]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/uipc_socket2.c
xnu-2782.10.72.tar.gz
[apple/xnu.git] / bsd / kern / uipc_socket2.c
1 /*
2 * Copyright (c) 1998-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1990, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_socket2.c 8.1 (Berkeley) 6/10/93
62 */
63 /*
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
67 * Version 2.0.
68 */
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/domain.h>
73 #include <sys/kernel.h>
74 #include <sys/proc_internal.h>
75 #include <sys/kauth.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/mcache.h>
79 #include <sys/protosw.h>
80 #include <sys/stat.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <sys/signalvar.h>
84 #include <sys/sysctl.h>
85 #include <sys/syslog.h>
86 #include <sys/ev.h>
87 #include <kern/locks.h>
88 #include <net/route.h>
89 #include <net/content_filter.h>
90 #include <netinet/in.h>
91 #include <netinet/in_pcb.h>
92 #include <sys/kdebug.h>
93 #include <libkern/OSAtomic.h>
94
95 #if CONFIG_MACF
96 #include <security/mac_framework.h>
97 #endif
98
99 #include <mach/vm_param.h>
100
101 #if MPTCP
102 #include <netinet/mptcp_var.h>
103 #endif
104
105 #define DBG_FNC_SBDROP NETDBG_CODE(DBG_NETSOCK, 4)
106 #define DBG_FNC_SBAPPEND NETDBG_CODE(DBG_NETSOCK, 5)
107
108 static inline void sbcompress(struct sockbuf *, struct mbuf *, struct mbuf *);
109 static struct socket *sonewconn_internal(struct socket *, int);
110 static int sbappendaddr_internal(struct sockbuf *, struct sockaddr *,
111 struct mbuf *, struct mbuf *);
112 static int sbappendcontrol_internal(struct sockbuf *, struct mbuf *,
113 struct mbuf *);
114 static void soevent_ifdenied(struct socket *);
115
116 /*
117 * Primitive routines for operating on sockets and socket buffers
118 */
119 static int soqlimitcompat = 1;
120 static int soqlencomp = 0;
121
122 /*
123 * Based on the number of mbuf clusters configured, high_sb_max and sb_max can
124 * get scaled up or down to suit that memory configuration. high_sb_max is a
125 * higher limit on sb_max that is checked when sb_max gets set through sysctl.
126 */
127
128 u_int32_t sb_max = SB_MAX; /* XXX should be static */
129 u_int32_t high_sb_max = SB_MAX;
130
131 static u_int32_t sb_efficiency = 8; /* parameter for sbreserve() */
132 int32_t total_sbmb_cnt __attribute__((aligned(8))) = 0;
133 int32_t total_sbmb_cnt_peak __attribute__((aligned(8))) = 0;
134 int64_t sbmb_limreached __attribute__((aligned(8))) = 0;
135
136 /* Control whether to throttle sockets eligible to be throttled */
137 __private_extern__ u_int32_t net_io_policy_throttled = 0;
138 static int sysctl_io_policy_throttled SYSCTL_HANDLER_ARGS;
139
140 u_int32_t net_io_policy_log = 0; /* log socket policy changes */
141 #if CONFIG_PROC_UUID_POLICY
142 u_int32_t net_io_policy_uuid = 1; /* enable UUID socket policy */
143 #endif /* CONFIG_PROC_UUID_POLICY */
144
145 /*
146 * Procedures to manipulate state flags of socket
147 * and do appropriate wakeups. Normal sequence from the
148 * active (originating) side is that soisconnecting() is
149 * called during processing of connect() call,
150 * resulting in an eventual call to soisconnected() if/when the
151 * connection is established. When the connection is torn down
152 * soisdisconnecting() is called during processing of disconnect() call,
153 * and soisdisconnected() is called when the connection to the peer
154 * is totally severed. The semantics of these routines are such that
155 * connectionless protocols can call soisconnected() and soisdisconnected()
156 * only, bypassing the in-progress calls when setting up a ``connection''
157 * takes no time.
158 *
159 * From the passive side, a socket is created with
160 * two queues of sockets: so_incomp for connections in progress
161 * and so_comp for connections already made and awaiting user acceptance.
162 * As a protocol is preparing incoming connections, it creates a socket
163 * structure queued on so_incomp by calling sonewconn(). When the connection
164 * is established, soisconnected() is called, and transfers the
165 * socket structure to so_comp, making it available to accept().
166 *
167 * If a socket is closed with sockets on either
168 * so_incomp or so_comp, these sockets are dropped.
169 *
170 * If higher level protocols are implemented in
171 * the kernel, the wakeups done here will sometimes
172 * cause software-interrupt process scheduling.
173 */
174 void
175 soisconnecting(struct socket *so)
176 {
177
178 so->so_state &= ~(SS_ISCONNECTED|SS_ISDISCONNECTING);
179 so->so_state |= SS_ISCONNECTING;
180
181 sflt_notify(so, sock_evt_connecting, NULL);
182 }
183
184 void
185 soisconnected(struct socket *so)
186 {
187 struct socket *head = so->so_head;
188
189 so->so_state &= ~(SS_ISCONNECTING|SS_ISDISCONNECTING|SS_ISCONFIRMING);
190 so->so_state |= SS_ISCONNECTED;
191
192 sflt_notify(so, sock_evt_connected, NULL);
193
194 if (head && (so->so_state & SS_INCOMP)) {
195 so->so_state &= ~SS_INCOMP;
196 so->so_state |= SS_COMP;
197 if (head->so_proto->pr_getlock != NULL) {
198 socket_unlock(so, 0);
199 socket_lock(head, 1);
200 }
201 postevent(head, 0, EV_RCONN);
202 TAILQ_REMOVE(&head->so_incomp, so, so_list);
203 head->so_incqlen--;
204 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
205 sorwakeup(head);
206 wakeup_one((caddr_t)&head->so_timeo);
207 if (head->so_proto->pr_getlock != NULL) {
208 socket_unlock(head, 1);
209 socket_lock(so, 0);
210 }
211 } else {
212 postevent(so, 0, EV_WCONN);
213 wakeup((caddr_t)&so->so_timeo);
214 sorwakeup(so);
215 sowwakeup(so);
216 soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_CONNECTED |
217 SO_FILT_HINT_CONNINFO_UPDATED);
218 }
219 }
220
221 void
222 soisdisconnecting(struct socket *so)
223 {
224 so->so_state &= ~SS_ISCONNECTING;
225 so->so_state |= (SS_ISDISCONNECTING|SS_CANTRCVMORE|SS_CANTSENDMORE);
226 soevent(so, SO_FILT_HINT_LOCKED);
227 sflt_notify(so, sock_evt_disconnecting, NULL);
228 wakeup((caddr_t)&so->so_timeo);
229 sowwakeup(so);
230 sorwakeup(so);
231 }
232
233 void
234 soisdisconnected(struct socket *so)
235 {
236 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
237 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
238 soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_DISCONNECTED |
239 SO_FILT_HINT_CONNINFO_UPDATED);
240 sflt_notify(so, sock_evt_disconnected, NULL);
241 wakeup((caddr_t)&so->so_timeo);
242 sowwakeup(so);
243 sorwakeup(so);
244
245 #if CONTENT_FILTER
246 /* Notify content filters as soon as we cannot send/receive data */
247 cfil_sock_notify_shutdown(so, SHUT_RDWR);
248 #endif /* CONTENT_FILTER */
249 }
250
251 /*
252 * This function will issue a wakeup like soisdisconnected but it will not
253 * notify the socket filters. This will avoid unlocking the socket
254 * in the midst of closing it.
255 */
256 void
257 sodisconnectwakeup(struct socket *so)
258 {
259 so->so_state &= ~(SS_ISCONNECTING|SS_ISCONNECTED|SS_ISDISCONNECTING);
260 so->so_state |= (SS_CANTRCVMORE|SS_CANTSENDMORE|SS_ISDISCONNECTED);
261 soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_DISCONNECTED |
262 SO_FILT_HINT_CONNINFO_UPDATED);
263 wakeup((caddr_t)&so->so_timeo);
264 sowwakeup(so);
265 sorwakeup(so);
266
267 #if CONTENT_FILTER
268 /* Notify content filters as soon as we cannot send/receive data */
269 cfil_sock_notify_shutdown(so, SHUT_RDWR);
270 #endif /* CONTENT_FILTER */
271 }
272
273 /*
274 * When an attempt at a new connection is noted on a socket
275 * which accepts connections, sonewconn is called. If the
276 * connection is possible (subject to space constraints, etc.)
277 * then we allocate a new structure, propoerly linked into the
278 * data structure of the original socket, and return this.
279 * Connstatus may be 0, or SO_ISCONFIRMING, or SO_ISCONNECTED.
280 */
281 static struct socket *
282 sonewconn_internal(struct socket *head, int connstatus)
283 {
284 int so_qlen, error = 0;
285 struct socket *so;
286 lck_mtx_t *mutex_held;
287
288 if (head->so_proto->pr_getlock != NULL)
289 mutex_held = (*head->so_proto->pr_getlock)(head, 0);
290 else
291 mutex_held = head->so_proto->pr_domain->dom_mtx;
292 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
293
294 if (!soqlencomp) {
295 /*
296 * This is the default case; so_qlen represents the
297 * sum of both incomplete and completed queues.
298 */
299 so_qlen = head->so_qlen;
300 } else {
301 /*
302 * When kern.ipc.soqlencomp is set to 1, so_qlen
303 * represents only the completed queue. Since we
304 * cannot let the incomplete queue goes unbounded
305 * (in case of SYN flood), we cap the incomplete
306 * queue length to at most somaxconn, and use that
307 * as so_qlen so that we fail immediately below.
308 */
309 so_qlen = head->so_qlen - head->so_incqlen;
310 if (head->so_incqlen > somaxconn)
311 so_qlen = somaxconn;
312 }
313
314 if (so_qlen >=
315 (soqlimitcompat ? head->so_qlimit : (3 * head->so_qlimit / 2)))
316 return ((struct socket *)0);
317 so = soalloc(1, SOCK_DOM(head), head->so_type);
318 if (so == NULL)
319 return ((struct socket *)0);
320 /* check if head was closed during the soalloc */
321 if (head->so_proto == NULL) {
322 sodealloc(so);
323 return ((struct socket *)0);
324 }
325
326 so->so_type = head->so_type;
327 so->so_options = head->so_options &~ SO_ACCEPTCONN;
328 so->so_linger = head->so_linger;
329 so->so_state = head->so_state | SS_NOFDREF;
330 so->so_proto = head->so_proto;
331 so->so_timeo = head->so_timeo;
332 so->so_pgid = head->so_pgid;
333 kauth_cred_ref(head->so_cred);
334 so->so_cred = head->so_cred;
335 so->last_pid = head->last_pid;
336 so->last_upid = head->last_upid;
337 memcpy(so->last_uuid, head->last_uuid, sizeof (so->last_uuid));
338 if (head->so_flags & SOF_DELEGATED) {
339 so->e_pid = head->e_pid;
340 so->e_upid = head->e_upid;
341 memcpy(so->e_uuid, head->e_uuid, sizeof (so->e_uuid));
342 }
343 /* inherit socket options stored in so_flags */
344 so->so_flags = head->so_flags &
345 (SOF_NOSIGPIPE | SOF_NOADDRAVAIL | SOF_REUSESHAREUID |
346 SOF_NOTIFYCONFLICT | SOF_BINDRANDOMPORT | SOF_NPX_SETOPTSHUT |
347 SOF_NODEFUNCT | SOF_PRIVILEGED_TRAFFIC_CLASS| SOF_NOTSENT_LOWAT |
348 SOF_USELRO | SOF_DELEGATED);
349 so->so_usecount = 1;
350 so->next_lock_lr = 0;
351 so->next_unlock_lr = 0;
352
353 so->so_rcv.sb_flags |= SB_RECV; /* XXX */
354 so->so_rcv.sb_so = so->so_snd.sb_so = so;
355 TAILQ_INIT(&so->so_evlist);
356
357 #if CONFIG_MACF_SOCKET
358 mac_socket_label_associate_accept(head, so);
359 #endif
360
361 /* inherit traffic management properties of listener */
362 so->so_traffic_mgt_flags =
363 head->so_traffic_mgt_flags & (TRAFFIC_MGT_SO_BACKGROUND);
364 so->so_background_thread = head->so_background_thread;
365 so->so_traffic_class = head->so_traffic_class;
366
367 if (soreserve(so, head->so_snd.sb_hiwat, head->so_rcv.sb_hiwat)) {
368 sodealloc(so);
369 return ((struct socket *)0);
370 }
371 so->so_rcv.sb_flags |= (head->so_rcv.sb_flags & SB_USRSIZE);
372 so->so_snd.sb_flags |= (head->so_snd.sb_flags & SB_USRSIZE);
373
374 /*
375 * Must be done with head unlocked to avoid deadlock
376 * for protocol with per socket mutexes.
377 */
378 if (head->so_proto->pr_unlock)
379 socket_unlock(head, 0);
380 if (((*so->so_proto->pr_usrreqs->pru_attach)(so, 0, NULL) != 0) ||
381 error) {
382 sodealloc(so);
383 if (head->so_proto->pr_unlock)
384 socket_lock(head, 0);
385 return ((struct socket *)0);
386 }
387 if (head->so_proto->pr_unlock) {
388 socket_lock(head, 0);
389 /*
390 * Radar 7385998 Recheck that the head is still accepting
391 * to avoid race condition when head is getting closed.
392 */
393 if ((head->so_options & SO_ACCEPTCONN) == 0) {
394 so->so_state &= ~SS_NOFDREF;
395 soclose(so);
396 return ((struct socket *)0);
397 }
398 }
399
400 atomic_add_32(&so->so_proto->pr_domain->dom_refs, 1);
401
402 /* Insert in head appropriate lists */
403 so->so_head = head;
404
405 /*
406 * Since this socket is going to be inserted into the incomp
407 * queue, it can be picked up by another thread in
408 * tcp_dropdropablreq to get dropped before it is setup..
