]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/AT386/model_dep.c
xnu-7195.101.1.tar.gz
[apple/xnu.git] / osfmk / i386 / AT386 / model_dep.c
1 /*
2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989, 1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56
57 /*
58 */
59
60 /*
61 * File: model_dep.c
62 * Author: Avadis Tevanian, Jr., Michael Wayne Young
63 *
64 * Copyright (C) 1986, Avadis Tevanian, Jr., Michael Wayne Young
65 *
66 * Basic initialization for I386 - ISA bus machines.
67 */
68
69
70 #define __APPLE_API_PRIVATE 1
71 #define __APPLE_API_UNSTABLE 1
72 #include <kern/debug.h>
73
74 #include <mach/i386/vm_param.h>
75
76 #include <string.h>
77 #include <mach/vm_param.h>
78 #include <mach/vm_prot.h>
79 #include <mach/machine.h>
80 #include <mach/time_value.h>
81 #include <sys/kdebug.h>
82 #include <sys/time.h>
83 #include <kern/spl.h>
84 #include <kern/assert.h>
85 #include <kern/lock_group.h>
86 #include <kern/misc_protos.h>
87 #include <kern/startup.h>
88 #include <kern/clock.h>
89 #include <kern/cpu_data.h>
90 #include <kern/machine.h>
91 #include <i386/postcode.h>
92 #include <i386/mp_desc.h>
93 #include <i386/misc_protos.h>
94 #include <i386/panic_notify.h>
95 #include <i386/thread.h>
96 #include <i386/trap.h>
97 #include <i386/machine_routines.h>
98 #include <i386/mp.h> /* mp_rendezvous_break_lock */
99 #include <i386/cpuid.h>
100 #include <i386/fpu.h>
101 #include <i386/machine_cpu.h>
102 #include <i386/pmap.h>
103 #if CONFIG_MTRR
104 #include <i386/mtrr.h>
105 #endif
106 #include <i386/ucode.h>
107 #include <i386/pmCPU.h>
108 #include <i386/panic_hooks.h>
109
110 #include <architecture/i386/pio.h> /* inb() */
111 #include <pexpert/i386/boot.h>
112
113 #include <kdp/kdp_dyld.h>
114 #include <kdp/kdp_core.h>
115 #include <vm/pmap.h>
116 #include <vm/vm_map.h>
117 #include <vm/vm_kern.h>
118
119 #include <IOKit/IOBSD.h>
120 #include <IOKit/IOPlatformExpert.h>
121 #include <IOKit/IOHibernatePrivate.h>
122
123 #include <pexpert/i386/efi.h>
124
125 #include <kern/thread.h>
126 #include <kern/sched.h>
127 #include <mach-o/loader.h>
128 #include <mach-o/nlist.h>
129
130 #include <libkern/kernel_mach_header.h>
131 #include <libkern/OSKextLibPrivate.h>
132 #include <libkern/crc.h>
133
134 #if DEBUG || DEVELOPMENT
135 #define DPRINTF(x ...) kprintf(x)
136 #else
137 #define DPRINTF(x ...)
138 #endif
139
140 #ifndef ROUNDUP
141 #define ROUNDUP(a, b) (((a) + ((b) - 1)) & (~((b) - 1)))
142 #endif
143
144 #ifndef ROUNDDOWN
145 #define ROUNDDOWN(x, y) (((x)/(y))*(y))
146 #endif
147
148 static void machine_conf(void);
149 void panic_print_symbol_name(vm_address_t search);
150 void RecordPanicStackshot(void);
151
152 typedef enum paniclog_flush_type {
153 kPaniclogFlushBase = 1,/* Flush the initial log and paniclog header */
154 kPaniclogFlushStackshot = 2,/* Flush only the stackshot data, then flush the header */
155 kPaniclogFlushOtherLog = 3/* Flush the other log, then flush the header */
156 } paniclog_flush_type_t;
157
158 void paniclog_flush_internal(paniclog_flush_type_t variant);
159
160 extern const char version[];
161 extern char osversion[];
162 extern int max_poll_quanta;
163 extern unsigned int panic_is_inited;
164
165 extern int proc_pid(struct proc *);
166
167 /* Definitions for frame pointers */
168 #define FP_ALIGNMENT_MASK ((uint32_t)(0x3))
169 #define FP_LR_OFFSET ((uint32_t)4)
170 #define FP_LR_OFFSET64 ((uint32_t)8)
171 #define FP_MAX_NUM_TO_EVALUATE (50)
172
173 volatile int pbtcpu = -1;
174 hw_lock_data_t pbtlock; /* backtrace print lock */
175 uint32_t pbtcnt = 0;
176
177 volatile int panic_double_fault_cpu = -1;
178
179 #define PRINT_ARGS_FROM_STACK_FRAME 0
180
181 typedef struct _cframe_t {
182 struct _cframe_t *prev;
183 uintptr_t caller;
184 #if PRINT_ARGS_FROM_STACK_FRAME
185 unsigned args[0];
186 #endif
187 } cframe_t;
188
189 static unsigned commit_paniclog_to_nvram;
190 boolean_t coprocessor_paniclog_flush = FALSE;
191
192 struct kcdata_descriptor kc_panic_data;
193 static boolean_t begun_panic_stackshot = FALSE;
194 extern kern_return_t do_stackshot(void *);
195
196 extern void kdp_snapshot_preflight(int pid, void * tracebuf,
197 uint32_t tracebuf_size, uint64_t flags,
198 kcdata_descriptor_t data_p,
199 uint64_t since_timestamp, uint32_t pagetable_mask);
200 extern int kdp_stack_snapshot_bytes_traced(void);
201 extern int kdp_stack_snapshot_bytes_uncompressed(void);
202
203 extern void stackshot_memcpy(void *dst, const void *src, size_t len);
204 vm_offset_t panic_stackshot_buf = 0;
205 size_t panic_stackshot_buf_len = 0;
206
207 size_t panic_stackshot_len = 0;
208
209 boolean_t is_clock_configured = FALSE;
210
211 /*
212 * Backtrace a single frame.
213 */
214 void
215 print_one_backtrace(pmap_t pmap, vm_offset_t topfp, const char *cur_marker,
216 boolean_t is_64_bit)
217 {
218 int i = 0;
219 addr64_t lr;
220 addr64_t fp;
221 addr64_t fp_for_ppn;
222 ppnum_t ppn;
223 boolean_t dump_kernel_stack;
224
225 fp = topfp;
226 fp_for_ppn = 0;
227 ppn = (ppnum_t)NULL;
228
229 if (fp >= VM_MIN_KERNEL_ADDRESS) {
230 dump_kernel_stack = TRUE;
231 } else {
232 dump_kernel_stack = FALSE;
233 }
234
235 do {
236 if ((fp == 0) || ((fp & FP_ALIGNMENT_MASK) != 0)) {
237 break;
238 }
239 if (dump_kernel_stack && ((fp < VM_MIN_KERNEL_ADDRESS) || (fp > VM_MAX_KERNEL_ADDRESS))) {
240 break;
241 }
242 if ((!dump_kernel_stack) && (fp >= VM_MIN_KERNEL_ADDRESS)) {
243 break;
244 }
245
246 /* Check to see if current address will result in a different
247 * ppn than previously computed (to avoid recomputation) via
248 * (addr) ^ fp_for_ppn) >> PAGE_SHIFT) */
249
250 if ((((fp + FP_LR_OFFSET) ^ fp_for_ppn) >> PAGE_SHIFT) != 0x0U) {
251 ppn = pmap_find_phys(pmap, fp + FP_LR_OFFSET);
252 fp_for_ppn = fp + (is_64_bit ? FP_LR_OFFSET64 : FP_LR_OFFSET);
253 }
254 if (ppn != (ppnum_t)NULL) {
255 if (is_64_bit) {
256 lr = ml_phys_read_double_64(((((vm_offset_t)ppn) << PAGE_SHIFT)) | ((fp + FP_LR_OFFSET64) & PAGE_MASK));
257 } else {
258 lr = ml_phys_read_word(((((vm_offset_t)ppn) << PAGE_SHIFT)) | ((fp + FP_LR_OFFSET) & PAGE_MASK));
259 }
260 } else {
261 if (is_64_bit) {
262 paniclog_append_noflush("%s\t Could not read LR from frame at 0x%016llx\n", cur_marker, fp + FP_LR_OFFSET64);
263 } else {
264 paniclog_append_noflush("%s\t Could not read LR from frame at 0x%08x\n", cur_marker, (uint32_t)(fp + FP_LR_OFFSET));
265 }
266 break;
267 }
268 if (((fp ^ fp_for_ppn) >> PAGE_SHIFT) != 0x0U) {
269 ppn = pmap_find_phys(pmap, fp);
270 fp_for_ppn = fp;
271 }
272 if (ppn != (ppnum_t)NULL) {
273 if (is_64_bit) {
274 fp = ml_phys_read_double_64(((((vm_offset_t)ppn) << PAGE_SHIFT)) | (fp & PAGE_MASK));
275 } else {
276 fp = ml_phys_read_word(((((vm_offset_t)ppn) << PAGE_SHIFT)) | (fp & PAGE_MASK));
277 }
278 } else {
279 if (is_64_bit) {
280 paniclog_append_noflush("%s\t Could not read FP from frame at 0x%016llx\n", cur_marker, fp);
281 } else {
282 paniclog_append_noflush("%s\t Could not read FP from frame at 0x%08x\n", cur_marker, (uint32_t)fp);
283 }
284 break;
285 }
286
287 if (is_64_bit) {
288 paniclog_append_noflush("%s\t0x%016llx\n", cur_marker, lr);
289 } else {
290 paniclog_append_noflush("%s\t0x%08x\n", cur_marker, (uint32_t)lr);
291 }
292 } while ((++i < FP_MAX_NUM_TO_EVALUATE) && (fp != topfp));
293 }
294 void
295 machine_startup(void)
296 {
297 int boot_arg;
298
299 #if 0
300 if (PE_get_hotkey( kPEControlKey )) {
301 halt_in_debugger = halt_in_debugger ? 0 : 1;
302 }
303 #endif
304
305 if (!PE_parse_boot_argn("nvram_paniclog", &commit_paniclog_to_nvram, sizeof(commit_paniclog_to_nvram))) {
306 commit_paniclog_to_nvram = 1;
307 }
308
309 /*
310 * Entering the debugger will put the CPUs into a "safe"
311 * power mode.
