2 * Copyright (c) 2014 Apple Computer, Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <sys/errno.h>
31 #include <mach/mach_types.h>
32 #include <mach/mach_traps.h>
33 #include <mach/host_priv.h>
34 #include <mach/kern_return.h>
35 #include <mach/memory_object_control.h>
36 #include <mach/memory_object_types.h>
37 #include <mach/port.h>
38 #include <mach/policy.h>
40 #include <mach/thread_act.h>
41 #include <mach/mach_vm.h>
43 #include <kern/host.h>
44 #include <kern/kalloc.h>
45 #include <kern/page_decrypt.h>
46 #include <kern/queue.h>
47 #include <kern/thread.h>
48 #include <kern/ipc_kobject.h>
50 #include <ipc/ipc_port.h>
51 #include <ipc/ipc_space.h>
53 #include <vm/vm_fault.h>
54 #include <vm/vm_map.h>
55 #include <vm/vm_pageout.h>
56 #include <vm/memory_object.h>
57 #include <vm/vm_pageout.h>
58 #include <vm/vm_protos.h>
59 #include <vm/vm_kern.h>
65 * This external memory manager (EMM) handles memory mappings that are
66 * 4K-aligned but not page-aligned and can therefore not be mapped directly.
68 * It mostly handles page-in requests (from memory_object_data_request()) by
69 * getting the data needed to fill in each 4K-chunk. That can require
70 * getting data from one or two pages from its backing VM object
71 * (a file or a "apple-protected" pager backed by an encrypted file), and
72 * copies the data to another page so that it is aligned as expected by
75 * Returned pages can never be dirtied and must always be mapped copy-on-write,
76 * so the memory manager does not need to handle page-out requests (from
77 * memory_object_data_return()).
81 /* forward declarations */
82 void fourk_pager_reference(memory_object_t mem_obj
);
83 void fourk_pager_deallocate(memory_object_t mem_obj
);
84 kern_return_t
fourk_pager_init(memory_object_t mem_obj
,
85 memory_object_control_t control
,
86 memory_object_cluster_size_t pg_size
);
87 kern_return_t
fourk_pager_terminate(memory_object_t mem_obj
);
88 kern_return_t
fourk_pager_data_request(memory_object_t mem_obj
,
89 memory_object_offset_t offset
,
90 memory_object_cluster_size_t length
,
91 vm_prot_t protection_required
,
92 memory_object_fault_info_t fault_info
);
93 kern_return_t
fourk_pager_data_return(memory_object_t mem_obj
,
94 memory_object_offset_t offset
,
95 memory_object_cluster_size_t data_cnt
,
96 memory_object_offset_t
*resid_offset
,
99 boolean_t kernel_copy
,
101 kern_return_t
fourk_pager_data_initialize(memory_object_t mem_obj
,
102 memory_object_offset_t offset
,
103 memory_object_cluster_size_t data_cnt
);
104 kern_return_t
fourk_pager_data_unlock(memory_object_t mem_obj
,
105 memory_object_offset_t offset
,
106 memory_object_size_t size
,
107 vm_prot_t desired_access
);
108 kern_return_t
fourk_pager_synchronize(memory_object_t mem_obj
,
109 memory_object_offset_t offset
,
110 memory_object_size_t length
,
111 vm_sync_t sync_flags
);
112 kern_return_t
fourk_pager_map(memory_object_t mem_obj
,
114 kern_return_t
fourk_pager_last_unmap(memory_object_t mem_obj
);
117 * Vector of VM operations for this EMM.
118 * These routines are invoked by VM via the memory_object_*() interfaces.
120 const struct memory_object_pager_ops fourk_pager_ops
= {
121 fourk_pager_reference
,
122 fourk_pager_deallocate
,
124 fourk_pager_terminate
,
125 fourk_pager_data_request
,
126 fourk_pager_data_return
,
127 fourk_pager_data_initialize
,
128 fourk_pager_data_unlock
,
129 fourk_pager_synchronize
,
131 fourk_pager_last_unmap
,
132 NULL
, /* data_reclaim */
137 * The "fourk_pager" describes a memory object backed by
140 #define FOURK_PAGER_SLOTS 4 /* 16K / 4K */
141 typedef struct fourk_pager_backing
{
142 vm_object_t backing_object
;
143 vm_object_offset_t backing_offset
;
144 } *fourk_pager_backing_t
;
145 typedef struct fourk_pager
{
146 /* mandatory generic header */
147 struct memory_object fourk_pgr_hdr
;
149 /* pager-specific data */
150 queue_chain_t pager_queue
; /* next & prev pagers */
151 unsigned int ref_count
; /* reference count */
152 int is_ready
; /* is this pager ready ? */
153 int is_mapped
; /* is this mem_obj mapped ? */
154 struct fourk_pager_backing slots
[FOURK_PAGER_SLOTS
]; /* backing for each
157 #define FOURK_PAGER_NULL ((fourk_pager_t) NULL)
160 * List of memory objects managed by this EMM.
161 * The list is protected by the "fourk_pager_lock" lock.
