]> git.saurik.com Git - apple/xnu.git/blob - osfmk/x86_64/pmap_pcid.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / osfmk / x86_64 / pmap_pcid.c
1 /*
2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <i386/proc_reg.h>
30 #include <i386/cpuid.h>
31 #include <i386/tsc.h>
32 #include <vm/pmap.h>
33 #include <vm/vm_map.h>
34 #include <i386/pmap_internal.h>
35 #include <i386/pmap_pcid.h>
36
37 /*
38 * PCID (Process context identifier) aka tagged TLB support.
39 * On processors with this feature, unless disabled via the -pmap_pcid_disable
40 * boot-arg, the following algorithm is in effect:
41 * Each processor maintains an array of tag refcounts indexed by tag.
42 * Each address space maintains an array of tags indexed by CPU number.
43 * Each address space maintains a coherency vector, indexed by CPU
44 * indicating that the TLB state for that address space has a pending
45 * invalidation.
46 * On a context switch, a refcounted tag is lazily assigned to the newly
47 * dispatched (CPU, address space) tuple.
48 * When an inactive address space is invalidated on a remote CPU, it is marked
49 * for invalidation upon the next dispatch. Some invalidations are
50 * also processed at the user/kernel boundary.
51 * Provisions are made for the case where a CPU is overcommmitted, i.e.
52 * more active address spaces exist than the number of logical tags
53 * provided for by the processor architecture (currently 4096).
54 * The algorithm assumes the processor remaps the logical tags
55 * to physical TLB context IDs in an LRU fashion for efficiency. (DRK '10)
56 */
57
58 uint32_t pmap_pcid_ncpus;
59 boolean_t pmap_pcid_disabled = FALSE;
60 bool invpcid_enabled = false;
61 static uint32_t INP_MAX = 0;
62 pcid_cdata_t pcid_data[MAX_CPUS] __attribute__((aligned(64)));
63
64 void
65 pmap_pcid_configure(void)
66 {
67 int ccpu = cpu_number();
68 uintptr_t cr4 = get_cr4();
69 boolean_t pcid_present = FALSE;
70
71 pmap_pcid_log("PCID configure invoked on CPU %d\n", ccpu);
72 pmap_assert(ml_get_interrupts_enabled() == FALSE || get_preemption_level() != 0);
73 pmap_assert(cpu_mode_is64bit());
74
75 if (PE_parse_boot_argn("-pmap_pcid_disable", &pmap_pcid_disabled, sizeof(pmap_pcid_disabled))) {
76 pmap_pcid_log("PMAP: PCID feature disabled\n");
77 printf("PMAP: PCID feature disabled, %u\n", pmap_pcid_disabled);
78 kprintf("PMAP: PCID feature disabled %u\n", pmap_pcid_disabled);
79 }
80 /* no_shared_cr3+PCID is currently unsupported */
81
82 #if DEBUG
83 if (pmap_pcid_disabled == FALSE) {
84 no_shared_cr3 = FALSE;
85 } else {
86 no_shared_cr3 = TRUE;
87 }
88 #else
89 if (no_shared_cr3) {
90 pmap_pcid_disabled = TRUE;
91 }
92 #endif
93 if (pmap_pcid_disabled || no_shared_cr3) {
94 unsigned i;
95 /* Reset PCID status, as we may have picked up
96 * strays if discovered prior to platform
97 * expert initialization.
98 */
99 for (i = 0; i < real_ncpus; i++) {
100 if (cpu_datap(i)) {
101 cpu_datap(i)->cpu_pmap_pcid_enabled = FALSE;
102 }
103 pmap_pcid_ncpus = 0;
104 }
105 cpu_datap(ccpu)->cpu_pmap_pcid_enabled = FALSE;
106 return;
107 }
108 /* DRKTODO: assert if features haven't been discovered yet. Redundant
109 * invocation of cpu_mode_init and descendants masks this for now.