312 */
313 if (PE_parse_boot_argn("pmsafe_debug", &boot_arg, sizeof(boot_arg))) {
314 pmsafe_debug = boot_arg;
315 }
316
317 hw_lock_init(&pbtlock); /* initialize print backtrace lock */
318
319 if (PE_parse_boot_argn("yield", &boot_arg, sizeof(boot_arg))) {
320 sched_poll_yield_shift = boot_arg;
321 }
322
323 panic_notify_init();
324
325 machine_conf();
326
327 panic_hooks_init();
328
329 /*
330 * Start the system.
331 */
332 kernel_bootstrap();
333 /*NOTREACHED*/
334 }
335
336
337 static void
338 machine_conf(void)
339 {
340 machine_info.memory_size = (typeof(machine_info.memory_size))mem_size;
341 }
342
343 extern void *gPEEFIRuntimeServices;
344 extern void *gPEEFISystemTable;
345
346 static void
347 efi_set_tables_64(EFI_SYSTEM_TABLE_64 * system_table)
348 {
349 EFI_RUNTIME_SERVICES_64 *runtime;
350 uint32_t hdr_cksum;
351 uint32_t cksum;
352
353 DPRINTF("Processing 64-bit EFI tables at %p\n", system_table);
354 do {
355 DPRINTF("Header:\n");
356 DPRINTF(" Signature: 0x%016llx\n", system_table->Hdr.Signature);
357 DPRINTF(" Revision: 0x%08x\n", system_table->Hdr.Revision);
358 DPRINTF(" HeaderSize: 0x%08x\n", system_table->Hdr.HeaderSize);
359 DPRINTF(" CRC32: 0x%08x\n", system_table->Hdr.CRC32);
360 DPRINTF("RuntimeServices: 0x%016llx\n", system_table->RuntimeServices);
361 if (system_table->Hdr.Signature != EFI_SYSTEM_TABLE_SIGNATURE) {
362 kprintf("Bad EFI system table signature\n");
363 break;
364 }
365 // Verify signature of the system table
366 hdr_cksum = system_table->Hdr.CRC32;
367 system_table->Hdr.CRC32 = 0;
368 cksum = crc32(0L, system_table, system_table->Hdr.HeaderSize);
369
370 DPRINTF("System table calculated CRC32 = 0x%x, header = 0x%x\n", cksum, hdr_cksum);
371 system_table->Hdr.CRC32 = hdr_cksum;
372 if (cksum != hdr_cksum) {
373 kprintf("Bad EFI system table checksum\n");
374 break;
375 }
376
377 gPEEFISystemTable = system_table;
378
379 if (system_table->RuntimeServices == 0) {
380 kprintf("No runtime table present\n");
381 break;
382 }
383 DPRINTF("RuntimeServices table at 0x%qx\n", system_table->RuntimeServices);
384 // 64-bit virtual address is OK for 64-bit EFI and 64/32-bit kernel.
385 runtime = (EFI_RUNTIME_SERVICES_64 *) (uintptr_t)system_table->RuntimeServices;
386 DPRINTF("Checking runtime services table %p\n", runtime);
387 if (runtime->Hdr.Signature != EFI_RUNTIME_SERVICES_SIGNATURE) {
388 kprintf("Bad EFI runtime table signature\n");
389 break;
390 }
391
392 // Verify signature of runtime services table
393 hdr_cksum = runtime->Hdr.CRC32;
394 runtime->Hdr.CRC32 = 0;
395 cksum = crc32(0L, runtime, runtime->Hdr.HeaderSize);
396
397 DPRINTF("Runtime table calculated CRC32 = 0x%x, header = 0x%x\n", cksum, hdr_cksum);
398 runtime->Hdr.CRC32 = hdr_cksum;
399 if (cksum != hdr_cksum) {
400 kprintf("Bad EFI runtime table checksum\n");
401 break;
402 }
403
404 gPEEFIRuntimeServices = runtime;
405 } while (FALSE);
406 }
407
408 /* Map in EFI runtime areas. */
409 static void
410 efi_init(void)
411 {
412 boot_args *args = (boot_args *)PE_state.bootArgs;
413
414 kprintf("Initializing EFI runtime services\n");
415
416 do {
417 vm_offset_t vm_size, vm_addr;
418 vm_map_offset_t phys_addr;
419 EfiMemoryRange *mptr;
420 unsigned int msize, mcount;
421 unsigned int i;
422
423 msize = args->MemoryMapDescriptorSize;
424 mcount = args->MemoryMapSize / msize;
425
426 DPRINTF("efi_init() kernel base: 0x%x size: 0x%x\n",
427 args->kaddr, args->ksize);
428 DPRINTF(" efiSystemTable physical: 0x%x virtual: %p\n",
429 args->efiSystemTable,
430 (void *) ml_static_ptovirt(args->efiSystemTable));
431 DPRINTF(" efiRuntimeServicesPageStart: 0x%x\n",
432 args->efiRuntimeServicesPageStart);
433 DPRINTF(" efiRuntimeServicesPageCount: 0x%x\n",
434 args->efiRuntimeServicesPageCount);
435 DPRINTF(" efiRuntimeServicesVirtualPageStart: 0x%016llx\n",
436 args->efiRuntimeServicesVirtualPageStart);
437 mptr = (EfiMemoryRange *)ml_static_ptovirt(args->MemoryMap);
438 for (i = 0; i < mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) {
439 if (((mptr->Attribute & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME)) {
440 vm_size = (vm_offset_t)i386_ptob((uint32_t)mptr->NumberOfPages);
441 vm_addr = (vm_offset_t) mptr->VirtualStart;
442 /* For K64 on EFI32, shadow-map into high KVA */
443 if (vm_addr < VM_MIN_KERNEL_ADDRESS) {
444 vm_addr |= VM_MIN_KERNEL_ADDRESS;
445 }
446 phys_addr = (vm_map_offset_t) mptr->PhysicalStart;
447 DPRINTF(" Type: %x phys: %p EFIv: %p kv: %p size: %p\n",
448 mptr->Type,
449 (void *) (uintptr_t) phys_addr,
450 (void *) (uintptr_t) mptr->VirtualStart,
451 (void *) vm_addr,
452 (void *) vm_size);
453 pmap_map_bd(vm_addr, phys_addr, phys_addr + round_page(vm_size),
454 (mptr->Type == kEfiRuntimeServicesCode) ? VM_PROT_READ | VM_PROT_EXECUTE : VM_PROT_READ | VM_PROT_WRITE,
455 (mptr->Type == EfiMemoryMappedIO) ? VM_WIMG_IO : VM_WIMG_USE_DEFAULT);
456 }
457 }
458
459 if (args->Version != kBootArgsVersion2) {
460 panic("Incompatible boot args version %d revision %d\n", args->Version, args->Revision);
461 }
462
463 DPRINTF("Boot args version %d revision %d mode %d\n", args->Version, args->Revision, args->efiMode);
464 if (args->efiMode == kBootArgsEfiMode64) {
465 efi_set_tables_64((EFI_SYSTEM_TABLE_64 *) ml_static_ptovirt(args->efiSystemTable));
466 } else {
467 panic("Unsupported 32-bit EFI system table!");
468 }
469 } while (FALSE);
470
471 return;
472 }
473
474 /* Returns TRUE if a page belongs to the EFI Runtime Services (code or data) */
475 boolean_t
476 bootloader_valid_page(ppnum_t ppn)
477 {
478 boot_args *args = (boot_args *)PE_state.bootArgs;
479 ppnum_t pstart = args->efiRuntimeServicesPageStart;
480 ppnum_t pend = pstart + args->efiRuntimeServicesPageCount;
481
482 return pstart <= ppn && ppn < pend;
483 }
484
485 /* Remap EFI runtime areas. */
486 void
487 hibernate_newruntime_map(void * map, vm_size_t map_size, uint32_t system_table_offset)
488 {
489 boot_args *args = (boot_args *)PE_state.bootArgs;
490
491 kprintf("Reinitializing EFI runtime services\n");
492
493 do {
494 vm_offset_t vm_size, vm_addr;
495 vm_map_offset_t phys_addr;
496 EfiMemoryRange *mptr;
497 unsigned int msize, mcount;
498 unsigned int i;
499
500 gPEEFISystemTable = 0;
501 gPEEFIRuntimeServices = 0;
502
503 system_table_offset += ptoa_32(args->efiRuntimeServicesPageStart);
504
505 kprintf("Old system table 0x%x, new 0x%x\n",
506 (uint32_t)args->efiSystemTable, system_table_offset);
507
508 args->efiSystemTable = system_table_offset;
509
510 kprintf("Old map:\n");
511 msize = args->MemoryMapDescriptorSize;
512 mcount = args->MemoryMapSize / msize;
513 mptr = (EfiMemoryRange *)ml_static_ptovirt(args->MemoryMap);
514 for (i = 0; i < mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) {
515 if ((mptr->Attribute & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME) {
516 vm_size = (vm_offset_t)i386_ptob((uint32_t)mptr->NumberOfPages);