163 int fourk_pager_count
= 0; /* number of pagers */
164 int fourk_pager_count_mapped
= 0; /* number of unmapped pagers */
165 queue_head_t fourk_pager_queue
;
166 decl_lck_mtx_data(,fourk_pager_lock
)
169 * Maximum number of unmapped pagers we're willing to keep around.
171 int fourk_pager_cache_limit
= 0;
174 * Statistics & counters.
176 int fourk_pager_count_max
= 0;
177 int fourk_pager_count_unmapped_max
= 0;
178 int fourk_pager_num_trim_max
= 0;
179 int fourk_pager_num_trim_total
= 0;
182 lck_grp_t fourk_pager_lck_grp
;
183 lck_grp_attr_t fourk_pager_lck_grp_attr
;
184 lck_attr_t fourk_pager_lck_attr
;
187 /* internal prototypes */
188 fourk_pager_t
fourk_pager_lookup(memory_object_t mem_obj
);
189 void fourk_pager_dequeue(fourk_pager_t pager
);
190 void fourk_pager_deallocate_internal(fourk_pager_t pager
,
192 void fourk_pager_terminate_internal(fourk_pager_t pager
);
193 void fourk_pager_trim(void);
197 int fourk_pagerdebug
= 0;
198 #define PAGER_ALL 0xffffffff
199 #define PAGER_INIT 0x00000001
200 #define PAGER_PAGEIN 0x00000002
202 #define PAGER_DEBUG(LEVEL, A) \
204 if ((fourk_pagerdebug & LEVEL)==LEVEL) { \
209 #define PAGER_DEBUG(LEVEL, A)
214 fourk_pager_bootstrap(void)
216 lck_grp_attr_setdefault(&fourk_pager_lck_grp_attr
);
217 lck_grp_init(&fourk_pager_lck_grp
, "4K-pager", &fourk_pager_lck_grp_attr
);
218 lck_attr_setdefault(&fourk_pager_lck_attr
);
219 lck_mtx_init(&fourk_pager_lock
, &fourk_pager_lck_grp
, &fourk_pager_lck_attr
);
220 queue_init(&fourk_pager_queue
);
226 * Initialize the memory object and makes it ready to be used and mapped.
230 memory_object_t mem_obj
,
231 memory_object_control_t control
,
235 memory_object_cluster_size_t pg_size
)
239 memory_object_attr_info_data_t attributes
;
241 PAGER_DEBUG(PAGER_ALL
,
242 ("fourk_pager_init: %p, %p, %x\n",
243 mem_obj
, control
, pg_size
));
245 if (control
== MEMORY_OBJECT_CONTROL_NULL
)
246 return KERN_INVALID_ARGUMENT
;
248 pager
= fourk_pager_lookup(mem_obj
);
250 memory_object_control_reference(control
);
252 pager
->fourk_pgr_hdr
.mo_control
= control
;
254 attributes
.copy_strategy
= MEMORY_OBJECT_COPY_DELAY
;
255 /* attributes.cluster_size = (1 << (CLUSTER_SHIFT + PAGE_SHIFT));*/
256 attributes
.cluster_size
= (1 << (PAGE_SHIFT
));
257 attributes
.may_cache_object
= FALSE
;
258 attributes
.temporary
= TRUE
;
260 kr
= memory_object_change_attributes(
262 MEMORY_OBJECT_ATTRIBUTE_INFO
,
263 (memory_object_info_t
) &attributes
,
264 MEMORY_OBJECT_ATTR_INFO_COUNT
);
265 if (kr
!= KERN_SUCCESS
)
266 panic("fourk_pager_init: "
267 "memory_object_change_attributes() failed");
269 #if CONFIG_SECLUDED_MEMORY
270 if (secluded_for_filecache
) {
271 memory_object_mark_eligible_for_secluded(control
, TRUE
);
273 #endif /* CONFIG_SECLUDED_MEMORY */
279 * fourk_pager_data_return()
281 * Handles page-out requests from VM. This should never happen since
282 * the pages provided by this EMM are not supposed to be dirty or dirtied
283 * and VM should simply discard the contents and reclaim the pages if it
287 fourk_pager_data_return(
288 __unused memory_object_t mem_obj
,
289 __unused memory_object_offset_t offset
,
290 __unused memory_object_cluster_size_t data_cnt
,
291 __unused memory_object_offset_t
*resid_offset
,
292 __unused
int *io_error
,
293 __unused boolean_t dirty
,
294 __unused boolean_t kernel_copy
,
295 __unused
int upl_flags
)
297 panic("fourk_pager_data_return: should never get called");
302 fourk_pager_data_initialize(
303 __unused memory_object_t mem_obj
,
304 __unused memory_object_offset_t offset
,
305 __unused memory_object_cluster_size_t data_cnt
)
307 panic("fourk_pager_data_initialize: should never get called");
312 fourk_pager_data_unlock(
313 __unused memory_object_t mem_obj
,
314 __unused memory_object_offset_t offset
,
315 __unused memory_object_size_t size
,
316 __unused vm_prot_t desired_access
)
322 * fourk_pager_reference()
324 * Get a reference on this memory object.