409 * To prevent this race, set in-progress flag which can be
410 * cleared later
411 */
412 so->so_flags |= SOF_INCOMP_INPROGRESS;
413
414 if (connstatus) {
415 TAILQ_INSERT_TAIL(&head->so_comp, so, so_list);
416 so->so_state |= SS_COMP;
417 } else {
418 TAILQ_INSERT_TAIL(&head->so_incomp, so, so_list);
419 so->so_state |= SS_INCOMP;
420 head->so_incqlen++;
421 }
422 head->so_qlen++;
423
424 /* Attach socket filters for this protocol */
425 sflt_initsock(so);
426
427 if (connstatus) {
428 so->so_state |= connstatus;
429 sorwakeup(head);
430 wakeup((caddr_t)&head->so_timeo);
431 }
432 return (so);
433 }
434
435
436 struct socket *
437 sonewconn(struct socket *head, int connstatus, const struct sockaddr *from)
438 {
439 int error = sflt_connectin(head, from);
440 if (error) {
441 return (NULL);
442 }
443
444 return (sonewconn_internal(head, connstatus));
445 }
446
447 /*
448 * Socantsendmore indicates that no more data will be sent on the
449 * socket; it would normally be applied to a socket when the user
450 * informs the system that no more data is to be sent, by the protocol
451 * code (in case PRU_SHUTDOWN). Socantrcvmore indicates that no more data
452 * will be received, and will normally be applied to the socket by a
453 * protocol when it detects that the peer will send no more data.
454 * Data queued for reading in the socket may yet be read.
455 */
456
457 void
458 socantsendmore(struct socket *so)
459 {
460 so->so_state |= SS_CANTSENDMORE;
461 soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_CANTSENDMORE);
462 sflt_notify(so, sock_evt_cantsendmore, NULL);
463 sowwakeup(so);
464 }
465
466 void
467 socantrcvmore(struct socket *so)
468 {
469 so->so_state |= SS_CANTRCVMORE;
470 soevent(so, SO_FILT_HINT_LOCKED | SO_FILT_HINT_CANTRCVMORE);
471 sflt_notify(so, sock_evt_cantrecvmore, NULL);
472 sorwakeup(so);
473 }
474
475 /*
476 * Wait for data to arrive at/drain from a socket buffer.
477 */
478 int
479 sbwait(struct sockbuf *sb)
480 {
481 boolean_t nointr = (sb->sb_flags & SB_NOINTR);
482 void *lr_saved = __builtin_return_address(0);
483 struct socket *so = sb->sb_so;
484 lck_mtx_t *mutex_held;
485 struct timespec ts;
486 int error = 0;
487
488 if (so == NULL) {
489 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
490 __func__, sb, sb->sb_flags, lr_saved);
491 /* NOTREACHED */
492 } else if (so->so_usecount < 1) {
493 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
494 "lrh= %s\n", __func__, sb, sb->sb_flags, so,
495 so->so_usecount, lr_saved, solockhistory_nr(so));
496 /* NOTREACHED */
497 }
498
499 if (so->so_proto->pr_getlock != NULL)
500 mutex_held = (*so->so_proto->pr_getlock)(so, 0);
501 else
502 mutex_held = so->so_proto->pr_domain->dom_mtx;
503
504 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
505
506 ts.tv_sec = sb->sb_timeo.tv_sec;
507 ts.tv_nsec = sb->sb_timeo.tv_usec * 1000;
508
509 sb->sb_waiters++;
510 VERIFY(sb->sb_waiters != 0);
511
512 error = msleep((caddr_t)&sb->sb_cc, mutex_held,
513 nointr ? PSOCK : PSOCK | PCATCH,
514 nointr ? "sbwait_nointr" : "sbwait", &ts);
515
516 VERIFY(sb->sb_waiters != 0);
517 sb->sb_waiters--;
518
519 if (so->so_usecount < 1) {
520 panic("%s: 2 sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
521 "lrh= %s\n", __func__, sb, sb->sb_flags, so,
522 so->so_usecount, lr_saved, solockhistory_nr(so));
523 /* NOTREACHED */
524 }
525
526 if ((so->so_state & SS_DRAINING) || (so->so_flags & SOF_DEFUNCT)) {
527 error = EBADF;
528 if (so->so_flags & SOF_DEFUNCT) {
529 SODEFUNCTLOG(("%s[%d]: defunct so 0x%llx [%d,%d] "
530 "(%d)\n", __func__, proc_selfpid(),
531 (uint64_t)VM_KERNEL_ADDRPERM(so),
532 SOCK_DOM(so), SOCK_TYPE(so), error));
533 }
534 }
535
536 return (error);
537 }
538
539 void
540 sbwakeup(struct sockbuf *sb)
541 {
542 if (sb->sb_waiters > 0)
543 wakeup((caddr_t)&sb->sb_cc);
544 }
545
546 /*
547 * Wakeup processes waiting on a socket buffer.
548 * Do asynchronous notification via SIGIO
549 * if the socket has the SS_ASYNC flag set.
550 */
551 void
552 sowakeup(struct socket *so, struct sockbuf *sb)
553 {
554 if (so->so_flags & SOF_DEFUNCT) {
555 SODEFUNCTLOG(("%s[%d]: defunct so 0x%llx [%d,%d] si 0x%x, "
556 "fl 0x%x [%s]\n", __func__, proc_selfpid(),
557 (uint64_t)VM_KERNEL_ADDRPERM(so), SOCK_DOM(so),
558 SOCK_TYPE(so), (uint32_t)sb->sb_sel.si_flags, sb->sb_flags,
559 (sb->sb_flags & SB_RECV) ? "rcv" : "snd"));
560 }
561
562 sb->sb_flags &= ~SB_SEL;
563 selwakeup(&sb->sb_sel);
564 sbwakeup(sb);
565 if (so->so_state & SS_ASYNC) {
566 if (so->so_pgid < 0)
567 gsignal(-so->so_pgid, SIGIO);
568 else if (so->so_pgid > 0)
569 proc_signal(so->so_pgid, SIGIO);
570 }
571 if (sb->sb_flags & SB_KNOTE) {
572 KNOTE(&sb->sb_sel.si_note, SO_FILT_HINT_LOCKED);
573 }
574 if (sb->sb_flags & SB_UPCALL) {
575 void (*sb_upcall)(struct socket *, void *, int);
576 caddr_t sb_upcallarg;
577
578 sb_upcall = sb->sb_upcall;
579 sb_upcallarg = sb->sb_upcallarg;
580 /* Let close know that we're about to do an upcall */
581 so->so_upcallusecount++;
582
583 socket_unlock(so, 0);
584 (*sb_upcall)(so, sb_upcallarg, M_DONTWAIT);
585 socket_lock(so, 0);
586
587 so->so_upcallusecount--;
588 /* Tell close that it's safe to proceed */
589 if ((so->so_flags & SOF_CLOSEWAIT) &&
590 so->so_upcallusecount == 0)
591 wakeup((caddr_t)&so->so_upcallusecount);
592 }
593 #if CONTENT_FILTER
594 /*
595 * Trap disconnection events for content filters
596 */
597 if ((so->so_flags & SOF_CONTENT_FILTER) != 0) {
598 if ((sb->sb_flags & SB_RECV)) {
599 if (so->so_state & (SS_CANTRCVMORE))
600 cfil_sock_notify_shutdown(so, SHUT_RD);
601 } else {
602 if (so->so_state & (SS_CANTSENDMORE))
603 cfil_sock_notify_shutdown(so, SHUT_WR);
604 }
605 }
606 #endif /* CONTENT_FILTER */
607 }
608
609 /*
610 * Socket buffer (struct sockbuf) utility routines.
611 *
612 * Each socket contains two socket buffers: one for sending data and
613 * one for receiving data. Each buffer contains a queue of mbufs,
614 * information about the number of mbufs and amount of data in the
615 * queue, and other fields allowing select() statements and notification
616 * on data availability to be implemented.
617 *
618 * Data stored in a socket buffer is maintained as a list of records.
619 * Each record is a list of mbufs chained together with the m_next
620 * field. Records are chained together with the m_nextpkt field. The upper
621 * level routine soreceive() expects the following conventions to be
622 * observed when placing information in the receive buffer:
623 *
624 * 1. If the protocol requires each message be preceded by the sender's
625 * name, then a record containing that name must be present before
626 * any associated data (mbuf's must be of type MT_SONAME).
627 * 2. If the protocol supports the exchange of ``access rights'' (really
628 * just additional data associated with the message), and there are
629 * ``rights'' to be received, then a record containing this data
630 * should be present (mbuf's must be of type MT_RIGHTS).
631 * 3. If a name or rights record exists, then it must be followed by
632 * a data record, perhaps of zero length.
633 *
634 * Before using a new socket structure it is first necessary to reserve
635 * buffer space to the socket, by calling sbreserve(). This should commit
636 * some of the available buffer space in the system buffer pool for the
637 * socket (currently, it does nothing but enforce limits). The space
638 * should be released by calling sbrelease() when the socket is destroyed.
639 */
640
641 /*
642 * Returns: 0 Success
643 * ENOBUFS
644 */
645 int
646 soreserve(struct socket *so, u_int32_t sndcc, u_int32_t rcvcc)
647 {
648
649 if (sbreserve(&so->so_snd, sndcc) == 0)
650 goto bad;
651 else
652 so->so_snd.sb_idealsize = sndcc;
653
654 if (sbreserve(&so->so_rcv, rcvcc) == 0)
655 goto bad2;
656 else
657 so->so_rcv.sb_idealsize = rcvcc;
658
659 if (so->so_rcv.sb_lowat == 0)
660 so->so_rcv.sb_lowat = 1;
661 if (so->so_snd.sb_lowat == 0)
662 so->so_snd.sb_lowat = MCLBYTES;
663 if (so->so_snd.sb_lowat > so->so_snd.sb_hiwat)
664 so->so_snd.sb_lowat = so->so_snd.sb_hiwat;
665 return (0);
666 bad2:
667 so->so_snd.sb_flags &= ~SB_SEL;
668 selthreadclear(&so->so_snd.sb_sel);
669 sbrelease(&so->so_snd);
670 bad:
671 return (ENOBUFS);
672 }
673
674 /*
675 * Allot mbufs to a sockbuf.
676 * Attempt to scale mbmax so that mbcnt doesn't become limiting
677 * if buffering efficiency is near the normal case.
678 */
679 int
680 sbreserve(struct sockbuf *sb, u_int32_t cc)
681 {
682 if ((u_quad_t)cc > (u_quad_t)sb_max * MCLBYTES / (MSIZE + MCLBYTES))
683 return (0);
684 sb->sb_hiwat = cc;
685 sb->sb_mbmax = min(cc * sb_efficiency, sb_max);
686 if (sb->sb_lowat > sb->sb_hiwat)
687 sb->sb_lowat = sb->sb_hiwat;
688 return (1);
689 }
690
691 /*
692 * Free mbufs held by a socket, and reserved mbuf space.
693 */
694 /* WARNING needs to do selthreadclear() before calling this */
695 void
696 sbrelease(struct sockbuf *sb)
697 {
698 sbflush(sb);
699 sb->sb_hiwat = 0;
700 sb->sb_mbmax = 0;
701 }
702
703 /*
704 * Routines to add and remove
705 * data from an mbuf queue.
706 *
707 * The routines sbappend() or sbappendrecord() are normally called to
708 * append new mbufs to a socket buffer, after checking that adequate
709 * space is available, comparing the function sbspace() with the amount
710 * of data to be added. sbappendrecord() differs from sbappend() in
711 * that data supplied is treated as the beginning of a new record.
712 * To place a sender's address, optional access rights, and data in a
713 * socket receive buffer, sbappendaddr() should be used. To place
714 * access rights and data in a socket receive buffer, sbappendrights()
715 * should be used. In either case, the new data begins a new record.
716 * Note that unlike sbappend() and sbappendrecord(), these routines check
717 * for the caller that there will be enough space to store the data.
718 * Each fails if there is not enough space, or if it cannot find mbufs
719 * to store additional information in.
720 *
721 * Reliable protocols may use the socket send buffer to hold data
722 * awaiting acknowledgement. Data is normally copied from a socket
723 * send buffer in a protocol with m_copy for output to a peer,
724 * and then removing the data from the socket buffer with sbdrop()
725 * or sbdroprecord() when the data is acknowledged by the peer.
726 */
727
728 /*
729 * Append mbuf chain m to the last record in the
730 * socket buffer sb. The additional space associated
731 * the mbuf chain is recorded in sb. Empty mbufs are
732 * discarded and mbufs are compacted where possible.
733 */
734 int
735 sbappend(struct sockbuf *sb, struct mbuf *m)
736 {
737 struct socket *so = sb->sb_so;
738
739 if (m == NULL || (sb->sb_flags & SB_DROP)) {
740 if (m != NULL)
741 m_freem(m);
742 return (0);
743 }
744
745 SBLASTRECORDCHK(sb, "sbappend 1");
746
747 if (sb->sb_lastrecord != NULL && (sb->sb_mbtail->m_flags & M_EOR))
748 return (sbappendrecord(sb, m));
749
750 if (sb->sb_flags & SB_RECV && !(m && m->m_flags & M_SKIPCFIL)) {
751 int error = sflt_data_in(so, NULL, &m, NULL, 0);
752 SBLASTRECORDCHK(sb, "sbappend 2");
753
754 #if CONTENT_FILTER
755 if (error == 0)
756 error = cfil_sock_data_in(so, NULL, m, NULL, 0);
757 #endif /* CONTENT_FILTER */
758
759 if (error != 0) {
760 if (error != EJUSTRETURN)
761 m_freem(m);
762 return (0);
763 }
764 } else if (m) {
765 m->m_flags &= ~M_SKIPCFIL;
766 }
767
768 /* If this is the first record, it's also the last record */
769 if (sb->sb_lastrecord == NULL)
770 sb->sb_lastrecord = m;
771
772 sbcompress(sb, m, sb->sb_mbtail);
773 SBLASTRECORDCHK(sb, "sbappend 3");
774 return (1);
775 }
776
777 /*
778 * Similar to sbappend, except that this is optimized for stream sockets.
