]> git.saurik.com Git - apple/xnu.git/blob - bsd/vfs/vfs_subr.c
xnu-4570.61.1.tar.gz
[apple/xnu.git] / bsd / vfs / vfs_subr.c
1 /*
2 * Copyright (c) 2000-2017 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Copyright (c) 1989, 1993
31 * The Regents of the University of California. All rights reserved.
32 * (c) UNIX System Laboratories, Inc.
33 * All or some portions of this file are derived from material licensed
34 * to the University of California by American Telephone and Telegraph
35 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
36 * the permission of UNIX System Laboratories, Inc.
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the University of
49 * California, Berkeley and its contributors.
50 * 4. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)vfs_subr.c 8.31 (Berkeley) 5/26/95
67 */
68 /*
69 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
70 * support for mandatory and extensible security protections. This notice
71 * is included in support of clause 2.2 (b) of the Apple Public License,
72 * Version 2.0.
73 */
74
75 /*
76 * External virtual filesystem routines
77 */
78
79 #include <sys/param.h>
80 #include <sys/systm.h>
81 #include <sys/proc_internal.h>
82 #include <sys/kauth.h>
83 #include <sys/mount_internal.h>
84 #include <sys/time.h>
85 #include <sys/lock.h>
86 #include <sys/vnode.h>
87 #include <sys/vnode_internal.h>
88 #include <sys/stat.h>
89 #include <sys/namei.h>
90 #include <sys/ucred.h>
91 #include <sys/buf_internal.h>
92 #include <sys/errno.h>
93 #include <sys/malloc.h>
94 #include <sys/uio_internal.h>
95 #include <sys/uio.h>
96 #include <sys/domain.h>
97 #include <sys/mbuf.h>
98 #include <sys/syslog.h>
99 #include <sys/ubc_internal.h>
100 #include <sys/vm.h>
101 #include <sys/sysctl.h>
102 #include <sys/filedesc.h>
103 #include <sys/event.h>
104 #include <sys/kdebug.h>
105 #include <sys/kauth.h>
106 #include <sys/user.h>
107 #include <sys/systm.h>
108 #include <sys/kern_memorystatus.h>
109 #include <sys/lockf.h>
110 #include <miscfs/fifofs/fifo.h>
111
112 #include <string.h>
113 #include <machine/machine_routines.h>
114
115 #include <kern/assert.h>
116 #include <mach/kern_return.h>
117 #include <kern/thread.h>
118 #include <kern/sched_prim.h>
119
120 #include <miscfs/specfs/specdev.h>
121
122 #include <mach/mach_types.h>
123 #include <mach/memory_object_types.h>
124 #include <mach/memory_object_control.h>
125
126 #include <kern/kalloc.h> /* kalloc()/kfree() */
127 #include <kern/clock.h> /* delay_for_interval() */
128 #include <libkern/OSAtomic.h> /* OSAddAtomic() */
129 #if !CONFIG_EMBEDDED
130 #include <console/video_console.h>
131 #endif
132
133 #ifdef JOE_DEBUG
134 #include <libkern/OSDebug.h>
135 #endif
136
137 #include <vm/vm_protos.h> /* vnode_pager_vrele() */
138
139 #if CONFIG_MACF
140 #include <security/mac_framework.h>
141 #endif
142
143 #include <vfs/vfs_disk_conditioner.h>
144 #include <libkern/section_keywords.h>
145
146 extern lck_grp_t *vnode_lck_grp;
147 extern lck_attr_t *vnode_lck_attr;
148
149 #if CONFIG_TRIGGERS
150 extern lck_grp_t *trigger_vnode_lck_grp;
151 extern lck_attr_t *trigger_vnode_lck_attr;
152 #endif
153
154 extern lck_mtx_t * mnt_list_mtx_lock;
155
156 enum vtype iftovt_tab[16] = {
157 VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
158 VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
159 };
160 int vttoif_tab[9] = {
161 0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
162 S_IFSOCK, S_IFIFO, S_IFMT,
163 };
164
165
166 /* XXX These should be in a BSD accessible Mach header, but aren't. */
167 extern void memory_object_mark_used(
168 memory_object_control_t control);
169
170 extern void memory_object_mark_unused(
171 memory_object_control_t control,
172 boolean_t rage);
173
174 extern void memory_object_mark_io_tracking(
175 memory_object_control_t control);
176
177 /* XXX next protptype should be from <nfs/nfs.h> */
178 extern int nfs_vinvalbuf(vnode_t, int, vfs_context_t, int);
179
180 extern int paniclog_append_noflush(const char *format, ...);
181
182 /* XXX next prototytype should be from libsa/stdlib.h> but conflicts libkern */
183 __private_extern__ void qsort(
184 void * array,
185 size_t nmembers,
186 size_t member_size,
187 int (*)(const void *, const void *));
188
189 __private_extern__ void vntblinit(void);
190 __private_extern__ int unlink1(vfs_context_t, vnode_t, user_addr_t,
191 enum uio_seg, int);
192
193 extern int system_inshutdown;
194
195 static void vnode_list_add(vnode_t);
196 static void vnode_async_list_add(vnode_t);
197 static void vnode_list_remove(vnode_t);
198 static void vnode_list_remove_locked(vnode_t);
199
200 static void vnode_abort_advlocks(vnode_t);
201 static errno_t vnode_drain(vnode_t);
202 static void vgone(vnode_t, int flags);
203 static void vclean(vnode_t vp, int flag);
204 static void vnode_reclaim_internal(vnode_t, int, int, int);
205
206 static void vnode_dropiocount (vnode_t);
207
208 static vnode_t checkalias(vnode_t vp, dev_t nvp_rdev);
209 static int vnode_reload(vnode_t);
210 static int vnode_isinuse_locked(vnode_t, int, int);
211
212 static int unmount_callback(mount_t, __unused void *);
213
214 static void insmntque(vnode_t vp, mount_t mp);
215 static int mount_getvfscnt(void);
216 static int mount_fillfsids(fsid_t *, int );
217 static void vnode_iterate_setup(mount_t);
218 int vnode_umount_preflight(mount_t, vnode_t, int);
219 static int vnode_iterate_prepare(mount_t);
220 static int vnode_iterate_reloadq(mount_t);
221 static void vnode_iterate_clear(mount_t);
222 static mount_t vfs_getvfs_locked(fsid_t *);
223 static int vn_create_reg(vnode_t dvp, vnode_t *vpp, struct nameidata *ndp,
224 struct vnode_attr *vap, uint32_t flags, int fmode, uint32_t *statusp, vfs_context_t ctx);
225 static int vnode_authattr_new_internal(vnode_t dvp, struct vnode_attr *vap, int noauth, uint32_t *defaulted_fieldsp, vfs_context_t ctx);
226
227 errno_t rmdir_remove_orphaned_appleDouble(vnode_t, vfs_context_t, int *);
228
229 #ifdef JOE_DEBUG
230 static void record_vp(vnode_t vp, int count);
231 #endif
232
233 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
234 extern int bootarg_no_vnode_jetsam; /* from bsd_init.c default value is 0 */
235 #endif /* CONFIG_JETSAM && (DEVELOPMENT || DEBUG) */
236
237 boolean_t root_is_CF_drive = FALSE;
238
239 #if CONFIG_TRIGGERS
240 static int vnode_resolver_create(mount_t, vnode_t, struct vnode_trigger_param *, boolean_t external);
241 static void vnode_resolver_detach(vnode_t);
242 #endif
243
244 TAILQ_HEAD(freelst, vnode) vnode_free_list; /* vnode free list */
245 TAILQ_HEAD(deadlst, vnode) vnode_dead_list; /* vnode dead list */
246 TAILQ_HEAD(async_work_lst, vnode) vnode_async_work_list;
247
248
249 TAILQ_HEAD(ragelst, vnode) vnode_rage_list; /* vnode rapid age list */
250 struct timeval rage_tv;
251 int rage_limit = 0;
252 int ragevnodes = 0;
253
254 #define RAGE_LIMIT_MIN 100
255 #define RAGE_TIME_LIMIT 5
256
257 struct mntlist mountlist; /* mounted filesystem list */
258 static int nummounts = 0;
259
260 #if DIAGNOSTIC
261 #define VLISTCHECK(fun, vp, list) \
262 if ((vp)->v_freelist.tqe_prev == (struct vnode **)0xdeadb) \
263 panic("%s: %s vnode not on %slist", (fun), (list), (list));
264 #else
265 #define VLISTCHECK(fun, vp, list)
266 #endif /* DIAGNOSTIC */
267
268 #define VLISTNONE(vp) \
269 do { \
270 (vp)->v_freelist.tqe_next = (struct vnode *)0; \
271 (vp)->v_freelist.tqe_prev = (struct vnode **)0xdeadb; \
272 } while(0)
273
274 #define VONLIST(vp) \
275 ((vp)->v_freelist.tqe_prev != (struct vnode **)0xdeadb)
276
277 /* remove a vnode from free vnode list */
278 #define VREMFREE(fun, vp) \
279 do { \
280 VLISTCHECK((fun), (vp), "free"); \
281 TAILQ_REMOVE(&vnode_free_list, (vp), v_freelist); \
282 VLISTNONE((vp)); \
283 freevnodes--; \
284 } while(0)
285
286
287 /* remove a vnode from dead vnode list */
288 #define VREMDEAD(fun, vp) \
289 do { \
290 VLISTCHECK((fun), (vp), "dead"); \
291 TAILQ_REMOVE(&vnode_dead_list, (vp), v_freelist); \
292 VLISTNONE((vp)); \
293 vp->v_listflag &= ~VLIST_DEAD; \
294 deadvnodes--; \
295 } while(0)
296
297
298 /* remove a vnode from async work vnode list */
299 #define VREMASYNC_WORK(fun, vp) \
300 do { \
301 VLISTCHECK((fun), (vp), "async_work"); \
302 TAILQ_REMOVE(&vnode_async_work_list, (vp), v_freelist); \
303 VLISTNONE((vp)); \
304 vp->v_listflag &= ~VLIST_ASYNC_WORK; \
305 async_work_vnodes--; \
306 } while(0)
307
308
309 /* remove a vnode from rage vnode list */
310 #define VREMRAGE(fun, vp) \
311 do { \
312 if ( !(vp->v_listflag & VLIST_RAGE)) \
313 panic("VREMRAGE: vp not on rage list"); \
314 VLISTCHECK((fun), (vp), "rage"); \
315 TAILQ_REMOVE(&vnode_rage_list, (vp), v_freelist); \
316 VLISTNONE((vp)); \
317 vp->v_listflag &= ~VLIST_RAGE; \
318 ragevnodes--; \
319 } while(0)
320
321 static void async_work_continue(void);
322
323 /*
324 * Initialize the vnode management data structures.
325 */
326 __private_extern__ void
327 vntblinit(void)
328 {
329 thread_t thread = THREAD_NULL;
330
331 TAILQ_INIT(&vnode_free_list);
332 TAILQ_INIT(&vnode_rage_list);
333 TAILQ_INIT(&vnode_dead_list);
334 TAILQ_INIT(&vnode_async_work_list);
335 TAILQ_INIT(&mountlist);
336
337 microuptime(&rage_tv);
338 rage_limit = desiredvnodes / 100;
339
340 if (rage_limit < RAGE_LIMIT_MIN)
341 rage_limit = RAGE_LIMIT_MIN;
342
343 /*
344 * create worker threads
345 */
346 kernel_thread_start((thread_continue_t)async_work_continue, NULL, &thread);
347 thread_deallocate(thread);
348 }
349
350 /* the timeout is in 10 msecs */
351 int
352 vnode_waitforwrites(vnode_t vp, int output_target, int slpflag, int slptimeout, const char *msg) {
353 int error = 0;
354 struct timespec ts;
355
356 KERNEL_DEBUG(0x3010280 | DBG_FUNC_START, (int)vp, output_target, vp->v_numoutput, 0, 0);
357
358 if (vp->v_numoutput > output_target) {
359
360 slpflag |= PDROP;
361
362 vnode_lock_spin(vp);
363
364 while ((vp->v_numoutput > output_target) && error == 0) {
365 if (output_target)
366 vp->v_flag |= VTHROTTLED;
367 else
368 vp->v_flag |= VBWAIT;
369
370 ts.tv_sec = (slptimeout/100);
371 ts.tv_nsec = (slptimeout % 1000) * 10 * NSEC_PER_USEC * 1000 ;
372 error = msleep((caddr_t)&vp->v_numoutput, &vp->v_lock, (slpflag | (PRIBIO + 1)), msg, &ts);
373
374 vnode_lock_spin(vp);
375 }
376 vnode_unlock(vp);
377 }
378 KERNEL_DEBUG(0x3010280 | DBG_FUNC_END, (int)vp, output_target, vp->v_numoutput, error, 0);
379
380 return error;
381 }
382
383
384 void
385 vnode_startwrite(vnode_t vp) {
386
387 OSAddAtomic(1, &vp->v_numoutput);
388 }
389
390
391 void
392 vnode_writedone(vnode_t vp)
393 {
394 if (vp) {
395 int need_wakeup = 0;
396
397 OSAddAtomic(-1, &vp->v_numoutput);
398
399 vnode_lock_spin(vp);
400
401 if (vp->v_numoutput < 0)
402 panic("vnode_writedone: numoutput < 0");
403
404 if ((vp->v_flag & VTHROTTLED)) {
405 vp->v_flag &= ~VTHROTTLED;
406 need_wakeup = 1;
407 }
408 if ((vp->v_flag & VBWAIT) && (vp->v_numoutput == 0)) {
409 vp->v_flag &= ~VBWAIT;
410 need_wakeup = 1;
411 }
412 vnode_unlock(vp);
413
414 if (need_wakeup)
415 wakeup((caddr_t)&vp->v_numoutput);
416 }
417 }
418
419
420
421 int
422 vnode_hasdirtyblks(vnode_t vp)
423 {
424 struct cl_writebehind *wbp;
425
426 /*
427 * Not taking the buf_mtxp as there is little
428 * point doing it. Even if the lock is taken the
429 * state can change right after that. If their
430 * needs to be a synchronization, it must be driven
431 * by the caller
432 */
433 if (vp->v_dirtyblkhd.lh_first)
434 return (1);
435
436 if (!UBCINFOEXISTS(vp))
437 return (0);
438
439 wbp = vp->v_ubcinfo->cl_wbehind;
440
441 if (wbp && (wbp->cl_number || wbp->cl_scmap))
442 return (1);
443
444 return (0);
445 }
446
447 int
448 vnode_hascleanblks(vnode_t vp)
449 {
450 /*
451 * Not taking the buf_mtxp as there is little
452 * point doing it. Even if the lock is taken the
453 * state can change right after that. If their
454 * needs to be a synchronization, it must be driven
455 * by the caller
456 */
457 if (vp->v_cleanblkhd.lh_first)
458 return (1);
459 return (0);
460 }
461
462 void
463 vnode_iterate_setup(mount_t mp)
464 {
465 mp->mnt_lflag |= MNT_LITER;
466 }
467
468 int
469 vnode_umount_preflight(mount_t mp, vnode_t skipvp, int flags)
470 {
471 vnode_t vp;
472
473 TAILQ_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
474 if (vp->v_type == VDIR)
475 continue;
476 if (vp == skipvp)
477 continue;
478 if ((flags & SKIPSYSTEM) && ((vp->v_flag & VSYSTEM) || (vp->v_flag & VNOFLUSH)))
479 continue;
480 if ((flags & SKIPSWAP) && (vp->v_flag & VSWAP))
481 continue;
482 if ((flags & WRITECLOSE) && (vp->v_writecount == 0 || vp->v_type != VREG))
483 continue;
484
485 /* Look for busy vnode */
486 if ((vp->v_usecount != 0) && ((vp->v_usecount - vp->v_kusecount) != 0)) {
487 return 1;
488
489 } else if (vp->v_iocount > 0) {
490 /* Busy if iocount is > 0 for more than 3 seconds */
491 tsleep(&vp->v_iocount, PVFS, "vnode_drain_network", 3 * hz);
492 if (vp->v_iocount > 0)
493 return 1;
494 continue;
495 }
496 }
497
498 return 0;
499 }
500
501 /*
502 * This routine prepares iteration by moving all the vnodes to worker queue
503 * called with mount lock held
504 */
505 int
506 vnode_iterate_prepare(mount_t mp)
507 {
508 vnode_t vp;
509
510 if (TAILQ_EMPTY(&mp->mnt_vnodelist)) {
511 /* nothing to do */
512 return (0);
513 }
514
515 vp = TAILQ_FIRST(&mp->mnt_vnodelist);
516 vp->v_mntvnodes.tqe_prev = &(mp->mnt_workerqueue.tqh_first);
517 mp->mnt_workerqueue.tqh_first = mp->mnt_vnodelist.tqh_first;
518 mp->mnt_workerqueue.tqh_last = mp->mnt_vnodelist.tqh_last;
519
520 TAILQ_INIT(&mp->mnt_vnodelist);
521 if (mp->mnt_newvnodes.tqh_first != NULL)
522 panic("vnode_iterate_prepare: newvnode when entering vnode");
523 TAILQ_INIT(&mp->mnt_newvnodes);
524
525 return (1);
526 }
527
528
529 /* called with mount lock held */
530 int
531 vnode_iterate_reloadq(mount_t mp)
532 {
533 int moved = 0;
534
535 /* add the remaining entries in workerq to the end of mount vnode list */
536 if (!TAILQ_EMPTY(&mp->mnt_workerqueue)) {
537 struct vnode * mvp;
538 mvp = TAILQ_LAST(&mp->mnt_vnodelist, vnodelst);
539
540 /* Joining the workerque entities to mount vnode list */
541 if (mvp)
542 mvp->v_mntvnodes.tqe_next = mp->mnt_workerqueue.tqh_first;
543 else
544 mp->mnt_vnodelist.tqh_first = mp->mnt_workerqueue.tqh_first;
545 mp->mnt_workerqueue.tqh_first->v_mntvnodes.tqe_prev = mp->mnt_vnodelist.tqh_last;
546 mp->mnt_vnodelist.tqh_last = mp->mnt_workerqueue.tqh_last;
547 TAILQ_INIT(&mp->mnt_workerqueue);
548 }
549
550 /* add the newvnodes to the head of mount vnode list */
551 if (!TAILQ_EMPTY(&mp->mnt_newvnodes)) {
552 struct vnode * nlvp;
553 nlvp = TAILQ_LAST(&mp->mnt_newvnodes, vnodelst);
554
555 mp->mnt_newvnodes.tqh_first->v_mntvnodes.tqe_prev = &mp->mnt_vnodelist.tqh_first;
556 nlvp->v_mntvnodes.tqe_next = mp->mnt_vnodelist.tqh_first;
557 if(mp->mnt_vnodelist.tqh_first)
558 mp->mnt_vnodelist.tqh_first->v_mntvnodes.tqe_prev = &nlvp->v_mntvnodes.tqe_next;
559 else
560 mp->mnt_vnodelist.tqh_last = mp->mnt_newvnodes.tqh_last;
561 mp->mnt_vnodelist.tqh_first = mp->mnt_newvnodes.tqh_first;
562 TAILQ_INIT(&mp->mnt_newvnodes);
563 moved = 1;
564 }
565
566 return(moved);
567 }
568
569
570 void
571 vnode_iterate_clear(mount_t mp)
572 {
573 mp->mnt_lflag &= ~MNT_LITER;
574 }
575
576 #if !CONFIG_EMBEDDED
577
578 #include <i386/panic_hooks.h>
579
580 struct vnode_iterate_panic_hook {
581 panic_hook_t hook;
582 mount_t mp;
583 struct vnode *vp;
584 };
585
586 static void vnode_iterate_panic_hook(panic_hook_t *hook_)
587 {
588 struct vnode_iterate_panic_hook *hook = (struct vnode_iterate_panic_hook *)hook_;
589 panic_phys_range_t range;
590 uint64_t phys;
591
592 if (panic_phys_range_before(hook->mp, &phys, &range)) {
593 paniclog_append_noflush("mp = %p, phys = %p, prev (%p: %p-%p)\n",
594 hook->mp, phys, range.type, range.phys_start,
595 range.phys_start + range.len);
596 } else {
597 paniclog_append_noflush("mp = %p, phys = %p, prev (!)\n", hook->mp, phys);
598 }
599
600 if (panic_phys_range_before(hook->vp, &phys, &range)) {
601 paniclog_append_noflush("vp = %p, phys = %p, prev (%p: %p-%p)\n",
602 hook->vp, phys, range.type, range.phys_start,
603 range.phys_start + range.len);
604 } else {
605 paniclog_append_noflush("vp = %p, phys = %p, prev (!)\n", hook->vp, phys);
606 }
607 panic_dump_mem((void *)(((vm_offset_t)hook->mp -4096) & ~4095), 12288);
608 }
609 #endif //CONFIG_EMBEDDED
610
611 int
612 vnode_iterate(mount_t mp, int flags, int (*callout)(struct vnode *, void *),
613 void *arg)
614 {
615 struct vnode *vp;
616 int vid, retval;
617 int ret = 0;
618
619 /*
620 * The mount iterate mutex is held for the duration of the iteration.
621 * This can be done by a state flag on the mount structure but we can
622 * run into priority inversion issues sometimes.
623 * Using a mutex allows us to benefit from the priority donation
624 * mechanisms in the kernel for locks. This mutex should never be
625 * acquired in spin mode and it should be acquired before attempting to
626 * acquire the mount lock.
627 */
628 mount_iterate_lock(mp);
629
630 mount_lock(mp);
631
632 vnode_iterate_setup(mp);
633
634 /* If it returns 0 then there is nothing to do */
635 retval = vnode_iterate_prepare(mp);
636
637 if (retval == 0) {
638 vnode_iterate_clear(mp);
639 mount_unlock(mp);
640 mount_iterate_unlock(mp);
641 return(ret);
642 }
643
644 #if !CONFIG_EMBEDDED
645 struct vnode_iterate_panic_hook hook;
646 hook.mp = mp;
647 hook.vp = NULL;
648 panic_hook(&hook.hook, vnode_iterate_panic_hook);
649 #endif
650 /* iterate over all the vnodes */
651 while (!TAILQ_EMPTY(&mp->mnt_workerqueue)) {
652 vp = TAILQ_FIRST(&mp->mnt_workerqueue);
653 #if !CONFIG_EMBEDDED
654 hook.vp = vp;
655 #endif
656 TAILQ_REMOVE(&mp->mnt_workerqueue, vp, v_mntvnodes);
657 TAILQ_INSERT_TAIL(&mp->mnt_vnodelist, vp, v_mntvnodes);
658 vid = vp->v_id;
659 if ((vp->v_data == NULL) || (vp->v_type == VNON) || (vp->v_mount != mp)) {
660 continue;
661 }
662 mount_unlock(mp);
663
664 if ( vget_internal(vp, vid, (flags | VNODE_NODEAD| VNODE_WITHID | VNODE_NOSUSPEND))) {
665 mount_lock(mp);
666 continue;
667 }
668 if (flags & VNODE_RELOAD) {
669 /*
670 * we're reloading the filesystem
671 * cast out any inactive vnodes...
672 */
673 if (vnode_reload(vp)) {
674 /* vnode will be recycled on the refcount drop */
675 vnode_put(vp);
676 mount_lock(mp);
677 continue;
678 }
679 }
680
681 retval = callout(vp, arg);
682
683 switch (retval) {
684 case VNODE_RETURNED:
685 case VNODE_RETURNED_DONE:
686 vnode_put(vp);
687 if (retval == VNODE_RETURNED_DONE) {
688 mount_lock(mp);
689 ret = 0;
690 goto out;
691 }
692 break;
693
694 case VNODE_CLAIMED_DONE:
695 mount_lock(mp);
696 ret = 0;
697 goto out;
698 case VNODE_CLAIMED:
699 default:
700 break;
701 }
702 mount_lock(mp);
703 }
704
705 out:
706 #if !CONFIG_EMBEDDED
707 panic_unhook(&hook.hook);
708 #endif
709 (void)vnode_iterate_reloadq(mp);
710 vnode_iterate_clear(mp);
711 mount_unlock(mp);
712 mount_iterate_unlock(mp);
713 return (ret);
714 }
715
716 void
717 mount_lock_renames(mount_t mp)
718 {
719 lck_mtx_lock(&mp->mnt_renamelock);
720 }
721
722 void
723 mount_unlock_renames(mount_t mp)
724 {
725 lck_mtx_unlock(&mp->mnt_renamelock);
726 }
727
728 void
729 mount_iterate_lock(mount_t mp)
730 {
731 lck_mtx_lock(&mp->mnt_iter_lock);
732 }
733
734 void
735 mount_iterate_unlock(mount_t mp)
736 {
737 lck_mtx_unlock(&mp->mnt_iter_lock);
738 }
739
740 void
741 mount_lock(mount_t mp)
742 {
743 lck_mtx_lock(&mp->mnt_mlock);
744 }
745
746 void
747 mount_lock_spin(mount_t mp)
748 {
749 lck_mtx_lock_spin(&mp->mnt_mlock);
750 }
751
752 void
753 mount_unlock(mount_t mp)
754 {
755 lck_mtx_unlock(&mp->mnt_mlock);
756 }
757
758
759 void
760 mount_ref(mount_t mp, int locked)
761 {
762 if ( !locked)
763 mount_lock_spin(mp);
764
765 mp->mnt_count++;
766
767 if ( !locked)
768 mount_unlock(mp);
769 }
770
771
772 void
773 mount_drop(mount_t mp, int locked)
774 {
775 if ( !locked)
776 mount_lock_spin(mp);
777
778 mp->mnt_count--;
779
780 if (mp->mnt_count == 0 && (mp->mnt_lflag & MNT_LDRAIN))
781 wakeup(&mp->mnt_lflag);
782
783 if ( !locked)
784 mount_unlock(mp);
785 }
786
787
788 int
789 mount_iterref(mount_t mp, int locked)
790 {
791 int retval = 0;
792
793 if (!locked)
794 mount_list_lock();
795 if (mp->mnt_iterref < 0) {
796 retval = 1;
797 } else {
798 mp->mnt_iterref++;
799 }
800 if (!locked)
801 mount_list_unlock();
802 return(retval);
803 }
804
805 int
806 mount_isdrained(mount_t mp, int locked)
807 {
808 int retval;
809
810 if (!locked)
811 mount_list_lock();
812 if (mp->mnt_iterref < 0)
813 retval = 1;
814 else
815 retval = 0;
816 if (!locked)
817 mount_list_unlock();
818 return(retval);
819 }
820
821 void
822 mount_iterdrop(mount_t mp)
823 {
824 mount_list_lock();
825 mp->mnt_iterref--;
826 wakeup(&mp->mnt_iterref);
827 mount_list_unlock();
828 }
829
830 void
831 mount_iterdrain(mount_t mp)
832 {
833 mount_list_lock();
834 while (mp->mnt_iterref)
835 msleep((caddr_t)&mp->mnt_iterref, mnt_list_mtx_lock, PVFS, "mount_iterdrain", NULL);
836 /* mount iterations drained */
837 mp->mnt_iterref = -1;
838 mount_list_unlock();
839 }
840 void
841 mount_iterreset(mount_t mp)
842 {
843 mount_list_lock();
844 if (mp->mnt_iterref == -1)
845 mp->mnt_iterref = 0;
846 mount_list_unlock();
847 }
848
849 /* always called with mount lock held */
850 int
851 mount_refdrain(mount_t mp)
852 {
853 if (mp->mnt_lflag & MNT_LDRAIN)
854 panic("already in drain");
855 mp->mnt_lflag |= MNT_LDRAIN;
856
857 while (mp->mnt_count)
858 msleep((caddr_t)&mp->mnt_lflag, &mp->mnt_mlock, PVFS, "mount_drain", NULL);
859
860 if (mp->mnt_vnodelist.tqh_first != NULL)
861 panic("mount_refdrain: dangling vnode");
862
863 mp->mnt_lflag &= ~MNT_LDRAIN;
864
865 return(0);
866 }
867
868 /* Tags the mount point as not supportine extended readdir for NFS exports */
869 void
870 mount_set_noreaddirext(mount_t mp) {
871 mount_lock (mp);
872 mp->mnt_kern_flag |= MNTK_DENY_READDIREXT;
873 mount_unlock (mp);
874 }
875
876 /*
877 * Mark a mount point as busy. Used to synchronize access and to delay
878 * unmounting.
879 */
880 int
881 vfs_busy(mount_t mp, int flags)
882 {
883
884 restart:
885 if (mp->mnt_lflag & MNT_LDEAD)
886 return (ENOENT);
887
888 mount_lock(mp);
889
890 if (mp->mnt_lflag & MNT_LUNMOUNT) {
891 if (flags & LK_NOWAIT || mp->mnt_lflag & MNT_LDEAD) {
892 mount_unlock(mp);
893 return (ENOENT);
894 }
895
896 /*
897 * Since all busy locks are shared except the exclusive
898 * lock granted when unmounting, the only place that a
899 * wakeup needs to be done is at the release of the
900 * exclusive lock at the end of dounmount.
901 */
902 mp->mnt_lflag |= MNT_LWAIT;
903 msleep((caddr_t)mp, &mp->mnt_mlock, (PVFS | PDROP), "vfsbusy", NULL);
904 return (ENOENT);
905 }
906
907 mount_unlock(mp);
908
909 lck_rw_lock_shared(&mp->mnt_rwlock);
910
911 /*
912 * Until we are granted the rwlock, it's possible for the mount point to
913 * change state, so re-evaluate before granting the vfs_busy.
914 */
915 if (mp->mnt_lflag & (MNT_LDEAD | MNT_LUNMOUNT)) {
916 lck_rw_done(&mp->mnt_rwlock);
917 goto restart;
918 }
919 return (0);
920 }
921
922 /*
923 * Free a busy filesystem.
924 */
925 void
926 vfs_unbusy(mount_t mp)
927 {
928 lck_rw_done(&mp->mnt_rwlock);
929 }
930
931
932
933 static void
934 vfs_rootmountfailed(mount_t mp) {
935
936 mount_list_lock();
937 mp->mnt_vtable->vfc_refcount--;
938 mount_list_unlock();
939
940 vfs_unbusy(mp);
941
942 mount_lock_destroy(mp);
943
944 #if CONFIG_MACF
945 mac_mount_label_destroy(mp);
946 #endif
947
948 FREE_ZONE(mp, sizeof(struct mount), M_MOUNT);
949 }
950
951 /*
952 * Lookup a filesystem type, and if found allocate and initialize
953 * a mount structure for it.
954 *
955 * Devname is usually updated by mount(8) after booting.
956 */
957 static mount_t
958 vfs_rootmountalloc_internal(struct vfstable *vfsp, const char *devname)
959 {
960 mount_t mp;
961
962 mp = _MALLOC_ZONE(sizeof(struct mount), M_MOUNT, M_WAITOK);
963 bzero((char *)mp, sizeof(struct mount));
964
965 /* Initialize the default IO constraints */
966 mp->mnt_maxreadcnt = mp->mnt_maxwritecnt = MAXPHYS;
967 mp->mnt_segreadcnt = mp->mnt_segwritecnt = 32;
968 mp->mnt_maxsegreadsize = mp->mnt_maxreadcnt;
969 mp->mnt_maxsegwritesize = mp->mnt_maxwritecnt;
970 mp->mnt_devblocksize = DEV_BSIZE;
971 mp->mnt_alignmentmask = PAGE_MASK;
972 mp->mnt_ioqueue_depth = MNT_DEFAULT_IOQUEUE_DEPTH;
973 mp->mnt_ioscale = 1;
974 mp->mnt_ioflags = 0;
975 mp->mnt_realrootvp = NULLVP;
976 mp->mnt_authcache_ttl = CACHED_LOOKUP_RIGHT_TTL;
977 mp->mnt_throttle_mask = LOWPRI_MAX_NUM_DEV - 1;
978 mp->mnt_devbsdunit = 0;
979
980 mount_lock_init(mp);
981 (void)vfs_busy(mp, LK_NOWAIT);
982
983 TAILQ_INIT(&mp->mnt_vnodelist);
984 TAILQ_INIT(&mp->mnt_workerqueue);
985 TAILQ_INIT(&mp->mnt_newvnodes);
986
987 mp->mnt_vtable = vfsp;
988 mp->mnt_op = vfsp->vfc_vfsops;
989 mp->mnt_flag = MNT_RDONLY | MNT_ROOTFS;
990 mp->mnt_vnodecovered = NULLVP;
991 //mp->mnt_stat.f_type = vfsp->vfc_typenum;
992 mp->mnt_flag |= vfsp->vfc_flags & MNT_VISFLAGMASK;
993
994 mount_list_lock();
995 vfsp->vfc_refcount++;
996 mount_list_unlock();
997
998 strlcpy(mp->mnt_vfsstat.f_fstypename, vfsp->vfc_name, MFSTYPENAMELEN);
999 mp->mnt_vfsstat.f_mntonname[0] = '/';
1000 /* XXX const poisoning layering violation */
1001 (void) copystr((const void *)devname, mp->mnt_vfsstat.f_mntfromname, MAXPATHLEN - 1, NULL);
1002
1003 #if CONFIG_MACF
1004 mac_mount_label_init(mp);
1005 mac_mount_label_associate(vfs_context_kernel(), mp);
1006 #endif
1007 return (mp);
1008 }
1009
1010 errno_t
1011 vfs_rootmountalloc(const char *fstypename, const char *devname, mount_t *mpp)
1012 {
1013 struct vfstable *vfsp;
1014
1015 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
1016 if (!strncmp(vfsp->vfc_name, fstypename,
1017 sizeof(vfsp->vfc_name)))
1018 break;
1019 if (vfsp == NULL)
1020 return (ENODEV);
1021
1022 *mpp = vfs_rootmountalloc_internal(vfsp, devname);
1023
1024 if (*mpp)
1025 return (0);
1026
1027 return (ENOMEM);
1028 }
1029
1030 #define DBG_MOUNTROOT (FSDBG_CODE(DBG_MOUNT, 0))
1031
1032 /*
1033 * Find an appropriate filesystem to use for the root. If a filesystem
1034 * has not been preselected, walk through the list of known filesystems
1035 * trying those that have mountroot routines, and try them until one
1036 * works or we have tried them all.
1037 */
1038 extern int (*mountroot)(void);
1039
1040 int
1041 vfs_mountroot(void)
1042 {
1043 #if CONFIG_MACF
1044 struct vnode *vp;
1045 #endif
1046 struct vfstable *vfsp;
1047 vfs_context_t ctx = vfs_context_kernel();
1048 struct vfs_attr vfsattr;
1049 int error;
1050 mount_t mp;
1051 vnode_t bdevvp_rootvp;
1052
1053 KDBG_RELEASE(DBG_MOUNTROOT | DBG_FUNC_START);
1054 if (mountroot != NULL) {
1055 /*
1056 * used for netboot which follows a different set of rules
1057 */
1058 error = (*mountroot)();
1059
1060 KDBG_RELEASE(DBG_MOUNTROOT | DBG_FUNC_END, error, 0);
1061 return (error);
1062 }
1063 if ((error = bdevvp(rootdev, &rootvp))) {
1064 printf("vfs_mountroot: can't setup bdevvp\n");
1065
1066 KDBG_RELEASE(DBG_MOUNTROOT | DBG_FUNC_END, error, 1);
1067 return (error);
1068 }
1069 /*
1070 * 4951998 - code we call in vfc_mountroot may replace rootvp
1071 * so keep a local copy for some house keeping.
1072 */
1073 bdevvp_rootvp = rootvp;
1074
1075 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next) {
1076 if (vfsp->vfc_mountroot == NULL
1077 && !ISSET(vfsp->vfc_vfsflags, VFC_VFSCANMOUNTROOT)) {
1078 continue;
1079 }
1080
1081 mp = vfs_rootmountalloc_internal(vfsp, "root_device");
1082 mp->mnt_devvp = rootvp;
1083
1084 if (vfsp->vfc_mountroot)
1085 error = (*vfsp->vfc_mountroot)(mp, rootvp, ctx);
1086 else
1087 error = VFS_MOUNT(mp, rootvp, 0, ctx);
1088
1089 if (!error) {
1090 if ( bdevvp_rootvp != rootvp ) {
1091 /*
1092 * rootvp changed...
1093 * bump the iocount and fix up mnt_devvp for the
1094 * new rootvp (it will already have a usecount taken)...
1095 * drop the iocount and the usecount on the orignal
1096 * since we are no longer going to use it...
1097 */
1098 vnode_getwithref(rootvp);
1099 mp->mnt_devvp = rootvp;
1100
1101 vnode_rele(bdevvp_rootvp);
1102 vnode_put(bdevvp_rootvp);
1103 }
1104 mp->mnt_devvp->v_specflags |= SI_MOUNTEDON;
1105
1106 vfs_unbusy(mp);
1107
1108 mount_list_add(mp);
1109
1110 /*
1111 * cache the IO attributes for the underlying physical media...
1112 * an error return indicates the underlying driver doesn't
1113 * support all the queries necessary... however, reasonable
1114 * defaults will have been set, so no reason to bail or care
1115 */
1116 vfs_init_io_attributes(rootvp, mp);
1117
1118 if (mp->mnt_ioflags & MNT_IOFLAGS_FUSION_DRIVE) {
1119 root_is_CF_drive = TRUE;
1120 }
1121
1122 /*
1123 * Shadow the VFC_VFSNATIVEXATTR flag to MNTK_EXTENDED_ATTRS.
1124 */
1125 if (mp->mnt_vtable->vfc_vfsflags & VFC_VFSNATIVEXATTR) {
1126 mp->mnt_kern_flag |= MNTK_EXTENDED_ATTRS;
1127 }
1128 if (mp->mnt_vtable->vfc_vfsflags & VFC_VFSPREFLIGHT) {
1129 mp->mnt_kern_flag |= MNTK_UNMOUNT_PREFLIGHT;
1130 }
1131
1132 #if !CONFIG_EMBEDDED
1133 uint32_t speed;
1134
1135 if (MNTK_VIRTUALDEV & mp->mnt_kern_flag) speed = 128;
1136 else if (disk_conditioner_mount_is_ssd(mp)) speed = 7*256;
1137 else speed = 256;
1138 vc_progress_setdiskspeed(speed);
1139 #endif
1140 /*
1141 * Probe root file system for additional features.
1142 */
1143 (void)VFS_START(mp, 0, ctx);
1144
1145 VFSATTR_INIT(&vfsattr);
1146 VFSATTR_WANTED(&vfsattr, f_capabilities);
1147 if (vfs_getattr(mp, &vfsattr, ctx) == 0 &&
1148 VFSATTR_IS_SUPPORTED(&vfsattr, f_capabilities)) {
1149 if ((vfsattr.f_capabilities.capabilities[VOL_CAPABILITIES_INTERFACES] & VOL_CAP_INT_EXTENDED_ATTR) &&
1150 (vfsattr.f_capabilities.valid[VOL_CAPABILITIES_INTERFACES] & VOL_CAP_INT_EXTENDED_ATTR)) {
1151 mp->mnt_kern_flag |= MNTK_EXTENDED_ATTRS;
1152 }
1153 #if NAMEDSTREAMS
1154 if ((vfsattr.f_capabilities.capabilities[VOL_CAPABILITIES_INTERFACES] & VOL_CAP_INT_NAMEDSTREAMS) &&
1155 (vfsattr.f_capabilities.valid[VOL_CAPABILITIES_INTERFACES] & VOL_CAP_INT_NAMEDSTREAMS)) {
1156 mp->mnt_kern_flag |= MNTK_NAMED_STREAMS;
1157 }
1158 #endif
1159 if ((vfsattr.f_capabilities.capabilities[VOL_CAPABILITIES_FORMAT] & VOL_CAP_FMT_PATH_FROM_ID) &&
1160 (vfsattr.f_capabilities.valid[VOL_CAPABILITIES_FORMAT] & VOL_CAP_FMT_PATH_FROM_ID)) {
1161 mp->mnt_kern_flag |= MNTK_PATH_FROM_ID;
1162 }
1163
1164 if ((vfsattr.f_capabilities.capabilities[VOL_CAPABILITIES_FORMAT] & VOL_CAP_FMT_DIR_HARDLINKS) &&
1165 (vfsattr.f_capabilities.valid[VOL_CAPABILITIES_FORMAT] & VOL_CAP_FMT_DIR_HARDLINKS)) {
1166 mp->mnt_kern_flag |= MNTK_DIR_HARDLINKS;
1167 }
1168 }
1169
1170 /*
1171 * get rid of iocount reference returned
1172 * by bdevvp (or picked up by us on the substitued
1173 * rootvp)... it (or we) will have also taken
1174 * a usecount reference which we want to keep
1175 */
1176 vnode_put(rootvp);
1177
1178 #if CONFIG_MACF
1179 if ((vfs_flags(mp) & MNT_MULTILABEL) == 0) {
1180 KDBG_RELEASE(DBG_MOUNTROOT | DBG_FUNC_END, 0, 2);
1181 return (0);
1182 }
1183
1184 error = VFS_ROOT(mp, &vp, ctx);
1185 if (error) {
1186 printf("%s() VFS_ROOT() returned %d\n",
1187 __func__, error);
1188 dounmount(mp, MNT_FORCE, 0, ctx);
1189 goto fail;
1190 }
1191 error = vnode_label(mp, NULL, vp, NULL, 0, ctx);
1192 /*
1193 * get rid of reference provided by VFS_ROOT
1194 */
1195 vnode_put(vp);
1196
1197 if (error) {
1198 printf("%s() vnode_label() returned %d\n",
1199 __func__, error);
1200 dounmount(mp, MNT_FORCE, 0, ctx);
1201 goto fail;
1202 }
1203 #endif
1204 KDBG_RELEASE(DBG_MOUNTROOT | DBG_FUNC_END, 0, 3);
1205 return (0);
1206 }
1207 #if CONFIG_MACF
1208 fail:
1209 #endif
1210 vfs_rootmountfailed(mp);
1211
1212 if (error != EINVAL)
1213 printf("%s_mountroot failed: %d\n", vfsp->vfc_name, error);
1214 }
1215 KDBG_RELEASE(DBG_MOUNTROOT | DBG_FUNC_END, error ? error : ENODEV, 4);
1216 return (ENODEV);
1217 }
1218
1219 /*
1220 * Lookup a mount point by filesystem identifier.
1221 */
1222
1223 struct mount *
1224 vfs_getvfs(fsid_t *fsid)
1225 {
1226 return (mount_list_lookupby_fsid(fsid, 0, 0));
1227 }
1228
1229 static struct mount *
1230 vfs_getvfs_locked(fsid_t *fsid)
1231 {
1232 return(mount_list_lookupby_fsid(fsid, 1, 0));
1233 }
1234
1235 struct mount *
1236 vfs_getvfs_by_mntonname(char *path)
1237 {
1238 mount_t retmp = (mount_t)0;
1239 mount_t mp;
1240
1241 mount_list_lock();
1242 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
1243 if (!strncmp(mp->mnt_vfsstat.f_mntonname, path,
1244 sizeof(mp->mnt_vfsstat.f_mntonname))) {
1245 retmp = mp;
1246 if (mount_iterref(retmp, 1))
1247 retmp = NULL;
1248 goto out;
1249 }
1250 }
1251 out:
1252 mount_list_unlock();
1253 return (retmp);
1254 }
1255
1256 /* generation number for creation of new fsids */
1257 u_short mntid_gen = 0;
1258 /*
1259 * Get a new unique fsid
1260 */
1261 void
1262 vfs_getnewfsid(struct mount *mp)
1263 {
1264
1265 fsid_t tfsid;
1266 int mtype;
1267
1268 mount_list_lock();
1269
1270 /* generate a new fsid */
1271 mtype = mp->mnt_vtable->vfc_typenum;
1272 if (++mntid_gen == 0)
1273 mntid_gen++;
1274 tfsid.val[0] = makedev(nblkdev + mtype, mntid_gen);
1275 tfsid.val[1] = mtype;
1276
1277 while (vfs_getvfs_locked(&tfsid)) {
1278 if (++mntid_gen == 0)
1279 mntid_gen++;
1280 tfsid.val[0] = makedev(nblkdev + mtype, mntid_gen);
1281 }
1282
1283 mp->mnt_vfsstat.f_fsid.val[0] = tfsid.val[0];
1284 mp->mnt_vfsstat.f_fsid.val[1] = tfsid.val[1];
1285 mount_list_unlock();
1286 }
1287
1288 /*
1289 * Routines having to do with the management of the vnode table.