325 * For external usage only. Assumes that the initial reference count is not 0,
326 * i.e one should not "revive" a dead pager this way.
329 fourk_pager_reference(
330 memory_object_t mem_obj
)
334 pager
= fourk_pager_lookup(mem_obj
);
336 lck_mtx_lock(&fourk_pager_lock
);
337 assert(pager
->ref_count
> 0);
339 lck_mtx_unlock(&fourk_pager_lock
);
344 * fourk_pager_dequeue:
346 * Removes a pager from the list of pagers.
348 * The caller must hold "fourk_pager_lock".
354 assert(!pager
->is_mapped
);
356 queue_remove(&fourk_pager_queue
,
360 pager
->pager_queue
.next
= NULL
;
361 pager
->pager_queue
.prev
= NULL
;
367 * fourk_pager_terminate_internal:
369 * Trigger the asynchronous termination of the memory object associated
371 * When the memory object is terminated, there will be one more call
372 * to memory_object_deallocate() (i.e. fourk_pager_deallocate())
373 * to finish the clean up.
375 * "fourk_pager_lock" should not be held by the caller.
376 * We don't need the lock because the pager has already been removed from
377 * the pagers' list and is now ours exclusively.
380 fourk_pager_terminate_internal(
385 assert(pager
->is_ready
);
386 assert(!pager
->is_mapped
);
388 for (i
= 0; i
< FOURK_PAGER_SLOTS
; i
++) {
389 if (pager
->slots
[i
].backing_object
!= VM_OBJECT_NULL
&&
390 pager
->slots
[i
].backing_object
!= (vm_object_t
) -1) {
391 vm_object_deallocate(pager
->slots
[i
].backing_object
);
392 pager
->slots
[i
].backing_object
= (vm_object_t
) -1;
393 pager
->slots
[i
].backing_offset
= (vm_object_offset_t
) -1;
397 /* trigger the destruction of the memory object */
398 memory_object_destroy(pager
->fourk_pgr_hdr
.mo_control
, 0);
402 * fourk_pager_deallocate_internal()
404 * Release a reference on this pager and free it when the last
405 * reference goes away.
406 * Can be called with fourk_pager_lock held or not but always returns
410 fourk_pager_deallocate_internal(
414 boolean_t needs_trimming
;
418 lck_mtx_lock(&fourk_pager_lock
);
421 count_unmapped
= (fourk_pager_count
-
422 fourk_pager_count_mapped
);
423 if (count_unmapped
> fourk_pager_cache_limit
) {
424 /* we have too many unmapped pagers: trim some */
425 needs_trimming
= TRUE
;
427 needs_trimming
= FALSE
;
430 /* drop a reference on this pager */
433 if (pager
->ref_count
== 1) {
435 * Only the "named" reference is left, which means that
436 * no one is really holding on to this pager anymore.
439 fourk_pager_dequeue(pager
);
440 /* the pager is all ours: no need for the lock now */
441 lck_mtx_unlock(&fourk_pager_lock
);
442 fourk_pager_terminate_internal(pager
);
443 } else if (pager
->ref_count
== 0) {
445 * Dropped the existence reference; the memory object has
446 * been terminated. Do some final cleanup and release the
449 lck_mtx_unlock(&fourk_pager_lock
);
450 if (pager
->fourk_pgr_hdr
.mo_control
!= MEMORY_OBJECT_CONTROL_NULL
) {
451 memory_object_control_deallocate(pager
->fourk_pgr_hdr
.mo_control
);
452 pager
->fourk_pgr_hdr
.mo_control
= MEMORY_OBJECT_CONTROL_NULL
;
454 kfree(pager
, sizeof (*pager
));
455 pager
= FOURK_PAGER_NULL
;
457 /* there are still plenty of references: keep going... */
458 lck_mtx_unlock(&fourk_pager_lock
);
461 if (needs_trimming
) {
464 /* caution: lock is not held on return... */
468 * fourk_pager_deallocate()
470 * Release a reference on this pager and free it when the last
471 * reference goes away.
474 fourk_pager_deallocate(
475 memory_object_t mem_obj
)
479 PAGER_DEBUG(PAGER_ALL
, ("fourk_pager_deallocate: %p\n", mem_obj
));
480 pager
= fourk_pager_lookup(mem_obj
);
481 fourk_pager_deallocate_internal(pager
, FALSE
);
488 fourk_pager_terminate(
492 memory_object_t mem_obj
)
494 PAGER_DEBUG(PAGER_ALL
, ("fourk_pager_terminate: %p\n", mem_obj
));
503 fourk_pager_synchronize(
504 __unused memory_object_t mem_obj
,
505 __unused memory_object_offset_t offset
,
506 __unused memory_object_size_t length
,
507 __unused vm_sync_t sync_flags
)
509 panic("fourk_pager_synchronize: memory_object_synchronize no longer supported\n");
510 return (KERN_FAILURE
);
516 * This allows VM to let us, the EMM, know that this memory object
517 * is currently mapped one or more times. This is called by VM each time
518 * the memory object gets mapped and we take one extra reference on the
519 * memory object to account for all its mappings.