517 vm_addr = (vm_offset_t) mptr->VirtualStart;
518 /* K64 on EFI32 */
519 if (vm_addr < VM_MIN_KERNEL_ADDRESS) {
520 vm_addr |= VM_MIN_KERNEL_ADDRESS;
521 }
522 phys_addr = (vm_map_offset_t) mptr->PhysicalStart;
523
524 kprintf("mapping[%u] %qx @ %lx, %llu\n", mptr->Type, phys_addr, (unsigned long)vm_addr, mptr->NumberOfPages);
525 }
526 }
527
528 pmap_remove(kernel_pmap, i386_ptob(args->efiRuntimeServicesPageStart),
529 i386_ptob(args->efiRuntimeServicesPageStart + args->efiRuntimeServicesPageCount));
530
531 kprintf("New map:\n");
532 msize = args->MemoryMapDescriptorSize;
533 mcount = (unsigned int)(map_size / msize);
534 mptr = map;
535 for (i = 0; i < mcount; i++, mptr = (EfiMemoryRange *)(((vm_offset_t)mptr) + msize)) {
536 if ((mptr->Attribute & EFI_MEMORY_RUNTIME) == EFI_MEMORY_RUNTIME) {
537 vm_size = (vm_offset_t)i386_ptob((uint32_t)mptr->NumberOfPages);
538 vm_addr = (vm_offset_t) mptr->VirtualStart;
539 if (vm_addr < VM_MIN_KERNEL_ADDRESS) {
540 vm_addr |= VM_MIN_KERNEL_ADDRESS;
541 }
542 phys_addr = (vm_map_offset_t) mptr->PhysicalStart;
543
544 kprintf("mapping[%u] %qx @ %lx, %llu\n", mptr->Type, phys_addr, (unsigned long)vm_addr, mptr->NumberOfPages);
545
546 pmap_map(vm_addr, phys_addr, phys_addr + round_page(vm_size),
547 (mptr->Type == kEfiRuntimeServicesCode) ? VM_PROT_READ | VM_PROT_EXECUTE : VM_PROT_READ | VM_PROT_WRITE,
548 (mptr->Type == EfiMemoryMappedIO) ? VM_WIMG_IO : VM_WIMG_USE_DEFAULT);
549 }
550 }
551
552 if (args->Version != kBootArgsVersion2) {
553 panic("Incompatible boot args version %d revision %d\n", args->Version, args->Revision);
554 }
555
556 kprintf("Boot args version %d revision %d mode %d\n", args->Version, args->Revision, args->efiMode);
557 if (args->efiMode == kBootArgsEfiMode64) {
558 efi_set_tables_64((EFI_SYSTEM_TABLE_64 *) ml_static_ptovirt(args->efiSystemTable));
559 } else {
560 panic("Unsupported 32-bit EFI system table!");
561 }
562 } while (FALSE);
563
564 kprintf("Done reinitializing EFI runtime services\n");
565
566 return;
567 }
568
569 /*
570 * Find devices. The system is alive.
571 */
572 void
573 machine_init(void)
574 {
575 /* Now with VM up, switch to dynamically allocated cpu data */
576 cpu_data_realloc();
577
578 /* Ensure panic buffer is initialized. */
579 debug_log_init();
580
581 /*
582 * Display CPU identification
583 */
584 cpuid_cpu_display("CPU identification");
585 cpuid_feature_display("CPU features");
586 cpuid_extfeature_display("CPU extended features");
587
588 /*
589 * Initialize EFI runtime services.
590 */
591 efi_init();
592
593 smp_init();
594
595 /*
596 * Set up to use floating point.
597 */
598 init_fpu();
599
600 /*
601 * Configure clock devices.
602 */
603 clock_config();
604 is_clock_configured = TRUE;
605
606 #if CONFIG_MTRR
607 /*
608 * Initialize MTRR from boot processor.
609 */
610 mtrr_init();
611
612 /*
613 * Set up PAT for boot processor.
614 */
615 pat_init();
616 #endif
617
618 /*
619 * Free lowmem pages and complete other setup
620 */
621 pmap_lowmem_finalize();
622 }
623
624 /*
625 * Halt a cpu.
626 */
627 void
628 halt_cpu(void)
629 {
630 halt_all_cpus(FALSE);
631 }
632
633 int reset_mem_on_reboot = 1;
634
635 /*
636 * Halt the system or reboot.
637 */
638 __attribute__((noreturn))
639 void
640 halt_all_cpus(boolean_t reboot)
641 {
642 if (reboot) {
643 printf("MACH Reboot\n");
644 PEHaltRestart( kPERestartCPU );
645 } else {
646 printf("CPU halted\n");
647 PEHaltRestart( kPEHaltCPU );
648 }
649 while (1) {
650 ;
651 }
652 }
653
654 /* For use with the MP rendezvous mechanism
655 */
656
657 uint64_t panic_restart_timeout = ~(0ULL);
658
659 #define PANIC_RESTART_TIMEOUT (3ULL * NSEC_PER_SEC)
660
661 /*
662 * We should always return from this function with the other log offset
663 * set in the panic_info structure.
664 */
665 void
666 RecordPanicStackshot()
667 {
668 int err = 0;
669 size_t bytes_traced = 0, bytes_uncompressed = 0, bytes_used = 0, bytes_remaining = 0;
670 char *stackshot_begin_loc = NULL;
671
672 /* Don't re-enter this code if we panic here */
673 if (begun_panic_stackshot) {
674 if (panic_info->mph_other_log_offset == 0) {
675 panic_info->mph_other_log_offset = PE_get_offset_into_panic_region(debug_buf_ptr);
676 }
677 return;
678 }
679 begun_panic_stackshot = TRUE;
680
681 /* The panic log length should have been set before we came to capture a stackshot */
682 if (panic_info->mph_panic_log_len == 0) {
683 kdb_printf("Found zero length panic log, skipping capturing panic stackshot\n");
684 if (panic_info->mph_other_log_offset == 0) {
685 panic_info->mph_other_log_offset = PE_get_offset_into_panic_region(debug_buf_ptr);
686 }
687 return;
688 }
689
690 if (stackshot_active()) {
691 panic_info->mph_panic_flags |= MACOS_PANIC_HEADER_FLAG_STACKSHOT_FAILED_NESTED;
692 panic_info->mph_other_log_offset = PE_get_offset_into_panic_region(debug_buf_ptr);
693 kdb_printf("Panicked during stackshot, skipping panic stackshot\n");
694 return;
695 }
696
697 /* Try to capture an in memory panic_stackshot */
698 if (extended_debug_log_enabled) {
699 /* On coprocessor systems we write this into the extended debug log */
700 stackshot_begin_loc = debug_buf_ptr;
701 bytes_remaining = debug_buf_size - (unsigned int)((uintptr_t)stackshot_begin_loc - (uintptr_t)debug_buf_base);
702 } else if (panic_stackshot_buf != 0) {
703 /* On other systems we use the panic stackshot_buf */
704 stackshot_begin_loc = (char *) panic_stackshot_buf;
705 bytes_remaining = panic_stackshot_buf_len;
706 } else {
707 panic_info->mph_other_log_offset = PE_get_offset_into_panic_region(debug_buf_ptr);
708 return;
709 }
710
711
712 err = kcdata_memory_static_init(&kc_panic_data, (mach_vm_address_t)stackshot_begin_loc,
713 KCDATA_BUFFER_BEGIN_COMPRESSED, (unsigned int) bytes_remaining, KCFLAG_USE_MEMCOPY);
714 if (err != KERN_SUCCESS) {
715 panic_info->mph_panic_flags |= MACOS_PANIC_HEADER_FLAG_STACKSHOT_FAILED_ERROR;
716 panic_info->mph_other_log_offset = PE_get_offset_into_panic_region(debug_buf_ptr);
717 kdb_printf("Failed to initialize kcdata buffer for in-memory panic stackshot, skipping ...\n");
718 return;
719 }
720
721 uint64_t stackshot_flags = (STACKSHOT_SAVE_KEXT_LOADINFO | STACKSHOT_SAVE_LOADINFO | STACKSHOT_KCDATA_FORMAT |
722 STACKSHOT_ENABLE_BT_FAULTING | STACKSHOT_ENABLE_UUID_FAULTING | STACKSHOT_FROM_PANIC | STACKSHOT_DO_COMPRESS |
723 STACKSHOT_NO_IO_STATS | STACKSHOT_THREAD_WAITINFO | STACKSHOT_DISABLE_LATENCY_INFO | STACKSHOT_GET_DQ);
724
725 err = kcdata_init_compress(&kc_panic_data, KCDATA_BUFFER_BEGIN_STACKSHOT, stackshot_memcpy, KCDCT_ZLIB);
726 if (err != KERN_SUCCESS) {
727 panic_info->mph_panic_flags |= MACOS_PANIC_HEADER_FLAG_STACKSHOT_FAILED_COMPRESS;
728 stackshot_flags &= ~STACKSHOT_DO_COMPRESS;
729 }
730
731 #if DEVELOPMENT
732 /*
733 * Include the shared cache layout in panic stackshots on DEVELOPMENT kernels so that we can symbolicate
734 * panic stackshots from corefiles.