1290 */
1291 extern int (**dead_vnodeop_p)(void *);
1292 long numvnodes, freevnodes, deadvnodes, async_work_vnodes;
1293
1294
1295 int async_work_timed_out = 0;
1296 int async_work_handled = 0;
1297 int dead_vnode_wanted = 0;
1298 int dead_vnode_waited = 0;
1299
1300 /*
1301 * Move a vnode from one mount queue to another.
1302 */
1303 static void
1304 insmntque(vnode_t vp, mount_t mp)
1305 {
1306 mount_t lmp;
1307 /*
1308 * Delete from old mount point vnode list, if on one.
1309 */
1310 if ( (lmp = vp->v_mount) != NULL && lmp != dead_mountp) {
1311 if ((vp->v_lflag & VNAMED_MOUNT) == 0)
1312 panic("insmntque: vp not in mount vnode list");
1313 vp->v_lflag &= ~VNAMED_MOUNT;
1314
1315 mount_lock_spin(lmp);
1316
1317 mount_drop(lmp, 1);
1318
1319 if (vp->v_mntvnodes.tqe_next == NULL) {
1320 if (TAILQ_LAST(&lmp->mnt_vnodelist, vnodelst) == vp)
1321 TAILQ_REMOVE(&lmp->mnt_vnodelist, vp, v_mntvnodes);
1322 else if (TAILQ_LAST(&lmp->mnt_newvnodes, vnodelst) == vp)
1323 TAILQ_REMOVE(&lmp->mnt_newvnodes, vp, v_mntvnodes);
1324 else if (TAILQ_LAST(&lmp->mnt_workerqueue, vnodelst) == vp)
1325 TAILQ_REMOVE(&lmp->mnt_workerqueue, vp, v_mntvnodes);
1326 } else {
1327 vp->v_mntvnodes.tqe_next->v_mntvnodes.tqe_prev = vp->v_mntvnodes.tqe_prev;
1328 *vp->v_mntvnodes.tqe_prev = vp->v_mntvnodes.tqe_next;
1329 }
1330 vp->v_mntvnodes.tqe_next = NULL;
1331 vp->v_mntvnodes.tqe_prev = NULL;
1332 mount_unlock(lmp);
1333 return;
1334 }
1335
1336 /*
1337 * Insert into list of vnodes for the new mount point, if available.
1338 */
1339 if ((vp->v_mount = mp) != NULL) {
1340 mount_lock_spin(mp);
1341 if ((vp->v_mntvnodes.tqe_next != 0) && (vp->v_mntvnodes.tqe_prev != 0))
1342 panic("vp already in mount list");
1343 if (mp->mnt_lflag & MNT_LITER)
1344 TAILQ_INSERT_HEAD(&mp->mnt_newvnodes, vp, v_mntvnodes);
1345 else
1346 TAILQ_INSERT_HEAD(&mp->mnt_vnodelist, vp, v_mntvnodes);
1347 if (vp->v_lflag & VNAMED_MOUNT)
1348 panic("insmntque: vp already in mount vnode list");
1349 vp->v_lflag |= VNAMED_MOUNT;
1350 mount_ref(mp, 1);
1351 mount_unlock(mp);
1352 }
1353 }
1354
1355
1356 /*
1357 * Create a vnode for a block device.
1358 * Used for root filesystem, argdev, and swap areas.
1359 * Also used for memory file system special devices.
1360 */
1361 int
1362 bdevvp(dev_t dev, vnode_t *vpp)
1363 {
1364 vnode_t nvp;
1365 int error;
1366 struct vnode_fsparam vfsp;
1367 struct vfs_context context;
1368
1369 if (dev == NODEV) {
1370 *vpp = NULLVP;
1371 return (ENODEV);
1372 }
1373
1374 context.vc_thread = current_thread();
1375 context.vc_ucred = FSCRED;
1376
1377 vfsp.vnfs_mp = (struct mount *)0;
1378 vfsp.vnfs_vtype = VBLK;
1379 vfsp.vnfs_str = "bdevvp";
1380 vfsp.vnfs_dvp = NULL;
1381 vfsp.vnfs_fsnode = NULL;
1382 vfsp.vnfs_cnp = NULL;
1383 vfsp.vnfs_vops = spec_vnodeop_p;
1384 vfsp.vnfs_rdev = dev;
1385 vfsp.vnfs_filesize = 0;
1386
1387 vfsp.vnfs_flags = VNFS_NOCACHE | VNFS_CANTCACHE;
1388
1389 vfsp.vnfs_marksystem = 0;
1390 vfsp.vnfs_markroot = 0;
1391
1392 if ( (error = vnode_create(VNCREATE_FLAVOR, VCREATESIZE, &vfsp, &nvp)) ) {
1393 *vpp = NULLVP;
1394 return (error);
1395 }
1396 vnode_lock_spin(nvp);
1397 nvp->v_flag |= VBDEVVP;
1398 nvp->v_tag = VT_NON; /* set this to VT_NON so during aliasing it can be replaced */
1399 vnode_unlock(nvp);
1400 if ( (error = vnode_ref(nvp)) ) {
1401 panic("bdevvp failed: vnode_ref");
1402 return (error);
1403 }
1404 if ( (error = VNOP_FSYNC(nvp, MNT_WAIT, &context)) ) {
1405 panic("bdevvp failed: fsync");
1406 return (error);
1407 }
1408 if ( (error = buf_invalidateblks(nvp, BUF_WRITE_DATA, 0, 0)) ) {
1409 panic("bdevvp failed: invalidateblks");
1410 return (error);
1411 }
1412
1413 #if CONFIG_MACF
1414 /*
1415 * XXXMAC: We can't put a MAC check here, the system will
1416 * panic without this vnode.
1417 */
1418 #endif /* MAC */
1419
1420 if ( (error = VNOP_OPEN(nvp, FREAD, &context)) ) {
1421 panic("bdevvp failed: open");
1422 return (error);
1423 }
1424 *vpp = nvp;
1425
1426 return (0);
1427 }
1428
1429 /*
1430 * Check to see if the new vnode represents a special device
1431 * for which we already have a vnode (either because of
1432 * bdevvp() or because of a different vnode representing
1433 * the same block device). If such an alias exists, deallocate
1434 * the existing contents and return the aliased vnode. The
1435 * caller is responsible for filling it with its new contents.
1436 */
1437 static vnode_t
1438 checkalias(struct vnode *nvp, dev_t nvp_rdev)
1439 {
1440 struct vnode *vp;
1441 struct vnode **vpp;
1442 struct specinfo *sin = NULL;
1443 int vid = 0;
1444
1445 vpp = &speclisth[SPECHASH(nvp_rdev)];
1446 loop:
1447 SPECHASH_LOCK();
1448
1449 for (vp = *vpp; vp; vp = vp->v_specnext) {
1450 if (nvp_rdev == vp->v_rdev && nvp->v_type == vp->v_type) {
1451 vid = vp->v_id;
1452 break;
1453 }
1454 }
1455 SPECHASH_UNLOCK();
1456
1457 if (vp) {
1458 found_alias:
1459 if (vnode_getwithvid(vp,vid)) {
1460 goto loop;
1461 }
1462 /*
1463 * Termination state is checked in vnode_getwithvid
1464 */
1465 vnode_lock(vp);
1466
1467 /*
1468 * Alias, but not in use, so flush it out.
1469 */
1470 if ((vp->v_iocount == 1) && (vp->v_usecount == 0)) {
1471 vnode_reclaim_internal(vp, 1, 1, 0);
1472 vnode_put_locked(vp);
1473 vnode_unlock(vp);
1474 goto loop;
1475 }
1476
1477 }
1478 if (vp == NULL || vp->v_tag != VT_NON) {
1479 if (sin == NULL) {
1480 MALLOC_ZONE(sin, struct specinfo *, sizeof(struct specinfo),
1481 M_SPECINFO, M_WAITOK);
1482 }
1483
1484 nvp->v_specinfo = sin;
1485 bzero(nvp->v_specinfo, sizeof(struct specinfo));
1486 nvp->v_rdev = nvp_rdev;
1487 nvp->v_specflags = 0;
1488 nvp->v_speclastr = -1;
1489 nvp->v_specinfo->si_opencount = 0;
1490 nvp->v_specinfo->si_initted = 0;
1491 nvp->v_specinfo->si_throttleable = 0;
1492
1493 SPECHASH_LOCK();
1494
1495 /* We dropped the lock, someone could have added */
1496 if (vp == NULLVP) {
1497 for (vp = *vpp; vp; vp = vp->v_specnext) {
1498 if (nvp_rdev == vp->v_rdev && nvp->v_type == vp->v_type) {
1499 vid = vp->v_id;
1500 SPECHASH_UNLOCK();
1501 goto found_alias;
1502 }
1503 }
1504 }
1505
1506 nvp->v_hashchain = vpp;
1507 nvp->v_specnext = *vpp;
1508 *vpp = nvp;
1509
1510 if (vp != NULLVP) {
1511 nvp->v_specflags |= SI_ALIASED;
1512 vp->v_specflags |= SI_ALIASED;
1513 SPECHASH_UNLOCK();
1514 vnode_put_locked(vp);
1515 vnode_unlock(vp);
1516 } else {
1517 SPECHASH_UNLOCK();
1518 }
1519
1520 return (NULLVP);
1521 }
1522
1523 if (sin) {
1524 FREE_ZONE(sin, sizeof(struct specinfo), M_SPECINFO);
1525 }
1526
1527 if ((vp->v_flag & (VBDEVVP | VDEVFLUSH)) != 0)
1528 return(vp);
1529
1530 panic("checkalias with VT_NON vp that shouldn't: %p", vp);
1531
1532 return (vp);
1533 }
1534
1535
1536 /*
1537 * Get a reference on a particular vnode and lock it if requested.
1538 * If the vnode was on the inactive list, remove it from the list.
1539 * If the vnode was on the free list, remove it from the list and
1540 * move it to inactive list as needed.
1541 * The vnode lock bit is set if the vnode is being eliminated in
1542 * vgone. The process is awakened when the transition is completed,
1543 * and an error returned to indicate that the vnode is no longer
1544 * usable (possibly having been changed to a new file system type).
1545 */
1546 int
1547 vget_internal(vnode_t vp, int vid, int vflags)
1548 {
1549 int error = 0;
1550
1551 vnode_lock_spin(vp);
1552
1553 if ((vflags & VNODE_WRITEABLE) && (vp->v_writecount == 0))
1554 /*
1555 * vnode to be returned only if it has writers opened
1556 */
1557 error = EINVAL;
1558 else
1559 error = vnode_getiocount(vp, vid, vflags);
1560
1561 vnode_unlock(vp);
1562
1563 return (error);
1564 }
1565
1566 /*
1567 * Returns: 0 Success
1568 * ENOENT No such file or directory [terminating]
1569 */
1570 int
1571 vnode_ref(vnode_t vp)
1572 {
1573
1574 return (vnode_ref_ext(vp, 0, 0));
1575 }
1576
1577 /*
1578 * Returns: 0 Success
1579 * ENOENT No such file or directory [terminating]
1580 */
1581 int
1582 vnode_ref_ext(vnode_t vp, int fmode, int flags)
1583 {
1584 int error = 0;
1585
1586 vnode_lock_spin(vp);
1587
1588 /*
1589 * once all the current call sites have been fixed to insure they have
1590 * taken an iocount, we can toughen this assert up and insist that the
1591 * iocount is non-zero... a non-zero usecount doesn't insure correctness
1592 */
1593 if (vp->v_iocount <= 0 && vp->v_usecount <= 0)
1594 panic("vnode_ref_ext: vp %p has no valid reference %d, %d", vp, vp->v_iocount, vp->v_usecount);
1595
1596 /*
1597 * if you are the owner of drain/termination, can acquire usecount
1598 */
1599 if ((flags & VNODE_REF_FORCE) == 0) {
1600 if ((vp->v_lflag & (VL_DRAIN | VL_TERMINATE | VL_DEAD))) {
1601 if (vp->v_owner != current_thread()) {
1602 error = ENOENT;
1603 goto out;
1604 }
1605 }
1606 }
1607 vp->v_usecount++;
1608
1609 if (fmode & FWRITE) {
1610 if (++vp->v_writecount <= 0)
1611 panic("vnode_ref_ext: v_writecount");
1612 }
1613 if (fmode & O_EVTONLY) {
1614 if (++vp->v_kusecount <= 0)
1615 panic("vnode_ref_ext: v_kusecount");
1616 }
1617 if (vp->v_flag & VRAGE) {
1618 struct uthread *ut;
1619
1620 ut = get_bsdthread_info(current_thread());
1621
1622 if ( !(current_proc()->p_lflag & P_LRAGE_VNODES) &&
1623 !(ut->uu_flag & UT_RAGE_VNODES)) {
1624 /*
1625 * a 'normal' process accessed this vnode
1626 * so make sure its no longer marked
1627 * for rapid aging... also, make sure
1628 * it gets removed from the rage list...
1629 * when v_usecount drops back to 0, it
1630 * will be put back on the real free list
1631 */
1632 vp->v_flag &= ~VRAGE;
1633 vp->v_references = 0;
1634 vnode_list_remove(vp);
1635 }
1636 }
1637 if (vp->v_usecount == 1 && vp->v_type == VREG && !(vp->v_flag & VSYSTEM)) {
1638
1639 if (vp->v_ubcinfo) {
1640 vnode_lock_convert(vp);
1641 memory_object_mark_used(vp->v_ubcinfo->ui_control);
1642 }
1643 }
1644 out:
1645 vnode_unlock(vp);
1646
1647 return (error);
1648 }
1649
1650
1651 boolean_t
1652 vnode_on_reliable_media(vnode_t vp)
1653 {
1654 if ( !(vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV) && (vp->v_mount->mnt_flag & MNT_LOCAL) )
1655 return (TRUE);
1656 return (FALSE);
1657 }
1658
1659 static void
1660 vnode_async_list_add(vnode_t vp)
1661 {
1662 vnode_list_lock();
1663
1664 if (VONLIST(vp) || (vp->v_lflag & (VL_TERMINATE|VL_DEAD)))
1665 panic("vnode_async_list_add: %p is in wrong state", vp);
1666
1667 TAILQ_INSERT_HEAD(&vnode_async_work_list, vp, v_freelist);
1668 vp->v_listflag |= VLIST_ASYNC_WORK;
1669
1670 async_work_vnodes++;
1671
1672 vnode_list_unlock();
1673
1674 wakeup(&vnode_async_work_list);
1675
1676 }
1677
1678
1679 /*
1680 * put the vnode on appropriate free list.
1681 * called with vnode LOCKED
1682 */
1683 static void
1684 vnode_list_add(vnode_t vp)
1685 {
1686 boolean_t need_dead_wakeup = FALSE;
1687
1688 #if DIAGNOSTIC
1689 lck_mtx_assert(&vp->v_lock, LCK_MTX_ASSERT_OWNED);
1690 #endif
1691
1692 again:
1693
1694 /*
1695 * if it is already on a list or non zero references return
1696 */
1697 if (VONLIST(vp) || (vp->v_usecount != 0) || (vp->v_iocount != 0) || (vp->v_lflag & VL_TERMINATE))
1698 return;
1699
1700 /*
1701 * In vclean, we might have deferred ditching locked buffers
1702 * because something was still referencing them (indicated by
1703 * usecount). We can ditch them now.
1704 */
1705 if (ISSET(vp->v_lflag, VL_DEAD)
1706 && (!LIST_EMPTY(&vp->v_cleanblkhd) || !LIST_EMPTY(&vp->v_dirtyblkhd))) {
1707 ++vp->v_iocount; // Probably not necessary, but harmless
1708 #ifdef JOE_DEBUG
1709 record_vp(vp, 1);
1710 #endif
1711 vnode_unlock(vp);
1712 buf_invalidateblks(vp, BUF_INVALIDATE_LOCKED, 0, 0);
1713 vnode_lock(vp);
1714 vnode_dropiocount(vp);
1715 goto again;
1716 }
1717
1718 vnode_list_lock();
1719
1720 if ((vp->v_flag & VRAGE) && !(vp->v_lflag & VL_DEAD)) {
1721 /*
1722 * add the new guy to the appropriate end of the RAGE list
1723 */
1724 if ((vp->v_flag & VAGE))
1725 TAILQ_INSERT_HEAD(&vnode_rage_list, vp, v_freelist);
1726 else
1727 TAILQ_INSERT_TAIL(&vnode_rage_list, vp, v_freelist);
1728
1729 vp->v_listflag |= VLIST_RAGE;
1730 ragevnodes++;
1731
1732 /*
1733 * reset the timestamp for the last inserted vp on the RAGE
1734 * queue to let new_vnode know that its not ok to start stealing
1735 * from this list... as long as we're actively adding to this list
1736 * we'll push out the vnodes we want to donate to the real free list
1737 * once we stop pushing, we'll let some time elapse before we start
1738 * stealing them in the new_vnode routine
1739 */
1740 microuptime(&rage_tv);
1741 } else {
1742 /*
1743 * if VL_DEAD, insert it at head of the dead list
1744 * else insert at tail of LRU list or at head if VAGE is set
1745 */
1746 if ( (vp->v_lflag & VL_DEAD)) {
1747 TAILQ_INSERT_HEAD(&vnode_dead_list, vp, v_freelist);
1748 vp->v_listflag |= VLIST_DEAD;
1749 deadvnodes++;
1750
1751 if (dead_vnode_wanted) {
1752 dead_vnode_wanted--;
1753 need_dead_wakeup = TRUE;
1754 }
1755
1756 } else if ( (vp->v_flag & VAGE) ) {
1757 TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
1758 vp->v_flag &= ~VAGE;
1759 freevnodes++;
1760 } else {
1761 TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
1762 freevnodes++;
1763 }
1764 }
1765 vnode_list_unlock();
1766
1767 if (need_dead_wakeup == TRUE)
1768 wakeup_one((caddr_t)&dead_vnode_wanted);
1769 }
1770
1771
1772 /*
1773 * remove the vnode from appropriate free list.
1774 * called with vnode LOCKED and
1775 * the list lock held
1776 */
1777 static void
1778 vnode_list_remove_locked(vnode_t vp)
1779 {
1780 if (VONLIST(vp)) {
1781 /*
1782 * the v_listflag field is
1783 * protected by the vnode_list_lock
1784 */
1785 if (vp->v_listflag & VLIST_RAGE)
1786 VREMRAGE("vnode_list_remove", vp);
1787 else if (vp->v_listflag & VLIST_DEAD)
1788 VREMDEAD("vnode_list_remove", vp);
1789 else if (vp->v_listflag & VLIST_ASYNC_WORK)
1790 VREMASYNC_WORK("vnode_list_remove", vp);
1791 else
1792 VREMFREE("vnode_list_remove", vp);
1793 }
1794 }
1795
1796
1797 /*
1798 * remove the vnode from appropriate free list.
1799 * called with vnode LOCKED
1800 */
1801 static void
1802 vnode_list_remove(vnode_t vp)
1803 {
1804 #if DIAGNOSTIC
1805 lck_mtx_assert(&vp->v_lock, LCK_MTX_ASSERT_OWNED);
1806 #endif
1807 /*
1808 * we want to avoid taking the list lock
1809 * in the case where we're not on the free
1810 * list... this will be true for most
1811 * directories and any currently in use files
1812 *
1813 * we're guaranteed that we can't go from
1814 * the not-on-list state to the on-list
1815 * state since we hold the vnode lock...
1816 * all calls to vnode_list_add are done
1817 * under the vnode lock... so we can
1818 * check for that condition (the prevelant one)
1819 * without taking the list lock
1820 */
1821 if (VONLIST(vp)) {
1822 vnode_list_lock();
1823 /*
1824 * however, we're not guaranteed that
1825 * we won't go from the on-list state
1826 * to the not-on-list state until we
1827 * hold the vnode_list_lock... this
1828 * is due to "new_vnode" removing vnodes
1829 * from the free list uder the list_lock
1830 * w/o the vnode lock... so we need to
1831 * check again whether we're currently
1832 * on the free list
1833 */
1834 vnode_list_remove_locked(vp);
1835
1836 vnode_list_unlock();
1837 }
1838 }
1839
1840
1841 void
1842 vnode_rele(vnode_t vp)
1843 {
1844 vnode_rele_internal(vp, 0, 0, 0);
1845 }
1846
1847
1848 void
1849 vnode_rele_ext(vnode_t vp, int fmode, int dont_reenter)
1850 {
1851 vnode_rele_internal(vp, fmode, dont_reenter, 0);
1852 }
1853
1854
1855 void
1856 vnode_rele_internal(vnode_t vp, int fmode, int dont_reenter, int locked)
1857 {
1858
1859 if ( !locked)
1860 vnode_lock_spin(vp);
1861 #if DIAGNOSTIC
1862 else
1863 lck_mtx_assert(&vp->v_lock, LCK_MTX_ASSERT_OWNED);
1864 #endif
1865 if (--vp->v_usecount < 0)
1866 panic("vnode_rele_ext: vp %p usecount -ve : %d. v_tag = %d, v_type = %d, v_flag = %x.", vp, vp->v_usecount, vp->v_tag, vp->v_type, vp->v_flag);
1867
1868 if (fmode & FWRITE) {
1869 if (--vp->v_writecount < 0)
1870 panic("vnode_rele_ext: vp %p writecount -ve : %d. v_tag = %d, v_type = %d, v_flag = %x.", vp, vp->v_writecount, vp->v_tag, vp->v_type, vp->v_flag);
1871 }
1872 if (fmode & O_EVTONLY) {
1873 if (--vp->v_kusecount < 0)
1874 panic("vnode_rele_ext: vp %p kusecount -ve : %d. v_tag = %d, v_type = %d, v_flag = %x.", vp, vp->v_kusecount, vp->v_tag, vp->v_type, vp->v_flag);
1875 }
1876 if (vp->v_kusecount > vp->v_usecount)
1877 panic("vnode_rele_ext: vp %p kusecount(%d) out of balance with usecount(%d). v_tag = %d, v_type = %d, v_flag = %x.",vp, vp->v_kusecount, vp->v_usecount, vp->v_tag, vp->v_type, vp->v_flag);
1878
1879 if ((vp->v_iocount > 0) || (vp->v_usecount > 0)) {
1880 /*
1881 * vnode is still busy... if we're the last
1882 * usecount, mark for a future call to VNOP_INACTIVE
1883 * when the iocount finally drops to 0
1884 */
1885 if (vp->v_usecount == 0) {
1886 vp->v_lflag |= VL_NEEDINACTIVE;
1887 vp->v_flag &= ~(VNOCACHE_DATA | VRAOFF | VOPENEVT);
1888 }
1889 goto done;
1890 }
1891 vp->v_flag &= ~(VNOCACHE_DATA | VRAOFF | VOPENEVT);
1892
1893 if (ISSET(vp->v_lflag, VL_TERMINATE | VL_DEAD) || dont_reenter) {
1894 /*
1895 * vnode is being cleaned, or
1896 * we've requested that we don't reenter
1897 * the filesystem on this release...in
1898 * the latter case, we'll mark the vnode aged
1899 */
1900 if (dont_reenter) {
1901 if ( !(vp->v_lflag & (VL_TERMINATE | VL_DEAD | VL_MARKTERM)) ) {
1902 vp->v_lflag |= VL_NEEDINACTIVE;
1903
1904 if (vnode_on_reliable_media(vp) == FALSE || vp->v_flag & VISDIRTY) {
1905 vnode_async_list_add(vp);
1906 goto done;
1907 }
1908 }
1909 vp->v_flag |= VAGE;
1910 }
1911 vnode_list_add(vp);
1912
1913 goto done;
1914 }
1915 /*
1916 * at this point both the iocount and usecount
1917 * are zero
1918 * pick up an iocount so that we can call
1919 * VNOP_INACTIVE with the vnode lock unheld
1920 */
1921 vp->v_iocount++;
1922 #ifdef JOE_DEBUG
1923 record_vp(vp, 1);
1924 #endif
1925 vp->v_lflag &= ~VL_NEEDINACTIVE;
1926 vnode_unlock(vp);
1927
1928 VNOP_INACTIVE(vp, vfs_context_current());
1929
1930 vnode_lock_spin(vp);
1931 /*
1932 * because we dropped the vnode lock to call VNOP_INACTIVE
1933 * the state of the vnode may have changed... we may have
1934 * picked up an iocount, usecount or the MARKTERM may have
1935 * been set... we need to reevaluate the reference counts
1936 * to determine if we can call vnode_reclaim_internal at
1937 * this point... if the reference counts are up, we'll pick
1938 * up the MARKTERM state when they get subsequently dropped
1939 */
1940 if ( (vp->v_iocount == 1) && (vp->v_usecount == 0) &&
1941 ((vp->v_lflag & (VL_MARKTERM | VL_TERMINATE | VL_DEAD)) == VL_MARKTERM)) {
1942 struct uthread *ut;
1943
1944 ut = get_bsdthread_info(current_thread());
1945
1946 if (ut->uu_defer_reclaims) {
1947 vp->v_defer_reclaimlist = ut->uu_vreclaims;
1948 ut->uu_vreclaims = vp;
1949 goto done;
1950 }
1951 vnode_lock_convert(vp);
1952 vnode_reclaim_internal(vp, 1, 1, 0);
1953 }
1954 vnode_dropiocount(vp);
1955 vnode_list_add(vp);
1956 done:
1957 if (vp->v_usecount == 0 && vp->v_type == VREG && !(vp->v_flag & VSYSTEM)) {
1958
1959 if (vp->v_ubcinfo) {
1960 vnode_lock_convert(vp);
1961 memory_object_mark_unused(vp->v_ubcinfo->ui_control, (vp->v_flag & VRAGE) == VRAGE);
1962 }
1963 }
1964 if ( !locked)
1965 vnode_unlock(vp);
1966 return;
1967 }
1968
1969 /*
1970 * Remove any vnodes in the vnode table belonging to mount point mp.
1971 *
1972 * If MNT_NOFORCE is specified, there should not be any active ones,
1973 * return error if any are found (nb: this is a user error, not a
1974 * system error). If MNT_FORCE is specified, detach any active vnodes
1975 * that are found.
1976 */
1977 #if DIAGNOSTIC
1978 int busyprt = 0; /* print out busy vnodes */
1979 #endif
1980
1981 int
1982 vflush(struct mount *mp, struct vnode *skipvp, int flags)
1983 {
1984 struct vnode *vp;
1985 int busy = 0;
1986 int reclaimed = 0;
1987 int retval;
1988 unsigned int vid;
1989
1990 /*
1991 * See comments in vnode_iterate() for the rationale for this lock
1992 */
1993 mount_iterate_lock(mp);
1994
1995 mount_lock(mp);
1996 vnode_iterate_setup(mp);
1997 /*
1998 * On regular unmounts(not forced) do a
1999 * quick check for vnodes to be in use. This
2000 * preserves the caching of vnodes. automounter
2001 * tries unmounting every so often to see whether
2002 * it is still busy or not.
2003 */
2004 if (((flags & FORCECLOSE)==0) && ((mp->mnt_kern_flag & MNTK_UNMOUNT_PREFLIGHT) != 0)) {
2005 if (vnode_umount_preflight(mp, skipvp, flags)) {
2006 vnode_iterate_clear(mp);
2007 mount_unlock(mp);
2008 mount_iterate_unlock(mp);
2009 return(EBUSY);
2010 }
2011 }
2012 loop:
2013 /* If it returns 0 then there is nothing to do */
2014 retval = vnode_iterate_prepare(mp);
2015
2016 if (retval == 0) {
2017 vnode_iterate_clear(mp);
2018 mount_unlock(mp);
2019 mount_iterate_unlock(mp);
2020 return(retval);
2021 }
2022
2023 /* iterate over all the vnodes */
2024 while (!TAILQ_EMPTY(&mp->mnt_workerqueue)) {
2025
2026 vp = TAILQ_FIRST(&mp->mnt_workerqueue);
2027 TAILQ_REMOVE(&mp->mnt_workerqueue, vp, v_mntvnodes);
2028 TAILQ_INSERT_TAIL(&mp->mnt_vnodelist, vp, v_mntvnodes);
2029
2030 if ( (vp->v_mount != mp) || (vp == skipvp)) {
2031 continue;
2032 }
2033 vid = vp->v_id;
2034 mount_unlock(mp);
2035
2036 vnode_lock_spin(vp);
2037
2038 // If vnode is already terminating, wait for it...
2039 while (vp->v_id == vid && ISSET(vp->v_lflag, VL_TERMINATE)) {
2040 vp->v_lflag |= VL_TERMWANT;
2041 msleep(&vp->v_lflag, &vp->v_lock, PVFS, "vflush", NULL);
2042 }
2043
2044 if ((vp->v_id != vid) || ISSET(vp->v_lflag, VL_DEAD)) {
2045 vnode_unlock(vp);
2046 mount_lock(mp);
2047 continue;
2048 }
2049
2050 /*
2051 * If requested, skip over vnodes marked VSYSTEM.
2052 * Skip over all vnodes marked VNOFLUSH.
2053 */
2054 if ((flags & SKIPSYSTEM) && ((vp->v_flag & VSYSTEM) ||
2055 (vp->v_flag & VNOFLUSH))) {
2056 vnode_unlock(vp);
2057 mount_lock(mp);
2058 continue;
2059 }
2060 /*
2061 * If requested, skip over vnodes marked VSWAP.
2062 */
2063 if ((flags & SKIPSWAP) && (vp->v_flag & VSWAP)) {
2064 vnode_unlock(vp);
2065 mount_lock(mp);
2066 continue;
2067 }
2068 /*
2069 * If requested, skip over vnodes marked VROOT.
2070 */
2071 if ((flags & SKIPROOT) && (vp->v_flag & VROOT)) {
2072 vnode_unlock(vp);
2073 mount_lock(mp);
2074 continue;
2075 }
2076 /*
2077 * If WRITECLOSE is set, only flush out regular file
2078 * vnodes open for writing.
2079 */
2080 if ((flags & WRITECLOSE) &&
2081 (vp->v_writecount == 0 || vp->v_type != VREG)) {
2082 vnode_unlock(vp);
2083 mount_lock(mp);
2084 continue;
2085 }
2086 /*
2087 * If the real usecount is 0, all we need to do is clear
2088 * out the vnode data structures and we are done.
2089 */
2090 if (((vp->v_usecount == 0) ||
2091 ((vp->v_usecount - vp->v_kusecount) == 0))) {
2092
2093 vnode_lock_convert(vp);
2094 vp->v_iocount++; /* so that drain waits for * other iocounts */
2095 #ifdef JOE_DEBUG
2096 record_vp(vp, 1);
2097 #endif
2098 vnode_reclaim_internal(vp, 1, 1, 0);
2099 vnode_dropiocount(vp);
2100 vnode_list_add(vp);
2101 vnode_unlock(vp);
2102
2103 reclaimed++;
2104 mount_lock(mp);
2105 continue;
2106 }
2107 /*
2108 * If FORCECLOSE is set, forcibly close the vnode.
2109 * For block or character devices, revert to an
2110 * anonymous device. For all other files, just kill them.
2111 */
2112 if (flags & FORCECLOSE) {
2113 vnode_lock_convert(vp);
2114
2115 if (vp->v_type != VBLK && vp->v_type != VCHR) {
2116 vp->v_iocount++; /* so that drain waits * for other iocounts */
2117 #ifdef JOE_DEBUG
2118 record_vp(vp, 1);
2119 #endif
2120 vnode_abort_advlocks(vp);
2121 vnode_reclaim_internal(vp, 1, 1, 0);
2122 vnode_dropiocount(vp);
2123 vnode_list_add(vp);
2124 vnode_unlock(vp);
2125 } else {
2126 vclean(vp, 0);
2127 vp->v_lflag &= ~VL_DEAD;
2128 vp->v_op = spec_vnodeop_p;
2129 vp->v_flag |= VDEVFLUSH;
2130 vnode_unlock(vp);
2131 }
2132 mount_lock(mp);
2133 continue;
2134 }
2135 #if DIAGNOSTIC
2136 if (busyprt)
2137 vprint("vflush: busy vnode", vp);
2138 #endif
2139 vnode_unlock(vp);
2140 mount_lock(mp);
2141 busy++;
2142 }
2143
2144 /* At this point the worker queue is completed */
2145 if (busy && ((flags & FORCECLOSE)==0) && reclaimed) {
2146 busy = 0;
2147 reclaimed = 0;
2148 (void)vnode_iterate_reloadq(mp);
2149 /* returned with mount lock held */
2150 goto loop;
2151 }
2152
2153 /* if new vnodes were created in between retry the reclaim */
2154 if ( vnode_iterate_reloadq(mp) != 0) {
2155 if (!(busy && ((flags & FORCECLOSE)==0)))
2156 goto loop;
2157 }
2158 vnode_iterate_clear(mp);
2159 mount_unlock(mp);
2160 mount_iterate_unlock(mp);
2161
2162 if (busy && ((flags & FORCECLOSE)==0))
2163 return (EBUSY);
2164 return (0);
2165 }
2166
2167 long num_recycledvnodes = 0;
2168 /*
2169 * Disassociate the underlying file system from a vnode.
2170 * The vnode lock is held on entry.
2171 */
2172 static void
2173 vclean(vnode_t vp, int flags)
2174 {
2175 vfs_context_t ctx = vfs_context_current();
2176 int active;
2177 int need_inactive;
2178 int already_terminating;
2179 int clflags = 0;
2180 #if NAMEDSTREAMS
2181 int is_namedstream;
2182 #endif
2183
2184 /*
2185 * Check to see if the vnode is in use.
2186 * If so we have to reference it before we clean it out
2187 * so that its count cannot fall to zero and generate a
2188 * race against ourselves to recycle it.
2189 */
2190 active = vp->v_usecount;
2191
2192 /*
2193 * just in case we missed sending a needed
2194 * VNOP_INACTIVE, we'll do it now
2195 */
2196 need_inactive = (vp->v_lflag & VL_NEEDINACTIVE);
2197
2198 vp->v_lflag &= ~VL_NEEDINACTIVE;
2199
2200 /*
2201 * Prevent the vnode from being recycled or
2202 * brought into use while we clean it out.
2203 */
2204 already_terminating = (vp->v_lflag & VL_TERMINATE);
2205
2206 vp->v_lflag |= VL_TERMINATE;
2207
2208 #if NAMEDSTREAMS
2209 is_namedstream = vnode_isnamedstream(vp);
2210 #endif
2211
2212 vnode_unlock(vp);
2213
2214 OSAddAtomicLong(1, &num_recycledvnodes);
2215
2216 if (flags & DOCLOSE)
2217 clflags |= IO_NDELAY;
2218 if (flags & REVOKEALL)
2219 clflags |= IO_REVOKE;
2220
2221 if (active && (flags & DOCLOSE))
2222 VNOP_CLOSE(vp, clflags, ctx);
2223
2224 /*
2225 * Clean out any buffers associated with the vnode.
2226 */
2227 if (flags & DOCLOSE) {
2228 #if NFSCLIENT
2229 if (vp->v_tag == VT_NFS)
2230 nfs_vinvalbuf(vp, V_SAVE, ctx, 0);
2231 else
2232 #endif
2233 {
2234 VNOP_FSYNC(vp, MNT_WAIT, ctx);
2235
2236 /*
2237 * If the vnode is still in use (by the journal for
2238 * example) we don't want to invalidate locked buffers
2239 * here. In that case, either the journal will tidy them
2240 * up, or we will deal with it when the usecount is
2241 * finally released in vnode_rele_internal.
2242 */
2243 buf_invalidateblks(vp, BUF_WRITE_DATA | (active ? 0 : BUF_INVALIDATE_LOCKED), 0, 0);
2244 }
2245 if (UBCINFOEXISTS(vp))
2246 /*
2247 * Clean the pages in VM.
2248 */
2249 (void)ubc_msync(vp, (off_t)0, ubc_getsize(vp), NULL, UBC_PUSHALL | UBC_INVALIDATE | UBC_SYNC);
2250 }
2251 if (active || need_inactive)
2252 VNOP_INACTIVE(vp, ctx);
2253
2254 #if NAMEDSTREAMS
2255 if ((is_namedstream != 0) && (vp->v_parent != NULLVP)) {
2256 vnode_t pvp = vp->v_parent;
2257
2258 /* Delete the shadow stream file before we reclaim its vnode */
2259 if (vnode_isshadow(vp)) {
2260 vnode_relenamedstream(pvp, vp);
2261 }
2262
2263 /*
2264 * No more streams associated with the parent. We
2265 * have a ref on it, so its identity is stable.
2266 * If the parent is on an opaque volume, then we need to know
2267 * whether it has associated named streams.
2268 */
2269 if (vfs_authopaque(pvp->v_mount)) {
2270 vnode_lock_spin(pvp);
2271 pvp->v_lflag &= ~VL_HASSTREAMS;
2272 vnode_unlock(pvp);
2273 }
2274 }
2275 #endif
2276
2277 /*
2278 * Destroy ubc named reference
2279 * cluster_release is done on this path
2280 * along with dropping the reference on the ucred
2281 * (and in the case of forced unmount of an mmap-ed file,
2282 * the ubc reference on the vnode is dropped here too).
2283 */
2284 ubc_destroy_named(vp);
2285
2286 #if CONFIG_TRIGGERS
2287 /*
2288 * cleanup trigger info from vnode (if any)
2289 */
2290 if (vp->v_resolve)
2291 vnode_resolver_detach(vp);
2292 #endif
2293
2294 /*
2295 * Reclaim the vnode.
2296 */
2297 if (VNOP_RECLAIM(vp, ctx))
2298 panic("vclean: cannot reclaim");
2299
2300 // make sure the name & parent ptrs get cleaned out!
2301 vnode_update_identity(vp, NULLVP, NULL, 0, 0, VNODE_UPDATE_PARENT | VNODE_UPDATE_NAME | VNODE_UPDATE_PURGE);
2302
2303 vnode_lock(vp);
2304
2305 /*
2306 * Remove the vnode from any mount list it might be on. It is not
2307 * safe to do this any earlier because unmount needs to wait for
2308 * any vnodes to terminate and it cannot do that if it cannot find
2309 * them.
2310 */
2311 insmntque(vp, (struct mount *)0);
2312
2313 vp->v_mount = dead_mountp;
2314 vp->v_op = dead_vnodeop_p;
2315 vp->v_tag = VT_NON;
2316 vp->v_data = NULL;
2317
2318 vp->v_lflag |= VL_DEAD;
2319 vp->v_flag &= ~VISDIRTY;
2320
2321 if (already_terminating == 0) {
2322 vp->v_lflag &= ~VL_TERMINATE;
2323 /*
2324 * Done with purge, notify sleepers of the grim news.
2325 */
2326 if (vp->v_lflag & VL_TERMWANT) {
2327 vp->v_lflag &= ~VL_TERMWANT;
2328 wakeup(&vp->v_lflag);
2329 }
2330 }
2331 }
2332
2333 /*
2334 * Eliminate all activity associated with the requested vnode
2335 * and with all vnodes aliased to the requested vnode.
2336 */
2337 int
2338 #if DIAGNOSTIC
2339 vn_revoke(vnode_t vp, int flags, __unused vfs_context_t a_context)
2340 #else
2341 vn_revoke(vnode_t vp, __unused int flags, __unused vfs_context_t a_context)
2342 #endif
2343 {
2344 struct vnode *vq;
2345 int vid;
2346
2347 #if DIAGNOSTIC
2348 if ((flags & REVOKEALL) == 0)
2349 panic("vnop_revoke");
2350 #endif
2351
2352 if (vnode_isaliased(vp)) {
2353 /*
2354 * If a vgone (or vclean) is already in progress,
2355 * return an immediate error
2356 */
2357 if (vp->v_lflag & VL_TERMINATE)
2358 return(ENOENT);
2359
2360 /*
2361 * Ensure that vp will not be vgone'd while we
2362 * are eliminating its aliases.
2363 */
2364 SPECHASH_LOCK();
2365 while ((vp->v_specflags & SI_ALIASED)) {
2366 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
2367 if (vq->v_rdev != vp->v_rdev ||
2368 vq->v_type != vp->v_type || vp == vq)
2369 continue;
2370 vid = vq->v_id;
2371 SPECHASH_UNLOCK();
2372 if (vnode_getwithvid(vq,vid)){
2373 SPECHASH_LOCK();
2374 break;
2375 }
2376 vnode_lock(vq);
2377 if (!(vq->v_lflag & VL_TERMINATE)) {
2378 vnode_reclaim_internal(vq, 1, 1, 0);
2379 }
2380 vnode_put_locked(vq);
2381 vnode_unlock(vq);
2382 SPECHASH_LOCK();
2383 break;
2384 }
2385 }
2386 SPECHASH_UNLOCK();
2387 }
2388 vnode_lock(vp);
2389 if (vp->v_lflag & VL_TERMINATE) {
2390 vnode_unlock(vp);
2391 return (ENOENT);
2392 }
2393 vnode_reclaim_internal(vp, 1, 0, REVOKEALL);
2394 vnode_unlock(vp);
2395
2396 return (0);
2397 }
2398
2399 /*
2400 * Recycle an unused vnode to the front of the free list.
2401 * Release the passed interlock if the vnode will be recycled.
2402 */
2403 int
2404 vnode_recycle(struct vnode *vp)
2405 {
2406 vnode_lock_spin(vp);
2407
2408 if (vp->v_iocount || vp->v_usecount) {
2409 vp->v_lflag |= VL_MARKTERM;
2410 vnode_unlock(vp);
2411 return(0);
2412 }
2413 vnode_lock_convert(vp);
2414 vnode_reclaim_internal(vp, 1, 0, 0);
2415
2416 vnode_unlock(vp);
2417
2418 return (1);
2419 }
2420
2421 static int
2422 vnode_reload(vnode_t vp)
2423 {
2424 vnode_lock_spin(vp);
2425
2426 if ((vp->v_iocount > 1) || vp->v_usecount) {
2427 vnode_unlock(vp);
2428 return(0);
2429 }
2430 if (vp->v_iocount <= 0)
2431 panic("vnode_reload with no iocount %d", vp->v_iocount);
2432
2433 /* mark for release when iocount is dopped */
2434 vp->v_lflag |= VL_MARKTERM;
2435 vnode_unlock(vp);
2436
2437 return (1);
2438 }
2439
2440
2441 static void
2442 vgone(vnode_t vp, int flags)
2443 {
2444 struct vnode *vq;
2445 struct vnode *vx;
2446
2447 /*
2448 * Clean out the filesystem specific data.