523 memory_object_t mem_obj
,
524 __unused vm_prot_t prot
)
528 PAGER_DEBUG(PAGER_ALL
, ("fourk_pager_map: %p\n", mem_obj
));
530 pager
= fourk_pager_lookup(mem_obj
);
532 lck_mtx_lock(&fourk_pager_lock
);
533 assert(pager
->is_ready
);
534 assert(pager
->ref_count
> 0); /* pager is alive */
535 if (pager
->is_mapped
== FALSE
) {
537 * First mapping of this pager: take an extra reference
538 * that will remain until all the mappings of this pager
541 pager
->is_mapped
= TRUE
;
543 fourk_pager_count_mapped
++;
545 lck_mtx_unlock(&fourk_pager_lock
);
551 * fourk_pager_last_unmap()
553 * This is called by VM when this memory object is no longer mapped anywhere.
556 fourk_pager_last_unmap(
557 memory_object_t mem_obj
)
562 PAGER_DEBUG(PAGER_ALL
,
563 ("fourk_pager_last_unmap: %p\n", mem_obj
));
565 pager
= fourk_pager_lookup(mem_obj
);
567 lck_mtx_lock(&fourk_pager_lock
);
568 if (pager
->is_mapped
) {
570 * All the mappings are gone, so let go of the one extra
571 * reference that represents all the mappings of this pager.
573 fourk_pager_count_mapped
--;
574 count_unmapped
= (fourk_pager_count
-
575 fourk_pager_count_mapped
);
576 if (count_unmapped
> fourk_pager_count_unmapped_max
) {
577 fourk_pager_count_unmapped_max
= count_unmapped
;
579 pager
->is_mapped
= FALSE
;
580 fourk_pager_deallocate_internal(pager
, TRUE
);
581 /* caution: deallocate_internal() released the lock ! */
583 lck_mtx_unlock(&fourk_pager_lock
);
595 memory_object_t mem_obj
)
599 assert(mem_obj
->mo_pager_ops
== &fourk_pager_ops
);
600 pager
= (fourk_pager_t
) mem_obj
;
601 assert(pager
->ref_count
> 0);
606 fourk_pager_trim(void)
608 fourk_pager_t pager
, prev_pager
;
609 queue_head_t trim_queue
;
613 lck_mtx_lock(&fourk_pager_lock
);
616 * We have too many pagers, try and trim some unused ones,
617 * starting with the oldest pager at the end of the queue.
619 queue_init(&trim_queue
);
622 for (pager
= (fourk_pager_t
)
623 queue_last(&fourk_pager_queue
);
624 !queue_end(&fourk_pager_queue
,
625 (queue_entry_t
) pager
);
626 pager
= prev_pager
) {
627 /* get prev elt before we dequeue */
628 prev_pager
= (fourk_pager_t
)
629 queue_prev(&pager
->pager_queue
);
631 if (pager
->ref_count
== 2 &&
634 /* this pager can be trimmed */
636 /* remove this pager from the main list ... */
637 fourk_pager_dequeue(pager
);
638 /* ... and add it to our trim queue */
639 queue_enter_first(&trim_queue
,
644 count_unmapped
= (fourk_pager_count
-
645 fourk_pager_count_mapped
);
646 if (count_unmapped
<= fourk_pager_cache_limit
) {
647 /* we have enough pagers to trim */
652 if (num_trim
> fourk_pager_num_trim_max
) {
653 fourk_pager_num_trim_max
= num_trim
;
655 fourk_pager_num_trim_total
+= num_trim
;
657 lck_mtx_unlock(&fourk_pager_lock
);
659 /* terminate the trimmed pagers */
660 while (!queue_empty(&trim_queue
)) {
661 queue_remove_first(&trim_queue
,
665 pager
->pager_queue
.next
= NULL
;
666 pager
->pager_queue
.prev
= NULL
;
667 assert(pager
->ref_count
== 2);
669 * We can't call deallocate_internal() because the pager
670 * has already been dequeued, but we still need to remove
674 fourk_pager_terminate_internal(pager
);
684 fourk_pager_to_vm_object(
685 memory_object_t mem_obj
)
690 pager
= fourk_pager_lookup(mem_obj
);
692 return VM_OBJECT_NULL
;
695 assert(pager
->ref_count
> 0);
696 assert(pager
->fourk_pgr_hdr
.mo_control
!= MEMORY_OBJECT_CONTROL_NULL
);
697 object
= memory_object_control_to_vm_object(pager
->fourk_pgr_hdr
.mo_control
);
698 assert(object
!= VM_OBJECT_NULL
);
703 fourk_pager_create(void)
706 memory_object_control_t control
;
711 if (PAGE_SIZE_64
== FOURK_PAGE_SIZE
) {
712 panic("fourk_pager_create: page size is 4K !?");
716 pager
= (fourk_pager_t
) kalloc(sizeof (*pager
));
717 if (pager
== FOURK_PAGER_NULL
) {
718 return MEMORY_OBJECT_NULL
;
720 bzero(pager
, sizeof (*pager
));
723 * The vm_map call takes both named entry ports and raw memory
724 * objects in the same parameter. We need to make sure that
725 * vm_map does not see this object as a named entry port. So,
726 * we reserve the first word in the object for a fake ip_kotype
727 * setting - that will tell vm_map to use it as a memory object.