735 */
736 stackshot_flags |= STACKSHOT_COLLECT_SHAREDCACHE_LAYOUT;
737 #endif
738
739 kdp_snapshot_preflight(-1, (void *) stackshot_begin_loc, (uint32_t) bytes_remaining, stackshot_flags, &kc_panic_data, 0, 0);
740 err = do_stackshot(NULL);
741 bytes_traced = (size_t) kdp_stack_snapshot_bytes_traced();
742 bytes_uncompressed = (size_t) kdp_stack_snapshot_bytes_uncompressed();
743 bytes_used = (size_t) kcdata_memory_get_used_bytes(&kc_panic_data);
744
745 if ((err != KERN_SUCCESS) && (bytes_used > 0)) {
746 /*
747 * We ran out of space while trying to capture a stackshot, try again without user frames.
748 * It's not safe to log from here (in case we're writing in the middle of the debug buffer on coprocessor systems)
749 * but append a flag to the panic flags.
750 */
751 panic_info->mph_panic_flags |= MACOS_PANIC_HEADER_FLAG_STACKSHOT_KERNEL_ONLY;
752 panic_stackshot_reset_state();
753
754 /* Erase the stackshot data (this region is pre-populated with the NULL character) */
755 memset(stackshot_begin_loc, '\0', bytes_used);
756
757 err = kcdata_memory_static_init(&kc_panic_data, (mach_vm_address_t)stackshot_begin_loc,
758 KCDATA_BUFFER_BEGIN_STACKSHOT, (unsigned int) bytes_remaining, KCFLAG_USE_MEMCOPY);
759 if (err != KERN_SUCCESS) {
760 panic_info->mph_panic_flags |= MACOS_PANIC_HEADER_FLAG_STACKSHOT_FAILED_ERROR;
761 panic_info->mph_other_log_offset = PE_get_offset_into_panic_region(debug_buf_ptr);
762 kdb_printf("Failed to re-initialize kcdata buffer for kernel only in-memory panic stackshot, skipping ...\n");
763 return;
764 }
765
766 stackshot_flags = (STACKSHOT_SAVE_KEXT_LOADINFO | STACKSHOT_KCDATA_FORMAT | STACKSHOT_FROM_PANIC | STACKSHOT_DISABLE_LATENCY_INFO |
767 STACKSHOT_NO_IO_STATS | STACKSHOT_THREAD_WAITINFO | STACKSHOT_ACTIVE_KERNEL_THREADS_ONLY | STACKSHOT_GET_DQ);
768 #if DEVELOPMENT
769 /*
770 * Include the shared cache layout in panic stackshots on DEVELOPMENT kernels so that we can symbolicate
771 * panic stackshots from corefiles.
772 */
773 stackshot_flags |= STACKSHOT_COLLECT_SHAREDCACHE_LAYOUT;
774 #endif
775
776 kdp_snapshot_preflight(-1, (void *) stackshot_begin_loc, (uint32_t) bytes_remaining, stackshot_flags, &kc_panic_data, 0, 0);
777 err = do_stackshot(NULL);
778 bytes_traced = (size_t) kdp_stack_snapshot_bytes_traced();
779 bytes_uncompressed = (size_t) kdp_stack_snapshot_bytes_uncompressed();
780 bytes_used = (size_t) kcdata_memory_get_used_bytes(&kc_panic_data);
781 }
782
783 if (err == KERN_SUCCESS) {
784 if (extended_debug_log_enabled) {
785 debug_buf_ptr += bytes_traced;
786 }
787 panic_info->mph_panic_flags |= MACOS_PANIC_HEADER_FLAG_STACKSHOT_SUCCEEDED;
788
789 /* On other systems this is not in the debug buffer itself, it's in a separate buffer allocated at boot. */
790 if (extended_debug_log_enabled) {
791 panic_info->mph_stackshot_offset = PE_get_offset_into_panic_region(stackshot_begin_loc);
792 panic_info->mph_stackshot_len = (uint32_t) bytes_traced;
793 } else {
794 panic_info->mph_stackshot_offset = panic_info->mph_stackshot_len = 0;
795 }
796
797 panic_info->mph_other_log_offset = PE_get_offset_into_panic_region(debug_buf_ptr);
798 if (stackshot_flags & STACKSHOT_DO_COMPRESS) {
799 panic_info->mph_panic_flags |= MACOS_PANIC_HEADER_FLAG_STACKSHOT_DATA_COMPRESSED;
800 kdb_printf("\n** In Memory Panic Stackshot Succeeded ** Bytes Traced %zu (Uncompressed %zu) **\n", bytes_traced, bytes_uncompressed);
801 } else {
802 kdb_printf("\n** In Memory Panic Stackshot Succeeded ** Bytes Traced %zu **\n", bytes_traced);
803 }
804
805 /* Used by the code that writes the buffer to disk */
806 panic_stackshot_buf = (vm_offset_t) stackshot_begin_loc;
807 panic_stackshot_len = bytes_traced;
808
809 if (!extended_debug_log_enabled && (gIOPolledCoreFileMode == kIOPolledCoreFileModeStackshot)) {
810 /* System configured to write panic stackshot to disk */
811 kern_dump(KERN_DUMP_STACKSHOT_DISK);
812 }
813 } else {
814 if (bytes_used > 0) {
815 /* Erase the stackshot data (this region is pre-populated with the NULL character) */
816 memset(stackshot_begin_loc, '\0', bytes_used);
817 panic_info->mph_panic_flags |= MACOS_PANIC_HEADER_FLAG_STACKSHOT_FAILED_INCOMPLETE;
818
819 panic_info->mph_other_log_offset = PE_get_offset_into_panic_region(debug_buf_ptr);
820 kdb_printf("\n** In Memory Panic Stackshot Incomplete ** Bytes Filled %zu ** Err %d\n", bytes_used, err);
821 } else {
822 bzero(stackshot_begin_loc, bytes_used);
823 panic_info->mph_panic_flags |= MACOS_PANIC_HEADER_FLAG_STACKSHOT_FAILED_ERROR;
824
825 panic_info->mph_other_log_offset = PE_get_offset_into_panic_region(debug_buf_ptr);
826 kdb_printf("\n** In Memory Panic Stackshot Failed ** Bytes Traced %zu, err %d\n", bytes_traced, err);
827 }
828 }
829
830 return;
831 }
832
833 void
834 SavePanicInfo(
835 __unused const char *message, void *panic_data, uint64_t panic_options)
836 {
837 void *stackptr = NULL;
838 thread_t thread_to_trace = (thread_t) panic_data;
839 cframe_t synthetic_stack_frame = { };
840 char *debugger_msg = NULL;
841 int cn = cpu_number();
842
843 /*
844 * Issue an I/O port read if one has been requested - this is an event logic
845 * analyzers can use as a trigger point.
846 */
847 panic_notify();
848
849 /* Obtain frame pointer for stack to trace */
850 if (panic_options & DEBUGGER_INTERNAL_OPTION_THREAD_BACKTRACE) {
851 if (!mp_kdp_all_cpus_halted()) {
852 debugger_msg = "Backtracing panicked thread because failed to halt all CPUs\n";
853 } else if (thread_to_trace == THREAD_NULL) {
854 debugger_msg = "Backtracing panicked thread because no thread pointer provided\n";
855 } else if (kvtophys((vm_offset_t)thread_to_trace) == 0ULL) {
856 debugger_msg = "Backtracing panicked thread because unable to access specified thread\n";
857 } else if (thread_to_trace->kernel_stack == 0) {
858 debugger_msg = "Backtracing panicked thread because kernel_stack is NULL for specified thread\n";
859 } else if (kvtophys(STACK_IKS(thread_to_trace->kernel_stack) == 0ULL)) {
860 debugger_msg = "Backtracing panicked thread because unable to access kernel_stack for specified thread\n";
861 } else {
862 debugger_msg = "Backtracing specified thread\n";
863 /* We construct a synthetic stack frame so we can include the current instruction pointer */
864 synthetic_stack_frame.prev = (cframe_t *)STACK_IKS(thread_to_trace->kernel_stack)->k_rbp;
865 synthetic_stack_frame.caller = (uintptr_t) STACK_IKS(thread_to_trace->kernel_stack)->k_rip;
866 stackptr = (void *) &synthetic_stack_frame;
867 }
868 }
869
870 if (stackptr == NULL) {
871 __asm__ volatile ("movq %%rbp, %0" : "=m" (stackptr));
872 }
873
874 /* Print backtrace - callee is internally synchronized */
875 if (panic_options & DEBUGGER_OPTION_INITPROC_PANIC) {
876 /* Special handling of launchd died panics */
877 print_launchd_info();
878 } else {
879 panic_i386_backtrace(stackptr, ((panic_double_fault_cpu == cn) ? 80 : 48), debugger_msg, FALSE, NULL);
880 }
881
882 if (panic_options & DEBUGGER_OPTION_COPROC_INITIATED_PANIC) {
883 panic_info->mph_panic_flags |= MACOS_PANIC_HEADER_FLAG_COPROC_INITIATED_PANIC;
884 }
885
886 if (PE_get_offset_into_panic_region(debug_buf_ptr) < panic_info->mph_panic_log_offset) {
887 kdb_printf("Invalid panic log offset found (not properly initialized?): debug_buf_ptr : 0x%p, panic_info: 0x%p mph_panic_log_offset: 0x%x\n",
888 debug_buf_ptr, panic_info, panic_info->mph_panic_log_offset);
889 panic_info->mph_panic_log_len = 0;
890 } else {
891 panic_info->mph_panic_log_len = PE_get_offset_into_panic_region(debug_buf_ptr) - panic_info->mph_panic_log_offset;
892 }
893
894 /* Flush the panic log */
895 paniclog_flush_internal(kPaniclogFlushBase);
896
897 /* Try to take a panic stackshot */
898 RecordPanicStackshot();
899
900 /*
901 * Flush the panic log again with the stackshot or any relevant logging
902 * from when we tried to capture it.