2449 * vclean also takes care of removing the
2450 * vnode from any mount list it might be on
2451 */
2452 vclean(vp, flags | DOCLOSE);
2453
2454 /*
2455 * If special device, remove it from special device alias list
2456 * if it is on one.
2457 */
2458 if ((vp->v_type == VBLK || vp->v_type == VCHR) && vp->v_specinfo != 0) {
2459 SPECHASH_LOCK();
2460 if (*vp->v_hashchain == vp) {
2461 *vp->v_hashchain = vp->v_specnext;
2462 } else {
2463 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
2464 if (vq->v_specnext != vp)
2465 continue;
2466 vq->v_specnext = vp->v_specnext;
2467 break;
2468 }
2469 if (vq == NULL)
2470 panic("missing bdev");
2471 }
2472 if (vp->v_specflags & SI_ALIASED) {
2473 vx = NULL;
2474 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
2475 if (vq->v_rdev != vp->v_rdev ||
2476 vq->v_type != vp->v_type)
2477 continue;
2478 if (vx)
2479 break;
2480 vx = vq;
2481 }
2482 if (vx == NULL)
2483 panic("missing alias");
2484 if (vq == NULL)
2485 vx->v_specflags &= ~SI_ALIASED;
2486 vp->v_specflags &= ~SI_ALIASED;
2487 }
2488 SPECHASH_UNLOCK();
2489 {
2490 struct specinfo *tmp = vp->v_specinfo;
2491 vp->v_specinfo = NULL;
2492 FREE_ZONE((void *)tmp, sizeof(struct specinfo), M_SPECINFO);
2493 }
2494 }
2495 }
2496
2497 /*
2498 * Lookup a vnode by device number.
2499 */
2500 int
2501 check_mountedon(dev_t dev, enum vtype type, int *errorp)
2502 {
2503 vnode_t vp;
2504 int rc = 0;
2505 int vid;
2506
2507 loop:
2508 SPECHASH_LOCK();
2509 for (vp = speclisth[SPECHASH(dev)]; vp; vp = vp->v_specnext) {
2510 if (dev != vp->v_rdev || type != vp->v_type)
2511 continue;
2512 vid = vp->v_id;
2513 SPECHASH_UNLOCK();
2514 if (vnode_getwithvid(vp,vid))
2515 goto loop;
2516 vnode_lock_spin(vp);
2517 if ((vp->v_usecount > 0) || (vp->v_iocount > 1)) {
2518 vnode_unlock(vp);
2519 if ((*errorp = vfs_mountedon(vp)) != 0)
2520 rc = 1;
2521 } else
2522 vnode_unlock(vp);
2523 vnode_put(vp);
2524 return(rc);
2525 }
2526 SPECHASH_UNLOCK();
2527 return (0);
2528 }
2529
2530 /*
2531 * Calculate the total number of references to a special device.
2532 */
2533 int
2534 vcount(vnode_t vp)
2535 {
2536 vnode_t vq, vnext;
2537 int count;
2538 int vid;
2539
2540 if (!vnode_isspec(vp)) {
2541 return (vp->v_usecount - vp->v_kusecount);
2542 }
2543
2544 loop:
2545 if (!vnode_isaliased(vp))
2546 return (vp->v_specinfo->si_opencount);
2547 count = 0;
2548
2549 SPECHASH_LOCK();
2550 /*
2551 * Grab first vnode and its vid.
2552 */
2553 vq = *vp->v_hashchain;
2554 vid = vq ? vq->v_id : 0;
2555
2556 SPECHASH_UNLOCK();
2557
2558 while (vq) {
2559 /*
2560 * Attempt to get the vnode outside the SPECHASH lock.
2561 */
2562 if (vnode_getwithvid(vq, vid)) {
2563 goto loop;
2564 }
2565 vnode_lock(vq);
2566
2567 if (vq->v_rdev == vp->v_rdev && vq->v_type == vp->v_type) {
2568 if ((vq->v_usecount == 0) && (vq->v_iocount == 1) && vq != vp) {
2569 /*
2570 * Alias, but not in use, so flush it out.
2571 */
2572 vnode_reclaim_internal(vq, 1, 1, 0);
2573 vnode_put_locked(vq);
2574 vnode_unlock(vq);
2575 goto loop;
2576 }
2577 count += vq->v_specinfo->si_opencount;
2578 }
2579 vnode_unlock(vq);
2580
2581 SPECHASH_LOCK();
2582 /*
2583 * must do this with the reference still held on 'vq'
2584 * so that it can't be destroyed while we're poking
2585 * through v_specnext
2586 */
2587 vnext = vq->v_specnext;
2588 vid = vnext ? vnext->v_id : 0;
2589
2590 SPECHASH_UNLOCK();
2591
2592 vnode_put(vq);
2593
2594 vq = vnext;
2595 }
2596
2597 return (count);
2598 }
2599
2600 int prtactive = 0; /* 1 => print out reclaim of active vnodes */
2601
2602 /*
2603 * Print out a description of a vnode.
2604 */
2605 static const char *typename[] =
2606 { "VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD" };
2607
2608 void
2609 vprint(const char *label, struct vnode *vp)
2610 {
2611 char sbuf[64];
2612
2613 if (label != NULL)
2614 printf("%s: ", label);
2615 printf("type %s, usecount %d, writecount %d",
2616 typename[vp->v_type], vp->v_usecount, vp->v_writecount);
2617 sbuf[0] = '\0';
2618 if (vp->v_flag & VROOT)
2619 strlcat(sbuf, "|VROOT", sizeof(sbuf));
2620 if (vp->v_flag & VTEXT)
2621 strlcat(sbuf, "|VTEXT", sizeof(sbuf));
2622 if (vp->v_flag & VSYSTEM)
2623 strlcat(sbuf, "|VSYSTEM", sizeof(sbuf));
2624 if (vp->v_flag & VNOFLUSH)
2625 strlcat(sbuf, "|VNOFLUSH", sizeof(sbuf));
2626 if (vp->v_flag & VBWAIT)
2627 strlcat(sbuf, "|VBWAIT", sizeof(sbuf));
2628 if (vnode_isaliased(vp))
2629 strlcat(sbuf, "|VALIASED", sizeof(sbuf));
2630 if (sbuf[0] != '\0')
2631 printf(" flags (%s)", &sbuf[1]);
2632 }
2633
2634
2635 int
2636 vn_getpath(struct vnode *vp, char *pathbuf, int *len)
2637 {
2638 return build_path(vp, pathbuf, *len, len, BUILDPATH_NO_FS_ENTER, vfs_context_current());
2639 }
2640
2641 int
2642 vn_getpath_fsenter(struct vnode *vp, char *pathbuf, int *len)
2643 {
2644 return build_path(vp, pathbuf, *len, len, 0, vfs_context_current());
2645 }
2646
2647 /*
2648 * vn_getpath_fsenter_with_parent will reenter the file system to fine the path of the
2649 * vnode. It requires that there are IO counts on both the vnode and the directory vnode.
2650 *
2651 * vn_getpath_fsenter is called by MAC hooks to authorize operations for every thing, but
2652 * unlink, rmdir and rename. For these operation the MAC hook calls vn_getpath. This presents
2653 * problems where if the path can not be found from the name cache, those operations can
2654 * erroneously fail with EPERM even though the call should succeed. When removing or moving
2655 * file system objects with operations such as unlink or rename, those operations need to
2656 * take IO counts on the target and containing directory. Calling vn_getpath_fsenter from a
2657 * MAC hook from these operations during forced unmount operations can lead to dead
2658 * lock. This happens when the operation starts, IO counts are taken on the containing
2659 * directories and targets. Before the MAC hook is called a forced unmount from another
2660 * thread takes place and blocks on the on going operation's directory vnode in vdrain.
2661 * After which, the MAC hook gets called and calls vn_getpath_fsenter. vn_getpath_fsenter
2662 * is called with the understanding that there is an IO count on the target. If in
2663 * build_path the directory vnode is no longer in the cache, then the parent object id via
2664 * vnode_getattr from the target is obtain and used to call VFS_VGET to get the parent
2665 * vnode. The file system's VFS_VGET then looks up by inode in its hash and tries to get
2666 * an IO count. But VFS_VGET "sees" the directory vnode is in vdrain and can block
2667 * depending on which version and how it calls the vnode_get family of interfaces.
2668 *
2669 * N.B. A reasonable interface to use is vnode_getwithvid. This interface was modified to
2670 * call vnode_getiocount with VNODE_DRAINO, so it will happily get an IO count and not
2671 * cause issues, but there is no guarantee that all or any file systems are doing that.
2672 *
2673 * vn_getpath_fsenter_with_parent can enter the file system safely since there is a known
2674 * IO count on the directory vnode by calling build_path_with_parent.
2675 */
2676
2677 int
2678 vn_getpath_fsenter_with_parent(struct vnode *dvp, struct vnode *vp, char *pathbuf, int *len)
2679 {
2680 return build_path_with_parent(vp, dvp, pathbuf, *len, len, 0, vfs_context_current());
2681 }
2682
2683 int
2684 vn_getcdhash(struct vnode *vp, off_t offset, unsigned char *cdhash)
2685 {
2686 return ubc_cs_getcdhash(vp, offset, cdhash);
2687 }
2688
2689
2690 static char *extension_table=NULL;
2691 static int nexts;
2692 static int max_ext_width;
2693
2694 static int
2695 extension_cmp(const void *a, const void *b)
2696 {
2697 return (strlen((const char *)a) - strlen((const char *)b));
2698 }
2699
2700
2701 //
2702 // This is the api LaunchServices uses to inform the kernel
2703 // the list of package extensions to ignore.
2704 //
2705 // Internally we keep the list sorted by the length of the
2706 // the extension (from longest to shortest). We sort the
2707 // list of extensions so that we can speed up our searches
2708 // when comparing file names -- we only compare extensions
2709 // that could possibly fit into the file name, not all of
2710 // them (i.e. a short 8 character name can't have an 8
2711 // character extension).
2712 //
2713 extern lck_mtx_t *pkg_extensions_lck;
2714
2715 __private_extern__ int
2716 set_package_extensions_table(user_addr_t data, int nentries, int maxwidth)
2717 {
2718 char *new_exts, *old_exts;
2719 int error;
2720
2721 if (nentries <= 0 || nentries > 1024 || maxwidth <= 0 || maxwidth > 255) {
2722 return EINVAL;
2723 }
2724
2725
2726 // allocate one byte extra so we can guarantee null termination
2727 MALLOC(new_exts, char *, (nentries * maxwidth) + 1, M_TEMP, M_WAITOK);
2728 if (new_exts == NULL) {
2729 return ENOMEM;
2730 }
2731
2732 error = copyin(data, new_exts, nentries * maxwidth);
2733 if (error) {
2734 FREE(new_exts, M_TEMP);
2735 return error;
2736 }
2737
2738 new_exts[(nentries * maxwidth)] = '\0'; // guarantee null termination of the block
2739
2740 qsort(new_exts, nentries, maxwidth, extension_cmp);
2741
2742 lck_mtx_lock(pkg_extensions_lck);
2743
2744 old_exts = extension_table;
2745 extension_table = new_exts;
2746 nexts = nentries;
2747 max_ext_width = maxwidth;
2748
2749 lck_mtx_unlock(pkg_extensions_lck);
2750
2751 if (old_exts) {
2752 FREE(old_exts, M_TEMP);
2753 }
2754
2755 return 0;
2756 }
2757
2758
2759 int is_package_name(const char *name, int len)
2760 {
2761 int i, extlen;
2762 const char *ptr, *name_ext;
2763
2764 if (len <= 3) {
2765 return 0;
2766 }
2767
2768 name_ext = NULL;
2769 for(ptr=name; *ptr != '\0'; ptr++) {
2770 if (*ptr == '.') {
2771 name_ext = ptr;
2772 }
2773 }
2774
2775 // if there is no "." extension, it can't match
2776 if (name_ext == NULL) {
2777 return 0;
2778 }
2779
2780 // advance over the "."
2781 name_ext++;
2782
2783 lck_mtx_lock(pkg_extensions_lck);
2784
2785 // now iterate over all the extensions to see if any match
2786 ptr = &extension_table[0];
2787 for(i=0; i < nexts; i++, ptr+=max_ext_width) {
2788 extlen = strlen(ptr);
2789 if (strncasecmp(name_ext, ptr, extlen) == 0 && name_ext[extlen] == '\0') {
2790 // aha, a match!
2791 lck_mtx_unlock(pkg_extensions_lck);
2792 return 1;
2793 }
2794 }
2795
2796 lck_mtx_unlock(pkg_extensions_lck);
2797
2798 // if we get here, no extension matched
2799 return 0;
2800 }
2801
2802 int
2803 vn_path_package_check(__unused vnode_t vp, char *path, int pathlen, int *component)
2804 {
2805 char *ptr, *end;
2806 int comp=0;
2807
2808 *component = -1;
2809 if (*path != '/') {
2810 return EINVAL;
2811 }
2812
2813 end = path + 1;
2814 while(end < path + pathlen && *end != '\0') {
2815 while(end < path + pathlen && *end == '/' && *end != '\0') {
2816 end++;
2817 }
2818
2819 ptr = end;
2820
2821 while(end < path + pathlen && *end != '/' && *end != '\0') {
2822 end++;
2823 }
2824
2825 if (end > path + pathlen) {
2826 // hmm, string wasn't null terminated
2827 return EINVAL;
2828 }
2829
2830 *end = '\0';
2831 if (is_package_name(ptr, end - ptr)) {
2832 *component = comp;
2833 break;
2834 }
2835
2836 end++;
2837 comp++;
2838 }
2839
2840 return 0;
2841 }
2842
2843 /*
2844 * Determine if a name is inappropriate for a searchfs query.
2845 * This list consists of /System currently.
2846 */
2847
2848 int vn_searchfs_inappropriate_name(const char *name, int len) {
2849 const char *bad_names[] = { "System" };
2850 int bad_len[] = { 6 };
2851 int i;
2852
2853 for(i=0; i < (int) (sizeof(bad_names) / sizeof(bad_names[0])); i++) {
2854 if (len == bad_len[i] && strncmp(name, bad_names[i], strlen(bad_names[i]) + 1) == 0) {
2855 return 1;
2856 }
2857 }
2858
2859 // if we get here, no name matched
2860 return 0;
2861 }
2862
2863 /*
2864 * Top level filesystem related information gathering.
2865 */
2866 extern unsigned int vfs_nummntops;
2867
2868 /*
2869 * The VFS_NUMMNTOPS shouldn't be at name[1] since
2870 * is a VFS generic variable. Since we no longer support
2871 * VT_UFS, we reserve its value to support this sysctl node.
2872 *
2873 * It should have been:
2874 * name[0]: VFS_GENERIC
2875 * name[1]: VFS_NUMMNTOPS
2876 */
2877 SYSCTL_INT(_vfs, VFS_NUMMNTOPS, nummntops,
2878 CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED,
2879 &vfs_nummntops, 0, "");
2880
2881 int
2882 vfs_sysctl(int *name __unused, u_int namelen __unused,
2883 user_addr_t oldp __unused, size_t *oldlenp __unused,
2884 user_addr_t newp __unused, size_t newlen __unused, proc_t p __unused);
2885
2886 int
2887 vfs_sysctl(int *name __unused, u_int namelen __unused,
2888 user_addr_t oldp __unused, size_t *oldlenp __unused,
2889 user_addr_t newp __unused, size_t newlen __unused, proc_t p __unused)
2890 {
2891 return (EINVAL);
2892 }
2893
2894
2895 //
2896 // The following code disallows specific sysctl's that came through
2897 // the direct sysctl interface (vfs_sysctl_node) instead of the newer
2898 // sysctl_vfs_ctlbyfsid() interface. We can not allow these selectors
2899 // through vfs_sysctl_node() because it passes the user's oldp pointer
2900 // directly to the file system which (for these selectors) casts it
2901 // back to a struct sysctl_req and then proceed to use SYSCTL_IN()
2902 // which jumps through an arbitrary function pointer. When called
2903 // through the sysctl_vfs_ctlbyfsid() interface this does not happen
2904 // and so it's safe.
2905 //
2906 // Unfortunately we have to pull in definitions from AFP and SMB and
2907 // perform explicit name checks on the file system to determine if
2908 // these selectors are being used.
2909 //
2910
2911 #define AFPFS_VFS_CTL_GETID 0x00020001
2912 #define AFPFS_VFS_CTL_NETCHANGE 0x00020002
2913 #define AFPFS_VFS_CTL_VOLCHANGE 0x00020003
2914
2915 #define SMBFS_SYSCTL_REMOUNT 1
2916 #define SMBFS_SYSCTL_REMOUNT_INFO 2
2917 #define SMBFS_SYSCTL_GET_SERVER_SHARE 3
2918
2919
2920 static int
2921 is_bad_sysctl_name(struct vfstable *vfsp, int selector_name)
2922 {
2923 switch(selector_name) {
2924 case VFS_CTL_QUERY:
2925 case VFS_CTL_TIMEO:
2926 case VFS_CTL_NOLOCKS:
2927 case VFS_CTL_NSTATUS:
2928 case VFS_CTL_SADDR:
2929 case VFS_CTL_DISC:
2930 case VFS_CTL_SERVERINFO:
2931 return 1;
2932
2933 default:
2934 break;
2935 }
2936
2937 // the more complicated check for some of SMB's special values
2938 if (strcmp(vfsp->vfc_name, "smbfs") == 0) {
2939 switch(selector_name) {
2940 case SMBFS_SYSCTL_REMOUNT:
2941 case SMBFS_SYSCTL_REMOUNT_INFO:
2942 case SMBFS_SYSCTL_GET_SERVER_SHARE:
2943 return 1;
2944 }
2945 } else if (strcmp(vfsp->vfc_name, "afpfs") == 0) {
2946 switch(selector_name) {
2947 case AFPFS_VFS_CTL_GETID:
2948 case AFPFS_VFS_CTL_NETCHANGE:
2949 case AFPFS_VFS_CTL_VOLCHANGE:
2950 return 1;
2951 }
2952 }
2953
2954 //
2955 // If we get here we passed all the checks so the selector is ok
2956 //
2957 return 0;
2958 }
2959
2960
2961 int vfs_sysctl_node SYSCTL_HANDLER_ARGS
2962 {
2963 int *name, namelen;
2964 struct vfstable *vfsp;
2965 int error;
2966 int fstypenum;
2967
2968 fstypenum = oidp->oid_number;
2969 name = arg1;
2970 namelen = arg2;
2971
2972 /* all sysctl names at this level should have at least one name slot for the FS */
2973 if (namelen < 1)
2974 return (EISDIR); /* overloaded */
2975
2976 mount_list_lock();
2977 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
2978 if (vfsp->vfc_typenum == fstypenum) {
2979 vfsp->vfc_refcount++;
2980 break;
2981 }
2982 mount_list_unlock();
2983
2984 if (vfsp == NULL) {
2985 return (ENOTSUP);
2986 }
2987
2988 if (is_bad_sysctl_name(vfsp, name[0])) {
2989 printf("vfs: bad selector 0x%.8x for old-style sysctl(). use the sysctl-by-fsid interface instead\n", name[0]);
2990 return EPERM;
2991 }
2992
2993 error = (vfsp->vfc_vfsops->vfs_sysctl)(name, namelen, req->oldptr, &req->oldlen, req->newptr, req->newlen, vfs_context_current());
2994
2995 mount_list_lock();
2996 vfsp->vfc_refcount--;
2997 mount_list_unlock();
2998
2999 return error;
3000 }
3001
3002 /*
3003 * Check to see if a filesystem is mounted on a block device.
3004 */
3005 int
3006 vfs_mountedon(struct vnode *vp)
3007 {
3008 struct vnode *vq;
3009 int error = 0;
3010
3011 SPECHASH_LOCK();
3012 if (vp->v_specflags & SI_MOUNTEDON) {
3013 error = EBUSY;
3014 goto out;
3015 }
3016 if (vp->v_specflags & SI_ALIASED) {
3017 for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
3018 if (vq->v_rdev != vp->v_rdev ||
3019 vq->v_type != vp->v_type)
3020 continue;
3021 if (vq->v_specflags & SI_MOUNTEDON) {
3022 error = EBUSY;
3023 break;
3024 }
3025 }
3026 }
3027 out:
3028 SPECHASH_UNLOCK();
3029 return (error);
3030 }
3031
3032 struct unmount_info {
3033 int u_errs; // Total failed unmounts
3034 int u_busy; // EBUSY failed unmounts
3035 };
3036
3037 static int
3038 unmount_callback(mount_t mp, void *arg)
3039 {
3040 int error;
3041 char *mntname;
3042 struct unmount_info *uip = arg;
3043
3044 mount_ref(mp, 0);
3045 mount_iterdrop(mp); // avoid vfs_iterate deadlock in dounmount()
3046
3047 MALLOC_ZONE(mntname, void *, MAXPATHLEN, M_NAMEI, M_WAITOK);
3048 if (mntname)
3049 strlcpy(mntname, mp->mnt_vfsstat.f_mntonname, MAXPATHLEN);
3050
3051 error = dounmount(mp, MNT_FORCE, 1, vfs_context_current());
3052 if (error) {
3053 uip->u_errs++;
3054 printf("Unmount of %s failed (%d)\n", mntname ? mntname:"?", error);
3055 if (error == EBUSY)
3056 uip->u_busy++;
3057 }
3058 if (mntname)
3059 FREE_ZONE(mntname, MAXPATHLEN, M_NAMEI);
3060
3061 return (VFS_RETURNED);
3062 }
3063
3064 /*
3065 * Unmount all filesystems. The list is traversed in reverse order
3066 * of mounting to avoid dependencies.
3067 * Busy mounts are retried.
3068 */
3069 __private_extern__ void
3070 vfs_unmountall(void)
3071 {
3072 int mounts, sec = 1;
3073 struct unmount_info ui;
3074
3075 retry:
3076 ui.u_errs = ui.u_busy = 0;
3077 vfs_iterate(VFS_ITERATE_CB_DROPREF | VFS_ITERATE_TAIL_FIRST, unmount_callback, &ui);
3078 mounts = mount_getvfscnt();
3079 if (mounts == 0)
3080 return;
3081
3082 if (ui.u_busy > 0) { // Busy mounts - wait & retry
3083 tsleep(&nummounts, PVFS, "busy mount", sec * hz);
3084 sec *= 2;
3085 if (sec <= 32)
3086 goto retry;
3087 printf("Unmounting timed out\n");
3088 } else if (ui.u_errs < mounts) {
3089 // If the vfs_iterate missed mounts in progress - wait a bit
3090 tsleep(&nummounts, PVFS, "missed mount", 2 * hz);
3091 }
3092 }
3093
3094 /*
3095 * This routine is called from vnode_pager_deallocate out of the VM
3096 * The path to vnode_pager_deallocate can only be initiated by ubc_destroy_named
3097 * on a vnode that has a UBCINFO
3098 */
3099 __private_extern__ void
3100 vnode_pager_vrele(vnode_t vp)
3101 {
3102 struct ubc_info *uip;
3103
3104 vnode_lock_spin(vp);
3105
3106 vp->v_lflag &= ~VNAMED_UBC;
3107 if (vp->v_usecount != 0) {
3108 /*
3109 * At the eleventh hour, just before the ubcinfo is
3110 * destroyed, ensure the ubc-specific v_usecount
3111 * reference has gone. We use v_usecount != 0 as a hint;
3112 * ubc_unmap() does nothing if there's no mapping.
3113 *
3114 * This case is caused by coming here via forced unmount,
3115 * versus the usual vm_object_deallocate() path.
3116 * In the forced unmount case, ubc_destroy_named()
3117 * releases the pager before memory_object_last_unmap()
3118 * can be called.
3119 */
3120 vnode_unlock(vp);
3121 ubc_unmap(vp);
3122 vnode_lock_spin(vp);
3123 }
3124
3125 uip = vp->v_ubcinfo;
3126 vp->v_ubcinfo = UBC_INFO_NULL;
3127
3128 vnode_unlock(vp);
3129
3130 ubc_info_deallocate(uip);
3131 }
3132
3133
3134 #include <sys/disk.h>
3135
3136 u_int32_t rootunit = (u_int32_t)-1;
3137
3138 #if CONFIG_IOSCHED
3139 extern int lowpri_throttle_enabled;
3140 extern int iosched_enabled;
3141 #endif
3142
3143 errno_t
3144 vfs_init_io_attributes(vnode_t devvp, mount_t mp)
3145 {
3146 int error;
3147 off_t readblockcnt = 0;
3148 off_t writeblockcnt = 0;
3149 off_t readmaxcnt = 0;
3150 off_t writemaxcnt = 0;
3151 off_t readsegcnt = 0;
3152 off_t writesegcnt = 0;
3153 off_t readsegsize = 0;
3154 off_t writesegsize = 0;
3155 off_t alignment = 0;
3156 u_int32_t minsaturationbytecount = 0;
3157 u_int32_t ioqueue_depth = 0;
3158 u_int32_t blksize;
3159 u_int64_t temp;
3160 u_int32_t features;
3161 vfs_context_t ctx = vfs_context_current();
3162 dk_corestorage_info_t cs_info;
3163 boolean_t cs_present = FALSE;;
3164 int isssd = 0;
3165 int isvirtual = 0;
3166
3167
3168 VNOP_IOCTL(devvp, DKIOCGETTHROTTLEMASK, (caddr_t)&mp->mnt_throttle_mask, 0, NULL);
3169 /*
3170 * as a reasonable approximation, only use the lowest bit of the mask
3171 * to generate a disk unit number
3172 */
3173 mp->mnt_devbsdunit = num_trailing_0(mp->mnt_throttle_mask);
3174
3175 if (devvp == rootvp)
3176 rootunit = mp->mnt_devbsdunit;
3177
3178 if (mp->mnt_devbsdunit == rootunit) {
3179 /*
3180 * this mount point exists on the same device as the root
3181 * partition, so it comes under the hard throttle control...
3182 * this is true even for the root mount point itself
3183 */
3184 mp->mnt_kern_flag |= MNTK_ROOTDEV;
3185 }
3186 /*
3187 * force the spec device to re-cache
3188 * the underlying block size in case
3189 * the filesystem overrode the initial value
3190 */
3191 set_fsblocksize(devvp);
3192
3193
3194 if ((error = VNOP_IOCTL(devvp, DKIOCGETBLOCKSIZE,
3195 (caddr_t)&blksize, 0, ctx)))
3196 return (error);
3197
3198 mp->mnt_devblocksize = blksize;
3199
3200 /*
3201 * set the maximum possible I/O size
3202 * this may get clipped to a smaller value
3203 * based on which constraints are being advertised
3204 * and if those advertised constraints result in a smaller
3205 * limit for a given I/O
3206 */
3207 mp->mnt_maxreadcnt = MAX_UPL_SIZE_BYTES;
3208 mp->mnt_maxwritecnt = MAX_UPL_SIZE_BYTES;
3209
3210 if (VNOP_IOCTL(devvp, DKIOCISVIRTUAL, (caddr_t)&isvirtual, 0, ctx) == 0) {
3211 if (isvirtual)
3212 mp->mnt_kern_flag |= MNTK_VIRTUALDEV;
3213 }
3214 if (VNOP_IOCTL(devvp, DKIOCISSOLIDSTATE, (caddr_t)&isssd, 0, ctx) == 0) {
3215 if (isssd)
3216 mp->mnt_kern_flag |= MNTK_SSD;
3217 }
3218 if ((error = VNOP_IOCTL(devvp, DKIOCGETFEATURES,
3219 (caddr_t)&features, 0, ctx)))
3220 return (error);
3221
3222 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXBLOCKCOUNTREAD,
3223 (caddr_t)&readblockcnt, 0, ctx)))
3224 return (error);
3225
3226 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXBLOCKCOUNTWRITE,
3227 (caddr_t)&writeblockcnt, 0, ctx)))
3228 return (error);
3229
3230 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXBYTECOUNTREAD,
3231 (caddr_t)&readmaxcnt, 0, ctx)))
3232 return (error);
3233
3234 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXBYTECOUNTWRITE,
3235 (caddr_t)&writemaxcnt, 0, ctx)))
3236 return (error);
3237
3238 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXSEGMENTCOUNTREAD,
3239 (caddr_t)&readsegcnt, 0, ctx)))
3240 return (error);
3241
3242 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXSEGMENTCOUNTWRITE,
3243 (caddr_t)&writesegcnt, 0, ctx)))
3244 return (error);
3245
3246 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXSEGMENTBYTECOUNTREAD,
3247 (caddr_t)&readsegsize, 0, ctx)))
3248 return (error);
3249
3250 if ((error = VNOP_IOCTL(devvp, DKIOCGETMAXSEGMENTBYTECOUNTWRITE,
3251 (caddr_t)&writesegsize, 0, ctx)))
3252 return (error);
3253
3254 if ((error = VNOP_IOCTL(devvp, DKIOCGETMINSEGMENTALIGNMENTBYTECOUNT,
3255 (caddr_t)&alignment, 0, ctx)))
3256 return (error);
3257
3258 if ((error = VNOP_IOCTL(devvp, DKIOCGETCOMMANDPOOLSIZE,
3259 (caddr_t)&ioqueue_depth, 0, ctx)))
3260 return (error);
3261
3262 if (readmaxcnt)
3263 mp->mnt_maxreadcnt = (readmaxcnt > UINT32_MAX) ? UINT32_MAX : readmaxcnt;
3264
3265 if (readblockcnt) {
3266 temp = readblockcnt * blksize;
3267 temp = (temp > UINT32_MAX) ? UINT32_MAX : temp;
3268
3269 if (temp < mp->mnt_maxreadcnt)
3270 mp->mnt_maxreadcnt = (u_int32_t)temp;
3271 }
3272
3273 if (writemaxcnt)
3274 mp->mnt_maxwritecnt = (writemaxcnt > UINT32_MAX) ? UINT32_MAX : writemaxcnt;
3275
3276 if (writeblockcnt) {
3277 temp = writeblockcnt * blksize;
3278 temp = (temp > UINT32_MAX) ? UINT32_MAX : temp;
3279
3280 if (temp < mp->mnt_maxwritecnt)
3281 mp->mnt_maxwritecnt = (u_int32_t)temp;
3282 }
3283
3284 if (readsegcnt) {
3285 temp = (readsegcnt > UINT16_MAX) ? UINT16_MAX : readsegcnt;
3286 } else {
3287 temp = mp->mnt_maxreadcnt / PAGE_SIZE;
3288
3289 if (temp > UINT16_MAX)
3290 temp = UINT16_MAX;
3291 }
3292 mp->mnt_segreadcnt = (u_int16_t)temp;
3293
3294 if (writesegcnt) {
3295 temp = (writesegcnt > UINT16_MAX) ? UINT16_MAX : writesegcnt;
3296 } else {
3297 temp = mp->mnt_maxwritecnt / PAGE_SIZE;
3298
3299 if (temp > UINT16_MAX)
3300 temp = UINT16_MAX;
3301 }
3302 mp->mnt_segwritecnt = (u_int16_t)temp;
3303
3304 if (readsegsize)
3305 temp = (readsegsize > UINT32_MAX) ? UINT32_MAX : readsegsize;
3306 else
3307 temp = mp->mnt_maxreadcnt;
3308 mp->mnt_maxsegreadsize = (u_int32_t)temp;
3309
3310 if (writesegsize)
3311 temp = (writesegsize > UINT32_MAX) ? UINT32_MAX : writesegsize;
3312 else
3313 temp = mp->mnt_maxwritecnt;
3314 mp->mnt_maxsegwritesize = (u_int32_t)temp;
3315
3316 if (alignment)
3317 temp = (alignment > PAGE_SIZE) ? PAGE_MASK : alignment - 1;
3318 else
3319 temp = 0;
3320 mp->mnt_alignmentmask = temp;
3321
3322
3323 if (ioqueue_depth > MNT_DEFAULT_IOQUEUE_DEPTH)
3324 temp = ioqueue_depth;
3325 else
3326 temp = MNT_DEFAULT_IOQUEUE_DEPTH;
3327
3328 mp->mnt_ioqueue_depth = temp;
3329 mp->mnt_ioscale = (mp->mnt_ioqueue_depth + (MNT_DEFAULT_IOQUEUE_DEPTH - 1)) / MNT_DEFAULT_IOQUEUE_DEPTH;
3330
3331 if (mp->mnt_ioscale > 1)
3332 printf("ioqueue_depth = %d, ioscale = %d\n", (int)mp->mnt_ioqueue_depth, (int)mp->mnt_ioscale);
3333
3334 if (features & DK_FEATURE_FORCE_UNIT_ACCESS)
3335 mp->mnt_ioflags |= MNT_IOFLAGS_FUA_SUPPORTED;
3336
3337 if (VNOP_IOCTL(devvp, DKIOCGETIOMINSATURATIONBYTECOUNT, (caddr_t)&minsaturationbytecount, 0, ctx) == 0) {
3338 mp->mnt_minsaturationbytecount = minsaturationbytecount;
3339 } else {
3340 mp->mnt_minsaturationbytecount = 0;
3341 }
3342
3343 if (VNOP_IOCTL(devvp, DKIOCCORESTORAGE, (caddr_t)&cs_info, 0, ctx) == 0)
3344 cs_present = TRUE;
3345
3346 if (features & DK_FEATURE_UNMAP) {
3347 mp->mnt_ioflags |= MNT_IOFLAGS_UNMAP_SUPPORTED;
3348
3349 if (cs_present == TRUE)
3350 mp->mnt_ioflags |= MNT_IOFLAGS_CSUNMAP_SUPPORTED;
3351 }
3352 if (cs_present == TRUE) {
3353 /*
3354 * for now we'll use the following test as a proxy for
3355 * the underlying drive being FUSION in nature
3356 */
3357 if ((cs_info.flags & DK_CORESTORAGE_PIN_YOUR_METADATA))
3358 mp->mnt_ioflags |= MNT_IOFLAGS_FUSION_DRIVE;
3359 } else {
3360 /* Check for APFS Fusion */
3361 dk_apfs_flavour_t flavour;
3362 if ((VNOP_IOCTL(devvp, DKIOCGETAPFSFLAVOUR, (caddr_t)&flavour, 0, ctx) == 0) &&
3363 (flavour == DK_APFS_FUSION)) {
3364 mp->mnt_ioflags |= MNT_IOFLAGS_FUSION_DRIVE;
3365 }
3366 }
3367
3368 #if CONFIG_IOSCHED
3369 if (iosched_enabled && (features & DK_FEATURE_PRIORITY)) {
3370 mp->mnt_ioflags |= MNT_IOFLAGS_IOSCHED_SUPPORTED;
3371 throttle_info_disable_throttle(mp->mnt_devbsdunit, (mp->mnt_ioflags & MNT_IOFLAGS_FUSION_DRIVE) != 0);
3372 }
3373 #endif /* CONFIG_IOSCHED */
3374 return (error);
3375 }
3376
3377 static struct klist fs_klist;
3378 lck_grp_t *fs_klist_lck_grp;
3379 lck_mtx_t *fs_klist_lock;
3380
3381 void
3382 vfs_event_init(void)
3383 {
3384
3385 klist_init(&fs_klist);
3386 fs_klist_lck_grp = lck_grp_alloc_init("fs_klist", NULL);
3387 fs_klist_lock = lck_mtx_alloc_init(fs_klist_lck_grp, NULL);
3388 }
3389
3390 void
3391 vfs_event_signal(fsid_t *fsid, u_int32_t event, intptr_t data)
3392 {
3393 if (event == VQ_DEAD || event == VQ_NOTRESP) {
3394 struct mount *mp = vfs_getvfs(fsid);
3395 if (mp) {
3396 mount_lock_spin(mp);
3397 if (data)
3398 mp->mnt_kern_flag &= ~MNT_LNOTRESP; // Now responding
3399 else
3400 mp->mnt_kern_flag |= MNT_LNOTRESP; // Not responding
3401 mount_unlock(mp);
3402 }
3403 }
3404
3405 lck_mtx_lock(fs_klist_lock);
3406 KNOTE(&fs_klist, event);
3407 lck_mtx_unlock(fs_klist_lock);
3408 }
3409
3410 /*
3411 * return the number of mounted filesystems.
3412 */
3413 static int
3414 sysctl_vfs_getvfscnt(void)
3415 {
3416 return(mount_getvfscnt());
3417 }
3418
3419
3420 static int
3421 mount_getvfscnt(void)
3422 {
3423 int ret;
3424
3425 mount_list_lock();
3426 ret = nummounts;
3427 mount_list_unlock();
3428 return (ret);
3429
3430 }
3431
3432
3433
3434 static int
3435 mount_fillfsids(fsid_t *fsidlst, int count)
3436 {
3437 struct mount *mp;
3438 int actual=0;
3439
3440 actual = 0;
3441 mount_list_lock();
3442 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3443 if (actual <= count) {
3444 fsidlst[actual] = mp->mnt_vfsstat.f_fsid;
3445 actual++;
3446 }
3447 }
3448 mount_list_unlock();
3449 return (actual);
3450
3451 }
3452
3453 /*
3454 * fill in the array of fsid_t's up to a max of 'count', the actual
3455 * number filled in will be set in '*actual'. If there are more fsid_t's
3456 * than room in fsidlst then ENOMEM will be returned and '*actual' will
3457 * have the actual count.
3458 * having *actual filled out even in the error case is depended upon.
3459 */
3460 static int
3461 sysctl_vfs_getvfslist(fsid_t *fsidlst, int count, int *actual)
3462 {
3463 struct mount *mp;
3464
3465 *actual = 0;
3466 mount_list_lock();
3467 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
3468 (*actual)++;
3469 if (*actual <= count)
3470 fsidlst[(*actual) - 1] = mp->mnt_vfsstat.f_fsid;
3471 }
3472 mount_list_unlock();
3473 return (*actual <= count ? 0 : ENOMEM);
3474 }
3475
3476 static int
3477 sysctl_vfs_vfslist(__unused struct sysctl_oid *oidp, __unused void *arg1,
3478 __unused int arg2, struct sysctl_req *req)
3479 {
3480 int actual, error;
3481 size_t space;
3482 fsid_t *fsidlst;
3483
3484 /* This is a readonly node. */
3485 if (req->newptr != USER_ADDR_NULL)
3486 return (EPERM);
3487
3488 /* they are querying us so just return the space required. */
3489 if (req->oldptr == USER_ADDR_NULL) {
3490 req->oldidx = sysctl_vfs_getvfscnt() * sizeof(fsid_t);
3491 return 0;
3492 }
3493 again:
3494 /*
3495 * Retrieve an accurate count of the amount of space required to copy
3496 * out all the fsids in the system.
3497 */
3498 space = req->oldlen;
3499 req->oldlen = sysctl_vfs_getvfscnt() * sizeof(fsid_t);
3500
3501 /* they didn't give us enough space. */
3502 if (space < req->oldlen)
3503 return (ENOMEM);
3504
3505 MALLOC(fsidlst, fsid_t *, req->oldlen, M_TEMP, M_WAITOK | M_ZERO);
3506 if (fsidlst == NULL) {
3507 return (ENOMEM);
3508 }
3509
3510 error = sysctl_vfs_getvfslist(fsidlst, req->oldlen / sizeof(fsid_t),
3511 &actual);
3512 /*
3513 * If we get back ENOMEM, then another mount has been added while we
3514 * slept in malloc above. If this is the case then try again.
3515 */
3516 if (error == ENOMEM) {
3517 FREE(fsidlst, M_TEMP);
3518 req->oldlen = space;
3519 goto again;
3520 }
3521 if (error == 0) {
3522 error = SYSCTL_OUT(req, fsidlst, actual * sizeof(fsid_t));
3523 }
3524 FREE(fsidlst, M_TEMP);
3525 return (error);
3526 }
3527
3528 /*
3529 * Do a sysctl by fsid.
3530 */
3531 static int
3532 sysctl_vfs_ctlbyfsid(__unused struct sysctl_oid *oidp, void *arg1, int arg2,
3533 struct sysctl_req *req)
3534 {
3535 union union_vfsidctl vc;
3536 struct mount *mp;
3537 struct vfsstatfs *sp;
3538 int *name, flags, namelen;
3539 int error=0, gotref=0;
3540 vfs_context_t ctx = vfs_context_current();
3541 proc_t p = req->p; /* XXX req->p != current_proc()? */
3542 boolean_t is_64_bit;
3543
3544 name = arg1;
3545 namelen = arg2;
3546 is_64_bit = proc_is64bit(p);
3547
3548 error = SYSCTL_IN(req, &vc, is_64_bit? sizeof(vc.vc64):sizeof(vc.vc32));
3549 if (error)
3550 goto out;
3551 if (vc.vc32.vc_vers != VFS_CTL_VERS1) { /* works for 32 and 64 */
3552 error = EINVAL;
3553 goto out;
3554 }
3555 mp = mount_list_lookupby_fsid(&vc.vc32.vc_fsid, 0, 1); /* works for 32 and 64 */
3556 if (mp == NULL) {
3557 error = ENOENT;
3558 goto out;
3559 }
3560 gotref = 1;
3561 /* reset so that the fs specific code can fetch it. */
3562 req->newidx = 0;
3563 /*
3564 * Note if this is a VFS_CTL then we pass the actual sysctl req
3565 * in for "oldp" so that the lower layer can DTRT and use the
3566 * SYSCTL_IN/OUT routines.