729 pager
->fourk_pgr_hdr
.mo_ikot
= IKOT_MEMORY_OBJECT
;
730 pager
->fourk_pgr_hdr
.mo_pager_ops
= &fourk_pager_ops
;
731 pager
->fourk_pgr_hdr
.mo_control
= MEMORY_OBJECT_CONTROL_NULL
;
733 pager
->ref_count
= 2; /* existence + setup reference */
734 pager
->is_ready
= FALSE
;/* not ready until it has a "name" */
735 pager
->is_mapped
= FALSE
;
737 for (i
= 0; i
< FOURK_PAGER_SLOTS
; i
++) {
738 pager
->slots
[i
].backing_object
= (vm_object_t
) -1;
739 pager
->slots
[i
].backing_offset
= (vm_object_offset_t
) -1;
742 lck_mtx_lock(&fourk_pager_lock
);
744 /* enter new pager at the head of our list of pagers */
745 queue_enter_first(&fourk_pager_queue
,
750 if (fourk_pager_count
> fourk_pager_count_max
) {
751 fourk_pager_count_max
= fourk_pager_count
;
753 lck_mtx_unlock(&fourk_pager_lock
);
755 kr
= memory_object_create_named((memory_object_t
) pager
,
758 assert(kr
== KERN_SUCCESS
);
760 lck_mtx_lock(&fourk_pager_lock
);
761 /* the new pager is now ready to be used */
762 pager
->is_ready
= TRUE
;
763 lck_mtx_unlock(&fourk_pager_lock
);
765 /* wakeup anyone waiting for this pager to be ready */
766 thread_wakeup(&pager
->is_ready
);
768 return (memory_object_t
) pager
;
772 * fourk_pager_data_request()
774 * Handles page-in requests from VM.
776 int fourk_pager_data_request_debug
= 0;
778 fourk_pager_data_request(
779 memory_object_t mem_obj
,
780 memory_object_offset_t offset
,
781 memory_object_cluster_size_t length
,
785 vm_prot_t protection_required
,
786 memory_object_fault_info_t mo_fault_info
)
789 memory_object_control_t mo_control
;
793 upl_page_info_t
*upl_pl
;
794 unsigned int pl_count
;
795 vm_object_t dst_object
;
796 kern_return_t kr
, retval
;
797 vm_map_offset_t kernel_mapping
;
798 vm_offset_t src_vaddr
, dst_vaddr
;
799 vm_offset_t cur_offset
;
801 int sub_page_idx
, sub_page_cnt
;
803 pager
= fourk_pager_lookup(mem_obj
);
804 assert(pager
->is_ready
);
805 assert(pager
->ref_count
> 1); /* pager is alive and mapped */
807 PAGER_DEBUG(PAGER_PAGEIN
, ("fourk_pager_data_request: %p, %llx, %x, %x, pager %p\n", mem_obj
, offset
, length
, protection_required
, pager
));
809 retval
= KERN_SUCCESS
;
812 offset
= memory_object_trunc_page(offset
);
815 * Gather in a UPL all the VM pages requested by VM.
817 mo_control
= pager
->fourk_pgr_hdr
.mo_control
;
821 UPL_RET_ONLY_ABSENT
|
824 UPL_CLEAN_IN_PLACE
| /* triggers UPL_CLEAR_DIRTY */
827 kr
= memory_object_upl_request(mo_control
,
829 &upl
, NULL
, NULL
, upl_flags
, VM_KERN_MEMORY_NONE
);
830 if (kr
!= KERN_SUCCESS
) {
834 dst_object
= mo_control
->moc_object
;
835 assert(dst_object
!= VM_OBJECT_NULL
);
837 #if __x86_64__ || __arm__ || __arm64__
838 /* use the 1-to-1 mapping of physical memory */
839 #else /* __x86_64__ || __arm__ || __arm64__ */
841 * Reserve 2 virtual pages in the kernel address space to map the
842 * source and destination physical pages when it's their turn to
845 vm_map_entry_t map_entry
;
847 vm_object_reference(kernel_object
); /* ref. for mapping */
848 kr
= vm_map_find_space(kernel_map
,
853 VM_MAP_KERNEL_FLAGS_NONE
,
855 if (kr
!= KERN_SUCCESS
) {
856 vm_object_deallocate(kernel_object
);
860 map_entry
->object
.vm_object
= kernel_object
;
861 map_entry
->offset
= kernel_mapping
;
862 vm_map_unlock(kernel_map
);
863 src_vaddr
= CAST_DOWN(vm_offset_t
, kernel_mapping
);
864 dst_vaddr
= CAST_DOWN(vm_offset_t
, kernel_mapping
+ PAGE_SIZE_64
);
865 #endif /* __x86_64__ || __arm__ || __arm64__ */
868 * Fill in the contents of the pages requested by VM.