903 */
904 paniclog_flush_internal(kPaniclogFlushStackshot);
905 }
906
907 void
908 paniclog_flush_internal(paniclog_flush_type_t variant)
909 {
910 /* Update the other log offset if we've opened the other log */
911 if (panic_info->mph_other_log_offset != 0) {
912 panic_info->mph_other_log_len = PE_get_offset_into_panic_region(debug_buf_ptr) - panic_info->mph_other_log_offset;
913 }
914
915 /*
916 * If we've detected that we're on a co-processor system, we flush the panic log via the kPEPanicSync
917 * panic callbacks, otherwise we flush via nvram (unless that has been disabled).
918 */
919 if (coprocessor_paniclog_flush) {
920 uint32_t overall_buffer_size = debug_buf_size;
921 uint32_t size_to_flush = 0, offset_to_flush = 0;
922 if (extended_debug_log_enabled) {
923 /*
924 * debug_buf_size for the extended log does not include the length of the header.
925 * There may be some extra data at the end of the 'basic' log that wouldn't get flushed
926 * for the non-extended case (this is a concession we make to not shrink the paniclog data
927 * for non-coprocessor systems that only use the basic log).
928 */
929 overall_buffer_size = debug_buf_size + sizeof(struct macos_panic_header);
930 }
931
932 /* Update the CRC */
933 panic_info->mph_crc = crc32(0L, &panic_info->mph_version, (overall_buffer_size - offsetof(struct macos_panic_header, mph_version)));
934
935 if (variant == kPaniclogFlushBase) {
936 /* Flush the header and base panic log. */
937 kprintf("Flushing base panic log\n");
938 size_to_flush = ROUNDUP((panic_info->mph_panic_log_offset + panic_info->mph_panic_log_len), PANIC_FLUSH_BOUNDARY);
939 offset_to_flush = 0;
940 PESavePanicInfoAction(panic_info, offset_to_flush, size_to_flush);
941 } else if ((variant == kPaniclogFlushStackshot) || (variant == kPaniclogFlushOtherLog)) {
942 if (variant == kPaniclogFlushStackshot) {
943 /*
944 * We flush the stackshot before flushing the updated header because the stackshot
945 * can take a while to flush. We want the paniclog header to be as consistent as possible even
946 * if the stackshot isn't flushed completely. Flush starting from the end of the panic log.
947 */
948 kprintf("Flushing panic log stackshot\n");
949 offset_to_flush = ROUNDDOWN((panic_info->mph_panic_log_offset + panic_info->mph_panic_log_len), PANIC_FLUSH_BOUNDARY);
950 size_to_flush = ROUNDUP((panic_info->mph_stackshot_len + (panic_info->mph_stackshot_offset - offset_to_flush)), PANIC_FLUSH_BOUNDARY);
951 PESavePanicInfoAction(panic_info, offset_to_flush, size_to_flush);
952 }
953
954 /* Flush the other log -- everything after the stackshot */
955 kprintf("Flushing panic 'other' log\n");
956 offset_to_flush = ROUNDDOWN((panic_info->mph_stackshot_offset + panic_info->mph_stackshot_len), PANIC_FLUSH_BOUNDARY);
957 size_to_flush = ROUNDUP((panic_info->mph_other_log_len + (panic_info->mph_other_log_offset - offset_to_flush)), PANIC_FLUSH_BOUNDARY);
958 PESavePanicInfoAction(panic_info, offset_to_flush, size_to_flush);
959
960 /* Flush the header -- everything before the paniclog */
961 kprintf("Flushing panic log header\n");
962 size_to_flush = ROUNDUP(panic_info->mph_panic_log_offset, PANIC_FLUSH_BOUNDARY);
963 offset_to_flush = 0;
964 PESavePanicInfoAction(panic_info, offset_to_flush, size_to_flush);
965 }
966 } else if (commit_paniclog_to_nvram) {
967 assert(debug_buf_size != 0);
968 unsigned int bufpos;
969 unsigned long pi_size = 0;
970 uintptr_t cr0;
971
972 debug_putc(0);
973
974 /*
975 * Now call the compressor
976 * XXX Consider using the WKdm compressor in the
977 * future, rather than just packing - would need to
978 * be co-ordinated with crashreporter, which decodes
979 * this post-restart. The compressor should be
980 * capable of in-place compression.
981 *
982 * Don't include the macOS panic header (for co-processor systems only)
983 */
984 bufpos = packA(debug_buf_base, (unsigned int) (debug_buf_ptr - debug_buf_base),
985 debug_buf_size);
986 /*
987 * If compression was successful, use the compressed length
988 */
989 pi_size = bufpos ? bufpos : (unsigned) (debug_buf_ptr - debug_buf_base);
990
991 /*
992 * The following sequence is a workaround for:
993 * <rdar://problem/5915669> SnowLeopard10A67: AppleEFINVRAM should not invoke
994 * any routines that use floating point (MMX in this case) when saving panic
995 * logs to nvram/flash.
996 */
997 cr0 = get_cr0();
998 clear_ts();
999
1000 /*
1001 * Save panic log to non-volatile store
1002 * Panic info handler must truncate data that is
1003 * too long for this platform.
1004 * This call must save data synchronously,
1005 * since we can subsequently halt the system.
1006 */
1007 kprintf("Attempting to commit panic log to NVRAM\n");
1008 pi_size = PESavePanicInfo((unsigned char *)debug_buf_base,
1009 (uint32_t)pi_size );
1010 set_cr0(cr0);
1011
1012 /*
1013 * Uncompress in-place, to permit examination of
1014 * the panic log by debuggers.
1015 */
1016 if (bufpos) {
1017 unpackA(debug_buf_base, bufpos);
1018 }
1019 }
1020 }
1021
1022 void
1023 paniclog_flush()
1024 {
1025 /* Called outside of this file to update logging appended to the "other" log */
1026 paniclog_flush_internal(kPaniclogFlushOtherLog);
1027 return;
1028 }
1029
1030 char *
1031 machine_boot_info(char *buf, __unused vm_size_t size)
1032 {
1033 *buf = '\0';
1034 return buf;
1035 }
1036
1037 /* Routines for address - symbol translation. Not called unless the "keepsyms"
1038 * boot-arg is supplied.