779 */
780 int
781 sbappendstream(struct sockbuf *sb, struct mbuf *m)
782 {
783 struct socket *so = sb->sb_so;
784
785 if (m == NULL || (sb->sb_flags & SB_DROP)) {
786 if (m != NULL)
787 m_freem(m);
788 return (0);
789 }
790
791 if (m->m_nextpkt != NULL || (sb->sb_mb != sb->sb_lastrecord)) {
792 panic("sbappendstream: nexpkt %p || mb %p != lastrecord %p\n",
793 m->m_nextpkt, sb->sb_mb, sb->sb_lastrecord);
794 /* NOTREACHED */
795 }
796
797 SBLASTMBUFCHK(sb, __func__);
798
799 if (sb->sb_flags & SB_RECV && !(m && m->m_flags & M_SKIPCFIL)) {
800 int error = sflt_data_in(so, NULL, &m, NULL, 0);
801 SBLASTRECORDCHK(sb, "sbappendstream 1");
802
803 #if CONTENT_FILTER
804 if (error == 0)
805 error = cfil_sock_data_in(so, NULL, m, NULL, 0);
806 #endif /* CONTENT_FILTER */
807
808 if (error != 0) {
809 if (error != EJUSTRETURN)
810 m_freem(m);
811 return (0);
812 }
813 } else if (m) {
814 m->m_flags &= ~M_SKIPCFIL;
815 }
816
817 sbcompress(sb, m, sb->sb_mbtail);
818 sb->sb_lastrecord = sb->sb_mb;
819 SBLASTRECORDCHK(sb, "sbappendstream 2");
820 return (1);
821 }
822
823 #ifdef SOCKBUF_DEBUG
824 void
825 sbcheck(struct sockbuf *sb)
826 {
827 struct mbuf *m;
828 struct mbuf *n = 0;
829 u_int32_t len = 0, mbcnt = 0;
830 lck_mtx_t *mutex_held;
831
832 if (sb->sb_so->so_proto->pr_getlock != NULL)
833 mutex_held = (*sb->sb_so->so_proto->pr_getlock)(sb->sb_so, 0);
834 else
835 mutex_held = sb->sb_so->so_proto->pr_domain->dom_mtx;
836
837 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
838
839 if (sbchecking == 0)
840 return;
841
842 for (m = sb->sb_mb; m; m = n) {
843 n = m->m_nextpkt;
844 for (; m; m = m->m_next) {
845 len += m->m_len;
846 mbcnt += MSIZE;
847 /* XXX pretty sure this is bogus */
848 if (m->m_flags & M_EXT)
849 mbcnt += m->m_ext.ext_size;
850 }
851 }
852 if (len != sb->sb_cc || mbcnt != sb->sb_mbcnt) {
853 panic("cc %ld != %ld || mbcnt %ld != %ld\n", len, sb->sb_cc,
854 mbcnt, sb->sb_mbcnt);
855 }
856 }
857 #endif
858
859 void
860 sblastrecordchk(struct sockbuf *sb, const char *where)
861 {
862 struct mbuf *m = sb->sb_mb;
863
864 while (m && m->m_nextpkt)
865 m = m->m_nextpkt;
866
867 if (m != sb->sb_lastrecord) {
868 printf("sblastrecordchk: mb 0x%llx lastrecord 0x%llx "
869 "last 0x%llx\n",
870 (uint64_t)VM_KERNEL_ADDRPERM(sb->sb_mb),
871 (uint64_t)VM_KERNEL_ADDRPERM(sb->sb_lastrecord),
872 (uint64_t)VM_KERNEL_ADDRPERM(m));
873 printf("packet chain:\n");
874 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt)
875 printf("\t0x%llx\n", (uint64_t)VM_KERNEL_ADDRPERM(m));
876 panic("sblastrecordchk from %s", where);
877 }
878 }
879
880 void
881 sblastmbufchk(struct sockbuf *sb, const char *where)
882 {
883 struct mbuf *m = sb->sb_mb;
884 struct mbuf *n;
885
886 while (m && m->m_nextpkt)
887 m = m->m_nextpkt;
888
889 while (m && m->m_next)
890 m = m->m_next;
891
892 if (m != sb->sb_mbtail) {
893 printf("sblastmbufchk: mb 0x%llx mbtail 0x%llx last 0x%llx\n",
894 (uint64_t)VM_KERNEL_ADDRPERM(sb->sb_mb),
895 (uint64_t)VM_KERNEL_ADDRPERM(sb->sb_mbtail),
896 (uint64_t)VM_KERNEL_ADDRPERM(m));
897 printf("packet tree:\n");
898 for (m = sb->sb_mb; m != NULL; m = m->m_nextpkt) {
899 printf("\t");
900 for (n = m; n != NULL; n = n->m_next)
901 printf("0x%llx ", (uint64_t)VM_KERNEL_ADDRPERM(n));
902 printf("\n");
903 }
904 panic("sblastmbufchk from %s", where);
905 }
906 }
907
908 /*
909 * Similar to sbappend, except the mbuf chain begins a new record.
910 */
911 int
912 sbappendrecord(struct sockbuf *sb, struct mbuf *m0)
913 {
914 struct mbuf *m;
915 int space = 0;
916
917 if (m0 == NULL || (sb->sb_flags & SB_DROP)) {
918 if (m0 != NULL)
919 m_freem(m0);
920 return (0);
921 }
922
923 for (m = m0; m != NULL; m = m->m_next)
924 space += m->m_len;
925
926 if (space > sbspace(sb) && !(sb->sb_flags & SB_UNIX)) {
927 m_freem(m0);
928 return (0);
929 }
930
931 if (sb->sb_flags & SB_RECV && !(m0 && m0->m_flags & M_SKIPCFIL)) {
932 int error = sflt_data_in(sb->sb_so, NULL, &m0, NULL,
933 sock_data_filt_flag_record);
934
935 #if CONTENT_FILTER
936 if (error == 0)
937 error = cfil_sock_data_in(sb->sb_so, NULL, m0, NULL, 0);
938 #endif /* CONTENT_FILTER */
939
940 if (error != 0) {
941 SBLASTRECORDCHK(sb, "sbappendrecord 1");
942 if (error != EJUSTRETURN)
943 m_freem(m0);
944 return (0);
945 }
946 } else if (m0) {
947 m0->m_flags &= ~M_SKIPCFIL;
948 }
949
950 /*
951 * Note this permits zero length records.
952 */
953 sballoc(sb, m0);
954 SBLASTRECORDCHK(sb, "sbappendrecord 2");
955 if (sb->sb_lastrecord != NULL) {
956 sb->sb_lastrecord->m_nextpkt = m0;
957 } else {
958 sb->sb_mb = m0;
959 }
960 sb->sb_lastrecord = m0;
961 sb->sb_mbtail = m0;
962
963 m = m0->m_next;
964 m0->m_next = 0;
965 if (m && (m0->m_flags & M_EOR)) {
966 m0->m_flags &= ~M_EOR;
967 m->m_flags |= M_EOR;
968 }
969 sbcompress(sb, m, m0);
970 SBLASTRECORDCHK(sb, "sbappendrecord 3");
971 return (1);
972 }
973
974 /*
975 * As above except that OOB data
976 * is inserted at the beginning of the sockbuf,
977 * but after any other OOB data.
978 */
979 int
980 sbinsertoob(struct sockbuf *sb, struct mbuf *m0)
981 {
982 struct mbuf *m;
983 struct mbuf **mp;
984
985 if (m0 == 0)
986 return (0);
987
988 SBLASTRECORDCHK(sb, "sbinsertoob 1");
989
990 if ((sb->sb_flags & SB_RECV && !(m0->m_flags & M_SKIPCFIL)) != 0) {
991 int error = sflt_data_in(sb->sb_so, NULL, &m0, NULL,
992 sock_data_filt_flag_oob);
993
994 SBLASTRECORDCHK(sb, "sbinsertoob 2");
995
996 #if CONTENT_FILTER
997 if (error == 0)
998 error = cfil_sock_data_in(sb->sb_so, NULL, m0, NULL, 0);
999 #endif /* CONTENT_FILTER */
1000
1001 if (error) {
1002 if (error != EJUSTRETURN) {
1003 m_freem(m0);
1004 }
1005 return (0);
1006 }
1007 } else if (m0) {
1008 m0->m_flags &= ~M_SKIPCFIL;
1009 }
1010
1011 for (mp = &sb->sb_mb; *mp; mp = &((*mp)->m_nextpkt)) {
1012 m = *mp;
1013 again:
1014 switch (m->m_type) {
1015
1016 case MT_OOBDATA:
1017 continue; /* WANT next train */
1018
1019 case MT_CONTROL:
1020 m = m->m_next;
1021 if (m)
1022 goto again; /* inspect THIS train further */
1023 }
1024 break;
1025 }
1026 /*
1027 * Put the first mbuf on the queue.
1028 * Note this permits zero length records.
1029 */
1030 sballoc(sb, m0);
1031 m0->m_nextpkt = *mp;
1032 if (*mp == NULL) {
1033 /* m0 is actually the new tail */
1034 sb->sb_lastrecord = m0;
1035 }
1036 *mp = m0;
1037 m = m0->m_next;
1038 m0->m_next = 0;
1039 if (m && (m0->m_flags & M_EOR)) {
1040 m0->m_flags &= ~M_EOR;
1041 m->m_flags |= M_EOR;
1042 }
1043 sbcompress(sb, m, m0);
1044 SBLASTRECORDCHK(sb, "sbinsertoob 3");
1045 return (1);
1046 }
1047
1048 /*
1049 * Append address and data, and optionally, control (ancillary) data
1050 * to the receive queue of a socket. If present,
1051 * m0 must include a packet header with total length.
1052 * Returns 0 if no space in sockbuf or insufficient mbufs.
1053 *
1054 * Returns: 0 No space/out of mbufs
1055 * 1 Success
1056 */
1057 static int
1058 sbappendaddr_internal(struct sockbuf *sb, struct sockaddr *asa,
1059 struct mbuf *m0, struct mbuf *control)
1060 {
1061 struct mbuf *m, *n, *nlast;
1062 int space = asa->sa_len;
1063
1064 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1065 panic("sbappendaddr");
1066
1067 if (m0)
1068 space += m0->m_pkthdr.len;
1069 for (n = control; n; n = n->m_next) {
1070 space += n->m_len;
1071 if (n->m_next == 0) /* keep pointer to last control buf */
1072 break;
1073 }
1074 if (space > sbspace(sb))
1075 return (0);
1076 if (asa->sa_len > MLEN)
1077 return (0);
1078 MGET(m, M_DONTWAIT, MT_SONAME);
1079 if (m == 0)
1080 return (0);
1081 m->m_len = asa->sa_len;
1082 bcopy((caddr_t)asa, mtod(m, caddr_t), asa->sa_len);
1083 if (n)
1084 n->m_next = m0; /* concatenate data to control */
1085 else
1086 control = m0;
1087 m->m_next = control;
1088
1089 SBLASTRECORDCHK(sb, "sbappendadddr 1");
1090
1091 for (n = m; n->m_next != NULL; n = n->m_next)
1092 sballoc(sb, n);
1093 sballoc(sb, n);
1094 nlast = n;
1095
1096 if (sb->sb_lastrecord != NULL) {
1097 sb->sb_lastrecord->m_nextpkt = m;
1098 } else {
1099 sb->sb_mb = m;
1100 }
1101 sb->sb_lastrecord = m;
1102 sb->sb_mbtail = nlast;
1103
1104 SBLASTMBUFCHK(sb, __func__);
1105 SBLASTRECORDCHK(sb, "sbappendadddr 2");
1106
1107 postevent(0, sb, EV_RWBYTES);
1108 return (1);
1109 }
1110
1111 /*
1112 * Returns: 0 Error: No space/out of mbufs/etc.