870 upl_pl
= UPL_GET_INTERNAL_PAGE_LIST(upl
);
871 pl_count
= length
/ PAGE_SIZE
;
873 retval
== KERN_SUCCESS
&& cur_offset
< length
;
874 cur_offset
+= PAGE_SIZE
) {
876 int num_subpg_signed
, num_subpg_validated
;
877 int num_subpg_tainted
, num_subpg_nx
;
879 if (!upl_page_present(upl_pl
, (int)(cur_offset
/ PAGE_SIZE
))) {
880 /* this page is not in the UPL: skip it */
885 * Establish an explicit pmap mapping of the destination
887 * We can't do a regular VM mapping because the VM page
891 upl_phys_page(upl_pl
, (int)(cur_offset
/ PAGE_SIZE
));
892 assert(dst_pnum
!= 0);
894 dst_vaddr
= (vm_map_offset_t
)
895 PHYSMAP_PTOV((pmap_paddr_t
)dst_pnum
<< PAGE_SHIFT
);
896 #elif __arm__ || __arm64__
897 dst_vaddr
= (vm_map_offset_t
)
898 phystokv((pmap_paddr_t
)dst_pnum
<< PAGE_SHIFT
);
900 kr
= pmap_enter(kernel_pmap
,
903 VM_PROT_READ
| VM_PROT_WRITE
,
908 assert(kr
== KERN_SUCCESS
);
911 /* retrieve appropriate data for each 4K-page in this page */
912 if (PAGE_SHIFT
== FOURK_PAGE_SHIFT
&&
913 page_shift_user32
== SIXTEENK_PAGE_SHIFT
) {
915 * Find the slot for the requested 4KB page in
918 assert(PAGE_SHIFT
== FOURK_PAGE_SHIFT
);
919 assert(page_shift_user32
== SIXTEENK_PAGE_SHIFT
);
920 sub_page_idx
= ((offset
& SIXTEENK_PAGE_MASK
) /
923 * ... and provide only that one 4KB page.
928 * Iterate over all slots, i.e. retrieve all four 4KB
929 * pages in the requested 16KB page.
931 assert(PAGE_SHIFT
== SIXTEENK_PAGE_SHIFT
);
933 sub_page_cnt
= FOURK_PAGER_SLOTS
;
936 num_subpg_signed
= 0;
937 num_subpg_validated
= 0;
938 num_subpg_tainted
= 0;
941 /* retrieve appropriate data for each 4K-page in this page */
942 for (sub_page
= sub_page_idx
;
943 sub_page
< sub_page_idx
+ sub_page_cnt
;
945 vm_object_t src_object
;
946 memory_object_offset_t src_offset
;
947 vm_offset_t offset_in_src_page
;
948 kern_return_t error_code
;
949 vm_object_t src_page_object
;
954 struct vm_object_fault_info fault_info
;
955 boolean_t subpg_validated
;
956 unsigned subpg_tainted
;
959 if (offset
< SIXTEENK_PAGE_SIZE
) {
961 * The 1st 16K-page can cover multiple
962 * sub-mappings, as described in the
963 * pager->slots[] array.
966 pager
->slots
[sub_page
].backing_object
;
968 pager
->slots
[sub_page
].backing_offset
;
970 fourk_pager_backing_t slot
;
973 * Beyond the 1st 16K-page in the pager is
974 * an extension of the last "sub page" in
975 * the pager->slots[] array.
977 slot
= &pager
->slots
[FOURK_PAGER_SLOTS
-1];
978 src_object
= slot
->backing_object
;
979 src_offset
= slot
->backing_offset
;
980 src_offset
+= FOURK_PAGE_SIZE
;
982 (vm_map_trunc_page(offset
,
984 - SIXTEENK_PAGE_SIZE
);
985 src_offset
+= sub_page
* FOURK_PAGE_SIZE
;
987 offset_in_src_page
= src_offset
& PAGE_MASK_64
;
988 src_offset
= vm_object_trunc_page(src_offset
);
990 if (src_object
== VM_OBJECT_NULL
||
991 src_object
== (vm_object_t
) -1) {
993 bzero((char *)(dst_vaddr
+
994 ((sub_page
-sub_page_idx
)
997 if (fourk_pager_data_request_debug
) {
998 printf("fourk_pager_data_request"
999 "(%p,0x%llx+0x%lx+0x%04x): "
1004 ((sub_page
- sub_page_idx
)
1005 * FOURK_PAGE_SIZE
));
1010 /* fault in the source page from src_object */
1012 src_page
= VM_PAGE_NULL
;
1013 top_page
= VM_PAGE_NULL
;
1014 fault_info
= *((struct vm_object_fault_info
*)
1015 (uintptr_t)mo_fault_info
);
1016 fault_info
.stealth
= TRUE
;
1017 fault_info
.io_sync
= FALSE
;
1018 fault_info
.mark_zf_absent
= FALSE
;
1019 fault_info
.batch_pmap_op
= FALSE
;
1020 interruptible
= fault_info
.interruptible
;