3567 */
3568 if (mp->mnt_op->vfs_sysctl != NULL) {
3569 if (is_64_bit) {
3570 if (vfs_64bitready(mp)) {
3571 error = mp->mnt_op->vfs_sysctl(name, namelen,
3572 CAST_USER_ADDR_T(req),
3573 NULL, USER_ADDR_NULL, 0,
3574 ctx);
3575 }
3576 else {
3577 error = ENOTSUP;
3578 }
3579 }
3580 else {
3581 error = mp->mnt_op->vfs_sysctl(name, namelen,
3582 CAST_USER_ADDR_T(req),
3583 NULL, USER_ADDR_NULL, 0,
3584 ctx);
3585 }
3586 if (error != ENOTSUP) {
3587 goto out;
3588 }
3589 }
3590 switch (name[0]) {
3591 case VFS_CTL_UMOUNT:
3592 req->newidx = 0;
3593 if (is_64_bit) {
3594 req->newptr = vc.vc64.vc_ptr;
3595 req->newlen = (size_t)vc.vc64.vc_len;
3596 }
3597 else {
3598 req->newptr = CAST_USER_ADDR_T(vc.vc32.vc_ptr);
3599 req->newlen = vc.vc32.vc_len;
3600 }
3601 error = SYSCTL_IN(req, &flags, sizeof(flags));
3602 if (error)
3603 break;
3604
3605 mount_ref(mp, 0);
3606 mount_iterdrop(mp);
3607 gotref = 0;
3608 /* safedounmount consumes a ref */
3609 error = safedounmount(mp, flags, ctx);
3610 break;
3611 case VFS_CTL_STATFS:
3612 req->newidx = 0;
3613 if (is_64_bit) {
3614 req->newptr = vc.vc64.vc_ptr;
3615 req->newlen = (size_t)vc.vc64.vc_len;
3616 }
3617 else {
3618 req->newptr = CAST_USER_ADDR_T(vc.vc32.vc_ptr);
3619 req->newlen = vc.vc32.vc_len;
3620 }
3621 error = SYSCTL_IN(req, &flags, sizeof(flags));
3622 if (error)
3623 break;
3624 sp = &mp->mnt_vfsstat;
3625 if (((flags & MNT_NOWAIT) == 0 || (flags & (MNT_WAIT | MNT_DWAIT))) &&
3626 (error = vfs_update_vfsstat(mp, ctx, VFS_USER_EVENT)))
3627 goto out;
3628 if (is_64_bit) {
3629 struct user64_statfs sfs;
3630 bzero(&sfs, sizeof(sfs));
3631 sfs.f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
3632 sfs.f_type = mp->mnt_vtable->vfc_typenum;
3633 sfs.f_bsize = (user64_long_t)sp->f_bsize;
3634 sfs.f_iosize = (user64_long_t)sp->f_iosize;
3635 sfs.f_blocks = (user64_long_t)sp->f_blocks;
3636 sfs.f_bfree = (user64_long_t)sp->f_bfree;
3637 sfs.f_bavail = (user64_long_t)sp->f_bavail;
3638 sfs.f_files = (user64_long_t)sp->f_files;
3639 sfs.f_ffree = (user64_long_t)sp->f_ffree;
3640 sfs.f_fsid = sp->f_fsid;
3641 sfs.f_owner = sp->f_owner;
3642 #ifdef NFSCLIENT
3643 if (mp->mnt_kern_flag & MNTK_TYPENAME_OVERRIDE) {
3644 strlcpy(&sfs.f_fstypename[0], &mp->fstypename_override[0], MFSNAMELEN);
3645 } else
3646 #endif
3647 {
3648 strlcpy(sfs.f_fstypename, sp->f_fstypename, MFSNAMELEN);
3649 }
3650 strlcpy(sfs.f_mntonname, sp->f_mntonname, MNAMELEN);
3651 strlcpy(sfs.f_mntfromname, sp->f_mntfromname, MNAMELEN);
3652
3653 error = SYSCTL_OUT(req, &sfs, sizeof(sfs));
3654 }
3655 else {
3656 struct user32_statfs sfs;
3657 bzero(&sfs, sizeof(sfs));
3658 sfs.f_flags = mp->mnt_flag & MNT_VISFLAGMASK;
3659 sfs.f_type = mp->mnt_vtable->vfc_typenum;
3660
3661 /*
3662 * It's possible for there to be more than 2^^31 blocks in the filesystem, so we
3663 * have to fudge the numbers here in that case. We inflate the blocksize in order
3664 * to reflect the filesystem size as best we can.
3665 */
3666 if (sp->f_blocks > INT_MAX) {
3667 int shift;
3668
3669 /*
3670 * Work out how far we have to shift the block count down to make it fit.
3671 * Note that it's possible to have to shift so far that the resulting
3672 * blocksize would be unreportably large. At that point, we will clip
3673 * any values that don't fit.
3674 *
3675 * For safety's sake, we also ensure that f_iosize is never reported as
3676 * being smaller than f_bsize.
3677 */
3678 for (shift = 0; shift < 32; shift++) {
3679 if ((sp->f_blocks >> shift) <= INT_MAX)
3680 break;
3681 if ((((long long)sp->f_bsize) << (shift + 1)) > INT_MAX)
3682 break;
3683 }
3684 #define __SHIFT_OR_CLIP(x, s) ((((x) >> (s)) > INT_MAX) ? INT_MAX : ((x) >> (s)))
3685 sfs.f_blocks = (user32_long_t)__SHIFT_OR_CLIP(sp->f_blocks, shift);
3686 sfs.f_bfree = (user32_long_t)__SHIFT_OR_CLIP(sp->f_bfree, shift);
3687 sfs.f_bavail = (user32_long_t)__SHIFT_OR_CLIP(sp->f_bavail, shift);
3688 #undef __SHIFT_OR_CLIP
3689 sfs.f_bsize = (user32_long_t)(sp->f_bsize << shift);
3690 sfs.f_iosize = lmax(sp->f_iosize, sp->f_bsize);
3691 } else {
3692 sfs.f_bsize = (user32_long_t)sp->f_bsize;
3693 sfs.f_iosize = (user32_long_t)sp->f_iosize;
3694 sfs.f_blocks = (user32_long_t)sp->f_blocks;
3695 sfs.f_bfree = (user32_long_t)sp->f_bfree;
3696 sfs.f_bavail = (user32_long_t)sp->f_bavail;
3697 }
3698 sfs.f_files = (user32_long_t)sp->f_files;
3699 sfs.f_ffree = (user32_long_t)sp->f_ffree;
3700 sfs.f_fsid = sp->f_fsid;
3701 sfs.f_owner = sp->f_owner;
3702
3703 #ifdef NFSCLIENT
3704 if (mp->mnt_kern_flag & MNTK_TYPENAME_OVERRIDE) {
3705 strlcpy(&sfs.f_fstypename[0], &mp->fstypename_override[0], MFSNAMELEN);
3706 } else
3707 #endif
3708 {
3709 strlcpy(sfs.f_fstypename, sp->f_fstypename, MFSNAMELEN);
3710 }
3711 strlcpy(sfs.f_mntonname, sp->f_mntonname, MNAMELEN);
3712 strlcpy(sfs.f_mntfromname, sp->f_mntfromname, MNAMELEN);
3713
3714 error = SYSCTL_OUT(req, &sfs, sizeof(sfs));
3715 }
3716 break;
3717 default:
3718 error = ENOTSUP;
3719 goto out;
3720 }
3721 out:
3722 if(gotref != 0)
3723 mount_iterdrop(mp);
3724 return (error);
3725 }
3726
3727 static int filt_fsattach(struct knote *kn, struct kevent_internal_s *kev);
3728 static void filt_fsdetach(struct knote *kn);
3729 static int filt_fsevent(struct knote *kn, long hint);
3730 static int filt_fstouch(struct knote *kn, struct kevent_internal_s *kev);
3731 static int filt_fsprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev);
3732 SECURITY_READ_ONLY_EARLY(struct filterops) fs_filtops = {
3733 .f_attach = filt_fsattach,
3734 .f_detach = filt_fsdetach,
3735 .f_event = filt_fsevent,
3736 .f_touch = filt_fstouch,
3737 .f_process = filt_fsprocess,
3738 };
3739
3740 static int
3741 filt_fsattach(struct knote *kn, __unused struct kevent_internal_s *kev)
3742 {
3743 lck_mtx_lock(fs_klist_lock);
3744 KNOTE_ATTACH(&fs_klist, kn);
3745 lck_mtx_unlock(fs_klist_lock);
3746
3747 /*
3748 * filter only sees future events,
3749 * so it can't be fired already.
3750 */
3751 return (0);
3752 }
3753
3754 static void
3755 filt_fsdetach(struct knote *kn)
3756 {
3757 lck_mtx_lock(fs_klist_lock);
3758 KNOTE_DETACH(&fs_klist, kn);
3759 lck_mtx_unlock(fs_klist_lock);
3760 }
3761
3762 static int
3763 filt_fsevent(struct knote *kn, long hint)
3764 {
3765 /*
3766 * Backwards compatibility:
3767 * Other filters would do nothing if kn->kn_sfflags == 0
3768 */
3769
3770 if ((kn->kn_sfflags == 0) || (kn->kn_sfflags & hint)) {
3771 kn->kn_fflags |= hint;
3772 }
3773
3774 return (kn->kn_fflags != 0);
3775 }
3776
3777 static int
3778 filt_fstouch(struct knote *kn, struct kevent_internal_s *kev)
3779 {
3780 int res;
3781
3782 lck_mtx_lock(fs_klist_lock);
3783
3784 kn->kn_sfflags = kev->fflags;
3785 if ((kn->kn_status & KN_UDATA_SPECIFIC) == 0)
3786 kn->kn_udata = kev->udata;
3787
3788 /*
3789 * the above filter function sets bits even if nobody is looking for them.
3790 * Just preserve those bits even in the new mask is more selective
3791 * than before.
3792 *
3793 * For compatibility with previous implementations, we leave kn_fflags
3794 * as they were before.
3795 */
3796 //if (kn->kn_sfflags)
3797 // kn->kn_fflags &= kn->kn_sfflags;
3798 res = (kn->kn_fflags != 0);
3799
3800 lck_mtx_unlock(fs_klist_lock);
3801
3802 return res;
3803 }
3804
3805 static int
3806 filt_fsprocess(struct knote *kn, struct filt_process_s *data, struct kevent_internal_s *kev)
3807 {
3808 #pragma unused(data)
3809 int res;
3810
3811 lck_mtx_lock(fs_klist_lock);
3812 res = (kn->kn_fflags != 0);
3813 if (res) {
3814 *kev = kn->kn_kevent;
3815 kn->kn_flags |= EV_CLEAR; /* automatic */
3816 kn->kn_fflags = 0;
3817 kn->kn_data = 0;
3818 }
3819 lck_mtx_unlock(fs_klist_lock);
3820 return res;
3821 }
3822
3823 static int
3824 sysctl_vfs_noremotehang(__unused struct sysctl_oid *oidp,
3825 __unused void *arg1, __unused int arg2, struct sysctl_req *req)
3826 {
3827 int out, error;
3828 pid_t pid;
3829 proc_t p;
3830
3831 /* We need a pid. */
3832 if (req->newptr == USER_ADDR_NULL)
3833 return (EINVAL);
3834
3835 error = SYSCTL_IN(req, &pid, sizeof(pid));
3836 if (error)
3837 return (error);
3838
3839 p = proc_find(pid < 0 ? -pid : pid);
3840 if (p == NULL)
3841 return (ESRCH);
3842
3843 /*
3844 * Fetching the value is ok, but we only fetch if the old
3845 * pointer is given.
3846 */
3847 if (req->oldptr != USER_ADDR_NULL) {
3848 out = !((p->p_flag & P_NOREMOTEHANG) == 0);
3849 proc_rele(p);
3850 error = SYSCTL_OUT(req, &out, sizeof(out));
3851 return (error);
3852 }
3853
3854 /* cansignal offers us enough security. */
3855 if (p != req->p && proc_suser(req->p) != 0) {
3856 proc_rele(p);
3857 return (EPERM);
3858 }
3859
3860 if (pid < 0)
3861 OSBitAndAtomic(~((uint32_t)P_NOREMOTEHANG), &p->p_flag);
3862 else
3863 OSBitOrAtomic(P_NOREMOTEHANG, &p->p_flag);
3864 proc_rele(p);
3865
3866 return (0);
3867 }
3868
3869 static int
3870 sysctl_vfs_generic_conf SYSCTL_HANDLER_ARGS
3871 {
3872 int *name, namelen;
3873 struct vfstable *vfsp;
3874 struct vfsconf vfsc = {};
3875
3876 (void)oidp;
3877 name = arg1;
3878 namelen = arg2;
3879
3880 if (namelen < 1) {
3881 return (EISDIR);
3882 } else if (namelen > 1) {
3883 return (ENOTDIR);
3884 }
3885
3886 mount_list_lock();
3887 for (vfsp = vfsconf; vfsp; vfsp = vfsp->vfc_next)
3888 if (vfsp->vfc_typenum == name[0])
3889 break;
3890
3891 if (vfsp == NULL) {
3892 mount_list_unlock();
3893 return (ENOTSUP);
3894 }
3895
3896 vfsc.vfc_reserved1 = 0;
3897 bcopy(vfsp->vfc_name, vfsc.vfc_name, sizeof(vfsc.vfc_name));
3898 vfsc.vfc_typenum = vfsp->vfc_typenum;
3899 vfsc.vfc_refcount = vfsp->vfc_refcount;
3900 vfsc.vfc_flags = vfsp->vfc_flags;
3901 vfsc.vfc_reserved2 = 0;
3902 vfsc.vfc_reserved3 = 0;
3903
3904 mount_list_unlock();
3905 return (SYSCTL_OUT(req, &vfsc, sizeof(struct vfsconf)));
3906 }
3907
3908 /* the vfs.generic. branch. */
3909 SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RW | CTLFLAG_LOCKED, NULL, "vfs generic hinge");
3910 /* retreive a list of mounted filesystem fsid_t */
3911 SYSCTL_PROC(_vfs_generic, OID_AUTO, vfsidlist,
3912 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
3913 NULL, 0, sysctl_vfs_vfslist, "S,fsid", "List of mounted filesystem ids");
3914 /* perform operations on filesystem via fsid_t */
3915 SYSCTL_NODE(_vfs_generic, OID_AUTO, ctlbyfsid, CTLFLAG_RW | CTLFLAG_LOCKED,
3916 sysctl_vfs_ctlbyfsid, "ctlbyfsid");
3917 SYSCTL_PROC(_vfs_generic, OID_AUTO, noremotehang, CTLFLAG_RW | CTLFLAG_ANYBODY,
3918 NULL, 0, sysctl_vfs_noremotehang, "I", "noremotehang");
3919 SYSCTL_INT(_vfs_generic, VFS_MAXTYPENUM, maxtypenum,
3920 CTLFLAG_RD | CTLFLAG_KERN | CTLFLAG_LOCKED,
3921 &maxvfstypenum, 0, "");
3922 SYSCTL_INT(_vfs_generic, OID_AUTO, sync_timeout, CTLFLAG_RW | CTLFLAG_LOCKED, &sync_timeout, 0, "");
3923 SYSCTL_NODE(_vfs_generic, VFS_CONF, conf,
3924 CTLFLAG_RD | CTLFLAG_LOCKED,
3925 sysctl_vfs_generic_conf, "");
3926
3927 /* Indicate that the root file system unmounted cleanly */
3928 static int vfs_root_unmounted_cleanly = 0;
3929 SYSCTL_INT(_vfs_generic, OID_AUTO, root_unmounted_cleanly, CTLFLAG_RD, &vfs_root_unmounted_cleanly, 0, "Root filesystem was unmounted cleanly");
3930
3931 void
3932 vfs_set_root_unmounted_cleanly(void)
3933 {
3934 vfs_root_unmounted_cleanly = 1;
3935 }
3936
3937 /*
3938 * Print vnode state.
3939 */
3940 void
3941 vn_print_state(struct vnode *vp, const char *fmt, ...)
3942 {
3943 va_list ap;
3944 char perm_str[] = "(VM_KERNEL_ADDRPERM pointer)";
3945 char fs_name[MFSNAMELEN];
3946
3947 va_start(ap, fmt);
3948 vprintf(fmt, ap);
3949 va_end(ap);
3950 printf("vp 0x%0llx %s: ", (uint64_t)VM_KERNEL_ADDRPERM(vp), perm_str);
3951 printf("tag %d, type %d\n", vp->v_tag, vp->v_type);
3952 /* Counts .. */
3953 printf(" iocount %d, usecount %d, kusecount %d references %d\n",
3954 vp->v_iocount, vp->v_usecount, vp->v_kusecount, vp->v_references);
3955 printf(" writecount %d, numoutput %d\n", vp->v_writecount,
3956 vp->v_numoutput);
3957 /* Flags */
3958 printf(" flag 0x%x, lflag 0x%x, listflag 0x%x\n", vp->v_flag,
3959 vp->v_lflag, vp->v_listflag);
3960
3961 if (vp->v_mount == NULL || vp->v_mount == dead_mountp) {
3962 strlcpy(fs_name, "deadfs", MFSNAMELEN);
3963 } else {
3964 vfs_name(vp->v_mount, fs_name);
3965 }
3966
3967 printf(" v_data 0x%0llx %s\n",
3968 (vp->v_data ? (uint64_t)VM_KERNEL_ADDRPERM(vp->v_data) : 0),
3969 perm_str);
3970 printf(" v_mount 0x%0llx %s vfs_name %s\n",
3971 (vp->v_mount ? (uint64_t)VM_KERNEL_ADDRPERM(vp->v_mount) : 0),
3972 perm_str, fs_name);
3973 }
3974
3975 long num_reusedvnodes = 0;
3976
3977
3978 static vnode_t
3979 process_vp(vnode_t vp, int want_vp, int *deferred)
3980 {
3981 unsigned int vpid;
3982
3983 *deferred = 0;
3984
3985 vpid = vp->v_id;
3986
3987 vnode_list_remove_locked(vp);
3988
3989 vnode_list_unlock();
3990
3991 vnode_lock_spin(vp);
3992
3993 /*
3994 * We could wait for the vnode_lock after removing the vp from the freelist
3995 * and the vid is bumped only at the very end of reclaim. So it is possible
3996 * that we are looking at a vnode that is being terminated. If so skip it.
3997 */
3998 if ((vpid != vp->v_id) || (vp->v_usecount != 0) || (vp->v_iocount != 0) ||
3999 VONLIST(vp) || (vp->v_lflag & VL_TERMINATE)) {
4000 /*
4001 * we lost the race between dropping the list lock
4002 * and picking up the vnode_lock... someone else
4003 * used this vnode and it is now in a new state
4004 */
4005 vnode_unlock(vp);
4006
4007 return (NULLVP);
4008 }
4009 if ( (vp->v_lflag & (VL_NEEDINACTIVE | VL_MARKTERM)) == VL_NEEDINACTIVE ) {
4010 /*
4011 * we did a vnode_rele_ext that asked for
4012 * us not to reenter the filesystem during
4013 * the release even though VL_NEEDINACTIVE was
4014 * set... we'll do it here by doing a
4015 * vnode_get/vnode_put
4016 *
4017 * pick up an iocount so that we can call
4018 * vnode_put and drive the VNOP_INACTIVE...
4019 * vnode_put will either leave us off
4020 * the freelist if a new ref comes in,
4021 * or put us back on the end of the freelist
4022 * or recycle us if we were marked for termination...
4023 * so we'll just go grab a new candidate
4024 */
4025 vp->v_iocount++;
4026 #ifdef JOE_DEBUG
4027 record_vp(vp, 1);
4028 #endif
4029 vnode_put_locked(vp);
4030 vnode_unlock(vp);
4031
4032 return (NULLVP);
4033 }
4034 /*
4035 * Checks for anyone racing us for recycle
4036 */
4037 if (vp->v_type != VBAD) {
4038 if (want_vp && (vnode_on_reliable_media(vp) == FALSE || (vp->v_flag & VISDIRTY))) {
4039 vnode_async_list_add(vp);
4040 vnode_unlock(vp);
4041
4042 *deferred = 1;
4043
4044 return (NULLVP);
4045 }
4046 if (vp->v_lflag & VL_DEAD)
4047 panic("new_vnode(%p): the vnode is VL_DEAD but not VBAD", vp);
4048
4049 vnode_lock_convert(vp);
4050 (void)vnode_reclaim_internal(vp, 1, want_vp, 0);
4051
4052 if (want_vp) {
4053 if ((VONLIST(vp)))
4054 panic("new_vnode(%p): vp on list", vp);
4055 if (vp->v_usecount || vp->v_iocount || vp->v_kusecount ||
4056 (vp->v_lflag & (VNAMED_UBC | VNAMED_MOUNT | VNAMED_FSHASH)))
4057 panic("new_vnode(%p): free vnode still referenced", vp);
4058 if ((vp->v_mntvnodes.tqe_prev != 0) && (vp->v_mntvnodes.tqe_next != 0))
4059 panic("new_vnode(%p): vnode seems to be on mount list", vp);
4060 if ( !LIST_EMPTY(&vp->v_nclinks) || !TAILQ_EMPTY(&vp->v_ncchildren))
4061 panic("new_vnode(%p): vnode still hooked into the name cache", vp);
4062 } else {
4063 vnode_unlock(vp);
4064 vp = NULLVP;
4065 }
4066 }
4067 return (vp);
4068 }
4069
4070 __attribute__((noreturn))
4071 static void
4072 async_work_continue(void)
4073 {
4074 struct async_work_lst *q;
4075 int deferred;
4076 vnode_t vp;
4077
4078 q = &vnode_async_work_list;
4079
4080 for (;;) {
4081
4082 vnode_list_lock();
4083
4084 if ( TAILQ_EMPTY(q) ) {
4085 assert_wait(q, (THREAD_UNINT));
4086
4087 vnode_list_unlock();
4088
4089 thread_block((thread_continue_t)async_work_continue);
4090
4091 continue;
4092 }
4093 async_work_handled++;
4094
4095 vp = TAILQ_FIRST(q);
4096
4097 vp = process_vp(vp, 0, &deferred);
4098
4099 if (vp != NULLVP)
4100 panic("found VBAD vp (%p) on async queue", vp);
4101 }
4102 }
4103
4104
4105 static int
4106 new_vnode(vnode_t *vpp)
4107 {
4108 vnode_t vp;
4109 uint32_t retries = 0, max_retries = 100; /* retry incase of tablefull */
4110 int force_alloc = 0, walk_count = 0;
4111 boolean_t need_reliable_vp = FALSE;
4112 int deferred;
4113 struct timeval initial_tv;
4114 struct timeval current_tv;
4115 proc_t curproc = current_proc();
4116
4117 initial_tv.tv_sec = 0;
4118 retry:
4119 vp = NULLVP;
4120
4121 vnode_list_lock();
4122
4123 if (need_reliable_vp == TRUE)
4124 async_work_timed_out++;
4125
4126 if ((numvnodes - deadvnodes) < desiredvnodes || force_alloc) {
4127 struct timespec ts;
4128
4129 if ( !TAILQ_EMPTY(&vnode_dead_list)) {
4130 /*
4131 * Can always reuse a dead one
4132 */
4133 vp = TAILQ_FIRST(&vnode_dead_list);
4134 goto steal_this_vp;
4135 }
4136 /*
4137 * no dead vnodes available... if we're under
4138 * the limit, we'll create a new vnode
4139 */
4140 numvnodes++;
4141 vnode_list_unlock();
4142
4143 MALLOC_ZONE(vp, struct vnode *, sizeof(*vp), M_VNODE, M_WAITOK);
4144 bzero((char *)vp, sizeof(*vp));
4145 VLISTNONE(vp); /* avoid double queue removal */
4146 lck_mtx_init(&vp->v_lock, vnode_lck_grp, vnode_lck_attr);
4147
4148 TAILQ_INIT(&vp->v_ncchildren);
4149
4150 klist_init(&vp->v_knotes);
4151 nanouptime(&ts);
4152 vp->v_id = ts.tv_nsec;
4153 vp->v_flag = VSTANDARD;
4154
4155 #if CONFIG_MACF
4156 if (mac_vnode_label_init_needed(vp))
4157 mac_vnode_label_init(vp);
4158 #endif /* MAC */
4159
4160 vp->v_iocount = 1;
4161 goto done;
4162 }
4163 microuptime(&current_tv);
4164
4165 #define MAX_WALK_COUNT 1000
4166
4167 if ( !TAILQ_EMPTY(&vnode_rage_list) &&
4168 (ragevnodes >= rage_limit ||
4169 (current_tv.tv_sec - rage_tv.tv_sec) >= RAGE_TIME_LIMIT)) {
4170
4171 TAILQ_FOREACH(vp, &vnode_rage_list, v_freelist) {
4172 if ( !(vp->v_listflag & VLIST_RAGE))
4173 panic("new_vnode: vp (%p) on RAGE list not marked VLIST_RAGE", vp);
4174
4175 // if we're a dependency-capable process, skip vnodes that can
4176 // cause recycling deadlocks. (i.e. this process is diskimages
4177 // helper and the vnode is in a disk image). Querying the
4178 // mnt_kern_flag for the mount's virtual device status
4179 // is safer than checking the mnt_dependent_process, which
4180 // may not be updated if there are multiple devnode layers
4181 // in between the disk image and the final consumer.
4182
4183 if ((curproc->p_flag & P_DEPENDENCY_CAPABLE) == 0 || vp->v_mount == NULL ||
4184 (vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV) == 0) {
4185 /*
4186 * if need_reliable_vp == TRUE, then we've already sent one or more
4187 * non-reliable vnodes to the async thread for processing and timed
4188 * out waiting for a dead vnode to show up. Use the MAX_WALK_COUNT
4189 * mechanism to first scan for a reliable vnode before forcing
4190 * a new vnode to be created
4191 */
4192 if (need_reliable_vp == FALSE || vnode_on_reliable_media(vp) == TRUE)
4193 break;
4194 }
4195
4196 // don't iterate more than MAX_WALK_COUNT vnodes to
4197 // avoid keeping the vnode list lock held for too long.
4198
4199 if (walk_count++ > MAX_WALK_COUNT) {
4200 vp = NULL;
4201 break;
4202 }
4203 }
4204 }
4205
4206 if (vp == NULL && !TAILQ_EMPTY(&vnode_free_list)) {
4207 /*
4208 * Pick the first vp for possible reuse
4209 */
4210 walk_count = 0;
4211 TAILQ_FOREACH(vp, &vnode_free_list, v_freelist) {
4212
4213 // if we're a dependency-capable process, skip vnodes that can
4214 // cause recycling deadlocks. (i.e. this process is diskimages
4215 // helper and the vnode is in a disk image). Querying the
4216 // mnt_kern_flag for the mount's virtual device status
4217 // is safer than checking the mnt_dependent_process, which
4218 // may not be updated if there are multiple devnode layers
4219 // in between the disk image and the final consumer.
4220
4221 if ((curproc->p_flag & P_DEPENDENCY_CAPABLE) == 0 || vp->v_mount == NULL ||
4222 (vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV) == 0) {
4223 /*
4224 * if need_reliable_vp == TRUE, then we've already sent one or more
4225 * non-reliable vnodes to the async thread for processing and timed
4226 * out waiting for a dead vnode to show up. Use the MAX_WALK_COUNT
4227 * mechanism to first scan for a reliable vnode before forcing
4228 * a new vnode to be created
4229 */
4230 if (need_reliable_vp == FALSE || vnode_on_reliable_media(vp) == TRUE)
4231 break;
4232 }
4233
4234 // don't iterate more than MAX_WALK_COUNT vnodes to
4235 // avoid keeping the vnode list lock held for too long.
4236
4237 if (walk_count++ > MAX_WALK_COUNT) {
4238 vp = NULL;
4239 break;
4240 }
4241 }
4242 }
4243
4244 //
4245 // if we don't have a vnode and the walk_count is >= MAX_WALK_COUNT
4246 // then we're trying to create a vnode on behalf of a
4247 // process like diskimages-helper that has file systems
4248 // mounted on top of itself (and thus we can't reclaim
4249 // vnodes in the file systems on top of us). if we can't
4250 // find a vnode to reclaim then we'll just have to force
4251 // the allocation.
4252 //
4253 if (vp == NULL && walk_count >= MAX_WALK_COUNT) {
4254 force_alloc = 1;
4255 vnode_list_unlock();
4256 goto retry;
4257 }
4258
4259 if (vp == NULL) {
4260 /*
4261 * we've reached the system imposed maximum number of vnodes
4262 * but there isn't a single one available
4263 * wait a bit and then retry... if we can't get a vnode
4264 * after our target number of retries, than log a complaint
4265 */
4266 if (++retries <= max_retries) {
4267 vnode_list_unlock();
4268 delay_for_interval(1, 1000 * 1000);
4269 goto retry;
4270 }
4271
4272 vnode_list_unlock();
4273 tablefull("vnode");
4274 log(LOG_EMERG, "%d desired, %d numvnodes, "
4275 "%d free, %d dead, %d async, %d rage\n",
4276 desiredvnodes, numvnodes, freevnodes, deadvnodes, async_work_vnodes, ragevnodes);
4277 #if CONFIG_JETSAM
4278
4279 #if DEVELOPMENT || DEBUG
4280 if (bootarg_no_vnode_jetsam)
4281 panic("vnode table is full\n");
4282 #endif /* DEVELOPMENT || DEBUG */
4283
4284 /*
4285 * Running out of vnodes tends to make a system unusable. Start killing
4286 * processes that jetsam knows are killable.
4287 */
4288 if (memorystatus_kill_on_vnode_limit() == FALSE) {
4289 /*
4290 * If jetsam can't find any more processes to kill and there
4291 * still aren't any free vnodes, panic. Hopefully we'll get a
4292 * panic log to tell us why we ran out.
4293 */
4294 panic("vnode table is full\n");
4295 }
4296
4297 /*
4298 * Now that we've killed someone, wait a bit and continue looking
4299 * (with fewer retries before trying another kill).
4300 */
4301 delay_for_interval(3, 1000 * 1000);
4302 retries = 0;
4303 max_retries = 10;
4304 goto retry;
4305 #endif
4306
4307 *vpp = NULL;
4308 return (ENFILE);
4309 }
4310 steal_this_vp:
4311 if ((vp = process_vp(vp, 1, &deferred)) == NULLVP) {
4312 if (deferred) {
4313 int elapsed_msecs;
4314 struct timeval elapsed_tv;
4315
4316 if (initial_tv.tv_sec == 0)
4317 microuptime(&initial_tv);
4318
4319 vnode_list_lock();
4320
4321 dead_vnode_waited++;
4322 dead_vnode_wanted++;
4323
4324 /*
4325 * note that we're only going to explicitly wait 10ms
4326 * for a dead vnode to become available, since even if one
4327 * isn't available, a reliable vnode might now be available
4328 * at the head of the VRAGE or free lists... if so, we
4329 * can satisfy the new_vnode request with less latency then waiting
4330 * for the full 100ms duration we're ultimately willing to tolerate
4331 */
4332 assert_wait_timeout((caddr_t)&dead_vnode_wanted, (THREAD_INTERRUPTIBLE), 10000, NSEC_PER_USEC);
4333
4334 vnode_list_unlock();
4335
4336 thread_block(THREAD_CONTINUE_NULL);
4337
4338 microuptime(&elapsed_tv);
4339
4340 timevalsub(&elapsed_tv, &initial_tv);
4341 elapsed_msecs = elapsed_tv.tv_sec * 1000 + elapsed_tv.tv_usec / 1000;
4342
4343 if (elapsed_msecs >= 100) {
4344 /*
4345 * we've waited long enough... 100ms is
4346 * somewhat arbitrary for this case, but the
4347 * normal worst case latency used for UI
4348 * interaction is 100ms, so I've chosen to
4349 * go with that.
4350 *
4351 * setting need_reliable_vp to TRUE
4352 * forces us to find a reliable vnode
4353 * that we can process synchronously, or
4354 * to create a new one if the scan for
4355 * a reliable one hits the scan limit
4356 */
4357 need_reliable_vp = TRUE;
4358 }
4359 }
4360 goto retry;
4361 }
4362 OSAddAtomicLong(1, &num_reusedvnodes);
4363
4364
4365 #if CONFIG_MACF
4366 /*
4367 * We should never see VL_LABELWAIT or VL_LABEL here.
4368 * as those operations hold a reference.
4369 */
4370 assert ((vp->v_lflag & VL_LABELWAIT) != VL_LABELWAIT);
4371 assert ((vp->v_lflag & VL_LABEL) != VL_LABEL);
4372 if (vp->v_lflag & VL_LABELED) {
4373 vnode_lock_convert(vp);
4374 mac_vnode_label_recycle(vp);
4375 } else if (mac_vnode_label_init_needed(vp)) {
4376 vnode_lock_convert(vp);
4377 mac_vnode_label_init(vp);
4378 }
4379
4380 #endif /* MAC */
4381
4382 vp->v_iocount = 1;
4383 vp->v_lflag = 0;
4384 vp->v_writecount = 0;
4385 vp->v_references = 0;
4386 vp->v_iterblkflags = 0;
4387 vp->v_flag = VSTANDARD;
4388 /* vbad vnodes can point to dead_mountp */
4389 vp->v_mount = NULL;
4390 vp->v_defer_reclaimlist = (vnode_t)0;
4391
4392 vnode_unlock(vp);
4393
4394 done:
4395 *vpp = vp;
4396
4397 return (0);
4398 }
4399
4400 void
4401 vnode_lock(vnode_t vp)
4402 {
4403 lck_mtx_lock(&vp->v_lock);
4404 }
4405
4406 void
4407 vnode_lock_spin(vnode_t vp)
4408 {
4409 lck_mtx_lock_spin(&vp->v_lock);
4410 }
4411
4412 void
4413 vnode_unlock(vnode_t vp)
4414 {
4415 lck_mtx_unlock(&vp->v_lock);
4416 }
4417
4418
4419
4420 int
4421 vnode_get(struct vnode *vp)
4422 {
4423 int retval;
4424
4425 vnode_lock_spin(vp);
4426 retval = vnode_get_locked(vp);
4427 vnode_unlock(vp);
4428
4429 return(retval);
4430 }
4431
4432 int
4433 vnode_get_locked(struct vnode *vp)
4434 {
4435 #if DIAGNOSTIC
4436 lck_mtx_assert(&vp->v_lock, LCK_MTX_ASSERT_OWNED);
4437 #endif
4438 if ((vp->v_iocount == 0) && (vp->v_lflag & (VL_TERMINATE | VL_DEAD))) {
4439 return(ENOENT);
4440 }
4441 vp->v_iocount++;
4442 #ifdef JOE_DEBUG
4443 record_vp(vp, 1);
4444 #endif
4445 return (0);
4446 }
4447
4448 /*
4449 * vnode_getwithvid() cuts in line in front of a vnode drain (that is,
4450 * while the vnode is draining, but at no point after that) to prevent
4451 * deadlocks when getting vnodes from filesystem hashes while holding
4452 * resources that may prevent other iocounts from being released.
4453 */
4454 int
4455 vnode_getwithvid(vnode_t vp, uint32_t vid)
4456 {
4457 return(vget_internal(vp, vid, ( VNODE_NODEAD | VNODE_WITHID | VNODE_DRAINO )));
4458 }
4459
4460 /*
4461 * vnode_getwithvid_drainok() is like vnode_getwithvid(), but *does* block behind a vnode
4462 * drain; it exists for use in the VFS name cache, where we really do want to block behind
4463 * vnode drain to prevent holding off an unmount.
4464 */
4465 int
4466 vnode_getwithvid_drainok(vnode_t vp, uint32_t vid)
4467 {
4468 return(vget_internal(vp, vid, ( VNODE_NODEAD | VNODE_WITHID )));
4469 }
4470
4471 int
4472 vnode_getwithref(vnode_t vp)
4473 {
4474 return(vget_internal(vp, 0, 0));
4475 }
4476
4477
4478 __private_extern__ int
4479 vnode_getalways(vnode_t vp)
4480 {
4481 return(vget_internal(vp, 0, VNODE_ALWAYS));
4482 }
4483
4484 int
4485 vnode_put(vnode_t vp)
4486 {
4487 int retval;
4488
4489 vnode_lock_spin(vp);
4490 retval = vnode_put_locked(vp);
4491 vnode_unlock(vp);
4492
4493 return(retval);
4494 }
4495
4496 static inline void
4497 vn_set_dead(vnode_t vp)
4498 {
4499 vp->v_mount = NULL;
4500 vp->v_op = dead_vnodeop_p;
4501 vp->v_tag = VT_NON;
4502 vp->v_data = NULL;
4503 vp->v_type = VBAD;
4504 vp->v_lflag |= VL_DEAD;
4505 }
4506
4507 int
4508 vnode_put_locked(vnode_t vp)
4509 {
4510 vfs_context_t ctx = vfs_context_current(); /* hoist outside loop */
4511
4512 #if DIAGNOSTIC
4513 lck_mtx_assert(&vp->v_lock, LCK_MTX_ASSERT_OWNED);
4514 #endif
4515 retry:
4516 if (vp->v_iocount < 1)
4517 panic("vnode_put(%p): iocount < 1", vp);
4518
4519 if ((vp->v_usecount > 0) || (vp->v_iocount > 1)) {
4520 vnode_dropiocount(vp);
4521 return(0);
4522 }
4523 if ((vp->v_lflag & (VL_DEAD | VL_NEEDINACTIVE)) == VL_NEEDINACTIVE) {
4524
4525 vp->v_lflag &= ~VL_NEEDINACTIVE;
4526 vnode_unlock(vp);
4527
4528 VNOP_INACTIVE(vp, ctx);
4529
4530 vnode_lock_spin(vp);
4531 /*
4532 * because we had to drop the vnode lock before calling
4533 * VNOP_INACTIVE, the state of this vnode may have changed...
4534 * we may pick up both VL_MARTERM and either
4535 * an iocount or a usecount while in the VNOP_INACTIVE call
4536 * we don't want to call vnode_reclaim_internal on a vnode
4537 * that has active references on it... so loop back around
4538 * and reevaluate the state
4539 */
4540 goto retry;
4541 }
4542 vp->v_lflag &= ~VL_NEEDINACTIVE;
4543
4544 if ((vp->v_lflag & (VL_MARKTERM | VL_TERMINATE | VL_DEAD)) == VL_MARKTERM) {
4545 vnode_lock_convert(vp);
4546 vnode_reclaim_internal(vp, 1, 1, 0);
4547 }
4548 vnode_dropiocount(vp);
4549 vnode_list_add(vp);
4550
4551 return(0);
4552 }
4553
4554 /* is vnode_t in use by others? */
4555 int
4556 vnode_isinuse(vnode_t vp, int refcnt)
4557 {
4558 return(vnode_isinuse_locked(vp, refcnt, 0));
4559 }
4560
4561 int vnode_usecount(vnode_t vp)
4562 {
4563 return vp->v_usecount;
4564 }
4565
4566 int vnode_iocount(vnode_t vp)
4567 {
4568 return vp->v_iocount;
4569 }
4570
4571 static int
4572 vnode_isinuse_locked(vnode_t vp, int refcnt, int locked)
4573 {
4574 int retval = 0;
4575
4576 if (!locked)
4577 vnode_lock_spin(vp);
4578 if ((vp->v_type != VREG) && ((vp->v_usecount - vp->v_kusecount) > refcnt)) {
4579 retval = 1;
4580 goto out;
4581 }
4582 if (vp->v_type == VREG) {
4583 retval = ubc_isinuse_locked(vp, refcnt, 1);
4584 }
4585
4586 out:
4587 if (!locked)
4588 vnode_unlock(vp);
4589 return(retval);
4590 }
4591
4592
4593 /* resume vnode_t */
4594 errno_t
4595 vnode_resume(vnode_t vp)
4596 {
4597 if ((vp->v_lflag & VL_SUSPENDED) && vp->v_owner == current_thread()) {
4598
4599 vnode_lock_spin(vp);
4600 vp->v_lflag &= ~VL_SUSPENDED;
4601 vp->v_owner = NULL;
4602 vnode_unlock(vp);
4603
4604 wakeup(&vp->v_iocount);
4605 }
4606 return(0);
4607 }
4608
4609 /* suspend vnode_t
4610 * Please do not use on more than one vnode at a time as it may
4611 * cause deadlocks.
4612 * xxx should we explicity prevent this from happening?
4613 */
4614
4615 errno_t
4616 vnode_suspend(vnode_t vp)
4617 {
4618 if (vp->v_lflag & VL_SUSPENDED) {
4619 return(EBUSY);
4620 }
4621
4622 vnode_lock_spin(vp);
4623
4624 /*
4625 * xxx is this sufficient to check if a vnode_drain is
4626 * progress?
4627 */
4628
4629 if (vp->v_owner == NULL) {
4630 vp->v_lflag |= VL_SUSPENDED;
4631 vp->v_owner = current_thread();
4632 }
4633 vnode_unlock(vp);
4634
4635 return(0);
4636 }
4637
4638 /*
4639 * Release any blocked locking requests on the vnode.
4640 * Used for forced-unmounts.
4641 *
4642 * XXX What about network filesystems?
4643 */
4644 static void
4645 vnode_abort_advlocks(vnode_t vp)
4646 {
4647 if (vp->v_flag & VLOCKLOCAL)
4648 lf_abort_advlocks(vp);
4649 }
4650
4651
4652 static errno_t
4653 vnode_drain(vnode_t vp)
4654 {
4655
4656 if (vp->v_lflag & VL_DRAIN) {
4657 panic("vnode_drain: recursive drain");
4658 return(ENOENT);
4659 }
4660 vp->v_lflag |= VL_DRAIN;
4661 vp->v_owner = current_thread();
4662
4663 while (vp->v_iocount > 1)
4664 msleep(&vp->v_iocount, &vp->v_lock, PVFS, "vnode_drain", NULL);
4665
4666 vp->v_lflag &= ~VL_DRAIN;
4667
4668 return(0);
4669 }
4670
4671
4672 /*
4673 * if the number of recent references via vnode_getwithvid or vnode_getwithref
4674 * exceeds this threshold, than 'UN-AGE' the vnode by removing it from
4675 * the LRU list if it's currently on it... once the iocount and usecount both drop
4676 * to 0, it will get put back on the end of the list, effectively making it younger
4677 * this allows us to keep actively referenced vnodes in the list without having
4678 * to constantly remove and add to the list each time a vnode w/o a usecount is
4679 * referenced which costs us taking and dropping a global lock twice.
4680 * However, if the vnode is marked DIRTY, we want to pull it out much earlier
4681 */
4682 #define UNAGE_THRESHHOLD 25
4683 #define UNAGE_DIRTYTHRESHHOLD 6
4684
4685 errno_t
4686 vnode_getiocount(vnode_t vp, unsigned int vid, int vflags)
4687 {
4688 int nodead = vflags & VNODE_NODEAD;
4689 int nosusp = vflags & VNODE_NOSUSPEND;
4690 int always = vflags & VNODE_ALWAYS;
4691 int beatdrain = vflags & VNODE_DRAINO;
4692 int withvid = vflags & VNODE_WITHID;
4693
4694 for (;;) {
4695 int sleepflg = 0;
4696
4697 /*
4698 * if it is a dead vnode with deadfs
4699 */
4700 if (nodead && (vp->v_lflag & VL_DEAD) && ((vp->v_type == VBAD) || (vp->v_data == 0))) {
4701 return(ENOENT);
4702 }
4703 /*
4704 * will return VL_DEAD ones
4705 */
4706 if ((vp->v_lflag & (VL_SUSPENDED | VL_DRAIN | VL_TERMINATE)) == 0 ) {
4707 break;
4708 }
4709 /*
4710 * if suspended vnodes are to be failed
4711 */
4712 if (nosusp && (vp->v_lflag & VL_SUSPENDED)) {
4713 return(ENOENT);
4714 }
4715 /*
4716 * if you are the owner of drain/suspend/termination , can acquire iocount
4717 * check for VL_TERMINATE; it does not set owner
4718 */
4719 if ((vp->v_lflag & (VL_DRAIN | VL_SUSPENDED | VL_TERMINATE)) &&
4720 (vp->v_owner == current_thread())) {
4721 break;
4722 }
4723
4724 if (always != 0)
4725 break;
4726
4727 /*
4728 * If this vnode is getting drained, there are some cases where
4729 * we can't block or, in case of tty vnodes, want to be
4730 * interruptible.
4731 */
4732 if (vp->v_lflag & VL_DRAIN) {
4733 /*
4734 * In some situations, we want to get an iocount
4735 * even if the vnode is draining to prevent deadlock,
4736 * e.g. if we're in the filesystem, potentially holding
4737 * resources that could prevent other iocounts from
4738 * being released.
4739 */
4740 if (beatdrain)
4741 break;
4742 /*
4743 * Don't block if the vnode's mount point is unmounting as
4744 * we may be the thread the unmount is itself waiting on
4745 * Only callers who pass in vids (at this point, we've already
4746 * handled nosusp and nodead) are expecting error returns
4747 * from this function, so only we can only return errors for
4748 * those. ENODEV is intended to inform callers that the call
4749 * failed because an unmount is in progress.