1113 * 1 Success
1114 *
1115 * Imputed: (*error_out) errno for error
1116 * ENOBUFS
1117 * sflt_data_in:??? [whatever a filter author chooses]
1118 */
1119 int
1120 sbappendaddr(struct sockbuf *sb, struct sockaddr *asa, struct mbuf *m0,
1121 struct mbuf *control, int *error_out)
1122 {
1123 int result = 0;
1124 boolean_t sb_unix = (sb->sb_flags & SB_UNIX);
1125
1126 if (error_out)
1127 *error_out = 0;
1128
1129 if (m0 && (m0->m_flags & M_PKTHDR) == 0)
1130 panic("sbappendaddrorfree");
1131
1132 if (sb->sb_flags & SB_DROP) {
1133 if (m0 != NULL)
1134 m_freem(m0);
1135 if (control != NULL && !sb_unix)
1136 m_freem(control);
1137 if (error_out != NULL)
1138 *error_out = EINVAL;
1139 return (0);
1140 }
1141
1142 /* Call socket data in filters */
1143 if (sb->sb_flags & SB_RECV && !(m0 && m0->m_flags & M_SKIPCFIL)) {
1144 int error;
1145 error = sflt_data_in(sb->sb_so, asa, &m0, &control, 0);
1146 SBLASTRECORDCHK(sb, __func__);
1147
1148 #if CONTENT_FILTER
1149 if (error == 0)
1150 error = cfil_sock_data_in(sb->sb_so, asa, m0, control, 0);
1151 #endif /* CONTENT_FILTER */
1152
1153 if (error) {
1154 if (error != EJUSTRETURN) {
1155 if (m0)
1156 m_freem(m0);
1157 if (control != NULL && !sb_unix)
1158 m_freem(control);
1159 if (error_out)
1160 *error_out = error;
1161 }
1162 return (0);
1163 }
1164 } else if (m0) {
1165 m0->m_flags &= ~M_SKIPCFIL;
1166 }
1167
1168 result = sbappendaddr_internal(sb, asa, m0, control);
1169 if (result == 0) {
1170 if (m0)
1171 m_freem(m0);
1172 if (control != NULL && !sb_unix)
1173 m_freem(control);
1174 if (error_out)
1175 *error_out = ENOBUFS;
1176 }
1177
1178 return (result);
1179 }
1180
1181 static int
1182 sbappendcontrol_internal(struct sockbuf *sb, struct mbuf *m0,
1183 struct mbuf *control)
1184 {
1185 struct mbuf *m, *mlast, *n;
1186 int space = 0;
1187
1188 if (control == 0)
1189 panic("sbappendcontrol");
1190
1191 for (m = control; ; m = m->m_next) {
1192 space += m->m_len;
1193 if (m->m_next == 0)
1194 break;
1195 }
1196 n = m; /* save pointer to last control buffer */
1197 for (m = m0; m; m = m->m_next)
1198 space += m->m_len;
1199 if (space > sbspace(sb) && !(sb->sb_flags & SB_UNIX))
1200 return (0);
1201 n->m_next = m0; /* concatenate data to control */
1202 SBLASTRECORDCHK(sb, "sbappendcontrol 1");
1203
1204 for (m = control; m->m_next != NULL; m = m->m_next)
1205 sballoc(sb, m);
1206 sballoc(sb, m);
1207 mlast = m;
1208
1209 if (sb->sb_lastrecord != NULL) {
1210 sb->sb_lastrecord->m_nextpkt = control;
1211 } else {
1212 sb->sb_mb = control;
1213 }
1214 sb->sb_lastrecord = control;
1215 sb->sb_mbtail = mlast;
1216
1217 SBLASTMBUFCHK(sb, __func__);
1218 SBLASTRECORDCHK(sb, "sbappendcontrol 2");
1219
1220 postevent(0, sb, EV_RWBYTES);
1221 return (1);
1222 }
1223
1224 int
1225 sbappendcontrol(struct sockbuf *sb, struct mbuf *m0, struct mbuf *control,
1226 int *error_out)
1227 {
1228 int result = 0;
1229 boolean_t sb_unix = (sb->sb_flags & SB_UNIX);
1230
1231 if (error_out)
1232 *error_out = 0;
1233
1234 if (sb->sb_flags & SB_DROP) {
1235 if (m0 != NULL)
1236 m_freem(m0);
1237 if (control != NULL && !sb_unix)
1238 m_freem(control);
1239 if (error_out != NULL)
1240 *error_out = EINVAL;
1241 return (0);
1242 }
1243
1244 if (sb->sb_flags & SB_RECV && !(m0 && m0->m_flags & M_SKIPCFIL)) {
1245 int error;
1246
1247 error = sflt_data_in(sb->sb_so, NULL, &m0, &control, 0);
1248 SBLASTRECORDCHK(sb, __func__);
1249
1250 #if CONTENT_FILTER
1251 if (error == 0)
1252 error = cfil_sock_data_in(sb->sb_so, NULL, m0, control, 0);
1253 #endif /* CONTENT_FILTER */
1254
1255 if (error) {
1256 if (error != EJUSTRETURN) {
1257 if (m0)
1258 m_freem(m0);
1259 if (control != NULL && !sb_unix)
1260 m_freem(control);
1261 if (error_out)
1262 *error_out = error;
1263 }
1264 return (0);
1265 }
1266 } else if (m0) {
1267 m0->m_flags &= ~M_SKIPCFIL;
1268 }
1269
1270 result = sbappendcontrol_internal(sb, m0, control);
1271 if (result == 0) {
1272 if (m0)
1273 m_freem(m0);
1274 if (control != NULL && !sb_unix)
1275 m_freem(control);
1276 if (error_out)
1277 *error_out = ENOBUFS;
1278 }
1279
1280 return (result);
1281 }
1282
1283 /*
1284 * Append a contiguous TCP data blob with TCP sequence number as control data
1285 * as a new msg to the receive socket buffer.
1286 */
1287 int
1288 sbappendmsgstream_rcv(struct sockbuf *sb, struct mbuf *m, uint32_t seqnum,
1289 int unordered)
1290 {
1291 struct mbuf *m_eor = NULL;
1292 u_int32_t data_len = 0;
1293 int ret = 0;
1294 struct socket *so = sb->sb_so;
1295
1296 VERIFY((m->m_flags & M_PKTHDR) && m_pktlen(m) > 0);
1297 VERIFY(so->so_msg_state != NULL);
1298 VERIFY(sb->sb_flags & SB_RECV);
1299
1300 /* Keep the TCP sequence number in the mbuf pkthdr */
1301 m->m_pkthdr.msg_seq = seqnum;
1302
1303 /* find last mbuf and set M_EOR */
1304 for (m_eor = m; ; m_eor = m_eor->m_next) {
1305 /*
1306 * If the msg is unordered, we need to account for
1307 * these bytes in receive socket buffer size. Otherwise,
1308 * the receive window advertised will shrink because
1309 * of the additional unordered bytes added to the
1310 * receive buffer.
1311 */
1312 if (unordered) {
1313 m_eor->m_flags |= M_UNORDERED_DATA;
1314 data_len += m_eor->m_len;
1315 so->so_msg_state->msg_uno_bytes += m_eor->m_len;
1316 } else {
1317 m_eor->m_flags &= ~M_UNORDERED_DATA;
1318 }
1319 if (m_eor->m_next == NULL)
1320 break;
1321 }
1322
1323 /* set EOR flag at end of byte blob */
1324 m_eor->m_flags |= M_EOR;
1325
1326 /* expand the receive socket buffer to allow unordered data */
1327 if (unordered && !sbreserve(sb, sb->sb_hiwat + data_len)) {
1328 /*
1329 * Could not allocate memory for unordered data, it
1330 * means this packet will have to be delivered in order
1331 */
1332 printf("%s: could not reserve space for unordered data\n",
1333 __func__);
1334 }
1335
1336 if (!unordered && (sb->sb_mbtail != NULL) &&
1337 !(sb->sb_mbtail->m_flags & M_UNORDERED_DATA)) {
1338 sb->sb_mbtail->m_flags &= ~M_EOR;
1339 sbcompress(sb, m, sb->sb_mbtail);
1340 ret = 1;
1341 } else {
1342 ret = sbappendrecord(sb, m);
1343 }
1344 VERIFY(sb->sb_mbtail->m_flags & M_EOR);
1345 return (ret);
1346 }
1347
1348 /*
1349 * TCP streams have message based out of order delivery support, or have
1350 * Multipath TCP support, or are regular TCP sockets
1351 */
1352 int
1353 sbappendstream_rcvdemux(struct socket *so, struct mbuf *m, uint32_t seqnum,
1354 int unordered)
1355 {
1356 int ret = 0;
1357
1358 if ((m != NULL) && (m_pktlen(m) <= 0)) {
1359 m_freem(m);
1360 return (ret);
1361 }
1362
1363 if (so->so_flags & SOF_ENABLE_MSGS) {
1364 ret = sbappendmsgstream_rcv(&so->so_rcv, m, seqnum, unordered);
1365 }
1366 #if MPTCP
1367 else if (so->so_flags & SOF_MPTCP_TRUE) {
1368 ret = sbappendmptcpstream_rcv(&so->so_rcv, m);
1369 }
1370 #endif /* MPTCP */
1371 else {
1372 ret = sbappendstream(&so->so_rcv, m);
1373 }
1374 return (ret);
1375 }
1376
1377 #if MPTCP
1378 int
1379 sbappendmptcpstream_rcv(struct sockbuf *sb, struct mbuf *m)
1380 {
1381 struct socket *so = sb->sb_so;
1382
1383 VERIFY(m == NULL || (m->m_flags & M_PKTHDR));
1384 /* SB_NOCOMPRESS must be set prevent loss of M_PKTHDR data */
1385 VERIFY((sb->sb_flags & (SB_RECV|SB_NOCOMPRESS)) ==
1386 (SB_RECV|SB_NOCOMPRESS));
1387
1388 if (m == NULL || m_pktlen(m) == 0 || (sb->sb_flags & SB_DROP) ||
1389 (so->so_state & SS_CANTRCVMORE)) {
1390 if (m != NULL)
1391 m_freem(m);
1392 return (0);
1393 }
1394 /* the socket is not closed, so SOF_MP_SUBFLOW must be set */
1395 VERIFY(so->so_flags & SOF_MP_SUBFLOW);
1396
1397 if (m->m_nextpkt != NULL || (sb->sb_mb != sb->sb_lastrecord)) {
1398 panic("%s: nexpkt %p || mb %p != lastrecord %p\n", __func__,
1399 m->m_nextpkt, sb->sb_mb, sb->sb_lastrecord);
1400 /* NOTREACHED */
1401 }
1402
1403 SBLASTMBUFCHK(sb, __func__);
1404
1405 if (mptcp_adj_rmap(so, m) != 0)
1406 return (0);
1407
1408 /* No filter support (SB_RECV) on mptcp subflow sockets */
1409
1410 sbcompress(sb, m, sb->sb_mbtail);
1411 sb->sb_lastrecord = sb->sb_mb;
1412 SBLASTRECORDCHK(sb, __func__);
1413 return (1);
1414 }
1415 #endif /* MPTCP */
1416
1417 /*
1418 * Append message to send socket buffer based on priority.
1419 */
1420 int
1421 sbappendmsg_snd(struct sockbuf *sb, struct mbuf *m)
1422 {
1423 struct socket *so = sb->sb_so;
1424 struct msg_priq *priq;
1425 int set_eor = 0;
1426
1427 VERIFY(so->so_msg_state != NULL);
1428
1429 if (m->m_nextpkt != NULL || (sb->sb_mb != sb->sb_lastrecord))
1430 panic("sbappendstream: nexpkt %p || mb %p != lastrecord %p\n",
1431 m->m_nextpkt, sb->sb_mb, sb->sb_lastrecord);
1432
1433 SBLASTMBUFCHK(sb, __func__);
1434
1435 if (m == NULL || (sb->sb_flags & SB_DROP) || so->so_msg_state == NULL) {
1436 if (m != NULL)
1437 m_freem(m);
1438 return (0);
1439 }
1440
1441 priq = &so->so_msg_state->msg_priq[m->m_pkthdr.msg_pri];
1442
1443 /* note if we need to propogate M_EOR to the last mbuf */
1444 if (m->m_flags & M_EOR) {
1445 set_eor = 1;
1446
1447 /* Reset M_EOR from the first mbuf */
1448 m->m_flags &= ~(M_EOR);
1449 }
1450
1451 if (priq->msgq_head == NULL) {
1452 VERIFY(priq->msgq_tail == NULL && priq->msgq_lastmsg == NULL);
1453 priq->msgq_head = priq->msgq_lastmsg = m;
1454 } else {
1455 VERIFY(priq->msgq_tail->m_next == NULL);
1456
1457 /* Check if the last message has M_EOR flag set */
1458 if (priq->msgq_tail->m_flags & M_EOR) {
1459 /* Insert as a new message */
1460 priq->msgq_lastmsg->m_nextpkt = m;
1461
1462 /* move the lastmsg pointer */
1463 priq->msgq_lastmsg = m;
1464 } else {
1465 /* Append to the existing message */
1466 priq->msgq_tail->m_next = m;
1467 }
1468 }
1469
1470 /* Update accounting and the queue tail pointer */
1471
1472 while (m->m_next != NULL) {
1473 sballoc(sb, m);
1474 priq->msgq_bytes += m->m_len;
1475 m = m->m_next;
1476 }
1477 sballoc(sb, m);
1478 priq->msgq_bytes += m->m_len;
1479
1480 if (set_eor) {
1481 m->m_flags |= M_EOR;
1482
1483 /*
1484 * Since the user space can not write a new msg
1485 * without completing the previous one, we can
1486 * reset this flag to start sending again.
1487 */
1488 priq->msgq_flags &= ~(MSGQ_MSG_NOTDONE);
1489 }
1490
1491 priq->msgq_tail = m;
1492
1493 SBLASTRECORDCHK(sb, "sbappendstream 2");
1494 postevent(0, sb, EV_RWBYTES);
1495 return (1);
1496 }
1497
1498 /*
1499 * Pull data from priority queues to the serial snd queue
1500 * right before sending.
1501 */
1502 void
1503 sbpull_unordered_data(struct socket *so, int32_t off, int32_t len)
1504 {
1505 int32_t topull, i;
1506 struct msg_priq *priq = NULL;
1507
1508 VERIFY(so->so_msg_state != NULL);
1509
1510 topull = (off + len) - so->so_msg_state->msg_serial_bytes;
1511
1512 i = MSG_PRI_MAX;
1513 while (i >= MSG_PRI_MIN && topull > 0) {
1514 struct mbuf *m = NULL, *mqhead = NULL, *mend = NULL;
1515 priq = &so->so_msg_state->msg_priq[i];
1516 if ((priq->msgq_flags & MSGQ_MSG_NOTDONE) &&
1517 priq->msgq_head == NULL) {
1518 /*
1519 * We were in the middle of sending
1520 * a message and we have not seen the
1521 * end of it.
