
1400 int num_to_evict,
1401 int max_objects_to_examine)
1402 {
1403 vm_object_t object = VM_OBJECT_NULL;
1404 vm_object_t next_obj = VM_OBJECT_NULL;
1405 vm_page_t local_free_q = VM_PAGE_NULL;
1406 vm_page_t p;
1407 vm_page_t next_p;
1408 int object_cnt = 0;
1409 vm_page_t ep_array[EVICT_PREPARE_LIMIT];
1410 int ep_count;
1411 int ep_limit;
1412 int ep_index;
1413 int ep_freed = 0;
1414 int ep_moved = 0;
1415 uint32_t ep_skipped = 0;
1416 clock_sec_t sec;
1417 clock_nsec_t nsec;
1418
1419 KERNEL_DEBUG(0x13001ec | DBG_FUNC_START, 0, 0, 0, 0, 0);
1420 /*
1421 * do a couple of quick checks to see if it's
1422 * worthwhile grabbing the lock
1423 */
1424 if (queue_empty(&vm_object_cached_list)) {
1425 KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, 0, 0, 0, 0, 0);
1426 return (0);
1427 }
1428 clock_get_system_nanotime(&sec, &nsec);
1429
1430 /*
1431 * the object on the head of the queue has not
1432 * yet sufficiently aged
1433 */
1434 if (sec < vm_object_cache_aging_ts) {
1435 KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, 0, 0, 0, 0, 0);
1436 return (0);
1437 }
1438 /*
1439 * don't need the queue lock to find
1440 * and lock an object on the cached list
1441 */
1442 vm_page_unlock_queues();
1443
1444 vm_object_cache_lock_spin();
1445
1446 for (;;) {
1447 next_obj = (vm_object_t)queue_first(&vm_object_cached_list);
1448
1449 while (!queue_end(&vm_object_cached_list, (queue_entry_t)next_obj) && object_cnt++ < max_objects_to_examine) {
1450
1451 object = next_obj;
1452 next_obj = (vm_object_t)queue_next(&next_obj->objq);
1453
1454 if (sec < object->vo_cache_ts) {
1455 KERNEL_DEBUG(0x130020c, object, object->resident_page_count, object->vo_cache_ts, sec, 0);
1456
1457 vm_object_cache_aging_ts = object->vo_cache_ts;
1458 object = VM_OBJECT_NULL;
1459 break;
1460 }
1461 if (!vm_object_lock_try_scan(object)) {
1462 /*
1463 * just skip over this guy for now... if we find
1464 * an object to steal pages from, we'll revist in a bit...
1465 * hopefully, the lock will have cleared
1466 */
1467 KERNEL_DEBUG(0x13001f8, object, object->resident_page_count, 0, 0, 0);
1468
1469 object = VM_OBJECT_NULL;
1470 continue;
1471 }
1472 if (queue_empty(&object->memq) || object->vo_cache_pages_to_scan == 0) {
1473 /*
1474 * this case really shouldn't happen, but it's not fatal
1475 * so deal with it... if we don't remove the object from
1476 * the list, we'll never move past it.
1477 */
1478 KERNEL_DEBUG(0x13001fc, object, object->resident_page_count, ep_freed, ep_moved, 0);
1479
1480 vm_object_cache_remove_locked(object);
1481 vm_object_unlock(object);
1482 object = VM_OBJECT_NULL;
1483 continue;
1484 }
1485 /*
1486 * we have a locked object with pages...
1487 * time to start harvesting
1488 */
1489 break;
1490 }
1491 vm_object_cache_unlock();
1492
1493 if (object == VM_OBJECT_NULL)
1494 break;
1495
1496 /*
1497 * object is locked at this point and
1498 * has resident pages
1499 */
1500 next_p = (vm_page_t)queue_first(&object->memq);
1501
1502 /*
1503 * break the page scan into 2 pieces to minimize the time spent
1504 * behind the page queue lock...
1505 * the list of pages on these unused objects is likely to be cold
1506 * w/r to the cpu cache which increases the time to scan the list
1507 * tenfold... and we may have a 'run' of pages we can't utilize that
1508 * needs to be skipped over...
1509 */
1510 if ((ep_limit = num_to_evict - (ep_freed + ep_moved)) > EVICT_PREPARE_LIMIT)
1511 ep_limit = EVICT_PREPARE_LIMIT;
1512 ep_count = 0;
1513
1514 while (!queue_end(&object->memq, (queue_entry_t)next_p) && object->vo_cache_pages_to_scan && ep_count < ep_limit) {
1515
1516 p = next_p;
1517 next_p = (vm_page_t)queue_next(&next_p->listq);
1518
1519 object->vo_cache_pages_to_scan--;
1520
1521 if (VM_PAGE_WIRED(p) || p->busy || p->cleaning || p->laundry) {
1522 queue_remove(&object->memq, p, vm_page_t, listq);
1523 queue_enter(&object->memq, p, vm_page_t, listq);
1524
1525 ep_skipped++;
1526 continue;
1527 }
1528 if (p->wpmapped || p->dirty || p->precious) {
1529 queue_remove(&object->memq, p, vm_page_t, listq);
1530 queue_enter(&object->memq, p, vm_page_t, listq);
1531
1532 pmap_clear_reference(p->phys_page);
1533 }
1534 ep_array[ep_count++] = p;
1535 }
1536 KERNEL_DEBUG(0x13001f4 | DBG_FUNC_START, object, object->resident_page_count, ep_freed, ep_moved, 0);
1537
1538 vm_page_lockspin_queues();
1539
1540 for (ep_index = 0; ep_index < ep_count; ep_index++) {
1541
1542 p = ep_array[ep_index];
1543
1544 if (p->wpmapped || p->dirty || p->precious) {
1545 p->reference = FALSE;
1546 p->no_cache = FALSE;
1547
1548 /*
1549 * we've already filtered out pages that are in the laundry
1550 * so if we get here, this page can't be on the pageout queue
1551 */
1552 assert(!p->pageout_queue);
1553
1554 VM_PAGE_QUEUES_REMOVE(p);
1555 VM_PAGE_ENQUEUE_INACTIVE(p, TRUE);
1556
1557 ep_moved++;
1558 } else {
1559 #if CONFIG_PHANTOM_CACHE
1560 vm_phantom_cache_add_ghost(p);
1561 #endif
1562 vm_page_free_prepare_queues(p);
1563
1564 assert(p->pageq.next == NULL && p->pageq.prev == NULL);
1565 /*
1566 * Add this page to our list of reclaimed pages,
1567 * to be freed later.
1568 */
1569 p->pageq.next = (queue_entry_t) local_free_q;
1570 local_free_q = p;
1571
1572 ep_freed++;
1573 }
1574 }
1575 vm_page_unlock_queues();
1576
1577 KERNEL_DEBUG(0x13001f4 | DBG_FUNC_END, object, object->resident_page_count, ep_freed, ep_moved, 0);
1578
1579 if (local_free_q) {
1580 vm_page_free_list(local_free_q, TRUE);
1581 local_free_q = VM_PAGE_NULL;
1582 }
1583 if (object->vo_cache_pages_to_scan == 0) {
1584 KERNEL_DEBUG(0x1300208, object, object->resident_page_count, ep_freed, ep_moved, 0);
1585
1586 vm_object_cache_remove(object);
1587
1588 KERNEL_DEBUG(0x13001fc, object, object->resident_page_count, ep_freed, ep_moved, 0);
1589 }
1590 /*
1591 * done with this object
1592 */
1593 vm_object_unlock(object);
1594 object = VM_OBJECT_NULL;
1595
1596 /*
1597 * at this point, we are not holding any locks
1598 */
1599 if ((ep_freed + ep_moved) >= num_to_evict) {
1600 /*
1601 * we've reached our target for the
1602 * number of pages to evict
1603 */
1604 break;
1605 }
1606 vm_object_cache_lock_spin();
1607 }
1608 /*
1609 * put the page queues lock back to the caller's
1610 * idea of it
1611 */
1612 vm_page_lock_queues();
1613
1614 vm_object_cache_pages_freed += ep_freed;
1615 vm_object_cache_pages_moved += ep_moved;
1616 vm_object_cache_pages_skipped += ep_skipped;
1617
1618 KERNEL_DEBUG(0x13001ec | DBG_FUNC_END, ep_freed, 0, 0, 0, 0);
1619 return (ep_freed);
1620 }
1621
1622
1623 #if VM_OBJECT_CACHE
1624 /*
1625 * Check to see whether we really need to trim
1626 * down the cache. If so, remove an object from
1627 * the cache, terminate it, and repeat.
1628 *
1629 * Called with, and returns with, cache lock unlocked.
1630 */
1631 vm_object_t
1632 vm_object_cache_trim(
1633 boolean_t called_from_vm_object_deallocate)
1634 {
1635 register vm_object_t object = VM_OBJECT_NULL;
1636 vm_object_t shadow;
1637
1638 for (;;) {
1639
1640 /*
1641 * If we no longer need to trim the cache,
1642 * then we are done.
1643 */
1644 if (vm_object_cached_count <= vm_object_cached_max)
1645 return VM_OBJECT_NULL;
1646
1647 vm_object_cache_lock();
1648 if (vm_object_cached_count <= vm_object_cached_max) {
1649 vm_object_cache_unlock();
1650 return VM_OBJECT_NULL;
1651 }
1652
1653 /*
1654 * We must trim down the cache, so remove
1655 * the first object in the cache.
1656 */
1657 XPR(XPR_VM_OBJECT,
1658 "vm_object_cache_trim: removing from front of cache (%x, %x)\n",
1659 vm_object_cached_list.next,
1660 vm_object_cached_list.prev, 0, 0, 0);
1661
1662 object = (vm_object_t) queue_first(&vm_object_cached_list);
1663 if(object == (vm_object_t) &vm_object_cached_list) {
1664 /* something's wrong with the calling parameter or */
1665 /* the value of vm_object_cached_count, just fix */
1666 /* and return */
1667 if(vm_object_cached_max < 0)
1668 vm_object_cached_max = 0;
1669 vm_object_cached_count = 0;
1670 vm_object_cache_unlock();
1671 return VM_OBJECT_NULL;
1672 }
1673 vm_object_lock(object);
1674 queue_remove(&vm_object_cached_list, object, vm_object_t,
1675 cached_list);
1676 vm_object_cached_count--;
1677
1678 vm_object_cache_unlock();
1679 /*
1680 * Since this object is in the cache, we know
1681 * that it is initialized and has no references.
1682 * Take a reference to avoid recursive deallocations.
1683 */
1684
1685 assert(object->pager_initialized);
1686 assert(object->ref_count == 0);
1687 vm_object_lock_assert_exclusive(object);
1688 object->ref_count++;
1689
1690 /*
1691 * Terminate the object.
1692 * If the object had a shadow, we let vm_object_deallocate
1693 * deallocate it. "pageout" objects have a shadow, but
1694 * maintain a "paging reference" rather than a normal
1695 * reference.
1696 * (We are careful here to limit recursion.)
1697 */
1698 shadow = object->pageout?VM_OBJECT_NULL:object->shadow;
1699
1700 if(vm_object_terminate(object) != KERN_SUCCESS)
1701 continue;
1702
1703 if (shadow != VM_OBJECT_NULL) {
1704 if (called_from_vm_object_deallocate) {
1705 return shadow;
1706 } else {
1707 vm_object_deallocate(shadow);
1708 }
1709 }
1710 }
1711 }
1712 #endif
1713
1714
1715 /*
1716 * Routine: vm_object_terminate
1717 * Purpose:
1718 * Free all resources associated with a vm_object.
1719 * In/out conditions:
1720 * Upon entry, the object must be locked,
1721 * and the object must have exactly one reference.
1722 *
1723 * The shadow object reference is left alone.
1724 *
1725 * The object must be unlocked if its found that pages
1726 * must be flushed to a backing object. If someone
1727 * manages to map the object while it is being flushed
1728 * the object is returned unlocked and unchanged. Otherwise,
1729 * upon exit, the cache will be unlocked, and the
1730 * object will cease to exist.
1731 */
1732 static kern_return_t
1733 vm_object_terminate(
1734 vm_object_t object)
1735 {
1736 vm_object_t shadow_object;
1737
1738 XPR(XPR_VM_OBJECT, "vm_object_terminate, object 0x%X ref %d\n",
1739 object, object->ref_count, 0, 0, 0);
1740
1741 if (!object->pageout && (!object->temporary || object->can_persist) &&
1742 (object->pager != NULL || object->shadow_severed)) {
1743 /*
1744 * Clear pager_trusted bit so that the pages get yanked
1745 * out of the object instead of cleaned in place. This
1746 * prevents a deadlock in XMM and makes more sense anyway.
1747 */
1748 object->pager_trusted = FALSE;
1749
1750 vm_object_reap_pages(object, REAP_TERMINATE);
1751 }
1752 /*
1753 * Make sure the object isn't already being terminated
1754 */
1755 if (object->terminating) {
1756 vm_object_lock_assert_exclusive(object);
1757 object->ref_count--;
1758 assert(object->ref_count > 0);
1759 vm_object_unlock(object);
1760 return KERN_FAILURE;
1761 }
1762
1763 /*
1764 * Did somebody get a reference to the object while we were
1765 * cleaning it?
1766 */
1767 if (object->ref_count != 1) {
1768 vm_object_lock_assert_exclusive(object);
1769 object->ref_count--;
1770 assert(object->ref_count > 0);
1771 vm_object_res_deallocate(object);
1772 vm_object_unlock(object);
1773 return KERN_FAILURE;
1774 }
1775
1776 /*
1777 * Make sure no one can look us up now.
1778 */
1779
1780 object->terminating = TRUE;
1781 object->alive = FALSE;
1782
1783 if ( !object->internal && (object->objq.next || object->objq.prev))
1784 vm_object_cache_remove(object);
1785
1786 if (object->hashed) {
1787 lck_mtx_t *lck;
1788
1789 lck = vm_object_hash_lock_spin(object->pager);
1790 vm_object_remove(object);
1791 vm_object_hash_unlock(lck);
1792 }
1793 /*
1794 * Detach the object from its shadow if we are the shadow's
1795 * copy. The reference we hold on the shadow must be dropped
1796 * by our caller.
1797 */
1798 if (((shadow_object = object->shadow) != VM_OBJECT_NULL) &&
1799 !(object->pageout)) {
1800 vm_object_lock(shadow_object);
1801 if (shadow_object->copy == object)
1802 shadow_object->copy = VM_OBJECT_NULL;
1803 vm_object_unlock(shadow_object);
1804 }
1805
1806 if (object->paging_in_progress != 0 ||
1807 object->activity_in_progress != 0) {
1808 /*
1809 * There are still some paging_in_progress references
1810 * on this object, meaning that there are some paging
1811 * or other I/O operations in progress for this VM object.
1812 * Such operations take some paging_in_progress references
1813 * up front to ensure that the object doesn't go away, but
1814 * they may also need to acquire a reference on the VM object,
1815 * to map it in kernel space, for example. That means that
1816 * they may end up releasing the last reference on the VM
1817 * object, triggering its termination, while still holding
1818 * paging_in_progress references. Waiting for these
1819 * pending paging_in_progress references to go away here would
1820 * deadlock.
1821 *
1822 * To avoid deadlocking, we'll let the vm_object_reaper_thread
1823 * complete the VM object termination if it still holds
1824 * paging_in_progress references at this point.
1825 *
1826 * No new paging_in_progress should appear now that the
1827 * VM object is "terminating" and not "alive".
1828 */
1829 vm_object_reap_async(object);
1830 vm_object_unlock(object);
1831 /*
1832 * Return KERN_FAILURE to let the caller know that we
1833 * haven't completed the termination and it can't drop this
1834 * object's reference on its shadow object yet.
1835 * The reaper thread will take care of that once it has
1836 * completed this object's termination.
1837 */
1838 return KERN_FAILURE;
1839 }
1840 /*
1841 * complete the VM object termination
1842 */
1843 vm_object_reap(object);
1844 object = VM_OBJECT_NULL;
1845
1846 /*
1847 * the object lock was released by vm_object_reap()
1848 *
1849 * KERN_SUCCESS means that this object has been terminated
1850 * and no longer needs its shadow object but still holds a
1851 * reference on it.
1852 * The caller is responsible for dropping that reference.
1853 * We can't call vm_object_deallocate() here because that
1854 * would create a recursion.
1855 */
1856 return KERN_SUCCESS;
1857 }
1858
1859
1860 /*
1861 * vm_object_reap():
1862 *
1863 * Complete the termination of a VM object after it's been marked
1864 * as "terminating" and "!alive" by vm_object_terminate().
1865 *
1866 * The VM object must be locked by caller.
1867 * The lock will be released on return and the VM object is no longer valid.
1868 */
1869 void
1870 vm_object_reap(
1871 vm_object_t object)
1872 {
1873 memory_object_t pager;
1874
1875 vm_object_lock_assert_exclusive(object);
1876 assert(object->paging_in_progress == 0);
1877 assert(object->activity_in_progress == 0);
1878
1879 vm_object_reap_count++;
1880
1881 /*
1882 * Disown this purgeable object to cleanup its owner's purgeable
1883 * ledgers. We need to do this before disconnecting the object
1884 * from its pager, to properly account for compressed pages.
1885 */
1886 if (object->internal &&
1887 object->purgable != VM_PURGABLE_DENY) {
1888 vm_purgeable_accounting(object,
1889 object->purgable,
1890 TRUE); /* disown */
1891 }
1892
1893 pager = object->pager;
1894 object->pager = MEMORY_OBJECT_NULL;
1895
1896 if (pager != MEMORY_OBJECT_NULL)
1897 memory_object_control_disable(object->pager_control);
1898
1899 object->ref_count--;
1900 #if TASK_SWAPPER
1901 assert(object->res_count == 0);
1902 #endif /* TASK_SWAPPER */
1903
1904 assert (object->ref_count == 0);
1905
1906 /*
1907 * remove from purgeable queue if it's on
1908 */
1909 if (object->internal) {
1910 task_t owner;
1911
1912 owner = object->vo_purgeable_owner;
1913
1914 if (object->purgable == VM_PURGABLE_DENY) {
1915 /* not purgeable: nothing to do */
1916 } else if (object->purgable == VM_PURGABLE_VOLATILE) {
1917 purgeable_q_t queue;
1918
1919 assert(object->vo_purgeable_owner == NULL);
1920
1921 queue = vm_purgeable_object_remove(object);
1922 assert(queue);
1923
1924 if (object->purgeable_when_ripe) {
1925 /*
1926 * Must take page lock for this -
1927 * using it to protect token queue
1928 */
1929 vm_page_lock_queues();
1930 vm_purgeable_token_delete_first(queue);
1931
1932 assert(queue->debug_count_objects>=0);
1933 vm_page_unlock_queues();
1934 }
1935
1936 /*
1937 * Update "vm_page_purgeable_count" in bulk and mark
1938 * object as VM_PURGABLE_EMPTY to avoid updating
1939 * "vm_page_purgeable_count" again in vm_page_remove()
1940 * when reaping the pages.
1941 */
1942 unsigned int delta;
1943 assert(object->resident_page_count >=
1944 object->wired_page_count);
1945 delta = (object->resident_page_count -
1946 object->wired_page_count);
1947 if (delta != 0) {
1948 assert(vm_page_purgeable_count >= delta);
1949 OSAddAtomic(-delta,
1950 (SInt32 *)&vm_page_purgeable_count);
1951 }
1952 if (object->wired_page_count != 0) {
1953 assert(vm_page_purgeable_wired_count >=
1954 object->wired_page_count);
1955 OSAddAtomic(-object->wired_page_count,
1956 (SInt32 *)&vm_page_purgeable_wired_count);
1957 }
1958 object->purgable = VM_PURGABLE_EMPTY;
1959 }
1960 else if (object->purgable == VM_PURGABLE_NONVOLATILE ||
1961 object->purgable == VM_PURGABLE_EMPTY) {
1962 /* remove from nonvolatile queue */
1963 assert(object->vo_purgeable_owner == TASK_NULL);
1964 vm_purgeable_nonvolatile_dequeue(object);
1965 } else {
1966 panic("object %p in unexpected purgeable state 0x%x\n",
1967 object, object->purgable);
1968 }
1969 assert(object->objq.next == NULL);
1970 assert(object->objq.prev == NULL);
1971 }
1972
1973 /*
1974 * Clean or free the pages, as appropriate.
1975 * It is possible for us to find busy/absent pages,
1976 * if some faults on this object were aborted.
1977 */
1978 if (object->pageout) {
1979 assert(object->shadow != VM_OBJECT_NULL);
1980
1981 vm_pageout_object_terminate(object);
1982
1983 } else if (((object->temporary && !object->can_persist) || (pager == MEMORY_OBJECT_NULL))) {
1984
1985 vm_object_reap_pages(object, REAP_REAP);
1986 }
1987 assert(queue_empty(&object->memq));
1988 assert(object->paging_in_progress == 0);
1989 assert(object->activity_in_progress == 0);
1990 assert(object->ref_count == 0);
1991
1992 /*
1993 * If the pager has not already been released by
1994 * vm_object_destroy, we need to terminate it and
1995 * release our reference to it here.
1996 */
1997 if (pager != MEMORY_OBJECT_NULL) {
1998 vm_object_unlock(object);
1999 vm_object_release_pager(pager, object->hashed);
2000 vm_object_lock(object);
2001 }
2002
2003 /* kick off anyone waiting on terminating */
2004 object->terminating = FALSE;
2005 vm_object_paging_begin(object);
2006 vm_object_paging_end(object);
2007 vm_object_unlock(object);
2008
2009 #if MACH_PAGEMAP
2010 vm_external_destroy(object->existence_map, object->vo_size);
2011 #endif /* MACH_PAGEMAP */
2012
2013 object->shadow = VM_OBJECT_NULL;
2014
2015 #if VM_OBJECT_TRACKING
2016 if (vm_object_tracking_inited) {
2017 btlog_remove_entries_for_element(vm_object_tracking_btlog,
2018 object);
2019 }
2020 #endif /* VM_OBJECT_TRACKING */
2021
2022 vm_object_lock_destroy(object);
2023 /*
2024 * Free the space for the object.
2025 */
2026 zfree(vm_object_zone, object);
2027 object = VM_OBJECT_NULL;
2028 }
2029
2030
2031 unsigned int vm_max_batch = 256;
2032
2033 #define V_O_R_MAX_BATCH 128
2034
2035 #define BATCH_LIMIT(max) (vm_max_batch >= max ? max : vm_max_batch)
2036
2037
2038 #define VM_OBJ_REAP_FREELIST(_local_free_q, do_disconnect) \
2039 MACRO_BEGIN \
2040 if (_local_free_q) { \
2041 if (do_disconnect) { \
2042 vm_page_t m; \
2043 for (m = _local_free_q; \
2044 m != VM_PAGE_NULL; \
2045 m = (vm_page_t) m->pageq.next) { \
2046 if (m->pmapped) { \
2047 pmap_disconnect(m->phys_page); \
2048 } \
2049 } \
2050 } \
2051 vm_page_free_list(_local_free_q, TRUE); \
2052 _local_free_q = VM_PAGE_NULL; \
2053 } \
2054 MACRO_END
2055
2056
2057 void
2058 vm_object_reap_pages(
2059 vm_object_t object,
2060 int reap_type)
2061 {
2062 vm_page_t p;
2063 vm_page_t next;
2064 vm_page_t local_free_q = VM_PAGE_NULL;
2065 int loop_count;
2066 boolean_t disconnect_on_release;
2067 pmap_flush_context pmap_flush_context_storage;
2068
2069 if (reap_type == REAP_DATA_FLUSH) {
2070 /*
2071 * We need to disconnect pages from all pmaps before
2072 * releasing them to the free list
2073 */
2074 disconnect_on_release = TRUE;
2075 } else {
2076 /*
2077 * Either the caller has already disconnected the pages
2078 * from all pmaps, or we disconnect them here as we add
2079 * them to out local list of pages to be released.
2080 * No need to re-disconnect them when we release the pages
2081 * to the free list.
2082 */
2083 disconnect_on_release = FALSE;
2084 }
2085
2086 restart_after_sleep:
2087 if (queue_empty(&object->memq))
2088 return;
2089 loop_count = BATCH_LIMIT(V_O_R_MAX_BATCH);
2090
2091 if (reap_type == REAP_PURGEABLE)
2092 pmap_flush_context_init(&pmap_flush_context_storage);
2093
2094 vm_page_lockspin_queues();
2095
2096 next = (vm_page_t)queue_first(&object->memq);
2097
2098 while (!queue_end(&object->memq, (queue_entry_t)next)) {
2099
2100 p = next;
2101 next = (vm_page_t)queue_next(&next->listq);
2102
2103 if (--loop_count == 0) {
2104
2105 vm_page_unlock_queues();
2106
2107 if (local_free_q) {
2108
2109 if (reap_type == REAP_PURGEABLE) {
2110 pmap_flush(&pmap_flush_context_storage);
2111 pmap_flush_context_init(&pmap_flush_context_storage);
2112 }
2113 /*
2114 * Free the pages we reclaimed so far
2115 * and take a little break to avoid
2116 * hogging the page queue lock too long
2117 */
2118 VM_OBJ_REAP_FREELIST(local_free_q,
2119 disconnect_on_release);
2120 } else
2121 mutex_pause(0);
2122
2123 loop_count = BATCH_LIMIT(V_O_R_MAX_BATCH);
2124
2125 vm_page_lockspin_queues();
2126 }
2127 if (reap_type == REAP_DATA_FLUSH || reap_type == REAP_TERMINATE) {
2128
2129 if (p->busy || p->cleaning) {
2130
2131 vm_page_unlock_queues();
2132 /*
2133 * free the pages reclaimed so far
2134 */
2135 VM_OBJ_REAP_FREELIST(local_free_q,
2136 disconnect_on_release);
2137
2138 PAGE_SLEEP(object, p, THREAD_UNINT);
2139
2140 goto restart_after_sleep;
2141 }
2142 if (p->laundry) {
2143 p->pageout = FALSE;
2144
2145 vm_pageout_steal_laundry(p, TRUE);
2146 }
2147 }
2148 switch (reap_type) {
2149
2150 case REAP_DATA_FLUSH:
2151 if (VM_PAGE_WIRED(p)) {
2152 /*
2153 * this is an odd case... perhaps we should
2154 * zero-fill this page since we're conceptually
2155 * tossing its data at this point, but leaving
2156 * it on the object to honor the 'wire' contract
2157 */
2158 continue;
2159 }
2160 break;
2161
2162 case REAP_PURGEABLE:
2163 if (VM_PAGE_WIRED(p)) {
2164 /*
2165 * can't purge a wired page
2166 */
2167 vm_page_purged_wired++;
2168 continue;
2169 }
2170 if (p->laundry && !p->busy && !p->cleaning) {
2171 p->pageout = FALSE;
2172
2173 vm_pageout_steal_laundry(p, TRUE);
2174 }
2175 if (p->cleaning || p->laundry || p->absent) {
2176 /*
2177 * page is being acted upon,
2178 * so don't mess with it
2179 */
2180 vm_page_purged_others++;
2181 continue;
2182 }
2183 if (p->busy) {
2184 /*
2185 * We can't reclaim a busy page but we can
2186 * make it more likely to be paged (it's not wired) to make
2187 * sure that it gets considered by
2188 * vm_pageout_scan() later.
2189 */
2190 vm_page_deactivate(p);
2191 vm_page_purged_busy++;
2192 continue;
2193 }
2194
2195 assert(p->object != kernel_object);
2196
2197 /*
2198 * we can discard this page...
2199 */
2200 if (p->pmapped == TRUE) {
2201 /*
2202 * unmap the page
2203 */
2204 pmap_disconnect_options(p->phys_page, PMAP_OPTIONS_NOFLUSH | PMAP_OPTIONS_NOREFMOD, (void *)&pmap_flush_context_storage);
2205 }
2206 vm_page_purged_count++;
2207
2208 break;
2209
2210 case REAP_TERMINATE:
2211 if (p->absent || p->private) {
2212 /*
2213 * For private pages, VM_PAGE_FREE just
2214 * leaves the page structure around for
2215 * its owner to clean up. For absent
2216 * pages, the structure is returned to
2217 * the appropriate pool.
2218 */
2219 break;
2220 }
2221 if (p->fictitious) {
2222 assert (p->phys_page == vm_page_guard_addr);
2223 break;
2224 }
2225 if (!p->dirty && p->wpmapped)
2226 p->dirty = pmap_is_modified(p->phys_page);
2227
2228 if ((p->dirty || p->precious) && !p->error && object->alive) {
2229
2230 if (!p->laundry) {
2231 VM_PAGE_QUEUES_REMOVE(p);
2232 /*
2233 * flush page... page will be freed
2234 * upon completion of I/O
2235 */
2236 vm_pageout_cluster(p, TRUE);
2237 }
2238 vm_page_unlock_queues();
2239 /*
2240 * free the pages reclaimed so far
2241 */
2242 VM_OBJ_REAP_FREELIST(local_free_q,
2243 disconnect_on_release);
2244
2245 vm_object_paging_wait(object, THREAD_UNINT);
2246
2247 goto restart_after_sleep;
2248 }
2249 break;
2250
2251 case REAP_REAP:
2252 break;
2253 }
2254 vm_page_free_prepare_queues(p);
2255 assert(p->pageq.next == NULL && p->pageq.prev == NULL);
2256 /*
2257 * Add this page to our list of reclaimed pages,
2258 * to be freed later.
2259 */
2260 p->pageq.next = (queue_entry_t) local_free_q;
2261 local_free_q = p;
2262 }
2263 vm_page_unlock_queues();
2264
2265 /*
2266 * Free the remaining reclaimed pages
2267 */
2268 if (reap_type == REAP_PURGEABLE)
2269 pmap_flush(&pmap_flush_context_storage);
2270
2271 VM_OBJ_REAP_FREELIST(local_free_q,
2272 disconnect_on_release);
2273 }
2274
2275
2276 void
2277 vm_object_reap_async(
2278 vm_object_t object)
2279 {
2280 vm_object_lock_assert_exclusive(object);
2281
2282 vm_object_reaper_lock_spin();
2283
2284 vm_object_reap_count_async++;
2285
2286 /* enqueue the VM object... */
2287 queue_enter(&vm_object_reaper_queue, object,
2288 vm_object_t, cached_list);
2289
2290 vm_object_reaper_unlock();
2291
2292 /* ... and wake up the reaper thread */
2293 thread_wakeup((event_t) &vm_object_reaper_queue);
2294 }
2295
2296
2297 void
2298 vm_object_reaper_thread(void)
2299 {
2300 vm_object_t object, shadow_object;
2301
2302 vm_object_reaper_lock_spin();
2303
2304 while (!queue_empty(&vm_object_reaper_queue)) {
2305 queue_remove_first(&vm_object_reaper_queue,
2306 object,
2307 vm_object_t,
2308 cached_list);
2309
2310 vm_object_reaper_unlock();
2311 vm_object_lock(object);
2312
2313 assert(object->terminating);
2314 assert(!object->alive);
2315
2316 /*
2317 * The pageout daemon might be playing with our pages.
2318 * Now that the object is dead, it won't touch any more
2319 * pages, but some pages might already be on their way out.
2320 * Hence, we wait until the active paging activities have
2321 * ceased before we break the association with the pager
2322 * itself.
2323 */
2324 while (object->paging_in_progress != 0 ||
2325 object->activity_in_progress != 0) {
2326 vm_object_wait(object,
2327 VM_OBJECT_EVENT_PAGING_IN_PROGRESS,
2328 THREAD_UNINT);
2329 vm_object_lock(object);
2330 }
2331
2332 shadow_object =
2333 object->pageout ? VM_OBJECT_NULL : object->shadow;
2334
2335 vm_object_reap(object);
2336 /* cache is unlocked and object is no longer valid */
2337 object = VM_OBJECT_NULL;
2338
2339 if (shadow_object != VM_OBJECT_NULL) {
2340 /*
2341 * Drop the reference "object" was holding on
2342 * its shadow object.
2343 */
2344 vm_object_deallocate(shadow_object);
2345 shadow_object = VM_OBJECT_NULL;
2346 }
2347 vm_object_reaper_lock_spin();
2348 }
2349
2350 /* wait for more work... */
2351 assert_wait((event_t) &vm_object_reaper_queue, THREAD_UNINT);
2352
2353 vm_object_reaper_unlock();
2354
2355 thread_block((thread_continue_t) vm_object_reaper_thread);
2356 /*NOTREACHED*/
2357 }
2358
2359 /*
2360 * Routine: vm_object_pager_wakeup
2361 * Purpose: Wake up anyone waiting for termination of a pager.