4750 */
4751 if (withvid && (vp->v_mount) && vfs_isunmount(vp->v_mount))
4752 return (ENODEV);
4753
4754 if (vnode_istty(vp)) {
4755 sleepflg = PCATCH;
4756 }
4757 }
4758
4759 vnode_lock_convert(vp);
4760
4761 if (vp->v_lflag & VL_TERMINATE) {
4762 int error;
4763
4764 vp->v_lflag |= VL_TERMWANT;
4765
4766 error = msleep(&vp->v_lflag, &vp->v_lock,
4767 (PVFS | sleepflg), "vnode getiocount", NULL);
4768 if (error)
4769 return (error);
4770 } else
4771 msleep(&vp->v_iocount, &vp->v_lock, PVFS, "vnode_getiocount", NULL);
4772 }
4773 if (withvid && vid != vp->v_id) {
4774 return(ENOENT);
4775 }
4776 if (++vp->v_references >= UNAGE_THRESHHOLD ||
4777 (vp->v_flag & VISDIRTY && vp->v_references >= UNAGE_DIRTYTHRESHHOLD)) {
4778 vp->v_references = 0;
4779 vnode_list_remove(vp);
4780 }
4781 vp->v_iocount++;
4782 #ifdef JOE_DEBUG
4783 record_vp(vp, 1);
4784 #endif
4785 return(0);
4786 }
4787
4788 static void
4789 vnode_dropiocount (vnode_t vp)
4790 {
4791 if (vp->v_iocount < 1)
4792 panic("vnode_dropiocount(%p): v_iocount < 1", vp);
4793
4794 vp->v_iocount--;
4795 #ifdef JOE_DEBUG
4796 record_vp(vp, -1);
4797 #endif
4798 if ((vp->v_lflag & (VL_DRAIN | VL_SUSPENDED)) && (vp->v_iocount <= 1))
4799 wakeup(&vp->v_iocount);
4800 }
4801
4802
4803 void
4804 vnode_reclaim(struct vnode * vp)
4805 {
4806 vnode_reclaim_internal(vp, 0, 0, 0);
4807 }
4808
4809 __private_extern__
4810 void
4811 vnode_reclaim_internal(struct vnode * vp, int locked, int reuse, int flags)
4812 {
4813 int isfifo = 0;
4814
4815 if (!locked)
4816 vnode_lock(vp);
4817
4818 if (vp->v_lflag & VL_TERMINATE) {
4819 panic("vnode reclaim in progress");
4820 }
4821 vp->v_lflag |= VL_TERMINATE;
4822
4823 vn_clearunionwait(vp, 1);
4824
4825 vnode_drain(vp);
4826
4827 isfifo = (vp->v_type == VFIFO);
4828
4829 if (vp->v_type != VBAD)
4830 vgone(vp, flags); /* clean and reclaim the vnode */
4831
4832 /*
4833 * give the vnode a new identity so that vnode_getwithvid will fail
4834 * on any stale cache accesses...
4835 * grab the list_lock so that if we're in "new_vnode"
4836 * behind the list_lock trying to steal this vnode, the v_id is stable...
4837 * once new_vnode drops the list_lock, it will block trying to take
4838 * the vnode lock until we release it... at that point it will evaluate
4839 * whether the v_vid has changed
4840 * also need to make sure that the vnode isn't on a list where "new_vnode"
4841 * can find it after the v_id has been bumped until we are completely done
4842 * with the vnode (i.e. putting it back on a list has to be the very last
4843 * thing we do to this vnode... many of the callers of vnode_reclaim_internal
4844 * are holding an io_count on the vnode... they need to drop the io_count
4845 * BEFORE doing a vnode_list_add or make sure to hold the vnode lock until
4846 * they are completely done with the vnode
4847 */
4848 vnode_list_lock();
4849
4850 vnode_list_remove_locked(vp);
4851 vp->v_id++;
4852
4853 vnode_list_unlock();
4854
4855 if (isfifo) {
4856 struct fifoinfo * fip;
4857
4858 fip = vp->v_fifoinfo;
4859 vp->v_fifoinfo = NULL;
4860 FREE(fip, M_TEMP);
4861 }
4862 vp->v_type = VBAD;
4863
4864 if (vp->v_data)
4865 panic("vnode_reclaim_internal: cleaned vnode isn't");
4866 if (vp->v_numoutput)
4867 panic("vnode_reclaim_internal: clean vnode has pending I/O's");
4868 if (UBCINFOEXISTS(vp))
4869 panic("vnode_reclaim_internal: ubcinfo not cleaned");
4870 if (vp->v_parent)
4871 panic("vnode_reclaim_internal: vparent not removed");
4872 if (vp->v_name)
4873 panic("vnode_reclaim_internal: vname not removed");
4874
4875 vp->v_socket = NULL;
4876
4877 vp->v_lflag &= ~VL_TERMINATE;
4878 vp->v_owner = NULL;
4879
4880 KNOTE(&vp->v_knotes, NOTE_REVOKE);
4881
4882 /* Make sure that when we reuse the vnode, no knotes left over */
4883 klist_init(&vp->v_knotes);
4884
4885 if (vp->v_lflag & VL_TERMWANT) {
4886 vp->v_lflag &= ~VL_TERMWANT;
4887 wakeup(&vp->v_lflag);
4888 }
4889 if (!reuse) {
4890 /*
4891 * make sure we get on the
4892 * dead list if appropriate
4893 */
4894 vnode_list_add(vp);
4895 }
4896 if (!locked)
4897 vnode_unlock(vp);
4898 }
4899
4900 static int
4901 vnode_create_internal(uint32_t flavor, uint32_t size, void *data, vnode_t *vpp,
4902 int init_vnode)
4903 {
4904 int error;
4905 int insert = 1;
4906 int existing_vnode;
4907 vnode_t vp;
4908 vnode_t nvp;
4909 vnode_t dvp;
4910 struct uthread *ut;
4911 struct componentname *cnp;
4912 struct vnode_fsparam *param = (struct vnode_fsparam *)data;
4913 #if CONFIG_TRIGGERS
4914 struct vnode_trigger_param *tinfo = NULL;
4915 #endif
4916 if (*vpp) {
4917 vp = *vpp;
4918 *vpp = NULLVP;
4919 existing_vnode = 1;
4920 } else {
4921 existing_vnode = 0;
4922 }
4923
4924 if (init_vnode) {
4925 /* Do quick sanity check on the parameters. */
4926 if ((param == NULL) || (param->vnfs_vtype == VBAD)) {
4927 error = EINVAL;
4928 goto error_out;
4929 }
4930
4931 #if CONFIG_TRIGGERS
4932 if ((flavor == VNCREATE_TRIGGER) && (size == VNCREATE_TRIGGER_SIZE)) {
4933 tinfo = (struct vnode_trigger_param *)data;
4934
4935 /* Validate trigger vnode input */
4936 if ((param->vnfs_vtype != VDIR) ||
4937 (tinfo->vnt_resolve_func == NULL) ||
4938 (tinfo->vnt_flags & ~VNT_VALID_MASK)) {
4939 error = EINVAL;
4940 goto error_out;
4941 }
4942 /* Fall through a normal create (params will be the same) */
4943 flavor = VNCREATE_FLAVOR;
4944 size = VCREATESIZE;
4945 }
4946 #endif
4947 if ((flavor != VNCREATE_FLAVOR) || (size != VCREATESIZE)) {
4948 error = EINVAL;
4949 goto error_out;
4950 }
4951 }
4952
4953 if (!existing_vnode) {
4954 if ((error = new_vnode(&vp)) ) {
4955 return (error);
4956 }
4957 if (!init_vnode) {
4958 /* Make it so that it can be released by a vnode_put) */
4959 vn_set_dead(vp);
4960 *vpp = vp;
4961 return (0);
4962 }
4963 } else {
4964 /*
4965 * A vnode obtained by vnode_create_empty has been passed to
4966 * vnode_initialize - Unset VL_DEAD set by vn_set_dead. After
4967 * this point, it is set back on any error.
4968 *
4969 * N.B. vnode locking - We make the same assumptions as the
4970 * "unsplit" vnode_create did - i.e. it is safe to update the
4971 * vnode's fields without the vnode lock. This vnode has been
4972 * out and about with the filesystem and hopefully nothing
4973 * was done to the vnode between the vnode_create_empty and
4974 * now when it has come in through vnode_initialize.
4975 */
4976 vp->v_lflag &= ~VL_DEAD;
4977 }
4978
4979 dvp = param->vnfs_dvp;
4980 cnp = param->vnfs_cnp;
4981
4982 vp->v_op = param->vnfs_vops;
4983 vp->v_type = param->vnfs_vtype;
4984 vp->v_data = param->vnfs_fsnode;
4985
4986 if (param->vnfs_markroot)
4987 vp->v_flag |= VROOT;
4988 if (param->vnfs_marksystem)
4989 vp->v_flag |= VSYSTEM;
4990 if (vp->v_type == VREG) {
4991 error = ubc_info_init_withsize(vp, param->vnfs_filesize);
4992 if (error) {
4993 #ifdef JOE_DEBUG
4994 record_vp(vp, 1);
4995 #endif
4996 vn_set_dead(vp);
4997
4998 vnode_put(vp);
4999 return(error);
5000 }
5001 if (param->vnfs_mp->mnt_ioflags & MNT_IOFLAGS_IOSCHED_SUPPORTED)
5002 memory_object_mark_io_tracking(vp->v_ubcinfo->ui_control);
5003 }
5004 #ifdef JOE_DEBUG
5005 record_vp(vp, 1);
5006 #endif
5007
5008 #if CONFIG_TRIGGERS
5009 /*
5010 * For trigger vnodes, attach trigger info to vnode
5011 */
5012 if ((vp->v_type == VDIR) && (tinfo != NULL)) {
5013 /*
5014 * Note: has a side effect of incrementing trigger count on the
5015 * mount if successful, which we would need to undo on a
5016 * subsequent failure.
5017 */
5018 #ifdef JOE_DEBUG
5019 record_vp(vp, -1);
5020 #endif
5021 error = vnode_resolver_create(param->vnfs_mp, vp, tinfo, FALSE);
5022 if (error) {
5023 printf("vnode_create: vnode_resolver_create() err %d\n", error);
5024 vn_set_dead(vp);
5025 #ifdef JOE_DEBUG
5026 record_vp(vp, 1);
5027 #endif
5028 vnode_put(vp);
5029 return (error);
5030 }
5031 }
5032 #endif
5033 if (vp->v_type == VCHR || vp->v_type == VBLK) {
5034
5035 vp->v_tag = VT_DEVFS; /* callers will reset if needed (bdevvp) */
5036
5037 if ( (nvp = checkalias(vp, param->vnfs_rdev)) ) {
5038 /*
5039 * if checkalias returns a vnode, it will be locked
5040 *
5041 * first get rid of the unneeded vnode we acquired
5042 */
5043 vp->v_data = NULL;
5044 vp->v_op = spec_vnodeop_p;
5045 vp->v_type = VBAD;
5046 vp->v_lflag = VL_DEAD;
5047 vp->v_data = NULL;
5048 vp->v_tag = VT_NON;
5049 vnode_put(vp);
5050
5051 /*
5052 * switch to aliased vnode and finish
5053 * preparing it
5054 */
5055 vp = nvp;
5056
5057 vclean(vp, 0);
5058 vp->v_op = param->vnfs_vops;
5059 vp->v_type = param->vnfs_vtype;
5060 vp->v_data = param->vnfs_fsnode;
5061 vp->v_lflag = 0;
5062 vp->v_mount = NULL;
5063 insmntque(vp, param->vnfs_mp);
5064 insert = 0;
5065 vnode_unlock(vp);
5066 }
5067
5068 if (VCHR == vp->v_type) {
5069 u_int maj = major(vp->v_rdev);
5070
5071 if (maj < (u_int)nchrdev && cdevsw[maj].d_type == D_TTY)
5072 vp->v_flag |= VISTTY;
5073 }
5074 }
5075
5076 if (vp->v_type == VFIFO) {
5077 struct fifoinfo *fip;
5078
5079 MALLOC(fip, struct fifoinfo *,
5080 sizeof(*fip), M_TEMP, M_WAITOK);
5081 bzero(fip, sizeof(struct fifoinfo ));
5082 vp->v_fifoinfo = fip;
5083 }
5084 /* The file systems must pass the address of the location where
5085 * they store the vnode pointer. When we add the vnode into the mount
5086 * list and name cache they become discoverable. So the file system node
5087 * must have the connection to vnode setup by then
5088 */
5089 *vpp = vp;
5090
5091 /* Add fs named reference. */
5092 if (param->vnfs_flags & VNFS_ADDFSREF) {
5093 vp->v_lflag |= VNAMED_FSHASH;
5094 }
5095 if (param->vnfs_mp) {
5096 if (param->vnfs_mp->mnt_kern_flag & MNTK_LOCK_LOCAL)
5097 vp->v_flag |= VLOCKLOCAL;
5098 if (insert) {
5099 if ((vp->v_freelist.tqe_prev != (struct vnode **)0xdeadb))
5100 panic("insmntque: vp on the free list\n");
5101
5102 /*
5103 * enter in mount vnode list
5104 */
5105 insmntque(vp, param->vnfs_mp);
5106 }
5107 }
5108 if (dvp && vnode_ref(dvp) == 0) {
5109 vp->v_parent = dvp;
5110 }
5111 if (cnp) {
5112 if (dvp && ((param->vnfs_flags & (VNFS_NOCACHE | VNFS_CANTCACHE)) == 0)) {
5113 /*
5114 * enter into name cache
5115 * we've got the info to enter it into the name cache now
5116 * cache_enter_create will pick up an extra reference on
5117 * the name entered into the string cache
5118 */
5119 vp->v_name = cache_enter_create(dvp, vp, cnp);
5120 } else
5121 vp->v_name = vfs_addname(cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash, 0);
5122
5123 if ((cnp->cn_flags & UNIONCREATED) == UNIONCREATED)
5124 vp->v_flag |= VISUNION;
5125 }
5126 if ((param->vnfs_flags & VNFS_CANTCACHE) == 0) {
5127 /*
5128 * this vnode is being created as cacheable in the name cache
5129 * this allows us to re-enter it in the cache
5130 */
5131 vp->v_flag |= VNCACHEABLE;
5132 }
5133 ut = get_bsdthread_info(current_thread());
5134
5135 if ((current_proc()->p_lflag & P_LRAGE_VNODES) ||
5136 (ut->uu_flag & UT_RAGE_VNODES)) {
5137 /*
5138 * process has indicated that it wants any
5139 * vnodes created on its behalf to be rapidly
5140 * aged to reduce the impact on the cached set
5141 * of vnodes
5142 */
5143 vp->v_flag |= VRAGE;
5144 }
5145
5146 #if CONFIG_SECLUDED_MEMORY
5147 switch (secluded_for_filecache) {
5148 case 0:
5149 /*
5150 * secluded_for_filecache == 0:
5151 * + no file contents in secluded pool
5152 */
5153 break;
5154 case 1:
5155 /*
5156 * secluded_for_filecache == 1:
5157 * + no files from /
5158 * + files from /Applications/ are OK
5159 * + files from /Applications/Camera are not OK
5160 * + no files that are open for write
5161 */
5162 if (vnode_vtype(vp) == VREG &&
5163 vnode_mount(vp) != NULL &&
5164 (! (vfs_flags(vnode_mount(vp)) & MNT_ROOTFS))) {
5165 /* not from root filesystem: eligible for secluded pages */
5166 memory_object_mark_eligible_for_secluded(
5167 ubc_getobject(vp, UBC_FLAGS_NONE),
5168 TRUE);
5169 }
5170 break;
5171 case 2:
5172 /*
5173 * secluded_for_filecache == 2:
5174 * + all read-only files OK, except:
5175 * + dyld_shared_cache_arm64*
5176 * + Camera
5177 * + mediaserverd
5178 */
5179 if (vnode_vtype(vp) == VREG) {
5180 memory_object_mark_eligible_for_secluded(
5181 ubc_getobject(vp, UBC_FLAGS_NONE),
5182 TRUE);
5183 }
5184 break;
5185 default:
5186 break;
5187 }
5188 #endif /* CONFIG_SECLUDED_MEMORY */
5189
5190 return (0);
5191
5192 error_out:
5193 if (existing_vnode) {
5194 vnode_put(vp);
5195 }
5196 return (error);
5197 }
5198
5199 /* USAGE:
5200 * The following api creates a vnode and associates all the parameter specified in vnode_fsparam
5201 * structure and returns a vnode handle with a reference. device aliasing is handled here so checkalias
5202 * is obsoleted by this.
5203 */
5204 int
5205 vnode_create(uint32_t flavor, uint32_t size, void *data, vnode_t *vpp)
5206 {
5207 *vpp = NULLVP;
5208 return (vnode_create_internal(flavor, size, data, vpp, 1));
5209 }
5210
5211 int
5212 vnode_create_empty(vnode_t *vpp)
5213 {
5214 *vpp = NULLVP;
5215 return (vnode_create_internal(VNCREATE_FLAVOR, VCREATESIZE, NULL,
5216 vpp, 0));
5217 }
5218
5219 int
5220 vnode_initialize(uint32_t flavor, uint32_t size, void *data, vnode_t *vpp)
5221 {
5222 if (*vpp == NULLVP) {
5223 panic("NULL vnode passed to vnode_initialize");
5224 }
5225 #if DEVELOPMENT || DEBUG
5226 /*
5227 * We lock to check that vnode is fit for unlocked use in
5228 * vnode_create_internal.
5229 */
5230 vnode_lock_spin(*vpp);
5231 VNASSERT(((*vpp)->v_iocount == 1), *vpp,
5232 ("vnode_initialize : iocount not 1, is %d", (*vpp)->v_iocount));
5233 VNASSERT(((*vpp)->v_usecount == 0), *vpp,
5234 ("vnode_initialize : usecount not 0, is %d", (*vpp)->v_usecount));
5235 VNASSERT(((*vpp)->v_lflag & VL_DEAD), *vpp,
5236 ("vnode_initialize : v_lflag does not have VL_DEAD, is 0x%x",
5237 (*vpp)->v_lflag));
5238 VNASSERT(((*vpp)->v_data == NULL), *vpp,
5239 ("vnode_initialize : v_data not NULL"));
5240 vnode_unlock(*vpp);
5241 #endif
5242 return (vnode_create_internal(flavor, size, data, vpp, 1));
5243 }
5244
5245 int
5246 vnode_addfsref(vnode_t vp)
5247 {
5248 vnode_lock_spin(vp);
5249 if (vp->v_lflag & VNAMED_FSHASH)
5250 panic("add_fsref: vp already has named reference");
5251 if ((vp->v_freelist.tqe_prev != (struct vnode **)0xdeadb))
5252 panic("addfsref: vp on the free list\n");
5253 vp->v_lflag |= VNAMED_FSHASH;
5254 vnode_unlock(vp);
5255 return(0);
5256
5257 }
5258 int
5259 vnode_removefsref(vnode_t vp)
5260 {
5261 vnode_lock_spin(vp);
5262 if ((vp->v_lflag & VNAMED_FSHASH) == 0)
5263 panic("remove_fsref: no named reference");
5264 vp->v_lflag &= ~VNAMED_FSHASH;
5265 vnode_unlock(vp);
5266 return(0);
5267
5268 }
5269
5270
5271 int
5272 vfs_iterate(int flags, int (*callout)(mount_t, void *), void *arg)
5273 {
5274 mount_t mp;
5275 int ret = 0;
5276 fsid_t * fsid_list;
5277 int count, actualcount, i;
5278 void * allocmem;
5279 int indx_start, indx_stop, indx_incr;
5280 int cb_dropref = (flags & VFS_ITERATE_CB_DROPREF);
5281
5282 count = mount_getvfscnt();
5283 count += 10;
5284
5285 fsid_list = (fsid_t *)kalloc(count * sizeof(fsid_t));
5286 allocmem = (void *)fsid_list;
5287
5288 actualcount = mount_fillfsids(fsid_list, count);
5289
5290 /*
5291 * Establish the iteration direction
5292 * VFS_ITERATE_TAIL_FIRST overrides default head first order (oldest first)
5293 */
5294 if (flags & VFS_ITERATE_TAIL_FIRST) {
5295 indx_start = actualcount - 1;
5296 indx_stop = -1;
5297 indx_incr = -1;
5298 } else /* Head first by default */ {
5299 indx_start = 0;
5300 indx_stop = actualcount;
5301 indx_incr = 1;
5302 }
5303
5304 for (i=indx_start; i != indx_stop; i += indx_incr) {
5305
5306 /* obtain the mount point with iteration reference */
5307 mp = mount_list_lookupby_fsid(&fsid_list[i], 0, 1);
5308
5309 if(mp == (struct mount *)0)
5310 continue;
5311 mount_lock(mp);
5312 if (mp->mnt_lflag & (MNT_LDEAD | MNT_LUNMOUNT)) {
5313 mount_unlock(mp);
5314 mount_iterdrop(mp);
5315 continue;
5316
5317 }
5318 mount_unlock(mp);
5319
5320 /* iterate over all the vnodes */
5321 ret = callout(mp, arg);
5322
5323 /*
5324 * Drop the iterref here if the callback didn't do it.
5325 * Note: If cb_dropref is set the mp may no longer exist.
5326 */
5327 if (!cb_dropref)
5328 mount_iterdrop(mp);
5329
5330 switch (ret) {
5331 case VFS_RETURNED:
5332 case VFS_RETURNED_DONE:
5333 if (ret == VFS_RETURNED_DONE) {
5334 ret = 0;
5335 goto out;
5336 }
5337 break;
5338
5339 case VFS_CLAIMED_DONE:
5340 ret = 0;
5341 goto out;
5342 case VFS_CLAIMED:
5343 default:
5344 break;
5345 }
5346 ret = 0;
5347 }
5348
5349 out:
5350 kfree(allocmem, (count * sizeof(fsid_t)));
5351 return (ret);
5352 }
5353
5354 /*
5355 * Update the vfsstatfs structure in the mountpoint.
5356 * MAC: Parameter eventtype added, indicating whether the event that
5357 * triggered this update came from user space, via a system call
5358 * (VFS_USER_EVENT) or an internal kernel call (VFS_KERNEL_EVENT).
5359 */
5360 int
5361 vfs_update_vfsstat(mount_t mp, vfs_context_t ctx, __unused int eventtype)
5362 {
5363 struct vfs_attr va;
5364 int error;
5365
5366 /*
5367 * Request the attributes we want to propagate into
5368 * the per-mount vfsstat structure.
5369 */
5370 VFSATTR_INIT(&va);
5371 VFSATTR_WANTED(&va, f_iosize);
5372 VFSATTR_WANTED(&va, f_blocks);
5373 VFSATTR_WANTED(&va, f_bfree);
5374 VFSATTR_WANTED(&va, f_bavail);
5375 VFSATTR_WANTED(&va, f_bused);
5376 VFSATTR_WANTED(&va, f_files);
5377 VFSATTR_WANTED(&va, f_ffree);
5378 VFSATTR_WANTED(&va, f_bsize);
5379 VFSATTR_WANTED(&va, f_fssubtype);
5380
5381 if ((error = vfs_getattr(mp, &va, ctx)) != 0) {
5382 KAUTH_DEBUG("STAT - filesystem returned error %d", error);
5383 return(error);
5384 }
5385 #if CONFIG_MACF
5386 if (eventtype == VFS_USER_EVENT) {
5387 error = mac_mount_check_getattr(ctx, mp, &va);
5388 if (error != 0)
5389 return (error);
5390 }
5391 #endif
5392 /*
5393 * Unpack into the per-mount structure.
5394 *
5395 * We only overwrite these fields, which are likely to change:
5396 * f_blocks
5397 * f_bfree
5398 * f_bavail
5399 * f_bused
5400 * f_files
5401 * f_ffree
5402 *
5403 * And these which are not, but which the FS has no other way
5404 * of providing to us:
5405 * f_bsize
5406 * f_iosize
5407 * f_fssubtype
5408 *
5409 */
5410 if (VFSATTR_IS_SUPPORTED(&va, f_bsize)) {
5411 /* 4822056 - protect against malformed server mount */
5412 mp->mnt_vfsstat.f_bsize = (va.f_bsize > 0 ? va.f_bsize : 512);
5413 } else {
5414 mp->mnt_vfsstat.f_bsize = mp->mnt_devblocksize; /* default from the device block size */
5415 }
5416 if (VFSATTR_IS_SUPPORTED(&va, f_iosize)) {
5417 mp->mnt_vfsstat.f_iosize = va.f_iosize;
5418 } else {
5419 mp->mnt_vfsstat.f_iosize = 1024 * 1024; /* 1MB sensible I/O size */
5420 }
5421 if (VFSATTR_IS_SUPPORTED(&va, f_blocks))
5422 mp->mnt_vfsstat.f_blocks = va.f_blocks;
5423 if (VFSATTR_IS_SUPPORTED(&va, f_bfree))
5424 mp->mnt_vfsstat.f_bfree = va.f_bfree;
5425 if (VFSATTR_IS_SUPPORTED(&va, f_bavail))
5426 mp->mnt_vfsstat.f_bavail = va.f_bavail;
5427 if (VFSATTR_IS_SUPPORTED(&va, f_bused))
5428 mp->mnt_vfsstat.f_bused = va.f_bused;
5429 if (VFSATTR_IS_SUPPORTED(&va, f_files))
5430 mp->mnt_vfsstat.f_files = va.f_files;
5431 if (VFSATTR_IS_SUPPORTED(&va, f_ffree))
5432 mp->mnt_vfsstat.f_ffree = va.f_ffree;
5433
5434 /* this is unlikely to change, but has to be queried for */
5435 if (VFSATTR_IS_SUPPORTED(&va, f_fssubtype))
5436 mp->mnt_vfsstat.f_fssubtype = va.f_fssubtype;
5437
5438 return(0);
5439 }
5440
5441 int
5442 mount_list_add(mount_t mp)
5443 {
5444 int res;
5445
5446 mount_list_lock();
5447 if (system_inshutdown != 0) {
5448 res = -1;
5449 } else {
5450 TAILQ_INSERT_TAIL(&mountlist, mp, mnt_list);
5451 nummounts++;
5452 res = 0;
5453 }
5454 mount_list_unlock();
5455
5456 return res;
5457 }
5458
5459 void
5460 mount_list_remove(mount_t mp)
5461 {
5462 mount_list_lock();
5463 TAILQ_REMOVE(&mountlist, mp, mnt_list);
5464 nummounts--;
5465 mp->mnt_list.tqe_next = NULL;
5466 mp->mnt_list.tqe_prev = NULL;
5467 mount_list_unlock();
5468 }
5469
5470 mount_t
5471 mount_lookupby_volfsid(int volfs_id, int withref)
5472 {
5473 mount_t cur_mount = (mount_t)0;
5474 mount_t mp;
5475
5476 mount_list_lock();
5477 TAILQ_FOREACH(mp, &mountlist, mnt_list) {
5478 if (!(mp->mnt_kern_flag & MNTK_UNMOUNT) &&
5479 (mp->mnt_kern_flag & MNTK_PATH_FROM_ID) &&
5480 (mp->mnt_vfsstat.f_fsid.val[0] == volfs_id)) {
5481 cur_mount = mp;
5482 if (withref) {
5483 if (mount_iterref(cur_mount, 1)) {
5484 cur_mount = (mount_t)0;
5485 mount_list_unlock();
5486 goto out;
5487 }
5488 }
5489 break;
5490 }
5491 }
5492 mount_list_unlock();
5493 if (withref && (cur_mount != (mount_t)0)) {
5494 mp = cur_mount;
5495 if (vfs_busy(mp, LK_NOWAIT) != 0) {
5496 cur_mount = (mount_t)0;
5497 }
5498 mount_iterdrop(mp);
5499 }
5500 out:
5501 return(cur_mount);
5502 }
5503
5504 mount_t
5505 mount_list_lookupby_fsid(fsid_t *fsid, int locked, int withref)
5506 {
5507 mount_t retmp = (mount_t)0;
5508 mount_t mp;
5509
5510 if (!locked)
5511 mount_list_lock();
5512 TAILQ_FOREACH(mp, &mountlist, mnt_list)
5513 if (mp->mnt_vfsstat.f_fsid.val[0] == fsid->val[0] &&
5514 mp->mnt_vfsstat.f_fsid.val[1] == fsid->val[1]) {
5515 retmp = mp;
5516 if (withref) {
5517 if (mount_iterref(retmp, 1))
5518 retmp = (mount_t)0;
5519 }
5520 goto out;
5521 }
5522 out:
5523 if (!locked)
5524 mount_list_unlock();
5525 return (retmp);
5526 }
5527
5528 errno_t
5529 vnode_lookup(const char *path, int flags, vnode_t *vpp, vfs_context_t ctx)
5530 {
5531 struct nameidata nd;
5532 int error;
5533 u_int32_t ndflags = 0;
5534
5535 if (ctx == NULL) {
5536 return EINVAL;
5537 }
5538
5539 if (flags & VNODE_LOOKUP_NOFOLLOW)
5540 ndflags = NOFOLLOW;
5541 else
5542 ndflags = FOLLOW;
5543
5544 if (flags & VNODE_LOOKUP_NOCROSSMOUNT)
5545 ndflags |= NOCROSSMOUNT;
5546
5547 if (flags & VNODE_LOOKUP_CROSSMOUNTNOWAIT)
5548 ndflags |= CN_NBMOUNTLOOK;
5549
5550 /* XXX AUDITVNPATH1 needed ? */
5551 NDINIT(&nd, LOOKUP, OP_LOOKUP, ndflags, UIO_SYSSPACE,
5552 CAST_USER_ADDR_T(path), ctx);
5553
5554 if ((error = namei(&nd)))
5555 return (error);
5556 *vpp = nd.ni_vp;
5557 nameidone(&nd);
5558
5559 return (0);
5560 }
5561
5562 errno_t
5563 vnode_open(const char *path, int fmode, int cmode, int flags, vnode_t *vpp, vfs_context_t ctx)
5564 {
5565 struct nameidata nd;
5566 int error;
5567 u_int32_t ndflags = 0;
5568 int lflags = flags;
5569
5570 if (ctx == NULL) { /* XXX technically an error */
5571 ctx = vfs_context_current();
5572 }
5573
5574 if (fmode & O_NOFOLLOW)
5575 lflags |= VNODE_LOOKUP_NOFOLLOW;
5576
5577 if (lflags & VNODE_LOOKUP_NOFOLLOW)
5578 ndflags = NOFOLLOW;
5579 else
5580 ndflags = FOLLOW;
5581
5582 if (lflags & VNODE_LOOKUP_NOCROSSMOUNT)
5583 ndflags |= NOCROSSMOUNT;
5584
5585 if (lflags & VNODE_LOOKUP_CROSSMOUNTNOWAIT)
5586 ndflags |= CN_NBMOUNTLOOK;
5587
5588 /* XXX AUDITVNPATH1 needed ? */
5589 NDINIT(&nd, LOOKUP, OP_OPEN, ndflags, UIO_SYSSPACE,
5590 CAST_USER_ADDR_T(path), ctx);
5591
5592 if ((error = vn_open(&nd, fmode, cmode)))
5593 *vpp = NULL;
5594 else
5595 *vpp = nd.ni_vp;
5596
5597 return (error);
5598 }
5599
5600 errno_t
5601 vnode_close(vnode_t vp, int flags, vfs_context_t ctx)
5602 {
5603 int error;
5604
5605 if (ctx == NULL) {
5606 ctx = vfs_context_current();
5607 }
5608
5609 error = vn_close(vp, flags, ctx);
5610 vnode_put(vp);
5611 return (error);
5612 }
5613
5614 errno_t
5615 vnode_mtime(vnode_t vp, struct timespec *mtime, vfs_context_t ctx)
5616 {
5617 struct vnode_attr va;
5618 int error;
5619
5620 VATTR_INIT(&va);
5621 VATTR_WANTED(&va, va_modify_time);
5622 error = vnode_getattr(vp, &va, ctx);
5623 if (!error)
5624 *mtime = va.va_modify_time;
5625 return error;
5626 }
5627
5628 errno_t
5629 vnode_flags(vnode_t vp, uint32_t *flags, vfs_context_t ctx)
5630 {
5631 struct vnode_attr va;
5632 int error;
5633
5634 VATTR_INIT(&va);
5635 VATTR_WANTED(&va, va_flags);
5636 error = vnode_getattr(vp, &va, ctx);
5637 if (!error)
5638 *flags = va.va_flags;
5639 return error;
5640 }
5641
5642 /*
5643 * Returns: 0 Success
5644 * vnode_getattr:???
5645 */
5646 errno_t
5647 vnode_size(vnode_t vp, off_t *sizep, vfs_context_t ctx)
5648 {
5649 struct vnode_attr va;
5650 int error;
5651
5652 VATTR_INIT(&va);
5653 VATTR_WANTED(&va, va_data_size);
5654 error = vnode_getattr(vp, &va, ctx);
5655 if (!error)
5656 *sizep = va.va_data_size;
5657 return(error);
5658 }
5659
5660 errno_t
5661 vnode_setsize(vnode_t vp, off_t size, int ioflag, vfs_context_t ctx)
5662 {
5663 struct vnode_attr va;
5664
5665 VATTR_INIT(&va);
5666 VATTR_SET(&va, va_data_size, size);
5667 va.va_vaflags = ioflag & 0xffff;
5668 return(vnode_setattr(vp, &va, ctx));
5669 }
5670
5671 int
5672 vnode_setdirty(vnode_t vp)
5673 {
5674 vnode_lock_spin(vp);
5675 vp->v_flag |= VISDIRTY;
5676 vnode_unlock(vp);
5677 return 0;
5678 }
5679
5680 int
5681 vnode_cleardirty(vnode_t vp)
5682 {
5683 vnode_lock_spin(vp);
5684 vp->v_flag &= ~VISDIRTY;
5685 vnode_unlock(vp);
5686 return 0;
5687 }
5688
5689 int
5690 vnode_isdirty(vnode_t vp)
5691 {
5692 int dirty;
5693
5694 vnode_lock_spin(vp);
5695 dirty = (vp->v_flag & VISDIRTY) ? 1 : 0;
5696 vnode_unlock(vp);
5697
5698 return dirty;
5699 }
5700
5701 static int
5702 vn_create_reg(vnode_t dvp, vnode_t *vpp, struct nameidata *ndp, struct vnode_attr *vap, uint32_t flags, int fmode, uint32_t *statusp, vfs_context_t ctx)
5703 {
5704 /* Only use compound VNOP for compound operation */
5705 if (vnode_compound_open_available(dvp) && ((flags & VN_CREATE_DOOPEN) != 0)) {
5706 *vpp = NULLVP;
5707 return VNOP_COMPOUND_OPEN(dvp, vpp, ndp, O_CREAT, fmode, statusp, vap, ctx);
5708 } else {
5709 return VNOP_CREATE(dvp, vpp, &ndp->ni_cnd, vap, ctx);
5710 }
5711 }
5712
5713 /*
5714 * Create a filesystem object of arbitrary type with arbitrary attributes in
5715 * the spevied directory with the specified name.
5716 *
5717 * Parameters: dvp Pointer to the vnode of the directory
5718 * in which to create the object.
5719 * vpp Pointer to the area into which to
5720 * return the vnode of the created object.
5721 * cnp Component name pointer from the namei
5722 * data structure, containing the name to
5723 * use for the create object.
5724 * vap Pointer to the vnode_attr structure
5725 * describing the object to be created,
5726 * including the type of object.
5727 * flags VN_* flags controlling ACL inheritance
5728 * and whether or not authorization is to
5729 * be required for the operation.
5730 *
5731 * Returns: 0 Success
5732 * !0 errno value
5733 *
5734 * Implicit: *vpp Contains the vnode of the object that
5735 * was created, if successful.
5736 * *cnp May be modified by the underlying VFS.
5737 * *vap May be modified by the underlying VFS.
5738 * modified by either ACL inheritance or
5739 *
5740 *
5741 * be modified, even if the operation is
5742 *
5743 *
5744 * Notes: The kauth_filesec_t in 'vap', if any, is in host byte order.
5745 *
5746 * Modification of '*cnp' and '*vap' by the underlying VFS is
5747 * strongly discouraged.
5748 *
5749 * XXX: This function is a 'vn_*' function; it belongs in vfs_vnops.c
5750 *
5751 * XXX: We should enummerate the possible errno values here, and where
5752 * in the code they originated.
5753 */
5754 errno_t
5755 vn_create(vnode_t dvp, vnode_t *vpp, struct nameidata *ndp, struct vnode_attr *vap, uint32_t flags, int fmode, uint32_t *statusp, vfs_context_t ctx)
5756 {
5757 errno_t error, old_error;
5758 vnode_t vp = (vnode_t)0;
5759 boolean_t batched;
5760 struct componentname *cnp;
5761 uint32_t defaulted;
5762
5763 cnp = &ndp->ni_cnd;
5764 error = 0;
5765 batched = namei_compound_available(dvp, ndp) ? TRUE : FALSE;
5766
5767 KAUTH_DEBUG("%p CREATE - '%s'", dvp, cnp->cn_nameptr);
5768
5769 if (flags & VN_CREATE_NOINHERIT)
5770 vap->va_vaflags |= VA_NOINHERIT;
5771 if (flags & VN_CREATE_NOAUTH)
5772 vap->va_vaflags |= VA_NOAUTH;
5773 /*
5774 * Handle ACL inheritance, initialize vap.
5775 */
5776 error = vn_attribute_prepare(dvp, vap, &defaulted, ctx);
5777 if (error) {
5778 return error;
5779 }
5780
5781 if (vap->va_type != VREG && (fmode != 0 || (flags & VN_CREATE_DOOPEN) || statusp)) {
5782 panic("Open parameters, but not a regular file.");
5783 }
5784 if ((fmode != 0) && ((flags & VN_CREATE_DOOPEN) == 0)) {
5785 panic("Mode for open, but not trying to open...");
5786 }
5787
5788
5789 /*
5790 * Create the requested node.
5791 */
5792 switch(vap->va_type) {
5793 case VREG:
5794 error = vn_create_reg(dvp, vpp, ndp, vap, flags, fmode, statusp, ctx);
5795 break;
5796 case VDIR:
5797 error = vn_mkdir(dvp, vpp, ndp, vap, ctx);
5798 break;
5799 case VSOCK:
5800 case VFIFO:
5801 case VBLK:
5802 case VCHR:
5803 error = VNOP_MKNOD(dvp, vpp, cnp, vap, ctx);
5804 break;
5805 default:
5806 panic("vnode_create: unknown vtype %d", vap->va_type);
5807 }
5808 if (error != 0) {
5809 KAUTH_DEBUG("%p CREATE - error %d returned by filesystem", dvp, error);
5810 goto out;
5811 }
5812
5813 vp = *vpp;
5814 old_error = error;
5815
5816 #if CONFIG_MACF
5817 if (!(flags & VN_CREATE_NOLABEL)) {
5818 error = vnode_label(vnode_mount(vp), dvp, vp, cnp, VNODE_LABEL_CREATE, ctx);
5819 if (error)
5820 goto error;
5821 }
5822 #endif
5823
5824 /*
5825 * If some of the requested attributes weren't handled by the VNOP,
5826 * use our fallback code.
5827 */
5828 if (!VATTR_ALL_SUPPORTED(vap) && *vpp) {
5829 KAUTH_DEBUG(" CREATE - doing fallback with ACL %p", vap->va_acl);
5830 error = vnode_setattr_fallback(*vpp, vap, ctx);
5831 }
5832 #if CONFIG_MACF
5833 error:
5834 #endif
5835 if ((error != 0) && (vp != (vnode_t)0)) {
5836
5837 /* If we've done a compound open, close */
5838 if (batched && (old_error == 0) && (vap->va_type == VREG)) {
5839 VNOP_CLOSE(vp, fmode, ctx);
5840 }
5841
5842 /* Need to provide notifications if a create succeeded */
5843 if (!batched) {
5844 *vpp = (vnode_t) 0;
5845 vnode_put(vp);
5846 }
5847 }
5848
5849 out:
5850 vn_attribute_cleanup(vap, defaulted);
5851
5852 return(error);
5853 }
5854
5855 static kauth_scope_t vnode_scope;
5856 static int vnode_authorize_callback(kauth_cred_t credential, void *idata, kauth_action_t action,
5857 uintptr_t arg0, uintptr_t arg1, uintptr_t arg2, uintptr_t arg3);
5858 static int vnode_authorize_callback_int(kauth_action_t action, vfs_context_t ctx,
5859 vnode_t vp, vnode_t dvp, int *errorp);
5860
5861 typedef struct _vnode_authorize_context {
5862 vnode_t vp;
5863 struct vnode_attr *vap;
5864 vnode_t dvp;
5865 struct vnode_attr *dvap;
5866 vfs_context_t ctx;
5867 int flags;
5868 int flags_valid;
5869 #define _VAC_IS_OWNER (1<<0)
5870 #define _VAC_IN_GROUP (1<<1)
5871 #define _VAC_IS_DIR_OWNER (1<<2)
5872 #define _VAC_IN_DIR_GROUP (1<<3)
5873 #define _VAC_NO_VNODE_POINTERS (1<<4)
5874 } *vauth_ctx;
5875
5876 void
5877 vnode_authorize_init(void)
5878 {
5879 vnode_scope = kauth_register_scope(KAUTH_SCOPE_VNODE, vnode_authorize_callback, NULL);
5880 }
5881
5882 #define VATTR_PREPARE_DEFAULTED_UID 0x1
5883 #define VATTR_PREPARE_DEFAULTED_GID 0x2
5884 #define VATTR_PREPARE_DEFAULTED_MODE 0x4
5885
5886 int
5887 vn_attribute_prepare(vnode_t dvp, struct vnode_attr *vap, uint32_t *defaulted_fieldsp, vfs_context_t ctx)
5888 {
5889 kauth_acl_t nacl = NULL, oacl = NULL;
5890 int error;
5891
5892 /*
5893 * Handle ACL inheritance.
5894 */
5895 if (!(vap->va_vaflags & VA_NOINHERIT) && vfs_extendedsecurity(dvp->v_mount)) {
5896 /* save the original filesec */
5897 if (VATTR_IS_ACTIVE(vap, va_acl)) {
5898 oacl = vap->va_acl;
5899 }
5900
5901 vap->va_acl = NULL;
5902 if ((error = kauth_acl_inherit(dvp,
5903 oacl,
5904 &nacl,
5905 vap->va_type == VDIR,
5906 ctx)) != 0) {
5907 KAUTH_DEBUG("%p CREATE - error %d processing inheritance", dvp, error);
5908 return(error);
5909 }
5910
5911 /*
5912 * If the generated ACL is NULL, then we can save ourselves some effort
5913 * by clearing the active bit.
5914 */
5915 if (nacl == NULL) {
5916 VATTR_CLEAR_ACTIVE(vap, va_acl);
5917 } else {
5918 vap->va_base_acl = oacl;
5919 VATTR_SET(vap, va_acl, nacl);
5920 }
5921 }
5922
5923 error = vnode_authattr_new_internal(dvp, vap, (vap->va_vaflags & VA_NOAUTH), defaulted_fieldsp, ctx);
5924 if (error) {
5925 vn_attribute_cleanup(vap, *defaulted_fieldsp);
5926 }
5927
5928 return error;
5929 }
5930
5931 void
5932 vn_attribute_cleanup(struct vnode_attr *vap, uint32_t defaulted_fields)
5933 {
5934 /*
5935 * If the caller supplied a filesec in vap, it has been replaced
5936 * now by the post-inheritance copy. We need to put the original back
5937 * and free the inherited product.