1522 */
1523 VERIFY(priq->msgq_lastmsg == NULL &&
1524 priq->msgq_tail == NULL);
1525 return;
1526 }
1527 if (priq->msgq_head != NULL) {
1528 int32_t bytes = 0, topull_tmp = topull;
1529 /*
1530 * We found a msg while scanning the priority
1531 * queue from high to low priority.
1532 */
1533 m = priq->msgq_head;
1534 mqhead = m;
1535 mend = m;
1536
1537 /*
1538 * Move bytes from the priority queue to the
1539 * serial queue. Compute the number of bytes
1540 * being added.
1541 */
1542 while (mqhead->m_next != NULL && topull_tmp > 0) {
1543 bytes += mqhead->m_len;
1544 topull_tmp -= mqhead->m_len;
1545 mend = mqhead;
1546 mqhead = mqhead->m_next;
1547 }
1548
1549 if (mqhead->m_next == NULL) {
1550 /*
1551 * If we have only one more mbuf left,
1552 * move the last mbuf of this message to
1553 * serial queue and set the head of the
1554 * queue to be the next message.
1555 */
1556 bytes += mqhead->m_len;
1557 mend = mqhead;
1558 mqhead = m->m_nextpkt;
1559 if (!(mend->m_flags & M_EOR)) {
1560 /*
1561 * We have not seen the end of
1562 * this message, so we can not
1563 * pull anymore.
1564 */
1565 priq->msgq_flags |= MSGQ_MSG_NOTDONE;
1566 } else {
1567 /* Reset M_EOR */
1568 mend->m_flags &= ~(M_EOR);
1569 }
1570 } else {
1571 /* propogate the next msg pointer */
1572 mqhead->m_nextpkt = m->m_nextpkt;
1573 }
1574 priq->msgq_head = mqhead;
1575
1576 /*
1577 * if the lastmsg pointer points to
1578 * the mbuf that is being dequeued, update
1579 * it to point to the new head.
1580 */
1581 if (priq->msgq_lastmsg == m)
1582 priq->msgq_lastmsg = priq->msgq_head;
1583
1584 m->m_nextpkt = NULL;
1585 mend->m_next = NULL;
1586
1587 if (priq->msgq_head == NULL) {
1588 /* Moved all messages, update tail */
1589 priq->msgq_tail = NULL;
1590 VERIFY(priq->msgq_lastmsg == NULL);
1591 }
1592
1593 /* Move it to serial sb_mb queue */
1594 if (so->so_snd.sb_mb == NULL) {
1595 so->so_snd.sb_mb = m;
1596 } else {
1597 so->so_snd.sb_mbtail->m_next = m;
1598 }
1599
1600 priq->msgq_bytes -= bytes;
1601 VERIFY(priq->msgq_bytes >= 0);
1602 sbwakeup(&so->so_snd);
1603
1604 so->so_msg_state->msg_serial_bytes += bytes;
1605 so->so_snd.sb_mbtail = mend;
1606 so->so_snd.sb_lastrecord = so->so_snd.sb_mb;
1607
1608 topull =
1609 (off + len) - so->so_msg_state->msg_serial_bytes;
1610
1611 if (priq->msgq_flags & MSGQ_MSG_NOTDONE)
1612 break;
1613 } else {
1614 --i;
1615 }
1616 }
1617 sblastrecordchk(&so->so_snd, "sbpull_unordered_data");
1618 sblastmbufchk(&so->so_snd, "sbpull_unordered_data");
1619 }
1620
1621 /*
1622 * Compress mbuf chain m into the socket
1623 * buffer sb following mbuf n. If n
1624 * is null, the buffer is presumed empty.
1625 */
1626 static inline void
1627 sbcompress(struct sockbuf *sb, struct mbuf *m, struct mbuf *n)
1628 {
1629 int eor = 0, compress = (!(sb->sb_flags & SB_NOCOMPRESS));
1630 struct mbuf *o;
1631
1632 if (m == NULL) {
1633 /* There is nothing to compress; just update the tail */
1634 for (; n->m_next != NULL; n = n->m_next)
1635 ;
1636 sb->sb_mbtail = n;
1637 goto done;
1638 }
1639
1640 while (m != NULL) {
1641 eor |= m->m_flags & M_EOR;
1642 if (compress && m->m_len == 0 && (eor == 0 ||
1643 (((o = m->m_next) || (o = n)) && o->m_type == m->m_type))) {
1644 if (sb->sb_lastrecord == m)
1645 sb->sb_lastrecord = m->m_next;
1646 m = m_free(m);
1647 continue;
1648 }
1649 if (compress && n != NULL && (n->m_flags & M_EOR) == 0 &&
1650 #ifndef __APPLE__
1651 M_WRITABLE(n) &&
1652 #endif
1653 m->m_len <= MCLBYTES / 4 && /* XXX: Don't copy too much */
1654 m->m_len <= M_TRAILINGSPACE(n) &&
1655 n->m_type == m->m_type) {
1656 bcopy(mtod(m, caddr_t), mtod(n, caddr_t) + n->m_len,
1657 (unsigned)m->m_len);
1658 n->m_len += m->m_len;
1659 sb->sb_cc += m->m_len;
1660 if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
1661 m->m_type != MT_OOBDATA) {
1662 /* XXX: Probably don't need */
1663 sb->sb_ctl += m->m_len;
1664 }
1665 m = m_free(m);
1666 continue;
1667 }
1668 if (n != NULL)
1669 n->m_next = m;
1670 else
1671 sb->sb_mb = m;
1672 sb->sb_mbtail = m;
1673 sballoc(sb, m);
1674 n = m;
1675 m->m_flags &= ~M_EOR;
1676 m = m->m_next;
1677 n->m_next = NULL;
1678 }
1679 if (eor != 0) {
1680 if (n != NULL)
1681 n->m_flags |= eor;
1682 else
1683 printf("semi-panic: sbcompress\n");
1684 }
1685 done:
1686 SBLASTMBUFCHK(sb, __func__);
1687 postevent(0, sb, EV_RWBYTES);
1688 }
1689
1690 void
1691 sb_empty_assert(struct sockbuf *sb, const char *where)
1692 {
1693 if (!(sb->sb_cc == 0 && sb->sb_mb == NULL && sb->sb_mbcnt == 0 &&
1694 sb->sb_mbtail == NULL && sb->sb_lastrecord == NULL)) {
1695 panic("%s: sb %p so %p cc %d mbcnt %d mb %p mbtail %p "
1696 "lastrecord %p\n", where, sb, sb->sb_so, sb->sb_cc,
1697 sb->sb_mbcnt, sb->sb_mb, sb->sb_mbtail,
1698 sb->sb_lastrecord);
1699 /* NOTREACHED */
1700 }
1701 }
1702
1703 static void
1704 sbflush_priq(struct msg_priq *priq)
1705 {
1706 struct mbuf *m;
1707 m = priq->msgq_head;
1708 if (m != NULL)
1709 m_freem_list(m);
1710 priq->msgq_head = priq->msgq_tail = priq->msgq_lastmsg = NULL;
1711 priq->msgq_bytes = priq->msgq_flags = 0;
1712 }
1713
1714 /*
1715 * Free all mbufs in a sockbuf.
1716 * Check that all resources are reclaimed.
1717 */
1718 void
1719 sbflush(struct sockbuf *sb)
1720 {
1721 void *lr_saved = __builtin_return_address(0);
1722 struct socket *so = sb->sb_so;
1723 #ifdef notyet
1724 lck_mtx_t *mutex_held;
1725 #endif
1726 u_int32_t i;
1727
1728 /* so_usecount may be 0 if we get here from sofreelastref() */
1729 if (so == NULL) {
1730 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
1731 __func__, sb, sb->sb_flags, lr_saved);
1732 /* NOTREACHED */
1733 } else if (so->so_usecount < 0) {
1734 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
1735 "lrh= %s\n", __func__, sb, sb->sb_flags, so,
1736 so->so_usecount, lr_saved, solockhistory_nr(so));
1737 /* NOTREACHED */
1738 }
1739 #ifdef notyet
1740 /*
1741 * XXX: This code is currently commented out, because we may get here
1742 * as part of sofreelastref(), and at that time, pr_getlock() may no
1743 * longer be able to return us the lock; this will be fixed in future.
1744 */
1745 if (so->so_proto->pr_getlock != NULL)
1746 mutex_held = (*so->so_proto->pr_getlock)(so, 0);
1747 else
1748 mutex_held = so->so_proto->pr_domain->dom_mtx;
1749
1750 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
1751 #endif
1752
1753 /*
1754 * Obtain lock on the socket buffer (SB_LOCK). This is required
1755 * to prevent the socket buffer from being unexpectedly altered
1756 * while it is used by another thread in socket send/receive.
1757 *
1758 * sblock() must not fail here, hence the assertion.
1759 */
1760 (void) sblock(sb, SBL_WAIT | SBL_NOINTR | SBL_IGNDEFUNCT);
1761 VERIFY(sb->sb_flags & SB_LOCK);
1762
1763 while (sb->sb_mbcnt > 0) {
1764 /*
1765 * Don't call sbdrop(sb, 0) if the leading mbuf is non-empty:
1766 * we would loop forever. Panic instead.
1767 */
1768 if (!sb->sb_cc && (sb->sb_mb == NULL || sb->sb_mb->m_len))
1769 break;
1770 sbdrop(sb, (int)sb->sb_cc);
1771 }
1772
1773 if (!(sb->sb_flags & SB_RECV) && (so->so_flags & SOF_ENABLE_MSGS)) {
1774 VERIFY(so->so_msg_state != NULL);
1775 for (i = MSG_PRI_MIN; i <= MSG_PRI_MAX; ++i) {
1776 sbflush_priq(&so->so_msg_state->msg_priq[i]);
1777 }
1778 so->so_msg_state->msg_serial_bytes = 0;
1779 so->so_msg_state->msg_uno_bytes = 0;
1780 }
1781
1782 sb_empty_assert(sb, __func__);
1783 postevent(0, sb, EV_RWBYTES);
1784
1785 sbunlock(sb, TRUE); /* keep socket locked */
1786 }
1787
1788 /*
1789 * Drop data from (the front of) a sockbuf.
1790 * use m_freem_list to free the mbuf structures
1791 * under a single lock... this is done by pruning
1792 * the top of the tree from the body by keeping track
1793 * of where we get to in the tree and then zeroing the
1794 * two pertinent pointers m_nextpkt and m_next
1795 * the socket buffer is then updated to point at the new
1796 * top of the tree and the pruned area is released via
1797 * m_freem_list.
1798 */
1799 void
1800 sbdrop(struct sockbuf *sb, int len)
1801 {
1802 struct mbuf *m, *free_list, *ml;
1803 struct mbuf *next, *last;
1804
1805 next = (m = sb->sb_mb) ? m->m_nextpkt : 0;
1806 #if MPTCP
1807 if ((m != NULL) && (len > 0) &&
1808 (!(sb->sb_flags & SB_RECV)) &&
1809 ((sb->sb_so->so_flags & SOF_MP_SUBFLOW) ||
1810 ((SOCK_CHECK_DOM(sb->sb_so, PF_MULTIPATH)) &&
1811 (SOCK_CHECK_PROTO(sb->sb_so, IPPROTO_TCP)))) &&
1812 (!(sb->sb_so->so_flags1 & SOF1_POST_FALLBACK_SYNC))) {
1813 mptcp_preproc_sbdrop(m, (unsigned int)len);
1814 }
1815 #endif /* MPTCP */
1816 KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_START), sb, len, 0, 0, 0);
1817
1818 free_list = last = m;
1819 ml = (struct mbuf *)0;
1820
1821 while (len > 0) {
1822 if (m == 0) {
1823 if (next == 0) {
1824 /*
1825 * temporarily replacing this panic with printf
1826 * because it occurs occasionally when closing
1827 * a socket when there is no harm in ignoring
1828 * it. This problem will be investigated
1829 * further.
1830 */
1831 /* panic("sbdrop"); */
1832 printf("sbdrop - count not zero\n");
1833 len = 0;
1834 /*
1835 * zero the counts. if we have no mbufs,
1836 * we have no data (PR-2986815)
1837 */
1838 sb->sb_cc = 0;
1839 sb->sb_mbcnt = 0;
1840 if (!(sb->sb_flags & SB_RECV) &&
1841 (sb->sb_so->so_flags & SOF_ENABLE_MSGS)) {
1842 sb->sb_so->so_msg_state->
1843 msg_serial_bytes = 0;
1844 }
1845 break;
1846 }
1847 m = last = next;
1848 next = m->m_nextpkt;
1849 continue;
1850 }
1851 if (m->m_len > len) {
1852 m->m_len -= len;
1853 m->m_data += len;
1854 sb->sb_cc -= len;
1855 if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
1856 m->m_type != MT_OOBDATA)
1857 sb->sb_ctl -= len;
1858 break;
1859 }
1860 len -= m->m_len;
1861 sbfree(sb, m);
1862
1863 ml = m;
1864 m = m->m_next;
1865 }
1866 while (m && m->m_len == 0) {
1867 sbfree(sb, m);
1868
1869 ml = m;
1870 m = m->m_next;
1871 }
1872 if (ml) {
1873 ml->m_next = (struct mbuf *)0;
1874 last->m_nextpkt = (struct mbuf *)0;
1875 m_freem_list(free_list);
1876 }
1877 if (m) {
1878 sb->sb_mb = m;
1879 m->m_nextpkt = next;
1880 } else {
1881 sb->sb_mb = next;
1882 }
1883
1884 /*
1885 * First part is an inline SB_EMPTY_FIXUP(). Second part
1886 * makes sure sb_lastrecord is up-to-date if we dropped
1887 * part of the last record.