1021 prot
= VM_PROT_READ
;
1024 vm_object_lock(src_object
);
1025 vm_object_paging_begin(src_object
);
1026 kr
= vm_fault_page(src_object
,
1030 FALSE
, /* src_page not looked up */
1040 case VM_FAULT_SUCCESS
:
1042 case VM_FAULT_RETRY
:
1043 goto retry_src_fault
;
1044 case VM_FAULT_MEMORY_SHORTAGE
:
1045 if (vm_page_wait(interruptible
)) {
1046 goto retry_src_fault
;
1049 case VM_FAULT_INTERRUPTED
:
1050 retval
= MACH_SEND_INTERRUPTED
;
1051 goto src_fault_done
;
1052 case VM_FAULT_SUCCESS_NO_VM_PAGE
:
1053 /* success but no VM page: fail */
1054 vm_object_paging_end(src_object
);
1055 vm_object_unlock(src_object
);
1057 case VM_FAULT_MEMORY_ERROR
:
1058 /* the page is not there! */
1060 retval
= error_code
;
1062 retval
= KERN_MEMORY_ERROR
;
1064 goto src_fault_done
;
1066 panic("fourk_pager_data_request: "
1067 "vm_fault_page() unexpected error 0x%x\n",
1070 assert(src_page
!= VM_PAGE_NULL
);
1071 assert(src_page
->busy
);
1073 src_page_object
= VM_PAGE_OBJECT(src_page
);
1075 if (( !VM_PAGE_PAGEABLE(src_page
)) &&
1076 !VM_PAGE_WIRED(src_page
)) {
1077 vm_page_lockspin_queues();
1078 if (( !VM_PAGE_PAGEABLE(src_page
)) &&
1079 !VM_PAGE_WIRED(src_page
)) {
1080 vm_page_deactivate(src_page
);
1082 vm_page_unlock_queues();
1086 src_vaddr
= (vm_map_offset_t
)
1087 PHYSMAP_PTOV((pmap_paddr_t
)VM_PAGE_GET_PHYS_PAGE(src_page
)
1089 #elif __arm__ || __arm64__
1090 src_vaddr
= (vm_map_offset_t
)
1091 phystokv((pmap_paddr_t
)VM_PAGE_GET_PHYS_PAGE(src_page
)
1095 * Establish an explicit mapping of the source
1098 kr
= pmap_enter(kernel_pmap
,
1100 VM_PAGE_GET_PHYS_PAGE(src_page
),
1106 assert(kr
== KERN_SUCCESS
);
1110 * Validate the 4K page we want from
1111 * this source page...
1113 subpg_validated
= FALSE
;
1115 if (src_page_object
->code_signed
) {
1116 vm_page_validate_cs_mapped_chunk(
1118 (const void *) src_vaddr
,
1124 if (subpg_validated
) {
1125 num_subpg_validated
++;
1127 if (subpg_tainted
& CS_VALIDATE_TAINTED
) {
1128 num_subpg_tainted
++;
1130 if (subpg_tainted
& CS_VALIDATE_NX
) {
1131 /* subpg should not be executable */
1132 if (sub_page_cnt
> 1) {
1134 * The destination page has
1135 * more than 1 subpage and its
1136 * other subpages might need
1137 * EXEC, so we do not propagate
1138 * CS_VALIDATE_NX to the
1139 * destination page...
1148 * Copy the relevant portion of the source page
1149 * into the appropriate part of the destination page.
1151 bcopy((const char *)(src_vaddr
+ offset_in_src_page
),
1152 (char *)(dst_vaddr
+
1153 ((sub_page
- sub_page_idx
) *
1156 if (fourk_pager_data_request_debug
) {
1157 printf("fourk_data_request"
1158 "(%p,0x%llx+0x%lx+0x%04x): "
1159 "backed by [%p:0x%llx]: "
1160 "[0x%016llx 0x%016llx] "
1162 "cs_valid=%d cs_tainted=%d cs_nx=%d\n",
1165 (sub_page
-sub_page_idx
)*FOURK_PAGE_SIZE
,
1167 src_page
->offset
+ offset_in_src_page
,
1168 *(uint64_t *)(dst_vaddr
+
1169 ((sub_page
-sub_page_idx
) *
1171 *(uint64_t *)(dst_vaddr
+
1172 ((sub_page
-sub_page_idx
) *
1175 src_page_object
->code_signed
,
1177 !!(subpg_tainted
& CS_VALIDATE_TAINTED
),
1178 !!(subpg_tainted
& CS_VALIDATE_NX
));
1181 #if __x86_64__ || __arm__ || __arm64__
1182 /* we used the 1-to-1 mapping of physical memory */
1184 #else /* __x86_64__ || __arm__ || __arm64__ */
1186 * Remove the pmap mapping of the source page
1189 pmap_remove(kernel_pmap
,
1190 (addr64_t
) src_vaddr
,
1191 (addr64_t
) src_vaddr
+ PAGE_SIZE_64
);
1192 #endif /* __x86_64__ || __arm__ || __arm64__ */
1196 * Cleanup the result of vm_fault_page().