5938 */
5939 kauth_acl_t nacl, oacl;
5940
5941 if (VATTR_IS_ACTIVE(vap, va_acl)) {
5942 nacl = vap->va_acl;
5943 oacl = vap->va_base_acl;
5944
5945 if (oacl) {
5946 VATTR_SET(vap, va_acl, oacl);
5947 vap->va_base_acl = NULL;
5948 } else {
5949 VATTR_CLEAR_ACTIVE(vap, va_acl);
5950 }
5951
5952 if (nacl != NULL) {
5953 kauth_acl_free(nacl);
5954 }
5955 }
5956
5957 if ((defaulted_fields & VATTR_PREPARE_DEFAULTED_MODE) != 0) {
5958 VATTR_CLEAR_ACTIVE(vap, va_mode);
5959 }
5960 if ((defaulted_fields & VATTR_PREPARE_DEFAULTED_GID) != 0) {
5961 VATTR_CLEAR_ACTIVE(vap, va_gid);
5962 }
5963 if ((defaulted_fields & VATTR_PREPARE_DEFAULTED_UID) != 0) {
5964 VATTR_CLEAR_ACTIVE(vap, va_uid);
5965 }
5966
5967 return;
5968 }
5969
5970 int
5971 vn_authorize_unlink(vnode_t dvp, vnode_t vp, struct componentname *cnp, vfs_context_t ctx, __unused void *reserved)
5972 {
5973 #if !CONFIG_MACF
5974 #pragma unused(cnp)
5975 #endif
5976 int error = 0;
5977
5978 /*
5979 * Normally, unlinking of directories is not supported.
5980 * However, some file systems may have limited support.
5981 */
5982 if ((vp->v_type == VDIR) &&
5983 !(vp->v_mount->mnt_kern_flag & MNTK_DIR_HARDLINKS)) {
5984 return (EPERM); /* POSIX */
5985 }
5986
5987 /* authorize the delete operation */
5988 #if CONFIG_MACF
5989 if (!error)
5990 error = mac_vnode_check_unlink(ctx, dvp, vp, cnp);
5991 #endif /* MAC */
5992 if (!error)
5993 error = vnode_authorize(vp, dvp, KAUTH_VNODE_DELETE, ctx);
5994
5995 return error;
5996 }
5997
5998 int
5999 vn_authorize_open_existing(vnode_t vp, struct componentname *cnp, int fmode, vfs_context_t ctx, void *reserved)
6000 {
6001 /* Open of existing case */
6002 kauth_action_t action;
6003 int error = 0;
6004 if (cnp->cn_ndp == NULL) {
6005 panic("NULL ndp");
6006 }
6007 if (reserved != NULL) {
6008 panic("reserved not NULL.");
6009 }
6010
6011 #if CONFIG_MACF
6012 /* XXX may do duplicate work here, but ignore that for now (idempotent) */
6013 if (vfs_flags(vnode_mount(vp)) & MNT_MULTILABEL) {
6014 error = vnode_label(vnode_mount(vp), NULL, vp, NULL, 0, ctx);
6015 if (error)
6016 return (error);
6017 }
6018 #endif
6019
6020 if ( (fmode & O_DIRECTORY) && vp->v_type != VDIR ) {
6021 return (ENOTDIR);
6022 }
6023
6024 if (vp->v_type == VSOCK && vp->v_tag != VT_FDESC) {
6025 return (EOPNOTSUPP); /* Operation not supported on socket */
6026 }
6027
6028 if (vp->v_type == VLNK && (fmode & O_NOFOLLOW) != 0) {
6029 return (ELOOP); /* O_NOFOLLOW was specified and the target is a symbolic link */
6030 }
6031
6032 /* disallow write operations on directories */
6033 if (vnode_isdir(vp) && (fmode & (FWRITE | O_TRUNC))) {
6034 return (EISDIR);
6035 }
6036
6037 if ((cnp->cn_ndp->ni_flag & NAMEI_TRAILINGSLASH)) {
6038 if (vp->v_type != VDIR) {
6039 return (ENOTDIR);
6040 }
6041 }
6042
6043 #if CONFIG_MACF
6044 /* If a file being opened is a shadow file containing
6045 * namedstream data, ignore the macf checks because it
6046 * is a kernel internal file and access should always
6047 * be allowed.
6048 */
6049 if (!(vnode_isshadow(vp) && vnode_isnamedstream(vp))) {
6050 error = mac_vnode_check_open(ctx, vp, fmode);
6051 if (error) {
6052 return (error);
6053 }
6054 }
6055 #endif
6056
6057 /* compute action to be authorized */
6058 action = 0;
6059 if (fmode & FREAD) {
6060 action |= KAUTH_VNODE_READ_DATA;
6061 }
6062 if (fmode & (FWRITE | O_TRUNC)) {
6063 /*
6064 * If we are writing, appending, and not truncating,
6065 * indicate that we are appending so that if the
6066 * UF_APPEND or SF_APPEND bits are set, we do not deny
6067 * the open.
6068 */
6069 if ((fmode & O_APPEND) && !(fmode & O_TRUNC)) {
6070 action |= KAUTH_VNODE_APPEND_DATA;
6071 } else {
6072 action |= KAUTH_VNODE_WRITE_DATA;
6073 }
6074 }
6075 error = vnode_authorize(vp, NULL, action, ctx);
6076 #if NAMEDSTREAMS
6077 if (error == EACCES) {
6078 /*
6079 * Shadow files may exist on-disk with a different UID/GID
6080 * than that of the current context. Verify that this file
6081 * is really a shadow file. If it was created successfully
6082 * then it should be authorized.
6083 */
6084 if (vnode_isshadow(vp) && vnode_isnamedstream (vp)) {
6085 error = vnode_verifynamedstream(vp);
6086 }
6087 }
6088 #endif
6089
6090 return error;
6091 }
6092
6093 int
6094 vn_authorize_create(vnode_t dvp, struct componentname *cnp, struct vnode_attr *vap, vfs_context_t ctx, void *reserved)
6095 {
6096 #if !CONFIG_MACF
6097 #pragma unused(vap)
6098 #endif
6099 /* Creation case */
6100 int error;
6101
6102 if (cnp->cn_ndp == NULL) {
6103 panic("NULL cn_ndp");
6104 }
6105 if (reserved != NULL) {
6106 panic("reserved not NULL.");
6107 }
6108
6109 /* Only validate path for creation if we didn't do a complete lookup */
6110 if (cnp->cn_ndp->ni_flag & NAMEI_UNFINISHED) {
6111 error = lookup_validate_creation_path(cnp->cn_ndp);
6112 if (error)
6113 return (error);
6114 }
6115
6116 #if CONFIG_MACF
6117 error = mac_vnode_check_create(ctx, dvp, cnp, vap);
6118 if (error)
6119 return (error);
6120 #endif /* CONFIG_MACF */
6121
6122 return (vnode_authorize(dvp, NULL, KAUTH_VNODE_ADD_FILE, ctx));
6123 }
6124
6125 int
6126 vn_authorize_rename(struct vnode *fdvp, struct vnode *fvp, struct componentname *fcnp,
6127 struct vnode *tdvp, struct vnode *tvp, struct componentname *tcnp,
6128 vfs_context_t ctx, void *reserved)
6129 {
6130 return vn_authorize_renamex(fdvp, fvp, fcnp, tdvp, tvp, tcnp, ctx, 0, reserved);
6131 }
6132
6133 int
6134 vn_authorize_renamex(struct vnode *fdvp, struct vnode *fvp, struct componentname *fcnp,
6135 struct vnode *tdvp, struct vnode *tvp, struct componentname *tcnp,
6136 vfs_context_t ctx, vfs_rename_flags_t flags, void *reserved)
6137 {
6138 int error = 0;
6139 int moving = 0;
6140 bool swap = flags & VFS_RENAME_SWAP;
6141
6142 if (reserved != NULL) {
6143 panic("Passed something other than NULL as reserved field!");
6144 }
6145
6146 /*
6147 * Avoid renaming "." and "..".
6148 *
6149 * XXX No need to check for this in the FS. We should always have the leaves
6150 * in VFS in this case.
6151 */
6152 if (fvp->v_type == VDIR &&
6153 ((fdvp == fvp) ||
6154 (fcnp->cn_namelen == 1 && fcnp->cn_nameptr[0] == '.') ||
6155 ((fcnp->cn_flags | tcnp->cn_flags) & ISDOTDOT)) ) {
6156 error = EINVAL;
6157 goto out;
6158 }
6159
6160 if (tvp == NULLVP && vnode_compound_rename_available(tdvp)) {
6161 error = lookup_validate_creation_path(tcnp->cn_ndp);
6162 if (error)
6163 goto out;
6164 }
6165
6166 /***** <MACF> *****/
6167 #if CONFIG_MACF
6168 error = mac_vnode_check_rename(ctx, fdvp, fvp, fcnp, tdvp, tvp, tcnp);
6169 if (error)
6170 goto out;
6171 if (swap) {
6172 error = mac_vnode_check_rename(ctx, tdvp, tvp, tcnp, fdvp, fvp, fcnp);
6173 if (error)
6174 goto out;
6175 }
6176 #endif
6177 /***** </MACF> *****/
6178
6179 /***** <MiscChecks> *****/
6180 if (tvp != NULL) {
6181 if (!swap) {
6182 if (fvp->v_type == VDIR && tvp->v_type != VDIR) {
6183 error = ENOTDIR;
6184 goto out;
6185 } else if (fvp->v_type != VDIR && tvp->v_type == VDIR) {
6186 error = EISDIR;
6187 goto out;
6188 }
6189 }
6190 } else if (swap) {
6191 /*
6192 * Caller should have already checked this and returned
6193 * ENOENT. If we send back ENOENT here, caller will retry
6194 * which isn't what we want so we send back EINVAL here
6195 * instead.
6196 */
6197 error = EINVAL;
6198 goto out;
6199 }
6200
6201 if (fvp == tdvp) {
6202 error = EINVAL;
6203 goto out;
6204 }
6205
6206 /*
6207 * The following edge case is caught here:
6208 * (to cannot be a descendent of from)
6209 *
6210 * o fdvp
6211 * /
6212 * /
6213 * o fvp
6214 * \
6215 * \
6216 * o tdvp
6217 * /
6218 * /
6219 * o tvp
6220 */
6221 if (tdvp->v_parent == fvp) {
6222 error = EINVAL;
6223 goto out;
6224 }
6225
6226 if (swap && fdvp->v_parent == tvp) {
6227 error = EINVAL;
6228 goto out;
6229 }
6230 /***** </MiscChecks> *****/
6231
6232 /***** <Kauth> *****/
6233
6234 if (swap) {
6235 kauth_action_t f = 0, t = 0;
6236
6237 /*
6238 * Directories changing parents need ...ADD_SUBDIR... to
6239 * permit changing ".."
6240 */
6241 if (fdvp != tdvp) {
6242 if (vnode_isdir(fvp))
6243 f = KAUTH_VNODE_ADD_SUBDIRECTORY;
6244 if (vnode_isdir(tvp))
6245 t = KAUTH_VNODE_ADD_SUBDIRECTORY;
6246 }
6247 error = vnode_authorize(fvp, fdvp, KAUTH_VNODE_DELETE | f, ctx);
6248 if (error)
6249 goto out;
6250 error = vnode_authorize(tvp, tdvp, KAUTH_VNODE_DELETE | t, ctx);
6251 if (error)
6252 goto out;
6253 f = vnode_isdir(fvp) ? KAUTH_VNODE_ADD_SUBDIRECTORY : KAUTH_VNODE_ADD_FILE;
6254 t = vnode_isdir(tvp) ? KAUTH_VNODE_ADD_SUBDIRECTORY : KAUTH_VNODE_ADD_FILE;
6255 if (fdvp == tdvp)
6256 error = vnode_authorize(fdvp, NULL, f | t, ctx);
6257 else {
6258 error = vnode_authorize(fdvp, NULL, t, ctx);
6259 if (error)
6260 goto out;
6261 error = vnode_authorize(tdvp, NULL, f, ctx);
6262 }
6263 if (error)
6264 goto out;
6265 } else {
6266 error = 0;
6267 if ((tvp != NULL) && vnode_isdir(tvp)) {
6268 if (tvp != fdvp)
6269 moving = 1;
6270 } else if (tdvp != fdvp) {
6271 moving = 1;
6272 }
6273
6274 /*
6275 * must have delete rights to remove the old name even in
6276 * the simple case of fdvp == tdvp.
6277 *
6278 * If fvp is a directory, and we are changing it's parent,
6279 * then we also need rights to rewrite its ".." entry as well.
6280 */
6281 if (vnode_isdir(fvp)) {
6282 if ((error = vnode_authorize(fvp, fdvp, KAUTH_VNODE_DELETE | KAUTH_VNODE_ADD_SUBDIRECTORY, ctx)) != 0)
6283 goto out;
6284 } else {
6285 if ((error = vnode_authorize(fvp, fdvp, KAUTH_VNODE_DELETE, ctx)) != 0)
6286 goto out;
6287 }
6288 if (moving) {
6289 /* moving into tdvp or tvp, must have rights to add */
6290 if ((error = vnode_authorize(((tvp != NULL) && vnode_isdir(tvp)) ? tvp : tdvp,
6291 NULL,
6292 vnode_isdir(fvp) ? KAUTH_VNODE_ADD_SUBDIRECTORY : KAUTH_VNODE_ADD_FILE,
6293 ctx)) != 0) {
6294 goto out;
6295 }
6296 } else {
6297 /* node staying in same directory, must be allowed to add new name */
6298 if ((error = vnode_authorize(fdvp, NULL,
6299 vnode_isdir(fvp) ? KAUTH_VNODE_ADD_SUBDIRECTORY : KAUTH_VNODE_ADD_FILE, ctx)) != 0)
6300 goto out;
6301 }
6302 /* overwriting tvp */
6303 if ((tvp != NULL) && !vnode_isdir(tvp) &&
6304 ((error = vnode_authorize(tvp, tdvp, KAUTH_VNODE_DELETE, ctx)) != 0)) {
6305 goto out;
6306 }
6307 }
6308
6309 /***** </Kauth> *****/
6310
6311 /* XXX more checks? */
6312 out:
6313 return error;
6314 }
6315
6316 int
6317 vn_authorize_mkdir(vnode_t dvp, struct componentname *cnp, struct vnode_attr *vap, vfs_context_t ctx, void *reserved)
6318 {
6319 #if !CONFIG_MACF
6320 #pragma unused(vap)
6321 #endif
6322 int error;
6323
6324 if (reserved != NULL) {
6325 panic("reserved not NULL in vn_authorize_mkdir()");
6326 }
6327
6328 /* XXX A hack for now, to make shadow files work */
6329 if (cnp->cn_ndp == NULL) {
6330 return 0;
6331 }
6332
6333 if (vnode_compound_mkdir_available(dvp)) {
6334 error = lookup_validate_creation_path(cnp->cn_ndp);
6335 if (error)
6336 goto out;
6337 }
6338
6339 #if CONFIG_MACF
6340 error = mac_vnode_check_create(ctx,
6341 dvp, cnp, vap);
6342 if (error)
6343 goto out;
6344 #endif
6345
6346 /* authorize addition of a directory to the parent */
6347 if ((error = vnode_authorize(dvp, NULL, KAUTH_VNODE_ADD_SUBDIRECTORY, ctx)) != 0)
6348 goto out;
6349
6350 out:
6351 return error;
6352 }
6353
6354 int
6355 vn_authorize_rmdir(vnode_t dvp, vnode_t vp, struct componentname *cnp, vfs_context_t ctx, void *reserved)
6356 {
6357 #if CONFIG_MACF
6358 int error;
6359 #else
6360 #pragma unused(cnp)
6361 #endif
6362 if (reserved != NULL) {
6363 panic("Non-NULL reserved argument to vn_authorize_rmdir()");
6364 }
6365
6366 if (vp->v_type != VDIR) {
6367 /*
6368 * rmdir only deals with directories
6369 */
6370 return ENOTDIR;
6371 }
6372
6373 if (dvp == vp) {
6374 /*
6375 * No rmdir "." please.
6376 */
6377 return EINVAL;
6378 }
6379
6380 #if CONFIG_MACF
6381 error = mac_vnode_check_unlink(ctx, dvp,
6382 vp, cnp);
6383 if (error)
6384 return error;
6385 #endif
6386
6387 return vnode_authorize(vp, dvp, KAUTH_VNODE_DELETE, ctx);
6388 }
6389
6390 /*
6391 * Authorizer for directory cloning. This does not use vnodes but instead
6392 * uses prefilled vnode attributes from the filesystem.
6393 *
6394 * The same function is called to set up the attributes required, perform the
6395 * authorization and cleanup (if required)
6396 */
6397 int
6398 vnode_attr_authorize_dir_clone(struct vnode_attr *vap, kauth_action_t action,
6399 struct vnode_attr *dvap, __unused vnode_t sdvp, mount_t mp,
6400 dir_clone_authorizer_op_t vattr_op, uint32_t flags, vfs_context_t ctx,
6401 __unused void *reserved)
6402 {
6403 int error;
6404 int is_suser = vfs_context_issuser(ctx);
6405
6406 if (vattr_op == OP_VATTR_SETUP) {
6407 VATTR_INIT(vap);
6408
6409 /*
6410 * When ACL inheritence is implemented, both vap->va_acl and
6411 * dvap->va_acl will be required (even as superuser).
6412 */
6413 VATTR_WANTED(vap, va_type);
6414 VATTR_WANTED(vap, va_mode);
6415 VATTR_WANTED(vap, va_flags);
6416 VATTR_WANTED(vap, va_uid);
6417 VATTR_WANTED(vap, va_gid);
6418 if (dvap) {
6419 VATTR_INIT(dvap);
6420 VATTR_WANTED(dvap, va_flags);
6421 }
6422
6423 if (!is_suser) {
6424 /*
6425 * If not superuser, we have to evaluate ACLs and
6426 * need the target directory gid to set the initial
6427 * gid of the new object.
6428 */
6429 VATTR_WANTED(vap, va_acl);
6430 if (dvap)
6431 VATTR_WANTED(dvap, va_gid);
6432 } else if (dvap && (flags & VNODE_CLONEFILE_NOOWNERCOPY)) {
6433 VATTR_WANTED(dvap, va_gid);
6434 }
6435 return (0);
6436 } else if (vattr_op == OP_VATTR_CLEANUP) {
6437 return (0); /* Nothing to do for now */
6438 }
6439
6440 /* dvap isn't used for authorization */
6441 error = vnode_attr_authorize(vap, NULL, mp, action, ctx);
6442
6443 if (error)
6444 return (error);
6445
6446 /*
6447 * vn_attribute_prepare should be able to accept attributes as well as
6448 * vnodes but for now we do this inline.
6449 */
6450 if (!is_suser || (flags & VNODE_CLONEFILE_NOOWNERCOPY)) {
6451 /*
6452 * If the filesystem is mounted IGNORE_OWNERSHIP and an explicit
6453 * owner is set, that owner takes ownership of all new files.
6454 */
6455 if ((mp->mnt_flag & MNT_IGNORE_OWNERSHIP) &&
6456 (mp->mnt_fsowner != KAUTH_UID_NONE)) {
6457 VATTR_SET(vap, va_uid, mp->mnt_fsowner);
6458 } else {
6459 /* default owner is current user */
6460 VATTR_SET(vap, va_uid,
6461 kauth_cred_getuid(vfs_context_ucred(ctx)));
6462 }
6463
6464 if ((mp->mnt_flag & MNT_IGNORE_OWNERSHIP) &&
6465 (mp->mnt_fsgroup != KAUTH_GID_NONE)) {
6466 VATTR_SET(vap, va_gid, mp->mnt_fsgroup);
6467 } else {
6468 /*
6469 * default group comes from parent object,
6470 * fallback to current user
6471 */
6472 if (VATTR_IS_SUPPORTED(dvap, va_gid)) {
6473 VATTR_SET(vap, va_gid, dvap->va_gid);
6474 } else {
6475 VATTR_SET(vap, va_gid,
6476 kauth_cred_getgid(vfs_context_ucred(ctx)));
6477 }
6478 }
6479 }
6480
6481 /* Inherit SF_RESTRICTED bit from destination directory only */
6482 if (VATTR_IS_ACTIVE(vap, va_flags)) {
6483 VATTR_SET(vap, va_flags,
6484 ((vap->va_flags & ~(UF_DATAVAULT | SF_RESTRICTED)))); /* Turn off from source */
6485 if (VATTR_IS_ACTIVE(dvap, va_flags))
6486 VATTR_SET(vap, va_flags,
6487 vap->va_flags | (dvap->va_flags & (UF_DATAVAULT | SF_RESTRICTED)));
6488 } else if (VATTR_IS_ACTIVE(dvap, va_flags)) {
6489 VATTR_SET(vap, va_flags, (dvap->va_flags & (UF_DATAVAULT | SF_RESTRICTED)));
6490 }
6491
6492 return (0);
6493 }
6494
6495
6496 /*
6497 * Authorize an operation on a vnode.
6498 *
6499 * This is KPI, but here because it needs vnode_scope.
6500 *
6501 * Returns: 0 Success
6502 * kauth_authorize_action:EPERM ...
6503 * xlate => EACCES Permission denied
6504 * kauth_authorize_action:0 Success
6505 * kauth_authorize_action: Depends on callback return; this is
6506 * usually only vnode_authorize_callback(),
6507 * but may include other listerners, if any
6508 * exist.
6509 * EROFS
6510 * EACCES
6511 * EPERM
6512 * ???
6513 */
6514 int
6515 vnode_authorize(vnode_t vp, vnode_t dvp, kauth_action_t action, vfs_context_t ctx)
6516 {
6517 int error, result;
6518
6519 /*
6520 * We can't authorize against a dead vnode; allow all operations through so that
6521 * the correct error can be returned.
6522 */
6523 if (vp->v_type == VBAD)
6524 return(0);
6525
6526 error = 0;
6527 result = kauth_authorize_action(vnode_scope, vfs_context_ucred(ctx), action,
6528 (uintptr_t)ctx, (uintptr_t)vp, (uintptr_t)dvp, (uintptr_t)&error);
6529 if (result == EPERM) /* traditional behaviour */
6530 result = EACCES;
6531 /* did the lower layers give a better error return? */
6532 if ((result != 0) && (error != 0))
6533 return(error);
6534 return(result);
6535 }
6536
6537 /*
6538 * Test for vnode immutability.
6539 *
6540 * The 'append' flag is set when the authorization request is constrained
6541 * to operations which only request the right to append to a file.
6542 *
6543 * The 'ignore' flag is set when an operation modifying the immutability flags
6544 * is being authorized. We check the system securelevel to determine which
6545 * immutability flags we can ignore.
6546 */
6547 static int
6548 vnode_immutable(struct vnode_attr *vap, int append, int ignore)
6549 {
6550 int mask;
6551
6552 /* start with all bits precluding the operation */
6553 mask = IMMUTABLE | APPEND;
6554
6555 /* if appending only, remove the append-only bits */
6556 if (append)
6557 mask &= ~APPEND;
6558
6559 /* ignore only set when authorizing flags changes */
6560 if (ignore) {
6561 if (securelevel <= 0) {
6562 /* in insecure state, flags do not inhibit changes */
6563 mask = 0;
6564 } else {
6565 /* in secure state, user flags don't inhibit */
6566 mask &= ~(UF_IMMUTABLE | UF_APPEND);
6567 }
6568 }
6569 KAUTH_DEBUG("IMMUTABLE - file flags 0x%x mask 0x%x append = %d ignore = %d", vap->va_flags, mask, append, ignore);
6570 if ((vap->va_flags & mask) != 0)
6571 return(EPERM);
6572 return(0);
6573 }
6574
6575 static int
6576 vauth_node_owner(struct vnode_attr *vap, kauth_cred_t cred)
6577 {
6578 int result;
6579
6580 /* default assumption is not-owner */
6581 result = 0;
6582
6583 /*
6584 * If the filesystem has given us a UID, we treat this as authoritative.
6585 */
6586 if (vap && VATTR_IS_SUPPORTED(vap, va_uid)) {
6587 result = (vap->va_uid == kauth_cred_getuid(cred)) ? 1 : 0;
6588 }
6589 /* we could test the owner UUID here if we had a policy for it */
6590
6591 return(result);
6592 }
6593
6594 /*
6595 * vauth_node_group
6596 *
6597 * Description: Ask if a cred is a member of the group owning the vnode object
6598 *
6599 * Parameters: vap vnode attribute
6600 * vap->va_gid group owner of vnode object
6601 * cred credential to check
6602 * ismember pointer to where to put the answer
6603 * idontknow Return this if we can't get an answer
6604 *
6605 * Returns: 0 Success
6606 * idontknow Can't get information
6607 * kauth_cred_ismember_gid:? Error from kauth subsystem
6608 * kauth_cred_ismember_gid:? Error from kauth subsystem
6609 */
6610 static int
6611 vauth_node_group(struct vnode_attr *vap, kauth_cred_t cred, int *ismember, int idontknow)
6612 {
6613 int error;
6614 int result;
6615
6616 error = 0;
6617 result = 0;
6618
6619 /*
6620 * The caller is expected to have asked the filesystem for a group
6621 * at some point prior to calling this function. The answer may
6622 * have been that there is no group ownership supported for the
6623 * vnode object, in which case we return
6624 */
6625 if (vap && VATTR_IS_SUPPORTED(vap, va_gid)) {
6626 error = kauth_cred_ismember_gid(cred, vap->va_gid, &result);
6627 /*
6628 * Credentials which are opted into external group membership
6629 * resolution which are not known to the external resolver
6630 * will result in an ENOENT error. We translate this into
6631 * the appropriate 'idontknow' response for our caller.
6632 *
6633 * XXX We do not make a distinction here between an ENOENT
6634 * XXX arising from a response from the external resolver,
6635 * XXX and an ENOENT which is internally generated. This is
6636 * XXX a deficiency of the published kauth_cred_ismember_gid()
6637 * XXX KPI which can not be overcome without new KPI. For
6638 * XXX all currently known cases, however, this wil result
6639 * XXX in correct behaviour.
6640 */
6641 if (error == ENOENT)
6642 error = idontknow;
6643 }
6644 /*
6645 * XXX We could test the group UUID here if we had a policy for it,
6646 * XXX but this is problematic from the perspective of synchronizing
6647 * XXX group UUID and POSIX GID ownership of a file and keeping the
6648 * XXX values coherent over time. The problem is that the local
6649 * XXX system will vend transient group UUIDs for unknown POSIX GID
6650 * XXX values, and these are not persistent, whereas storage of values
6651 * XXX is persistent. One potential solution to this is a local
6652 * XXX (persistent) replica of remote directory entries and vended
6653 * XXX local ids in a local directory server (think in terms of a
6654 * XXX caching DNS server).
6655 */
6656
6657 if (!error)
6658 *ismember = result;
6659 return(error);
6660 }
6661
6662 static int
6663 vauth_file_owner(vauth_ctx vcp)
6664 {
6665 int result;
6666
6667 if (vcp->flags_valid & _VAC_IS_OWNER) {
6668 result = (vcp->flags & _VAC_IS_OWNER) ? 1 : 0;
6669 } else {
6670 result = vauth_node_owner(vcp->vap, vcp->ctx->vc_ucred);
6671
6672 /* cache our result */
6673 vcp->flags_valid |= _VAC_IS_OWNER;
6674 if (result) {
6675 vcp->flags |= _VAC_IS_OWNER;
6676 } else {
6677 vcp->flags &= ~_VAC_IS_OWNER;
6678 }
6679 }
6680 return(result);
6681 }
6682
6683
6684 /*
6685 * vauth_file_ingroup
6686 *
6687 * Description: Ask if a user is a member of the group owning the directory
6688 *
6689 * Parameters: vcp The vnode authorization context that
6690 * contains the user and directory info
6691 * vcp->flags_valid Valid flags
6692 * vcp->flags Flags values
6693 * vcp->vap File vnode attributes
6694 * vcp->ctx VFS Context (for user)
6695 * ismember pointer to where to put the answer
6696 * idontknow Return this if we can't get an answer
6697 *
6698 * Returns: 0 Success
6699 * vauth_node_group:? Error from vauth_node_group()
6700 *
6701 * Implicit returns: *ismember 0 The user is not a group member
6702 * 1 The user is a group member
6703 */
6704 static int
6705 vauth_file_ingroup(vauth_ctx vcp, int *ismember, int idontknow)
6706 {
6707 int error;
6708
6709 /* Check for a cached answer first, to avoid the check if possible */
6710 if (vcp->flags_valid & _VAC_IN_GROUP) {
6711 *ismember = (vcp->flags & _VAC_IN_GROUP) ? 1 : 0;
6712 error = 0;
6713 } else {
6714 /* Otherwise, go look for it */
6715 error = vauth_node_group(vcp->vap, vcp->ctx->vc_ucred, ismember, idontknow);
6716
6717 if (!error) {
6718 /* cache our result */
6719 vcp->flags_valid |= _VAC_IN_GROUP;
6720 if (*ismember) {
6721 vcp->flags |= _VAC_IN_GROUP;
6722 } else {
6723 vcp->flags &= ~_VAC_IN_GROUP;
6724 }
6725 }
6726
6727 }
6728 return(error);
6729 }
6730
6731 static int
6732 vauth_dir_owner(vauth_ctx vcp)
6733 {
6734 int result;
6735
6736 if (vcp->flags_valid & _VAC_IS_DIR_OWNER) {
6737 result = (vcp->flags & _VAC_IS_DIR_OWNER) ? 1 : 0;
6738 } else {
6739 result = vauth_node_owner(vcp->dvap, vcp->ctx->vc_ucred);
6740
6741 /* cache our result */
6742 vcp->flags_valid |= _VAC_IS_DIR_OWNER;
6743 if (result) {
6744 vcp->flags |= _VAC_IS_DIR_OWNER;
6745 } else {
6746 vcp->flags &= ~_VAC_IS_DIR_OWNER;
6747 }
6748 }
6749 return(result);
6750 }
6751
6752 /*
6753 * vauth_dir_ingroup
6754 *
6755 * Description: Ask if a user is a member of the group owning the directory
6756 *
6757 * Parameters: vcp The vnode authorization context that
6758 * contains the user and directory info
6759 * vcp->flags_valid Valid flags
6760 * vcp->flags Flags values
6761 * vcp->dvap Dir vnode attributes
6762 * vcp->ctx VFS Context (for user)
6763 * ismember pointer to where to put the answer
6764 * idontknow Return this if we can't get an answer
6765 *
6766 * Returns: 0 Success
6767 * vauth_node_group:? Error from vauth_node_group()
6768 *
6769 * Implicit returns: *ismember 0 The user is not a group member
6770 * 1 The user is a group member
6771 */
6772 static int
6773 vauth_dir_ingroup(vauth_ctx vcp, int *ismember, int idontknow)
6774 {
6775 int error;
6776
6777 /* Check for a cached answer first, to avoid the check if possible */
6778 if (vcp->flags_valid & _VAC_IN_DIR_GROUP) {
6779 *ismember = (vcp->flags & _VAC_IN_DIR_GROUP) ? 1 : 0;
6780 error = 0;
6781 } else {
6782 /* Otherwise, go look for it */
6783 error = vauth_node_group(vcp->dvap, vcp->ctx->vc_ucred, ismember, idontknow);
6784
6785 if (!error) {
6786 /* cache our result */
6787 vcp->flags_valid |= _VAC_IN_DIR_GROUP;
6788 if (*ismember) {
6789 vcp->flags |= _VAC_IN_DIR_GROUP;
6790 } else {
6791 vcp->flags &= ~_VAC_IN_DIR_GROUP;
6792 }
6793 }
6794 }
6795 return(error);
6796 }
6797
6798 /*
6799 * Test the posix permissions in (vap) to determine whether (credential)
6800 * may perform (action)
6801 */
6802 static int
6803 vnode_authorize_posix(vauth_ctx vcp, int action, int on_dir)
6804 {
6805 struct vnode_attr *vap;
6806 int needed, error, owner_ok, group_ok, world_ok, ismember;
6807 #ifdef KAUTH_DEBUG_ENABLE
6808 const char *where = "uninitialized";
6809 # define _SETWHERE(c) where = c;
6810 #else
6811 # define _SETWHERE(c)
6812 #endif
6813
6814 /* checking file or directory? */
6815 if (on_dir) {
6816 vap = vcp->dvap;
6817 } else {
6818 vap = vcp->vap;
6819 }
6820
6821 error = 0;
6822
6823 /*
6824 * We want to do as little work here as possible. So first we check
6825 * which sets of permissions grant us the access we need, and avoid checking
6826 * whether specific permissions grant access when more generic ones would.
6827 */
6828
6829 /* owner permissions */
6830 needed = 0;
6831 if (action & VREAD)
6832 needed |= S_IRUSR;
6833 if (action & VWRITE)
6834 needed |= S_IWUSR;
6835 if (action & VEXEC)
6836 needed |= S_IXUSR;
6837 owner_ok = (needed & vap->va_mode) == needed;
6838
6839 /* group permissions */
6840 needed = 0;
6841 if (action & VREAD)
6842 needed |= S_IRGRP;
6843 if (action & VWRITE)
6844 needed |= S_IWGRP;
6845 if (action & VEXEC)
6846 needed |= S_IXGRP;
6847 group_ok = (needed & vap->va_mode) == needed;
6848
6849 /* world permissions */
6850 needed = 0;
6851 if (action & VREAD)
6852 needed |= S_IROTH;
6853 if (action & VWRITE)
6854 needed |= S_IWOTH;
6855 if (action & VEXEC)
6856 needed |= S_IXOTH;
6857 world_ok = (needed & vap->va_mode) == needed;
6858
6859 /* If granted/denied by all three, we're done */
6860 if (owner_ok && group_ok && world_ok) {
6861 _SETWHERE("all");
6862 goto out;
6863 }
6864 if (!owner_ok && !group_ok && !world_ok) {
6865 _SETWHERE("all");
6866 error = EACCES;
6867 goto out;
6868 }
6869
6870 /* Check ownership (relatively cheap) */
6871 if ((on_dir && vauth_dir_owner(vcp)) ||
6872 (!on_dir && vauth_file_owner(vcp))) {
6873 _SETWHERE("user");
6874 if (!owner_ok)
6875 error = EACCES;
6876 goto out;
6877 }
6878
6879 /* Not owner; if group and world both grant it we're done */
6880 if (group_ok && world_ok) {
6881 _SETWHERE("group/world");
6882 goto out;
6883 }
6884 if (!group_ok && !world_ok) {
6885 _SETWHERE("group/world");
6886 error = EACCES;
6887 goto out;
6888 }
6889
6890 /* Check group membership (most expensive) */
6891 ismember = 0; /* Default to allow, if the target has no group owner */
6892
6893 /*
6894 * In the case we can't get an answer about the user from the call to
6895 * vauth_dir_ingroup() or vauth_file_ingroup(), we want to fail on
6896 * the side of caution, rather than simply granting access, or we will
6897 * fail to correctly implement exclusion groups, so we set the third
6898 * parameter on the basis of the state of 'group_ok'.
6899 */
6900 if (on_dir) {
6901 error = vauth_dir_ingroup(vcp, &ismember, (!group_ok ? EACCES : 0));
6902 } else {
6903 error = vauth_file_ingroup(vcp, &ismember, (!group_ok ? EACCES : 0));
6904 }
6905 if (error) {
6906 if (!group_ok)
6907 ismember = 1;
6908 error = 0;
6909 }
6910 if (ismember) {
6911 _SETWHERE("group");
6912 if (!group_ok)
6913 error = EACCES;
6914 goto out;
6915 }
6916
6917 /* Not owner, not in group, use world result */
6918 _SETWHERE("world");
6919 if (!world_ok)
6920 error = EACCES;
6921
6922 /* FALLTHROUGH */
6923
6924 out:
6925 KAUTH_DEBUG("%p %s - posix %s permissions : need %s%s%s %x have %s%s%s%s%s%s%s%s%s UID = %d file = %d,%d",
6926 vcp->vp, (error == 0) ? "ALLOWED" : "DENIED", where,
6927 (action & VREAD) ? "r" : "-",
6928 (action & VWRITE) ? "w" : "-",
6929 (action & VEXEC) ? "x" : "-",
6930 needed,
6931 (vap->va_mode & S_IRUSR) ? "r" : "-",
6932 (vap->va_mode & S_IWUSR) ? "w" : "-",
6933 (vap->va_mode & S_IXUSR) ? "x" : "-",
6934 (vap->va_mode & S_IRGRP) ? "r" : "-",
6935 (vap->va_mode & S_IWGRP) ? "w" : "-",
6936 (vap->va_mode & S_IXGRP) ? "x" : "-",
6937 (vap->va_mode & S_IROTH) ? "r" : "-",
6938 (vap->va_mode & S_IWOTH) ? "w" : "-",
6939 (vap->va_mode & S_IXOTH) ? "x" : "-",
6940 kauth_cred_getuid(vcp->ctx->vc_ucred),
6941 on_dir ? vcp->dvap->va_uid : vcp->vap->va_uid,
6942 on_dir ? vcp->dvap->va_gid : vcp->vap->va_gid);
6943 return(error);
6944 }
6945
6946 /*
6947 * Authorize the deletion of the node vp from the directory dvp.
6948 *
6949 * We assume that:
6950 * - Neither the node nor the directory are immutable.
6951 * - The user is not the superuser.
6952 *
6953 * The precedence of factors for authorizing or denying delete for a credential
6954 *
6955 * 1) Explicit ACE on the node. (allow or deny DELETE)
6956 * 2) Explicit ACE on the directory (allow or deny DELETE_CHILD).
6957 *
6958 * If there are conflicting ACEs on the node and the directory, the node
6959 * ACE wins.
6960 *
6961 * 3) Sticky bit on the directory.
6962 * Deletion is not permitted if the directory is sticky and the caller is
6963 * not owner of the node or directory. The sticky bit rules are like a deny
6964 * delete ACE except lower in priority than ACL's either allowing or denying
6965 * delete.
6966 *
6967 * 4) POSIX permisions on the directory.
6968 *
6969 * As an optimization, we cache whether or not delete child is permitted
6970 * on directories. This enables us to skip directory ACL and POSIX checks
6971 * as we already have the result from those checks. However, we always check the
6972 * node ACL and, if the directory has the sticky bit set, we always check its
6973 * ACL (even for a directory with an authorized delete child). Furthermore,
6974 * caching the delete child authorization is independent of the sticky bit
6975 * being set as it is only applicable in determining whether the node can be
6976 * deleted or not.
6977 */
6978 static int
6979 vnode_authorize_delete(vauth_ctx vcp, boolean_t cached_delete_child)
6980 {
6981 struct vnode_attr *vap = vcp->vap;
6982 struct vnode_attr *dvap = vcp->dvap;
6983 kauth_cred_t cred = vcp->ctx->vc_ucred;
6984 struct kauth_acl_eval eval;
6985 int error, ismember;
6986
6987 /* Check the ACL on the node first */
6988 if (VATTR_IS_NOT(vap, va_acl, NULL)) {
6989 eval.ae_requested = KAUTH_VNODE_DELETE;
6990 eval.ae_acl = &vap->va_acl->acl_ace[0];
6991 eval.ae_count = vap->va_acl->acl_entrycount;
6992 eval.ae_options = 0;
6993 if (vauth_file_owner(vcp))
6994 eval.ae_options |= KAUTH_AEVAL_IS_OWNER;
6995 /*
6996 * We use ENOENT as a marker to indicate we could not get
6997 * information in order to delay evaluation until after we
6998 * have the ACL evaluation answer. Previously, we would
6999 * always deny the operation at this point.
7000 */
7001 if ((error = vauth_file_ingroup(vcp, &ismember, ENOENT)) != 0 && error != ENOENT)
7002 return (error);
7003 if (error == ENOENT)
7004 eval.ae_options |= KAUTH_AEVAL_IN_GROUP_UNKNOWN;
7005 else if (ismember)
7006 eval.ae_options |= KAUTH_AEVAL_IN_GROUP;
7007 eval.ae_exp_gall = KAUTH_VNODE_GENERIC_ALL_BITS;
7008 eval.ae_exp_gread = KAUTH_VNODE_GENERIC_READ_BITS;
7009 eval.ae_exp_gwrite = KAUTH_VNODE_GENERIC_WRITE_BITS;
7010 eval.ae_exp_gexec = KAUTH_VNODE_GENERIC_EXECUTE_BITS;
7011
7012 if ((error = kauth_acl_evaluate(cred, &eval)) != 0) {
7013 KAUTH_DEBUG("%p ERROR during ACL processing - %d", vcp->vp, error);
7014 return (error);
7015 }
7016
7017 switch(eval.ae_result) {
7018 case KAUTH_RESULT_DENY:
7019 KAUTH_DEBUG("%p DENIED - denied by ACL", vcp->vp);
7020 return (EACCES);
7021 case KAUTH_RESULT_ALLOW:
7022 KAUTH_DEBUG("%p ALLOWED - granted by ACL", vcp->vp);
7023 return (0);
7024 case KAUTH_RESULT_DEFER:
7025 default:
7026 /* Defer to directory */
7027 KAUTH_DEBUG("%p DEFERRED - by file ACL", vcp->vp);
7028 break;
7029 }
7030 }
7031
7032 /*
7033 * Without a sticky bit, a previously authorized delete child is
7034 * sufficient to authorize this delete.
7035 *
7036 * If the sticky bit is set, a directory ACL which allows delete child
7037 * overrides a (potential) sticky bit deny. The authorized delete child
7038 * cannot tell us if it was authorized because of an explicit delete
7039 * child allow ACE or because of POSIX permisions so we have to check
7040 * the directory ACL everytime if the directory has a sticky bit.
7041 */
7042 if (!(dvap->va_mode & S_ISTXT) && cached_delete_child) {
7043 KAUTH_DEBUG("%p ALLOWED - granted by directory ACL or POSIX permissions and no sticky bit on directory", vcp->vp);
7044 return (0);
7045 }
7046
7047 /* check the ACL on the directory */
7048 if (VATTR_IS_NOT(dvap, va_acl, NULL)) {
7049 eval.ae_requested = KAUTH_VNODE_DELETE_CHILD;
7050 eval.ae_acl = &dvap->va_acl->acl_ace[0];
7051 eval.ae_count = dvap->va_acl->acl_entrycount;
7052 eval.ae_options = 0;
7053 if (vauth_dir_owner(vcp))
7054 eval.ae_options |= KAUTH_AEVAL_IS_OWNER;
7055 /*
7056 * We use ENOENT as a marker to indicate we could not get
7057 * information in order to delay evaluation until after we
7058 * have the ACL evaluation answer. Previously, we would
7059 * always deny the operation at this point.
7060 */
7061 if ((error = vauth_dir_ingroup(vcp, &ismember, ENOENT)) != 0 && error != ENOENT)
7062 return(error);
7063 if (error == ENOENT)
7064 eval.ae_options |= KAUTH_AEVAL_IN_GROUP_UNKNOWN;
7065 else if (ismember)
7066 eval.ae_options |= KAUTH_AEVAL_IN_GROUP;
7067 eval.ae_exp_gall = KAUTH_VNODE_GENERIC_ALL_BITS;
7068 eval.ae_exp_gread = KAUTH_VNODE_GENERIC_READ_BITS;
7069 eval.ae_exp_gwrite = KAUTH_VNODE_GENERIC_WRITE_BITS;
7070 eval.ae_exp_gexec = KAUTH_VNODE_GENERIC_EXECUTE_BITS;
7071
7072 /*
7073 * If there is no entry, we are going to defer to other
7074 * authorization mechanisms.