1888 */
1889 m = sb->sb_mb;
1890 if (m == NULL) {
1891 sb->sb_mbtail = NULL;
1892 sb->sb_lastrecord = NULL;
1893 } else if (m->m_nextpkt == NULL) {
1894 sb->sb_lastrecord = m;
1895 }
1896
1897 #if CONTENT_FILTER
1898 cfil_sock_buf_update(sb);
1899 #endif /* CONTENT_FILTER */
1900
1901 postevent(0, sb, EV_RWBYTES);
1902
1903 KERNEL_DEBUG((DBG_FNC_SBDROP | DBG_FUNC_END), sb, 0, 0, 0, 0);
1904 }
1905
1906 /*
1907 * Drop a record off the front of a sockbuf
1908 * and move the next record to the front.
1909 */
1910 void
1911 sbdroprecord(struct sockbuf *sb)
1912 {
1913 struct mbuf *m, *mn;
1914
1915 m = sb->sb_mb;
1916 if (m) {
1917 sb->sb_mb = m->m_nextpkt;
1918 do {
1919 sbfree(sb, m);
1920 MFREE(m, mn);
1921 m = mn;
1922 } while (m);
1923 }
1924 SB_EMPTY_FIXUP(sb);
1925 postevent(0, sb, EV_RWBYTES);
1926 }
1927
1928 /*
1929 * Create a "control" mbuf containing the specified data
1930 * with the specified type for presentation on a socket buffer.
1931 */
1932 struct mbuf *
1933 sbcreatecontrol(caddr_t p, int size, int type, int level)
1934 {
1935 struct cmsghdr *cp;
1936 struct mbuf *m;
1937
1938 if (CMSG_SPACE((u_int)size) > MLEN)
1939 return ((struct mbuf *)NULL);
1940 if ((m = m_get(M_DONTWAIT, MT_CONTROL)) == NULL)
1941 return ((struct mbuf *)NULL);
1942 cp = mtod(m, struct cmsghdr *);
1943 VERIFY(IS_P2ALIGNED(cp, sizeof (u_int32_t)));
1944 /* XXX check size? */
1945 (void) memcpy(CMSG_DATA(cp), p, size);
1946 m->m_len = CMSG_SPACE(size);
1947 cp->cmsg_len = CMSG_LEN(size);
1948 cp->cmsg_level = level;
1949 cp->cmsg_type = type;
1950 return (m);
1951 }
1952
1953 struct mbuf **
1954 sbcreatecontrol_mbuf(caddr_t p, int size, int type, int level, struct mbuf **mp)
1955 {
1956 struct mbuf *m;
1957 struct cmsghdr *cp;
1958
1959 if (*mp == NULL) {
1960 *mp = sbcreatecontrol(p, size, type, level);
1961 return (mp);
1962 }
1963
1964 if (CMSG_SPACE((u_int)size) + (*mp)->m_len > MLEN) {
1965 mp = &(*mp)->m_next;
1966 *mp = sbcreatecontrol(p, size, type, level);
1967 return (mp);
1968 }
1969
1970 m = *mp;
1971
1972 cp = (struct cmsghdr *)(void *)(mtod(m, char *) + m->m_len);
1973 /* CMSG_SPACE ensures 32-bit alignment */
1974 VERIFY(IS_P2ALIGNED(cp, sizeof (u_int32_t)));
1975 m->m_len += CMSG_SPACE(size);
1976
1977 /* XXX check size? */
1978 (void) memcpy(CMSG_DATA(cp), p, size);
1979 cp->cmsg_len = CMSG_LEN(size);
1980 cp->cmsg_level = level;
1981 cp->cmsg_type = type;
1982
1983 return (mp);
1984 }
1985
1986
1987 /*
1988 * Some routines that return EOPNOTSUPP for entry points that are not
1989 * supported by a protocol. Fill in as needed.
1990 */
1991 int
1992 pru_abort_notsupp(struct socket *so)
1993 {
1994 #pragma unused(so)
1995 return (EOPNOTSUPP);
1996 }
1997
1998 int
1999 pru_accept_notsupp(struct socket *so, struct sockaddr **nam)
2000 {
2001 #pragma unused(so, nam)
2002 return (EOPNOTSUPP);
2003 }
2004
2005 int
2006 pru_attach_notsupp(struct socket *so, int proto, struct proc *p)
2007 {
2008 #pragma unused(so, proto, p)
2009 return (EOPNOTSUPP);
2010 }
2011
2012 int
2013 pru_bind_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
2014 {
2015 #pragma unused(so, nam, p)
2016 return (EOPNOTSUPP);
2017 }
2018
2019 int
2020 pru_connect_notsupp(struct socket *so, struct sockaddr *nam, struct proc *p)
2021 {
2022 #pragma unused(so, nam, p)
2023 return (EOPNOTSUPP);
2024 }
2025
2026 int
2027 pru_connect2_notsupp(struct socket *so1, struct socket *so2)
2028 {
2029 #pragma unused(so1, so2)
2030 return (EOPNOTSUPP);
2031 }
2032
2033 int
2034 pru_connectx_notsupp(struct socket *so, struct sockaddr_list **src_sl,
2035 struct sockaddr_list **dst_sl, struct proc *p, uint32_t ifscope,
2036 associd_t aid, connid_t *pcid, uint32_t flags, void *arg,
2037 uint32_t arglen)
2038 {
2039 #pragma unused(so, src_sl, dst_sl, p, ifscope, aid, pcid, flags, arg, arglen)
2040 return (EOPNOTSUPP);
2041 }
2042
2043 int
2044 pru_control_notsupp(struct socket *so, u_long cmd, caddr_t data,
2045 struct ifnet *ifp, struct proc *p)
2046 {
2047 #pragma unused(so, cmd, data, ifp, p)
2048 return (EOPNOTSUPP);
2049 }
2050
2051 int
2052 pru_detach_notsupp(struct socket *so)
2053 {
2054 #pragma unused(so)
2055 return (EOPNOTSUPP);
2056 }
2057
2058 int
2059 pru_disconnect_notsupp(struct socket *so)
2060 {
2061 #pragma unused(so)
2062 return (EOPNOTSUPP);
2063 }
2064
2065 int
2066 pru_disconnectx_notsupp(struct socket *so, associd_t aid, connid_t cid)
2067 {
2068 #pragma unused(so, aid, cid)
2069 return (EOPNOTSUPP);
2070 }
2071
2072 int
2073 pru_listen_notsupp(struct socket *so, struct proc *p)
2074 {
2075 #pragma unused(so, p)
2076 return (EOPNOTSUPP);
2077 }
2078
2079 int
2080 pru_peeloff_notsupp(struct socket *so, associd_t aid, struct socket **psop)
2081 {
2082 #pragma unused(so, aid, psop)
2083 return (EOPNOTSUPP);
2084 }
2085
2086 int
2087 pru_peeraddr_notsupp(struct socket *so, struct sockaddr **nam)
2088 {
2089 #pragma unused(so, nam)
2090 return (EOPNOTSUPP);
2091 }
2092
2093 int
2094 pru_rcvd_notsupp(struct socket *so, int flags)
2095 {
2096 #pragma unused(so, flags)
2097 return (EOPNOTSUPP);
2098 }
2099
2100 int
2101 pru_rcvoob_notsupp(struct socket *so, struct mbuf *m, int flags)
2102 {
2103 #pragma unused(so, m, flags)
2104 return (EOPNOTSUPP);
2105 }
2106
2107 int
2108 pru_send_notsupp(struct socket *so, int flags, struct mbuf *m,
2109 struct sockaddr *addr, struct mbuf *control, struct proc *p)
2110 {
2111 #pragma unused(so, flags, m, addr, control, p)
2112 return (EOPNOTSUPP);
2113 }
2114
2115 int
2116 pru_send_list_notsupp(struct socket *so, int flags, struct mbuf *m,
2117 struct sockaddr *addr, struct mbuf *control, struct proc *p)
2118 {
2119 #pragma unused(so, flags, m, addr, control, p)
2120 return (EOPNOTSUPP);
2121 }
2122
2123 /*
2124 * This isn't really a ``null'' operation, but it's the default one
2125 * and doesn't do anything destructive.
2126 */
2127 int
2128 pru_sense_null(struct socket *so, void *ub, int isstat64)
2129 {
2130 if (isstat64 != 0) {
2131 struct stat64 *sb64;
2132
2133 sb64 = (struct stat64 *)ub;
2134 sb64->st_blksize = so->so_snd.sb_hiwat;
2135 } else {
2136 struct stat *sb;
2137
2138 sb = (struct stat *)ub;
2139 sb->st_blksize = so->so_snd.sb_hiwat;
2140 }
2141
2142 return (0);
2143 }
2144
2145
2146 int
2147 pru_sosend_notsupp(struct socket *so, struct sockaddr *addr, struct uio *uio,
2148 struct mbuf *top, struct mbuf *control, int flags)
2149 {
2150 #pragma unused(so, addr, uio, top, control, flags)
2151 return (EOPNOTSUPP);
2152 }
2153
2154 int
2155 pru_sosend_list_notsupp(struct socket *so, struct sockaddr *addr, struct uio **uio,
2156 u_int uiocnt, struct mbuf *top, struct mbuf *control, int flags)
2157 {
2158 #pragma unused(so, addr, uio, uiocnt, top, control, flags)
2159 return (EOPNOTSUPP);
2160 }
2161
2162 int
2163 pru_soreceive_notsupp(struct socket *so, struct sockaddr **paddr,
2164 struct uio *uio, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2165 {
2166 #pragma unused(so, paddr, uio, mp0, controlp, flagsp)
2167 return (EOPNOTSUPP);
2168 }
2169
2170 int
2171 pru_soreceive_list_notsupp(struct socket *so, struct sockaddr **paddr,
2172 struct uio **uio, u_int uiocnt, struct mbuf **mp0, struct mbuf **controlp, int *flagsp)
2173 {
2174 #pragma unused(so, paddr, uio, uiocnt, mp0, controlp, flagsp)
2175 return (EOPNOTSUPP);
2176 }
2177
2178 int
2179 pru_shutdown_notsupp(struct socket *so)
2180 {
2181 #pragma unused(so)
2182 return (EOPNOTSUPP);
2183 }
2184
2185 int
2186 pru_sockaddr_notsupp(struct socket *so, struct sockaddr **nam)
2187 {
2188 #pragma unused(so, nam)
2189 return (EOPNOTSUPP);
2190 }
2191
2192 int
2193 pru_sopoll_notsupp(struct socket *so, int events, kauth_cred_t cred, void *wql)
2194 {
2195 #pragma unused(so, events, cred, wql)
2196 return (EOPNOTSUPP);
2197 }
2198
2199 int
2200 pru_socheckopt_null(struct socket *so, struct sockopt *sopt)
2201 {
2202 #pragma unused(so, sopt)
2203 /*
2204 * Allow all options for set/get by default.
2205 */
2206 return (0);
2207 }
2208
2209 void
2210 pru_sanitize(struct pr_usrreqs *pru)
2211 {
2212 #define DEFAULT(foo, bar) if ((foo) == NULL) (foo) = (bar)
2213 DEFAULT(pru->pru_abort, pru_abort_notsupp);
2214 DEFAULT(pru->pru_accept, pru_accept_notsupp);
2215 DEFAULT(pru->pru_attach, pru_attach_notsupp);
2216 DEFAULT(pru->pru_bind, pru_bind_notsupp);
2217 DEFAULT(pru->pru_connect, pru_connect_notsupp);
2218 DEFAULT(pru->pru_connect2, pru_connect2_notsupp);
2219 DEFAULT(pru->pru_connectx, pru_connectx_notsupp);
2220 DEFAULT(pru->pru_control, pru_control_notsupp);
2221 DEFAULT(pru->pru_detach, pru_detach_notsupp);
2222 DEFAULT(pru->pru_disconnect, pru_disconnect_notsupp);
2223 DEFAULT(pru->pru_disconnectx, pru_disconnectx_notsupp);
2224 DEFAULT(pru->pru_listen, pru_listen_notsupp);
2225 DEFAULT(pru->pru_peeloff, pru_peeloff_notsupp);
2226 DEFAULT(pru->pru_peeraddr, pru_peeraddr_notsupp);
2227 DEFAULT(pru->pru_rcvd, pru_rcvd_notsupp);
2228 DEFAULT(pru->pru_rcvoob, pru_rcvoob_notsupp);
2229 DEFAULT(pru->pru_send, pru_send_notsupp);
2230 DEFAULT(pru->pru_send_list, pru_send_list_notsupp);
2231 DEFAULT(pru->pru_sense, pru_sense_null);
2232 DEFAULT(pru->pru_shutdown, pru_shutdown_notsupp);
2233 DEFAULT(pru->pru_sockaddr, pru_sockaddr_notsupp);
2234 DEFAULT(pru->pru_sopoll, pru_sopoll_notsupp);
2235 DEFAULT(pru->pru_soreceive, pru_soreceive_notsupp);
2236 DEFAULT(pru->pru_soreceive_list, pru_soreceive_list_notsupp);
2237 DEFAULT(pru->pru_sosend, pru_sosend_notsupp);
2238 DEFAULT(pru->pru_sosend_list, pru_sosend_list_notsupp);
2239 DEFAULT(pru->pru_socheckopt, pru_socheckopt_null);
2240 #undef DEFAULT
2241 }
2242
2243 /*
2244 * The following are macros on BSD and functions on Darwin
2245 */
2246
2247 /*
2248 * Do we need to notify the other side when I/O is possible?
2249 */
2250
2251 int
2252 sb_notify(struct sockbuf *sb)
2253 {
2254 return (sb->sb_waiters > 0 ||
2255 (sb->sb_flags & (SB_SEL|SB_ASYNC|SB_UPCALL|SB_KNOTE)));
2256 }
2257
2258 /*
2259 * How much space is there in a socket buffer (so->so_snd or so->so_rcv)?