2362 */
2363
2364 static void
2365 vm_object_pager_wakeup(
2366 memory_object_t pager)
2367 {
2368 vm_object_hash_entry_t entry;
2369 boolean_t waiting = FALSE;
2370 lck_mtx_t *lck;
2371
2372 /*
2373 * If anyone was waiting for the memory_object_terminate
2374 * to be queued, wake them up now.
2375 */
2376 lck = vm_object_hash_lock_spin(pager);
2377 entry = vm_object_hash_lookup(pager, TRUE);
2378 if (entry != VM_OBJECT_HASH_ENTRY_NULL)
2379 waiting = entry->waiting;
2380 vm_object_hash_unlock(lck);
2381
2382 if (entry != VM_OBJECT_HASH_ENTRY_NULL) {
2383 if (waiting)
2384 thread_wakeup((event_t) pager);
2385 vm_object_hash_entry_free(entry);
2386 }
2387 }
2388
2389 /*
2390 * Routine: vm_object_release_pager
2391 * Purpose: Terminate the pager and, upon completion,
2392 * release our last reference to it.
2393 * just like memory_object_terminate, except
2394 * that we wake up anyone blocked in vm_object_enter
2395 * waiting for termination message to be queued
2396 * before calling memory_object_init.
2397 */
2398 static void
2399 vm_object_release_pager(
2400 memory_object_t pager,
2401 boolean_t hashed)
2402 {
2403
2404 /*
2405 * Terminate the pager.
2406 */
2407
2408 (void) memory_object_terminate(pager);
2409
2410 if (hashed == TRUE) {
2411 /*
2412 * Wakeup anyone waiting for this terminate
2413 * and remove the entry from the hash
2414 */
2415 vm_object_pager_wakeup(pager);
2416 }
2417 /*
2418 * Release reference to pager.
2419 */
2420 memory_object_deallocate(pager);
2421 }
2422
2423 /*
2424 * Routine: vm_object_destroy
2425 * Purpose:
2426 * Shut down a VM object, despite the
2427 * presence of address map (or other) references
2428 * to the vm_object.
2429 */
2430 kern_return_t
2431 vm_object_destroy(
2432 vm_object_t object,
2433 __unused kern_return_t reason)
2434 {
2435 memory_object_t old_pager;
2436
2437 if (object == VM_OBJECT_NULL)
2438 return(KERN_SUCCESS);
2439
2440 /*
2441 * Remove the pager association immediately.
2442 *
2443 * This will prevent the memory manager from further
2444 * meddling. [If it wanted to flush data or make
2445 * other changes, it should have done so before performing
2446 * the destroy call.]
2447 */
2448
2449 vm_object_lock(object);
2450 object->can_persist = FALSE;
2451 object->named = FALSE;
2452 object->alive = FALSE;
2453
2454 if (object->hashed) {
2455 lck_mtx_t *lck;
2456 /*
2457 * Rip out the pager from the vm_object now...
2458 */
2459 lck = vm_object_hash_lock_spin(object->pager);
2460 vm_object_remove(object);
2461 vm_object_hash_unlock(lck);
2462 }
2463 old_pager = object->pager;
2464 object->pager = MEMORY_OBJECT_NULL;
2465 if (old_pager != MEMORY_OBJECT_NULL)
2466 memory_object_control_disable(object->pager_control);
2467
2468 /*
2469 * Wait for the existing paging activity (that got
2470 * through before we nulled out the pager) to subside.
2471 */
2472
2473 vm_object_paging_wait(object, THREAD_UNINT);
2474 vm_object_unlock(object);
2475
2476 /*
2477 * Terminate the object now.
2478 */
2479 if (old_pager != MEMORY_OBJECT_NULL) {
2480 vm_object_release_pager(old_pager, object->hashed);
2481
2482 /*
2483 * JMM - Release the caller's reference. This assumes the
2484 * caller had a reference to release, which is a big (but
2485 * currently valid) assumption if this is driven from the
2486 * vnode pager (it is holding a named reference when making
2487 * this call)..
2488 */
2489 vm_object_deallocate(object);
2490
2491 }
2492 return(KERN_SUCCESS);
2493 }
2494
2495
2496 #if VM_OBJECT_CACHE
2497
2498 #define VM_OBJ_DEACT_ALL_STATS DEBUG
2499 #if VM_OBJ_DEACT_ALL_STATS
2500 uint32_t vm_object_deactivate_all_pages_batches = 0;
2501 uint32_t vm_object_deactivate_all_pages_pages = 0;
2502 #endif /* VM_OBJ_DEACT_ALL_STATS */
2503 /*
2504 * vm_object_deactivate_all_pages
2505 *
2506 * Deactivate all pages in the specified object. (Keep its pages
2507 * in memory even though it is no longer referenced.)
2508 *
2509 * The object must be locked.
2510 */
2511 static void
2512 vm_object_deactivate_all_pages(
2513 register vm_object_t object)
2514 {
2515 register vm_page_t p;
2516 int loop_count;
2517 #if VM_OBJ_DEACT_ALL_STATS
2518 int pages_count;
2519 #endif /* VM_OBJ_DEACT_ALL_STATS */
2520 #define V_O_D_A_P_MAX_BATCH 256
2521
2522 loop_count = BATCH_LIMIT(V_O_D_A_P_MAX_BATCH);
2523 #if VM_OBJ_DEACT_ALL_STATS
2524 pages_count = 0;
2525 #endif /* VM_OBJ_DEACT_ALL_STATS */
2526 vm_page_lock_queues();
2527 queue_iterate(&object->memq, p, vm_page_t, listq) {
2528 if (--loop_count == 0) {
2529 #if VM_OBJ_DEACT_ALL_STATS
2530 hw_atomic_add(&vm_object_deactivate_all_pages_batches,
2531 1);
2532 hw_atomic_add(&vm_object_deactivate_all_pages_pages,
2533 pages_count);
2534 pages_count = 0;
2535 #endif /* VM_OBJ_DEACT_ALL_STATS */
2536 lck_mtx_yield(&vm_page_queue_lock);
2537 loop_count = BATCH_LIMIT(V_O_D_A_P_MAX_BATCH);
2538 }
2539 if (!p->busy && !p->throttled) {
2540 #if VM_OBJ_DEACT_ALL_STATS
2541 pages_count++;
2542 #endif /* VM_OBJ_DEACT_ALL_STATS */
2543 vm_page_deactivate(p);
2544 }
2545 }
2546 #if VM_OBJ_DEACT_ALL_STATS
2547 if (pages_count) {
2548 hw_atomic_add(&vm_object_deactivate_all_pages_batches, 1);
2549 hw_atomic_add(&vm_object_deactivate_all_pages_pages,
2550 pages_count);
2551 pages_count = 0;
2552 }
2553 #endif /* VM_OBJ_DEACT_ALL_STATS */
2554 vm_page_unlock_queues();
2555 }
2556 #endif /* VM_OBJECT_CACHE */
2557
2558
2559
2560 /*
2561 * The "chunk" macros are used by routines below when looking for pages to deactivate. These
2562 * exist because of the need to handle shadow chains. When deactivating pages, we only
2563 * want to deactive the ones at the top most level in the object chain. In order to do
2564 * this efficiently, the specified address range is divided up into "chunks" and we use
2565 * a bit map to keep track of which pages have already been processed as we descend down
2566 * the shadow chain. These chunk macros hide the details of the bit map implementation
2567 * as much as we can.
2568 *
2569 * For convenience, we use a 64-bit data type as the bit map, and therefore a chunk is
2570 * set to 64 pages. The bit map is indexed from the low-order end, so that the lowest
2571 * order bit represents page 0 in the current range and highest order bit represents
2572 * page 63.
2573 *
2574 * For further convenience, we also use negative logic for the page state in the bit map.
2575 * The bit is set to 1 to indicate it has not yet been seen, and to 0 to indicate it has
2576 * been processed. This way we can simply test the 64-bit long word to see if it's zero
2577 * to easily tell if the whole range has been processed. Therefore, the bit map starts
2578 * out with all the bits set. The macros below hide all these details from the caller.
2579 */
2580
2581 #define PAGES_IN_A_CHUNK 64 /* The number of pages in the chunk must */
2582 /* be the same as the number of bits in */
2583 /* the chunk_state_t type. We use 64 */
2584 /* just for convenience. */
2585
2586 #define CHUNK_SIZE (PAGES_IN_A_CHUNK * PAGE_SIZE_64) /* Size of a chunk in bytes */
2587
2588 typedef uint64_t chunk_state_t;
2589
2590 /*
2591 * The bit map uses negative logic, so we start out with all 64 bits set to indicate
2592 * that no pages have been processed yet. Also, if len is less than the full CHUNK_SIZE,
2593 * then we mark pages beyond the len as having been "processed" so that we don't waste time
2594 * looking at pages in that range. This can save us from unnecessarily chasing down the
2595 * shadow chain.
2596 */
2597
2598 #define CHUNK_INIT(c, len) \
2599 MACRO_BEGIN \
2600 uint64_t p; \
2601 \
2602 (c) = 0xffffffffffffffffLL; \
2603 \
2604 for (p = (len) / PAGE_SIZE_64; p < PAGES_IN_A_CHUNK; p++) \
2605 MARK_PAGE_HANDLED(c, p); \
2606 MACRO_END
2607
2608
2609 /*
2610 * Return true if all pages in the chunk have not yet been processed.
2611 */
2612
2613 #define CHUNK_NOT_COMPLETE(c) ((c) != 0)
2614
2615 /*
2616 * Return true if the page at offset 'p' in the bit map has already been handled
2617 * while processing a higher level object in the shadow chain.
2618 */
2619
2620 #define PAGE_ALREADY_HANDLED(c, p) (((c) & (1LL << (p))) == 0)
2621
2622 /*
2623 * Mark the page at offset 'p' in the bit map as having been processed.
2624 */
2625
2626 #define MARK_PAGE_HANDLED(c, p) \
2627 MACRO_BEGIN \
2628 (c) = (c) & ~(1LL << (p)); \
2629 MACRO_END
2630
2631
2632 /*
2633 * Return true if the page at the given offset has been paged out. Object is
2634 * locked upon entry and returned locked.
2635 */
2636
2637 static boolean_t
2638 page_is_paged_out(
2639 vm_object_t object,
2640 vm_object_offset_t offset)
2641 {
2642 kern_return_t kr;
2643 memory_object_t pager;
2644
2645 /*
2646 * Check the existence map for the page if we have one, otherwise
2647 * ask the pager about this page.
2648 */
2649
2650 #if MACH_PAGEMAP
2651 if (object->existence_map) {
2652 if (vm_external_state_get(object->existence_map, offset)
2653 == VM_EXTERNAL_STATE_EXISTS) {
2654 /*
2655 * We found the page
2656 */
2657
2658 return TRUE;
2659 }
2660 } else
2661 #endif /* MACH_PAGEMAP */
2662 if (object->internal &&
2663 object->alive &&
2664 !object->terminating &&
2665 object->pager_ready) {
2666
2667 if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) {
2668 if (VM_COMPRESSOR_PAGER_STATE_GET(object, offset)
2669 == VM_EXTERNAL_STATE_EXISTS) {
2670 return TRUE;
2671 } else {
2672 return FALSE;
2673 }
2674 }
2675
2676 /*
2677 * We're already holding a "paging in progress" reference
2678 * so the object can't disappear when we release the lock.
2679 */
2680
2681 assert(object->paging_in_progress);
2682 pager = object->pager;
2683 vm_object_unlock(object);
2684
2685 kr = memory_object_data_request(
2686 pager,
2687 offset + object->paging_offset,
2688 0, /* just poke the pager */
2689 VM_PROT_READ,
2690 NULL);
2691
2692 vm_object_lock(object);
2693
2694 if (kr == KERN_SUCCESS) {
2695
2696 /*
2697 * We found the page
2698 */
2699
2700 return TRUE;
2701 }
2702 }
2703
2704 return FALSE;
2705 }
2706
2707
2708
2709 /*
2710 * madvise_free_debug
2711 *
2712 * To help debug madvise(MADV_FREE*) mis-usage, this triggers a
2713 * zero-fill as soon as a page is affected by a madvise(MADV_FREE*), to
2714 * simulate the loss of the page's contents as if the page had been
2715 * reclaimed and then re-faulted.
2716 */
2717 #if DEVELOPMENT || DEBUG
2718 int madvise_free_debug = 1;
2719 #else /* DEBUG */
2720 int madvise_free_debug = 0;
2721 #endif /* DEBUG */
2722
2723 /*
2724 * Deactivate the pages in the specified object and range. If kill_page is set, also discard any
2725 * page modified state from the pmap. Update the chunk_state as we go along. The caller must specify
2726 * a size that is less than or equal to the CHUNK_SIZE.
2727 */
2728
2729 static void
2730 deactivate_pages_in_object(
2731 vm_object_t object,
2732 vm_object_offset_t offset,
2733 vm_object_size_t size,
2734 boolean_t kill_page,
2735 boolean_t reusable_page,
2736 boolean_t all_reusable,
2737 chunk_state_t *chunk_state,
2738 pmap_flush_context *pfc)
2739 {
2740 vm_page_t m;
2741 int p;
2742 struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT];
2743 struct vm_page_delayed_work *dwp;
2744 int dw_count;
2745 int dw_limit;
2746 unsigned int reusable = 0;
2747
2748 /*
2749 * Examine each page in the chunk. The variable 'p' is the page number relative to the start of the
2750 * chunk. Since this routine is called once for each level in the shadow chain, the chunk_state may
2751 * have pages marked as having been processed already. We stop the loop early if we find we've handled
2752 * all the pages in the chunk.
2753 */
2754
2755 dwp = &dw_array[0];
2756 dw_count = 0;
2757 dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
2758
2759 for(p = 0; size && CHUNK_NOT_COMPLETE(*chunk_state); p++, size -= PAGE_SIZE_64, offset += PAGE_SIZE_64) {
2760
2761 /*
2762 * If this offset has already been found and handled in a higher level object, then don't
2763 * do anything with it in the current shadow object.
2764 */
2765
2766 if (PAGE_ALREADY_HANDLED(*chunk_state, p))
2767 continue;
2768
2769 /*
2770 * See if the page at this offset is around. First check to see if the page is resident,
2771 * then if not, check the existence map or with the pager.
2772 */
2773
2774 if ((m = vm_page_lookup(object, offset)) != VM_PAGE_NULL) {
2775
2776 /*
2777 * We found a page we were looking for. Mark it as "handled" now in the chunk_state
2778 * so that we won't bother looking for a page at this offset again if there are more
2779 * shadow objects. Then deactivate the page.
2780 */
2781
2782 MARK_PAGE_HANDLED(*chunk_state, p);
2783
2784 if (( !VM_PAGE_WIRED(m)) && (!m->private) && (!m->gobbled) && (!m->busy) && (!m->laundry)) {
2785 int clear_refmod;
2786 int pmap_options;
2787
2788 dwp->dw_mask = 0;
2789
2790 pmap_options = 0;
2791 clear_refmod = VM_MEM_REFERENCED;
2792 dwp->dw_mask |= DW_clear_reference;
2793
2794 if ((kill_page) && (object->internal)) {
2795 if (madvise_free_debug) {
2796 /*
2797 * zero-fill the page now
2798 * to simulate it being
2799 * reclaimed and re-faulted.
2800 */
2801 pmap_zero_page(m->phys_page);
2802 }
2803 m->precious = FALSE;
2804 m->dirty = FALSE;
2805
2806 clear_refmod |= VM_MEM_MODIFIED;
2807 if (m->throttled) {
2808 /*
2809 * This page is now clean and
2810 * reclaimable. Move it out
2811 * of the throttled queue, so
2812 * that vm_pageout_scan() can
2813 * find it.
2814 */
2815 dwp->dw_mask |= DW_move_page;
2816 }
2817 #if MACH_PAGEMAP
2818 vm_external_state_clr(object->existence_map, offset);
2819 #endif /* MACH_PAGEMAP */
2820 VM_COMPRESSOR_PAGER_STATE_CLR(object,
2821 offset);
2822
2823 if (reusable_page && !m->reusable) {
2824 assert(!all_reusable);
2825 assert(!object->all_reusable);
2826 m->reusable = TRUE;
2827 object->reusable_page_count++;
2828 assert(object->resident_page_count >= object->reusable_page_count);
2829 reusable++;
2830 /*
2831 * Tell pmap this page is now
2832 * "reusable" (to update pmap
2833 * stats for all mappings).
2834 */
2835 pmap_options |= PMAP_OPTIONS_SET_REUSABLE;
2836 }
2837 }
2838 pmap_options |= PMAP_OPTIONS_NOFLUSH;
2839 pmap_clear_refmod_options(m->phys_page,
2840 clear_refmod,
2841 pmap_options,
2842 (void *)pfc);
2843
2844 if (!m->throttled && !(reusable_page || all_reusable))
2845 dwp->dw_mask |= DW_move_page;
2846
2847 if (dwp->dw_mask)
2848 VM_PAGE_ADD_DELAYED_WORK(dwp, m,
2849 dw_count);
2850
2851 if (dw_count >= dw_limit) {
2852 if (reusable) {
2853 OSAddAtomic(reusable,
2854 &vm_page_stats_reusable.reusable_count);
2855 vm_page_stats_reusable.reusable += reusable;
2856 reusable = 0;
2857 }
2858 vm_page_do_delayed_work(object, &dw_array[0], dw_count);
2859
2860 dwp = &dw_array[0];
2861 dw_count = 0;
2862 }
2863 }
2864
2865 } else {
2866
2867 /*
2868 * The page at this offset isn't memory resident, check to see if it's
2869 * been paged out. If so, mark it as handled so we don't bother looking
2870 * for it in the shadow chain.
2871 */
2872
2873 if (page_is_paged_out(object, offset)) {
2874 MARK_PAGE_HANDLED(*chunk_state, p);
2875
2876 /*
2877 * If we're killing a non-resident page, then clear the page in the existence
2878 * map so we don't bother paging it back in if it's touched again in the future.
2879 */
2880
2881 if ((kill_page) && (object->internal)) {
2882 #if MACH_PAGEMAP
2883 vm_external_state_clr(object->existence_map, offset);
2884 #endif /* MACH_PAGEMAP */
2885 VM_COMPRESSOR_PAGER_STATE_CLR(object,
2886 offset);
2887 }
2888 }
2889 }
2890 }
2891
2892 if (reusable) {
2893 OSAddAtomic(reusable, &vm_page_stats_reusable.reusable_count);
2894 vm_page_stats_reusable.reusable += reusable;
2895 reusable = 0;
2896 }
2897
2898 if (dw_count)
2899 vm_page_do_delayed_work(object, &dw_array[0], dw_count);
2900 }
2901
2902
2903 /*
2904 * Deactive a "chunk" of the given range of the object starting at offset. A "chunk"
2905 * will always be less than or equal to the given size. The total range is divided up
2906 * into chunks for efficiency and performance related to the locks and handling the shadow
2907 * chain. This routine returns how much of the given "size" it actually processed. It's
2908 * up to the caler to loop and keep calling this routine until the entire range they want
2909 * to process has been done.
2910 */
2911
2912 static vm_object_size_t
2913 deactivate_a_chunk(
2914 vm_object_t orig_object,
2915 vm_object_offset_t offset,
2916 vm_object_size_t size,
2917 boolean_t kill_page,
2918 boolean_t reusable_page,
2919 boolean_t all_reusable,
2920 pmap_flush_context *pfc)
2921 {
2922 vm_object_t object;
2923 vm_object_t tmp_object;
2924 vm_object_size_t length;
2925 chunk_state_t chunk_state;
2926
2927
2928 /*
2929 * Get set to do a chunk. We'll do up to CHUNK_SIZE, but no more than the
2930 * remaining size the caller asked for.
2931 */
2932
2933 length = MIN(size, CHUNK_SIZE);
2934
2935 /*
2936 * The chunk_state keeps track of which pages we've already processed if there's
2937 * a shadow chain on this object. At this point, we haven't done anything with this
2938 * range of pages yet, so initialize the state to indicate no pages processed yet.
2939 */
2940
2941 CHUNK_INIT(chunk_state, length);
2942 object = orig_object;
2943
2944 /*
2945 * Start at the top level object and iterate around the loop once for each object
2946 * in the shadow chain. We stop processing early if we've already found all the pages
2947 * in the range. Otherwise we stop when we run out of shadow objects.
2948 */
2949
2950 while (object && CHUNK_NOT_COMPLETE(chunk_state)) {
2951 vm_object_paging_begin(object);
2952
2953 deactivate_pages_in_object(object, offset, length, kill_page, reusable_page, all_reusable, &chunk_state, pfc);
2954
2955 vm_object_paging_end(object);
2956
2957 /*
2958 * We've finished with this object, see if there's a shadow object. If
2959 * there is, update the offset and lock the new object. We also turn off
2960 * kill_page at this point since we only kill pages in the top most object.
2961 */
2962
2963 tmp_object = object->shadow;
2964
2965 if (tmp_object) {
2966 kill_page = FALSE;
2967 reusable_page = FALSE;
2968 all_reusable = FALSE;
2969 offset += object->vo_shadow_offset;
2970 vm_object_lock(tmp_object);
2971 }
2972
2973 if (object != orig_object)
2974 vm_object_unlock(object);
2975
2976 object = tmp_object;
2977 }
2978
2979 if (object && object != orig_object)
2980 vm_object_unlock(object);
2981
2982 return length;
2983 }
2984
2985
2986
2987 /*
2988 * Move any resident pages in the specified range to the inactive queue. If kill_page is set,
2989 * we also clear the modified status of the page and "forget" any changes that have been made
2990 * to the page.
2991 */
2992
2993 __private_extern__ void
2994 vm_object_deactivate_pages(
2995 vm_object_t object,
2996 vm_object_offset_t offset,
2997 vm_object_size_t size,
2998 boolean_t kill_page,
2999 boolean_t reusable_page)
3000 {
3001 vm_object_size_t length;
3002 boolean_t all_reusable;
3003 pmap_flush_context pmap_flush_context_storage;
3004
3005 /*
3006 * We break the range up into chunks and do one chunk at a time. This is for
3007 * efficiency and performance while handling the shadow chains and the locks.
3008 * The deactivate_a_chunk() function returns how much of the range it processed.
3009 * We keep calling this routine until the given size is exhausted.
3010 */
3011
3012
3013 all_reusable = FALSE;
3014 #if 11
3015 /*
3016 * For the sake of accurate "reusable" pmap stats, we need
3017 * to tell pmap about each page that is no longer "reusable",
3018 * so we can't do the "all_reusable" optimization.
3019 */
3020 #else
3021 if (reusable_page &&
3022 object->internal &&
3023 object->vo_size != 0 &&
3024 object->vo_size == size &&
3025 object->reusable_page_count == 0) {
3026 all_reusable = TRUE;
3027 reusable_page = FALSE;
3028 }
3029 #endif
3030
3031 if ((reusable_page || all_reusable) && object->all_reusable) {
3032 /* This means MADV_FREE_REUSABLE has been called twice, which
3033 * is probably illegal. */
3034 return;
3035 }
3036
3037 pmap_flush_context_init(&pmap_flush_context_storage);
3038
3039 while (size) {
3040 length = deactivate_a_chunk(object, offset, size, kill_page, reusable_page, all_reusable, &pmap_flush_context_storage);
3041
3042 size -= length;
3043 offset += length;
3044 }
3045 pmap_flush(&pmap_flush_context_storage);
3046
3047 if (all_reusable) {
3048 if (!object->all_reusable) {
3049 unsigned int reusable;
3050
3051 object->all_reusable = TRUE;
3052 assert(object->reusable_page_count == 0);
3053 /* update global stats */
3054 reusable = object->resident_page_count;
3055 OSAddAtomic(reusable,
3056 &vm_page_stats_reusable.reusable_count);
3057 vm_page_stats_reusable.reusable += reusable;
3058 vm_page_stats_reusable.all_reusable_calls++;
3059 }
3060 } else if (reusable_page) {
3061 vm_page_stats_reusable.partial_reusable_calls++;
3062 }
3063 }
3064
3065 void
3066 vm_object_reuse_pages(
3067 vm_object_t object,
3068 vm_object_offset_t start_offset,
3069 vm_object_offset_t end_offset,
3070 boolean_t allow_partial_reuse)
3071 {
3072 vm_object_offset_t cur_offset;
3073 vm_page_t m;
3074 unsigned int reused, reusable;
3075
3076 #define VM_OBJECT_REUSE_PAGE(object, m, reused) \
3077 MACRO_BEGIN \
3078 if ((m) != VM_PAGE_NULL && \
3079 (m)->reusable) { \
3080 assert((object)->reusable_page_count <= \
3081 (object)->resident_page_count); \
3082 assert((object)->reusable_page_count > 0); \
3083 (object)->reusable_page_count--; \
3084 (m)->reusable = FALSE; \
3085 (reused)++; \
3086 /* \
3087 * Tell pmap that this page is no longer \
3088 * "reusable", to update the "reusable" stats \
3089 * for all the pmaps that have mapped this \
3090 * page. \
3091 */ \
3092 pmap_clear_refmod_options((m)->phys_page, \
3093 0, /* refmod */ \
3094 (PMAP_OPTIONS_CLEAR_REUSABLE \
3095 | PMAP_OPTIONS_NOFLUSH), \
3096 NULL); \
3097 } \
3098 MACRO_END
3099
3100 reused = 0;
3101 reusable = 0;
3102
3103 vm_object_lock_assert_exclusive(object);
3104
3105 if (object->all_reusable) {
3106 panic("object %p all_reusable: can't update pmap stats\n",
3107 object);
3108 assert(object->reusable_page_count == 0);
3109 object->all_reusable = FALSE;
3110 if (end_offset - start_offset == object->vo_size ||
3111 !allow_partial_reuse) {
3112 vm_page_stats_reusable.all_reuse_calls++;
3113 reused = object->resident_page_count;
3114 } else {
3115 vm_page_stats_reusable.partial_reuse_calls++;
3116 queue_iterate(&object->memq, m, vm_page_t, listq) {
3117 if (m->offset < start_offset ||
3118 m->offset >= end_offset) {
3119 m->reusable = TRUE;
3120 object->reusable_page_count++;
3121 assert(object->resident_page_count >= object->reusable_page_count);
3122 continue;
3123 } else {
3124 assert(!m->reusable);
3125 reused++;
3126 }
3127 }
3128 }
3129 } else if (object->resident_page_count >
3130 ((end_offset - start_offset) >> PAGE_SHIFT)) {
3131 vm_page_stats_reusable.partial_reuse_calls++;
3132 for (cur_offset = start_offset;
3133 cur_offset < end_offset;
3134 cur_offset += PAGE_SIZE_64) {
3135 if (object->reusable_page_count == 0) {
3136 break;
3137 }
3138 m = vm_page_lookup(object, cur_offset);
3139 VM_OBJECT_REUSE_PAGE(object, m, reused);
3140 }
3141 } else {
3142 vm_page_stats_reusable.partial_reuse_calls++;
3143 queue_iterate(&object->memq, m, vm_page_t, listq) {
3144 if (object->reusable_page_count == 0) {
3145 break;
3146 }
3147 if (m->offset < start_offset ||
3148 m->offset >= end_offset) {
3149 continue;
3150 }
3151 VM_OBJECT_REUSE_PAGE(object, m, reused);
3152 }
3153 }
3154
3155 /* update global stats */
3156 OSAddAtomic(reusable-reused, &vm_page_stats_reusable.reusable_count);
3157 vm_page_stats_reusable.reused += reused;
3158 vm_page_stats_reusable.reusable += reusable;
3159 }
3160
3161 /*
3162 * Routine: vm_object_pmap_protect
3163 *
3164 * Purpose:
3165 * Reduces the permission for all physical
3166 * pages in the specified object range.
3167 *
3168 * If removing write permission only, it is
3169 * sufficient to protect only the pages in
3170 * the top-level object; only those pages may
3171 * have write permission.
3172 *
3173 * If removing all access, we must follow the
3174 * shadow chain from the top-level object to
3175 * remove access to all pages in shadowed objects.
3176 *
3177 * The object must *not* be locked. The object must
3178 * be temporary/internal.
3179 *
3180 * If pmap is not NULL, this routine assumes that
3181 * the only mappings for the pages are in that
3182 * pmap.
3183 */
3184
3185 __private_extern__ void
3186 vm_object_pmap_protect(
3187 register vm_object_t object,
3188 register vm_object_offset_t offset,
3189 vm_object_size_t size,
3190 pmap_t pmap,
3191 vm_map_offset_t pmap_start,
3192 vm_prot_t prot)
3193 {
3194 vm_object_pmap_protect_options(object, offset, size,
3195 pmap, pmap_start, prot, 0);
3196 }
3197
3198 __private_extern__ void
3199 vm_object_pmap_protect_options(
3200 register vm_object_t object,
3201 register vm_object_offset_t offset,
3202 vm_object_size_t size,
3203 pmap_t pmap,
3204 vm_map_offset_t pmap_start,
3205 vm_prot_t prot,
3206 int options)
3207 {
3208 pmap_flush_context pmap_flush_context_storage;
3209 boolean_t delayed_pmap_flush = FALSE;
3210
3211 if (object == VM_OBJECT_NULL)
3212 return;
3213 size = vm_object_round_page(size);
3214 offset = vm_object_trunc_page(offset);
3215
3216 vm_object_lock(object);
3217
3218 if (object->phys_contiguous) {
3219 if (pmap != NULL) {
3220 vm_object_unlock(object);
3221 pmap_protect_options(pmap,
3222 pmap_start,
3223 pmap_start + size,
3224 prot,
3225 options & ~PMAP_OPTIONS_NOFLUSH,
3226 NULL);
3227 } else {
3228 vm_object_offset_t phys_start, phys_end, phys_addr;
3229
3230 phys_start = object->vo_shadow_offset + offset;
3231 phys_end = phys_start + size;
3232 assert(phys_start <= phys_end);
3233 assert(phys_end <= object->vo_shadow_offset + object->vo_size);
3234 vm_object_unlock(object);
3235
3236 pmap_flush_context_init(&pmap_flush_context_storage);
3237 delayed_pmap_flush = FALSE;
3238
3239 for (phys_addr = phys_start;
3240 phys_addr < phys_end;
3241 phys_addr += PAGE_SIZE_64) {
3242 pmap_page_protect_options(
3243 (ppnum_t) (phys_addr >> PAGE_SHIFT),
3244 prot,
3245 options | PMAP_OPTIONS_NOFLUSH,
3246 (void *)&pmap_flush_context_storage);
3247 delayed_pmap_flush = TRUE;
3248 }
3249 if (delayed_pmap_flush == TRUE)
3250 pmap_flush(&pmap_flush_context_storage);
3251 }
3252 return;
3253 }
3254
3255 assert(object->internal);
3256
3257 while (TRUE) {
3258 if (ptoa_64(object->resident_page_count) > size/2 && pmap != PMAP_NULL) {
3259 vm_object_unlock(object);
3260 pmap_protect_options(pmap, pmap_start, pmap_start + size, prot,
3261 options & ~PMAP_OPTIONS_NOFLUSH, NULL);
3262 return;
3263 }
3264
3265 pmap_flush_context_init(&pmap_flush_context_storage);
3266 delayed_pmap_flush = FALSE;
3267
3268 /*
3269 * if we are doing large ranges with respect to resident
3270 * page count then we should interate over pages otherwise
3271 * inverse page look-up will be faster
3272 */
3273 if (ptoa_64(object->resident_page_count / 4) < size) {
3274 vm_page_t p;
3275 vm_object_offset_t end;
3276
3277 end = offset + size;
3278
3279 queue_iterate(&object->memq, p, vm_page_t, listq) {
3280 if (!p->fictitious && (offset <= p->offset) && (p->offset < end)) {
3281 vm_map_offset_t start;
3282
3283 start = pmap_start + p->offset - offset;
3284
3285 if (pmap != PMAP_NULL)
3286 pmap_protect_options(
3287 pmap,
3288 start,
3289 start + PAGE_SIZE_64,
3290 prot,
3291 options | PMAP_OPTIONS_NOFLUSH,
3292 &pmap_flush_context_storage);
3293 else
3294 pmap_page_protect_options(
3295 p->phys_page,
3296 prot,
3297 options | PMAP_OPTIONS_NOFLUSH,
3298 &pmap_flush_context_storage);
3299 delayed_pmap_flush = TRUE;
3300 }
3301 }
3302
3303 } else {
3304 vm_page_t p;
3305 vm_object_offset_t end;
3306 vm_object_offset_t target_off;
3307
3308 end = offset + size;
3309
3310 for (target_off = offset;
3311 target_off < end; target_off += PAGE_SIZE) {
3312
3313 p = vm_page_lookup(object, target_off);
3314
3315 if (p != VM_PAGE_NULL) {
3316 vm_object_offset_t start;
3317
3318 start = pmap_start + (p->offset - offset);
3319
3320 if (pmap != PMAP_NULL)
3321 pmap_protect_options(
3322 pmap,
3323 start,
3324 start + PAGE_SIZE_64,
3325 prot,
3326 options | PMAP_OPTIONS_NOFLUSH,
3327 &pmap_flush_context_storage);
3328 else
3329 pmap_page_protect_options(
3330 p->phys_page,
3331 prot,
3332 options | PMAP_OPTIONS_NOFLUSH,
3333 &pmap_flush_context_storage);
3334 delayed_pmap_flush = TRUE;
3335 }
3336 }
3337 }
3338 if (delayed_pmap_flush == TRUE)
3339 pmap_flush(&pmap_flush_context_storage);
3340
3341 if (prot == VM_PROT_NONE) {
3342 /*
3343 * Must follow shadow chain to remove access
3344 * to pages in shadowed objects.