1039 */
1040
1041 static int
1042 panic_print_macho_symbol_name(kernel_mach_header_t *mh, vm_address_t search, const char *module_name)
1043 {
1044 kernel_nlist_t *sym = NULL;
1045 struct load_command *cmd;
1046 kernel_segment_command_t *orig_ts = NULL, *orig_le = NULL;
1047 struct symtab_command *orig_st = NULL;
1048 unsigned int i;
1049 char *strings, *bestsym = NULL;
1050 vm_address_t bestaddr = 0, diff, curdiff;
1051
1052 /* Assume that if it's loaded and linked into the kernel, it's a valid Mach-O */
1053
1054 cmd = (struct load_command *) &mh[1];
1055 for (i = 0; i < mh->ncmds; i++) {
1056 if (cmd->cmd == LC_SEGMENT_KERNEL) {
1057 kernel_segment_command_t *orig_sg = (kernel_segment_command_t *) cmd;
1058
1059 if (strncmp(SEG_TEXT, orig_sg->segname,
1060 sizeof(orig_sg->segname)) == 0) {
1061 orig_ts = orig_sg;
1062 } else if (strncmp(SEG_LINKEDIT, orig_sg->segname,
1063 sizeof(orig_sg->segname)) == 0) {
1064 orig_le = orig_sg;
1065 } else if (strncmp("", orig_sg->segname,
1066 sizeof(orig_sg->segname)) == 0) {
1067 orig_ts = orig_sg; /* pre-Lion i386 kexts have a single unnamed segment */
1068 }
1069 } else if (cmd->cmd == LC_SYMTAB) {
1070 orig_st = (struct symtab_command *) cmd;
1071 }
1072
1073 cmd = (struct load_command *) ((uintptr_t) cmd + cmd->cmdsize);
1074 }
1075
1076 if ((orig_ts == NULL) || (orig_st == NULL) || (orig_le == NULL)) {
1077 return 0;
1078 }
1079
1080 if ((search < orig_ts->vmaddr) ||
1081 (search >= orig_ts->vmaddr + orig_ts->vmsize)) {
1082 /* search out of range for this mach header */
1083 return 0;
1084 }
1085
1086 sym = (kernel_nlist_t *)(uintptr_t)(orig_le->vmaddr + orig_st->symoff - orig_le->fileoff);
1087 strings = (char *)(uintptr_t)(orig_le->vmaddr + orig_st->stroff - orig_le->fileoff);
1088 diff = search;
1089
1090 for (i = 0; i < orig_st->nsyms; i++) {
1091 if (sym[i].n_type & N_STAB) {
1092 continue;
1093 }
1094
1095 if (sym[i].n_value <= search) {
1096 curdiff = search - (vm_address_t)sym[i].n_value;
1097 if (curdiff < diff) {
1098 diff = curdiff;
1099 bestaddr = sym[i].n_value;
1100 bestsym = strings + sym[i].n_un.n_strx;
1101 }
1102 }
1103 }
1104
1105 if (bestsym != NULL) {
1106 if (diff != 0) {
1107 paniclog_append_noflush("%s : %s + 0x%lx", module_name, bestsym, (unsigned long)diff);
1108 } else {
1109 paniclog_append_noflush("%s : %s", module_name, bestsym);
1110 }
1111 return 1;
1112 }
1113 return 0;
1114 }
1115
1116 static void
1117 panic_display_uptime(void)
1118 {
1119 uint64_t uptime;
1120 absolutetime_to_nanoseconds(mach_absolute_time(), &uptime);
1121
1122 paniclog_append_noflush("\nSystem uptime in nanoseconds: %llu\n", uptime);
1123 }
1124
1125 extern uint32_t gIOHibernateCount;
1126
1127 static void
1128 panic_display_hib_count(void)
1129 {
1130 paniclog_append_noflush("Hibernation exit count: %u\n", gIOHibernateCount);
1131 }
1132
1133 extern AbsoluteTime gIOLastSleepAbsTime;
1134 extern AbsoluteTime gIOLastWakeAbsTime;
1135 extern uint64_t gAcpiLastSleepTscBase;
1136 extern uint64_t gAcpiLastSleepNanoBase;
1137 extern uint64_t gAcpiLastWakeTscBase;
1138 extern uint64_t gAcpiLastWakeNanoBase;
1139 extern boolean_t is_clock_configured;
1140
1141 static void
1142 panic_display_times(void)
1143 {
1144 if (!is_clock_configured) {
1145 paniclog_append_noflush("Warning: clock is not configured. Can't get time\n");
1146 return;
1147 }
1148
1149 paniclog_append_noflush("Last Sleep: absolute base_tsc base_nano\n");
1150 paniclog_append_noflush(" Uptime : 0x%016llx\n", mach_absolute_time());
1151 paniclog_append_noflush(" Sleep : 0x%016llx 0x%016llx 0x%016llx\n", gIOLastSleepAbsTime, gAcpiLastSleepTscBase, gAcpiLastSleepNanoBase);
1152 paniclog_append_noflush(" Wake : 0x%016llx 0x%016llx 0x%016llx\n", gIOLastWakeAbsTime, gAcpiLastWakeTscBase, gAcpiLastWakeNanoBase);
1153 }
1154
1155 static void
1156 panic_display_disk_errors(void)
1157 {
1158 if (panic_disk_error_description[0]) {
1159 panic_disk_error_description[panic_disk_error_description_size - 1] = '\0';
1160 paniclog_append_noflush("Root disk errors: \"%s\"\n", panic_disk_error_description);
1161 }
1162 }
1163
1164 static void
1165 panic_display_shutdown_status(void)
1166 {
1167 #if defined(__i386__) || defined(__x86_64__)
1168 paniclog_append_noflush("System shutdown begun: %s\n", IOPMRootDomainGetWillShutdown() ? "YES" : "NO");
1169 if (gIOPolledCoreFileMode == kIOPolledCoreFileModeNotInitialized) {
1170 paniclog_append_noflush("Panic diags file unavailable, panic occurred prior to initialization\n");
1171 } else if (gIOPolledCoreFileMode != kIOPolledCoreFileModeDisabled) {
1172 /*
1173 * If we haven't marked the corefile as explicitly disabled, and we've made it past initialization, then we know the current
1174 * system was configured to use disk based diagnostics at some point.
1175 */
1176 paniclog_append_noflush("Panic diags file available: %s (0x%x)\n", (gIOPolledCoreFileMode != kIOPolledCoreFileModeClosed) ? "YES" : "NO", kdp_polled_corefile_error());
1177 }
1178 #endif
1179 }
1180
1181 extern const char version[];
1182 extern char osversion[];
1183
1184 static volatile uint32_t config_displayed = 0;
1185
1186 static void
1187 panic_display_system_configuration(boolean_t launchd_exit)
1188 {
1189 if (!launchd_exit) {
1190 panic_display_process_name();
1191 }
1192 if (OSCompareAndSwap(0, 1, &config_displayed)) {
1193 char buf[256];
1194 if (!launchd_exit && strlcpy(buf, PE_boot_args(), sizeof(buf))) {
1195 paniclog_append_noflush("Boot args: %s\n", buf);
1196 }
1197 paniclog_append_noflush("\nMac OS version:\n%s\n",
1198 (osversion[0] != 0) ? osversion : "Not yet set");
1199 paniclog_append_noflush("\nKernel version:\n%s\n", version);
1200 panic_display_kernel_uuid();
1201 if (!launchd_exit) {
1202 panic_display_kernel_aslr();
1203 panic_display_hibb();
1204 panic_display_pal_info();
1205 }
1206 panic_display_model_name();
1207 panic_display_disk_errors();
1208 panic_display_shutdown_status();
1209 if (!launchd_exit) {
1210 panic_display_hib_count();
1211 panic_display_uptime();
1212 panic_display_times();
1213 panic_display_zprint();
1214 #if CONFIG_ZLEAKS
1215 panic_display_ztrace();
1216 #endif /* CONFIG_ZLEAKS */
1217 kext_dump_panic_lists(&paniclog_append_noflush);
1218 }
1219 }
1220 }
1221
1222 extern kmod_info_t * kmod; /* the list of modules */
1223
1224 static void
1225 panic_print_kmod_symbol_name(vm_address_t search)
1226 {
1227 u_int i;
1228
1229 if (gLoadedKextSummaries == NULL) {
1230 return;
1231 }
1232 for (i = 0; i < gLoadedKextSummaries->numSummaries; ++i) {
1233 OSKextLoadedKextSummary *summary = gLoadedKextSummaries->summaries + i;
1234
1235 if ((search >= summary->address) &&
1236 (search < (summary->address + summary->size))) {
1237 kernel_mach_header_t *header = (kernel_mach_header_t *)(uintptr_t) summary->address;
1238 if (panic_print_macho_symbol_name(header, search, summary->name) == 0) {
1239 paniclog_append_noflush("%s + %llu", summary->name, (unsigned long)search - summary->address);
1240 }
1241 break;
1242 }
1243 }
1244 }
1245
1246 void
1247 panic_print_symbol_name(vm_address_t search)
1248 {
1249 /* try searching in the kernel */
1250 if (panic_print_macho_symbol_name(&_mh_execute_header, search, "mach_kernel") == 0) {
1251 /* that failed, now try to search for the right kext */
1252 panic_print_kmod_symbol_name(search);
1253 }
1254 }
1255
1256 /* Generate a backtrace, given a frame pointer - this routine
1257 * should walk the stack safely. The trace is appended to the panic log
1258 * and conditionally, to the console. If the trace contains kernel module
1259 * addresses, display the module name, load address and dependencies.
1260 */
1261
1262 #define DUMPFRAMES 32
1263 #define PBT_TIMEOUT_CYCLES (5 * 1000 * 1000 * 1000ULL)
1264 void
1265 panic_i386_backtrace(void *_frame, int nframes, const char *msg, boolean_t regdump, x86_saved_state_t *regs)
1266 {
1267 cframe_t *frame = (cframe_t *)_frame;
1268 vm_offset_t raddrs[DUMPFRAMES];
1269 vm_offset_t PC = 0;
1270 int frame_index;
1271 volatile uint32_t *ppbtcnt = &pbtcnt;
1272 uint64_t bt_tsc_timeout;
1273 boolean_t keepsyms = FALSE;
1274 int cn = cpu_number();
1275 boolean_t old_doprnt_hide_pointers = doprnt_hide_pointers;
1276
1277 #if DEVELOPMENT || DEBUG
1278 /* Turn off I/O tracing now that we're panicking */
1279 mmiotrace_enabled = 0;
1280 #endif
1281
1282 if (pbtcpu != cn) {
1283 os_atomic_inc(&pbtcnt, relaxed);
1284 /* Spin on print backtrace lock, which serializes output
1285 * Continue anyway if a timeout occurs.