7075 */
7076 error = kauth_acl_evaluate(cred, &eval);
7077
7078 if (error != 0) {
7079 KAUTH_DEBUG("%p ERROR during ACL processing - %d", vcp->vp, error);
7080 return (error);
7081 }
7082 switch(eval.ae_result) {
7083 case KAUTH_RESULT_DENY:
7084 KAUTH_DEBUG("%p DENIED - denied by directory ACL", vcp->vp);
7085 return (EACCES);
7086 case KAUTH_RESULT_ALLOW:
7087 KAUTH_DEBUG("%p ALLOWED - granted by directory ACL", vcp->vp);
7088 if (!cached_delete_child && vcp->dvp) {
7089 vnode_cache_authorized_action(vcp->dvp,
7090 vcp->ctx, KAUTH_VNODE_DELETE_CHILD);
7091 }
7092 return (0);
7093 case KAUTH_RESULT_DEFER:
7094 default:
7095 /* Deferred by directory ACL */
7096 KAUTH_DEBUG("%p DEFERRED - directory ACL", vcp->vp);
7097 break;
7098 }
7099 }
7100
7101 /*
7102 * From this point, we can't explicitly allow and if we reach the end
7103 * of the function without a denial, then the delete is authorized.
7104 */
7105 if (!cached_delete_child) {
7106 if (vnode_authorize_posix(vcp, VWRITE, 1 /* on_dir */) != 0) {
7107 KAUTH_DEBUG("%p DENIED - denied by posix permisssions", vcp->vp);
7108 return (EACCES);
7109 }
7110 /*
7111 * Cache the authorized action on the vnode if allowed by the
7112 * directory ACL or POSIX permissions. It is correct to cache
7113 * this action even if sticky bit would deny deleting the node.
7114 */
7115 if (vcp->dvp) {
7116 vnode_cache_authorized_action(vcp->dvp, vcp->ctx,
7117 KAUTH_VNODE_DELETE_CHILD);
7118 }
7119 }
7120
7121 /* enforce sticky bit behaviour */
7122 if ((dvap->va_mode & S_ISTXT) && !vauth_file_owner(vcp) && !vauth_dir_owner(vcp)) {
7123 KAUTH_DEBUG("%p DENIED - sticky bit rules (user %d file %d dir %d)",
7124 vcp->vp, cred->cr_posix.cr_uid, vap->va_uid, dvap->va_uid);
7125 return (EACCES);
7126 }
7127
7128 /* not denied, must be OK */
7129 return (0);
7130 }
7131
7132
7133 /*
7134 * Authorize an operation based on the node's attributes.
7135 */
7136 static int
7137 vnode_authorize_simple(vauth_ctx vcp, kauth_ace_rights_t acl_rights, kauth_ace_rights_t preauth_rights, boolean_t *found_deny)
7138 {
7139 struct vnode_attr *vap = vcp->vap;
7140 kauth_cred_t cred = vcp->ctx->vc_ucred;
7141 struct kauth_acl_eval eval;
7142 int error, ismember;
7143 mode_t posix_action;
7144
7145 /*
7146 * If we are the file owner, we automatically have some rights.
7147 *
7148 * Do we need to expand this to support group ownership?
7149 */
7150 if (vauth_file_owner(vcp))
7151 acl_rights &= ~(KAUTH_VNODE_WRITE_SECURITY);
7152
7153 /*
7154 * If we are checking both TAKE_OWNERSHIP and WRITE_SECURITY, we can
7155 * mask the latter. If TAKE_OWNERSHIP is requested the caller is about to
7156 * change ownership to themselves, and WRITE_SECURITY is implicitly
7157 * granted to the owner. We need to do this because at this point
7158 * WRITE_SECURITY may not be granted as the caller is not currently
7159 * the owner.
7160 */
7161 if ((acl_rights & KAUTH_VNODE_TAKE_OWNERSHIP) &&
7162 (acl_rights & KAUTH_VNODE_WRITE_SECURITY))
7163 acl_rights &= ~KAUTH_VNODE_WRITE_SECURITY;
7164
7165 if (acl_rights == 0) {
7166 KAUTH_DEBUG("%p ALLOWED - implicit or no rights required", vcp->vp);
7167 return(0);
7168 }
7169
7170 /* if we have an ACL, evaluate it */
7171 if (VATTR_IS_NOT(vap, va_acl, NULL)) {
7172 eval.ae_requested = acl_rights;
7173 eval.ae_acl = &vap->va_acl->acl_ace[0];
7174 eval.ae_count = vap->va_acl->acl_entrycount;
7175 eval.ae_options = 0;
7176 if (vauth_file_owner(vcp))
7177 eval.ae_options |= KAUTH_AEVAL_IS_OWNER;
7178 /*
7179 * We use ENOENT as a marker to indicate we could not get
7180 * information in order to delay evaluation until after we
7181 * have the ACL evaluation answer. Previously, we would
7182 * always deny the operation at this point.
7183 */
7184 if ((error = vauth_file_ingroup(vcp, &ismember, ENOENT)) != 0 && error != ENOENT)
7185 return(error);
7186 if (error == ENOENT)
7187 eval.ae_options |= KAUTH_AEVAL_IN_GROUP_UNKNOWN;
7188 else if (ismember)
7189 eval.ae_options |= KAUTH_AEVAL_IN_GROUP;
7190 eval.ae_exp_gall = KAUTH_VNODE_GENERIC_ALL_BITS;
7191 eval.ae_exp_gread = KAUTH_VNODE_GENERIC_READ_BITS;
7192 eval.ae_exp_gwrite = KAUTH_VNODE_GENERIC_WRITE_BITS;
7193 eval.ae_exp_gexec = KAUTH_VNODE_GENERIC_EXECUTE_BITS;
7194
7195 if ((error = kauth_acl_evaluate(cred, &eval)) != 0) {
7196 KAUTH_DEBUG("%p ERROR during ACL processing - %d", vcp->vp, error);
7197 return(error);
7198 }
7199
7200 switch(eval.ae_result) {
7201 case KAUTH_RESULT_DENY:
7202 KAUTH_DEBUG("%p DENIED - by ACL", vcp->vp);
7203 return(EACCES); /* deny, deny, counter-allege */
7204 case KAUTH_RESULT_ALLOW:
7205 KAUTH_DEBUG("%p ALLOWED - all rights granted by ACL", vcp->vp);
7206 return(0);
7207 case KAUTH_RESULT_DEFER:
7208 default:
7209 /* Effectively the same as !delete_child_denied */
7210 KAUTH_DEBUG("%p DEFERRED - directory ACL", vcp->vp);
7211 break;
7212 }
7213
7214 *found_deny = eval.ae_found_deny;
7215
7216 /* fall through and evaluate residual rights */
7217 } else {
7218 /* no ACL, everything is residual */
7219 eval.ae_residual = acl_rights;
7220 }
7221
7222 /*
7223 * Grant residual rights that have been pre-authorized.
7224 */
7225 eval.ae_residual &= ~preauth_rights;
7226
7227 /*
7228 * We grant WRITE_ATTRIBUTES to the owner if it hasn't been denied.
7229 */
7230 if (vauth_file_owner(vcp))
7231 eval.ae_residual &= ~KAUTH_VNODE_WRITE_ATTRIBUTES;
7232
7233 if (eval.ae_residual == 0) {
7234 KAUTH_DEBUG("%p ALLOWED - rights already authorized", vcp->vp);
7235 return(0);
7236 }
7237
7238 /*
7239 * Bail if we have residual rights that can't be granted by posix permissions,
7240 * or aren't presumed granted at this point.
7241 *
7242 * XXX these can be collapsed for performance
7243 */
7244 if (eval.ae_residual & KAUTH_VNODE_CHANGE_OWNER) {
7245 KAUTH_DEBUG("%p DENIED - CHANGE_OWNER not permitted", vcp->vp);
7246 return(EACCES);
7247 }
7248 if (eval.ae_residual & KAUTH_VNODE_WRITE_SECURITY) {
7249 KAUTH_DEBUG("%p DENIED - WRITE_SECURITY not permitted", vcp->vp);
7250 return(EACCES);
7251 }
7252
7253 #if DIAGNOSTIC
7254 if (eval.ae_residual & KAUTH_VNODE_DELETE)
7255 panic("vnode_authorize: can't be checking delete permission here");
7256 #endif
7257
7258 /*
7259 * Compute the fallback posix permissions that will satisfy the remaining
7260 * rights.
7261 */
7262 posix_action = 0;
7263 if (eval.ae_residual & (KAUTH_VNODE_READ_DATA |
7264 KAUTH_VNODE_LIST_DIRECTORY |
7265 KAUTH_VNODE_READ_EXTATTRIBUTES))
7266 posix_action |= VREAD;
7267 if (eval.ae_residual & (KAUTH_VNODE_WRITE_DATA |
7268 KAUTH_VNODE_ADD_FILE |
7269 KAUTH_VNODE_ADD_SUBDIRECTORY |
7270 KAUTH_VNODE_DELETE_CHILD |
7271 KAUTH_VNODE_WRITE_ATTRIBUTES |
7272 KAUTH_VNODE_WRITE_EXTATTRIBUTES))
7273 posix_action |= VWRITE;
7274 if (eval.ae_residual & (KAUTH_VNODE_EXECUTE |
7275 KAUTH_VNODE_SEARCH))
7276 posix_action |= VEXEC;
7277
7278 if (posix_action != 0) {
7279 return(vnode_authorize_posix(vcp, posix_action, 0 /* !on_dir */));
7280 } else {
7281 KAUTH_DEBUG("%p ALLOWED - residual rights %s%s%s%s%s%s%s%s%s%s%s%s%s%s granted due to no posix mapping",
7282 vcp->vp,
7283 (eval.ae_residual & KAUTH_VNODE_READ_DATA)
7284 ? vnode_isdir(vcp->vp) ? " LIST_DIRECTORY" : " READ_DATA" : "",
7285 (eval.ae_residual & KAUTH_VNODE_WRITE_DATA)
7286 ? vnode_isdir(vcp->vp) ? " ADD_FILE" : " WRITE_DATA" : "",
7287 (eval.ae_residual & KAUTH_VNODE_EXECUTE)
7288 ? vnode_isdir(vcp->vp) ? " SEARCH" : " EXECUTE" : "",
7289 (eval.ae_residual & KAUTH_VNODE_DELETE)
7290 ? " DELETE" : "",
7291 (eval.ae_residual & KAUTH_VNODE_APPEND_DATA)
7292 ? vnode_isdir(vcp->vp) ? " ADD_SUBDIRECTORY" : " APPEND_DATA" : "",
7293 (eval.ae_residual & KAUTH_VNODE_DELETE_CHILD)
7294 ? " DELETE_CHILD" : "",
7295 (eval.ae_residual & KAUTH_VNODE_READ_ATTRIBUTES)
7296 ? " READ_ATTRIBUTES" : "",
7297 (eval.ae_residual & KAUTH_VNODE_WRITE_ATTRIBUTES)
7298 ? " WRITE_ATTRIBUTES" : "",
7299 (eval.ae_residual & KAUTH_VNODE_READ_EXTATTRIBUTES)
7300 ? " READ_EXTATTRIBUTES" : "",
7301 (eval.ae_residual & KAUTH_VNODE_WRITE_EXTATTRIBUTES)
7302 ? " WRITE_EXTATTRIBUTES" : "",
7303 (eval.ae_residual & KAUTH_VNODE_READ_SECURITY)
7304 ? " READ_SECURITY" : "",
7305 (eval.ae_residual & KAUTH_VNODE_WRITE_SECURITY)
7306 ? " WRITE_SECURITY" : "",
7307 (eval.ae_residual & KAUTH_VNODE_CHECKIMMUTABLE)
7308 ? " CHECKIMMUTABLE" : "",
7309 (eval.ae_residual & KAUTH_VNODE_CHANGE_OWNER)
7310 ? " CHANGE_OWNER" : "");
7311 }
7312
7313 /*
7314 * Lack of required Posix permissions implies no reason to deny access.
7315 */
7316 return(0);
7317 }
7318
7319 /*
7320 * Check for file immutability.
7321 */
7322 static int
7323 vnode_authorize_checkimmutable(mount_t mp, struct vnode_attr *vap, int rights, int ignore)
7324 {
7325 int error;
7326 int append;
7327
7328 /*
7329 * Perform immutability checks for operations that change data.
7330 *
7331 * Sockets, fifos and devices require special handling.
7332 */
7333 switch(vap->va_type) {
7334 case VSOCK:
7335 case VFIFO:
7336 case VBLK:
7337 case VCHR:
7338 /*
7339 * Writing to these nodes does not change the filesystem data,
7340 * so forget that it's being tried.
7341 */
7342 rights &= ~KAUTH_VNODE_WRITE_DATA;
7343 break;
7344 default:
7345 break;
7346 }
7347
7348 error = 0;
7349 if (rights & KAUTH_VNODE_WRITE_RIGHTS) {
7350
7351 /* check per-filesystem options if possible */
7352 if (mp != NULL) {
7353
7354 /* check for no-EA filesystems */
7355 if ((rights & KAUTH_VNODE_WRITE_EXTATTRIBUTES) &&
7356 (vfs_flags(mp) & MNT_NOUSERXATTR)) {
7357 KAUTH_DEBUG("%p DENIED - filesystem disallowed extended attributes", vp);
7358 error = EACCES; /* User attributes disabled */
7359 goto out;
7360 }
7361 }
7362
7363 /*
7364 * check for file immutability. first, check if the requested rights are
7365 * allowable for a UF_APPEND file.
7366 */
7367 append = 0;
7368 if (vap->va_type == VDIR) {
7369 if ((rights & (KAUTH_VNODE_ADD_FILE | KAUTH_VNODE_ADD_SUBDIRECTORY | KAUTH_VNODE_WRITE_EXTATTRIBUTES)) == rights)
7370 append = 1;
7371 } else {
7372 if ((rights & (KAUTH_VNODE_APPEND_DATA | KAUTH_VNODE_WRITE_EXTATTRIBUTES)) == rights)
7373 append = 1;
7374 }
7375 if ((error = vnode_immutable(vap, append, ignore)) != 0) {
7376 KAUTH_DEBUG("%p DENIED - file is immutable", vp);
7377 goto out;
7378 }
7379 }
7380 out:
7381 return(error);
7382 }
7383
7384 /*
7385 * Handle authorization actions for filesystems that advertise that the
7386 * server will be enforcing.
7387 *
7388 * Returns: 0 Authorization should be handled locally
7389 * 1 Authorization was handled by the FS
7390 *
7391 * Note: Imputed returns will only occur if the authorization request
7392 * was handled by the FS.
7393 *
7394 * Imputed: *resultp, modified Return code from FS when the request is
7395 * handled by the FS.
7396 * VNOP_ACCESS:???
7397 * VNOP_OPEN:???
7398 */
7399 static int
7400 vnode_authorize_opaque(vnode_t vp, int *resultp, kauth_action_t action, vfs_context_t ctx)
7401 {
7402 int error;
7403
7404 /*
7405 * If the vp is a device node, socket or FIFO it actually represents a local
7406 * endpoint, so we need to handle it locally.
7407 */
7408 switch(vp->v_type) {
7409 case VBLK:
7410 case VCHR:
7411 case VSOCK:
7412 case VFIFO:
7413 return(0);
7414 default:
7415 break;
7416 }
7417
7418 /*
7419 * In the advisory request case, if the filesystem doesn't think it's reliable
7420 * we will attempt to formulate a result ourselves based on VNOP_GETATTR data.
7421 */
7422 if ((action & KAUTH_VNODE_ACCESS) && !vfs_authopaqueaccess(vp->v_mount))
7423 return(0);
7424
7425 /*
7426 * Let the filesystem have a say in the matter. It's OK for it to not implemnent
7427 * VNOP_ACCESS, as most will authorise inline with the actual request.
7428 */
7429 if ((error = VNOP_ACCESS(vp, action, ctx)) != ENOTSUP) {
7430 *resultp = error;
7431 KAUTH_DEBUG("%p DENIED - opaque filesystem VNOP_ACCESS denied access", vp);
7432 return(1);
7433 }
7434
7435 /*
7436 * Typically opaque filesystems do authorisation in-line, but exec is a special case. In
7437 * order to be reasonably sure that exec will be permitted, we try a bit harder here.
7438 */
7439 if ((action & KAUTH_VNODE_EXECUTE) && (vp->v_type == VREG)) {
7440 /* try a VNOP_OPEN for readonly access */
7441 if ((error = VNOP_OPEN(vp, FREAD, ctx)) != 0) {
7442 *resultp = error;
7443 KAUTH_DEBUG("%p DENIED - EXECUTE denied because file could not be opened readonly", vp);
7444 return(1);
7445 }
7446 VNOP_CLOSE(vp, FREAD, ctx);
7447 }
7448
7449 /*
7450 * We don't have any reason to believe that the request has to be denied at this point,
7451 * so go ahead and allow it.
7452 */
7453 *resultp = 0;
7454 KAUTH_DEBUG("%p ALLOWED - bypassing access check for non-local filesystem", vp);
7455 return(1);
7456 }
7457
7458
7459
7460
7461 /*
7462 * Returns: KAUTH_RESULT_ALLOW
7463 * KAUTH_RESULT_DENY
7464 *
7465 * Imputed: *arg3, modified Error code in the deny case
7466 * EROFS Read-only file system
7467 * EACCES Permission denied
7468 * EPERM Operation not permitted [no execute]
7469 * vnode_getattr:ENOMEM Not enough space [only if has filesec]
7470 * vnode_getattr:???
7471 * vnode_authorize_opaque:*arg2 ???
7472 * vnode_authorize_checkimmutable:???
7473 * vnode_authorize_delete:???
7474 * vnode_authorize_simple:???
7475 */
7476
7477
7478 static int
7479 vnode_authorize_callback(__unused kauth_cred_t cred, __unused void *idata,
7480 kauth_action_t action, uintptr_t arg0, uintptr_t arg1, uintptr_t arg2,
7481 uintptr_t arg3)
7482 {
7483 vfs_context_t ctx;
7484 vnode_t cvp = NULLVP;
7485 vnode_t vp, dvp;
7486 int result = KAUTH_RESULT_DENY;
7487 int parent_iocount = 0;
7488 int parent_action; /* In case we need to use namedstream's data fork for cached rights*/
7489
7490 ctx = (vfs_context_t)arg0;
7491 vp = (vnode_t)arg1;
7492 dvp = (vnode_t)arg2;
7493
7494 /*
7495 * if there are 2 vnodes passed in, we don't know at
7496 * this point which rights to look at based on the
7497 * combined action being passed in... defer until later...
7498 * otherwise check the kauth 'rights' cache hung
7499 * off of the vnode we're interested in... if we've already
7500 * been granted the right we're currently interested in,
7501 * we can just return success... otherwise we'll go through
7502 * the process of authorizing the requested right(s)... if that
7503 * succeeds, we'll add the right(s) to the cache.
7504 * VNOP_SETATTR and VNOP_SETXATTR will invalidate this cache
7505 */
7506 if (dvp && vp)
7507 goto defer;
7508 if (dvp) {
7509 cvp = dvp;
7510 } else {
7511 /*
7512 * For named streams on local-authorization volumes, rights are cached on the parent;
7513 * authorization is determined by looking at the parent's properties anyway, so storing
7514 * on the parent means that we don't recompute for the named stream and that if
7515 * we need to flush rights (e.g. on VNOP_SETATTR()) we don't need to track down the
7516 * stream to flush its cache separately. If we miss in the cache, then we authorize
7517 * as if there were no cached rights (passing the named stream vnode and desired rights to
7518 * vnode_authorize_callback_int()).
7519 *
7520 * On an opaquely authorized volume, we don't know the relationship between the
7521 * data fork's properties and the rights granted on a stream. Thus, named stream vnodes
7522 * on such a volume are authorized directly (rather than using the parent) and have their
7523 * own caches. When a named stream vnode is created, we mark the parent as having a named
7524 * stream. On a VNOP_SETATTR() for the parent that may invalidate cached authorization, we
7525 * find the stream and flush its cache.
7526 */
7527 if (vnode_isnamedstream(vp) && (!vfs_authopaque(vp->v_mount))) {
7528 cvp = vnode_getparent(vp);
7529 if (cvp != NULLVP) {
7530 parent_iocount = 1;
7531 } else {
7532 cvp = NULL;
7533 goto defer; /* If we can't use the parent, take the slow path */
7534 }
7535
7536 /* Have to translate some actions */
7537 parent_action = action;
7538 if (parent_action & KAUTH_VNODE_READ_DATA) {
7539 parent_action &= ~KAUTH_VNODE_READ_DATA;
7540 parent_action |= KAUTH_VNODE_READ_EXTATTRIBUTES;
7541 }
7542 if (parent_action & KAUTH_VNODE_WRITE_DATA) {
7543 parent_action &= ~KAUTH_VNODE_WRITE_DATA;
7544 parent_action |= KAUTH_VNODE_WRITE_EXTATTRIBUTES;
7545 }
7546
7547 } else {
7548 cvp = vp;
7549 }
7550 }
7551
7552 if (vnode_cache_is_authorized(cvp, ctx, parent_iocount ? parent_action : action) == TRUE) {
7553 result = KAUTH_RESULT_ALLOW;
7554 goto out;
7555 }
7556 defer:
7557 result = vnode_authorize_callback_int(action, ctx, vp, dvp, (int *)arg3);
7558
7559 if (result == KAUTH_RESULT_ALLOW && cvp != NULLVP) {
7560 KAUTH_DEBUG("%p - caching action = %x", cvp, action);
7561 vnode_cache_authorized_action(cvp, ctx, action);
7562 }
7563
7564 out:
7565 if (parent_iocount) {
7566 vnode_put(cvp);
7567 }
7568
7569 return result;
7570 }
7571
7572 static int
7573 vnode_attr_authorize_internal(vauth_ctx vcp, mount_t mp,
7574 kauth_ace_rights_t rights, int is_suser, boolean_t *found_deny,
7575 int noimmutable, int parent_authorized_for_delete_child)
7576 {
7577 int result;
7578
7579 /*
7580 * Check for immutability.
7581 *
7582 * In the deletion case, parent directory immutability vetoes specific
7583 * file rights.
7584 */
7585 if ((result = vnode_authorize_checkimmutable(mp, vcp->vap, rights,
7586 noimmutable)) != 0)
7587 goto out;
7588
7589 if ((rights & KAUTH_VNODE_DELETE) &&
7590 !parent_authorized_for_delete_child) {
7591 result = vnode_authorize_checkimmutable(mp, vcp->dvap,
7592 KAUTH_VNODE_DELETE_CHILD, 0);
7593 if (result)
7594 goto out;
7595 }
7596
7597 /*
7598 * Clear rights that have been authorized by reaching this point, bail if nothing left to
7599 * check.
7600 */
7601 rights &= ~(KAUTH_VNODE_LINKTARGET | KAUTH_VNODE_CHECKIMMUTABLE);
7602 if (rights == 0)
7603 goto out;
7604
7605 /*
7606 * If we're not the superuser, authorize based on file properties;
7607 * note that even if parent_authorized_for_delete_child is TRUE, we
7608 * need to check on the node itself.
7609 */
7610 if (!is_suser) {
7611 /* process delete rights */
7612 if ((rights & KAUTH_VNODE_DELETE) &&
7613 ((result = vnode_authorize_delete(vcp, parent_authorized_for_delete_child)) != 0))
7614 goto out;
7615
7616 /* process remaining rights */
7617 if ((rights & ~KAUTH_VNODE_DELETE) &&
7618 (result = vnode_authorize_simple(vcp, rights, rights & KAUTH_VNODE_DELETE, found_deny)) != 0)
7619 goto out;
7620 } else {
7621 /*
7622 * Execute is only granted to root if one of the x bits is set. This check only
7623 * makes sense if the posix mode bits are actually supported.
7624 */
7625 if ((rights & KAUTH_VNODE_EXECUTE) &&
7626 (vcp->vap->va_type == VREG) &&
7627 VATTR_IS_SUPPORTED(vcp->vap, va_mode) &&
7628 !(vcp->vap->va_mode & (S_IXUSR | S_IXGRP | S_IXOTH))) {
7629 result = EPERM;
7630 KAUTH_DEBUG("%p DENIED - root execute requires at least one x bit in 0x%x", vp, va.va_mode);
7631 goto out;
7632 }
7633
7634 /* Assume that there were DENYs so we don't wrongly cache KAUTH_VNODE_SEARCHBYANYONE */
7635 *found_deny = TRUE;
7636
7637 KAUTH_DEBUG("%p ALLOWED - caller is superuser", vp);
7638 }
7639 out:
7640 return (result);
7641 }
7642
7643 static int
7644 vnode_authorize_callback_int(kauth_action_t action, vfs_context_t ctx,
7645 vnode_t vp, vnode_t dvp, int *errorp)
7646 {
7647 struct _vnode_authorize_context auth_context;
7648 vauth_ctx vcp;
7649 kauth_cred_t cred;
7650 kauth_ace_rights_t rights;
7651 struct vnode_attr va, dva;
7652 int result;
7653 int noimmutable;
7654 boolean_t parent_authorized_for_delete_child = FALSE;
7655 boolean_t found_deny = FALSE;
7656 boolean_t parent_ref= FALSE;
7657 boolean_t is_suser = FALSE;
7658
7659 vcp = &auth_context;
7660 vcp->ctx = ctx;
7661 vcp->vp = vp;
7662 vcp->dvp = dvp;
7663 /*
7664 * Note that we authorize against the context, not the passed cred
7665 * (the same thing anyway)
7666 */
7667 cred = ctx->vc_ucred;
7668
7669 VATTR_INIT(&va);
7670 vcp->vap = &va;
7671 VATTR_INIT(&dva);
7672 vcp->dvap = &dva;
7673
7674 vcp->flags = vcp->flags_valid = 0;
7675
7676 #if DIAGNOSTIC
7677 if ((ctx == NULL) || (vp == NULL) || (cred == NULL))
7678 panic("vnode_authorize: bad arguments (context %p vp %p cred %p)", ctx, vp, cred);
7679 #endif
7680
7681 KAUTH_DEBUG("%p AUTH - %s %s%s%s%s%s%s%s%s%s%s%s%s%s%s%s on %s '%s' (0x%x:%p/%p)",
7682 vp, vfs_context_proc(ctx)->p_comm,
7683 (action & KAUTH_VNODE_ACCESS) ? "access" : "auth",
7684 (action & KAUTH_VNODE_READ_DATA) ? vnode_isdir(vp) ? " LIST_DIRECTORY" : " READ_DATA" : "",
7685 (action & KAUTH_VNODE_WRITE_DATA) ? vnode_isdir(vp) ? " ADD_FILE" : " WRITE_DATA" : "",
7686 (action & KAUTH_VNODE_EXECUTE) ? vnode_isdir(vp) ? " SEARCH" : " EXECUTE" : "",
7687 (action & KAUTH_VNODE_DELETE) ? " DELETE" : "",
7688 (action & KAUTH_VNODE_APPEND_DATA) ? vnode_isdir(vp) ? " ADD_SUBDIRECTORY" : " APPEND_DATA" : "",
7689 (action & KAUTH_VNODE_DELETE_CHILD) ? " DELETE_CHILD" : "",
7690 (action & KAUTH_VNODE_READ_ATTRIBUTES) ? " READ_ATTRIBUTES" : "",
7691 (action & KAUTH_VNODE_WRITE_ATTRIBUTES) ? " WRITE_ATTRIBUTES" : "",
7692 (action & KAUTH_VNODE_READ_EXTATTRIBUTES) ? " READ_EXTATTRIBUTES" : "",
7693 (action & KAUTH_VNODE_WRITE_EXTATTRIBUTES) ? " WRITE_EXTATTRIBUTES" : "",
7694 (action & KAUTH_VNODE_READ_SECURITY) ? " READ_SECURITY" : "",
7695 (action & KAUTH_VNODE_WRITE_SECURITY) ? " WRITE_SECURITY" : "",
7696 (action & KAUTH_VNODE_CHANGE_OWNER) ? " CHANGE_OWNER" : "",
7697 (action & KAUTH_VNODE_NOIMMUTABLE) ? " (noimmutable)" : "",
7698 vnode_isdir(vp) ? "directory" : "file",
7699 vp->v_name ? vp->v_name : "<NULL>", action, vp, dvp);
7700
7701 /*
7702 * Extract the control bits from the action, everything else is
7703 * requested rights.
7704 */
7705 noimmutable = (action & KAUTH_VNODE_NOIMMUTABLE) ? 1 : 0;
7706 rights = action & ~(KAUTH_VNODE_ACCESS | KAUTH_VNODE_NOIMMUTABLE);
7707
7708 if (rights & KAUTH_VNODE_DELETE) {
7709 #if DIAGNOSTIC
7710 if (dvp == NULL)
7711 panic("vnode_authorize: KAUTH_VNODE_DELETE test requires a directory");
7712 #endif
7713 /*
7714 * check to see if we've already authorized the parent
7715 * directory for deletion of its children... if so, we
7716 * can skip a whole bunch of work... we will still have to
7717 * authorize that this specific child can be removed
7718 */
7719 if (vnode_cache_is_authorized(dvp, ctx, KAUTH_VNODE_DELETE_CHILD) == TRUE)
7720 parent_authorized_for_delete_child = TRUE;
7721 } else {
7722 vcp->dvp = NULLVP;
7723 vcp->dvap = NULL;
7724 }
7725
7726 /*
7727 * Check for read-only filesystems.
7728 */
7729 if ((rights & KAUTH_VNODE_WRITE_RIGHTS) &&
7730 (vp->v_mount->mnt_flag & MNT_RDONLY) &&
7731 ((vp->v_type == VREG) || (vp->v_type == VDIR) ||
7732 (vp->v_type == VLNK) || (vp->v_type == VCPLX) ||
7733 (rights & KAUTH_VNODE_DELETE) || (rights & KAUTH_VNODE_DELETE_CHILD))) {
7734 result = EROFS;
7735 goto out;
7736 }
7737
7738 /*
7739 * Check for noexec filesystems.
7740 */
7741 if ((rights & KAUTH_VNODE_EXECUTE) && (vp->v_type == VREG) && (vp->v_mount->mnt_flag & MNT_NOEXEC)) {
7742 result = EACCES;
7743 goto out;
7744 }
7745
7746 /*
7747 * Handle cases related to filesystems with non-local enforcement.
7748 * This call can return 0, in which case we will fall through to perform a
7749 * check based on VNOP_GETATTR data. Otherwise it returns 1 and sets
7750 * an appropriate result, at which point we can return immediately.
7751 */
7752 if ((vp->v_mount->mnt_kern_flag & MNTK_AUTH_OPAQUE) && vnode_authorize_opaque(vp, &result, action, ctx))
7753 goto out;
7754
7755 /*
7756 * If the vnode is a namedstream (extended attribute) data vnode (eg.
7757 * a resource fork), *_DATA becomes *_EXTATTRIBUTES.
7758 */
7759 if (vnode_isnamedstream(vp)) {
7760 if (rights & KAUTH_VNODE_READ_DATA) {
7761 rights &= ~KAUTH_VNODE_READ_DATA;
7762 rights |= KAUTH_VNODE_READ_EXTATTRIBUTES;
7763 }
7764 if (rights & KAUTH_VNODE_WRITE_DATA) {
7765 rights &= ~KAUTH_VNODE_WRITE_DATA;
7766 rights |= KAUTH_VNODE_WRITE_EXTATTRIBUTES;
7767 }
7768
7769 /*
7770 * Point 'vp' to the namedstream's parent for ACL checking
7771 */
7772 if ((vp->v_parent != NULL) &&
7773 (vget_internal(vp->v_parent, 0, VNODE_NODEAD | VNODE_DRAINO) == 0)) {
7774 parent_ref = TRUE;
7775 vcp->vp = vp = vp->v_parent;
7776 }
7777 }
7778
7779 if (vfs_context_issuser(ctx)) {
7780 /*
7781 * if we're not asking for execute permissions or modifications,
7782 * then we're done, this action is authorized.
7783 */
7784 if (!(rights & (KAUTH_VNODE_EXECUTE | KAUTH_VNODE_WRITE_RIGHTS)))
7785 goto success;
7786
7787 is_suser = TRUE;
7788 }
7789
7790 /*
7791 * Get vnode attributes and extended security information for the vnode
7792 * and directory if required.
7793 *
7794 * If we're root we only want mode bits and flags for checking
7795 * execute and immutability.
7796 */
7797 VATTR_WANTED(&va, va_mode);
7798 VATTR_WANTED(&va, va_flags);
7799 if (!is_suser) {
7800 VATTR_WANTED(&va, va_uid);
7801 VATTR_WANTED(&va, va_gid);
7802 VATTR_WANTED(&va, va_acl);
7803 }
7804 if ((result = vnode_getattr(vp, &va, ctx)) != 0) {
7805 KAUTH_DEBUG("%p ERROR - failed to get vnode attributes - %d", vp, result);
7806 goto out;
7807 }
7808 VATTR_WANTED(&va, va_type);
7809 VATTR_RETURN(&va, va_type, vnode_vtype(vp));
7810
7811 if (vcp->dvp) {
7812 VATTR_WANTED(&dva, va_mode);
7813 VATTR_WANTED(&dva, va_flags);
7814 if (!is_suser) {
7815 VATTR_WANTED(&dva, va_uid);
7816 VATTR_WANTED(&dva, va_gid);
7817 VATTR_WANTED(&dva, va_acl);
7818 }
7819 if ((result = vnode_getattr(vcp->dvp, &dva, ctx)) != 0) {
7820 KAUTH_DEBUG("%p ERROR - failed to get directory vnode attributes - %d", vp, result);
7821 goto out;
7822 }
7823 VATTR_WANTED(&dva, va_type);
7824 VATTR_RETURN(&dva, va_type, vnode_vtype(vcp->dvp));
7825 }
7826
7827 result = vnode_attr_authorize_internal(vcp, vp->v_mount, rights, is_suser,
7828 &found_deny, noimmutable, parent_authorized_for_delete_child);
7829 out:
7830 if (VATTR_IS_SUPPORTED(&va, va_acl) && (va.va_acl != NULL))
7831 kauth_acl_free(va.va_acl);
7832 if (VATTR_IS_SUPPORTED(&dva, va_acl) && (dva.va_acl != NULL))
7833 kauth_acl_free(dva.va_acl);
7834
7835 if (result) {
7836 if (parent_ref)
7837 vnode_put(vp);
7838 *errorp = result;
7839 KAUTH_DEBUG("%p DENIED - auth denied", vp);
7840 return(KAUTH_RESULT_DENY);
7841 }
7842 if ((rights & KAUTH_VNODE_SEARCH) && found_deny == FALSE && vp->v_type == VDIR) {
7843 /*
7844 * if we were successfully granted the right to search this directory
7845 * and there were NO ACL DENYs for search and the posix permissions also don't
7846 * deny execute, we can synthesize a global right that allows anyone to
7847 * traverse this directory during a pathname lookup without having to
7848 * match the credential associated with this cache of rights.
7849 *
7850 * Note that we can correctly cache KAUTH_VNODE_SEARCHBYANYONE
7851 * only if we actually check ACLs which we don't for root. As
7852 * a workaround, the lookup fast path checks for root.
7853 */
7854 if (!VATTR_IS_SUPPORTED(&va, va_mode) ||
7855 ((va.va_mode & (S_IXUSR | S_IXGRP | S_IXOTH)) ==
7856 (S_IXUSR | S_IXGRP | S_IXOTH))) {
7857 vnode_cache_authorized_action(vp, ctx, KAUTH_VNODE_SEARCHBYANYONE);
7858 }
7859 }
7860 success:
7861 if (parent_ref)
7862 vnode_put(vp);
7863
7864 /*
7865 * Note that this implies that we will allow requests for no rights, as well as
7866 * for rights that we do not recognise. There should be none of these.
7867 */
7868 KAUTH_DEBUG("%p ALLOWED - auth granted", vp);
7869 return(KAUTH_RESULT_ALLOW);
7870 }
7871
7872 int
7873 vnode_attr_authorize_init(struct vnode_attr *vap, struct vnode_attr *dvap,
7874 kauth_action_t action, vfs_context_t ctx)
7875 {
7876 VATTR_INIT(vap);
7877 VATTR_WANTED(vap, va_type);
7878 VATTR_WANTED(vap, va_mode);
7879 VATTR_WANTED(vap, va_flags);
7880 if (dvap) {
7881 VATTR_INIT(dvap);
7882 if (action & KAUTH_VNODE_DELETE) {
7883 VATTR_WANTED(dvap, va_type);
7884 VATTR_WANTED(dvap, va_mode);
7885 VATTR_WANTED(dvap, va_flags);
7886 }
7887 } else if (action & KAUTH_VNODE_DELETE) {
7888 return (EINVAL);
7889 }
7890
7891 if (!vfs_context_issuser(ctx)) {
7892 VATTR_WANTED(vap, va_uid);
7893 VATTR_WANTED(vap, va_gid);
7894 VATTR_WANTED(vap, va_acl);
7895 if (dvap && (action & KAUTH_VNODE_DELETE)) {
7896 VATTR_WANTED(dvap, va_uid);
7897 VATTR_WANTED(dvap, va_gid);
7898 VATTR_WANTED(dvap, va_acl);
7899 }
7900 }
7901
7902 return (0);
7903 }
7904
7905 int
7906 vnode_attr_authorize(struct vnode_attr *vap, struct vnode_attr *dvap, mount_t mp,
7907 kauth_action_t action, vfs_context_t ctx)
7908 {
7909 struct _vnode_authorize_context auth_context;
7910 vauth_ctx vcp;
7911 kauth_ace_rights_t rights;
7912 int noimmutable;
7913 boolean_t found_deny;
7914 boolean_t is_suser = FALSE;
7915 int result = 0;
7916
7917 vcp = &auth_context;
7918 vcp->ctx = ctx;
7919 vcp->vp = NULLVP;
7920 vcp->vap = vap;
7921 vcp->dvp = NULLVP;
7922 vcp->dvap = dvap;
7923 vcp->flags = vcp->flags_valid = 0;
7924
7925 noimmutable = (action & KAUTH_VNODE_NOIMMUTABLE) ? 1 : 0;
7926 rights = action & ~(KAUTH_VNODE_ACCESS | KAUTH_VNODE_NOIMMUTABLE);
7927
7928 /*
7929 * Check for read-only filesystems.
7930 */
7931 if ((rights & KAUTH_VNODE_WRITE_RIGHTS) &&
7932 mp && (mp->mnt_flag & MNT_RDONLY) &&
7933 ((vap->va_type == VREG) || (vap->va_type == VDIR) ||
7934 (vap->va_type == VLNK) || (rights & KAUTH_VNODE_DELETE) ||
7935 (rights & KAUTH_VNODE_DELETE_CHILD))) {
7936 result = EROFS;
7937 goto out;
7938 }
7939
7940 /*
7941 * Check for noexec filesystems.
7942 */
7943 if ((rights & KAUTH_VNODE_EXECUTE) &&
7944 (vap->va_type == VREG) && mp && (mp->mnt_flag & MNT_NOEXEC)) {
7945 result = EACCES;
7946 goto out;
7947 }
7948
7949 if (vfs_context_issuser(ctx)) {
7950 /*
7951 * if we're not asking for execute permissions or modifications,
7952 * then we're done, this action is authorized.
7953 */
7954 if (!(rights & (KAUTH_VNODE_EXECUTE | KAUTH_VNODE_WRITE_RIGHTS)))
7955 goto out;
7956 is_suser = TRUE;
7957 } else {
7958 if (!VATTR_IS_SUPPORTED(vap, va_uid) ||
7959 !VATTR_IS_SUPPORTED(vap, va_gid) ||
7960 (mp && vfs_extendedsecurity(mp) && !VATTR_IS_SUPPORTED(vap, va_acl))) {
7961 panic("vnode attrs not complete for vnode_attr_authorize\n");
7962 }
7963 }
7964
7965 result = vnode_attr_authorize_internal(vcp, mp, rights, is_suser,
7966 &found_deny, noimmutable, FALSE);
7967
7968 if (result == EPERM)
7969 result = EACCES;
7970 out:
7971 return (result);
7972 }
7973
7974
7975 int
7976 vnode_authattr_new(vnode_t dvp, struct vnode_attr *vap, int noauth, vfs_context_t ctx)
7977 {
7978 return vnode_authattr_new_internal(dvp, vap, noauth, NULL, ctx);
7979 }
7980
7981 /*
7982 * Check that the attribute information in vattr can be legally applied to
7983 * a new file by the context.
7984 */
7985 static int
7986 vnode_authattr_new_internal(vnode_t dvp, struct vnode_attr *vap, int noauth, uint32_t *defaulted_fieldsp, vfs_context_t ctx)
7987 {
7988 int error;
7989 int has_priv_suser, ismember, defaulted_owner, defaulted_group, defaulted_mode;
7990 uint32_t inherit_flags;
7991 kauth_cred_t cred;
7992 guid_t changer;
7993 mount_t dmp;
7994 struct vnode_attr dva;
7995
7996 error = 0;
7997
7998 if (defaulted_fieldsp) {
7999 *defaulted_fieldsp = 0;
8000 }
8001
8002 defaulted_owner = defaulted_group = defaulted_mode = 0;
8003
8004 inherit_flags = 0;
8005
8006 /*
8007 * Require that the filesystem support extended security to apply any.
8008 */
8009 if (!vfs_extendedsecurity(dvp->v_mount) &&
8010 (VATTR_IS_ACTIVE(vap, va_acl) || VATTR_IS_ACTIVE(vap, va_uuuid) || VATTR_IS_ACTIVE(vap, va_guuid))) {
8011 error = EINVAL;
8012 goto out;
8013 }
8014
8015 /*
8016 * Default some fields.
8017 */
8018 dmp = dvp->v_mount;
8019
8020 /*
8021 * If the filesystem is mounted IGNORE_OWNERSHIP and an explicit owner is set, that
8022 * owner takes ownership of all new files.
8023 */
8024 if ((dmp->mnt_flag & MNT_IGNORE_OWNERSHIP) && (dmp->mnt_fsowner != KAUTH_UID_NONE)) {
8025 VATTR_SET(vap, va_uid, dmp->mnt_fsowner);
8026 defaulted_owner = 1;
8027 } else {
8028 if (!VATTR_IS_ACTIVE(vap, va_uid)) {
8029 /* default owner is current user */
8030 VATTR_SET(vap, va_uid, kauth_cred_getuid(vfs_context_ucred(ctx)));
8031 defaulted_owner = 1;
8032 }
8033 }
8034
8035 /*
8036 * We need the dvp's va_flags and *may* need the gid of the directory,
8037 * we ask for both here.
8038 */
8039 VATTR_INIT(&dva);
8040 VATTR_WANTED(&dva, va_gid);
8041 VATTR_WANTED(&dva, va_flags);
8042 if ((error = vnode_getattr(dvp, &dva, ctx)) != 0)
8043 goto out;
8044
8045 /*
8046 * If the filesystem is mounted IGNORE_OWNERSHIP and an explicit grouo is set, that
8047 * group takes ownership of all new files.