110 */
111 if ((cpuid_features() & CPUID_FEATURE_PCID)) {
112 pcid_present = TRUE;
113 } else {
114 cpu_datap(ccpu)->cpu_pmap_pcid_enabled = FALSE;
115 pmap_pcid_log("PMAP: PCID not detected CPU %d\n", ccpu);
116 return;
117 }
118 if ((cr4 & (CR4_PCIDE | CR4_PGE)) == (CR4_PCIDE | CR4_PGE)) {
119 cpu_datap(ccpu)->cpu_pmap_pcid_enabled = TRUE;
120 pmap_pcid_log("PMAP: PCID already enabled %d\n", ccpu);
121 return;
122 }
123 if (pcid_present == TRUE) {
124 if (ccpu == 0) {
125 if (cpuid_leaf7_features() & CPUID_LEAF7_FEATURE_INVPCID) {
126 invpcid_enabled = true;
127 }
128 }
129 #if DEVELOPMENT || DEBUG
130 PE_parse_boot_argn("pmap_inp_max", &INP_MAX, sizeof(INP_MAX));
131 #endif
132 pmap_pcid_log("Pre-PCID:CR0: 0x%lx, CR3: 0x%lx, CR4(CPU %d): 0x%lx\n", get_cr0(), get_cr3_raw(), ccpu, cr4);
133
134 if (cpu_number() >= PMAP_PCID_MAX_CPUS) {
135 panic("PMAP_PCID_MAX_CPUS %d\n", cpu_number());
136 }
137 if ((get_cr4() & CR4_PGE) == 0) {
138 set_cr4(get_cr4() | CR4_PGE);
139 pmap_pcid_log("Toggled PGE ON (CPU: %d\n", ccpu);
140 }
141 set_cr4(get_cr4() | CR4_PCIDE);
142 pmap_pcid_log("Post PCID: CR0: 0x%lx, CR3: 0x%lx, CR4(CPU %d): 0x%lx\n", get_cr0(), get_cr3_raw(), ccpu, get_cr4());
143 pmap_tlbi_range(0, ~0ULL, true, 0);
144 cpu_datap(ccpu)->cpu_pmap_pcid_enabled = TRUE;
145
146 if (OSIncrementAtomic(&pmap_pcid_ncpus) == machine_info.max_cpus) {
147 pmap_pcid_log("All PCIDs enabled: real_ncpus: %d, pmap_pcid_ncpus: %d\n", real_ncpus, pmap_pcid_ncpus);
148 }
149 cpu_datap(ccpu)->cpu_pmap_pcid_coherentp =
150 cpu_datap(ccpu)->cpu_pmap_pcid_coherentp_kernel =
151 &(kernel_pmap->pmap_pcid_coherency_vector[ccpu]);
152 cpu_datap(ccpu)->cpu_pcid_data = &pcid_data[ccpu];
153 cpu_datap(ccpu)->cpu_pcid_data->cpu_pcid_refcounts[0] = 1;
154 }
155 }
156
157 void
158 pmap_pcid_initialize(pmap_t p)
159 {
160 unsigned i;
161 unsigned nc = sizeof(p->pmap_pcid_cpus) / sizeof(pcid_t);
162
163 pmap_assert(nc >= real_ncpus);
164 for (i = 0; i < nc; i++) {
165 p->pmap_pcid_cpus[i] = PMAP_PCID_INVALID_PCID;
166 /* We assume here that the coherency vector is zeroed by
167 * pmap_create
168 */
169 }
170 }
171
172 void
173 pmap_pcid_initialize_kernel(pmap_t p)
174 {
175 unsigned i;
176 unsigned nc = sizeof(p->pmap_pcid_cpus) / sizeof(pcid_t);
177
178 for (i = 0; i < nc; i++) {
179 p->pmap_pcid_cpus[i] = 0;
180 /* We assume here that the coherency vector is zeroed by
181 * pmap_create
182 */
183 }
184 }
185
186 pcid_t
187 pmap_pcid_allocate_pcid(int ccpu)
188 {
189 int i;
190 pcid_ref_t cur_min = 0xFF;
191 uint32_t cur_min_index = ~1;
192 pcid_ref_t *cpu_pcid_refcounts = &cpu_datap(ccpu)->cpu_pcid_data->cpu_pcid_refcounts[0];
193 pcid_ref_t old_count;
194
195 if ((i = cpu_datap(ccpu)->cpu_pcid_data->cpu_pcid_free_hint) != 0) {
196 if (cpu_pcid_refcounts[i] == 0) {
197 (void)__sync_fetch_and_add(&cpu_pcid_refcounts[i], 1);
198 cpu_datap(ccpu)->cpu_pcid_data->cpu_pcid_free_hint = 0;
199 return i;
200 }
201 }
202 /* Linear scan to discover free slot, with hint. Room for optimization
203 * but with intelligent prefetchers this should be
204 * adequately performant, as it is invoked
205 * only on first dispatch of a new address space onto
206 * a given processor. DRKTODO: use larger loads and
207 * zero byte discovery -- any pattern != ~1 should
208 * signify a free slot.