1286 */
1287 hw_lock_to(&pbtlock, ~0U, LCK_GRP_NULL);
1288 pbtcpu = cn;
1289 }
1290
1291 if (__improbable(doprnt_hide_pointers == TRUE)) {
1292 /* If we're called directly, the Debugger() function will not be called,
1293 * so we need to reset the value in here. */
1294 doprnt_hide_pointers = FALSE;
1295 }
1296
1297 panic_check_hook();
1298
1299 PE_parse_boot_argn("keepsyms", &keepsyms, sizeof(keepsyms));
1300
1301 if (msg != NULL) {
1302 paniclog_append_noflush("%s", msg);
1303 }
1304
1305 if ((regdump == TRUE) && (regs != NULL)) {
1306 x86_saved_state64_t *ss64p = saved_state64(regs);
1307 paniclog_append_noflush(
1308 "RAX: 0x%016llx, RBX: 0x%016llx, RCX: 0x%016llx, RDX: 0x%016llx\n"
1309 "RSP: 0x%016llx, RBP: 0x%016llx, RSI: 0x%016llx, RDI: 0x%016llx\n"
1310 "R8: 0x%016llx, R9: 0x%016llx, R10: 0x%016llx, R11: 0x%016llx\n"
1311 "R12: 0x%016llx, R13: 0x%016llx, R14: 0x%016llx, R15: 0x%016llx\n"
1312 "RFL: 0x%016llx, RIP: 0x%016llx, CS: 0x%016llx, SS: 0x%016llx\n",
1313 ss64p->rax, ss64p->rbx, ss64p->rcx, ss64p->rdx,
1314 ss64p->isf.rsp, ss64p->rbp, ss64p->rsi, ss64p->rdi,
1315 ss64p->r8, ss64p->r9, ss64p->r10, ss64p->r11,
1316 ss64p->r12, ss64p->r13, ss64p->r14, ss64p->r15,
1317 ss64p->isf.rflags, ss64p->isf.rip, ss64p->isf.cs,
1318 ss64p->isf.ss);
1319 PC = ss64p->isf.rip;
1320 }
1321
1322 paniclog_append_noflush("Backtrace (CPU %d), "
1323 #if PRINT_ARGS_FROM_STACK_FRAME
1324 "Frame : Return Address (4 potential args on stack)\n", cn);
1325 #else
1326 "Frame : Return Address\n", cn);
1327 #endif
1328
1329 for (frame_index = 0; frame_index < nframes; frame_index++) {
1330 vm_offset_t curframep = (vm_offset_t) frame;
1331
1332 if (!curframep) {
1333 break;
1334 }
1335
1336 if (curframep & 0x3) {
1337 paniclog_append_noflush("Unaligned frame\n");
1338 goto invalid;
1339 }
1340
1341 if (!kvtophys(curframep) ||
1342 !kvtophys(curframep + sizeof(cframe_t) - 1)) {
1343 paniclog_append_noflush("No mapping exists for frame pointer\n");
1344 goto invalid;
1345 }
1346
1347 paniclog_append_noflush("%p : 0x%lx ", frame, frame->caller);
1348 if (frame_index < DUMPFRAMES) {
1349 raddrs[frame_index] = frame->caller;
1350 }
1351
1352 #if PRINT_ARGS_FROM_STACK_FRAME
1353 if (kvtophys((vm_offset_t)&(frame->args[3]))) {
1354 paniclog_append_noflush("(0x%x 0x%x 0x%x 0x%x) ",
1355 frame->args[0], frame->args[1],
1356 frame->args[2], frame->args[3]);
1357 }
1358 #endif
1359
1360 /* Display address-symbol translation only if the "keepsyms"
1361 * boot-arg is suppplied, since we unload LINKEDIT otherwise.
1362 * This routine is potentially unsafe; also, function
1363 * boundary identification is unreliable after a strip -x.
1364 */
1365 if (keepsyms) {
1366 panic_print_symbol_name((vm_address_t)frame->caller);
1367 }
1368
1369 paniclog_append_noflush("\n");
1370
1371 frame = frame->prev;
1372 }
1373
1374 if (frame_index >= nframes) {
1375 paniclog_append_noflush("\tBacktrace continues...\n");
1376 }
1377
1378 goto out;
1379
1380 invalid:
1381 paniclog_append_noflush("Backtrace terminated-invalid frame pointer %p\n", frame);
1382 out:
1383
1384 /* Identify kernel modules in the backtrace and display their
1385 * load addresses and dependencies. This routine should walk
1386 * the kmod list safely.
1387 */
1388 if (frame_index) {
1389 kmod_panic_dump((vm_offset_t *)&raddrs[0], frame_index);
1390 }
1391
1392 if (PC != 0) {
1393 kmod_panic_dump(&PC, 1);
1394 }
1395
1396 panic_display_system_configuration(FALSE);
1397
1398 doprnt_hide_pointers = old_doprnt_hide_pointers;
1399
1400 /* Release print backtrace lock, to permit other callers in the
1401 * event of panics on multiple processors.
1402 */
1403 hw_lock_unlock(&pbtlock);
1404 os_atomic_dec(&pbtcnt, relaxed);
1405 /* Wait for other processors to complete output
1406 * Timeout and continue after PBT_TIMEOUT_CYCLES.
1407 */
1408 bt_tsc_timeout = rdtsc64() + PBT_TIMEOUT_CYCLES;
1409 while (*ppbtcnt && (rdtsc64() < bt_tsc_timeout)) {
1410 ;
1411 }
1412 }
1413
1414 static boolean_t
1415 debug_copyin(pmap_t p, uint64_t uaddr, void *dest, size_t size)
1416 {
1417 size_t rem = size;
1418 char *kvaddr = dest;
1419
1420 while (rem) {
1421 ppnum_t upn = pmap_find_phys(p, uaddr);
1422 uint64_t phys_src = ptoa_64(upn) | (uaddr & PAGE_MASK);
1423 uint64_t phys_dest = kvtophys((vm_offset_t)kvaddr);
1424 uint64_t src_rem = PAGE_SIZE - (phys_src & PAGE_MASK);
1425 uint64_t dst_rem = PAGE_SIZE - (phys_dest & PAGE_MASK);
1426 size_t cur_size = (uint32_t) MIN(src_rem, dst_rem);
1427 cur_size = MIN(cur_size, rem);
1428
1429 if (upn && pmap_valid_page(upn) && phys_dest) {
1430 bcopy_phys(phys_src, phys_dest, cur_size);
1431 } else {
1432 break;
1433 }
1434 uaddr += cur_size;
1435 kvaddr += cur_size;
1436 rem -= cur_size;
1437 }
1438 return rem == 0;
1439 }
1440
1441 void
1442 print_threads_registers(thread_t thread)
1443 {
1444 x86_saved_state_t *savestate;
1445
1446 savestate = get_user_regs(thread);
1447 paniclog_append_noflush(
1448 "\nRAX: 0x%016llx, RBX: 0x%016llx, RCX: 0x%016llx, RDX: 0x%016llx\n"
1449 "RSP: 0x%016llx, RBP: 0x%016llx, RSI: 0x%016llx, RDI: 0x%016llx\n"
1450 "R8: 0x%016llx, R9: 0x%016llx, R10: 0x%016llx, R11: 0x%016llx\n"
1451 "R12: 0x%016llx, R13: 0x%016llx, R14: 0x%016llx, R15: 0x%016llx\n"
1452 "RFL: 0x%016llx, RIP: 0x%016llx, CS: 0x%016llx, SS: 0x%016llx\n\n",
1453 savestate->ss_64.rax, savestate->ss_64.rbx, savestate->ss_64.rcx, savestate->ss_64.rdx,
1454 savestate->ss_64.isf.rsp, savestate->ss_64.rbp, savestate->ss_64.rsi, savestate->ss_64.rdi,
1455 savestate->ss_64.r8, savestate->ss_64.r9, savestate->ss_64.r10, savestate->ss_64.r11,
1456 savestate->ss_64.r12, savestate->ss_64.r13, savestate->ss_64.r14, savestate->ss_64.r15,
1457 savestate->ss_64.isf.rflags, savestate->ss_64.isf.rip, savestate->ss_64.isf.cs,
1458 savestate->ss_64.isf.ss);
1459 }
1460
1461 void
1462 print_tasks_user_threads(task_t task)
1463 {
1464 thread_t thread = current_thread();
1465 x86_saved_state_t *savestate;
1466 pmap_t pmap = 0;
1467 uint64_t rbp;
1468 const char *cur_marker = 0;
1469 int j;
1470
1471 for (j = 0, thread = (thread_t) queue_first(&task->threads); j < task->thread_count;
1472 ++j, thread = (thread_t) queue_next(&thread->task_threads)) {
1473 paniclog_append_noflush("Thread %d: %p\n", j, thread);
1474 pmap = get_task_pmap(task);
1475 savestate = get_user_regs(thread);
1476 rbp = savestate->ss_64.rbp;
1477 paniclog_append_noflush("\t0x%016llx\n", savestate->ss_64.isf.rip);
1478 print_one_backtrace(pmap, (vm_offset_t)rbp, cur_marker, TRUE);
1479 paniclog_append_noflush("\n");
1480 }
1481 }
1482
1483 void
1484 print_thread_num_that_crashed(task_t task)
1485 {
1486 thread_t c_thread = current_thread();
1487 thread_t thread;
1488 int j;
1489
1490 for (j = 0, thread = (thread_t) queue_first(&task->threads); j < task->thread_count;
1491 ++j, thread = (thread_t) queue_next(&thread->task_threads)) {
1492 if (c_thread == thread) {
1493 paniclog_append_noflush("\nThread %d crashed\n", j);
1494 break;
1495 }
1496 }
1497 }
1498
1499 #define PANICLOG_UUID_BUF_SIZE 256
1500
1501 void
1502 print_uuid_info(task_t task)
1503 {
1504 uint32_t uuid_info_count = 0;
1505 mach_vm_address_t uuid_info_addr = 0;
1506 boolean_t have_map = (task->map != NULL) && (ml_validate_nofault((vm_offset_t)(task->map), sizeof(struct _vm_map)));
1507 boolean_t have_pmap = have_map && (task->map->pmap != NULL) && (ml_validate_nofault((vm_offset_t)(task->map->pmap), sizeof(struct pmap)));
1508 int task_pid = pid_from_task(task);
1509 char uuidbuf[PANICLOG_UUID_BUF_SIZE] = {0};