3345 */
3346 register vm_object_t next_object;
3347
3348 next_object = object->shadow;
3349 if (next_object != VM_OBJECT_NULL) {
3350 offset += object->vo_shadow_offset;
3351 vm_object_lock(next_object);
3352 vm_object_unlock(object);
3353 object = next_object;
3354 }
3355 else {
3356 /*
3357 * End of chain - we are done.
3358 */
3359 break;
3360 }
3361 }
3362 else {
3363 /*
3364 * Pages in shadowed objects may never have
3365 * write permission - we may stop here.
3366 */
3367 break;
3368 }
3369 }
3370
3371 vm_object_unlock(object);
3372 }
3373
3374 /*
3375 * Routine: vm_object_copy_slowly
3376 *
3377 * Description:
3378 * Copy the specified range of the source
3379 * virtual memory object without using
3380 * protection-based optimizations (such
3381 * as copy-on-write). The pages in the
3382 * region are actually copied.
3383 *
3384 * In/out conditions:
3385 * The caller must hold a reference and a lock
3386 * for the source virtual memory object. The source
3387 * object will be returned *unlocked*.
3388 *
3389 * Results:
3390 * If the copy is completed successfully, KERN_SUCCESS is
3391 * returned. If the caller asserted the interruptible
3392 * argument, and an interruption occurred while waiting
3393 * for a user-generated event, MACH_SEND_INTERRUPTED is
3394 * returned. Other values may be returned to indicate
3395 * hard errors during the copy operation.
3396 *
3397 * A new virtual memory object is returned in a
3398 * parameter (_result_object). The contents of this
3399 * new object, starting at a zero offset, are a copy
3400 * of the source memory region. In the event of
3401 * an error, this parameter will contain the value
3402 * VM_OBJECT_NULL.
3403 */
3404 __private_extern__ kern_return_t
3405 vm_object_copy_slowly(
3406 register vm_object_t src_object,
3407 vm_object_offset_t src_offset,
3408 vm_object_size_t size,
3409 boolean_t interruptible,
3410 vm_object_t *_result_object) /* OUT */
3411 {
3412 vm_object_t new_object;
3413 vm_object_offset_t new_offset;
3414
3415 struct vm_object_fault_info fault_info;
3416
3417 XPR(XPR_VM_OBJECT, "v_o_c_slowly obj 0x%x off 0x%x size 0x%x\n",
3418 src_object, src_offset, size, 0, 0);
3419
3420 if (size == 0) {
3421 vm_object_unlock(src_object);
3422 *_result_object = VM_OBJECT_NULL;
3423 return(KERN_INVALID_ARGUMENT);
3424 }
3425
3426 /*
3427 * Prevent destruction of the source object while we copy.
3428 */
3429
3430 vm_object_reference_locked(src_object);
3431 vm_object_unlock(src_object);
3432
3433 /*
3434 * Create a new object to hold the copied pages.
3435 * A few notes:
3436 * We fill the new object starting at offset 0,
3437 * regardless of the input offset.
3438 * We don't bother to lock the new object within
3439 * this routine, since we have the only reference.
3440 */
3441
3442 new_object = vm_object_allocate(size);
3443 new_offset = 0;
3444
3445 assert(size == trunc_page_64(size)); /* Will the loop terminate? */
3446
3447 fault_info.interruptible = interruptible;
3448 fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL;
3449 fault_info.user_tag = 0;
3450 fault_info.pmap_options = 0;
3451 fault_info.lo_offset = src_offset;
3452 fault_info.hi_offset = src_offset + size;
3453 fault_info.no_cache = FALSE;
3454 fault_info.stealth = TRUE;
3455 fault_info.io_sync = FALSE;
3456 fault_info.cs_bypass = FALSE;
3457 fault_info.mark_zf_absent = FALSE;
3458 fault_info.batch_pmap_op = FALSE;
3459
3460 for ( ;
3461 size != 0 ;
3462 src_offset += PAGE_SIZE_64,
3463 new_offset += PAGE_SIZE_64, size -= PAGE_SIZE_64
3464 ) {
3465 vm_page_t new_page;
3466 vm_fault_return_t result;
3467
3468 vm_object_lock(new_object);
3469
3470 while ((new_page = vm_page_alloc(new_object, new_offset))
3471 == VM_PAGE_NULL) {
3472
3473 vm_object_unlock(new_object);
3474
3475 if (!vm_page_wait(interruptible)) {
3476 vm_object_deallocate(new_object);
3477 vm_object_deallocate(src_object);
3478 *_result_object = VM_OBJECT_NULL;
3479 return(MACH_SEND_INTERRUPTED);
3480 }
3481 vm_object_lock(new_object);
3482 }
3483 vm_object_unlock(new_object);
3484
3485 do {
3486 vm_prot_t prot = VM_PROT_READ;
3487 vm_page_t _result_page;
3488 vm_page_t top_page;
3489 register
3490 vm_page_t result_page;
3491 kern_return_t error_code;
3492
3493 vm_object_lock(src_object);
3494 vm_object_paging_begin(src_object);
3495
3496 if (size > (vm_size_t) -1) {
3497 /* 32-bit overflow */
3498 fault_info.cluster_size = (vm_size_t) (0 - PAGE_SIZE);
3499 } else {
3500 fault_info.cluster_size = (vm_size_t) size;
3501 assert(fault_info.cluster_size == size);
3502 }
3503
3504 XPR(XPR_VM_FAULT,"vm_object_copy_slowly -> vm_fault_page",0,0,0,0,0);
3505 _result_page = VM_PAGE_NULL;
3506 result = vm_fault_page(src_object, src_offset,
3507 VM_PROT_READ, FALSE,
3508 FALSE, /* page not looked up */
3509 &prot, &_result_page, &top_page,
3510 (int *)0,
3511 &error_code, FALSE, FALSE, &fault_info);
3512
3513 switch(result) {
3514 case VM_FAULT_SUCCESS:
3515 result_page = _result_page;
3516
3517 /*
3518 * Copy the page to the new object.
3519 *
3520 * POLICY DECISION:
3521 * If result_page is clean,
3522 * we could steal it instead
3523 * of copying.
3524 */
3525
3526 vm_page_copy(result_page, new_page);
3527 vm_object_unlock(result_page->object);
3528
3529 /*
3530 * Let go of both pages (make them
3531 * not busy, perform wakeup, activate).
3532 */
3533 vm_object_lock(new_object);
3534 SET_PAGE_DIRTY(new_page, FALSE);
3535 PAGE_WAKEUP_DONE(new_page);
3536 vm_object_unlock(new_object);
3537
3538 vm_object_lock(result_page->object);
3539 PAGE_WAKEUP_DONE(result_page);
3540
3541 vm_page_lockspin_queues();
3542 if (!result_page->active &&
3543 !result_page->inactive &&
3544 !result_page->throttled)
3545 vm_page_activate(result_page);
3546 vm_page_activate(new_page);
3547 vm_page_unlock_queues();
3548
3549 /*
3550 * Release paging references and
3551 * top-level placeholder page, if any.
3552 */
3553
3554 vm_fault_cleanup(result_page->object,
3555 top_page);
3556
3557 break;
3558
3559 case VM_FAULT_RETRY:
3560 break;
3561
3562 case VM_FAULT_MEMORY_SHORTAGE:
3563 if (vm_page_wait(interruptible))
3564 break;
3565 /* fall thru */
3566
3567 case VM_FAULT_INTERRUPTED:
3568 vm_object_lock(new_object);
3569 VM_PAGE_FREE(new_page);
3570 vm_object_unlock(new_object);
3571
3572 vm_object_deallocate(new_object);
3573 vm_object_deallocate(src_object);
3574 *_result_object = VM_OBJECT_NULL;
3575 return(MACH_SEND_INTERRUPTED);
3576
3577 case VM_FAULT_SUCCESS_NO_VM_PAGE:
3578 /* success but no VM page: fail */
3579 vm_object_paging_end(src_object);
3580 vm_object_unlock(src_object);
3581 /*FALLTHROUGH*/
3582 case VM_FAULT_MEMORY_ERROR:
3583 /*
3584 * A policy choice:
3585 * (a) ignore pages that we can't
3586 * copy
3587 * (b) return the null object if
3588 * any page fails [chosen]
3589 */
3590
3591 vm_object_lock(new_object);
3592 VM_PAGE_FREE(new_page);
3593 vm_object_unlock(new_object);
3594
3595 vm_object_deallocate(new_object);
3596 vm_object_deallocate(src_object);
3597 *_result_object = VM_OBJECT_NULL;
3598 return(error_code ? error_code:
3599 KERN_MEMORY_ERROR);
3600
3601 default:
3602 panic("vm_object_copy_slowly: unexpected error"
3603 " 0x%x from vm_fault_page()\n", result);
3604 }
3605 } while (result != VM_FAULT_SUCCESS);
3606 }
3607
3608 /*
3609 * Lose the extra reference, and return our object.
3610 */
3611 vm_object_deallocate(src_object);
3612 *_result_object = new_object;
3613 return(KERN_SUCCESS);
3614 }
3615
3616 /*
3617 * Routine: vm_object_copy_quickly
3618 *
3619 * Purpose:
3620 * Copy the specified range of the source virtual
3621 * memory object, if it can be done without waiting
3622 * for user-generated events.
3623 *
3624 * Results:
3625 * If the copy is successful, the copy is returned in
3626 * the arguments; otherwise, the arguments are not
3627 * affected.
3628 *
3629 * In/out conditions:
3630 * The object should be unlocked on entry and exit.
3631 */
3632
3633 /*ARGSUSED*/
3634 __private_extern__ boolean_t
3635 vm_object_copy_quickly(
3636 vm_object_t *_object, /* INOUT */
3637 __unused vm_object_offset_t offset, /* IN */
3638 __unused vm_object_size_t size, /* IN */
3639 boolean_t *_src_needs_copy, /* OUT */
3640 boolean_t *_dst_needs_copy) /* OUT */
3641 {
3642 vm_object_t object = *_object;
3643 memory_object_copy_strategy_t copy_strategy;
3644
3645 XPR(XPR_VM_OBJECT, "v_o_c_quickly obj 0x%x off 0x%x size 0x%x\n",
3646 *_object, offset, size, 0, 0);
3647 if (object == VM_OBJECT_NULL) {
3648 *_src_needs_copy = FALSE;
3649 *_dst_needs_copy = FALSE;
3650 return(TRUE);
3651 }
3652
3653 vm_object_lock(object);
3654
3655 copy_strategy = object->copy_strategy;
3656
3657 switch (copy_strategy) {
3658 case MEMORY_OBJECT_COPY_SYMMETRIC:
3659
3660 /*
3661 * Symmetric copy strategy.
3662 * Make another reference to the object.
3663 * Leave object/offset unchanged.
3664 */
3665
3666 vm_object_reference_locked(object);
3667 object->shadowed = TRUE;
3668 vm_object_unlock(object);
3669
3670 /*
3671 * Both source and destination must make
3672 * shadows, and the source must be made
3673 * read-only if not already.
3674 */
3675
3676 *_src_needs_copy = TRUE;
3677 *_dst_needs_copy = TRUE;
3678
3679 break;
3680
3681 case MEMORY_OBJECT_COPY_DELAY:
3682 vm_object_unlock(object);
3683 return(FALSE);
3684
3685 default:
3686 vm_object_unlock(object);
3687 return(FALSE);
3688 }
3689 return(TRUE);
3690 }
3691
3692 static int copy_call_count = 0;
3693 static int copy_call_sleep_count = 0;
3694 static int copy_call_restart_count = 0;
3695
3696 /*
3697 * Routine: vm_object_copy_call [internal]
3698 *
3699 * Description:
3700 * Copy the source object (src_object), using the
3701 * user-managed copy algorithm.
3702 *
3703 * In/out conditions:
3704 * The source object must be locked on entry. It
3705 * will be *unlocked* on exit.
3706 *
3707 * Results:
3708 * If the copy is successful, KERN_SUCCESS is returned.
3709 * A new object that represents the copied virtual
3710 * memory is returned in a parameter (*_result_object).
3711 * If the return value indicates an error, this parameter
3712 * is not valid.
3713 */
3714 static kern_return_t
3715 vm_object_copy_call(
3716 vm_object_t src_object,
3717 vm_object_offset_t src_offset,
3718 vm_object_size_t size,
3719 vm_object_t *_result_object) /* OUT */
3720 {
3721 kern_return_t kr;
3722 vm_object_t copy;
3723 boolean_t check_ready = FALSE;
3724 uint32_t try_failed_count = 0;
3725
3726 /*
3727 * If a copy is already in progress, wait and retry.
3728 *
3729 * XXX
3730 * Consider making this call interruptable, as Mike
3731 * intended it to be.
3732 *
3733 * XXXO
3734 * Need a counter or version or something to allow
3735 * us to use the copy that the currently requesting
3736 * thread is obtaining -- is it worth adding to the
3737 * vm object structure? Depends how common this case it.
3738 */
3739 copy_call_count++;
3740 while (vm_object_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL)) {
3741 vm_object_sleep(src_object, VM_OBJECT_EVENT_COPY_CALL,
3742 THREAD_UNINT);
3743 copy_call_restart_count++;
3744 }
3745
3746 /*
3747 * Indicate (for the benefit of memory_object_create_copy)
3748 * that we want a copy for src_object. (Note that we cannot
3749 * do a real assert_wait before calling memory_object_copy,
3750 * so we simply set the flag.)
3751 */
3752
3753 vm_object_set_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL);
3754 vm_object_unlock(src_object);
3755
3756 /*
3757 * Ask the memory manager to give us a memory object
3758 * which represents a copy of the src object.
3759 * The memory manager may give us a memory object
3760 * which we already have, or it may give us a
3761 * new memory object. This memory object will arrive
3762 * via memory_object_create_copy.
3763 */
3764
3765 kr = KERN_FAILURE; /* XXX need to change memory_object.defs */
3766 if (kr != KERN_SUCCESS) {
3767 return kr;
3768 }
3769
3770 /*
3771 * Wait for the copy to arrive.
3772 */
3773 vm_object_lock(src_object);
3774 while (vm_object_wanted(src_object, VM_OBJECT_EVENT_COPY_CALL)) {
3775 vm_object_sleep(src_object, VM_OBJECT_EVENT_COPY_CALL,
3776 THREAD_UNINT);
3777 copy_call_sleep_count++;
3778 }
3779 Retry:
3780 assert(src_object->copy != VM_OBJECT_NULL);
3781 copy = src_object->copy;
3782 if (!vm_object_lock_try(copy)) {
3783 vm_object_unlock(src_object);
3784
3785 try_failed_count++;
3786 mutex_pause(try_failed_count); /* wait a bit */
3787
3788 vm_object_lock(src_object);
3789 goto Retry;
3790 }
3791 if (copy->vo_size < src_offset+size)
3792 copy->vo_size = src_offset+size;
3793
3794 if (!copy->pager_ready)
3795 check_ready = TRUE;
3796
3797 /*
3798 * Return the copy.
3799 */
3800 *_result_object = copy;
3801 vm_object_unlock(copy);
3802 vm_object_unlock(src_object);
3803
3804 /* Wait for the copy to be ready. */
3805 if (check_ready == TRUE) {
3806 vm_object_lock(copy);
3807 while (!copy->pager_ready) {
3808 vm_object_sleep(copy, VM_OBJECT_EVENT_PAGER_READY, THREAD_UNINT);
3809 }
3810 vm_object_unlock(copy);
3811 }
3812
3813 return KERN_SUCCESS;
3814 }
3815
3816 static int copy_delayed_lock_collisions = 0;
3817 static int copy_delayed_max_collisions = 0;
3818 static int copy_delayed_lock_contention = 0;
3819 static int copy_delayed_protect_iterate = 0;
3820
3821 /*
3822 * Routine: vm_object_copy_delayed [internal]
3823 *
3824 * Description:
3825 * Copy the specified virtual memory object, using
3826 * the asymmetric copy-on-write algorithm.
3827 *
3828 * In/out conditions:
3829 * The src_object must be locked on entry. It will be unlocked
3830 * on exit - so the caller must also hold a reference to it.
3831 *
3832 * This routine will not block waiting for user-generated
3833 * events. It is not interruptible.
3834 */
3835 __private_extern__ vm_object_t
3836 vm_object_copy_delayed(
3837 vm_object_t src_object,
3838 vm_object_offset_t src_offset,
3839 vm_object_size_t size,
3840 boolean_t src_object_shared)
3841 {
3842 vm_object_t new_copy = VM_OBJECT_NULL;
3843 vm_object_t old_copy;
3844 vm_page_t p;
3845 vm_object_size_t copy_size = src_offset + size;
3846 pmap_flush_context pmap_flush_context_storage;
3847 boolean_t delayed_pmap_flush = FALSE;
3848
3849
3850 int collisions = 0;
3851 /*
3852 * The user-level memory manager wants to see all of the changes
3853 * to this object, but it has promised not to make any changes on
3854 * its own.
3855 *
3856 * Perform an asymmetric copy-on-write, as follows:
3857 * Create a new object, called a "copy object" to hold
3858 * pages modified by the new mapping (i.e., the copy,
3859 * not the original mapping).
3860 * Record the original object as the backing object for
3861 * the copy object. If the original mapping does not
3862 * change a page, it may be used read-only by the copy.
3863 * Record the copy object in the original object.
3864 * When the original mapping causes a page to be modified,
3865 * it must be copied to a new page that is "pushed" to
3866 * the copy object.
3867 * Mark the new mapping (the copy object) copy-on-write.
3868 * This makes the copy object itself read-only, allowing
3869 * it to be reused if the original mapping makes no
3870 * changes, and simplifying the synchronization required
3871 * in the "push" operation described above.
3872 *
3873 * The copy-on-write is said to be assymetric because the original
3874 * object is *not* marked copy-on-write. A copied page is pushed
3875 * to the copy object, regardless which party attempted to modify
3876 * the page.
3877 *
3878 * Repeated asymmetric copy operations may be done. If the
3879 * original object has not been changed since the last copy, its
3880 * copy object can be reused. Otherwise, a new copy object can be
3881 * inserted between the original object and its previous copy
3882 * object. Since any copy object is read-only, this cannot affect
3883 * affect the contents of the previous copy object.
3884 *
3885 * Note that a copy object is higher in the object tree than the
3886 * original object; therefore, use of the copy object recorded in
3887 * the original object must be done carefully, to avoid deadlock.
3888 */
3889
3890 Retry:
3891
3892 /*
3893 * Wait for paging in progress.
3894 */
3895 if (!src_object->true_share &&
3896 (src_object->paging_in_progress != 0 ||
3897 src_object->activity_in_progress != 0)) {
3898 if (src_object_shared == TRUE) {
3899 vm_object_unlock(src_object);
3900 vm_object_lock(src_object);
3901 src_object_shared = FALSE;
3902 goto Retry;
3903 }
3904 vm_object_paging_wait(src_object, THREAD_UNINT);
3905 }
3906 /*
3907 * See whether we can reuse the result of a previous
3908 * copy operation.
3909 */
3910
3911 old_copy = src_object->copy;
3912 if (old_copy != VM_OBJECT_NULL) {
3913 int lock_granted;
3914
3915 /*
3916 * Try to get the locks (out of order)
3917 */
3918 if (src_object_shared == TRUE)
3919 lock_granted = vm_object_lock_try_shared(old_copy);
3920 else
3921 lock_granted = vm_object_lock_try(old_copy);
3922
3923 if (!lock_granted) {
3924 vm_object_unlock(src_object);
3925
3926 if (collisions++ == 0)
3927 copy_delayed_lock_contention++;
3928 mutex_pause(collisions);
3929
3930 /* Heisenberg Rules */
3931 copy_delayed_lock_collisions++;
3932
3933 if (collisions > copy_delayed_max_collisions)
3934 copy_delayed_max_collisions = collisions;
3935
3936 if (src_object_shared == TRUE)
3937 vm_object_lock_shared(src_object);
3938 else
3939 vm_object_lock(src_object);
3940
3941 goto Retry;
3942 }
3943
3944 /*
3945 * Determine whether the old copy object has
3946 * been modified.
3947 */
3948
3949 if (old_copy->resident_page_count == 0 &&
3950 !old_copy->pager_created) {
3951 /*
3952 * It has not been modified.
3953 *
3954 * Return another reference to
3955 * the existing copy-object if
3956 * we can safely grow it (if
3957 * needed).
3958 */
3959
3960 if (old_copy->vo_size < copy_size) {
3961 if (src_object_shared == TRUE) {
3962 vm_object_unlock(old_copy);
3963 vm_object_unlock(src_object);
3964
3965 vm_object_lock(src_object);
3966 src_object_shared = FALSE;
3967 goto Retry;
3968 }
3969 /*
3970 * We can't perform a delayed copy if any of the
3971 * pages in the extended range are wired (because
3972 * we can't safely take write permission away from
3973 * wired pages). If the pages aren't wired, then
3974 * go ahead and protect them.
3975 */
3976 copy_delayed_protect_iterate++;
3977
3978 pmap_flush_context_init(&pmap_flush_context_storage);
3979 delayed_pmap_flush = FALSE;
3980
3981 queue_iterate(&src_object->memq, p, vm_page_t, listq) {
3982 if (!p->fictitious &&
3983 p->offset >= old_copy->vo_size &&
3984 p->offset < copy_size) {
3985 if (VM_PAGE_WIRED(p)) {
3986 vm_object_unlock(old_copy);
3987 vm_object_unlock(src_object);
3988
3989 if (new_copy != VM_OBJECT_NULL) {
3990 vm_object_unlock(new_copy);
3991 vm_object_deallocate(new_copy);
3992 }
3993 if (delayed_pmap_flush == TRUE)
3994 pmap_flush(&pmap_flush_context_storage);
3995
3996 return VM_OBJECT_NULL;
3997 } else {
3998 pmap_page_protect_options(p->phys_page, (VM_PROT_ALL & ~VM_PROT_WRITE),
3999 PMAP_OPTIONS_NOFLUSH, (void *)&pmap_flush_context_storage);
4000 delayed_pmap_flush = TRUE;
4001 }
4002 }
4003 }
4004 if (delayed_pmap_flush == TRUE)
4005 pmap_flush(&pmap_flush_context_storage);
4006
4007 old_copy->vo_size = copy_size;
4008 }
4009 if (src_object_shared == TRUE)
4010 vm_object_reference_shared(old_copy);
4011 else
4012 vm_object_reference_locked(old_copy);
4013 vm_object_unlock(old_copy);
4014 vm_object_unlock(src_object);
4015
4016 if (new_copy != VM_OBJECT_NULL) {
4017 vm_object_unlock(new_copy);
4018 vm_object_deallocate(new_copy);
4019 }
4020 return(old_copy);
4021 }
4022
4023
4024
4025 /*
4026 * Adjust the size argument so that the newly-created
4027 * copy object will be large enough to back either the
4028 * old copy object or the new mapping.
4029 */
4030 if (old_copy->vo_size > copy_size)
4031 copy_size = old_copy->vo_size;
4032
4033 if (new_copy == VM_OBJECT_NULL) {
4034 vm_object_unlock(old_copy);
4035 vm_object_unlock(src_object);
4036 new_copy = vm_object_allocate(copy_size);
4037 vm_object_lock(src_object);
4038 vm_object_lock(new_copy);
4039
4040 src_object_shared = FALSE;
4041 goto Retry;
4042 }
4043 new_copy->vo_size = copy_size;
4044
4045 /*
4046 * The copy-object is always made large enough to
4047 * completely shadow the original object, since
4048 * it may have several users who want to shadow
4049 * the original object at different points.
4050 */
4051
4052 assert((old_copy->shadow == src_object) &&
4053 (old_copy->vo_shadow_offset == (vm_object_offset_t) 0));
4054
4055 } else if (new_copy == VM_OBJECT_NULL) {
4056 vm_object_unlock(src_object);
4057 new_copy = vm_object_allocate(copy_size);
4058 vm_object_lock(src_object);
4059 vm_object_lock(new_copy);
4060
4061 src_object_shared = FALSE;
4062 goto Retry;
4063 }
4064
4065 /*
4066 * We now have the src object locked, and the new copy object
4067 * allocated and locked (and potentially the old copy locked).
4068 * Before we go any further, make sure we can still perform
4069 * a delayed copy, as the situation may have changed.
4070 *
4071 * Specifically, we can't perform a delayed copy if any of the
4072 * pages in the range are wired (because we can't safely take
4073 * write permission away from wired pages). If the pages aren't
4074 * wired, then go ahead and protect them.
4075 */
4076 copy_delayed_protect_iterate++;
4077
4078 pmap_flush_context_init(&pmap_flush_context_storage);
4079 delayed_pmap_flush = FALSE;
4080
4081 queue_iterate(&src_object->memq, p, vm_page_t, listq) {
4082 if (!p->fictitious && p->offset < copy_size) {
4083 if (VM_PAGE_WIRED(p)) {
4084 if (old_copy)
4085 vm_object_unlock(old_copy);
4086 vm_object_unlock(src_object);
4087 vm_object_unlock(new_copy);
4088 vm_object_deallocate(new_copy);
4089
4090 if (delayed_pmap_flush == TRUE)
4091 pmap_flush(&pmap_flush_context_storage);
4092
4093 return VM_OBJECT_NULL;
4094 } else {
4095 pmap_page_protect_options(p->phys_page, (VM_PROT_ALL & ~VM_PROT_WRITE),
4096 PMAP_OPTIONS_NOFLUSH, (void *)&pmap_flush_context_storage);
4097 delayed_pmap_flush = TRUE;
4098 }
4099 }
4100 }
4101 if (delayed_pmap_flush == TRUE)
4102 pmap_flush(&pmap_flush_context_storage);
4103
4104 if (old_copy != VM_OBJECT_NULL) {
4105 /*
4106 * Make the old copy-object shadow the new one.
4107 * It will receive no more pages from the original
4108 * object.
4109 */
4110
4111 /* remove ref. from old_copy */
4112 vm_object_lock_assert_exclusive(src_object);
4113 src_object->ref_count--;
4114 assert(src_object->ref_count > 0);
4115 vm_object_lock_assert_exclusive(old_copy);
4116 old_copy->shadow = new_copy;
4117 vm_object_lock_assert_exclusive(new_copy);
4118 assert(new_copy->ref_count > 0);
4119 new_copy->ref_count++; /* for old_copy->shadow ref. */
4120
4121 #if TASK_SWAPPER
4122 if (old_copy->res_count) {
4123 VM_OBJ_RES_INCR(new_copy);
4124 VM_OBJ_RES_DECR(src_object);
4125 }
4126 #endif
4127
4128 vm_object_unlock(old_copy); /* done with old_copy */
4129 }
4130
4131 /*
4132 * Point the new copy at the existing object.
4133 */
4134 vm_object_lock_assert_exclusive(new_copy);
4135 new_copy->shadow = src_object;
4136 new_copy->vo_shadow_offset = 0;
4137 new_copy->shadowed = TRUE; /* caller must set needs_copy */
4138
4139 vm_object_lock_assert_exclusive(src_object);
4140 vm_object_reference_locked(src_object);
4141 src_object->copy = new_copy;
4142 vm_object_unlock(src_object);
4143 vm_object_unlock(new_copy);
4144
4145 XPR(XPR_VM_OBJECT,
4146 "vm_object_copy_delayed: used copy object %X for source %X\n",
4147 new_copy, src_object, 0, 0, 0);
4148
4149 return new_copy;
4150 }
4151
4152 /*
4153 * Routine: vm_object_copy_strategically
4154 *
4155 * Purpose:
4156 * Perform a copy according to the source object's
4157 * declared strategy. This operation may block,
4158 * and may be interrupted.
4159 */
4160 __private_extern__ kern_return_t
4161 vm_object_copy_strategically(
4162 register vm_object_t src_object,
4163 vm_object_offset_t src_offset,
4164 vm_object_size_t size,
4165 vm_object_t *dst_object, /* OUT */
4166 vm_object_offset_t *dst_offset, /* OUT */
4167 boolean_t *dst_needs_copy) /* OUT */
4168 {
4169 boolean_t result;
4170 boolean_t interruptible = THREAD_ABORTSAFE; /* XXX */
4171 boolean_t object_lock_shared = FALSE;
4172 memory_object_copy_strategy_t copy_strategy;
4173
4174 assert(src_object != VM_OBJECT_NULL);
4175
4176 copy_strategy = src_object->copy_strategy;
4177
4178 if (copy_strategy == MEMORY_OBJECT_COPY_DELAY) {
4179 vm_object_lock_shared(src_object);
4180 object_lock_shared = TRUE;
4181 } else
4182 vm_object_lock(src_object);
4183
4184 /*
4185 * The copy strategy is only valid if the memory manager
4186 * is "ready". Internal objects are always ready.
4187 */
4188
4189 while (!src_object->internal && !src_object->pager_ready) {
4190 wait_result_t wait_result;
4191
4192 if (object_lock_shared == TRUE) {
4193 vm_object_unlock(src_object);
4194 vm_object_lock(src_object);
4195 object_lock_shared = FALSE;
4196 continue;
4197 }
4198 wait_result = vm_object_sleep( src_object,
4199 VM_OBJECT_EVENT_PAGER_READY,
4200 interruptible);
4201 if (wait_result != THREAD_AWAKENED) {
4202 vm_object_unlock(src_object);
4203 *dst_object = VM_OBJECT_NULL;
4204 *dst_offset = 0;
4205 *dst_needs_copy = FALSE;
4206 return(MACH_SEND_INTERRUPTED);
4207 }
4208 }
4209
4210 /*
4211 * Use the appropriate copy strategy.
4212 */
4213
4214 switch (copy_strategy) {
4215 case MEMORY_OBJECT_COPY_DELAY:
4216 *dst_object = vm_object_copy_delayed(src_object,
4217 src_offset, size, object_lock_shared);
4218 if (*dst_object != VM_OBJECT_NULL) {
4219 *dst_offset = src_offset;
4220 *dst_needs_copy = TRUE;
4221 result = KERN_SUCCESS;
4222 break;
4223 }
4224 vm_object_lock(src_object);
4225 /* fall thru when delayed copy not allowed */
4226
4227 case MEMORY_OBJECT_COPY_NONE:
4228 result = vm_object_copy_slowly(src_object, src_offset, size,
4229 interruptible, dst_object);
4230 if (result == KERN_SUCCESS) {
4231 *dst_offset = 0;
4232 *dst_needs_copy = FALSE;
4233 }
4234 break;
4235
4236 case MEMORY_OBJECT_COPY_CALL:
4237 result = vm_object_copy_call(src_object, src_offset, size,
4238 dst_object);
4239 if (result == KERN_SUCCESS) {
4240 *dst_offset = src_offset;
4241 *dst_needs_copy = TRUE;
4242 }
4243 break;
4244
4245 case MEMORY_OBJECT_COPY_SYMMETRIC:
4246 XPR(XPR_VM_OBJECT, "v_o_c_strategically obj 0x%x off 0x%x size 0x%x\n", src_object, src_offset, size, 0, 0);
4247 vm_object_unlock(src_object);
4248 result = KERN_MEMORY_RESTART_COPY;
4249 break;
4250
4251 default:
4252 panic("copy_strategically: bad strategy");
4253 result = KERN_INVALID_ARGUMENT;
4254 }
4255 return(result);
4256 }
4257
4258 /*
4259 * vm_object_shadow:
4260 *
4261 * Create a new object which is backed by the
4262 * specified existing object range. The source
4263 * object reference is deallocated.