2260 * This is problematical if the fields are unsigned, as the space might
2261 * still be negative (cc > hiwat or mbcnt > mbmax). Should detect
2262 * overflow and return 0.
2263 */
2264 int
2265 sbspace(struct sockbuf *sb)
2266 {
2267 int pending = 0;
2268 int space = imin((int)(sb->sb_hiwat - sb->sb_cc),
2269 (int)(sb->sb_mbmax - sb->sb_mbcnt));
2270 if (space < 0)
2271 space = 0;
2272
2273 /* Compensate for data being processed by content filters */
2274 #if CONTENT_FILTER
2275 pending = cfil_sock_data_space(sb);
2276 #endif /* CONTENT_FILTER */
2277 if (pending > space)
2278 space = 0;
2279 else
2280 space -= pending;
2281
2282 return (space);
2283 }
2284
2285 /*
2286 * If this socket has priority queues, check if there is enough
2287 * space in the priority queue for this msg.
2288 */
2289 int
2290 msgq_sbspace(struct socket *so, struct mbuf *control)
2291 {
2292 int space = 0, error;
2293 u_int32_t msgpri;
2294 VERIFY(so->so_type == SOCK_STREAM &&
2295 SOCK_PROTO(so) == IPPROTO_TCP);
2296 if (control != NULL) {
2297 error = tcp_get_msg_priority(control, &msgpri);
2298 if (error)
2299 return (0);
2300 } else {
2301 msgpri = MSG_PRI_0;
2302 }
2303 space = (so->so_snd.sb_idealsize / MSG_PRI_COUNT) -
2304 so->so_msg_state->msg_priq[msgpri].msgq_bytes;
2305 if (space < 0)
2306 space = 0;
2307 return (space);
2308 }
2309
2310 /* do we have to send all at once on a socket? */
2311 int
2312 sosendallatonce(struct socket *so)
2313 {
2314 return (so->so_proto->pr_flags & PR_ATOMIC);
2315 }
2316
2317 /* can we read something from so? */
2318 int
2319 soreadable(struct socket *so)
2320 {
2321 return (so->so_rcv.sb_cc >= so->so_rcv.sb_lowat ||
2322 ((so->so_state & SS_CANTRCVMORE)
2323 #if CONTENT_FILTER
2324 && cfil_sock_data_pending(&so->so_rcv) == 0
2325 #endif /* CONTENT_FILTER */
2326 ) ||
2327 so->so_comp.tqh_first || so->so_error);
2328 }
2329
2330 /* can we write something to so? */
2331
2332 int
2333 sowriteable(struct socket *so)
2334 {
2335 if ((so->so_state & SS_CANTSENDMORE) ||
2336 so->so_error > 0)
2337 return (1);
2338
2339 if (!so_wait_for_if_feedback(so) &&
2340 sbspace(&(so)->so_snd) >= (so)->so_snd.sb_lowat &&
2341 ((so->so_state & SS_ISCONNECTED) ||
2342 !(so->so_proto->pr_flags & PR_CONNREQUIRED))) {
2343 if (so->so_flags & SOF_NOTSENT_LOWAT) {
2344 if ((SOCK_DOM(so) == PF_INET6
2345 || SOCK_DOM(so) == PF_INET)
2346 && so->so_type == SOCK_STREAM) {
2347 return (tcp_notsent_lowat_check(so));
2348 }
2349 #if MPTCP
2350 else if ((SOCK_DOM(so) == PF_MULTIPATH) &&
2351 (SOCK_PROTO(so) == IPPROTO_TCP)) {
2352 return (mptcp_notsent_lowat_check(so));
2353 }
2354 #endif
2355 else {
2356 return (1);
2357 }
2358 } else {
2359 return (1);
2360 }
2361 }
2362 return (0);
2363 }
2364
2365 /* adjust counters in sb reflecting allocation of m */
2366
2367 void
2368 sballoc(struct sockbuf *sb, struct mbuf *m)
2369 {
2370 u_int32_t cnt = 1;
2371 sb->sb_cc += m->m_len;
2372 if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
2373 m->m_type != MT_OOBDATA)
2374 sb->sb_ctl += m->m_len;
2375 sb->sb_mbcnt += MSIZE;
2376
2377 if (m->m_flags & M_EXT) {
2378 sb->sb_mbcnt += m->m_ext.ext_size;
2379 cnt += (m->m_ext.ext_size >> MSIZESHIFT);
2380 }
2381 OSAddAtomic(cnt, &total_sbmb_cnt);
2382 VERIFY(total_sbmb_cnt > 0);
2383 if (total_sbmb_cnt > total_sbmb_cnt_peak)
2384 total_sbmb_cnt_peak = total_sbmb_cnt;
2385 }
2386
2387 /* adjust counters in sb reflecting freeing of m */
2388 void
2389 sbfree(struct sockbuf *sb, struct mbuf *m)
2390 {
2391 int cnt = -1;
2392
2393 sb->sb_cc -= m->m_len;
2394 if (m->m_type != MT_DATA && m->m_type != MT_HEADER &&
2395 m->m_type != MT_OOBDATA)
2396 sb->sb_ctl -= m->m_len;
2397 sb->sb_mbcnt -= MSIZE;
2398 if (m->m_flags & M_EXT) {
2399 sb->sb_mbcnt -= m->m_ext.ext_size;
2400 cnt -= (m->m_ext.ext_size >> MSIZESHIFT);
2401 }
2402 OSAddAtomic(cnt, &total_sbmb_cnt);
2403 VERIFY(total_sbmb_cnt >= 0);
2404 }
2405
2406 /*
2407 * Set lock on sockbuf sb; sleep if lock is already held.
2408 * Unless SB_NOINTR is set on sockbuf, sleep is interruptible.
2409 * Returns error without lock if sleep is interrupted.
2410 */
2411 int
2412 sblock(struct sockbuf *sb, uint32_t flags)
2413 {
2414 boolean_t nointr = ((sb->sb_flags & SB_NOINTR) || (flags & SBL_NOINTR));
2415 void *lr_saved = __builtin_return_address(0);
2416 struct socket *so = sb->sb_so;
2417 void * wchan;
2418 int error = 0;
2419 thread_t tp = current_thread();
2420
2421 VERIFY((flags & SBL_VALID) == flags);
2422
2423 /* so_usecount may be 0 if we get here from sofreelastref() */
2424 if (so == NULL) {
2425 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
2426 __func__, sb, sb->sb_flags, lr_saved);
2427 /* NOTREACHED */
2428 } else if (so->so_usecount < 0) {
2429 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
2430 "lrh= %s\n", __func__, sb, sb->sb_flags, so,
2431 so->so_usecount, lr_saved, solockhistory_nr(so));
2432 /* NOTREACHED */
2433 }
2434
2435 /*
2436 * The content filter thread must hold the sockbuf lock
2437 */
2438 if ((so->so_flags & SOF_CONTENT_FILTER) && sb->sb_cfil_thread == tp) {
2439 /*
2440 * Don't panic if we are defunct because SB_LOCK has
2441 * been cleared by sodefunct()
2442 */
2443 if (!(so->so_flags & SOF_DEFUNCT) && !(sb->sb_flags & SB_LOCK))
2444 panic("%s: SB_LOCK not held for %p\n",
2445 __func__, sb);
2446
2447 /* Keep the sockbuf locked */
2448 return (0);
2449 }
2450
2451 if ((sb->sb_flags & SB_LOCK) && !(flags & SBL_WAIT))
2452 return (EWOULDBLOCK);
2453 /*
2454 * We may get here from sorflush(), in which case "sb" may not
2455 * point to the real socket buffer. Use the actual socket buffer
2456 * address from the socket instead.
2457 */
2458 wchan = (sb->sb_flags & SB_RECV) ?
2459 &so->so_rcv.sb_flags : &so->so_snd.sb_flags;
2460
2461 /*
2462 * A content filter thread has exclusive access to the sockbuf
2463 * until it clears the
2464 */
2465 while ((sb->sb_flags & SB_LOCK) ||
2466 ((so->so_flags & SOF_CONTENT_FILTER) &&
2467 sb->sb_cfil_thread != NULL)) {
2468 lck_mtx_t *mutex_held;
2469
2470 /*
2471 * XXX: This code should be moved up above outside of this loop;
2472 * however, we may get here as part of sofreelastref(), and
2473 * at that time pr_getlock() may no longer be able to return
2474 * us the lock. This will be fixed in future.
2475 */
2476 if (so->so_proto->pr_getlock != NULL)
2477 mutex_held = (*so->so_proto->pr_getlock)(so, 0);
2478 else
2479 mutex_held = so->so_proto->pr_domain->dom_mtx;
2480
2481 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
2482
2483 sb->sb_wantlock++;
2484 VERIFY(sb->sb_wantlock != 0);
2485
2486 error = msleep(wchan, mutex_held,
2487 nointr ? PSOCK : PSOCK | PCATCH,
2488 nointr ? "sb_lock_nointr" : "sb_lock", NULL);
2489
2490 VERIFY(sb->sb_wantlock != 0);
2491 sb->sb_wantlock--;
2492
2493 if (error == 0 && (so->so_flags & SOF_DEFUNCT) &&
2494 !(flags & SBL_IGNDEFUNCT)) {
2495 error = EBADF;
2496 SODEFUNCTLOG(("%s[%d]: defunct so 0x%llx [%d,%d] "
2497 "(%d)\n", __func__, proc_selfpid(),
2498 (uint64_t)VM_KERNEL_ADDRPERM(so),
2499 SOCK_DOM(so), SOCK_TYPE(so), error));
2500 }
2501
2502 if (error != 0)
2503 return (error);
2504 }
2505 sb->sb_flags |= SB_LOCK;
2506 return (0);
2507 }
2508
2509 /*
2510 * Release lock on sockbuf sb
2511 */
2512 void
2513 sbunlock(struct sockbuf *sb, boolean_t keeplocked)
2514 {
2515 void *lr_saved = __builtin_return_address(0);
2516 struct socket *so = sb->sb_so;
2517 thread_t tp = current_thread();
2518
2519 /* so_usecount may be 0 if we get here from sofreelastref() */
2520 if (so == NULL) {
2521 panic("%s: null so, sb=%p sb_flags=0x%x lr=%p\n",
2522 __func__, sb, sb->sb_flags, lr_saved);
2523 /* NOTREACHED */
2524 } else if (so->so_usecount < 0) {
2525 panic("%s: sb=%p sb_flags=0x%x sb_so=%p usecount=%d lr=%p "
2526 "lrh= %s\n", __func__, sb, sb->sb_flags, so,
2527 so->so_usecount, lr_saved, solockhistory_nr(so));
2528 /* NOTREACHED */
2529 }
2530
2531 /*
2532 * The content filter thread must hold the sockbuf lock
2533 */
2534 if ((so->so_flags & SOF_CONTENT_FILTER) && sb->sb_cfil_thread == tp) {
2535 /*
2536 * Don't panic if we are defunct because SB_LOCK has
2537 * been cleared by sodefunct()
2538 */
2539 if (!(so->so_flags & SOF_DEFUNCT) &&
2540 !(sb->sb_flags & SB_LOCK) &&
2541 !(so->so_state & SS_DEFUNCT) &&
2542 !(so->so_flags1 & SOF1_DEFUNCTINPROG)) {
2543 panic("%s: SB_LOCK not held for %p\n",
2544 __func__, sb);
2545 }
2546 /* Keep the sockbuf locked and proceed*/
2547 } else {
2548 VERIFY((sb->sb_flags & SB_LOCK) ||
2549 (so->so_state & SS_DEFUNCT) ||
2550 (so->so_flags1 & SOF1_DEFUNCTINPROG));
2551
2552 sb->sb_flags &= ~SB_LOCK;
2553
2554 if (sb->sb_wantlock > 0) {
2555 /*
2556 * We may get here from sorflush(), in which case "sb" may not
2557 * point to the real socket buffer. Use the actual socket
2558 * buffer address from the socket instead.
2559 */
2560 wakeup((sb->sb_flags & SB_RECV) ? &so->so_rcv.sb_flags :
2561 &so->so_snd.sb_flags);
2562 }
2563 }
2564
2565 if (!keeplocked) { /* unlock on exit */
2566 lck_mtx_t *mutex_held;
2567
2568 if (so->so_proto->pr_getlock != NULL)
2569 mutex_held = (*so->so_proto->pr_getlock)(so, 0);
2570 else
2571 mutex_held = so->so_proto->pr_domain->dom_mtx;
2572
2573 lck_mtx_assert(mutex_held, LCK_MTX_ASSERT_OWNED);
2574
2575 VERIFY(so->so_usecount != 0);
2576 so->so_usecount--;
2577 so->unlock_lr[so->next_unlock_lr] = lr_saved;
2578 so->next_unlock_lr = (so->next_unlock_lr + 1) % SO_LCKDBG_MAX;
2579 lck_mtx_unlock(mutex_held);
2580 }
2581 }
2582
2583 void
2584 sorwakeup(struct socket *so)
2585 {
2586 if (sb_notify(&so->so_rcv))
2587 sowakeup(so, &so->so_rcv);
2588 }
2589
2590 void
2591 sowwakeup(struct socket *so)
2592 {
2593 if (sb_notify(&so->so_snd))
2594 sowakeup(so, &so->so_snd);
2595 }
2596
2597 void
2598 soevent(struct socket *so, long hint)
2599 {
2600 if (so->so_flags & SOF_KNOTE)
2601 KNOTE(&so->so_klist, hint);
2602
2603 soevupcall(so, hint);
2604
2605 /*
2606 * Don't post an event if this a subflow socket or
2607 * the app has opted out of using cellular interface
2608 */
2609 if ((hint & SO_FILT_HINT_IFDENIED) &&
2610 !(so->so_flags & SOF_MP_SUBFLOW) &&
2611 !(so->so_restrictions & SO_RESTRICT_DENY_CELLULAR) &&
2612 !(so->so_restrictions & SO_RESTRICT_DENY_EXPENSIVE))
2613 soevent_ifdenied(so);
2614 }
2615
2616 void
2617 soevupcall(struct socket *so, u_int32_t hint)
2618 {
2619 if (so->so_event != NULL) {
2620 caddr_t so_eventarg = so->so_eventarg;
2621
2622 hint &= so->so_eventmask;
2623 if (hint != 0) {
2624 socket_unlock(so, 0);
2625 so->so_event(so, so_eventarg, hint);
2626 socket_lock(so, 0);
2627 }
2628 }
2629 }
2630
2631 static void
2632 soevent_ifdenied(struct socket *so)
2633 {
2634 struct kev_netpolicy_ifdenied ev_ifdenied;
2635
2636 bzero(&ev_ifdenied, sizeof (ev_ifdenied));
2637 /*
2638 * The event consumer is interested about the effective {upid,pid,uuid}
2639 * info which can be different than the those related to the process
2640 * that recently performed a system call on the socket, i.e. when the
2641 * socket is delegated.