1510 char *uuidbufptr = uuidbuf;
1511 uint32_t k;
1512
1513 if (have_pmap && task->active && task_pid > 0) {
1514 /* Read dyld_all_image_infos struct from task memory to get UUID array count & location */
1515 struct user64_dyld_all_image_infos task_image_infos;
1516 if (debug_copyin(task->map->pmap, task->all_image_info_addr,
1517 &task_image_infos, sizeof(struct user64_dyld_all_image_infos))) {
1518 uuid_info_count = (uint32_t)task_image_infos.uuidArrayCount;
1519 uuid_info_addr = task_image_infos.uuidArray;
1520 }
1521
1522 /* If we get a NULL uuid_info_addr (which can happen when we catch dyld
1523 * in the middle of updating this data structure), we zero the
1524 * uuid_info_count so that we won't even try to save load info for this task
1525 */
1526 if (!uuid_info_addr) {
1527 uuid_info_count = 0;
1528 }
1529 }
1530
1531 if (task_pid > 0 && uuid_info_count > 0) {
1532 uint32_t uuid_info_size = sizeof(struct user64_dyld_uuid_info);
1533 uint32_t uuid_array_size = uuid_info_count * uuid_info_size;
1534 uint32_t uuid_copy_size = 0;
1535 uint32_t uuid_image_count = 0;
1536 char *current_uuid_buffer = NULL;
1537 /* Copy in the UUID info array. It may be nonresident, in which case just fix up nloadinfos to 0 */
1538
1539 paniclog_append_noflush("\nuuid info:\n");
1540 while (uuid_array_size) {
1541 if (uuid_array_size <= PANICLOG_UUID_BUF_SIZE) {
1542 uuid_copy_size = uuid_array_size;
1543 uuid_image_count = uuid_array_size / uuid_info_size;
1544 } else {
1545 uuid_image_count = PANICLOG_UUID_BUF_SIZE / uuid_info_size;
1546 uuid_copy_size = uuid_image_count * uuid_info_size;
1547 }
1548 if (have_pmap && !debug_copyin(task->map->pmap, uuid_info_addr, uuidbufptr,
1549 uuid_copy_size)) {
1550 paniclog_append_noflush("Error!! Failed to copy UUID info for task %p pid %d\n", task, task_pid);
1551 uuid_image_count = 0;
1552 break;
1553 }
1554
1555 if (uuid_image_count > 0) {
1556 current_uuid_buffer = uuidbufptr;
1557 for (k = 0; k < uuid_image_count; k++) {
1558 paniclog_append_noflush(" %#llx", *(uint64_t *)current_uuid_buffer);
1559 current_uuid_buffer += sizeof(uint64_t);
1560 uint8_t *uuid = (uint8_t *)current_uuid_buffer;
1561 paniclog_append_noflush("\tuuid = <%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-%02x%02x%02x%02x%02x%02x>\n",
1562 uuid[0], uuid[1], uuid[2], uuid[3], uuid[4], uuid[5], uuid[6], uuid[7], uuid[8],
1563 uuid[9], uuid[10], uuid[11], uuid[12], uuid[13], uuid[14], uuid[15]);
1564 current_uuid_buffer += 16;
1565 }
1566 bzero(&uuidbuf, sizeof(uuidbuf));
1567 }
1568 uuid_info_addr += uuid_copy_size;
1569 uuid_array_size -= uuid_copy_size;
1570 }
1571 }
1572 }
1573
1574 void
1575 print_launchd_info(void)
1576 {
1577 task_t task = current_task();
1578 thread_t thread = current_thread();
1579 volatile uint32_t *ppbtcnt = &pbtcnt;
1580 uint64_t bt_tsc_timeout;
1581 int cn = cpu_number();
1582
1583 if (pbtcpu != cn) {
1584 os_atomic_inc(&pbtcnt, relaxed);
1585 /* Spin on print backtrace lock, which serializes output
1586 * Continue anyway if a timeout occurs.
1587 */
1588 hw_lock_to(&pbtlock, ~0U, LCK_GRP_NULL);
1589 pbtcpu = cn;
1590 }
1591
1592 print_uuid_info(task);
1593 print_thread_num_that_crashed(task);
1594 print_threads_registers(thread);
1595 print_tasks_user_threads(task);
1596
1597 panic_display_system_configuration(TRUE);
1598
1599 /* Release print backtrace lock, to permit other callers in the
1600 * event of panics on multiple processors.
1601 */
1602 hw_lock_unlock(&pbtlock);
1603 os_atomic_dec(&pbtcnt, relaxed);
1604 /* Wait for other processors to complete output
1605 * Timeout and continue after PBT_TIMEOUT_CYCLES.
1606 */
1607 bt_tsc_timeout = rdtsc64() + PBT_TIMEOUT_CYCLES;
1608 while (*ppbtcnt && (rdtsc64() < bt_tsc_timeout)) {
1609 ;
1610 }
1611 }
1612
1613 /*
1614 * Compares 2 EFI GUIDs. Returns true if they match.
1615 */
1616 static bool
1617 efi_compare_guids(EFI_GUID *guid1, EFI_GUID *guid2)
1618 {
1619 return (bcmp(guid1, guid2, sizeof(EFI_GUID)) == 0) ? true : false;
1620 }
1621
1622 /*
1623 * Converts from an efiboot-originated virtual address to a physical
1624 * address.
1625 */
1626 static inline uint64_t
1627 efi_efiboot_virtual_to_physical(uint64_t addr)
1628 {
1629 if (addr >= VM_MIN_KERNEL_ADDRESS) {
1630 return addr & (0x40000000ULL - 1);
1631 } else {
1632 return addr;
1633 }
1634 }
1635
1636 /*
1637 * Convers from a efiboot-originated virtual address to an accessible
1638 * pointer to that physical address by translating it to a physmap-relative
1639 * address.
1640 */
1641 static void *
1642 efi_efiboot_virtual_to_physmap_virtual(uint64_t addr)
1643 {
1644 return PHYSMAP_PTOV(efi_efiboot_virtual_to_physical(addr));
1645 }
1646
1647 /*
1648 * Returns the physical address of the firmware table identified
1649 * by the passed-in GUID, or 0 if the table could not be located.
1650 */
1651 static uint64_t
1652 efi_get_cfgtbl_by_guid(EFI_GUID *guidp)
1653 {
1654 EFI_CONFIGURATION_TABLE_64 *cfg_table_entp, *cfgTable;
1655 boot_args *args = (boot_args *)PE_state.bootArgs;
1656 EFI_SYSTEM_TABLE_64 *estp;
1657 uint32_t i, hdr_cksum, cksum;
1658
1659 estp = (EFI_SYSTEM_TABLE_64 *)efi_efiboot_virtual_to_physmap_virtual(args->efiSystemTable);
1660
1661 assert(estp != 0);
1662
1663 // Verify signature of the system table
1664 hdr_cksum = estp->Hdr.CRC32;
1665 estp->Hdr.CRC32 = 0;
1666 cksum = crc32(0L, estp, estp->Hdr.HeaderSize);
1667 estp->Hdr.CRC32 = hdr_cksum;
1668
1669 if (cksum != hdr_cksum) {
1670 DPRINTF("efi_get_cfgtbl_by_guid: EST CRC32 = 0x%x, header = 0x%x\n", cksum, hdr_cksum);
1671 DPRINTF("Bad EFI system table checksum\n");
1672 return 0;
1673 }
1674
1675 /*
1676 * efiboot can (and will) change the address of ConfigurationTable (and each table's VendorTable address)
1677 * to a kernel-virtual address. Reverse that to get the physical address, which we then use to get a
1678 * physmap-based virtual address.
1679 */
1680 cfgTable = (EFI_CONFIGURATION_TABLE_64 *)efi_efiboot_virtual_to_physmap_virtual(estp->ConfigurationTable);
1681
1682 for (i = 0; i < estp->NumberOfTableEntries; i++) {
1683 cfg_table_entp = (EFI_CONFIGURATION_TABLE_64 *)&cfgTable[i];
1684
1685 DPRINTF("EST: Comparing GUIDs for entry %d\n", i);
1686 if (cfg_table_entp == 0) {
1687 continue;
1688 }
1689
1690 if (efi_compare_guids(&cfg_table_entp->VendorGuid, guidp) == true) {
1691 DPRINTF("GUID match: returning %p\n", (void *)(uintptr_t)cfg_table_entp->VendorTable);
1692 return efi_efiboot_virtual_to_physical(cfg_table_entp->VendorTable);
1693 }
1694 }
1695
1696 /* Not found */
1697 return 0;
1698 }
1699
1700 /*
1701 * Returns the physical address of the RSDP (either v1 or >=v2) or 0
1702 * if the RSDP could not be located.
1703 */
1704 uint64_t
1705 efi_get_rsdp_physaddr(void)
1706 {
1707 uint64_t rsdp_addr;
1708 #define ACPI_RSDP_GUID \
1709 { 0xeb9d2d30, 0x2d88, 0x11d3, {0x9a, 0x16, 0x0, 0x90, 0x27, 0x3f, 0xc1, 0x4d} }
1710 #define ACPI_20_RSDP_GUID \
1711 { 0x8868e871, 0xe4f1, 0x11d3, {0xbc, 0x22, 0x0, 0x80, 0xc7, 0x3c, 0x88, 0x81} }
1712
1713 static EFI_GUID EFI_RSDP_GUID_ACPI20 = ACPI_20_RSDP_GUID;
1714 static EFI_GUID EFI_RSDP_GUID_ACPI10 = ACPI_RSDP_GUID;
1715
1716 if ((rsdp_addr = efi_get_cfgtbl_by_guid(&EFI_RSDP_GUID_ACPI20)) == 0) {
1717 DPRINTF("RSDP ACPI 2.0 lookup failed. Trying RSDP ACPI 1.0...\n");
1718 rsdp_addr = efi_get_cfgtbl_by_guid(&EFI_RSDP_GUID_ACPI10);
1719 if (rsdp_addr == 0) {
1720 DPRINTF("RSDP ACPI 1.0 lookup failed also.\n");
1721 }
1722 }
1723
1724 return rsdp_addr;
1725 }