4264 *
4265 * The new object and offset into that object
4266 * are returned in the source parameters.
4267 */
4268 boolean_t vm_object_shadow_check = TRUE;
4269
4270 __private_extern__ boolean_t
4271 vm_object_shadow(
4272 vm_object_t *object, /* IN/OUT */
4273 vm_object_offset_t *offset, /* IN/OUT */
4274 vm_object_size_t length)
4275 {
4276 register vm_object_t source;
4277 register vm_object_t result;
4278
4279 source = *object;
4280 assert(source != VM_OBJECT_NULL);
4281 if (source == VM_OBJECT_NULL)
4282 return FALSE;
4283
4284 #if 0
4285 /*
4286 * XXX FBDP
4287 * This assertion is valid but it gets triggered by Rosetta for example
4288 * due to a combination of vm_remap() that changes a VM object's
4289 * copy_strategy from SYMMETRIC to DELAY and vm_protect(VM_PROT_COPY)
4290 * that then sets "needs_copy" on its map entry. This creates a
4291 * mapping situation that VM should never see and doesn't know how to
4292 * handle.
4293 * It's not clear if this can create any real problem but we should
4294 * look into fixing this, probably by having vm_protect(VM_PROT_COPY)
4295 * do more than just set "needs_copy" to handle the copy-on-write...
4296 * In the meantime, let's disable the assertion.
4297 */
4298 assert(source->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC);
4299 #endif
4300
4301 /*
4302 * Determine if we really need a shadow.
4303 *
4304 * If the source object is larger than what we are trying
4305 * to create, then force the shadow creation even if the
4306 * ref count is 1. This will allow us to [potentially]
4307 * collapse the underlying object away in the future
4308 * (freeing up the extra data it might contain and that
4309 * we don't need).
4310 */
4311 if (vm_object_shadow_check &&
4312 source->vo_size == length &&
4313 source->ref_count == 1 &&
4314 (source->shadow == VM_OBJECT_NULL ||
4315 source->shadow->copy == VM_OBJECT_NULL) )
4316 {
4317 source->shadowed = FALSE;
4318 return FALSE;
4319 }
4320
4321 /*
4322 * Allocate a new object with the given length
4323 */
4324
4325 if ((result = vm_object_allocate(length)) == VM_OBJECT_NULL)
4326 panic("vm_object_shadow: no object for shadowing");
4327
4328 /*
4329 * The new object shadows the source object, adding
4330 * a reference to it. Our caller changes his reference
4331 * to point to the new object, removing a reference to
4332 * the source object. Net result: no change of reference
4333 * count.
4334 */
4335 result->shadow = source;
4336
4337 /*
4338 * Store the offset into the source object,
4339 * and fix up the offset into the new object.
4340 */
4341
4342 result->vo_shadow_offset = *offset;
4343
4344 /*
4345 * Return the new things
4346 */
4347
4348 *offset = 0;
4349 *object = result;
4350 return TRUE;
4351 }
4352
4353 /*
4354 * The relationship between vm_object structures and
4355 * the memory_object requires careful synchronization.
4356 *
4357 * All associations are created by memory_object_create_named
4358 * for external pagers and vm_object_pager_create for internal
4359 * objects as follows:
4360 *
4361 * pager: the memory_object itself, supplied by
4362 * the user requesting a mapping (or the kernel,
4363 * when initializing internal objects); the
4364 * kernel simulates holding send rights by keeping
4365 * a port reference;
4366 *
4367 * pager_request:
4368 * the memory object control port,
4369 * created by the kernel; the kernel holds
4370 * receive (and ownership) rights to this
4371 * port, but no other references.
4372 *
4373 * When initialization is complete, the "initialized" field
4374 * is asserted. Other mappings using a particular memory object,
4375 * and any references to the vm_object gained through the
4376 * port association must wait for this initialization to occur.
4377 *
4378 * In order to allow the memory manager to set attributes before
4379 * requests (notably virtual copy operations, but also data or
4380 * unlock requests) are made, a "ready" attribute is made available.
4381 * Only the memory manager may affect the value of this attribute.
4382 * Its value does not affect critical kernel functions, such as
4383 * internal object initialization or destruction. [Furthermore,
4384 * memory objects created by the kernel are assumed to be ready
4385 * immediately; the default memory manager need not explicitly
4386 * set the "ready" attribute.]
4387 *
4388 * [Both the "initialized" and "ready" attribute wait conditions
4389 * use the "pager" field as the wait event.]
4390 *
4391 * The port associations can be broken down by any of the
4392 * following routines:
4393 * vm_object_terminate:
4394 * No references to the vm_object remain, and
4395 * the object cannot (or will not) be cached.
4396 * This is the normal case, and is done even
4397 * though one of the other cases has already been
4398 * done.
4399 * memory_object_destroy:
4400 * The memory manager has requested that the
4401 * kernel relinquish references to the memory
4402 * object. [The memory manager may not want to
4403 * destroy the memory object, but may wish to
4404 * refuse or tear down existing memory mappings.]
4405 *
4406 * Each routine that breaks an association must break all of
4407 * them at once. At some later time, that routine must clear
4408 * the pager field and release the memory object references.
4409 * [Furthermore, each routine must cope with the simultaneous
4410 * or previous operations of the others.]
4411 *
4412 * In addition to the lock on the object, the vm_object_hash_lock
4413 * governs the associations. References gained through the
4414 * association require use of the hash lock.
4415 *
4416 * Because the pager field may be cleared spontaneously, it
4417 * cannot be used to determine whether a memory object has
4418 * ever been associated with a particular vm_object. [This
4419 * knowledge is important to the shadow object mechanism.]
4420 * For this reason, an additional "created" attribute is
4421 * provided.
4422 *
4423 * During various paging operations, the pager reference found in the
4424 * vm_object must be valid. To prevent this from being released,
4425 * (other than being removed, i.e., made null), routines may use
4426 * the vm_object_paging_begin/end routines [actually, macros].
4427 * The implementation uses the "paging_in_progress" and "wanted" fields.
4428 * [Operations that alter the validity of the pager values include the
4429 * termination routines and vm_object_collapse.]
4430 */
4431
4432
4433 /*
4434 * Routine: vm_object_enter
4435 * Purpose:
4436 * Find a VM object corresponding to the given
4437 * pager; if no such object exists, create one,
4438 * and initialize the pager.
4439 */
4440 vm_object_t
4441 vm_object_enter(
4442 memory_object_t pager,
4443 vm_object_size_t size,
4444 boolean_t internal,
4445 boolean_t init,
4446 boolean_t named)
4447 {
4448 register vm_object_t object;
4449 vm_object_t new_object;
4450 boolean_t must_init;
4451 vm_object_hash_entry_t entry, new_entry;
4452 uint32_t try_failed_count = 0;
4453 lck_mtx_t *lck;
4454
4455 if (pager == MEMORY_OBJECT_NULL)
4456 return(vm_object_allocate(size));
4457
4458 new_object = VM_OBJECT_NULL;
4459 new_entry = VM_OBJECT_HASH_ENTRY_NULL;
4460 must_init = init;
4461
4462 /*
4463 * Look for an object associated with this port.
4464 */
4465 Retry:
4466 lck = vm_object_hash_lock_spin(pager);
4467 do {
4468 entry = vm_object_hash_lookup(pager, FALSE);
4469
4470 if (entry == VM_OBJECT_HASH_ENTRY_NULL) {
4471 if (new_object == VM_OBJECT_NULL) {
4472 /*
4473 * We must unlock to create a new object;
4474 * if we do so, we must try the lookup again.
4475 */
4476 vm_object_hash_unlock(lck);
4477 assert(new_entry == VM_OBJECT_HASH_ENTRY_NULL);
4478 new_entry = vm_object_hash_entry_alloc(pager);
4479 new_object = vm_object_allocate(size);
4480 lck = vm_object_hash_lock_spin(pager);
4481 } else {
4482 /*
4483 * Lookup failed twice, and we have something
4484 * to insert; set the object.
4485 */
4486 vm_object_lock(new_object);
4487 vm_object_hash_insert(new_entry, new_object);
4488 vm_object_unlock(new_object);
4489 entry = new_entry;
4490 new_entry = VM_OBJECT_HASH_ENTRY_NULL;
4491 new_object = VM_OBJECT_NULL;
4492 must_init = TRUE;
4493 }
4494 } else if (entry->object == VM_OBJECT_NULL) {
4495 /*
4496 * If a previous object is being terminated,
4497 * we must wait for the termination message
4498 * to be queued (and lookup the entry again).
4499 */
4500 entry->waiting = TRUE;
4501 entry = VM_OBJECT_HASH_ENTRY_NULL;
4502 assert_wait((event_t) pager, THREAD_UNINT);
4503 vm_object_hash_unlock(lck);
4504
4505 thread_block(THREAD_CONTINUE_NULL);
4506 lck = vm_object_hash_lock_spin(pager);
4507 }
4508 } while (entry == VM_OBJECT_HASH_ENTRY_NULL);
4509
4510 object = entry->object;
4511 assert(object != VM_OBJECT_NULL);
4512
4513 if (!must_init) {
4514 if ( !vm_object_lock_try(object)) {
4515
4516 vm_object_hash_unlock(lck);
4517
4518 try_failed_count++;
4519 mutex_pause(try_failed_count); /* wait a bit */
4520 goto Retry;
4521 }
4522 assert(!internal || object->internal);
4523 #if VM_OBJECT_CACHE
4524 if (object->ref_count == 0) {
4525 if ( !vm_object_cache_lock_try()) {
4526
4527 vm_object_hash_unlock(lck);
4528 vm_object_unlock(object);
4529
4530 try_failed_count++;
4531 mutex_pause(try_failed_count); /* wait a bit */
4532 goto Retry;
4533 }
4534 XPR(XPR_VM_OBJECT_CACHE,
4535 "vm_object_enter: removing %x from cache, head (%x, %x)\n",
4536 object,
4537 vm_object_cached_list.next,
4538 vm_object_cached_list.prev, 0,0);
4539 queue_remove(&vm_object_cached_list, object,
4540 vm_object_t, cached_list);
4541 vm_object_cached_count--;
4542
4543 vm_object_cache_unlock();
4544 }
4545 #endif
4546 if (named) {
4547 assert(!object->named);
4548 object->named = TRUE;
4549 }
4550 vm_object_lock_assert_exclusive(object);
4551 object->ref_count++;
4552 vm_object_res_reference(object);
4553
4554 vm_object_hash_unlock(lck);
4555 vm_object_unlock(object);
4556
4557 VM_STAT_INCR(hits);
4558 } else
4559 vm_object_hash_unlock(lck);
4560
4561 assert(object->ref_count > 0);
4562
4563 VM_STAT_INCR(lookups);
4564
4565 XPR(XPR_VM_OBJECT,
4566 "vm_o_enter: pager 0x%x obj 0x%x must_init %d\n",
4567 pager, object, must_init, 0, 0);
4568
4569 /*
4570 * If we raced to create a vm_object but lost, let's
4571 * throw away ours.
4572 */
4573
4574 if (new_object != VM_OBJECT_NULL)
4575 vm_object_deallocate(new_object);
4576
4577 if (new_entry != VM_OBJECT_HASH_ENTRY_NULL)
4578 vm_object_hash_entry_free(new_entry);
4579
4580 if (must_init) {
4581 memory_object_control_t control;
4582
4583 /*
4584 * Allocate request port.
4585 */
4586
4587 control = memory_object_control_allocate(object);
4588 assert (control != MEMORY_OBJECT_CONTROL_NULL);
4589
4590 vm_object_lock(object);
4591 assert(object != kernel_object);
4592
4593 /*
4594 * Copy the reference we were given.
4595 */
4596
4597 memory_object_reference(pager);
4598 object->pager_created = TRUE;
4599 object->pager = pager;
4600 object->internal = internal;
4601 object->pager_trusted = internal;
4602 if (!internal) {
4603 /* copy strategy invalid until set by memory manager */
4604 object->copy_strategy = MEMORY_OBJECT_COPY_INVALID;
4605 }
4606 object->pager_control = control;
4607 object->pager_ready = FALSE;
4608
4609 vm_object_unlock(object);
4610
4611 /*
4612 * Let the pager know we're using it.
4613 */
4614
4615 (void) memory_object_init(pager,
4616 object->pager_control,
4617 PAGE_SIZE);
4618
4619 vm_object_lock(object);
4620 if (named)
4621 object->named = TRUE;
4622 if (internal) {
4623 object->pager_ready = TRUE;
4624 vm_object_wakeup(object, VM_OBJECT_EVENT_PAGER_READY);
4625 }
4626
4627 object->pager_initialized = TRUE;
4628 vm_object_wakeup(object, VM_OBJECT_EVENT_INITIALIZED);
4629 } else {
4630 vm_object_lock(object);
4631 }
4632
4633 /*
4634 * [At this point, the object must be locked]
4635 */
4636
4637 /*
4638 * Wait for the work above to be done by the first
4639 * thread to map this object.
4640 */
4641
4642 while (!object->pager_initialized) {
4643 vm_object_sleep(object,
4644 VM_OBJECT_EVENT_INITIALIZED,
4645 THREAD_UNINT);
4646 }
4647 vm_object_unlock(object);
4648
4649 XPR(XPR_VM_OBJECT,
4650 "vm_object_enter: vm_object %x, memory_object %x, internal %d\n",
4651 object, object->pager, internal, 0,0);
4652 return(object);
4653 }
4654
4655 /*
4656 * Routine: vm_object_pager_create
4657 * Purpose:
4658 * Create a memory object for an internal object.
4659 * In/out conditions:
4660 * The object is locked on entry and exit;
4661 * it may be unlocked within this call.
4662 * Limitations:
4663 * Only one thread may be performing a
4664 * vm_object_pager_create on an object at
4665 * a time. Presumably, only the pageout
4666 * daemon will be using this routine.
4667 */
4668
4669 void
4670 vm_object_pager_create(
4671 register vm_object_t object)
4672 {
4673 memory_object_t pager;
4674 vm_object_hash_entry_t entry;
4675 lck_mtx_t *lck;
4676 #if MACH_PAGEMAP
4677 vm_object_size_t size;
4678 vm_external_map_t map;
4679 #endif /* MACH_PAGEMAP */
4680
4681 XPR(XPR_VM_OBJECT, "vm_object_pager_create, object 0x%X\n",
4682 object, 0,0,0,0);
4683
4684 assert(object != kernel_object);
4685
4686 if (memory_manager_default_check() != KERN_SUCCESS)
4687 return;
4688
4689 /*
4690 * Prevent collapse or termination by holding a paging reference
4691 */
4692
4693 vm_object_paging_begin(object);
4694 if (object->pager_created) {
4695 /*
4696 * Someone else got to it first...
4697 * wait for them to finish initializing the ports
4698 */
4699 while (!object->pager_initialized) {
4700 vm_object_sleep(object,
4701 VM_OBJECT_EVENT_INITIALIZED,
4702 THREAD_UNINT);
4703 }
4704 vm_object_paging_end(object);
4705 return;
4706 }
4707
4708 /*
4709 * Indicate that a memory object has been assigned
4710 * before dropping the lock, to prevent a race.
4711 */
4712
4713 object->pager_created = TRUE;
4714 object->paging_offset = 0;
4715
4716 #if MACH_PAGEMAP
4717 size = object->vo_size;
4718 #endif /* MACH_PAGEMAP */
4719 vm_object_unlock(object);
4720
4721 #if MACH_PAGEMAP
4722 if (DEFAULT_PAGER_IS_ACTIVE) {
4723 map = vm_external_create(size);
4724 vm_object_lock(object);
4725 assert(object->vo_size == size);
4726 object->existence_map = map;
4727 vm_object_unlock(object);
4728 }
4729 #endif /* MACH_PAGEMAP */
4730
4731 if ((uint32_t) object->vo_size != object->vo_size) {
4732 panic("vm_object_pager_create(): object size 0x%llx >= 4GB\n",
4733 (uint64_t) object->vo_size);
4734 }
4735
4736 /*
4737 * Create the [internal] pager, and associate it with this object.
4738 *
4739 * We make the association here so that vm_object_enter()
4740 * can look up the object to complete initializing it. No
4741 * user will ever map this object.
4742 */
4743 {
4744 memory_object_default_t dmm;
4745
4746 /* acquire a reference for the default memory manager */
4747 dmm = memory_manager_default_reference();
4748
4749 assert(object->temporary);
4750
4751 /* create our new memory object */
4752 assert((vm_size_t) object->vo_size == object->vo_size);
4753 (void) memory_object_create(dmm, (vm_size_t) object->vo_size,
4754 &pager);
4755
4756 memory_object_default_deallocate(dmm);
4757 }
4758
4759 entry = vm_object_hash_entry_alloc(pager);
4760
4761 vm_object_lock(object);
4762 lck = vm_object_hash_lock_spin(pager);
4763 vm_object_hash_insert(entry, object);
4764 vm_object_hash_unlock(lck);
4765 vm_object_unlock(object);
4766
4767 /*
4768 * A reference was returned by
4769 * memory_object_create(), and it is
4770 * copied by vm_object_enter().
4771 */
4772
4773 if (vm_object_enter(pager, object->vo_size, TRUE, TRUE, FALSE) != object)
4774 panic("vm_object_pager_create: mismatch");
4775
4776 /*
4777 * Drop the reference we were passed.
4778 */
4779 memory_object_deallocate(pager);
4780
4781 vm_object_lock(object);
4782
4783 /*
4784 * Release the paging reference
4785 */
4786 vm_object_paging_end(object);
4787 }
4788
4789 void
4790 vm_object_compressor_pager_create(
4791 register vm_object_t object)
4792 {
4793 memory_object_t pager;
4794 vm_object_hash_entry_t entry;
4795 lck_mtx_t *lck;
4796 vm_object_t pager_object = VM_OBJECT_NULL;
4797
4798 assert(object != kernel_object);
4799
4800 /*
4801 * Prevent collapse or termination by holding a paging reference
4802 */
4803
4804 vm_object_paging_begin(object);
4805 if (object->pager_created) {
4806 /*
4807 * Someone else got to it first...
4808 * wait for them to finish initializing the ports
4809 */
4810 while (!object->pager_initialized) {
4811 vm_object_sleep(object,
4812 VM_OBJECT_EVENT_INITIALIZED,
4813 THREAD_UNINT);
4814 }
4815 vm_object_paging_end(object);
4816 return;
4817 }
4818
4819 /*
4820 * Indicate that a memory object has been assigned
4821 * before dropping the lock, to prevent a race.
4822 */
4823
4824 object->pager_created = TRUE;
4825 object->paging_offset = 0;
4826
4827 vm_object_unlock(object);
4828
4829 if ((uint32_t) (object->vo_size/PAGE_SIZE) !=
4830 (object->vo_size/PAGE_SIZE)) {
4831 panic("vm_object_compressor_pager_create(%p): "
4832 "object size 0x%llx >= 0x%llx\n",
4833 object,
4834 (uint64_t) object->vo_size,
4835 0x0FFFFFFFFULL*PAGE_SIZE);
4836 }
4837
4838 /*
4839 * Create the [internal] pager, and associate it with this object.
4840 *
4841 * We make the association here so that vm_object_enter()
4842 * can look up the object to complete initializing it. No
4843 * user will ever map this object.
4844 */
4845 {
4846 assert(object->temporary);
4847
4848 /* create our new memory object */
4849 assert((uint32_t) (object->vo_size/PAGE_SIZE) ==
4850 (object->vo_size/PAGE_SIZE));
4851 (void) compressor_memory_object_create(
4852 (memory_object_size_t) object->vo_size,
4853 &pager);
4854 if (pager == NULL) {
4855 panic("vm_object_compressor_pager_create(): "
4856 "no pager for object %p size 0x%llx\n",
4857 object, (uint64_t) object->vo_size);
4858 }
4859 }
4860
4861 entry = vm_object_hash_entry_alloc(pager);
4862
4863 vm_object_lock(object);
4864 lck = vm_object_hash_lock_spin(pager);
4865 vm_object_hash_insert(entry, object);
4866 vm_object_hash_unlock(lck);
4867 vm_object_unlock(object);
4868
4869 /*
4870 * A reference was returned by
4871 * memory_object_create(), and it is
4872 * copied by vm_object_enter().
4873 */
4874
4875 pager_object = vm_object_enter(pager, object->vo_size, TRUE, TRUE, FALSE);
4876
4877 if (pager_object != object) {
4878 panic("vm_object_compressor_pager_create: mismatch (pager: %p, pager_object: %p, orig_object: %p, orig_object size: 0x%llx)\n", pager, pager_object, object, (uint64_t) object->vo_size);
4879 }
4880
4881 /*
4882 * Drop the reference we were passed.
4883 */
4884 memory_object_deallocate(pager);
4885
4886 vm_object_lock(object);
4887
4888 /*
4889 * Release the paging reference
4890 */
4891 vm_object_paging_end(object);
4892 }
4893
4894 /*
4895 * Routine: vm_object_remove
4896 * Purpose:
4897 * Eliminate the pager/object association
4898 * for this pager.
4899 * Conditions:
4900 * The object cache must be locked.
4901 */
4902 __private_extern__ void
4903 vm_object_remove(
4904 vm_object_t object)
4905 {
4906 memory_object_t pager;
4907
4908 if ((pager = object->pager) != MEMORY_OBJECT_NULL) {
4909 vm_object_hash_entry_t entry;
4910
4911 entry = vm_object_hash_lookup(pager, FALSE);
4912 if (entry != VM_OBJECT_HASH_ENTRY_NULL)
4913 entry->object = VM_OBJECT_NULL;
4914 }
4915
4916 }
4917
4918 /*
4919 * Global variables for vm_object_collapse():
4920 *
4921 * Counts for normal collapses and bypasses.
4922 * Debugging variables, to watch or disable collapse.
4923 */
4924 static long object_collapses = 0;
4925 static long object_bypasses = 0;
4926
4927 static boolean_t vm_object_collapse_allowed = TRUE;
4928 static boolean_t vm_object_bypass_allowed = TRUE;
4929
4930 #if MACH_PAGEMAP
4931 static int vm_external_discarded;
4932 static int vm_external_collapsed;
4933 #endif
4934
4935 unsigned long vm_object_collapse_encrypted = 0;
4936
4937 void vm_object_do_collapse_compressor(vm_object_t object,
4938 vm_object_t backing_object);
4939 void
4940 vm_object_do_collapse_compressor(
4941 vm_object_t object,
4942 vm_object_t backing_object)
4943 {
4944 vm_object_offset_t new_offset, backing_offset;
4945 vm_object_size_t size;
4946
4947 vm_counters.do_collapse_compressor++;
4948
4949 vm_object_lock_assert_exclusive(object);
4950 vm_object_lock_assert_exclusive(backing_object);
4951
4952 size = object->vo_size;
4953
4954 /*
4955 * Move all compressed pages from backing_object
4956 * to the parent.
4957 */
4958
4959 for (backing_offset = object->vo_shadow_offset;
4960 backing_offset < object->vo_shadow_offset + object->vo_size;
4961 backing_offset += PAGE_SIZE) {
4962 memory_object_offset_t backing_pager_offset;
4963
4964 /* find the next compressed page at or after this offset */
4965 backing_pager_offset = (backing_offset +
4966 backing_object->paging_offset);
4967 backing_pager_offset = vm_compressor_pager_next_compressed(
4968 backing_object->pager,
4969 backing_pager_offset);
4970 if (backing_pager_offset == (memory_object_offset_t) -1) {
4971 /* no more compressed pages */
4972 break;
4973 }
4974 backing_offset = (backing_pager_offset -
4975 backing_object->paging_offset);
4976
4977 new_offset = backing_offset - object->vo_shadow_offset;
4978
4979 if (new_offset >= object->vo_size) {
4980 /* we're out of the scope of "object": done */
4981 break;
4982 }
4983
4984 if ((vm_page_lookup(object, new_offset) != VM_PAGE_NULL) ||
4985 (vm_compressor_pager_state_get(object->pager,
4986 (new_offset +
4987 object->paging_offset)) ==
4988 VM_EXTERNAL_STATE_EXISTS)) {
4989 /*
4990 * This page already exists in object, resident or
4991 * compressed.
4992 * We don't need this compressed page in backing_object
4993 * and it will be reclaimed when we release
4994 * backing_object.
4995 */
4996 continue;
4997 }
4998
4999 /*
5000 * backing_object has this page in the VM compressor and
5001 * we need to transfer it to object.
5002 */
5003 vm_counters.do_collapse_compressor_pages++;
5004 vm_compressor_pager_transfer(
5005 /* destination: */
5006 object->pager,
5007 (new_offset + object->paging_offset),
5008 /* source: */
5009 backing_object->pager,
5010 (backing_offset + backing_object->paging_offset));
5011 }
5012 }
5013
5014 /*
5015 * Routine: vm_object_do_collapse
5016 * Purpose:
5017 * Collapse an object with the object backing it.
5018 * Pages in the backing object are moved into the
5019 * parent, and the backing object is deallocated.
5020 * Conditions:
5021 * Both objects and the cache are locked; the page
5022 * queues are unlocked.
5023 *
5024 */
5025 static void
5026 vm_object_do_collapse(
5027 vm_object_t object,
5028 vm_object_t backing_object)
5029 {
5030 vm_page_t p, pp;
5031 vm_object_offset_t new_offset, backing_offset;
5032 vm_object_size_t size;
5033
5034 vm_object_lock_assert_exclusive(object);
5035 vm_object_lock_assert_exclusive(backing_object);
5036
5037 assert(object->purgable == VM_PURGABLE_DENY);
5038 assert(backing_object->purgable == VM_PURGABLE_DENY);
5039
5040 backing_offset = object->vo_shadow_offset;
5041 size = object->vo_size;
5042
5043 /*
5044 * Move all in-memory pages from backing_object
5045 * to the parent. Pages that have been paged out
5046 * will be overwritten by any of the parent's
5047 * pages that shadow them.
5048 */
5049
5050 while (!queue_empty(&backing_object->memq)) {
5051
5052 p = (vm_page_t) queue_first(&backing_object->memq);
5053
5054 new_offset = (p->offset - backing_offset);
5055
5056 assert(!p->busy || p->absent);
5057
5058 /*
5059 * If the parent has a page here, or if
5060 * this page falls outside the parent,
5061 * dispose of it.
5062 *
5063 * Otherwise, move it as planned.
5064 */
5065
5066 if (p->offset < backing_offset || new_offset >= size) {
5067 VM_PAGE_FREE(p);
5068 } else {
5069 /*
5070 * ENCRYPTED SWAP:
5071 * The encryption key includes the "pager" and the
5072 * "paging_offset". These will not change during the
5073 * object collapse, so we can just move an encrypted
5074 * page from one object to the other in this case.
5075 * We can't decrypt the page here, since we can't drop
5076 * the object lock.
5077 */
5078 if (p->encrypted) {
5079 vm_object_collapse_encrypted++;
5080 }
5081 pp = vm_page_lookup(object, new_offset);
5082 if (pp == VM_PAGE_NULL) {
5083
5084 if (VM_COMPRESSOR_PAGER_STATE_GET(object,
5085 new_offset)
5086 == VM_EXTERNAL_STATE_EXISTS) {
5087 /*
5088 * Parent object has this page
5089 * in the VM compressor.
5090 * Throw away the backing
5091 * object's page.
5092 */
5093 VM_PAGE_FREE(p);
5094 } else {
5095 /*
5096 * Parent now has no page.
5097 * Move the backing object's page
5098 * up.
5099 */
5100 vm_page_rename(p, object, new_offset,
5101 TRUE);
5102 }
5103
5104 #if MACH_PAGEMAP
5105 } else if (pp->absent) {
5106
5107 /*
5108 * Parent has an absent page...
5109 * it's not being paged in, so
5110 * it must really be missing from
5111 * the parent.
5112 *
5113 * Throw out the absent page...
5114 * any faults looking for that
5115 * page will restart with the new
5116 * one.
5117 */
5118
5119 VM_PAGE_FREE(pp);
5120 vm_page_rename(p, object, new_offset, TRUE);
5121 #endif /* MACH_PAGEMAP */
5122 } else {
5123 assert(! pp->absent);
5124
5125 /*
5126 * Parent object has a real page.
5127 * Throw away the backing object's
5128 * page.
5129 */
5130 VM_PAGE_FREE(p);
5131 }
5132 }
5133 }
5134
5135 if (vm_object_collapse_compressor_allowed &&
5136 object->pager != MEMORY_OBJECT_NULL &&
5137 backing_object->pager != MEMORY_OBJECT_NULL) {
5138
5139 /* move compressed pages from backing_object to object */
5140 vm_object_do_collapse_compressor(object, backing_object);
5141
5142 } else if (backing_object->pager != MEMORY_OBJECT_NULL) {
5143 vm_object_hash_entry_t entry;
5144
5145 #if !MACH_PAGEMAP
5146 assert((!object->pager_created &&
5147 (object->pager == MEMORY_OBJECT_NULL)) ||
5148 (!backing_object->pager_created &&
5149 (backing_object->pager == MEMORY_OBJECT_NULL)));
5150 #else
5151 assert(!object->pager_created &&
5152 object->pager == MEMORY_OBJECT_NULL);
5153 #endif /* !MACH_PAGEMAP */
5154
5155 /*
5156 * Move the pager from backing_object to object.
5157 *
5158 * XXX We're only using part of the paging space
5159 * for keeps now... we ought to discard the
5160 * unused portion.
5161 */
5162
5163 assert(!object->paging_in_progress);
5164 assert(!object->activity_in_progress);
5165 assert(!object->pager_created);
5166 assert(object->pager == NULL);
5167 object->pager = backing_object->pager;
5168
5169 if (backing_object->hashed) {
5170 lck_mtx_t *lck;
5171
5172 lck = vm_object_hash_lock_spin(backing_object->pager);
5173 entry = vm_object_hash_lookup(object->pager, FALSE);
5174 assert(entry != VM_OBJECT_HASH_ENTRY_NULL);
5175 entry->object = object;
5176 vm_object_hash_unlock(lck);
5177
5178 object->hashed = TRUE;
5179 }
5180 object->pager_created = backing_object->pager_created;
5181 object->pager_control = backing_object->pager_control;
5182 object->pager_ready = backing_object->pager_ready;
5183 object->pager_initialized = backing_object->pager_initialized;
5184 object->paging_offset =
5185 backing_object->paging_offset + backing_offset;
5186 if (object->pager_control != MEMORY_OBJECT_CONTROL_NULL) {
5187 memory_object_control_collapse(object->pager_control,
5188 object);
5189 }
5190 /* the backing_object has lost its pager: reset all fields */
5191 backing_object->pager_created = FALSE;
5192 backing_object->pager_control = NULL;
5193 backing_object->pager_ready = FALSE;
5194 backing_object->paging_offset = 0;
5195 backing_object->pager = NULL;
5196 }
5197
5198 #if MACH_PAGEMAP
5199 /*
5200 * If the shadow offset is 0, the use the existence map from
5201 * the backing object if there is one. If the shadow offset is
5202 * not zero, toss it.
5203 *
5204 * XXX - If the shadow offset is not 0 then a bit copy is needed
5205 * if the map is to be salvaged. For now, we just just toss the
5206 * old map, giving the collapsed object no map. This means that
5207 * the pager is invoked for zero fill pages. If analysis shows
5208 * that this happens frequently and is a performance hit, then
5209 * this code should be fixed to salvage the map.