1199 assert(VM_PAGE_OBJECT(src_page
) == src_page_object
);
1201 PAGE_WAKEUP_DONE(src_page
);
1202 src_page
= VM_PAGE_NULL
;
1203 vm_object_paging_end(src_page_object
);
1204 vm_object_unlock(src_page_object
);
1206 vm_object_t top_object
;
1208 top_object
= VM_PAGE_OBJECT(top_page
);
1209 vm_object_lock(top_object
);
1210 VM_PAGE_FREE(top_page
);
1211 top_page
= VM_PAGE_NULL
;
1212 vm_object_paging_end(top_object
);
1213 vm_object_unlock(top_object
);
1217 if (num_subpg_signed
> 0) {
1218 /* some code-signing involved with this 16K page */
1219 if (num_subpg_tainted
> 0) {
1220 /* a tainted subpage taints entire 16K page */
1221 UPL_SET_CS_TAINTED(upl_pl
,
1222 cur_offset
/ PAGE_SIZE
,
1224 /* also mark as "validated" for consisteny */
1225 UPL_SET_CS_VALIDATED(upl_pl
,
1226 cur_offset
/ PAGE_SIZE
,
1228 } else if (num_subpg_validated
== num_subpg_signed
) {
1230 * All the code-signed 4K subpages of this
1231 * 16K page are validated: our 16K page is
1232 * considered validated.
1234 UPL_SET_CS_VALIDATED(upl_pl
,
1235 cur_offset
/ PAGE_SIZE
,
1238 if (num_subpg_nx
> 0) {
1239 UPL_SET_CS_NX(upl_pl
,
1240 cur_offset
/ PAGE_SIZE
,
1248 /* clean up the UPL */
1251 * The pages are currently dirty because we've just been
1252 * writing on them, but as far as we're concerned, they're
1253 * clean since they contain their "original" contents as
1254 * provided by us, the pager.
1255 * Tell the UPL to mark them "clean".
1257 upl_clear_dirty(upl
, TRUE
);
1259 /* abort or commit the UPL */
1260 if (retval
!= KERN_SUCCESS
) {
1262 if (retval
== KERN_ABORTED
) {
1263 wait_result_t wait_result
;
1266 * We aborted the fault and did not provide
1267 * any contents for the requested pages but
1268 * the pages themselves are not invalid, so
1269 * let's return success and let the caller
1270 * retry the fault, in case it might succeed
1271 * later (when the decryption code is up and
1272 * running in the kernel, for example).
1274 retval
= KERN_SUCCESS
;
1276 * Wait a little bit first to avoid using
1277 * too much CPU time retrying and failing
1278 * the same fault over and over again.
1280 wait_result
= assert_wait_timeout(
1281 (event_t
) fourk_pager_data_request
,
1285 assert(wait_result
== THREAD_WAITING
);
1286 wait_result
= thread_block(THREAD_CONTINUE_NULL
);
1287 assert(wait_result
== THREAD_TIMED_OUT
);
1291 upl_commit_range(upl
, 0, upl
->size
,
1292 UPL_COMMIT_CS_VALIDATED
| UPL_COMMIT_WRITTEN_BY_KERNEL
,
1293 upl_pl
, pl_count
, &empty
);
1296 /* and deallocate the UPL */
1297 upl_deallocate(upl
);
1300 if (kernel_mapping
!= 0) {
1301 /* clean up the mapping of the source and destination pages */
1302 kr
= vm_map_remove(kernel_map
,
1304 kernel_mapping
+ (2 * PAGE_SIZE_64
),
1306 assert(kr
== KERN_SUCCESS
);
1318 fourk_pager_populate(
1319 memory_object_t mem_obj
,
1320 boolean_t overwrite
,
1322 vm_object_t new_backing_object
,
1323 vm_object_offset_t new_backing_offset
,
1324 vm_object_t
*old_backing_object
,
1325 vm_object_offset_t
*old_backing_offset
)
1327 fourk_pager_t pager
;
1329 pager
= fourk_pager_lookup(mem_obj
);
1330 if (pager
== NULL
) {
1331 return KERN_INVALID_ARGUMENT
;
1334 assert(pager
->ref_count
> 0);
1335 assert(pager
->fourk_pgr_hdr
.mo_control
!= MEMORY_OBJECT_CONTROL_NULL
);
1337 if (index
< 0 || index
> FOURK_PAGER_SLOTS
) {
1338 return KERN_INVALID_ARGUMENT
;
1342 (pager
->slots
[index
].backing_object
!= (vm_object_t
) -1 ||
1343 pager
->slots
[index
].backing_offset
!= (vm_object_offset_t
) -1)) {
1344 return KERN_INVALID_ADDRESS
;
1347 *old_backing_object
= pager
->slots
[index
].backing_object
;
1348 *old_backing_offset
= pager
->slots
[index
].backing_offset
;
1350 pager
->slots
[index
].backing_object
= new_backing_object
;
1351 pager
->slots
[index
].backing_offset
= new_backing_offset
;
1353 return KERN_SUCCESS
;