209 */
210 for (i = PMAP_PCID_MIN_PCID; i < PMAP_PCID_MAX_PCID; i++) {
211 pcid_ref_t cur_refcount = cpu_pcid_refcounts[i];
212
213 pmap_assert(cur_refcount < PMAP_PCID_MAX_REFCOUNT);
214
215 if (cur_refcount == 0) {
216 (void)__sync_fetch_and_add(&cpu_pcid_refcounts[i], 1);
217 return i;
218 } else {
219 if (cur_refcount < cur_min) {
220 cur_min_index = i;
221 cur_min = cur_refcount;
222 }
223 }
224 }
225 pmap_assert(cur_min_index > 0 && cur_min_index < PMAP_PCID_MAX_PCID);
226 /* Consider "rebalancing" tags actively in highly oversubscribed cases
227 * perhaps selecting tags with lower activity.
228 */
229
230 old_count = __sync_fetch_and_add(&cpu_pcid_refcounts[cur_min_index], 1);
231 pmap_assert(old_count < PMAP_PCID_MAX_REFCOUNT);
232 return cur_min_index;
233 }
234
235 void
236 pmap_pcid_deallocate_pcid(int ccpu, pmap_t tpmap)
237 {
238 pcid_t pcid;
239 pmap_t lp;
240 pcid_ref_t prior_count;
241
242 pcid = tpmap->pmap_pcid_cpus[ccpu];
243 pmap_assert(pcid != PMAP_PCID_INVALID_PCID);
244 if (pcid == PMAP_PCID_INVALID_PCID) {
245 return;
246 }
247
248 lp = cpu_datap(ccpu)->cpu_pcid_data->cpu_pcid_last_pmap_dispatched[pcid];
249 pmap_assert(pcid > 0 && pcid < PMAP_PCID_MAX_PCID);
250 pmap_assert(cpu_datap(ccpu)->cpu_pcid_data->cpu_pcid_refcounts[pcid] >= 1);
251
252 if (lp == tpmap) {
253 (void)__sync_bool_compare_and_swap(&cpu_datap(ccpu)->cpu_pcid_data->cpu_pcid_last_pmap_dispatched[pcid], tpmap, PMAP_INVALID);
254 }
255
256 if ((prior_count = __sync_fetch_and_sub(&cpu_datap(ccpu)->cpu_pcid_data->cpu_pcid_refcounts[pcid], 1)) == 1) {
257 cpu_datap(ccpu)->cpu_pcid_data->cpu_pcid_free_hint = pcid;
258 }
259 pmap_assert(prior_count <= PMAP_PCID_MAX_REFCOUNT);
260 }
261
262 void
263 pmap_destroy_pcid_sync(pmap_t p)
264 {
265 int i;
266 pmap_assert(ml_get_interrupts_enabled() == FALSE || get_preemption_level() != 0);
267 for (i = 0; i < PMAP_PCID_MAX_CPUS; i++) {
268 if (p->pmap_pcid_cpus[i] != PMAP_PCID_INVALID_PCID) {
269 pmap_pcid_deallocate_pcid(i, p);
270 }
271 }
272 }
273
274 pcid_t
275 pcid_for_pmap_cpu_tuple(pmap_t cpmap, thread_t cthread, int ccpu)
276 {
277 pmap_t active_pmap = cpmap;
278
279 if (__improbable(cpmap->pagezero_accessible)) {
280 if ((cthread->machine.specFlags & CopyIOActive) == 0) {
281 active_pmap = kernel_pmap;
282 }
283 }
284
285 return active_pmap->pmap_pcid_cpus[ccpu];
286 }
287 int npz = 0;
288
289 #if PMAP_ASSERT
290 #define PCID_RECORD_SIZE 128
291 uint64_t pcid_record_array[PCID_RECORD_SIZE];
292 #endif
293 #define PMAP_UPCIDP(p) ((p ? (p + PMAP_PCID_MAX_PCID) : 0) | 1ULL << 63)