5210 */
5211 assert(object->existence_map == VM_EXTERNAL_NULL);
5212 if (backing_offset || (size != backing_object->vo_size)) {
5213 vm_external_discarded++;
5214 vm_external_destroy(backing_object->existence_map,
5215 backing_object->vo_size);
5216 }
5217 else {
5218 vm_external_collapsed++;
5219 object->existence_map = backing_object->existence_map;
5220 }
5221 backing_object->existence_map = VM_EXTERNAL_NULL;
5222 #endif /* MACH_PAGEMAP */
5223
5224 /*
5225 * Object now shadows whatever backing_object did.
5226 * Note that the reference to backing_object->shadow
5227 * moves from within backing_object to within object.
5228 */
5229
5230 assert(!object->phys_contiguous);
5231 assert(!backing_object->phys_contiguous);
5232 object->shadow = backing_object->shadow;
5233 if (object->shadow) {
5234 object->vo_shadow_offset += backing_object->vo_shadow_offset;
5235 /* "backing_object" gave its shadow to "object" */
5236 backing_object->shadow = VM_OBJECT_NULL;
5237 backing_object->vo_shadow_offset = 0;
5238 } else {
5239 /* no shadow, therefore no shadow offset... */
5240 object->vo_shadow_offset = 0;
5241 }
5242 assert((object->shadow == VM_OBJECT_NULL) ||
5243 (object->shadow->copy != backing_object));
5244
5245 /*
5246 * Discard backing_object.
5247 *
5248 * Since the backing object has no pages, no
5249 * pager left, and no object references within it,
5250 * all that is necessary is to dispose of it.
5251 */
5252 object_collapses++;
5253
5254 assert(backing_object->ref_count == 1);
5255 assert(backing_object->resident_page_count == 0);
5256 assert(backing_object->paging_in_progress == 0);
5257 assert(backing_object->activity_in_progress == 0);
5258 assert(backing_object->shadow == VM_OBJECT_NULL);
5259 assert(backing_object->vo_shadow_offset == 0);
5260
5261 if (backing_object->pager != MEMORY_OBJECT_NULL) {
5262 /* ... unless it has a pager; need to terminate pager too */
5263 vm_counters.do_collapse_terminate++;
5264 if (vm_object_terminate(backing_object) != KERN_SUCCESS) {
5265 vm_counters.do_collapse_terminate_failure++;
5266 }
5267 return;
5268 }
5269
5270 assert(backing_object->pager == NULL);
5271
5272 backing_object->alive = FALSE;
5273 vm_object_unlock(backing_object);
5274
5275 XPR(XPR_VM_OBJECT, "vm_object_collapse, collapsed 0x%X\n",
5276 backing_object, 0,0,0,0);
5277
5278 #if VM_OBJECT_TRACKING
5279 if (vm_object_tracking_inited) {
5280 btlog_remove_entries_for_element(vm_object_tracking_btlog,
5281 backing_object);
5282 }
5283 #endif /* VM_OBJECT_TRACKING */
5284
5285 vm_object_lock_destroy(backing_object);
5286
5287 zfree(vm_object_zone, backing_object);
5288
5289 }
5290
5291 static void
5292 vm_object_do_bypass(
5293 vm_object_t object,
5294 vm_object_t backing_object)
5295 {
5296 /*
5297 * Make the parent shadow the next object
5298 * in the chain.
5299 */
5300
5301 vm_object_lock_assert_exclusive(object);
5302 vm_object_lock_assert_exclusive(backing_object);
5303
5304 #if TASK_SWAPPER
5305 /*
5306 * Do object reference in-line to
5307 * conditionally increment shadow's
5308 * residence count. If object is not
5309 * resident, leave residence count
5310 * on shadow alone.
5311 */
5312 if (backing_object->shadow != VM_OBJECT_NULL) {
5313 vm_object_lock(backing_object->shadow);
5314 vm_object_lock_assert_exclusive(backing_object->shadow);
5315 backing_object->shadow->ref_count++;
5316 if (object->res_count != 0)
5317 vm_object_res_reference(backing_object->shadow);
5318 vm_object_unlock(backing_object->shadow);
5319 }
5320 #else /* TASK_SWAPPER */
5321 vm_object_reference(backing_object->shadow);
5322 #endif /* TASK_SWAPPER */
5323
5324 assert(!object->phys_contiguous);
5325 assert(!backing_object->phys_contiguous);
5326 object->shadow = backing_object->shadow;
5327 if (object->shadow) {
5328 object->vo_shadow_offset += backing_object->vo_shadow_offset;
5329 } else {
5330 /* no shadow, therefore no shadow offset... */
5331 object->vo_shadow_offset = 0;
5332 }
5333
5334 /*
5335 * Backing object might have had a copy pointer
5336 * to us. If it did, clear it.
5337 */
5338 if (backing_object->copy == object) {
5339 backing_object->copy = VM_OBJECT_NULL;
5340 }
5341
5342 /*
5343 * Drop the reference count on backing_object.
5344 #if TASK_SWAPPER
5345 * Since its ref_count was at least 2, it
5346 * will not vanish; so we don't need to call
5347 * vm_object_deallocate.
5348 * [with a caveat for "named" objects]
5349 *
5350 * The res_count on the backing object is
5351 * conditionally decremented. It's possible
5352 * (via vm_pageout_scan) to get here with
5353 * a "swapped" object, which has a 0 res_count,
5354 * in which case, the backing object res_count
5355 * is already down by one.
5356 #else
5357 * Don't call vm_object_deallocate unless
5358 * ref_count drops to zero.
5359 *
5360 * The ref_count can drop to zero here if the
5361 * backing object could be bypassed but not
5362 * collapsed, such as when the backing object
5363 * is temporary and cachable.
5364 #endif
5365 */
5366 if (backing_object->ref_count > 2 ||
5367 (!backing_object->named && backing_object->ref_count > 1)) {
5368 vm_object_lock_assert_exclusive(backing_object);
5369 backing_object->ref_count--;
5370 #if TASK_SWAPPER
5371 if (object->res_count != 0)
5372 vm_object_res_deallocate(backing_object);
5373 assert(backing_object->ref_count > 0);
5374 #endif /* TASK_SWAPPER */
5375 vm_object_unlock(backing_object);
5376 } else {
5377
5378 /*
5379 * Drop locks so that we can deallocate
5380 * the backing object.
5381 */
5382
5383 #if TASK_SWAPPER
5384 if (object->res_count == 0) {
5385 /* XXX get a reference for the deallocate below */
5386 vm_object_res_reference(backing_object);
5387 }
5388 #endif /* TASK_SWAPPER */
5389 /*
5390 * vm_object_collapse (the caller of this function) is
5391 * now called from contexts that may not guarantee that a
5392 * valid reference is held on the object... w/o a valid
5393 * reference, it is unsafe and unwise (you will definitely
5394 * regret it) to unlock the object and then retake the lock
5395 * since the object may be terminated and recycled in between.
5396 * The "activity_in_progress" reference will keep the object
5397 * 'stable'.
5398 */
5399 vm_object_activity_begin(object);
5400 vm_object_unlock(object);
5401
5402 vm_object_unlock(backing_object);
5403 vm_object_deallocate(backing_object);
5404
5405 /*
5406 * Relock object. We don't have to reverify
5407 * its state since vm_object_collapse will
5408 * do that for us as it starts at the
5409 * top of its loop.
5410 */
5411
5412 vm_object_lock(object);
5413 vm_object_activity_end(object);
5414 }
5415
5416 object_bypasses++;
5417 }
5418
5419
5420 /*
5421 * vm_object_collapse:
5422 *
5423 * Perform an object collapse or an object bypass if appropriate.
5424 * The real work of collapsing and bypassing is performed in
5425 * the routines vm_object_do_collapse and vm_object_do_bypass.
5426 *
5427 * Requires that the object be locked and the page queues be unlocked.
5428 *
5429 */
5430 static unsigned long vm_object_collapse_calls = 0;
5431 static unsigned long vm_object_collapse_objects = 0;
5432 static unsigned long vm_object_collapse_do_collapse = 0;
5433 static unsigned long vm_object_collapse_do_bypass = 0;
5434
5435 __private_extern__ void
5436 vm_object_collapse(
5437 register vm_object_t object,
5438 register vm_object_offset_t hint_offset,
5439 boolean_t can_bypass)
5440 {
5441 register vm_object_t backing_object;
5442 register unsigned int rcount;
5443 register unsigned int size;
5444 vm_object_t original_object;
5445 int object_lock_type;
5446 int backing_object_lock_type;
5447
5448 vm_object_collapse_calls++;
5449
5450 if (! vm_object_collapse_allowed &&
5451 ! (can_bypass && vm_object_bypass_allowed)) {
5452 return;
5453 }
5454
5455 XPR(XPR_VM_OBJECT, "vm_object_collapse, obj 0x%X\n",
5456 object, 0,0,0,0);
5457
5458 if (object == VM_OBJECT_NULL)
5459 return;
5460
5461 original_object = object;
5462
5463 /*
5464 * The top object was locked "exclusive" by the caller.
5465 * In the first pass, to determine if we can collapse the shadow chain,
5466 * take a "shared" lock on the shadow objects. If we can collapse,
5467 * we'll have to go down the chain again with exclusive locks.
5468 */
5469 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
5470 backing_object_lock_type = OBJECT_LOCK_SHARED;
5471
5472 retry:
5473 object = original_object;
5474 vm_object_lock_assert_exclusive(object);
5475
5476 while (TRUE) {
5477 vm_object_collapse_objects++;
5478 /*
5479 * Verify that the conditions are right for either
5480 * collapse or bypass:
5481 */
5482
5483 /*
5484 * There is a backing object, and
5485 */
5486
5487 backing_object = object->shadow;
5488 if (backing_object == VM_OBJECT_NULL) {
5489 if (object != original_object) {
5490 vm_object_unlock(object);
5491 }
5492 return;
5493 }
5494 if (backing_object_lock_type == OBJECT_LOCK_SHARED) {
5495 vm_object_lock_shared(backing_object);
5496 } else {
5497 vm_object_lock(backing_object);
5498 }
5499
5500 /*
5501 * No pages in the object are currently
5502 * being paged out, and
5503 */
5504 if (object->paging_in_progress != 0 ||
5505 object->activity_in_progress != 0) {
5506 /* try and collapse the rest of the shadow chain */
5507 if (object != original_object) {
5508 vm_object_unlock(object);
5509 }
5510 object = backing_object;
5511 object_lock_type = backing_object_lock_type;
5512 continue;
5513 }
5514
5515 /*
5516 * ...
5517 * The backing object is not read_only,
5518 * and no pages in the backing object are
5519 * currently being paged out.
5520 * The backing object is internal.
5521 *
5522 */
5523
5524 if (!backing_object->internal ||
5525 backing_object->paging_in_progress != 0 ||
5526 backing_object->activity_in_progress != 0) {
5527 /* try and collapse the rest of the shadow chain */
5528 if (object != original_object) {
5529 vm_object_unlock(object);
5530 }
5531 object = backing_object;
5532 object_lock_type = backing_object_lock_type;
5533 continue;
5534 }
5535
5536 /*
5537 * Purgeable objects are not supposed to engage in
5538 * copy-on-write activities, so should not have
5539 * any shadow objects or be a shadow object to another
5540 * object.
5541 * Collapsing a purgeable object would require some
5542 * updates to the purgeable compressed ledgers.
5543 */
5544 if (object->purgable != VM_PURGABLE_DENY ||
5545 backing_object->purgable != VM_PURGABLE_DENY) {
5546 panic("vm_object_collapse() attempting to collapse "
5547 "purgeable object: %p(%d) %p(%d)\n",
5548 object, object->purgable,
5549 backing_object, backing_object->purgable);
5550 /* try and collapse the rest of the shadow chain */
5551 if (object != original_object) {
5552 vm_object_unlock(object);
5553 }
5554 object = backing_object;
5555 object_lock_type = backing_object_lock_type;
5556 continue;
5557 }
5558
5559 /*
5560 * The backing object can't be a copy-object:
5561 * the shadow_offset for the copy-object must stay
5562 * as 0. Furthermore (for the 'we have all the
5563 * pages' case), if we bypass backing_object and
5564 * just shadow the next object in the chain, old
5565 * pages from that object would then have to be copied
5566 * BOTH into the (former) backing_object and into the
5567 * parent object.
5568 */
5569 if (backing_object->shadow != VM_OBJECT_NULL &&
5570 backing_object->shadow->copy == backing_object) {
5571 /* try and collapse the rest of the shadow chain */
5572 if (object != original_object) {
5573 vm_object_unlock(object);
5574 }
5575 object = backing_object;
5576 object_lock_type = backing_object_lock_type;
5577 continue;
5578 }
5579
5580 /*
5581 * We can now try to either collapse the backing
5582 * object (if the parent is the only reference to
5583 * it) or (perhaps) remove the parent's reference
5584 * to it.
5585 *
5586 * If there is exactly one reference to the backing
5587 * object, we may be able to collapse it into the
5588 * parent.
5589 *
5590 * If MACH_PAGEMAP is defined:
5591 * The parent must not have a pager created for it,
5592 * since collapsing a backing_object dumps new pages
5593 * into the parent that its pager doesn't know about
5594 * (and the collapse code can't merge the existence
5595 * maps).
5596 * Otherwise:
5597 * As long as one of the objects is still not known
5598 * to the pager, we can collapse them.
5599 */
5600 if (backing_object->ref_count == 1 &&
5601 (vm_object_collapse_compressor_allowed ||
5602 !object->pager_created
5603 #if !MACH_PAGEMAP
5604 || (!backing_object->pager_created)
5605 #endif /*!MACH_PAGEMAP */
5606 ) && vm_object_collapse_allowed) {
5607
5608 /*
5609 * We need the exclusive lock on the VM objects.
5610 */
5611 if (backing_object_lock_type != OBJECT_LOCK_EXCLUSIVE) {
5612 /*
5613 * We have an object and its shadow locked
5614 * "shared". We can't just upgrade the locks
5615 * to "exclusive", as some other thread might
5616 * also have these objects locked "shared" and
5617 * attempt to upgrade one or the other to
5618 * "exclusive". The upgrades would block
5619 * forever waiting for the other "shared" locks
5620 * to get released.
5621 * So we have to release the locks and go
5622 * down the shadow chain again (since it could
5623 * have changed) with "exclusive" locking.
5624 */
5625 vm_object_unlock(backing_object);
5626 if (object != original_object)
5627 vm_object_unlock(object);
5628 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
5629 backing_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
5630 goto retry;
5631 }
5632
5633 XPR(XPR_VM_OBJECT,
5634 "vm_object_collapse: %x to %x, pager %x, pager_control %x\n",
5635 backing_object, object,
5636 backing_object->pager,
5637 backing_object->pager_control, 0);
5638
5639 /*
5640 * Collapse the object with its backing
5641 * object, and try again with the object's
5642 * new backing object.
5643 */
5644
5645 vm_object_do_collapse(object, backing_object);
5646 vm_object_collapse_do_collapse++;
5647 continue;
5648 }
5649
5650 /*
5651 * Collapsing the backing object was not possible
5652 * or permitted, so let's try bypassing it.
5653 */
5654
5655 if (! (can_bypass && vm_object_bypass_allowed)) {
5656 /* try and collapse the rest of the shadow chain */
5657 if (object != original_object) {
5658 vm_object_unlock(object);
5659 }
5660 object = backing_object;
5661 object_lock_type = backing_object_lock_type;
5662 continue;
5663 }
5664
5665
5666 /*
5667 * If the object doesn't have all its pages present,
5668 * we have to make sure no pages in the backing object
5669 * "show through" before bypassing it.
5670 */
5671 size = (unsigned int)atop(object->vo_size);
5672 rcount = object->resident_page_count;
5673
5674 if (rcount != size) {
5675 vm_object_offset_t offset;
5676 vm_object_offset_t backing_offset;
5677 unsigned int backing_rcount;
5678
5679 /*
5680 * If the backing object has a pager but no pagemap,
5681 * then we cannot bypass it, because we don't know
5682 * what pages it has.
5683 */
5684 if (backing_object->pager_created
5685 #if MACH_PAGEMAP
5686 && (backing_object->existence_map == VM_EXTERNAL_NULL)
5687 #endif /* MACH_PAGEMAP */
5688 ) {
5689 /* try and collapse the rest of the shadow chain */
5690 if (object != original_object) {
5691 vm_object_unlock(object);
5692 }
5693 object = backing_object;
5694 object_lock_type = backing_object_lock_type;
5695 continue;
5696 }
5697
5698 /*
5699 * If the object has a pager but no pagemap,
5700 * then we cannot bypass it, because we don't know
5701 * what pages it has.
5702 */
5703 if (object->pager_created
5704 #if MACH_PAGEMAP
5705 && (object->existence_map == VM_EXTERNAL_NULL)
5706 #endif /* MACH_PAGEMAP */
5707 ) {
5708 /* try and collapse the rest of the shadow chain */
5709 if (object != original_object) {
5710 vm_object_unlock(object);
5711 }
5712 object = backing_object;
5713 object_lock_type = backing_object_lock_type;
5714 continue;
5715 }
5716
5717 backing_offset = object->vo_shadow_offset;
5718 backing_rcount = backing_object->resident_page_count;
5719
5720 if ( (int)backing_rcount - (int)(atop(backing_object->vo_size) - size) > (int)rcount) {
5721 /*
5722 * we have enough pages in the backing object to guarantee that
5723 * at least 1 of them must be 'uncovered' by a resident page
5724 * in the object we're evaluating, so move on and
5725 * try to collapse the rest of the shadow chain
5726 */
5727 if (object != original_object) {
5728 vm_object_unlock(object);
5729 }
5730 object = backing_object;
5731 object_lock_type = backing_object_lock_type;
5732 continue;
5733 }
5734
5735 /*
5736 * If all of the pages in the backing object are
5737 * shadowed by the parent object, the parent
5738 * object no longer has to shadow the backing
5739 * object; it can shadow the next one in the
5740 * chain.
5741 *
5742 * If the backing object has existence info,
5743 * we must check examine its existence info
5744 * as well.
5745 *
5746 */
5747
5748 #if MACH_PAGEMAP
5749 #define EXISTS_IN_OBJECT(obj, off, rc) \
5750 ((vm_external_state_get((obj)->existence_map, \
5751 (vm_offset_t)(off)) \
5752 == VM_EXTERNAL_STATE_EXISTS) || \
5753 (VM_COMPRESSOR_PAGER_STATE_GET((obj), (off)) \
5754 == VM_EXTERNAL_STATE_EXISTS) || \
5755 ((rc) && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--))
5756 #else /* MACH_PAGEMAP */
5757 #define EXISTS_IN_OBJECT(obj, off, rc) \
5758 ((VM_COMPRESSOR_PAGER_STATE_GET((obj), (off)) \
5759 == VM_EXTERNAL_STATE_EXISTS) || \
5760 ((rc) && vm_page_lookup((obj), (off)) != VM_PAGE_NULL && (rc)--))
5761 #endif /* MACH_PAGEMAP */
5762
5763 /*
5764 * Check the hint location first
5765 * (since it is often the quickest way out of here).
5766 */
5767 if (object->cow_hint != ~(vm_offset_t)0)
5768 hint_offset = (vm_object_offset_t)object->cow_hint;
5769 else
5770 hint_offset = (hint_offset > 8 * PAGE_SIZE_64) ?
5771 (hint_offset - 8 * PAGE_SIZE_64) : 0;
5772
5773 if (EXISTS_IN_OBJECT(backing_object, hint_offset +
5774 backing_offset, backing_rcount) &&
5775 !EXISTS_IN_OBJECT(object, hint_offset, rcount)) {
5776 /* dependency right at the hint */
5777 object->cow_hint = (vm_offset_t) hint_offset; /* atomic */
5778 /* try and collapse the rest of the shadow chain */
5779 if (object != original_object) {
5780 vm_object_unlock(object);
5781 }
5782 object = backing_object;
5783 object_lock_type = backing_object_lock_type;
5784 continue;
5785 }
5786
5787 /*
5788 * If the object's window onto the backing_object
5789 * is large compared to the number of resident
5790 * pages in the backing object, it makes sense to
5791 * walk the backing_object's resident pages first.
5792 *
5793 * NOTE: Pages may be in both the existence map and/or
5794 * resident, so if we don't find a dependency while
5795 * walking the backing object's resident page list
5796 * directly, and there is an existence map, we'll have
5797 * to run the offset based 2nd pass. Because we may
5798 * have to run both passes, we need to be careful
5799 * not to decrement 'rcount' in the 1st pass
5800 */
5801 if (backing_rcount && backing_rcount < (size / 8)) {
5802 unsigned int rc = rcount;
5803 vm_page_t p;
5804
5805 backing_rcount = backing_object->resident_page_count;
5806 p = (vm_page_t)queue_first(&backing_object->memq);
5807 do {
5808 offset = (p->offset - backing_offset);
5809
5810 if (offset < object->vo_size &&
5811 offset != hint_offset &&
5812 !EXISTS_IN_OBJECT(object, offset, rc)) {
5813 /* found a dependency */
5814 object->cow_hint = (vm_offset_t) offset; /* atomic */
5815
5816 break;
5817 }
5818 p = (vm_page_t) queue_next(&p->listq);
5819
5820 } while (--backing_rcount);
5821 if (backing_rcount != 0 ) {
5822 /* try and collapse the rest of the shadow chain */
5823 if (object != original_object) {
5824 vm_object_unlock(object);
5825 }
5826 object = backing_object;
5827 object_lock_type = backing_object_lock_type;
5828 continue;
5829 }
5830 }
5831
5832 /*
5833 * Walk through the offsets looking for pages in the
5834 * backing object that show through to the object.
5835 */
5836 if (backing_rcount
5837 #if MACH_PAGEMAP
5838 || backing_object->existence_map
5839 #endif /* MACH_PAGEMAP */
5840 ) {
5841 offset = hint_offset;
5842
5843 while((offset =
5844 (offset + PAGE_SIZE_64 < object->vo_size) ?
5845 (offset + PAGE_SIZE_64) : 0) != hint_offset) {
5846
5847 if (EXISTS_IN_OBJECT(backing_object, offset +
5848 backing_offset, backing_rcount) &&
5849 !EXISTS_IN_OBJECT(object, offset, rcount)) {
5850 /* found a dependency */
5851 object->cow_hint = (vm_offset_t) offset; /* atomic */
5852 break;
5853 }
5854 }
5855 if (offset != hint_offset) {
5856 /* try and collapse the rest of the shadow chain */
5857 if (object != original_object) {
5858 vm_object_unlock(object);
5859 }
5860 object = backing_object;
5861 object_lock_type = backing_object_lock_type;
5862 continue;
5863 }
5864 }
5865 }
5866
5867 /*
5868 * We need "exclusive" locks on the 2 VM objects.
5869 */
5870 if (backing_object_lock_type != OBJECT_LOCK_EXCLUSIVE) {
5871 vm_object_unlock(backing_object);
5872 if (object != original_object)
5873 vm_object_unlock(object);
5874 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
5875 backing_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
5876 goto retry;
5877 }
5878
5879 /* reset the offset hint for any objects deeper in the chain */
5880 object->cow_hint = (vm_offset_t)0;
5881
5882 /*
5883 * All interesting pages in the backing object
5884 * already live in the parent or its pager.
5885 * Thus we can bypass the backing object.
5886 */
5887
5888 vm_object_do_bypass(object, backing_object);
5889 vm_object_collapse_do_bypass++;
5890
5891 /*
5892 * Try again with this object's new backing object.
5893 */
5894
5895 continue;
5896 }
5897
5898 /* NOT REACHED */
5899 /*
5900 if (object != original_object) {
5901 vm_object_unlock(object);
5902 }
5903 */
5904 }
5905
5906 /*
5907 * Routine: vm_object_page_remove: [internal]
5908 * Purpose:
5909 * Removes all physical pages in the specified
5910 * object range from the object's list of pages.
5911 *
5912 * In/out conditions:
5913 * The object must be locked.
5914 * The object must not have paging_in_progress, usually
5915 * guaranteed by not having a pager.
5916 */
5917 unsigned int vm_object_page_remove_lookup = 0;
5918 unsigned int vm_object_page_remove_iterate = 0;
5919
5920 __private_extern__ void
5921 vm_object_page_remove(
5922 register vm_object_t object,
5923 register vm_object_offset_t start,
5924 register vm_object_offset_t end)
5925 {
5926 register vm_page_t p, next;
5927
5928 /*
5929 * One and two page removals are most popular.
5930 * The factor of 16 here is somewhat arbitrary.
5931 * It balances vm_object_lookup vs iteration.
5932 */
5933
5934 if (atop_64(end - start) < (unsigned)object->resident_page_count/16) {
5935 vm_object_page_remove_lookup++;
5936
5937 for (; start < end; start += PAGE_SIZE_64) {
5938 p = vm_page_lookup(object, start);
5939 if (p != VM_PAGE_NULL) {
5940 assert(!p->cleaning && !p->pageout && !p->laundry);
5941 if (!p->fictitious && p->pmapped)
5942 pmap_disconnect(p->phys_page);
5943 VM_PAGE_FREE(p);
5944 }
5945 }
5946 } else {
5947 vm_object_page_remove_iterate++;
5948
5949 p = (vm_page_t) queue_first(&object->memq);
5950 while (!queue_end(&object->memq, (queue_entry_t) p)) {
5951 next = (vm_page_t) queue_next(&p->listq);
5952 if ((start <= p->offset) && (p->offset < end)) {
5953 assert(!p->cleaning && !p->pageout && !p->laundry);
5954 if (!p->fictitious && p->pmapped)
5955 pmap_disconnect(p->phys_page);
5956 VM_PAGE_FREE(p);
5957 }
5958 p = next;
5959 }
5960 }
5961 }
5962
5963
5964 /*
5965 * Routine: vm_object_coalesce
5966 * Function: Coalesces two objects backing up adjoining
5967 * regions of memory into a single object.
5968 *
5969 * returns TRUE if objects were combined.
5970 *
5971 * NOTE: Only works at the moment if the second object is NULL -
5972 * if it's not, which object do we lock first?
5973 *
5974 * Parameters:
5975 * prev_object First object to coalesce
5976 * prev_offset Offset into prev_object
5977 * next_object Second object into coalesce
5978 * next_offset Offset into next_object
5979 *
5980 * prev_size Size of reference to prev_object
5981 * next_size Size of reference to next_object
5982 *
5983 * Conditions:
5984 * The object(s) must *not* be locked. The map must be locked
5985 * to preserve the reference to the object(s).
5986 */
5987 static int vm_object_coalesce_count = 0;
5988
5989 __private_extern__ boolean_t
5990 vm_object_coalesce(
5991 register vm_object_t prev_object,
5992 vm_object_t next_object,
5993 vm_object_offset_t prev_offset,
5994 __unused vm_object_offset_t next_offset,
5995 vm_object_size_t prev_size,
5996 vm_object_size_t next_size)
5997 {
5998 vm_object_size_t newsize;
5999
6000 #ifdef lint
6001 next_offset++;
6002 #endif /* lint */
6003
6004 if (next_object != VM_OBJECT_NULL) {
6005 return(FALSE);
6006 }
6007
6008 if (prev_object == VM_OBJECT_NULL) {
6009 return(TRUE);
6010 }
6011
6012 XPR(XPR_VM_OBJECT,
6013 "vm_object_coalesce: 0x%X prev_off 0x%X prev_size 0x%X next_size 0x%X\n",
6014 prev_object, prev_offset, prev_size, next_size, 0);
6015
6016 vm_object_lock(prev_object);
6017
6018 /*
6019 * Try to collapse the object first
6020 */
6021 vm_object_collapse(prev_object, prev_offset, TRUE);
6022
6023 /*
6024 * Can't coalesce if pages not mapped to
6025 * prev_entry may be in use any way:
6026 * . more than one reference
6027 * . paged out
6028 * . shadows another object
6029 * . has a copy elsewhere
6030 * . is purgeable
6031 * . paging references (pages might be in page-list)
6032 */
6033
6034 if ((prev_object->ref_count > 1) ||
6035 prev_object->pager_created ||
6036 (prev_object->shadow != VM_OBJECT_NULL) ||
6037 (prev_object->copy != VM_OBJECT_NULL) ||
6038 (prev_object->true_share != FALSE) ||
6039 (prev_object->purgable != VM_PURGABLE_DENY) ||
6040 (prev_object->paging_in_progress != 0) ||
6041 (prev_object->activity_in_progress != 0)) {
6042 vm_object_unlock(prev_object);
6043 return(FALSE);
6044 }
6045
6046 vm_object_coalesce_count++;
6047
6048 /*
6049 * Remove any pages that may still be in the object from
6050 * a previous deallocation.
6051 */
6052 vm_object_page_remove(prev_object,
6053 prev_offset + prev_size,
6054 prev_offset + prev_size + next_size);
6055
6056 /*
6057 * Extend the object if necessary.
6058 */
6059 newsize = prev_offset + prev_size + next_size;
6060 if (newsize > prev_object->vo_size) {
6061 #if MACH_PAGEMAP
6062 /*
6063 * We cannot extend an object that has existence info,
6064 * since the existence info might then fail to cover
6065 * the entire object.
6066 *
6067 * This assertion must be true because the object
6068 * has no pager, and we only create existence info
6069 * for objects with pagers.
6070 */
6071 assert(prev_object->existence_map == VM_EXTERNAL_NULL);
6072 #endif /* MACH_PAGEMAP */
6073 prev_object->vo_size = newsize;
6074 }
6075
6076 vm_object_unlock(prev_object);
6077 return(TRUE);
6078 }
6079
6080 /*
6081 * Attach a set of physical pages to an object, so that they can
6082 * be mapped by mapping the object. Typically used to map IO memory.
6083 *
6084 * The mapping function and its private data are used to obtain the
6085 * physical addresses for each page to be mapped.
6086 */
6087 void
6088 vm_object_page_map(
6089 vm_object_t object,
6090 vm_object_offset_t offset,
6091 vm_object_size_t size,
6092 vm_object_offset_t (*map_fn)(void *map_fn_data,
6093 vm_object_offset_t offset),
6094 void *map_fn_data) /* private to map_fn */
6095 {
6096 int64_t num_pages;
6097 int i;
6098 vm_page_t m;
6099 vm_page_t old_page;
6100 vm_object_offset_t addr;
6101
6102 num_pages = atop_64(size);
6103
6104 for (i = 0; i < num_pages; i++, offset += PAGE_SIZE_64) {
6105
6106 addr = (*map_fn)(map_fn_data, offset);
6107
6108 while ((m = vm_page_grab_fictitious()) == VM_PAGE_NULL)
6109 vm_page_more_fictitious();
6110
6111 vm_object_lock(object);
6112 if ((old_page = vm_page_lookup(object, offset))
6113 != VM_PAGE_NULL)
6114 {
6115 VM_PAGE_FREE(old_page);
6116 }
6117
6118 assert((ppnum_t) addr == addr);
6119 vm_page_init(m, (ppnum_t) addr, FALSE);
6120 /*
6121 * private normally requires lock_queues but since we
6122 * are initializing the page, its not necessary here
6123 */
6124 m->private = TRUE; /* don`t free page */
6125 m->wire_count = 1;
6126 vm_page_insert(m, object, offset);
6127
6128 PAGE_WAKEUP_DONE(m);
6129 vm_object_unlock(object);
6130 }
6131 }
6132
6133 kern_return_t
6134 vm_object_populate_with_private(
6135 vm_object_t object,
6136 vm_object_offset_t offset,
6137 ppnum_t phys_page,
6138 vm_size_t size)
6139 {
6140 ppnum_t base_page;
6141 vm_object_offset_t base_offset;
6142
6143
6144 if (!object->private)
6145 return KERN_FAILURE;
6146
6147 base_page = phys_page;
6148
6149 vm_object_lock(object);
6150
6151 if (!object->phys_contiguous) {
6152 vm_page_t m;
6153
6154 if ((base_offset = trunc_page_64(offset)) != offset) {
6155 vm_object_unlock(object);
6156 return KERN_FAILURE;
6157 }
6158 base_offset += object->paging_offset;
6159
6160 while (size) {
6161 m = vm_page_lookup(object, base_offset);
6162
6163 if (m != VM_PAGE_NULL) {
6164 if (m->fictitious) {
6165 if (m->phys_page != vm_page_guard_addr) {
6166
6167 vm_page_lockspin_queues();
6168 m->private = TRUE;
6169 vm_page_unlock_queues();
6170
6171 m->fictitious = FALSE;
6172 m->phys_page = base_page;
6173 }
6174 } else if (m->phys_page != base_page) {
6175
6176 if ( !m->private) {
6177 /*
6178 * we'd leak a real page... that can't be right
6179 */
6180 panic("vm_object_populate_with_private - %p not private", m);
6181 }
6182 if (m->pmapped) {
6183 /*
6184 * pmap call to clear old mapping
6185 */
6186 pmap_disconnect(m->phys_page);
6187 }
6188 m->phys_page = base_page;
6189 }
6190 if (m->encrypted) {
6191 /*
6192 * we should never see this on a ficticious or private page
6193 */
6194 panic("vm_object_populate_with_private - %p encrypted", m);
6195 }
6196
6197 } else {
6198 while ((m = vm_page_grab_fictitious()) == VM_PAGE_NULL)
6199 vm_page_more_fictitious();
6200
6201 /*
6202 * private normally requires lock_queues but since we
6203 * are initializing the page, its not necessary here
6204 */
6205 m->private = TRUE;
6206 m->fictitious = FALSE;
6207 m->phys_page = base_page;
6208 m->unusual = TRUE;
6209 m->busy = FALSE;
6210
6211 vm_page_insert(m, object, base_offset);
6212 }
6213 base_page++; /* Go to the next physical page */
6214 base_offset += PAGE_SIZE;
6215 size -= PAGE_SIZE;
6216 }
6217 } else {
6218 /* NOTE: we should check the original settings here */
6219 /* if we have a size > zero a pmap call should be made */
6220 /* to disable the range */
6221
6222 /* pmap_? */
6223
6224 /* shadows on contiguous memory are not allowed */
6225 /* we therefore can use the offset field */
6226 object->vo_shadow_offset = (vm_object_offset_t)phys_page << PAGE_SHIFT;
6227 object->vo_size = size;
6228 }
6229 vm_object_unlock(object);
6230
6231 return KERN_SUCCESS;
6232 }
6233
6234 /*
6235 * memory_object_free_from_cache:
6236 *
6237 * Walk the vm_object cache list, removing and freeing vm_objects
6238 * which are backed by the pager identified by the caller, (pager_ops).