2642 */
2643 if (so->so_flags & SOF_DELEGATED) {
2644 ev_ifdenied.ev_data.eupid = so->e_upid;
2645 ev_ifdenied.ev_data.epid = so->e_pid;
2646 uuid_copy(ev_ifdenied.ev_data.euuid, so->e_uuid);
2647 } else {
2648 ev_ifdenied.ev_data.eupid = so->last_upid;
2649 ev_ifdenied.ev_data.epid = so->last_pid;
2650 uuid_copy(ev_ifdenied.ev_data.euuid, so->last_uuid);
2651 }
2652
2653 if (++so->so_ifdenied_notifies > 1) {
2654 /*
2655 * Allow for at most one kernel event to be generated per
2656 * socket; so_ifdenied_notifies is reset upon changes in
2657 * the UUID policy. See comments in inp_update_policy.
2658 */
2659 if (net_io_policy_log) {
2660 uuid_string_t buf;
2661
2662 uuid_unparse(ev_ifdenied.ev_data.euuid, buf);
2663 log(LOG_DEBUG, "%s[%d]: so 0x%llx [%d,%d] epid %d "
2664 "euuid %s%s has %d redundant events supressed\n",
2665 __func__, so->last_pid,
2666 (uint64_t)VM_KERNEL_ADDRPERM(so), SOCK_DOM(so),
2667 SOCK_TYPE(so), ev_ifdenied.ev_data.epid, buf,
2668 ((so->so_flags & SOF_DELEGATED) ?
2669 " [delegated]" : ""), so->so_ifdenied_notifies);
2670 }
2671 } else {
2672 if (net_io_policy_log) {
2673 uuid_string_t buf;
2674
2675 uuid_unparse(ev_ifdenied.ev_data.euuid, buf);
2676 log(LOG_DEBUG, "%s[%d]: so 0x%llx [%d,%d] epid %d "
2677 "euuid %s%s event posted\n", __func__,
2678 so->last_pid, (uint64_t)VM_KERNEL_ADDRPERM(so),
2679 SOCK_DOM(so), SOCK_TYPE(so),
2680 ev_ifdenied.ev_data.epid, buf,
2681 ((so->so_flags & SOF_DELEGATED) ?
2682 " [delegated]" : ""));
2683 }
2684 netpolicy_post_msg(KEV_NETPOLICY_IFDENIED, &ev_ifdenied.ev_data,
2685 sizeof (ev_ifdenied));
2686 }
2687 }
2688
2689 /*
2690 * Make a copy of a sockaddr in a malloced buffer of type M_SONAME.
2691 */
2692 struct sockaddr *
2693 dup_sockaddr(struct sockaddr *sa, int canwait)
2694 {
2695 struct sockaddr *sa2;
2696
2697 MALLOC(sa2, struct sockaddr *, sa->sa_len, M_SONAME,
2698 canwait ? M_WAITOK : M_NOWAIT);
2699 if (sa2)
2700 bcopy(sa, sa2, sa->sa_len);
2701 return (sa2);
2702 }
2703
2704 /*
2705 * Create an external-format (``xsocket'') structure using the information
2706 * in the kernel-format socket structure pointed to by so. This is done
2707 * to reduce the spew of irrelevant information over this interface,
2708 * to isolate user code from changes in the kernel structure, and
2709 * potentially to provide information-hiding if we decide that
2710 * some of this information should be hidden from users.
2711 */
2712 void
2713 sotoxsocket(struct socket *so, struct xsocket *xso)
2714 {
2715 xso->xso_len = sizeof (*xso);
2716 xso->xso_so = (_XSOCKET_PTR(struct socket *))VM_KERNEL_ADDRPERM(so);
2717 xso->so_type = so->so_type;
2718 xso->so_options = (short)(so->so_options & 0xffff);
2719 xso->so_linger = so->so_linger;
2720 xso->so_state = so->so_state;
2721 xso->so_pcb = (_XSOCKET_PTR(caddr_t))VM_KERNEL_ADDRPERM(so->so_pcb);
2722 if (so->so_proto) {
2723 xso->xso_protocol = SOCK_PROTO(so);
2724 xso->xso_family = SOCK_DOM(so);
2725 } else {
2726 xso->xso_protocol = xso->xso_family = 0;
2727 }
2728 xso->so_qlen = so->so_qlen;
2729 xso->so_incqlen = so->so_incqlen;
2730 xso->so_qlimit = so->so_qlimit;
2731 xso->so_timeo = so->so_timeo;
2732 xso->so_error = so->so_error;
2733 xso->so_pgid = so->so_pgid;
2734 xso->so_oobmark = so->so_oobmark;
2735 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
2736 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
2737 xso->so_uid = kauth_cred_getuid(so->so_cred);
2738 }
2739
2740
2741
2742 void
2743 sotoxsocket64(struct socket *so, struct xsocket64 *xso)
2744 {
2745 xso->xso_len = sizeof (*xso);
2746 xso->xso_so = (u_int64_t)VM_KERNEL_ADDRPERM(so);
2747 xso->so_type = so->so_type;
2748 xso->so_options = (short)(so->so_options & 0xffff);
2749 xso->so_linger = so->so_linger;
2750 xso->so_state = so->so_state;
2751 xso->so_pcb = (u_int64_t)VM_KERNEL_ADDRPERM(so->so_pcb);
2752 if (so->so_proto) {
2753 xso->xso_protocol = SOCK_PROTO(so);
2754 xso->xso_family = SOCK_DOM(so);
2755 } else {
2756 xso->xso_protocol = xso->xso_family = 0;
2757 }
2758 xso->so_qlen = so->so_qlen;
2759 xso->so_incqlen = so->so_incqlen;
2760 xso->so_qlimit = so->so_qlimit;
2761 xso->so_timeo = so->so_timeo;
2762 xso->so_error = so->so_error;
2763 xso->so_pgid = so->so_pgid;
2764 xso->so_oobmark = so->so_oobmark;
2765 sbtoxsockbuf(&so->so_snd, &xso->so_snd);
2766 sbtoxsockbuf(&so->so_rcv, &xso->so_rcv);
2767 xso->so_uid = kauth_cred_getuid(so->so_cred);
2768 }
2769
2770
2771 /*
2772 * This does the same for sockbufs. Note that the xsockbuf structure,
2773 * since it is always embedded in a socket, does not include a self
2774 * pointer nor a length. We make this entry point public in case
2775 * some other mechanism needs it.
2776 */
2777 void
2778 sbtoxsockbuf(struct sockbuf *sb, struct xsockbuf *xsb)
2779 {
2780 xsb->sb_cc = sb->sb_cc;
2781 xsb->sb_hiwat = sb->sb_hiwat;
2782 xsb->sb_mbcnt = sb->sb_mbcnt;
2783 xsb->sb_mbmax = sb->sb_mbmax;
2784 xsb->sb_lowat = sb->sb_lowat;
2785 xsb->sb_flags = sb->sb_flags;
2786 xsb->sb_timeo = (short)
2787 (sb->sb_timeo.tv_sec * hz) + sb->sb_timeo.tv_usec / tick;
2788 if (xsb->sb_timeo == 0 && sb->sb_timeo.tv_usec != 0)
2789 xsb->sb_timeo = 1;
2790 }
2791
2792 /*
2793 * Based on the policy set by an all knowing decison maker, throttle sockets
2794 * that either have been marked as belonging to "background" process.
2795 */
2796 int
2797 soisthrottled(struct socket *so)
2798 {
2799 /*
2800 * On non-embedded, we rely on implicit throttling by the
2801 * application, as we're missing the system wide "decision maker"
2802 */
2803 return (
2804 (so->so_traffic_mgt_flags & TRAFFIC_MGT_SO_BACKGROUND));
2805 }
2806
2807 int
2808 soisprivilegedtraffic(struct socket *so)
2809 {
2810 return ((so->so_flags & SOF_PRIVILEGED_TRAFFIC_CLASS) ? 1 : 0);
2811 }
2812
2813 int
2814 soissrcbackground(struct socket *so)
2815 {
2816 return ((so->so_traffic_mgt_flags & TRAFFIC_MGT_SO_BACKGROUND) ||
2817 IS_SO_TC_BACKGROUND(so->so_traffic_class));
2818 }
2819
2820 int
2821 soissrcrealtime(struct socket *so)
2822 {
2823 return (so->so_traffic_class >= SO_TC_AV);
2824 }
2825
2826 void
2827 sonullevent(struct socket *so, void *arg, uint32_t hint)
2828 {
2829 #pragma unused(so, arg, hint)
2830 }
2831
2832 /*
2833 * Here is the definition of some of the basic objects in the kern.ipc
2834 * branch of the MIB.
2835 */
2836 SYSCTL_NODE(_kern, KERN_IPC, ipc,
2837 CTLFLAG_RW|CTLFLAG_LOCKED|CTLFLAG_ANYBODY, 0, "IPC");
2838
2839 /* Check that the maximum socket buffer size is within a range */
2840
2841 static int
2842 sysctl_sb_max SYSCTL_HANDLER_ARGS
2843 {
2844 #pragma unused(oidp, arg1, arg2)
2845 u_int32_t new_value;
2846 int changed = 0;
2847 int error = sysctl_io_number(req, sb_max, sizeof (u_int32_t),
2848 &new_value, &changed);
2849 if (!error && changed) {
2850 if (new_value > LOW_SB_MAX && new_value <= high_sb_max) {
2851 sb_max = new_value;
2852 } else {
2853 error = ERANGE;
2854 }
2855 }
2856 return (error);
2857 }
2858
2859 static int
2860 sysctl_io_policy_throttled SYSCTL_HANDLER_ARGS
2861 {
2862 #pragma unused(arg1, arg2)
2863 int i, err;
2864
2865 i = net_io_policy_throttled;
2866
2867 err = sysctl_handle_int(oidp, &i, 0, req);
2868 if (err != 0 || req->newptr == USER_ADDR_NULL)
2869 return (err);
2870
2871 if (i != net_io_policy_throttled)
2872 SOTHROTTLELOG(("throttle: network IO policy throttling is "
2873 "now %s\n", i ? "ON" : "OFF"));
2874
2875 net_io_policy_throttled = i;
2876
2877 return (err);
2878 }
2879
2880 SYSCTL_PROC(_kern_ipc, KIPC_MAXSOCKBUF, maxsockbuf,
2881 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED,
2882 &sb_max, 0, &sysctl_sb_max, "IU", "Maximum socket buffer size");
2883
2884 SYSCTL_INT(_kern_ipc, KIPC_SOCKBUF_WASTE, sockbuf_waste_factor,
2885 CTLFLAG_RW | CTLFLAG_LOCKED, &sb_efficiency, 0, "");
2886
2887 SYSCTL_INT(_kern_ipc, KIPC_NMBCLUSTERS, nmbclusters,
2888 CTLFLAG_RD | CTLFLAG_LOCKED, &nmbclusters, 0, "");
2889
2890 SYSCTL_INT(_kern_ipc, OID_AUTO, njcl,
2891 CTLFLAG_RD | CTLFLAG_LOCKED, &njcl, 0, "");
2892
2893 SYSCTL_INT(_kern_ipc, OID_AUTO, njclbytes,
2894 CTLFLAG_RD | CTLFLAG_LOCKED, &njclbytes, 0, "");
2895
2896 SYSCTL_INT(_kern_ipc, KIPC_SOQLIMITCOMPAT, soqlimitcompat,
2897 CTLFLAG_RW | CTLFLAG_LOCKED, &soqlimitcompat, 1,
2898 "Enable socket queue limit compatibility");
2899
2900 SYSCTL_INT(_kern_ipc, OID_AUTO, soqlencomp, CTLFLAG_RW | CTLFLAG_LOCKED,
2901 &soqlencomp, 0, "Listen backlog represents only complete queue");
2902
2903 SYSCTL_NODE(_kern_ipc, OID_AUTO, io_policy, CTLFLAG_RW, 0, "network IO policy");
2904
2905 SYSCTL_PROC(_kern_ipc_io_policy, OID_AUTO, throttled,
2906 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, &net_io_policy_throttled, 0,
2907 sysctl_io_policy_throttled, "I", "");
2908
2909 SYSCTL_INT(_kern_ipc_io_policy, OID_AUTO, log, CTLFLAG_RW | CTLFLAG_LOCKED,
2910 &net_io_policy_log, 0, "");
2911
2912 #if CONFIG_PROC_UUID_POLICY
2913 SYSCTL_INT(_kern_ipc_io_policy, OID_AUTO, uuid, CTLFLAG_RW | CTLFLAG_LOCKED,
2914 &net_io_policy_uuid, 0, "");
2915 #endif /* CONFIG_PROC_UUID_POLICY */