294
295 void
296 pmap_pcid_activate(pmap_t tpmap, int ccpu, boolean_t nopagezero, boolean_t copyio)
297 {
298 pcid_t new_pcid = tpmap->pmap_pcid_cpus[ccpu];
299 pmap_t last_pmap;
300 boolean_t pcid_conflict = FALSE, pending_flush = FALSE;
301 pcid_cdata_t *pcdata = cpu_datap(ccpu)->cpu_pcid_data;
302
303 pmap_assert(cpu_datap(ccpu)->cpu_pmap_pcid_enabled);
304 if (__improbable(new_pcid == PMAP_PCID_INVALID_PCID)) {
305 new_pcid = tpmap->pmap_pcid_cpus[ccpu] = pmap_pcid_allocate_pcid(ccpu);
306 }
307
308 pmap_assert(new_pcid != PMAP_PCID_INVALID_PCID);
309 #ifdef PCID_ASSERT
310 cpu_datap(ccpu)->cpu_last_pcid = cpu_datap(ccpu)->cpu_active_pcid;
311 #endif
312 cpu_datap(ccpu)->cpu_active_pcid = new_pcid;
313
314 pending_flush = (tpmap->pmap_pcid_coherency_vector[ccpu] != 0);
315 if (__probable(pending_flush == FALSE)) {
316 last_pmap = pcdata->cpu_pcid_last_pmap_dispatched[new_pcid];
317 pcid_conflict = ((last_pmap != NULL) && (tpmap != last_pmap));
318 }
319 if (__improbable(pending_flush || pcid_conflict)) {
320 pmap_pcid_validate_cpu(tpmap, ccpu);
321 }
322 /* Consider making this a unique id */
323 pcdata->cpu_pcid_last_pmap_dispatched[new_pcid] = tpmap;
324
325 pmap_assert(new_pcid < PMAP_PCID_MAX_PCID);
326 pmap_assert(((tpmap == kernel_pmap) && new_pcid == 0) ||
327 ((new_pcid != PMAP_PCID_INVALID_PCID) && (new_pcid != 0)));
328 #if PMAP_ASSERT
329 pcid_record_array[ccpu % PCID_RECORD_SIZE] = tpmap->pm_cr3 | new_pcid | (((uint64_t)(!(pending_flush || pcid_conflict))) << 63);
330 pml4_entry_t *pml4 = pmap64_pml4(tpmap, 0ULL);
331 /* Diagnostic to detect pagetable anchor corruption */
332 if (pml4[KERNEL_PML4_INDEX] != kernel_pmap->pm_pml4[KERNEL_PML4_INDEX]) {
333 __asm__ volatile ("int3");
334 }
335 #endif /* PMAP_ASSERT */
336
337 pmap_paddr_t ncr3 = tpmap->pm_cr3;
338
339 if (__improbable(nopagezero)) {
340 pending_flush = TRUE;
341 if (copyio == FALSE) {
342 new_pcid = kernel_pmap->pmap_pcid_cpus[ccpu];
343 ncr3 = kernel_pmap->pm_cr3;
344 }
345 cpu_datap(ccpu)->cpu_kernel_pcid = kernel_pmap->pmap_pcid_cpus[ccpu];
346 npz++;
347 }
348
349 set_cr3_composed(ncr3, new_pcid, 1ULL);
350 cpu_shadowp(ccpu)->cpu_shadowtask_cr3 = ncr3 | new_pcid | (1ULL << 63);
351
352 bool preserve = !pcid_conflict && !pending_flush;
353 if (preserve == true) {
354 /* We did not previously observe a pending invalidation for this
355 * ASID. However, the load from the coherency vector
356 * could've been reordered ahead of the store to the
357 * active_cr3 field (in the context switch path, our