6239 * Remove up to "count" objects, if there are that may available
6240 * in the cache.
6241 *
6242 * Walk the list at most once, return the number of vm_objects
6243 * actually freed.
6244 */
6245
6246 __private_extern__ kern_return_t
6247 memory_object_free_from_cache(
6248 __unused host_t host,
6249 __unused memory_object_pager_ops_t pager_ops,
6250 int *count)
6251 {
6252 #if VM_OBJECT_CACHE
6253 int object_released = 0;
6254
6255 register vm_object_t object = VM_OBJECT_NULL;
6256 vm_object_t shadow;
6257
6258 /*
6259 if(host == HOST_NULL)
6260 return(KERN_INVALID_ARGUMENT);
6261 */
6262
6263 try_again:
6264 vm_object_cache_lock();
6265
6266 queue_iterate(&vm_object_cached_list, object,
6267 vm_object_t, cached_list) {
6268 if (object->pager &&
6269 (pager_ops == object->pager->mo_pager_ops)) {
6270 vm_object_lock(object);
6271 queue_remove(&vm_object_cached_list, object,
6272 vm_object_t, cached_list);
6273 vm_object_cached_count--;
6274
6275 vm_object_cache_unlock();
6276 /*
6277 * Since this object is in the cache, we know
6278 * that it is initialized and has only a pager's
6279 * (implicit) reference. Take a reference to avoid
6280 * recursive deallocations.
6281 */
6282
6283 assert(object->pager_initialized);
6284 assert(object->ref_count == 0);
6285 vm_object_lock_assert_exclusive(object);
6286 object->ref_count++;
6287
6288 /*
6289 * Terminate the object.
6290 * If the object had a shadow, we let
6291 * vm_object_deallocate deallocate it.
6292 * "pageout" objects have a shadow, but
6293 * maintain a "paging reference" rather
6294 * than a normal reference.
6295 * (We are careful here to limit recursion.)
6296 */
6297 shadow = object->pageout?VM_OBJECT_NULL:object->shadow;
6298
6299 if ((vm_object_terminate(object) == KERN_SUCCESS)
6300 && (shadow != VM_OBJECT_NULL)) {
6301 vm_object_deallocate(shadow);
6302 }
6303
6304 if(object_released++ == *count)
6305 return KERN_SUCCESS;
6306 goto try_again;
6307 }
6308 }
6309 vm_object_cache_unlock();
6310 *count = object_released;
6311 #else
6312 *count = 0;
6313 #endif
6314 return KERN_SUCCESS;
6315 }
6316
6317
6318
6319 kern_return_t
6320 memory_object_create_named(
6321 memory_object_t pager,
6322 memory_object_offset_t size,
6323 memory_object_control_t *control)
6324 {
6325 vm_object_t object;
6326 vm_object_hash_entry_t entry;
6327 lck_mtx_t *lck;
6328
6329 *control = MEMORY_OBJECT_CONTROL_NULL;
6330 if (pager == MEMORY_OBJECT_NULL)
6331 return KERN_INVALID_ARGUMENT;
6332
6333 lck = vm_object_hash_lock_spin(pager);
6334 entry = vm_object_hash_lookup(pager, FALSE);
6335
6336 if ((entry != VM_OBJECT_HASH_ENTRY_NULL) &&
6337 (entry->object != VM_OBJECT_NULL)) {
6338 if (entry->object->named == TRUE)
6339 panic("memory_object_create_named: caller already holds the right"); }
6340 vm_object_hash_unlock(lck);
6341
6342 if ((object = vm_object_enter(pager, size, FALSE, FALSE, TRUE)) == VM_OBJECT_NULL) {
6343 return(KERN_INVALID_OBJECT);
6344 }
6345
6346 /* wait for object (if any) to be ready */
6347 if (object != VM_OBJECT_NULL) {
6348 vm_object_lock(object);
6349 object->named = TRUE;
6350 while (!object->pager_ready) {
6351 vm_object_sleep(object,
6352 VM_OBJECT_EVENT_PAGER_READY,
6353 THREAD_UNINT);
6354 }
6355 *control = object->pager_control;
6356 vm_object_unlock(object);
6357 }
6358 return (KERN_SUCCESS);
6359 }
6360
6361
6362 /*
6363 * Routine: memory_object_recover_named [user interface]
6364 * Purpose:
6365 * Attempt to recover a named reference for a VM object.
6366 * VM will verify that the object has not already started
6367 * down the termination path, and if it has, will optionally
6368 * wait for that to finish.
6369 * Returns:
6370 * KERN_SUCCESS - we recovered a named reference on the object
6371 * KERN_FAILURE - we could not recover a reference (object dead)
6372 * KERN_INVALID_ARGUMENT - bad memory object control
6373 */
6374 kern_return_t
6375 memory_object_recover_named(
6376 memory_object_control_t control,
6377 boolean_t wait_on_terminating)
6378 {
6379 vm_object_t object;
6380
6381 object = memory_object_control_to_vm_object(control);
6382 if (object == VM_OBJECT_NULL) {
6383 return (KERN_INVALID_ARGUMENT);
6384 }
6385 restart:
6386 vm_object_lock(object);
6387
6388 if (object->terminating && wait_on_terminating) {
6389 vm_object_wait(object,
6390 VM_OBJECT_EVENT_PAGING_IN_PROGRESS,
6391 THREAD_UNINT);
6392 goto restart;
6393 }
6394
6395 if (!object->alive) {
6396 vm_object_unlock(object);
6397 return KERN_FAILURE;
6398 }
6399
6400 if (object->named == TRUE) {
6401 vm_object_unlock(object);
6402 return KERN_SUCCESS;
6403 }
6404 #if VM_OBJECT_CACHE
6405 if ((object->ref_count == 0) && (!object->terminating)) {
6406 if (!vm_object_cache_lock_try()) {
6407 vm_object_unlock(object);
6408 goto restart;
6409 }
6410 queue_remove(&vm_object_cached_list, object,
6411 vm_object_t, cached_list);
6412 vm_object_cached_count--;
6413 XPR(XPR_VM_OBJECT_CACHE,
6414 "memory_object_recover_named: removing %X, head (%X, %X)\n",
6415 object,
6416 vm_object_cached_list.next,
6417 vm_object_cached_list.prev, 0,0);
6418
6419 vm_object_cache_unlock();
6420 }
6421 #endif
6422 object->named = TRUE;
6423 vm_object_lock_assert_exclusive(object);
6424 object->ref_count++;
6425 vm_object_res_reference(object);
6426 while (!object->pager_ready) {
6427 vm_object_sleep(object,
6428 VM_OBJECT_EVENT_PAGER_READY,
6429 THREAD_UNINT);
6430 }
6431 vm_object_unlock(object);
6432 return (KERN_SUCCESS);
6433 }
6434
6435
6436 /*
6437 * vm_object_release_name:
6438 *
6439 * Enforces name semantic on memory_object reference count decrement
6440 * This routine should not be called unless the caller holds a name
6441 * reference gained through the memory_object_create_named.
6442 *
6443 * If the TERMINATE_IDLE flag is set, the call will return if the
6444 * reference count is not 1. i.e. idle with the only remaining reference
6445 * being the name.
6446 * If the decision is made to proceed the name field flag is set to
6447 * false and the reference count is decremented. If the RESPECT_CACHE
6448 * flag is set and the reference count has gone to zero, the
6449 * memory_object is checked to see if it is cacheable otherwise when
6450 * the reference count is zero, it is simply terminated.
6451 */
6452
6453 __private_extern__ kern_return_t
6454 vm_object_release_name(
6455 vm_object_t object,
6456 int flags)
6457 {
6458 vm_object_t shadow;
6459 boolean_t original_object = TRUE;
6460
6461 while (object != VM_OBJECT_NULL) {
6462
6463 vm_object_lock(object);
6464
6465 assert(object->alive);
6466 if (original_object)
6467 assert(object->named);
6468 assert(object->ref_count > 0);
6469
6470 /*
6471 * We have to wait for initialization before
6472 * destroying or caching the object.
6473 */
6474
6475 if (object->pager_created && !object->pager_initialized) {
6476 assert(!object->can_persist);
6477 vm_object_assert_wait(object,
6478 VM_OBJECT_EVENT_INITIALIZED,
6479 THREAD_UNINT);
6480 vm_object_unlock(object);
6481 thread_block(THREAD_CONTINUE_NULL);
6482 continue;
6483 }
6484
6485 if (((object->ref_count > 1)
6486 && (flags & MEMORY_OBJECT_TERMINATE_IDLE))
6487 || (object->terminating)) {
6488 vm_object_unlock(object);
6489 return KERN_FAILURE;
6490 } else {
6491 if (flags & MEMORY_OBJECT_RELEASE_NO_OP) {
6492 vm_object_unlock(object);
6493 return KERN_SUCCESS;
6494 }
6495 }
6496
6497 if ((flags & MEMORY_OBJECT_RESPECT_CACHE) &&
6498 (object->ref_count == 1)) {
6499 if (original_object)
6500 object->named = FALSE;
6501 vm_object_unlock(object);
6502 /* let vm_object_deallocate push this thing into */
6503 /* the cache, if that it is where it is bound */
6504 vm_object_deallocate(object);
6505 return KERN_SUCCESS;
6506 }
6507 VM_OBJ_RES_DECR(object);
6508 shadow = object->pageout?VM_OBJECT_NULL:object->shadow;
6509
6510 if (object->ref_count == 1) {
6511 if (vm_object_terminate(object) != KERN_SUCCESS) {
6512 if (original_object) {
6513 return KERN_FAILURE;
6514 } else {
6515 return KERN_SUCCESS;
6516 }
6517 }
6518 if (shadow != VM_OBJECT_NULL) {
6519 original_object = FALSE;
6520 object = shadow;
6521 continue;
6522 }
6523 return KERN_SUCCESS;
6524 } else {
6525 vm_object_lock_assert_exclusive(object);
6526 object->ref_count--;
6527 assert(object->ref_count > 0);
6528 if(original_object)
6529 object->named = FALSE;
6530 vm_object_unlock(object);
6531 return KERN_SUCCESS;
6532 }
6533 }
6534 /*NOTREACHED*/
6535 assert(0);
6536 return KERN_FAILURE;
6537 }
6538
6539
6540 __private_extern__ kern_return_t
6541 vm_object_lock_request(
6542 vm_object_t object,
6543 vm_object_offset_t offset,
6544 vm_object_size_t size,
6545 memory_object_return_t should_return,
6546 int flags,
6547 vm_prot_t prot)
6548 {
6549 __unused boolean_t should_flush;
6550
6551 should_flush = flags & MEMORY_OBJECT_DATA_FLUSH;
6552
6553 XPR(XPR_MEMORY_OBJECT,
6554 "vm_o_lock_request, obj 0x%X off 0x%X size 0x%X flags %X prot %X\n",
6555 object, offset, size,
6556 (((should_return&1)<<1)|should_flush), prot);
6557
6558 /*
6559 * Check for bogus arguments.
6560 */
6561 if (object == VM_OBJECT_NULL)
6562 return (KERN_INVALID_ARGUMENT);
6563
6564 if ((prot & ~VM_PROT_ALL) != 0 && prot != VM_PROT_NO_CHANGE)
6565 return (KERN_INVALID_ARGUMENT);
6566
6567 size = round_page_64(size);
6568
6569 /*
6570 * Lock the object, and acquire a paging reference to
6571 * prevent the memory_object reference from being released.
6572 */
6573 vm_object_lock(object);
6574 vm_object_paging_begin(object);
6575
6576 (void)vm_object_update(object,
6577 offset, size, NULL, NULL, should_return, flags, prot);
6578
6579 vm_object_paging_end(object);
6580 vm_object_unlock(object);
6581
6582 return (KERN_SUCCESS);
6583 }
6584
6585 /*
6586 * Empty a purgeable object by grabbing the physical pages assigned to it and
6587 * putting them on the free queue without writing them to backing store, etc.
6588 * When the pages are next touched they will be demand zero-fill pages. We
6589 * skip pages which are busy, being paged in/out, wired, etc. We do _not_
6590 * skip referenced/dirty pages, pages on the active queue, etc. We're more
6591 * than happy to grab these since this is a purgeable object. We mark the
6592 * object as "empty" after reaping its pages.
6593 *
6594 * On entry the object must be locked and it must be
6595 * purgeable with no delayed copies pending.
6596 */
6597 void
6598 vm_object_purge(vm_object_t object, int flags)
6599 {
6600 vm_object_lock_assert_exclusive(object);
6601
6602 if (object->purgable == VM_PURGABLE_DENY)
6603 return;
6604
6605 assert(object->copy == VM_OBJECT_NULL);
6606 assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE);
6607
6608 /*
6609 * We need to set the object's state to VM_PURGABLE_EMPTY *before*
6610 * reaping its pages. We update vm_page_purgeable_count in bulk
6611 * and we don't want vm_page_remove() to update it again for each
6612 * page we reap later.
6613 *
6614 * For the purgeable ledgers, pages from VOLATILE and EMPTY objects
6615 * are all accounted for in the "volatile" ledgers, so this does not
6616 * make any difference.
6617 * If we transitioned directly from NONVOLATILE to EMPTY,
6618 * vm_page_purgeable_count must have been updated when the object
6619 * was dequeued from its volatile queue and the purgeable ledgers
6620 * must have also been updated accordingly at that time (in
6621 * vm_object_purgable_control()).
6622 */
6623 if (object->purgable == VM_PURGABLE_VOLATILE) {
6624 unsigned int delta;
6625 assert(object->resident_page_count >=
6626 object->wired_page_count);
6627 delta = (object->resident_page_count -
6628 object->wired_page_count);
6629 if (delta != 0) {
6630 assert(vm_page_purgeable_count >=
6631 delta);
6632 OSAddAtomic(-delta,
6633 (SInt32 *)&vm_page_purgeable_count);
6634 }
6635 if (object->wired_page_count != 0) {
6636 assert(vm_page_purgeable_wired_count >=
6637 object->wired_page_count);
6638 OSAddAtomic(-object->wired_page_count,
6639 (SInt32 *)&vm_page_purgeable_wired_count);
6640 }
6641 object->purgable = VM_PURGABLE_EMPTY;
6642 }
6643 assert(object->purgable == VM_PURGABLE_EMPTY);
6644
6645 vm_object_reap_pages(object, REAP_PURGEABLE);
6646
6647 if (object->pager != NULL &&
6648 COMPRESSED_PAGER_IS_ACTIVE) {
6649 unsigned int pgcount;
6650
6651 if (object->activity_in_progress == 0 &&
6652 object->paging_in_progress == 0) {
6653 /*
6654 * Also reap any memory coming from this object
6655 * in the VM compressor.
6656 *
6657 * There are no operations in progress on the VM object
6658 * and no operation can start while we're holding the
6659 * VM object lock, so it's safe to reap the compressed
6660 * pages and update the page counts.
6661 */
6662 pgcount = vm_compressor_pager_get_count(object->pager);
6663 if (pgcount) {
6664 pgcount = vm_compressor_pager_reap_pages(object->pager, flags);
6665 vm_compressor_pager_count(object->pager,
6666 -pgcount,
6667 FALSE, /* shared */
6668 object);
6669 vm_purgeable_compressed_update(object,
6670 -pgcount);
6671 }
6672 if ( !(flags & C_DONT_BLOCK)) {
6673 assert(vm_compressor_pager_get_count(object->pager)
6674 == 0);
6675 }
6676 } else {
6677 /*
6678 * There's some kind of paging activity in progress
6679 * for this object, which could result in a page
6680 * being compressed or decompressed, possibly while
6681 * the VM object is not locked, so it could race
6682 * with us.
6683 *
6684 * We can't really synchronize this without possibly
6685 * causing a deadlock when the compressor needs to
6686 * allocate or free memory while compressing or
6687 * decompressing a page from a purgeable object
6688 * mapped in the kernel_map...
6689 *
6690 * So let's not attempt to purge the compressor
6691 * pager if there's any kind of operation in
6692 * progress on the VM object.
6693 */
6694 }
6695 }
6696
6697 vm_object_lock_assert_exclusive(object);
6698 }
6699
6700
6701 /*
6702 * vm_object_purgeable_control() allows the caller to control and investigate the
6703 * state of a purgeable object. A purgeable object is created via a call to
6704 * vm_allocate() with VM_FLAGS_PURGABLE specified. A purgeable object will
6705 * never be coalesced with any other object -- even other purgeable objects --
6706 * and will thus always remain a distinct object. A purgeable object has
6707 * special semantics when its reference count is exactly 1. If its reference
6708 * count is greater than 1, then a purgeable object will behave like a normal
6709 * object and attempts to use this interface will result in an error return
6710 * of KERN_INVALID_ARGUMENT.
6711 *
6712 * A purgeable object may be put into a "volatile" state which will make the
6713 * object's pages elligable for being reclaimed without paging to backing
6714 * store if the system runs low on memory. If the pages in a volatile
6715 * purgeable object are reclaimed, the purgeable object is said to have been
6716 * "emptied." When a purgeable object is emptied the system will reclaim as
6717 * many pages from the object as it can in a convenient manner (pages already
6718 * en route to backing store or busy for other reasons are left as is). When
6719 * a purgeable object is made volatile, its pages will generally be reclaimed
6720 * before other pages in the application's working set. This semantic is
6721 * generally used by applications which can recreate the data in the object
6722 * faster than it can be paged in. One such example might be media assets
6723 * which can be reread from a much faster RAID volume.
6724 *
6725 * A purgeable object may be designated as "non-volatile" which means it will
6726 * behave like all other objects in the system with pages being written to and
6727 * read from backing store as needed to satisfy system memory needs. If the
6728 * object was emptied before the object was made non-volatile, that fact will
6729 * be returned as the old state of the purgeable object (see
6730 * VM_PURGABLE_SET_STATE below). In this case, any pages of the object which
6731 * were reclaimed as part of emptying the object will be refaulted in as
6732 * zero-fill on demand. It is up to the application to note that an object
6733 * was emptied and recreate the objects contents if necessary. When a
6734 * purgeable object is made non-volatile, its pages will generally not be paged
6735 * out to backing store in the immediate future. A purgeable object may also
6736 * be manually emptied.
6737 *
6738 * Finally, the current state (non-volatile, volatile, volatile & empty) of a
6739 * volatile purgeable object may be queried at any time. This information may
6740 * be used as a control input to let the application know when the system is
6741 * experiencing memory pressure and is reclaiming memory.
6742 *
6743 * The specified address may be any address within the purgeable object. If
6744 * the specified address does not represent any object in the target task's
6745 * virtual address space, then KERN_INVALID_ADDRESS will be returned. If the
6746 * object containing the specified address is not a purgeable object, then
6747 * KERN_INVALID_ARGUMENT will be returned. Otherwise, KERN_SUCCESS will be
6748 * returned.
6749 *
6750 * The control parameter may be any one of VM_PURGABLE_SET_STATE or
6751 * VM_PURGABLE_GET_STATE. For VM_PURGABLE_SET_STATE, the in/out parameter
6752 * state is used to set the new state of the purgeable object and return its
6753 * old state. For VM_PURGABLE_GET_STATE, the current state of the purgeable
6754 * object is returned in the parameter state.
6755 *
6756 * The in/out parameter state may be one of VM_PURGABLE_NONVOLATILE,
6757 * VM_PURGABLE_VOLATILE or VM_PURGABLE_EMPTY. These, respectively, represent
6758 * the non-volatile, volatile and volatile/empty states described above.
6759 * Setting the state of a purgeable object to VM_PURGABLE_EMPTY will
6760 * immediately reclaim as many pages in the object as can be conveniently
6761 * collected (some may have already been written to backing store or be
6762 * otherwise busy).
6763 *
6764 * The process of making a purgeable object non-volatile and determining its
6765 * previous state is atomic. Thus, if a purgeable object is made
6766 * VM_PURGABLE_NONVOLATILE and the old state is returned as
6767 * VM_PURGABLE_VOLATILE, then the purgeable object's previous contents are
6768 * completely intact and will remain so until the object is made volatile
6769 * again. If the old state is returned as VM_PURGABLE_EMPTY then the object
6770 * was reclaimed while it was in a volatile state and its previous contents
6771 * have been lost.
6772 */
6773 /*
6774 * The object must be locked.
6775 */
6776 kern_return_t
6777 vm_object_purgable_control(
6778 vm_object_t object,
6779 vm_purgable_t control,
6780 int *state)
6781 {
6782 int old_state;
6783 int new_state;
6784
6785 if (object == VM_OBJECT_NULL) {
6786 /*
6787 * Object must already be present or it can't be purgeable.
6788 */
6789 return KERN_INVALID_ARGUMENT;
6790 }
6791
6792 vm_object_lock_assert_exclusive(object);
6793
6794 /*
6795 * Get current state of the purgeable object.
6796 */
6797 old_state = object->purgable;
6798 if (old_state == VM_PURGABLE_DENY)
6799 return KERN_INVALID_ARGUMENT;
6800
6801 /* purgeable cant have delayed copies - now or in the future */
6802 assert(object->copy == VM_OBJECT_NULL);
6803 assert(object->copy_strategy == MEMORY_OBJECT_COPY_NONE);
6804
6805 /*
6806 * Execute the desired operation.
6807 */
6808 if (control == VM_PURGABLE_GET_STATE) {
6809 *state = old_state;
6810 return KERN_SUCCESS;
6811 }
6812
6813 if ((*state) & VM_PURGABLE_DEBUG_EMPTY) {
6814 object->volatile_empty = TRUE;
6815 }
6816 if ((*state) & VM_PURGABLE_DEBUG_FAULT) {
6817 object->volatile_fault = TRUE;
6818 }
6819
6820 new_state = *state & VM_PURGABLE_STATE_MASK;
6821 if (new_state == VM_PURGABLE_VOLATILE &&
6822 object->volatile_empty) {
6823 new_state = VM_PURGABLE_EMPTY;
6824 }
6825
6826 switch (new_state) {
6827 case VM_PURGABLE_DENY:
6828 case VM_PURGABLE_NONVOLATILE:
6829 object->purgable = new_state;
6830
6831 if (old_state == VM_PURGABLE_VOLATILE) {
6832 unsigned int delta;
6833
6834 assert(object->resident_page_count >=
6835 object->wired_page_count);
6836 delta = (object->resident_page_count -
6837 object->wired_page_count);
6838
6839 assert(vm_page_purgeable_count >= delta);
6840
6841 if (delta != 0) {
6842 OSAddAtomic(-delta,
6843 (SInt32 *)&vm_page_purgeable_count);
6844 }
6845 if (object->wired_page_count != 0) {
6846 assert(vm_page_purgeable_wired_count >=
6847 object->wired_page_count);
6848 OSAddAtomic(-object->wired_page_count,
6849 (SInt32 *)&vm_page_purgeable_wired_count);
6850 }
6851
6852 vm_page_lock_queues();
6853
6854 /* object should be on a queue */
6855 assert(object->objq.next != NULL &&
6856 object->objq.prev != NULL);
6857 purgeable_q_t queue;
6858
6859 /*
6860 * Move object from its volatile queue to the
6861 * non-volatile queue...
6862 */
6863 queue = vm_purgeable_object_remove(object);
6864 assert(queue);
6865
6866 if (object->purgeable_when_ripe) {
6867 vm_purgeable_token_delete_last(queue);
6868 }
6869 assert(queue->debug_count_objects>=0);
6870
6871 vm_page_unlock_queues();
6872 }
6873 if (old_state == VM_PURGABLE_VOLATILE ||
6874 old_state == VM_PURGABLE_EMPTY) {
6875 /*
6876 * Transfer the object's pages from the volatile to
6877 * non-volatile ledgers.
6878 */
6879 vm_purgeable_accounting(object, VM_PURGABLE_VOLATILE,
6880 FALSE);
6881 }
6882
6883 break;
6884
6885 case VM_PURGABLE_VOLATILE:
6886 if (object->volatile_fault) {
6887 vm_page_t p;
6888 int refmod;
6889
6890 queue_iterate(&object->memq, p, vm_page_t, listq) {
6891 if (p->busy ||
6892 VM_PAGE_WIRED(p) ||
6893 p->fictitious) {
6894 continue;
6895 }
6896 refmod = pmap_disconnect(p->phys_page);
6897 if ((refmod & VM_MEM_MODIFIED) &&
6898 !p->dirty) {
6899 SET_PAGE_DIRTY(p, FALSE);
6900 }
6901 }
6902 }
6903
6904 if (old_state == VM_PURGABLE_EMPTY &&
6905 object->resident_page_count == 0 &&
6906 object->pager == NULL)
6907 break;
6908
6909 purgeable_q_t queue;
6910
6911 /* find the correct queue */
6912 if ((*state&VM_PURGABLE_ORDERING_MASK) == VM_PURGABLE_ORDERING_OBSOLETE)
6913 queue = &purgeable_queues[PURGEABLE_Q_TYPE_OBSOLETE];
6914 else {
6915 if ((*state&VM_PURGABLE_BEHAVIOR_MASK) == VM_PURGABLE_BEHAVIOR_FIFO)
6916 queue = &purgeable_queues[PURGEABLE_Q_TYPE_FIFO];
6917 else
6918 queue = &purgeable_queues[PURGEABLE_Q_TYPE_LIFO];
6919 }
6920
6921 if (old_state == VM_PURGABLE_NONVOLATILE ||
6922 old_state == VM_PURGABLE_EMPTY) {
6923 unsigned int delta;
6924
6925 if ((*state & VM_PURGABLE_NO_AGING_MASK) ==
6926 VM_PURGABLE_NO_AGING) {
6927 object->purgeable_when_ripe = FALSE;
6928 } else {
6929 object->purgeable_when_ripe = TRUE;
6930 }
6931
6932 if (object->purgeable_when_ripe) {
6933 kern_return_t result;
6934
6935 /* try to add token... this can fail */
6936 vm_page_lock_queues();
6937
6938 result = vm_purgeable_token_add(queue);
6939 if (result != KERN_SUCCESS) {
6940 vm_page_unlock_queues();
6941 return result;
6942 }
6943 vm_page_unlock_queues();
6944 }
6945
6946 assert(object->resident_page_count >=
6947 object->wired_page_count);
6948 delta = (object->resident_page_count -
6949 object->wired_page_count);
6950
6951 if (delta != 0) {
6952 OSAddAtomic(delta,
6953 &vm_page_purgeable_count);
6954 }
6955 if (object->wired_page_count != 0) {
6956 OSAddAtomic(object->wired_page_count,
6957 &vm_page_purgeable_wired_count);
6958 }
6959
6960 object->purgable = new_state;
6961
6962 /* object should be on "non-volatile" queue */
6963 assert(object->objq.next != NULL);
6964 assert(object->objq.prev != NULL);
6965 }
6966 else if (old_state == VM_PURGABLE_VOLATILE) {
6967 purgeable_q_t old_queue;
6968 boolean_t purgeable_when_ripe;
6969
6970 /*
6971 * if reassigning priorities / purgeable groups, we don't change the
6972 * token queue. So moving priorities will not make pages stay around longer.
6973 * Reasoning is that the algorithm gives most priority to the most important
6974 * object. If a new token is added, the most important object' priority is boosted.
6975 * This biases the system already for purgeable queues that move a lot.
6976 * It doesn't seem more biasing is neccessary in this case, where no new object is added.
6977 */
6978 assert(object->objq.next != NULL && object->objq.prev != NULL); /* object should be on a queue */
6979
6980 old_queue = vm_purgeable_object_remove(object);
6981 assert(old_queue);
6982
6983 if ((*state & VM_PURGABLE_NO_AGING_MASK) ==
6984 VM_PURGABLE_NO_AGING) {
6985 purgeable_when_ripe = FALSE;
6986 } else {
6987 purgeable_when_ripe = TRUE;
6988 }
6989
6990 if (old_queue != queue ||
6991 (purgeable_when_ripe !=
6992 object->purgeable_when_ripe)) {
6993 kern_return_t result;
6994
6995 /* Changing queue. Have to move token. */
6996 vm_page_lock_queues();
6997 if (object->purgeable_when_ripe) {
6998 vm_purgeable_token_delete_last(old_queue);
6999 }
7000 object->purgeable_when_ripe = purgeable_when_ripe;
7001 if (object->purgeable_when_ripe) {
7002 result = vm_purgeable_token_add(queue);
7003 assert(result==KERN_SUCCESS); /* this should never fail since we just freed a token */
7004 }
7005 vm_page_unlock_queues();
7006
7007 }
7008 };
7009 vm_purgeable_object_add(object, queue, (*state&VM_VOLATILE_GROUP_MASK)>>VM_VOLATILE_GROUP_SHIFT );
7010 if (old_state == VM_PURGABLE_NONVOLATILE) {
7011 vm_purgeable_accounting(object, VM_PURGABLE_NONVOLATILE,
7012 FALSE);
7013 }
7014
7015 assert(queue->debug_count_objects>=0);
7016
7017 break;
7018
7019
7020 case VM_PURGABLE_EMPTY:
7021 if (object->volatile_fault) {
7022 vm_page_t p;
7023 int refmod;
7024
7025 queue_iterate(&object->memq, p, vm_page_t, listq) {
7026 if (p->busy ||
7027 VM_PAGE_WIRED(p) ||
7028 p->fictitious) {
7029 continue;
7030 }
7031 refmod = pmap_disconnect(p->phys_page);
7032 if ((refmod & VM_MEM_MODIFIED) &&
7033 !p->dirty) {
7034 SET_PAGE_DIRTY(p, FALSE);
7035 }
7036 }
7037 }
7038
7039 if (old_state == new_state) {
7040 /* nothing changes */
7041 break;
7042 }
7043
7044 assert(old_state == VM_PURGABLE_NONVOLATILE ||
7045 old_state == VM_PURGABLE_VOLATILE);
7046 if (old_state == VM_PURGABLE_VOLATILE) {
7047 purgeable_q_t old_queue;
7048
7049 /* object should be on a queue */
7050 assert(object->objq.next != NULL &&
7051 object->objq.prev != NULL);
7052
7053 old_queue = vm_purgeable_object_remove(object);
7054 assert(old_queue);
7055 if (object->purgeable_when_ripe) {
7056 vm_page_lock_queues();
7057 vm_purgeable_token_delete_first(old_queue);
7058 vm_page_unlock_queues();
7059 }
7060 }
7061
7062 if (old_state == VM_PURGABLE_NONVOLATILE) {
7063 /*
7064 * This object's pages were previously accounted as
7065 * "non-volatile" and now need to be accounted as
7066 * "volatile".
7067 */
7068 vm_purgeable_accounting(object, VM_PURGABLE_NONVOLATILE,
7069 FALSE);
7070 /*
7071 * Set to VM_PURGABLE_EMPTY because the pages are no
7072 * longer accounted in the "non-volatile" ledger
7073 * and are also not accounted for in
7074 * "vm_page_purgeable_count".
7075 */
7076 object->purgable = VM_PURGABLE_EMPTY;
7077 }
7078
7079 (void) vm_object_purge(object, 0);
7080 assert(object->purgable == VM_PURGABLE_EMPTY);
7081
7082 break;
7083 }
7084
7085 *state = old_state;
7086
7087 vm_object_lock_assert_exclusive(object);
7088
7089 return KERN_SUCCESS;
7090 }
7091
7092 kern_return_t
7093 vm_object_get_page_counts(
7094 vm_object_t object,
7095 vm_object_offset_t offset,
7096 vm_object_size_t size,
7097 unsigned int *resident_page_count,
7098 unsigned int *dirty_page_count)
7099 {
7100
7101 kern_return_t kr = KERN_SUCCESS;
7102 boolean_t count_dirty_pages = FALSE;
7103 vm_page_t p = VM_PAGE_NULL;
7104 unsigned int local_resident_count = 0;
7105 unsigned int local_dirty_count = 0;
7106 vm_object_offset_t cur_offset = 0;
7107 vm_object_offset_t end_offset = 0;
7108
7109 if (object == VM_OBJECT_NULL)
7110 return KERN_INVALID_ARGUMENT;
7111
7112
7113 cur_offset = offset;
7114
7115 end_offset = offset + size;
7116
7117 vm_object_lock_assert_exclusive(object);
7118
7119 if (dirty_page_count != NULL) {
7120
7121 count_dirty_pages = TRUE;
7122 }
7123
7124 if (resident_page_count != NULL && count_dirty_pages == FALSE) {
7125 /*
7126 * Fast path when:
7127 * - we only want the resident page count, and,
7128 * - the entire object is exactly covered by the request.
7129 */
7130 if (offset == 0 && (object->vo_size == size)) {
7131
7132 *resident_page_count = object->resident_page_count;
7133 goto out;
7134 }
7135 }
7136
7137 if (object->resident_page_count <= (size >> PAGE_SHIFT)) {
7138
7139 queue_iterate(&object->memq, p, vm_page_t, listq) {
7140
7141 if (p->offset >= cur_offset && p->offset < end_offset) {
7142
7143 local_resident_count++;
7144
7145 if (count_dirty_pages) {
7146
7147 if (p->dirty || (p->wpmapped && pmap_is_modified(p->phys_page))) {
7148
7149 local_dirty_count++;
7150 }
7151 }
7152 }
7153 }
7154 } else {
7155
7156 for (cur_offset = offset; cur_offset < end_offset; cur_offset += PAGE_SIZE_64) {
7157
7158 p = vm_page_lookup(object, cur_offset);
7159
7160 if (p != VM_PAGE_NULL) {
7161
7162 local_resident_count++;
7163
7164 if (count_dirty_pages) {
7165
7166 if (p->dirty || (p->wpmapped && pmap_is_modified(p->phys_page))) {
7167
7168 local_dirty_count++;
7169 }
7170 }
7171 }
7172 }
7173
7174 }
7175
7176 if (resident_page_count != NULL) {
7177 *resident_page_count = local_resident_count;
7178 }
7179
7180 if (dirty_page_count != NULL) {
7181 *dirty_page_count = local_dirty_count;
7182 }
7183
7184 out:
7185 return kr;
7186 }
7187
7188
7189 #if TASK_SWAPPER
7190 /*
7191 * vm_object_res_deallocate
7192 *
7193 * (recursively) decrement residence counts on vm objects and their shadows.
7194 * Called from vm_object_deallocate and when swapping out an object.
7195 *
7196 * The object is locked, and remains locked throughout the function,
7197 * even as we iterate down the shadow chain. Locks on intermediate objects
7198 * will be dropped, but not the original object.
7199 *
7200 * NOTE: this function used to use recursion, rather than iteration.
7201 */
7202
7203 __private_extern__ void
7204 vm_object_res_deallocate(
7205 vm_object_t object)
7206 {
7207 vm_object_t orig_object = object;
7208 /*
7209 * Object is locked so it can be called directly
7210 * from vm_object_deallocate. Original object is never
7211 * unlocked.
7212 */
7213 assert(object->res_count > 0);
7214 while (--object->res_count == 0) {
7215 assert(object->ref_count >= object->res_count);
7216 vm_object_deactivate_all_pages(object);
7217 /* iterate on shadow, if present */
7218 if (object->shadow != VM_OBJECT_NULL) {
7219 vm_object_t tmp_object = object->shadow;
7220 vm_object_lock(tmp_object);
7221 if (object != orig_object)
7222 vm_object_unlock(object);
7223 object = tmp_object;
7224 assert(object->res_count > 0);
7225 } else
7226 break;
7227 }
7228 if (object != orig_object)
7229 vm_object_unlock(object);
7230 }
7231
7232 /*
7233 * vm_object_res_reference
7234 *
7235 * Internal function to increment residence count on a vm object
7236 * and its shadows. It is called only from vm_object_reference, and
7237 * when swapping in a vm object, via vm_map_swap.
7238 *
7239 * The object is locked, and remains locked throughout the function,
7240 * even as we iterate down the shadow chain. Locks on intermediate objects
7241 * will be dropped, but not the original object.
7242 *
7243 * NOTE: this function used to use recursion, rather than iteration.
7244 */
7245
7246 __private_extern__ void
7247 vm_object_res_reference(
7248 vm_object_t object)
7249 {
7250 vm_object_t orig_object = object;
7251 /*
7252 * Object is locked, so this can be called directly
7253 * from vm_object_reference. This lock is never released.
7254 */
7255 while ((++object->res_count == 1) &&
7256 (object->shadow != VM_OBJECT_NULL)) {
7257 vm_object_t tmp_object = object->shadow;
7258
7259 assert(object->ref_count >= object->res_count);
7260 vm_object_lock(tmp_object);
7261 if (object != orig_object)
7262 vm_object_unlock(object);
7263 object = tmp_object;
7264 }
7265 if (object != orig_object)
7266 vm_object_unlock(object);
7267 assert(orig_object->ref_count >= orig_object->res_count);
7268 }
7269 #endif /* TASK_SWAPPER */
7270
7271 /*
7272 * vm_object_reference:
7273 *
7274 * Gets another reference to the given object.
7275 */
7276 #ifdef vm_object_reference
7277 #undef vm_object_reference
7278 #endif
7279 __private_extern__ void
7280 vm_object_reference(
7281 register vm_object_t object)
7282 {
7283 if (object == VM_OBJECT_NULL)
7284 return;
7285
7286 vm_object_lock(object);
7287 assert(object->ref_count > 0);
7288 vm_object_reference_locked(object);
7289 vm_object_unlock(object);
7290 }
7291
7292 #ifdef MACH_BSD
7293 /*
7294 * Scale the vm_object_cache
7295 * This is required to make sure that the vm_object_cache is big
7296 * enough to effectively cache the mapped file.
7297 * This is really important with UBC as all the regular file vnodes
7298 * have memory object associated with them. Havving this cache too
7299 * small results in rapid reclaim of vnodes and hurts performance a LOT!
7300 *
7301 * This is also needed as number of vnodes can be dynamically scaled.
7302 */
7303 kern_return_t
7304 adjust_vm_object_cache(
7305 __unused vm_size_t oval,
7306 __unused vm_size_t nval)
7307 {
7308 #if VM_OBJECT_CACHE
7309 vm_object_cached_max = nval;
7310 vm_object_cache_trim(FALSE);
7311 #endif
7312 return (KERN_SUCCESS);
7313 }
7314 #endif /* MACH_BSD */
7315
7316
7317 /*
7318 * vm_object_transpose
7319 *
7320 * This routine takes two VM objects of the same size and exchanges
7321 * their backing store.
7322 * The objects should be "quiesced" via a UPL operation with UPL_SET_IO_WIRE
7323 * and UPL_BLOCK_ACCESS if they are referenced anywhere.
7324 *
7325 * The VM objects must not be locked by caller.
7326 */
7327 unsigned int vm_object_transpose_count = 0;
7328 kern_return_t
7329 vm_object_transpose(
7330 vm_object_t object1,
7331 vm_object_t object2,
7332 vm_object_size_t transpose_size)
7333 {
7334 vm_object_t tmp_object;
7335 kern_return_t retval;
7336 boolean_t object1_locked, object2_locked;
7337 vm_page_t page;
7338 vm_object_offset_t page_offset;
7339 lck_mtx_t *hash_lck;
7340 vm_object_hash_entry_t hash_entry;
7341
7342 tmp_object = VM_OBJECT_NULL;
7343 object1_locked = FALSE; object2_locked = FALSE;
7344
7345 if (object1 == object2 ||
7346 object1 == VM_OBJECT_NULL ||
7347 object2 == VM_OBJECT_NULL) {
7348 /*
7349 * If the 2 VM objects are the same, there's
7350 * no point in exchanging their backing store.
7351 */
7352 retval = KERN_INVALID_VALUE;
7353 goto done;
7354 }
7355
7356 /*
7357 * Since we need to lock both objects at the same time,
7358 * make sure we always lock them in the same order to
7359 * avoid deadlocks.
7360 */
7361 if (object1 > object2) {
7362 tmp_object = object1;
7363 object1 = object2;
7364 object2 = tmp_object;
7365 }
7366
7367 /*
7368 * Allocate a temporary VM object to hold object1's contents
7369 * while we copy object2 to object1.
7370 */
7371 tmp_object = vm_object_allocate(transpose_size);
7372 vm_object_lock(tmp_object);
7373 tmp_object->can_persist = FALSE;
7374
7375
7376 /*
7377 * Grab control of the 1st VM object.
7378 */
7379 vm_object_lock(object1);
7380 object1_locked = TRUE;
7381 if (!object1->alive || object1->terminating ||
7382 object1->copy || object1->shadow || object1->shadowed ||
7383 object1->purgable != VM_PURGABLE_DENY) {
7384 /*
7385 * We don't deal with copy or shadow objects (yet).
7386 */
7387 retval = KERN_INVALID_VALUE;
7388 goto done;
7389 }
7390 /*
7391 * We're about to mess with the object's backing store and
7392 * taking a "paging_in_progress" reference wouldn't be enough
7393 * to prevent any paging activity on this object, so the caller should
7394 * have "quiesced" the objects beforehand, via a UPL operation with
7395 * UPL_SET_IO_WIRE (to make sure all the pages are there and wired)
7396 * and UPL_BLOCK_ACCESS (to mark the pages "busy").
7397 *
7398 * Wait for any paging operation to complete (but only paging, not
7399 * other kind of activities not linked to the pager). After we're
7400 * statisfied that there's no more paging in progress, we keep the
7401 * object locked, to guarantee that no one tries to access its pager.
7402 */
7403 vm_object_paging_only_wait(object1, THREAD_UNINT);
7404
7405 /*
7406 * Same as above for the 2nd object...
7407 */
7408 vm_object_lock(object2);
7409 object2_locked = TRUE;
7410 if (! object2->alive || object2->terminating ||
7411 object2->copy || object2->shadow || object2->shadowed ||
7412 object2->purgable != VM_PURGABLE_DENY) {
7413 retval = KERN_INVALID_VALUE;
7414 goto done;
7415 }
7416 vm_object_paging_only_wait(object2, THREAD_UNINT);
7417
7418
7419 if (object1->vo_size != object2->vo_size ||
7420 object1->vo_size != transpose_size) {
7421 /*
7422 * If the 2 objects don't have the same size, we can't
7423 * exchange their backing stores or one would overflow.
7424 * If their size doesn't match the caller's
7425 * "transpose_size", we can't do it either because the
7426 * transpose operation will affect the entire span of
7427 * the objects.
7428 */
7429 retval = KERN_INVALID_VALUE;
7430 goto done;
7431 }
7432
7433
7434 /*
7435 * Transpose the lists of resident pages.
7436 * This also updates the resident_page_count and the memq_hint.
7437 */
7438 if (object1->phys_contiguous || queue_empty(&object1->memq)) {
7439 /*
7440 * No pages in object1, just transfer pages
7441 * from object2 to object1. No need to go through
7442 * an intermediate object.
7443 */
7444 while (!queue_empty(&object2->memq)) {
7445 page = (vm_page_t) queue_first(&object2->memq);
7446 vm_page_rename(page, object1, page->offset, FALSE);
7447 }
7448 assert(queue_empty(&object2->memq));
7449 } else if (object2->phys_contiguous || queue_empty(&object2->memq)) {
7450 /*
7451 * No pages in object2, just transfer pages
7452 * from object1 to object2. No need to go through
7453 * an intermediate object.
7454 */
7455 while (!queue_empty(&object1->memq)) {
7456 page = (vm_page_t) queue_first(&object1->memq);
7457 vm_page_rename(page, object2, page->offset, FALSE);
7458 }
7459 assert(queue_empty(&object1->memq));
7460 } else {
7461 /* transfer object1's pages to tmp_object */
7462 while (!queue_empty(&object1->memq)) {
7463 page = (vm_page_t) queue_first(&object1->memq);
7464 page_offset = page->offset;
7465 vm_page_remove(page, TRUE);
7466 page->offset = page_offset;
7467 queue_enter(&tmp_object->memq, page, vm_page_t, listq);
7468 }
7469 assert(queue_empty(&object1->memq));
7470 /* transfer object2's pages to object1 */
7471 while (!queue_empty(&object2->memq)) {
7472 page = (vm_page_t) queue_first(&object2->memq);
7473 vm_page_rename(page, object1, page->offset, FALSE);
7474 }
7475 assert(queue_empty(&object2->memq));
7476 /* transfer tmp_object's pages to object1 */
7477 while (!queue_empty(&tmp_object->memq)) {
7478 page = (vm_page_t) queue_first(&tmp_object->memq);
7479 queue_remove(&tmp_object->memq, page,
7480 vm_page_t, listq);
7481 vm_page_insert(page, object2, page->offset);
7482 }
7483 assert(queue_empty(&tmp_object->memq));
7484 }
7485
7486 #define __TRANSPOSE_FIELD(field) \
7487 MACRO_BEGIN \
7488 tmp_object->field = object1->field; \
7489 object1->field = object2->field; \
7490 object2->field = tmp_object->field; \
7491 MACRO_END
7492
7493 /* "Lock" refers to the object not its contents */
7494 /* "size" should be identical */
7495 assert(object1->vo_size == object2->vo_size);
7496 /* "memq_hint" was updated above when transposing pages */
7497 /* "ref_count" refers to the object not its contents */
7498 #if TASK_SWAPPER
7499 /* "res_count" refers to the object not its contents */
7500 #endif
7501 /* "resident_page_count" was updated above when transposing pages */
7502 /* "wired_page_count" was updated above when transposing pages */
7503 /* "reusable_page_count" was updated above when transposing pages */
7504 /* there should be no "copy" */
7505 assert(!object1->copy);
7506 assert(!object2->copy);
7507 /* there should be no "shadow" */
7508 assert(!object1->shadow);
7509 assert(!object2->shadow);
7510 __TRANSPOSE_FIELD(vo_shadow_offset); /* used by phys_contiguous objects */
7511 __TRANSPOSE_FIELD(pager);
7512 __TRANSPOSE_FIELD(paging_offset);
7513 __TRANSPOSE_FIELD(pager_control);
7514 /* update the memory_objects' pointers back to the VM objects */
7515 if (object1->pager_control != MEMORY_OBJECT_CONTROL_NULL) {
7516 memory_object_control_collapse(object1->pager_control,
7517 object1);
7518 }
7519 if (object2->pager_control != MEMORY_OBJECT_CONTROL_NULL) {
7520 memory_object_control_collapse(object2->pager_control,
7521 object2);
7522 }
7523 __TRANSPOSE_FIELD(copy_strategy);
7524 /* "paging_in_progress" refers to the object not its contents */
7525 assert(!object1->paging_in_progress);
7526 assert(!object2->paging_in_progress);
7527 assert(object1->activity_in_progress);
7528 assert(object2->activity_in_progress);
7529 /* "all_wanted" refers to the object not its contents */
7530 __TRANSPOSE_FIELD(pager_created);
7531 __TRANSPOSE_FIELD(pager_initialized);
7532 __TRANSPOSE_FIELD(pager_ready);
7533 __TRANSPOSE_FIELD(pager_trusted);
7534 __TRANSPOSE_FIELD(can_persist);
7535 __TRANSPOSE_FIELD(internal);
7536 __TRANSPOSE_FIELD(temporary);
7537 __TRANSPOSE_FIELD(private);
7538 __TRANSPOSE_FIELD(pageout);
7539 /* "alive" should be set */
7540 assert(object1->alive);
7541 assert(object2->alive);
7542 /* "purgeable" should be non-purgeable */
7543 assert(object1->purgable == VM_PURGABLE_DENY);
7544 assert(object2->purgable == VM_PURGABLE_DENY);
7545 /* "shadowed" refers to the the object not its contents */
7546 __TRANSPOSE_FIELD(purgeable_when_ripe);
7547 __TRANSPOSE_FIELD(advisory_pageout);
7548 __TRANSPOSE_FIELD(true_share);
7549 /* "terminating" should not be set */
7550 assert(!object1->terminating);
7551 assert(!object2->terminating);
7552 __TRANSPOSE_FIELD(named);
7553 /* "shadow_severed" refers to the object not its contents */
7554 __TRANSPOSE_FIELD(phys_contiguous);
7555 __TRANSPOSE_FIELD(nophyscache);
7556 /* "cached_list.next" points to transposed object */
7557 object1->cached_list.next = (queue_entry_t) object2;
7558 object2->cached_list.next = (queue_entry_t) object1;
7559 /* "cached_list.prev" should be NULL */
7560 assert(object1->cached_list.prev == NULL);
7561 assert(object2->cached_list.prev == NULL);
7562 /* "msr_q" is linked to the object not its contents */
7563 assert(queue_empty(&object1->msr_q));
7564 assert(queue_empty(&object2->msr_q));
7565 __TRANSPOSE_FIELD(last_alloc);
7566 __TRANSPOSE_FIELD(sequential);
7567 __TRANSPOSE_FIELD(pages_created);
7568 __TRANSPOSE_FIELD(pages_used);
7569 __TRANSPOSE_FIELD(scan_collisions);
7570 #if MACH_PAGEMAP
7571 __TRANSPOSE_FIELD(existence_map);
7572 #endif
7573 __TRANSPOSE_FIELD(cow_hint);
7574 #if MACH_ASSERT
7575 __TRANSPOSE_FIELD(paging_object);
7576 #endif
7577 __TRANSPOSE_FIELD(wimg_bits);
7578 __TRANSPOSE_FIELD(set_cache_attr);
7579 __TRANSPOSE_FIELD(code_signed);
7580 if (object1->hashed) {
7581 hash_lck = vm_object_hash_lock_spin(object2->pager);
7582 hash_entry = vm_object_hash_lookup(object2->pager, FALSE);
7583 assert(hash_entry != VM_OBJECT_HASH_ENTRY_NULL);
7584 hash_entry->object = object2;
7585 vm_object_hash_unlock(hash_lck);
7586 }
7587 if (object2->hashed) {
7588 hash_lck = vm_object_hash_lock_spin(object1->pager);
7589 hash_entry = vm_object_hash_lookup(object1->pager, FALSE);
7590 assert(hash_entry != VM_OBJECT_HASH_ENTRY_NULL);
7591 hash_entry->object = object1;
7592 vm_object_hash_unlock(hash_lck);
7593 }
7594 __TRANSPOSE_FIELD(hashed);
7595 object1->transposed = TRUE;
7596 object2->transposed = TRUE;
7597 __TRANSPOSE_FIELD(mapping_in_progress);
7598 __TRANSPOSE_FIELD(volatile_empty);
7599 __TRANSPOSE_FIELD(volatile_fault);
7600 __TRANSPOSE_FIELD(all_reusable);
7601 assert(object1->blocked_access);
7602 assert(object2->blocked_access);
7603 assert(object1->__object2_unused_bits == 0);
7604 assert(object2->__object2_unused_bits == 0);
7605 #if UPL_DEBUG
7606 /* "uplq" refers to the object not its contents (see upl_transpose()) */
7607 #endif
7608 assert(object1->objq.next == NULL);
7609 assert(object1->objq.prev == NULL);
7610 assert(object2->objq.next == NULL);
7611 assert(object2->objq.prev == NULL);
7612
7613 #undef __TRANSPOSE_FIELD
7614
7615 retval = KERN_SUCCESS;
7616
7617 done:
7618 /*
7619 * Cleanup.
7620 */
7621 if (tmp_object != VM_OBJECT_NULL) {
7622 vm_object_unlock(tmp_object);
7623 /*
7624 * Re-initialize the temporary object to avoid
7625 * deallocating a real pager.
7626 */
7627 _vm_object_allocate(transpose_size, tmp_object);
7628 vm_object_deallocate(tmp_object);
7629 tmp_object = VM_OBJECT_NULL;
7630 }
7631
7632 if (object1_locked) {
7633 vm_object_unlock(object1);
7634 object1_locked = FALSE;
7635 }
7636 if (object2_locked) {
7637 vm_object_unlock(object2);
7638 object2_locked = FALSE;
7639 }
7640
7641 vm_object_transpose_count++;
7642
7643 return retval;
7644 }
7645
7646
7647 /*
7648 * vm_object_cluster_size
7649 *
7650 * Determine how big a cluster we should issue an I/O for...
7651 *
7652 * Inputs: *start == offset of page needed
7653 * *length == maximum cluster pager can handle
7654 * Outputs: *start == beginning offset of cluster
7655 * *length == length of cluster to try
7656 *
7657 * The original *start will be encompassed by the cluster
7658 *
7659 */
7660 extern int speculative_reads_disabled;
7661 extern int ignore_is_ssd;
7662
7663 unsigned int preheat_max_bytes = MAX_UPL_TRANSFER_BYTES;
7664 unsigned int preheat_min_bytes = (1024 * 32);
7665
7666
7667 __private_extern__ void
7668 vm_object_cluster_size(vm_object_t object, vm_object_offset_t *start,
7669 vm_size_t *length, vm_object_fault_info_t fault_info, uint32_t *io_streaming)
7670 {
7671 vm_size_t pre_heat_size;
7672 vm_size_t tail_size;
7673 vm_size_t head_size;
7674 vm_size_t max_length;
7675 vm_size_t cluster_size;
7676 vm_object_offset_t object_size;
7677 vm_object_offset_t orig_start;
7678 vm_object_offset_t target_start;
7679 vm_object_offset_t offset;
7680 vm_behavior_t behavior;
7681 boolean_t look_behind = TRUE;
7682 boolean_t look_ahead = TRUE;
7683 boolean_t isSSD = FALSE;
7684 uint32_t throttle_limit;
7685 int sequential_run;
7686 int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
7687 vm_size_t max_ph_size;
7688 vm_size_t min_ph_size;
7689
7690 assert( !(*length & PAGE_MASK));
7691 assert( !(*start & PAGE_MASK_64));
7692
7693 /*
7694 * remember maxiumum length of run requested
7695 */
7696 max_length = *length;
7697 /*
7698 * we'll always return a cluster size of at least
7699 * 1 page, since the original fault must always
7700 * be processed
7701 */
7702 *length = PAGE_SIZE;
7703 *io_streaming = 0;
7704
7705 if (speculative_reads_disabled || fault_info == NULL) {
7706 /*
7707 * no cluster... just fault the page in
7708 */
7709 return;
7710 }
7711 orig_start = *start;
7712 target_start = orig_start;
7713 cluster_size = round_page(fault_info->cluster_size);
7714 behavior = fault_info->behavior;
7715
7716 vm_object_lock(object);
7717
7718 if (object->pager == MEMORY_OBJECT_NULL)
7719 goto out; /* pager is gone for this object, nothing more to do */
7720
7721 if (!ignore_is_ssd)
7722 vnode_pager_get_isSSD(object->pager, &isSSD);
7723
7724 min_ph_size = round_page(preheat_min_bytes);
7725 max_ph_size = round_page(preheat_max_bytes);
7726
7727 if (isSSD) {
7728 min_ph_size /= 2;
7729 max_ph_size /= 8;
7730 }
7731 if (min_ph_size < PAGE_SIZE)
7732 min_ph_size = PAGE_SIZE;
7733
7734 if (max_ph_size < PAGE_SIZE)
7735 max_ph_size = PAGE_SIZE;
7736 else if (max_ph_size > MAX_UPL_TRANSFER_BYTES)
7737 max_ph_size = MAX_UPL_TRANSFER_BYTES;
7738
7739 if (max_length > max_ph_size)
7740 max_length = max_ph_size;
7741
7742 if (max_length <= PAGE_SIZE)
7743 goto out;
7744
7745 if (object->internal)
7746 object_size = object->vo_size;
7747 else
7748 vnode_pager_get_object_size(object->pager, &object_size);
7749
7750 object_size = round_page_64(object_size);
7751
7752 if (orig_start >= object_size) {
7753 /*
7754 * fault occurred beyond the EOF...
7755 * we need to punt w/o changing the
7756 * starting offset
7757 */
7758 goto out;
7759 }
7760 if (object->pages_used > object->pages_created) {
7761 /*
7762 * must have wrapped our 32 bit counters
7763 * so reset
7764 */
7765 object->pages_used = object->pages_created = 0;
7766 }
7767 if ((sequential_run = object->sequential)) {
7768 if (sequential_run < 0) {
7769 sequential_behavior = VM_BEHAVIOR_RSEQNTL;
7770 sequential_run = 0 - sequential_run;
7771 } else {
7772 sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
7773 }
7774
7775 }
7776 switch (behavior) {
7777
7778 default:
7779 behavior = VM_BEHAVIOR_DEFAULT;
7780
7781 case VM_BEHAVIOR_DEFAULT:
7782 if (object->internal && fault_info->user_tag == VM_MEMORY_STACK)
7783 goto out;
7784
7785 if (sequential_run >= (3 * PAGE_SIZE)) {
7786 pre_heat_size = sequential_run + PAGE_SIZE;
7787
7788 if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL)
7789 look_behind = FALSE;
7790 else
7791 look_ahead = FALSE;
7792
7793 *io_streaming = 1;
7794 } else {
7795
7796 if (object->pages_created < (20 * (min_ph_size >> PAGE_SHIFT))) {
7797 /*
7798 * prime the pump
7799 */
7800 pre_heat_size = min_ph_size;
7801 } else {
7802 /*
7803 * Linear growth in PH size: The maximum size is max_length...
7804 * this cacluation will result in a size that is neither a
7805 * power of 2 nor a multiple of PAGE_SIZE... so round
7806 * it up to the nearest PAGE_SIZE boundary
7807 */
7808 pre_heat_size = (max_length * object->pages_used) / object->pages_created;
7809
7810 if (pre_heat_size < min_ph_size)
7811 pre_heat_size = min_ph_size;
7812 else
7813 pre_heat_size = round_page(pre_heat_size);
7814 }
7815 }
7816 break;
7817
7818 case VM_BEHAVIOR_RANDOM:
7819 if ((pre_heat_size = cluster_size) <= PAGE_SIZE)
7820 goto out;
7821 break;
7822
7823 case VM_BEHAVIOR_SEQUENTIAL:
7824 if ((pre_heat_size = cluster_size) == 0)
7825 pre_heat_size = sequential_run + PAGE_SIZE;
7826 look_behind = FALSE;
7827 *io_streaming = 1;
7828
7829 break;
7830
7831 case VM_BEHAVIOR_RSEQNTL:
7832 if ((pre_heat_size = cluster_size) == 0)
7833 pre_heat_size = sequential_run + PAGE_SIZE;
7834 look_ahead = FALSE;
7835 *io_streaming = 1;
7836
7837 break;
7838
7839 }
7840 throttle_limit = (uint32_t) max_length;
7841 assert(throttle_limit == max_length);
7842
7843 if (vnode_pager_get_throttle_io_limit(object->pager, &throttle_limit) == KERN_SUCCESS) {
7844 if (max_length > throttle_limit)
7845 max_length = throttle_limit;
7846 }
7847 if (pre_heat_size > max_length)
7848 pre_heat_size = max_length;
7849
7850 if (behavior == VM_BEHAVIOR_DEFAULT && (pre_heat_size > min_ph_size)) {
7851
7852 unsigned int consider_free = vm_page_free_count + vm_page_cleaned_count;
7853
7854 if (consider_free < vm_page_throttle_limit) {
7855 pre_heat_size = trunc_page(pre_heat_size / 16);
7856 } else if (consider_free < vm_page_free_target) {
7857 pre_heat_size = trunc_page(pre_heat_size / 4);
7858 }
7859
7860 if (pre_heat_size < min_ph_size)
7861 pre_heat_size = min_ph_size;
7862 }
7863 if (look_ahead == TRUE) {
7864 if (look_behind == TRUE) {
7865 /*
7866 * if we get here its due to a random access...
7867 * so we want to center the original fault address
7868 * within the cluster we will issue... make sure
7869 * to calculate 'head_size' as a multiple of PAGE_SIZE...
7870 * 'pre_heat_size' is a multiple of PAGE_SIZE but not
7871 * necessarily an even number of pages so we need to truncate
7872 * the result to a PAGE_SIZE boundary
7873 */
7874 head_size = trunc_page(pre_heat_size / 2);
7875
7876 if (target_start > head_size)
7877 target_start -= head_size;
7878 else
7879 target_start = 0;
7880
7881 /*
7882 * 'target_start' at this point represents the beginning offset
7883 * of the cluster we are considering... 'orig_start' will be in
7884 * the center of this cluster if we didn't have to clip the start
7885 * due to running into the start of the file
7886 */
7887 }
7888 if ((target_start + pre_heat_size) > object_size)
7889 pre_heat_size = (vm_size_t)(round_page_64(object_size - target_start));
7890 /*
7891 * at this point caclulate the number of pages beyond the original fault
7892 * address that we want to consider... this is guaranteed not to extend beyond
7893 * the current EOF...
7894 */
7895 assert((vm_size_t)(orig_start - target_start) == (orig_start - target_start));
7896 tail_size = pre_heat_size - (vm_size_t)(orig_start - target_start) - PAGE_SIZE;
7897 } else {
7898 if (pre_heat_size > target_start) {
7899 /*
7900 * since pre_heat_size is always smaller then 2^32,
7901 * if it is larger then target_start (a 64 bit value)
7902 * it is safe to clip target_start to 32 bits
7903 */
7904 pre_heat_size = (vm_size_t) target_start;
7905 }
7906 tail_size = 0;
7907 }
7908 assert( !(target_start & PAGE_MASK_64));
7909 assert( !(pre_heat_size & PAGE_MASK));
7910
7911 if (pre_heat_size <= PAGE_SIZE)
7912 goto out;
7913
7914 if (look_behind == TRUE) {
7915 /*
7916 * take a look at the pages before the original
7917 * faulting offset... recalculate this in case
7918 * we had to clip 'pre_heat_size' above to keep
7919 * from running past the EOF.