358 * caller). Re-consult the pending invalidation vector
359 * after the CR3 write. We rely on MOV CR3's documented
360 * serializing property to avoid insertion of an expensive
361 * barrier. (DRK)
362 */
363 pending_flush = (tpmap->pmap_pcid_coherency_vector[ccpu] != 0);
364 if (__improbable(pending_flush != 0)) {
365 pmap_pcid_validate_cpu(tpmap, ccpu);
366 preserve = false;
367 }
368 }
369
370 if (preserve == false) {
371 bool gtlbi = (invpcid_enabled == false);
372 pmap_tlbi_range(0, ~0ULL, gtlbi, new_pcid);
373 }
374
375 uint64_t spcid = PMAP_UPCIDP(new_pcid);
376 uint64_t scr3 = tpmap->pm_ucr3 | spcid;
377
378 cpu_datap(ccpu)->cpu_ucr3 = scr3;
379 cpu_shadowp(ccpu)->cpu_ucr3 = scr3;
380
381 cpu_datap(ccpu)->cpu_pmap_pcid_coherentp = &(tpmap->pmap_pcid_coherency_vector[ccpu]);
382 #if DEBUG
383 cpu_datap(ccpu)->cpu_pcid_last_cr3 = scr3;
384 KERNEL_DEBUG_CONSTANT(0x9c1d0000, tpmap, new_pcid, pending_flush, pcid_conflict, 0);
385 #endif
386 }
387
388 typedef enum {
389 INP_ALLG = 2, INP_ASPACE = 1, INP_SINGLE = 0, INP_ALLNG = 3
390 } invpcid_type_t;
391 typedef struct __attribute__((packed)) {
392 uint64_t ipcid_and_rsvd;
393 uint64_t iaddr;
394 } invpcid_desc_t;
395
396 static inline void
397 invpcid(invpcid_type_t itype, pcid_t ipcid, uint64_t iaddr)
398 {
399 invpcid_desc_t ipcdt;
400
401 ipcdt.ipcid_and_rsvd = ipcid;
402 ipcdt.iaddr = iaddr;
403
404 uint64_t iptype = itype; //promote to workaround assembler bug
405
406 __asm__ volatile ("invpcid %0, %1" :: "m" (ipcdt), "r" (iptype) : "memory");
407 }
408
409
410 void
411 pmap_tlbi_range(uint64_t startv, uint64_t endv, bool global, uint16_t pcid)
412 {
413 assert(ml_get_interrupts_enabled() == FALSE ||
414 get_preemption_level() != 0);
415
416 if (invpcid_enabled) {
417 if (global) {
418 invpcid(INP_ALLG, 0, 0ULL);
419 } else {
420 /* TODO: separate large page invalidation check */
421 if ((endv - startv) >= INP_MAX) {
422 invpcid(INP_ASPACE, pcid, 0ULL);
423 if (pcid) {
424 invpcid(INP_ASPACE, (pcid + PMAP_PCID_MAX_PCID), 0ULL);
425 }
426 } else {
427 uint64_t cv = startv;
428 for (; cv < endv; cv += PAGE_SIZE) {
429 invpcid(INP_SINGLE, pcid, cv);
430 if (pcid) {
431 invpcid(INP_SINGLE, (pcid + PMAP_PCID_MAX_PCID), cv);
432 }
433 }
434 }
435 }
436 } else {
437 if (pmap_pcid_ncpus) {
438 uintptr_t cr4 = get_cr4();
439 if (__improbable((cr4 & CR4_PGE) == 0)) {
440 set_cr4(cr4 | CR4_PGE);
441 } else {
442 set_cr4(cr4 & ~CR4_PGE);
443 set_cr4(cr4 | CR4_PGE);
444 }
445 } else {
446 set_cr3_raw(get_cr3_raw());
447 }
448 }
449 __c11_atomic_thread_fence(__ATOMIC_SEQ_CST);
450 }