7920 */
7921 head_size = pre_heat_size - tail_size - PAGE_SIZE;
7922
7923 for (offset = orig_start - PAGE_SIZE_64; head_size; offset -= PAGE_SIZE_64, head_size -= PAGE_SIZE) {
7924 /*
7925 * don't poke below the lowest offset
7926 */
7927 if (offset < fault_info->lo_offset)
7928 break;
7929 /*
7930 * for external objects and internal objects w/o an existence map
7931 * vm_externl_state_get will return VM_EXTERNAL_STATE_UNKNOWN
7932 */
7933 #if MACH_PAGEMAP
7934 if (vm_external_state_get(object->existence_map, offset) == VM_EXTERNAL_STATE_ABSENT) {
7935 /*
7936 * we know for a fact that the pager can't provide the page
7937 * so don't include it or any pages beyond it in this cluster
7938 */
7939 break;
7940 }
7941 #endif /* MACH_PAGEMAP */
7942 if (VM_COMPRESSOR_PAGER_STATE_GET(object, offset)
7943 == VM_EXTERNAL_STATE_ABSENT) {
7944 break;
7945 }
7946 if (vm_page_lookup(object, offset) != VM_PAGE_NULL) {
7947 /*
7948 * don't bridge resident pages
7949 */
7950 break;
7951 }
7952 *start = offset;
7953 *length += PAGE_SIZE;
7954 }
7955 }
7956 if (look_ahead == TRUE) {
7957 for (offset = orig_start + PAGE_SIZE_64; tail_size; offset += PAGE_SIZE_64, tail_size -= PAGE_SIZE) {
7958 /*
7959 * don't poke above the highest offset
7960 */
7961 if (offset >= fault_info->hi_offset)
7962 break;
7963 assert(offset < object_size);
7964
7965 /*
7966 * for external objects and internal objects w/o an existence map
7967 * vm_externl_state_get will return VM_EXTERNAL_STATE_UNKNOWN
7968 */
7969 #if MACH_PAGEMAP
7970 if (vm_external_state_get(object->existence_map, offset) == VM_EXTERNAL_STATE_ABSENT) {
7971 /*
7972 * we know for a fact that the pager can't provide the page
7973 * so don't include it or any pages beyond it in this cluster
7974 */
7975 break;
7976 }
7977 #endif /* MACH_PAGEMAP */
7978 if (VM_COMPRESSOR_PAGER_STATE_GET(object, offset) == VM_EXTERNAL_STATE_ABSENT) {
7979 break;
7980 }
7981 if (vm_page_lookup(object, offset) != VM_PAGE_NULL) {
7982 /*
7983 * don't bridge resident pages
7984 */
7985 break;
7986 }
7987 *length += PAGE_SIZE;
7988 }
7989 }
7990 out:
7991 if (*length > max_length)
7992 *length = max_length;
7993
7994 vm_object_unlock(object);
7995
7996 DTRACE_VM1(clustersize, vm_size_t, *length);
7997 }
7998
7999
8000 /*
8001 * Allow manipulation of individual page state. This is actually part of
8002 * the UPL regimen but takes place on the VM object rather than on a UPL
8003 */
8004
8005 kern_return_t
8006 vm_object_page_op(
8007 vm_object_t object,
8008 vm_object_offset_t offset,
8009 int ops,
8010 ppnum_t *phys_entry,
8011 int *flags)
8012 {
8013 vm_page_t dst_page;
8014
8015 vm_object_lock(object);
8016
8017 if(ops & UPL_POP_PHYSICAL) {
8018 if(object->phys_contiguous) {
8019 if (phys_entry) {
8020 *phys_entry = (ppnum_t)
8021 (object->vo_shadow_offset >> PAGE_SHIFT);
8022 }
8023 vm_object_unlock(object);
8024 return KERN_SUCCESS;
8025 } else {
8026 vm_object_unlock(object);
8027 return KERN_INVALID_OBJECT;
8028 }
8029 }
8030 if(object->phys_contiguous) {
8031 vm_object_unlock(object);
8032 return KERN_INVALID_OBJECT;
8033 }
8034
8035 while(TRUE) {
8036 if((dst_page = vm_page_lookup(object,offset)) == VM_PAGE_NULL) {
8037 vm_object_unlock(object);
8038 return KERN_FAILURE;
8039 }
8040
8041 /* Sync up on getting the busy bit */
8042 if((dst_page->busy || dst_page->cleaning) &&
8043 (((ops & UPL_POP_SET) &&
8044 (ops & UPL_POP_BUSY)) || (ops & UPL_POP_DUMP))) {
8045 /* someone else is playing with the page, we will */
8046 /* have to wait */
8047 PAGE_SLEEP(object, dst_page, THREAD_UNINT);
8048 continue;
8049 }
8050
8051 if (ops & UPL_POP_DUMP) {
8052 if (dst_page->pmapped == TRUE)
8053 pmap_disconnect(dst_page->phys_page);
8054
8055 VM_PAGE_FREE(dst_page);
8056 break;
8057 }
8058
8059 if (flags) {
8060 *flags = 0;
8061
8062 /* Get the condition of flags before requested ops */
8063 /* are undertaken */
8064
8065 if(dst_page->dirty) *flags |= UPL_POP_DIRTY;
8066 if(dst_page->pageout) *flags |= UPL_POP_PAGEOUT;
8067 if(dst_page->precious) *flags |= UPL_POP_PRECIOUS;
8068 if(dst_page->absent) *flags |= UPL_POP_ABSENT;
8069 if(dst_page->busy) *flags |= UPL_POP_BUSY;
8070 }
8071
8072 /* The caller should have made a call either contingent with */
8073 /* or prior to this call to set UPL_POP_BUSY */
8074 if(ops & UPL_POP_SET) {
8075 /* The protection granted with this assert will */
8076 /* not be complete. If the caller violates the */
8077 /* convention and attempts to change page state */
8078 /* without first setting busy we may not see it */
8079 /* because the page may already be busy. However */
8080 /* if such violations occur we will assert sooner */
8081 /* or later. */
8082 assert(dst_page->busy || (ops & UPL_POP_BUSY));
8083 if (ops & UPL_POP_DIRTY) {
8084 SET_PAGE_DIRTY(dst_page, FALSE);
8085 }
8086 if (ops & UPL_POP_PAGEOUT) dst_page->pageout = TRUE;
8087 if (ops & UPL_POP_PRECIOUS) dst_page->precious = TRUE;
8088 if (ops & UPL_POP_ABSENT) dst_page->absent = TRUE;
8089 if (ops & UPL_POP_BUSY) dst_page->busy = TRUE;
8090 }
8091
8092 if(ops & UPL_POP_CLR) {
8093 assert(dst_page->busy);
8094 if (ops & UPL_POP_DIRTY) dst_page->dirty = FALSE;
8095 if (ops & UPL_POP_PAGEOUT) dst_page->pageout = FALSE;
8096 if (ops & UPL_POP_PRECIOUS) dst_page->precious = FALSE;
8097 if (ops & UPL_POP_ABSENT) dst_page->absent = FALSE;
8098 if (ops & UPL_POP_BUSY) {
8099 dst_page->busy = FALSE;
8100 PAGE_WAKEUP(dst_page);
8101 }
8102 }
8103
8104 if (dst_page->encrypted) {
8105 /*
8106 * ENCRYPTED SWAP:
8107 * We need to decrypt this encrypted page before the
8108 * caller can access its contents.
8109 * But if the caller really wants to access the page's
8110 * contents, they have to keep the page "busy".
8111 * Otherwise, the page could get recycled or re-encrypted
8112 * at any time.
8113 */
8114 if ((ops & UPL_POP_SET) && (ops & UPL_POP_BUSY) &&
8115 dst_page->busy) {
8116 /*
8117 * The page is stable enough to be accessed by
8118 * the caller, so make sure its contents are
8119 * not encrypted.
8120 */
8121 vm_page_decrypt(dst_page, 0);
8122 } else {
8123 /*
8124 * The page is not busy, so don't bother
8125 * decrypting it, since anything could
8126 * happen to it between now and when the
8127 * caller wants to access it.
8128 * We should not give the caller access
8129 * to this page.
8130 */
8131 assert(!phys_entry);
8132 }
8133 }
8134
8135 if (phys_entry) {
8136 /*
8137 * The physical page number will remain valid
8138 * only if the page is kept busy.
8139 * ENCRYPTED SWAP: make sure we don't let the
8140 * caller access an encrypted page.
8141 */
8142 assert(dst_page->busy);
8143 assert(!dst_page->encrypted);
8144 *phys_entry = dst_page->phys_page;
8145 }
8146
8147 break;
8148 }
8149
8150 vm_object_unlock(object);
8151 return KERN_SUCCESS;
8152
8153 }
8154
8155 /*
8156 * vm_object_range_op offers performance enhancement over
8157 * vm_object_page_op for page_op functions which do not require page
8158 * level state to be returned from the call. Page_op was created to provide
8159 * a low-cost alternative to page manipulation via UPLs when only a single
8160 * page was involved. The range_op call establishes the ability in the _op
8161 * family of functions to work on multiple pages where the lack of page level
8162 * state handling allows the caller to avoid the overhead of the upl structures.
8163 */
8164
8165 kern_return_t
8166 vm_object_range_op(
8167 vm_object_t object,
8168 vm_object_offset_t offset_beg,
8169 vm_object_offset_t offset_end,
8170 int ops,
8171 uint32_t *range)
8172 {
8173 vm_object_offset_t offset;
8174 vm_page_t dst_page;
8175
8176 if (offset_end - offset_beg > (uint32_t) -1) {
8177 /* range is too big and would overflow "*range" */
8178 return KERN_INVALID_ARGUMENT;
8179 }
8180 if (object->resident_page_count == 0) {
8181 if (range) {
8182 if (ops & UPL_ROP_PRESENT) {
8183 *range = 0;
8184 } else {
8185 *range = (uint32_t) (offset_end - offset_beg);
8186 assert(*range == (offset_end - offset_beg));
8187 }
8188 }
8189 return KERN_SUCCESS;
8190 }
8191 vm_object_lock(object);
8192
8193 if (object->phys_contiguous) {
8194 vm_object_unlock(object);
8195 return KERN_INVALID_OBJECT;
8196 }
8197
8198 offset = offset_beg & ~PAGE_MASK_64;
8199
8200 while (offset < offset_end) {
8201 dst_page = vm_page_lookup(object, offset);
8202 if (dst_page != VM_PAGE_NULL) {
8203 if (ops & UPL_ROP_DUMP) {
8204 if (dst_page->busy || dst_page->cleaning) {
8205 /*
8206 * someone else is playing with the
8207 * page, we will have to wait
8208 */
8209 PAGE_SLEEP(object, dst_page, THREAD_UNINT);
8210 /*
8211 * need to relook the page up since it's
8212 * state may have changed while we slept
8213 * it might even belong to a different object
8214 * at this point
8215 */
8216 continue;
8217 }
8218 if (dst_page->laundry) {
8219 dst_page->pageout = FALSE;
8220
8221 vm_pageout_steal_laundry(dst_page, FALSE);
8222 }
8223 if (dst_page->pmapped == TRUE)
8224 pmap_disconnect(dst_page->phys_page);
8225
8226 VM_PAGE_FREE(dst_page);
8227
8228 } else if ((ops & UPL_ROP_ABSENT) && !dst_page->absent)
8229 break;
8230 } else if (ops & UPL_ROP_PRESENT)
8231 break;
8232
8233 offset += PAGE_SIZE;
8234 }
8235 vm_object_unlock(object);
8236
8237 if (range) {
8238 if (offset > offset_end)
8239 offset = offset_end;
8240 if(offset > offset_beg) {
8241 *range = (uint32_t) (offset - offset_beg);
8242 assert(*range == (offset - offset_beg));
8243 } else {
8244 *range = 0;
8245 }
8246 }
8247 return KERN_SUCCESS;
8248 }
8249
8250 /*
8251 * Used to point a pager directly to a range of memory (when the pager may be associated
8252 * with a non-device vnode). Takes a virtual address, an offset, and a size. We currently
8253 * expect that the virtual address will denote the start of a range that is physically contiguous.
8254 */
8255 kern_return_t pager_map_to_phys_contiguous(
8256 memory_object_control_t object,
8257 memory_object_offset_t offset,
8258 addr64_t base_vaddr,
8259 vm_size_t size)
8260 {
8261 ppnum_t page_num;
8262 boolean_t clobbered_private;
8263 kern_return_t retval;
8264 vm_object_t pager_object;
8265
8266 page_num = pmap_find_phys(kernel_pmap, base_vaddr);
8267
8268 if (!page_num) {
8269 retval = KERN_FAILURE;
8270 goto out;
8271 }
8272
8273 pager_object = memory_object_control_to_vm_object(object);
8274
8275 if (!pager_object) {
8276 retval = KERN_FAILURE;
8277 goto out;
8278 }
8279
8280 clobbered_private = pager_object->private;
8281 pager_object->private = TRUE;
8282 retval = vm_object_populate_with_private(pager_object, offset, page_num, size);
8283
8284 if (retval != KERN_SUCCESS)
8285 pager_object->private = clobbered_private;
8286
8287 out:
8288 return retval;
8289 }
8290
8291 uint32_t scan_object_collision = 0;
8292
8293 void
8294 vm_object_lock(vm_object_t object)
8295 {
8296 if (object == vm_pageout_scan_wants_object) {
8297 scan_object_collision++;
8298 mutex_pause(2);
8299 }
8300 lck_rw_lock_exclusive(&object->Lock);
8301 }
8302
8303 boolean_t
8304 vm_object_lock_avoid(vm_object_t object)
8305 {
8306 if (object == vm_pageout_scan_wants_object) {
8307 scan_object_collision++;
8308 return TRUE;
8309 }
8310 return FALSE;
8311 }
8312
8313 boolean_t
8314 _vm_object_lock_try(vm_object_t object)
8315 {
8316 return (lck_rw_try_lock_exclusive(&object->Lock));
8317 }
8318
8319 boolean_t
8320 vm_object_lock_try(vm_object_t object)
8321 {
8322 /*
8323 * Called from hibernate path so check before blocking.
8324 */
8325 if (vm_object_lock_avoid(object) && ml_get_interrupts_enabled() && get_preemption_level()==0) {
8326 mutex_pause(2);
8327 }
8328 return _vm_object_lock_try(object);
8329 }
8330
8331 void
8332 vm_object_lock_shared(vm_object_t object)
8333 {
8334 if (vm_object_lock_avoid(object)) {
8335 mutex_pause(2);
8336 }
8337 lck_rw_lock_shared(&object->Lock);
8338 }
8339
8340 boolean_t
8341 vm_object_lock_try_shared(vm_object_t object)
8342 {
8343 if (vm_object_lock_avoid(object)) {
8344 mutex_pause(2);
8345 }
8346 return (lck_rw_try_lock_shared(&object->Lock));
8347 }
8348
8349
8350 unsigned int vm_object_change_wimg_mode_count = 0;
8351
8352 /*
8353 * The object must be locked
8354 */
8355 void
8356 vm_object_change_wimg_mode(vm_object_t object, unsigned int wimg_mode)
8357 {
8358 vm_page_t p;
8359
8360 vm_object_lock_assert_exclusive(object);
8361
8362 vm_object_paging_wait(object, THREAD_UNINT);
8363
8364 queue_iterate(&object->memq, p, vm_page_t, listq) {
8365
8366 if (!p->fictitious)
8367 pmap_set_cache_attributes(p->phys_page, wimg_mode);
8368 }
8369 if (wimg_mode == VM_WIMG_USE_DEFAULT)
8370 object->set_cache_attr = FALSE;
8371 else
8372 object->set_cache_attr = TRUE;
8373
8374 object->wimg_bits = wimg_mode;
8375
8376 vm_object_change_wimg_mode_count++;
8377 }
8378
8379 #if CONFIG_FREEZE
8380
8381 kern_return_t vm_object_pack(
8382 unsigned int *purgeable_count,
8383 unsigned int *wired_count,
8384 unsigned int *clean_count,
8385 unsigned int *dirty_count,
8386 unsigned int dirty_budget,
8387 boolean_t *shared,
8388 vm_object_t src_object,
8389 struct default_freezer_handle *df_handle)
8390 {
8391 kern_return_t kr = KERN_SUCCESS;
8392
8393 vm_object_lock(src_object);
8394
8395 *purgeable_count = *wired_count = *clean_count = *dirty_count = 0;
8396 *shared = FALSE;
8397
8398 if (!src_object->alive || src_object->terminating){
8399 kr = KERN_FAILURE;
8400 goto done;
8401 }
8402
8403 if (src_object->purgable == VM_PURGABLE_VOLATILE) {
8404 *purgeable_count = src_object->resident_page_count;
8405
8406 /* If the default freezer handle is null, we're just walking the pages to discover how many can be hibernated */
8407 if (df_handle != NULL) {
8408 purgeable_q_t queue;
8409 /* object should be on a queue */
8410 assert(src_object->objq.next != NULL &&
8411 src_object->objq.prev != NULL);
8412
8413 queue = vm_purgeable_object_remove(src_object);
8414 assert(queue);
8415 if (src_object->purgeable_when_ripe) {
8416 vm_page_lock_queues();
8417 vm_purgeable_token_delete_first(queue);
8418 vm_page_unlock_queues();
8419 }
8420
8421 vm_object_purge(src_object, 0);
8422 assert(src_object->purgable == VM_PURGABLE_EMPTY);
8423
8424 /*
8425 * This object was "volatile" so its pages must have
8426 * already been accounted as "volatile": no change
8427 * in accounting now that it's "empty".
8428 */
8429 }
8430 goto done;
8431 }
8432
8433 if (src_object->ref_count == 1) {
8434 vm_object_pack_pages(wired_count, clean_count, dirty_count, dirty_budget, src_object, df_handle);
8435 } else {
8436 if (src_object->internal) {
8437 *shared = TRUE;
8438 }
8439 }
8440 done:
8441 vm_object_unlock(src_object);
8442
8443 return kr;
8444 }
8445
8446
8447 void
8448 vm_object_pack_pages(
8449 unsigned int *wired_count,
8450 unsigned int *clean_count,
8451 unsigned int *dirty_count,
8452 unsigned int dirty_budget,
8453 vm_object_t src_object,
8454 struct default_freezer_handle *df_handle)
8455 {
8456 vm_page_t p, next;
8457
8458 next = (vm_page_t)queue_first(&src_object->memq);
8459
8460 while (!queue_end(&src_object->memq, (queue_entry_t)next)) {
8461 p = next;
8462 next = (vm_page_t)queue_next(&next->listq);
8463
8464 /* Finish up if we've hit our pageout limit */
8465 if (dirty_budget && (dirty_budget == *dirty_count)) {
8466 break;
8467 }
8468 assert(!p->laundry);
8469
8470 if (p->fictitious || p->busy )
8471 continue;
8472
8473 if (p->absent || p->unusual || p->error)
8474 continue;
8475
8476 if (VM_PAGE_WIRED(p)) {
8477 (*wired_count)++;
8478 continue;
8479 }
8480
8481 if (df_handle == NULL) {
8482 if (p->dirty || pmap_is_modified(p->phys_page)) {
8483 (*dirty_count)++;
8484 } else {
8485 (*clean_count)++;
8486 }
8487 continue;
8488 }
8489
8490 if (p->cleaning) {
8491 p->pageout = TRUE;
8492 continue;
8493 }
8494
8495 if (p->pmapped == TRUE) {
8496 int refmod_state;
8497 refmod_state = pmap_disconnect(p->phys_page);
8498 if (refmod_state & VM_MEM_MODIFIED) {
8499 SET_PAGE_DIRTY(p, FALSE);
8500 }
8501 }
8502
8503 if (p->dirty) {
8504 default_freezer_pack_page(p, df_handle);
8505 (*dirty_count)++;
8506 }
8507 else {
8508 VM_PAGE_FREE(p);
8509 (*clean_count)++;
8510 }
8511 }
8512 }
8513
8514 void
8515 vm_object_pageout(
8516 vm_object_t object)
8517 {
8518 vm_page_t p, next;
8519 struct vm_pageout_queue *iq;
8520 boolean_t set_pageout_bit = FALSE;
8521
8522 iq = &vm_pageout_queue_internal;
8523
8524 assert(object != VM_OBJECT_NULL );
8525
8526 vm_object_lock(object);
8527
8528 if (DEFAULT_PAGER_IS_ACTIVE || DEFAULT_FREEZER_IS_ACTIVE) {
8529 if (!object->pager_initialized) {
8530 /*
8531 * If there is no memory object for the page, create
8532 * one and hand it to the default pager.
8533 */
8534 vm_object_pager_create(object);
8535 }
8536
8537 set_pageout_bit = TRUE;
8538 }
8539
8540 if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) {
8541
8542 set_pageout_bit = FALSE;
8543 }
8544
8545 ReScan:
8546 next = (vm_page_t)queue_first(&object->memq);
8547
8548 while (!queue_end(&object->memq, (queue_entry_t)next)) {
8549 p = next;
8550 next = (vm_page_t)queue_next(&next->listq);
8551
8552 /* Throw to the pageout queue */
8553 vm_page_lockspin_queues();
8554
8555 /*
8556 * see if page is already in the process of
8557 * being cleaned... if so, leave it alone
8558 */
8559 if (!p->laundry) {
8560
8561 if (COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) {
8562
8563 if (VM_PAGE_Q_THROTTLED(iq)) {
8564
8565 iq->pgo_draining = TRUE;
8566
8567 assert_wait((event_t) (&iq->pgo_laundry + 1), THREAD_INTERRUPTIBLE);
8568 vm_page_unlock_queues();
8569 vm_object_unlock(object);
8570
8571 thread_block(THREAD_CONTINUE_NULL);
8572
8573 vm_object_lock(object);
8574 goto ReScan;
8575 }
8576
8577 if (p->fictitious || p->busy ) {
8578 vm_page_unlock_queues();
8579 continue;
8580 }
8581
8582 if (p->absent || p->unusual || p->error || VM_PAGE_WIRED(p)) {
8583 vm_page_unlock_queues();
8584 continue;
8585 }
8586
8587 if (p->cleaning) {
8588 p->pageout = TRUE;
8589 vm_page_unlock_queues();
8590 continue;
8591 }
8592
8593 if (p->pmapped == TRUE) {
8594 int refmod_state;
8595 refmod_state = pmap_disconnect_options(p->phys_page, PMAP_OPTIONS_COMPRESSOR, NULL);
8596 if (refmod_state & VM_MEM_MODIFIED) {
8597 SET_PAGE_DIRTY(p, FALSE);
8598 }
8599 }
8600
8601 if (p->dirty == FALSE) {
8602 vm_page_unlock_queues();
8603 VM_PAGE_FREE(p);
8604 continue;
8605 }
8606 }
8607
8608 VM_PAGE_QUEUES_REMOVE(p);
8609 vm_pageout_cluster(p, set_pageout_bit);
8610 }
8611 vm_page_unlock_queues();
8612 }
8613
8614 vm_object_unlock(object);
8615 }
8616
8617 kern_return_t
8618 vm_object_pagein(
8619 vm_object_t object)
8620 {
8621 memory_object_t pager;
8622 kern_return_t kr;
8623
8624 vm_object_lock(object);
8625
8626 pager = object->pager;
8627
8628 if (!object->pager_ready || pager == MEMORY_OBJECT_NULL) {
8629 vm_object_unlock(object);
8630 return KERN_FAILURE;
8631 }
8632
8633 vm_object_paging_wait(object, THREAD_UNINT);
8634 vm_object_paging_begin(object);
8635
8636 object->blocked_access = TRUE;
8637 vm_object_unlock(object);
8638
8639 kr = memory_object_data_reclaim(pager, TRUE);
8640
8641 vm_object_lock(object);
8642
8643 object->blocked_access = FALSE;
8644 vm_object_paging_end(object);
8645
8646 vm_object_unlock(object);
8647
8648 return kr;
8649 }
8650 #endif /* CONFIG_FREEZE */
8651
8652
8653 #if CONFIG_IOSCHED
8654 void
8655 vm_page_request_reprioritize(vm_object_t o, uint64_t blkno, uint32_t len, int prio)
8656 {
8657 io_reprioritize_req_t req;
8658 struct vnode *devvp = NULL;
8659
8660 if(vnode_pager_get_object_devvp(o->pager, (uintptr_t *)&devvp) != KERN_SUCCESS)
8661 return;
8662
8663 /* Create the request for I/O reprioritization */
8664 req = (io_reprioritize_req_t)zalloc(io_reprioritize_req_zone);
8665 assert(req != NULL);
8666 req->blkno = blkno;
8667 req->len = len;
8668 req->priority = prio;
8669 req->devvp = devvp;
8670
8671 /* Insert request into the reprioritization list */
8672 IO_REPRIORITIZE_LIST_LOCK();
8673 queue_enter(&io_reprioritize_list, req, io_reprioritize_req_t, io_reprioritize_list);
8674 IO_REPRIORITIZE_LIST_UNLOCK();
8675
8676 /* Wakeup reprioritize thread */
8677 IO_REPRIO_THREAD_WAKEUP();
8678
8679 return;
8680 }
8681
8682 void
8683 vm_decmp_upl_reprioritize(upl_t upl, int prio)
8684 {
8685 int offset;
8686 vm_object_t object;
8687 io_reprioritize_req_t req;
8688 struct vnode *devvp = NULL;
8689 uint64_t blkno;
8690 uint32_t len;
8691 upl_t io_upl;
8692 uint64_t *io_upl_reprio_info;
8693 int io_upl_size;
8694
8695 if ((upl->flags & UPL_TRACKED_BY_OBJECT) == 0 || (upl->flags & UPL_EXPEDITE_SUPPORTED) == 0)
8696 return;
8697
8698 /*
8699 * We dont want to perform any allocations with the upl lock held since that might
8700 * result in a deadlock. If the system is low on memory, the pageout thread would
8701 * try to pageout stuff and might wait on this lock. If we are waiting for the memory to
8702 * be freed up by the pageout thread, it would be a deadlock.
8703 */
8704
8705
8706 /* First step is just to get the size of the upl to find out how big the reprio info is */
8707 if(!upl_try_lock(upl))
8708 return;
8709
8710 if (upl->decmp_io_upl == NULL) {
8711 /* The real I/O upl was destroyed by the time we came in here. Nothing to do. */
8712 upl_unlock(upl);
8713 return;
8714 }
8715
8716 io_upl = upl->decmp_io_upl;
8717 assert((io_upl->flags & UPL_DECMP_REAL_IO) != 0);
8718 io_upl_size = io_upl->size;
8719 upl_unlock(upl);
8720
8721 /* Now perform the allocation */
8722 io_upl_reprio_info = (uint64_t *)kalloc(sizeof(uint64_t) * (io_upl_size / PAGE_SIZE));
8723 if (io_upl_reprio_info == NULL)
8724 return;
8725
8726 /* Now again take the lock, recheck the state and grab out the required info */
8727 if(!upl_try_lock(upl))
8728 goto out;
8729
8730 if (upl->decmp_io_upl == NULL || upl->decmp_io_upl != io_upl) {
8731 /* The real I/O upl was destroyed by the time we came in here. Nothing to do. */
8732 upl_unlock(upl);
8733 goto out;
8734 }
8735 memcpy(io_upl_reprio_info, io_upl->upl_reprio_info, sizeof(uint64_t) * (io_upl_size / PAGE_SIZE));
8736
8737 /* Get the VM object for this UPL */
8738 if (io_upl->flags & UPL_SHADOWED) {
8739 object = io_upl->map_object->shadow;
8740 } else {
8741 object = io_upl->map_object;
8742 }
8743
8744 /* Get the dev vnode ptr for this object */
8745 if(!object || !object->pager ||
8746 vnode_pager_get_object_devvp(object->pager, (uintptr_t *)&devvp) != KERN_SUCCESS) {
8747 upl_unlock(upl);
8748 goto out;
8749 }
8750
8751 upl_unlock(upl);
8752
8753 /* Now we have all the information needed to do the expedite */
8754
8755 offset = 0;
8756 while (offset < io_upl_size) {
8757 blkno = io_upl_reprio_info[(offset / PAGE_SIZE)] & UPL_REPRIO_INFO_MASK;
8758 len = (io_upl_reprio_info[(offset / PAGE_SIZE)] >> UPL_REPRIO_INFO_SHIFT) & UPL_REPRIO_INFO_MASK;
8759
8760 /*
8761 * This implementation may cause some spurious expedites due to the
8762 * fact that we dont cleanup the blkno & len from the upl_reprio_info
8763 * even after the I/O is complete.
8764 */
8765
8766 if (blkno != 0 && len != 0) {
8767 /* Create the request for I/O reprioritization */
8768 req = (io_reprioritize_req_t)zalloc(io_reprioritize_req_zone);
8769 assert(req != NULL);
8770 req->blkno = blkno;
8771 req->len = len;
8772 req->priority = prio;
8773 req->devvp = devvp;
8774
8775 /* Insert request into the reprioritization list */
8776 IO_REPRIORITIZE_LIST_LOCK();
8777 queue_enter(&io_reprioritize_list, req, io_reprioritize_req_t, io_reprioritize_list);
8778 IO_REPRIORITIZE_LIST_UNLOCK();
8779
8780 offset += len;
8781 } else {
8782 offset += PAGE_SIZE;
8783 }
8784 }
8785
8786 /* Wakeup reprioritize thread */
8787 IO_REPRIO_THREAD_WAKEUP();
8788
8789 out:
8790 kfree(io_upl_reprio_info, sizeof(uint64_t) * (io_upl_size / PAGE_SIZE));
8791 return;
8792 }
8793
8794 void
8795 vm_page_handle_prio_inversion(vm_object_t o, vm_page_t m)
8796 {
8797 upl_t upl;
8798 upl_page_info_t *pl;
8799 unsigned int i, num_pages;
8800 int cur_tier;
8801
8802 cur_tier = proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO);
8803
8804 /*
8805 Scan through all UPLs associated with the object to find the
8806 UPL containing the contended page.
8807 */
8808 queue_iterate(&o->uplq, upl, upl_t, uplq) {
8809 if (((upl->flags & UPL_EXPEDITE_SUPPORTED) == 0) || upl->upl_priority <= cur_tier)
8810 continue;
8811 pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
8812 num_pages = (upl->size / PAGE_SIZE);
8813
8814 /*
8815 For each page in the UPL page list, see if it matches the contended
8816 page and was issued as a low prio I/O.
8817 */
8818 for(i=0; i < num_pages; i++) {
8819 if(UPL_PAGE_PRESENT(pl,i) && m->phys_page == pl[i].phys_addr) {
8820 if ((upl->flags & UPL_DECMP_REQ) && upl->decmp_io_upl) {
8821 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_PAGE_EXPEDITE)) | DBG_FUNC_NONE, upl->upl_creator, m, upl, upl->upl_priority, 0);
8822 vm_decmp_upl_reprioritize(upl, cur_tier);
8823 break;
8824 }
8825 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_PAGE_EXPEDITE)) | DBG_FUNC_NONE, upl->upl_creator, m, upl->upl_reprio_info[i], upl->upl_priority, 0);
8826 if (UPL_REPRIO_INFO_BLKNO(upl, i) != 0 && UPL_REPRIO_INFO_LEN(upl, i) != 0)
8827 vm_page_request_reprioritize(o, UPL_REPRIO_INFO_BLKNO(upl, i), UPL_REPRIO_INFO_LEN(upl, i), cur_tier);
8828 break;
8829 }
8830 }
8831 /* Check if we found any hits */
8832 if (i != num_pages)
8833 break;
8834 }
8835
8836 return;
8837 }
8838
8839 wait_result_t
8840 vm_page_sleep(vm_object_t o, vm_page_t m, int interruptible)
8841 {
8842 wait_result_t ret;
8843
8844 KERNEL_DEBUG((MACHDBG_CODE(DBG_MACH_VM, VM_PAGE_SLEEP)) | DBG_FUNC_START, o, m, 0, 0, 0);
8845
8846 if (o->io_tracking && ((m->busy == TRUE) || (m->cleaning == TRUE) || VM_PAGE_WIRED(m))) {
8847 /*
8848 Indicates page is busy due to an I/O. Issue a reprioritize request if necessary.
8849 */
8850 vm_page_handle_prio_inversion(o,m);
8851 }
8852 m->wanted = TRUE;
8853 ret = thread_sleep_vm_object(o, m, interruptible);
8854 KERNEL_DEBUG((MACHDBG_CODE(DBG_MACH_VM, VM_PAGE_SLEEP)) | DBG_FUNC_END, o, m, 0, 0, 0);
8855 return ret;
8856 }
8857
8858 static void
8859 io_reprioritize_thread(void *param __unused, wait_result_t wr __unused)
8860 {
8861 io_reprioritize_req_t req = NULL;
8862
8863 while(1) {
8864
8865 IO_REPRIORITIZE_LIST_LOCK();
8866 if (queue_empty(&io_reprioritize_list)) {
8867 IO_REPRIORITIZE_LIST_UNLOCK();
8868 break;
8869 }
8870
8871 queue_remove_first(&io_reprioritize_list, req, io_reprioritize_req_t, io_reprioritize_list);
8872 IO_REPRIORITIZE_LIST_UNLOCK();
8873
8874 vnode_pager_issue_reprioritize_io(req->devvp, req->blkno, req->len, req->priority);
8875 zfree(io_reprioritize_req_zone, req);
8876 }
8877
8878 IO_REPRIO_THREAD_CONTINUATION();
8879 }
8880 #endif