8048 */
8049 if ((dmp->mnt_flag & MNT_IGNORE_OWNERSHIP) && (dmp->mnt_fsgroup != KAUTH_GID_NONE)) {
8050 VATTR_SET(vap, va_gid, dmp->mnt_fsgroup);
8051 defaulted_group = 1;
8052 } else {
8053 if (!VATTR_IS_ACTIVE(vap, va_gid)) {
8054 /* default group comes from parent object, fallback to current user */
8055 if (VATTR_IS_SUPPORTED(&dva, va_gid)) {
8056 VATTR_SET(vap, va_gid, dva.va_gid);
8057 } else {
8058 VATTR_SET(vap, va_gid, kauth_cred_getgid(vfs_context_ucred(ctx)));
8059 }
8060 defaulted_group = 1;
8061 }
8062 }
8063
8064 if (!VATTR_IS_ACTIVE(vap, va_flags))
8065 VATTR_SET(vap, va_flags, 0);
8066
8067 /* Determine if SF_RESTRICTED should be inherited from the parent
8068 * directory. */
8069 if (VATTR_IS_SUPPORTED(&dva, va_flags)) {
8070 inherit_flags = dva.va_flags & (UF_DATAVAULT | SF_RESTRICTED);
8071 }
8072
8073 /* default mode is everything, masked with current umask */
8074 if (!VATTR_IS_ACTIVE(vap, va_mode)) {
8075 VATTR_SET(vap, va_mode, ACCESSPERMS & ~vfs_context_proc(ctx)->p_fd->fd_cmask);
8076 KAUTH_DEBUG("ATTR - defaulting new file mode to %o from umask %o", vap->va_mode, vfs_context_proc(ctx)->p_fd->fd_cmask);
8077 defaulted_mode = 1;
8078 }
8079 /* set timestamps to now */
8080 if (!VATTR_IS_ACTIVE(vap, va_create_time)) {
8081 nanotime(&vap->va_create_time);
8082 VATTR_SET_ACTIVE(vap, va_create_time);
8083 }
8084
8085 /*
8086 * Check for attempts to set nonsensical fields.
8087 */
8088 if (vap->va_active & ~VNODE_ATTR_NEWOBJ) {
8089 error = EINVAL;
8090 KAUTH_DEBUG("ATTR - ERROR - attempt to set unsupported new-file attributes %llx",
8091 vap->va_active & ~VNODE_ATTR_NEWOBJ);
8092 goto out;
8093 }
8094
8095 /*
8096 * Quickly check for the applicability of any enforcement here.
8097 * Tests below maintain the integrity of the local security model.
8098 */
8099 if (vfs_authopaque(dvp->v_mount))
8100 goto out;
8101
8102 /*
8103 * We need to know if the caller is the superuser, or if the work is
8104 * otherwise already authorised.
8105 */
8106 cred = vfs_context_ucred(ctx);
8107 if (noauth) {
8108 /* doing work for the kernel */
8109 has_priv_suser = 1;
8110 } else {
8111 has_priv_suser = vfs_context_issuser(ctx);
8112 }
8113
8114
8115 if (VATTR_IS_ACTIVE(vap, va_flags)) {
8116 if (has_priv_suser) {
8117 if ((vap->va_flags & (UF_SETTABLE | SF_SETTABLE)) != vap->va_flags) {
8118 error = EPERM;
8119 KAUTH_DEBUG(" DENIED - superuser attempt to set illegal flag(s)");
8120 goto out;
8121 }
8122 } else {
8123 if ((vap->va_flags & UF_SETTABLE) != vap->va_flags) {
8124 error = EPERM;
8125 KAUTH_DEBUG(" DENIED - user attempt to set illegal flag(s)");
8126 goto out;
8127 }
8128 }
8129 }
8130
8131 /* if not superuser, validate legality of new-item attributes */
8132 if (!has_priv_suser) {
8133 if (!defaulted_mode && VATTR_IS_ACTIVE(vap, va_mode)) {
8134 /* setgid? */
8135 if (vap->va_mode & S_ISGID) {
8136 if ((error = kauth_cred_ismember_gid(cred, vap->va_gid, &ismember)) != 0) {
8137 KAUTH_DEBUG("ATTR - ERROR: got %d checking for membership in %d", error, vap->va_gid);
8138 goto out;
8139 }
8140 if (!ismember) {
8141 KAUTH_DEBUG(" DENIED - can't set SGID bit, not a member of %d", vap->va_gid);
8142 error = EPERM;
8143 goto out;
8144 }
8145 }
8146
8147 /* setuid? */
8148 if ((vap->va_mode & S_ISUID) && (vap->va_uid != kauth_cred_getuid(cred))) {
8149 KAUTH_DEBUG("ATTR - ERROR: illegal attempt to set the setuid bit");
8150 error = EPERM;
8151 goto out;
8152 }
8153 }
8154 if (!defaulted_owner && (vap->va_uid != kauth_cred_getuid(cred))) {
8155 KAUTH_DEBUG(" DENIED - cannot create new item owned by %d", vap->va_uid);
8156 error = EPERM;
8157 goto out;
8158 }
8159 if (!defaulted_group) {
8160 if ((error = kauth_cred_ismember_gid(cred, vap->va_gid, &ismember)) != 0) {
8161 KAUTH_DEBUG(" ERROR - got %d checking for membership in %d", error, vap->va_gid);
8162 goto out;
8163 }
8164 if (!ismember) {
8165 KAUTH_DEBUG(" DENIED - cannot create new item with group %d - not a member", vap->va_gid);
8166 error = EPERM;
8167 goto out;
8168 }
8169 }
8170
8171 /* initialising owner/group UUID */
8172 if (VATTR_IS_ACTIVE(vap, va_uuuid)) {
8173 if ((error = kauth_cred_getguid(cred, &changer)) != 0) {
8174 KAUTH_DEBUG(" ERROR - got %d trying to get caller UUID", error);
8175 /* XXX ENOENT here - no GUID - should perhaps become EPERM */
8176 goto out;
8177 }
8178 if (!kauth_guid_equal(&vap->va_uuuid, &changer)) {
8179 KAUTH_DEBUG(" ERROR - cannot create item with supplied owner UUID - not us");
8180 error = EPERM;
8181 goto out;
8182 }
8183 }
8184 if (VATTR_IS_ACTIVE(vap, va_guuid)) {
8185 if ((error = kauth_cred_ismember_guid(cred, &vap->va_guuid, &ismember)) != 0) {
8186 KAUTH_DEBUG(" ERROR - got %d trying to check group membership", error);
8187 goto out;
8188 }
8189 if (!ismember) {
8190 KAUTH_DEBUG(" ERROR - cannot create item with supplied group UUID - not a member");
8191 error = EPERM;
8192 goto out;
8193 }
8194 }
8195 }
8196 out:
8197 if (inherit_flags) {
8198 /* Apply SF_RESTRICTED to the file if its parent directory was
8199 * restricted. This is done at the end so that root is not
8200 * required if this flag is only set due to inheritance. */
8201 VATTR_SET(vap, va_flags, (vap->va_flags | inherit_flags));
8202 }
8203 if (defaulted_fieldsp) {
8204 if (defaulted_mode) {
8205 *defaulted_fieldsp |= VATTR_PREPARE_DEFAULTED_MODE;
8206 }
8207 if (defaulted_group) {
8208 *defaulted_fieldsp |= VATTR_PREPARE_DEFAULTED_GID;
8209 }
8210 if (defaulted_owner) {
8211 *defaulted_fieldsp |= VATTR_PREPARE_DEFAULTED_UID;
8212 }
8213 }
8214 return(error);
8215 }
8216
8217 /*
8218 * Check that the attribute information in vap can be legally written by the
8219 * context.
8220 *
8221 * Call this when you're not sure about the vnode_attr; either its contents
8222 * have come from an unknown source, or when they are variable.
8223 *
8224 * Returns errno, or zero and sets *actionp to the KAUTH_VNODE_* actions that
8225 * must be authorized to be permitted to write the vattr.
8226 */
8227 int
8228 vnode_authattr(vnode_t vp, struct vnode_attr *vap, kauth_action_t *actionp, vfs_context_t ctx)
8229 {
8230 struct vnode_attr ova;
8231 kauth_action_t required_action;
8232 int error, has_priv_suser, ismember, chowner, chgroup, clear_suid, clear_sgid;
8233 guid_t changer;
8234 gid_t group;
8235 uid_t owner;
8236 mode_t newmode;
8237 kauth_cred_t cred;
8238 uint32_t fdelta;
8239
8240 VATTR_INIT(&ova);
8241 required_action = 0;
8242 error = 0;
8243
8244 /*
8245 * Quickly check for enforcement applicability.
8246 */
8247 if (vfs_authopaque(vp->v_mount))
8248 goto out;
8249
8250 /*
8251 * Check for attempts to set nonsensical fields.
8252 */
8253 if (vap->va_active & VNODE_ATTR_RDONLY) {
8254 KAUTH_DEBUG("ATTR - ERROR: attempt to set readonly attribute(s)");
8255 error = EINVAL;
8256 goto out;
8257 }
8258
8259 /*
8260 * We need to know if the caller is the superuser.
8261 */
8262 cred = vfs_context_ucred(ctx);
8263 has_priv_suser = kauth_cred_issuser(cred);
8264
8265 /*
8266 * If any of the following are changing, we need information from the old file:
8267 * va_uid
8268 * va_gid
8269 * va_mode
8270 * va_uuuid
8271 * va_guuid
8272 */
8273 if (VATTR_IS_ACTIVE(vap, va_uid) ||
8274 VATTR_IS_ACTIVE(vap, va_gid) ||
8275 VATTR_IS_ACTIVE(vap, va_mode) ||
8276 VATTR_IS_ACTIVE(vap, va_uuuid) ||
8277 VATTR_IS_ACTIVE(vap, va_guuid)) {
8278 VATTR_WANTED(&ova, va_mode);
8279 VATTR_WANTED(&ova, va_uid);
8280 VATTR_WANTED(&ova, va_gid);
8281 VATTR_WANTED(&ova, va_uuuid);
8282 VATTR_WANTED(&ova, va_guuid);
8283 KAUTH_DEBUG("ATTR - security information changing, fetching existing attributes");
8284 }
8285
8286 /*
8287 * If timestamps are being changed, we need to know who the file is owned
8288 * by.
8289 */
8290 if (VATTR_IS_ACTIVE(vap, va_create_time) ||
8291 VATTR_IS_ACTIVE(vap, va_change_time) ||
8292 VATTR_IS_ACTIVE(vap, va_modify_time) ||
8293 VATTR_IS_ACTIVE(vap, va_access_time) ||
8294 VATTR_IS_ACTIVE(vap, va_backup_time) ||
8295 VATTR_IS_ACTIVE(vap, va_addedtime)) {
8296
8297 VATTR_WANTED(&ova, va_uid);
8298 #if 0 /* enable this when we support UUIDs as official owners */
8299 VATTR_WANTED(&ova, va_uuuid);
8300 #endif
8301 KAUTH_DEBUG("ATTR - timestamps changing, fetching uid and GUID");
8302 }
8303
8304 /*
8305 * If flags are being changed, we need the old flags.
8306 */
8307 if (VATTR_IS_ACTIVE(vap, va_flags)) {
8308 KAUTH_DEBUG("ATTR - flags changing, fetching old flags");
8309 VATTR_WANTED(&ova, va_flags);
8310 }
8311
8312 /*
8313 * If ACLs are being changed, we need the old ACLs.
8314 */
8315 if (VATTR_IS_ACTIVE(vap, va_acl)) {
8316 KAUTH_DEBUG("ATTR - acl changing, fetching old flags");
8317 VATTR_WANTED(&ova, va_acl);
8318 }
8319
8320 /*
8321 * If the size is being set, make sure it's not a directory.
8322 */
8323 if (VATTR_IS_ACTIVE(vap, va_data_size)) {
8324 /* size is only meaningful on regular files, don't permit otherwise */
8325 if (!vnode_isreg(vp)) {
8326 KAUTH_DEBUG("ATTR - ERROR: size change requested on non-file");
8327 error = vnode_isdir(vp) ? EISDIR : EINVAL;
8328 goto out;
8329 }
8330 }
8331
8332 /*
8333 * Get old data.
8334 */
8335 KAUTH_DEBUG("ATTR - fetching old attributes %016llx", ova.va_active);
8336 if ((error = vnode_getattr(vp, &ova, ctx)) != 0) {
8337 KAUTH_DEBUG(" ERROR - got %d trying to get attributes", error);
8338 goto out;
8339 }
8340
8341 /*
8342 * Size changes require write access to the file data.
8343 */
8344 if (VATTR_IS_ACTIVE(vap, va_data_size)) {
8345 /* if we can't get the size, or it's different, we need write access */
8346 KAUTH_DEBUG("ATTR - size change, requiring WRITE_DATA");
8347 required_action |= KAUTH_VNODE_WRITE_DATA;
8348 }
8349
8350 /*
8351 * Changing timestamps?
8352 *
8353 * Note that we are only called to authorize user-requested time changes;
8354 * side-effect time changes are not authorized. Authorisation is only
8355 * required for existing files.
8356 *
8357 * Non-owners are not permitted to change the time on an existing
8358 * file to anything other than the current time.
8359 */
8360 if (VATTR_IS_ACTIVE(vap, va_create_time) ||
8361 VATTR_IS_ACTIVE(vap, va_change_time) ||
8362 VATTR_IS_ACTIVE(vap, va_modify_time) ||
8363 VATTR_IS_ACTIVE(vap, va_access_time) ||
8364 VATTR_IS_ACTIVE(vap, va_backup_time) ||
8365 VATTR_IS_ACTIVE(vap, va_addedtime)) {
8366 /*
8367 * The owner and root may set any timestamps they like,
8368 * provided that the file is not immutable. The owner still needs
8369 * WRITE_ATTRIBUTES (implied by ownership but still deniable).
8370 */
8371 if (has_priv_suser || vauth_node_owner(&ova, cred)) {
8372 KAUTH_DEBUG("ATTR - root or owner changing timestamps");
8373 required_action |= KAUTH_VNODE_CHECKIMMUTABLE | KAUTH_VNODE_WRITE_ATTRIBUTES;
8374 } else {
8375 /* just setting the current time? */
8376 if (vap->va_vaflags & VA_UTIMES_NULL) {
8377 KAUTH_DEBUG("ATTR - non-root/owner changing timestamps, requiring WRITE_ATTRIBUTES");
8378 required_action |= KAUTH_VNODE_WRITE_ATTRIBUTES;
8379 } else {
8380 KAUTH_DEBUG("ATTR - ERROR: illegal timestamp modification attempted");
8381 error = EACCES;
8382 goto out;
8383 }
8384 }
8385 }
8386
8387 /*
8388 * Changing file mode?
8389 */
8390 if (VATTR_IS_ACTIVE(vap, va_mode) && VATTR_IS_SUPPORTED(&ova, va_mode) && (ova.va_mode != vap->va_mode)) {
8391 KAUTH_DEBUG("ATTR - mode change from %06o to %06o", ova.va_mode, vap->va_mode);
8392
8393 /*
8394 * Mode changes always have the same basic auth requirements.
8395 */
8396 if (has_priv_suser) {
8397 KAUTH_DEBUG("ATTR - superuser mode change, requiring immutability check");
8398 required_action |= KAUTH_VNODE_CHECKIMMUTABLE;
8399 } else {
8400 /* need WRITE_SECURITY */
8401 KAUTH_DEBUG("ATTR - non-superuser mode change, requiring WRITE_SECURITY");
8402 required_action |= KAUTH_VNODE_WRITE_SECURITY;
8403 }
8404
8405 /*
8406 * Can't set the setgid bit if you're not in the group and not root. Have to have
8407 * existing group information in the case we're not setting it right now.
8408 */
8409 if (vap->va_mode & S_ISGID) {
8410 required_action |= KAUTH_VNODE_CHECKIMMUTABLE; /* always required */
8411 if (!has_priv_suser) {
8412 if (VATTR_IS_ACTIVE(vap, va_gid)) {
8413 group = vap->va_gid;
8414 } else if (VATTR_IS_SUPPORTED(&ova, va_gid)) {
8415 group = ova.va_gid;
8416 } else {
8417 KAUTH_DEBUG("ATTR - ERROR: setgid but no gid available");
8418 error = EINVAL;
8419 goto out;
8420 }
8421 /*
8422 * This might be too restrictive; WRITE_SECURITY might be implied by
8423 * membership in this case, rather than being an additional requirement.
8424 */
8425 if ((error = kauth_cred_ismember_gid(cred, group, &ismember)) != 0) {
8426 KAUTH_DEBUG("ATTR - ERROR: got %d checking for membership in %d", error, vap->va_gid);
8427 goto out;
8428 }
8429 if (!ismember) {
8430 KAUTH_DEBUG(" DENIED - can't set SGID bit, not a member of %d", group);
8431 error = EPERM;
8432 goto out;
8433 }
8434 }
8435 }
8436
8437 /*
8438 * Can't set the setuid bit unless you're root or the file's owner.
8439 */
8440 if (vap->va_mode & S_ISUID) {
8441 required_action |= KAUTH_VNODE_CHECKIMMUTABLE; /* always required */
8442 if (!has_priv_suser) {
8443 if (VATTR_IS_ACTIVE(vap, va_uid)) {
8444 owner = vap->va_uid;
8445 } else if (VATTR_IS_SUPPORTED(&ova, va_uid)) {
8446 owner = ova.va_uid;
8447 } else {
8448 KAUTH_DEBUG("ATTR - ERROR: setuid but no uid available");
8449 error = EINVAL;
8450 goto out;
8451 }
8452 if (owner != kauth_cred_getuid(cred)) {
8453 /*
8454 * We could allow this if WRITE_SECURITY is permitted, perhaps.
8455 */
8456 KAUTH_DEBUG("ATTR - ERROR: illegal attempt to set the setuid bit");
8457 error = EPERM;
8458 goto out;
8459 }
8460 }
8461 }
8462 }
8463
8464 /*
8465 * Validate/mask flags changes. This checks that only the flags in
8466 * the UF_SETTABLE mask are being set, and preserves the flags in
8467 * the SF_SETTABLE case.
8468 *
8469 * Since flags changes may be made in conjunction with other changes,
8470 * we will ask the auth code to ignore immutability in the case that
8471 * the SF_* flags are not set and we are only manipulating the file flags.
8472 *
8473 */
8474 if (VATTR_IS_ACTIVE(vap, va_flags)) {
8475 /* compute changing flags bits */
8476 if (VATTR_IS_SUPPORTED(&ova, va_flags)) {
8477 fdelta = vap->va_flags ^ ova.va_flags;
8478 } else {
8479 fdelta = vap->va_flags;
8480 }
8481
8482 if (fdelta != 0) {
8483 KAUTH_DEBUG("ATTR - flags changing, requiring WRITE_SECURITY");
8484 required_action |= KAUTH_VNODE_WRITE_SECURITY;
8485
8486 /* check that changing bits are legal */
8487 if (has_priv_suser) {
8488 /*
8489 * The immutability check will prevent us from clearing the SF_*
8490 * flags unless the system securelevel permits it, so just check
8491 * for legal flags here.
8492 */
8493 if (fdelta & ~(UF_SETTABLE | SF_SETTABLE)) {
8494 error = EPERM;
8495 KAUTH_DEBUG(" DENIED - superuser attempt to set illegal flag(s)");
8496 goto out;
8497 }
8498 } else {
8499 if (fdelta & ~UF_SETTABLE) {
8500 error = EPERM;
8501 KAUTH_DEBUG(" DENIED - user attempt to set illegal flag(s)");
8502 goto out;
8503 }
8504 }
8505 /*
8506 * If the caller has the ability to manipulate file flags,
8507 * security is not reduced by ignoring them for this operation.
8508 *
8509 * A more complete test here would consider the 'after' states of the flags
8510 * to determine whether it would permit the operation, but this becomes
8511 * very complex.
8512 *
8513 * Ignoring immutability is conditional on securelevel; this does not bypass
8514 * the SF_* flags if securelevel > 0.
8515 */
8516 required_action |= KAUTH_VNODE_NOIMMUTABLE;
8517 }
8518 }
8519
8520 /*
8521 * Validate ownership information.
8522 */
8523 chowner = 0;
8524 chgroup = 0;
8525 clear_suid = 0;
8526 clear_sgid = 0;
8527
8528 /*
8529 * uid changing
8530 * Note that if the filesystem didn't give us a UID, we expect that it doesn't
8531 * support them in general, and will ignore it if/when we try to set it.
8532 * We might want to clear the uid out of vap completely here.
8533 */
8534 if (VATTR_IS_ACTIVE(vap, va_uid)) {
8535 if (VATTR_IS_SUPPORTED(&ova, va_uid) && (vap->va_uid != ova.va_uid)) {
8536 if (!has_priv_suser && (kauth_cred_getuid(cred) != vap->va_uid)) {
8537 KAUTH_DEBUG(" DENIED - non-superuser cannot change ownershipt to a third party");
8538 error = EPERM;
8539 goto out;
8540 }
8541 chowner = 1;
8542 }
8543 clear_suid = 1;
8544 }
8545
8546 /*
8547 * gid changing
8548 * Note that if the filesystem didn't give us a GID, we expect that it doesn't
8549 * support them in general, and will ignore it if/when we try to set it.
8550 * We might want to clear the gid out of vap completely here.
8551 */
8552 if (VATTR_IS_ACTIVE(vap, va_gid)) {
8553 if (VATTR_IS_SUPPORTED(&ova, va_gid) && (vap->va_gid != ova.va_gid)) {
8554 if (!has_priv_suser) {
8555 if ((error = kauth_cred_ismember_gid(cred, vap->va_gid, &ismember)) != 0) {
8556 KAUTH_DEBUG(" ERROR - got %d checking for membership in %d", error, vap->va_gid);
8557 goto out;
8558 }
8559 if (!ismember) {
8560 KAUTH_DEBUG(" DENIED - group change from %d to %d but not a member of target group",
8561 ova.va_gid, vap->va_gid);
8562 error = EPERM;
8563 goto out;
8564 }
8565 }
8566 chgroup = 1;
8567 }
8568 clear_sgid = 1;
8569 }
8570
8571 /*
8572 * Owner UUID being set or changed.
8573 */
8574 if (VATTR_IS_ACTIVE(vap, va_uuuid)) {
8575 /* if the owner UUID is not actually changing ... */
8576 if (VATTR_IS_SUPPORTED(&ova, va_uuuid)) {
8577 if (kauth_guid_equal(&vap->va_uuuid, &ova.va_uuuid))
8578 goto no_uuuid_change;
8579
8580 /*
8581 * If the current owner UUID is a null GUID, check
8582 * it against the UUID corresponding to the owner UID.
8583 */
8584 if (kauth_guid_equal(&ova.va_uuuid, &kauth_null_guid) &&
8585 VATTR_IS_SUPPORTED(&ova, va_uid)) {
8586 guid_t uid_guid;
8587
8588 if (kauth_cred_uid2guid(ova.va_uid, &uid_guid) == 0 &&
8589 kauth_guid_equal(&vap->va_uuuid, &uid_guid))
8590 goto no_uuuid_change;
8591 }
8592 }
8593
8594 /*
8595 * The owner UUID cannot be set by a non-superuser to anything other than
8596 * their own or a null GUID (to "unset" the owner UUID).
8597 * Note that file systems must be prepared to handle the
8598 * null UUID case in a manner appropriate for that file
8599 * system.
8600 */
8601 if (!has_priv_suser) {
8602 if ((error = kauth_cred_getguid(cred, &changer)) != 0) {
8603 KAUTH_DEBUG(" ERROR - got %d trying to get caller UUID", error);
8604 /* XXX ENOENT here - no UUID - should perhaps become EPERM */
8605 goto out;
8606 }
8607 if (!kauth_guid_equal(&vap->va_uuuid, &changer) &&
8608 !kauth_guid_equal(&vap->va_uuuid, &kauth_null_guid)) {
8609 KAUTH_DEBUG(" ERROR - cannot set supplied owner UUID - not us / null");
8610 error = EPERM;
8611 goto out;
8612 }
8613 }
8614 chowner = 1;
8615 clear_suid = 1;
8616 }
8617 no_uuuid_change:
8618 /*
8619 * Group UUID being set or changed.
8620 */
8621 if (VATTR_IS_ACTIVE(vap, va_guuid)) {
8622 /* if the group UUID is not actually changing ... */
8623 if (VATTR_IS_SUPPORTED(&ova, va_guuid)) {
8624 if (kauth_guid_equal(&vap->va_guuid, &ova.va_guuid))
8625 goto no_guuid_change;
8626
8627 /*
8628 * If the current group UUID is a null UUID, check
8629 * it against the UUID corresponding to the group GID.
8630 */
8631 if (kauth_guid_equal(&ova.va_guuid, &kauth_null_guid) &&
8632 VATTR_IS_SUPPORTED(&ova, va_gid)) {
8633 guid_t gid_guid;
8634
8635 if (kauth_cred_gid2guid(ova.va_gid, &gid_guid) == 0 &&
8636 kauth_guid_equal(&vap->va_guuid, &gid_guid))
8637 goto no_guuid_change;
8638 }
8639 }
8640
8641 /*
8642 * The group UUID cannot be set by a non-superuser to anything other than
8643 * one of which they are a member or a null GUID (to "unset"
8644 * the group UUID).
8645 * Note that file systems must be prepared to handle the
8646 * null UUID case in a manner appropriate for that file
8647 * system.
8648 */
8649 if (!has_priv_suser) {
8650 if (kauth_guid_equal(&vap->va_guuid, &kauth_null_guid))
8651 ismember = 1;
8652 else if ((error = kauth_cred_ismember_guid(cred, &vap->va_guuid, &ismember)) != 0) {
8653 KAUTH_DEBUG(" ERROR - got %d trying to check group membership", error);
8654 goto out;
8655 }
8656 if (!ismember) {
8657 KAUTH_DEBUG(" ERROR - cannot set supplied group UUID - not a member / null");
8658 error = EPERM;
8659 goto out;
8660 }
8661 }
8662 chgroup = 1;
8663 }
8664 no_guuid_change:
8665
8666 /*
8667 * Compute authorisation for group/ownership changes.
8668 */
8669 if (chowner || chgroup || clear_suid || clear_sgid) {
8670 if (has_priv_suser) {
8671 KAUTH_DEBUG("ATTR - superuser changing file owner/group, requiring immutability check");
8672 required_action |= KAUTH_VNODE_CHECKIMMUTABLE;
8673 } else {
8674 if (chowner) {
8675 KAUTH_DEBUG("ATTR - ownership change, requiring TAKE_OWNERSHIP");
8676 required_action |= KAUTH_VNODE_TAKE_OWNERSHIP;
8677 }
8678 if (chgroup && !chowner) {
8679 KAUTH_DEBUG("ATTR - group change, requiring WRITE_SECURITY");
8680 required_action |= KAUTH_VNODE_WRITE_SECURITY;
8681 }
8682
8683 }
8684
8685 /*
8686 * clear set-uid and set-gid bits. POSIX only requires this for
8687 * non-privileged processes but we do it even for root.
8688 */
8689 if (VATTR_IS_ACTIVE(vap, va_mode)) {
8690 newmode = vap->va_mode;
8691 } else if (VATTR_IS_SUPPORTED(&ova, va_mode)) {
8692 newmode = ova.va_mode;
8693 } else {
8694 KAUTH_DEBUG("CHOWN - trying to change owner but cannot get mode from filesystem to mask setugid bits");
8695 newmode = 0;
8696 }
8697
8698 /* chown always clears setuid/gid bits. An exception is made for
8699 * setattrlist executed by a root process to set <uid, gid, mode> on a file:
8700 * setattrlist is allowed to set the new mode on the file and change (chown)
8701 * uid/gid.
8702 */
8703 if (newmode & (S_ISUID | S_ISGID)) {
8704 if (!VATTR_IS_ACTIVE(vap, va_mode) || !has_priv_suser) {
8705 KAUTH_DEBUG("CHOWN - masking setugid bits from mode %o to %o",
8706 newmode, newmode & ~(S_ISUID | S_ISGID));
8707 newmode &= ~(S_ISUID | S_ISGID);
8708 }
8709 VATTR_SET(vap, va_mode, newmode);
8710 }
8711 }
8712
8713 /*
8714 * Authorise changes in the ACL.
8715 */
8716 if (VATTR_IS_ACTIVE(vap, va_acl)) {
8717
8718 /* no existing ACL */
8719 if (!VATTR_IS_ACTIVE(&ova, va_acl) || (ova.va_acl == NULL)) {
8720
8721 /* adding an ACL */
8722 if (vap->va_acl != NULL) {
8723 required_action |= KAUTH_VNODE_WRITE_SECURITY;
8724 KAUTH_DEBUG("CHMOD - adding ACL");
8725 }
8726
8727 /* removing an existing ACL */
8728 } else if (vap->va_acl == NULL) {
8729 required_action |= KAUTH_VNODE_WRITE_SECURITY;
8730 KAUTH_DEBUG("CHMOD - removing ACL");
8731
8732 /* updating an existing ACL */
8733 } else {
8734 if (vap->va_acl->acl_entrycount != ova.va_acl->acl_entrycount) {
8735 /* entry count changed, must be different */
8736 required_action |= KAUTH_VNODE_WRITE_SECURITY;
8737 KAUTH_DEBUG("CHMOD - adding/removing ACL entries");
8738 } else if (vap->va_acl->acl_entrycount > 0) {
8739 /* both ACLs have the same ACE count, said count is 1 or more, bitwise compare ACLs */
8740 if (memcmp(&vap->va_acl->acl_ace[0], &ova.va_acl->acl_ace[0],
8741 sizeof(struct kauth_ace) * vap->va_acl->acl_entrycount)) {
8742 required_action |= KAUTH_VNODE_WRITE_SECURITY;
8743 KAUTH_DEBUG("CHMOD - changing ACL entries");
8744 }
8745 }
8746 }
8747 }
8748
8749 /*
8750 * Other attributes that require authorisation.
8751 */
8752 if (VATTR_IS_ACTIVE(vap, va_encoding))
8753 required_action |= KAUTH_VNODE_WRITE_ATTRIBUTES;
8754
8755 out:
8756 if (VATTR_IS_SUPPORTED(&ova, va_acl) && (ova.va_acl != NULL))
8757 kauth_acl_free(ova.va_acl);
8758 if (error == 0)
8759 *actionp = required_action;
8760 return(error);
8761 }
8762
8763 static int
8764 setlocklocal_callback(struct vnode *vp, __unused void *cargs)
8765 {
8766 vnode_lock_spin(vp);
8767 vp->v_flag |= VLOCKLOCAL;
8768 vnode_unlock(vp);
8769
8770 return (VNODE_RETURNED);
8771 }
8772
8773 void
8774 vfs_setlocklocal(mount_t mp)
8775 {
8776 mount_lock_spin(mp);
8777 mp->mnt_kern_flag |= MNTK_LOCK_LOCAL;
8778 mount_unlock(mp);
8779
8780 /*
8781 * The number of active vnodes is expected to be
8782 * very small when vfs_setlocklocal is invoked.
8783 */
8784 vnode_iterate(mp, 0, setlocklocal_callback, NULL);
8785 }
8786
8787 void
8788 vfs_setcompoundopen(mount_t mp)
8789 {
8790 mount_lock_spin(mp);
8791 mp->mnt_compound_ops |= COMPOUND_VNOP_OPEN;
8792 mount_unlock(mp);
8793 }
8794
8795 void
8796 vnode_setswapmount(vnode_t vp)
8797 {
8798 mount_lock(vp->v_mount);
8799 vp->v_mount->mnt_kern_flag |= MNTK_SWAP_MOUNT;
8800 mount_unlock(vp->v_mount);
8801 }
8802
8803
8804 int64_t
8805 vnode_getswappin_avail(vnode_t vp)
8806 {
8807 int64_t max_swappin_avail = 0;
8808
8809 mount_lock(vp->v_mount);
8810 if (vp->v_mount->mnt_ioflags & MNT_IOFLAGS_SWAPPIN_SUPPORTED)
8811 max_swappin_avail = vp->v_mount->mnt_max_swappin_available;
8812 mount_unlock(vp->v_mount);
8813
8814 return (max_swappin_avail);
8815 }
8816
8817
8818 void
8819 vn_setunionwait(vnode_t vp)
8820 {
8821 vnode_lock_spin(vp);
8822 vp->v_flag |= VISUNION;
8823 vnode_unlock(vp);
8824 }
8825
8826
8827 void
8828 vn_checkunionwait(vnode_t vp)
8829 {
8830 vnode_lock_spin(vp);
8831 while ((vp->v_flag & VISUNION) == VISUNION)
8832 msleep((caddr_t)&vp->v_flag, &vp->v_lock, 0, 0, 0);
8833 vnode_unlock(vp);
8834 }
8835
8836 void
8837 vn_clearunionwait(vnode_t vp, int locked)
8838 {
8839 if (!locked)
8840 vnode_lock_spin(vp);
8841 if((vp->v_flag & VISUNION) == VISUNION) {
8842 vp->v_flag &= ~VISUNION;
8843 wakeup((caddr_t)&vp->v_flag);
8844 }
8845 if (!locked)
8846 vnode_unlock(vp);
8847 }
8848
8849 /*
8850 * Removes orphaned apple double files during a rmdir
8851 * Works by:
8852 * 1. vnode_suspend().
8853 * 2. Call VNOP_READDIR() till the end of directory is reached.
8854 * 3. Check if the directory entries returned are regular files with name starting with "._". If not, return ENOTEMPTY.
8855 * 4. Continue (2) and (3) till end of directory is reached.
8856 * 5. If all the entries in the directory were files with "._" name, delete all the files.
8857 * 6. vnode_resume()
8858 * 7. If deletion of all files succeeded, call VNOP_RMDIR() again.
8859 */
8860
8861 errno_t rmdir_remove_orphaned_appleDouble(vnode_t vp , vfs_context_t ctx, int * restart_flag)
8862 {
8863
8864 #define UIO_BUFF_SIZE 2048
8865 uio_t auio = NULL;
8866 int eofflag, siz = UIO_BUFF_SIZE, nentries = 0;
8867 int open_flag = 0, full_erase_flag = 0;
8868 char uio_buf[ UIO_SIZEOF(1) ];
8869 char *rbuf = NULL;
8870 void *dir_pos;
8871 void *dir_end;
8872 struct dirent *dp;
8873 errno_t error;
8874
8875 error = vnode_suspend(vp);
8876
8877 /*
8878 * restart_flag is set so that the calling rmdir sleeps and resets
8879 */
8880 if (error == EBUSY)
8881 *restart_flag = 1;
8882 if (error != 0)
8883 return (error);
8884
8885 /*
8886 * set up UIO
8887 */
8888 MALLOC(rbuf, caddr_t, siz, M_TEMP, M_WAITOK);
8889 if (rbuf)
8890 auio = uio_createwithbuffer(1, 0, UIO_SYSSPACE, UIO_READ,
8891 &uio_buf[0], sizeof(uio_buf));
8892 if (!rbuf || !auio) {
8893 error = ENOMEM;
8894 goto outsc;
8895 }
8896
8897 uio_setoffset(auio,0);
8898
8899 eofflag = 0;
8900
8901 if ((error = VNOP_OPEN(vp, FREAD, ctx)))
8902 goto outsc;
8903 else
8904 open_flag = 1;
8905
8906 /*
8907 * First pass checks if all files are appleDouble files.
8908 */
8909
8910 do {
8911 siz = UIO_BUFF_SIZE;
8912 uio_reset(auio, uio_offset(auio), UIO_SYSSPACE, UIO_READ);
8913 uio_addiov(auio, CAST_USER_ADDR_T(rbuf), UIO_BUFF_SIZE);
8914
8915 if((error = VNOP_READDIR(vp, auio, 0, &eofflag, &nentries, ctx)))
8916 goto outsc;
8917
8918 if (uio_resid(auio) != 0)
8919 siz -= uio_resid(auio);
8920
8921 /*
8922 * Iterate through directory
8923 */
8924 dir_pos = (void*) rbuf;
8925 dir_end = (void*) (rbuf + siz);
8926 dp = (struct dirent*) (dir_pos);
8927
8928 if (dir_pos == dir_end)
8929 eofflag = 1;
8930
8931 while (dir_pos < dir_end) {
8932 /*
8933 * Check for . and .. as well as directories
8934 */
8935 if (dp->d_ino != 0 &&
8936 !((dp->d_namlen == 1 && dp->d_name[0] == '.') ||
8937 (dp->d_namlen == 2 && dp->d_name[0] == '.' && dp->d_name[1] == '.'))) {
8938 /*
8939 * Check for irregular files and ._ files
8940 * If there is a ._._ file abort the op
8941 */
8942 if ( dp->d_namlen < 2 ||
8943 strncmp(dp->d_name,"._",2) ||
8944 (dp->d_namlen >= 4 && !strncmp(&(dp->d_name[2]), "._",2))) {
8945 error = ENOTEMPTY;
8946 goto outsc;
8947 }
8948 }
8949 dir_pos = (void*) ((uint8_t*)dir_pos + dp->d_reclen);
8950 dp = (struct dirent*)dir_pos;
8951 }
8952
8953 /*
8954 * workaround for HFS/NFS setting eofflag before end of file
8955 */
8956 if (vp->v_tag == VT_HFS && nentries > 2)
8957 eofflag=0;
8958
8959 if (vp->v_tag == VT_NFS) {
8960 if (eofflag && !full_erase_flag) {
8961 full_erase_flag = 1;
8962 eofflag = 0;
8963 uio_reset(auio, 0, UIO_SYSSPACE, UIO_READ);
8964 }
8965 else if (!eofflag && full_erase_flag)
8966 full_erase_flag = 0;
8967 }
8968
8969 } while (!eofflag);
8970 /*
8971 * If we've made it here all the files in the dir are ._ files.
8972 * We can delete the files even though the node is suspended
8973 * because we are the owner of the file.
8974 */
8975
8976 uio_reset(auio, 0, UIO_SYSSPACE, UIO_READ);
8977 eofflag = 0;
8978 full_erase_flag = 0;
8979
8980 do {
8981 siz = UIO_BUFF_SIZE;
8982 uio_reset(auio, uio_offset(auio), UIO_SYSSPACE, UIO_READ);
8983 uio_addiov(auio, CAST_USER_ADDR_T(rbuf), UIO_BUFF_SIZE);
8984
8985 error = VNOP_READDIR(vp, auio, 0, &eofflag, &nentries, ctx);
8986
8987 if (error != 0)
8988 goto outsc;
8989
8990 if (uio_resid(auio) != 0)
8991 siz -= uio_resid(auio);
8992
8993 /*
8994 * Iterate through directory
8995 */
8996 dir_pos = (void*) rbuf;
8997 dir_end = (void*) (rbuf + siz);
8998 dp = (struct dirent*) dir_pos;
8999
9000 if (dir_pos == dir_end)
9001 eofflag = 1;
9002
9003 while (dir_pos < dir_end) {
9004 /*
9005 * Check for . and .. as well as directories
9006 */
9007 if (dp->d_ino != 0 &&
9008 !((dp->d_namlen == 1 && dp->d_name[0] == '.') ||
9009 (dp->d_namlen == 2 && dp->d_name[0] == '.' && dp->d_name[1] == '.'))
9010 ) {
9011
9012 error = unlink1(ctx, vp,
9013 CAST_USER_ADDR_T(dp->d_name), UIO_SYSSPACE,
9014 VNODE_REMOVE_SKIP_NAMESPACE_EVENT |
9015 VNODE_REMOVE_NO_AUDIT_PATH);
9016
9017 if (error && error != ENOENT) {
9018 goto outsc;
9019 }
9020
9021 }
9022 dir_pos = (void*) ((uint8_t*)dir_pos + dp->d_reclen);
9023 dp = (struct dirent*)dir_pos;
9024 }
9025
9026 /*
9027 * workaround for HFS/NFS setting eofflag before end of file
9028 */
9029 if (vp->v_tag == VT_HFS && nentries > 2)
9030 eofflag=0;
9031
9032 if (vp->v_tag == VT_NFS) {
9033 if (eofflag && !full_erase_flag) {
9034 full_erase_flag = 1;
9035 eofflag = 0;
9036 uio_reset(auio, 0, UIO_SYSSPACE, UIO_READ);
9037 }
9038 else if (!eofflag && full_erase_flag)
9039 full_erase_flag = 0;
9040 }
9041
9042 } while (!eofflag);
9043
9044
9045 error = 0;
9046
9047 outsc:
9048 if (open_flag)
9049 VNOP_CLOSE(vp, FREAD, ctx);
9050
9051 if (auio)
9052 uio_free(auio);
9053 FREE(rbuf, M_TEMP);
9054
9055 vnode_resume(vp);
9056
9057
9058 return(error);
9059
9060 }
9061
9062
9063 void
9064 lock_vnode_and_post(vnode_t vp, int kevent_num)
9065 {
9066 /* Only take the lock if there's something there! */
9067 if (vp->v_knotes.slh_first != NULL) {
9068 vnode_lock(vp);
9069 KNOTE(&vp->v_knotes, kevent_num);
9070 vnode_unlock(vp);
9071 }
9072 }
9073
9074 void panic_print_vnodes(void);
9075
9076 /* define PANIC_PRINTS_VNODES only if investigation is required. */
9077 #ifdef PANIC_PRINTS_VNODES
9078
9079 static const char *__vtype(uint16_t vtype)
9080 {
9081 switch (vtype) {
9082 case VREG:
9083 return "R";
9084 case VDIR:
9085 return "D";
9086 case VBLK:
9087 return "B";
9088 case VCHR:
9089 return "C";
9090 case VLNK:
9091 return "L";
9092 case VSOCK:
9093 return "S";
9094 case VFIFO:
9095 return "F";
9096 case VBAD:
9097 return "x";
9098 case VSTR:
9099 return "T";
9100 case VCPLX:
9101 return "X";
9102 default:
9103 return "?";
9104 }
9105 }
9106
9107 /*
9108 * build a path from the bottom up
9109 * NOTE: called from the panic path - no alloc'ing of memory and no locks!
9110 */
9111 static char *__vpath(vnode_t vp, char *str, int len, int depth)
9112 {
9113 int vnm_len;
9114 const char *src;
9115 char *dst;
9116
9117 if (len <= 0)
9118 return str;
9119 /* str + len is the start of the string we created */
9120 if (!vp->v_name)
9121 return str + len;
9122
9123 /* follow mount vnodes to get the full path */
9124 if ((vp->v_flag & VROOT)) {
9125 if (vp->v_mount != NULL && vp->v_mount->mnt_vnodecovered) {
9126 return __vpath(vp->v_mount->mnt_vnodecovered,
9127 str, len, depth+1);
9128 }
9129 return str + len;
9130 }
9131
9132 src = vp->v_name;
9133 vnm_len = strlen(src);
9134 if (vnm_len > len) {
9135 /* truncate the name to fit in the string */
9136 src += (vnm_len - len);
9137 vnm_len = len;
9138 }
9139
9140 /* start from the back and copy just characters (no NULLs) */
9141
9142 /* this will chop off leaf path (file) names */
9143 if (depth > 0) {
9144 dst = str + len - vnm_len;
9145 memcpy(dst, src, vnm_len);
9146 len -= vnm_len;
9147 } else {
9148 dst = str + len;
9149 }
9150
9151 if (vp->v_parent && len > 1) {
9152 /* follow parents up the chain */
9153 len--;
9154 *(dst-1) = '/';
9155 return __vpath(vp->v_parent, str, len, depth + 1);
9156 }
9157
9158 return dst;
9159 }
9160
9161 #define SANE_VNODE_PRINT_LIMIT 5000
9162 void panic_print_vnodes(void)
9163 {
9164 mount_t mnt;
9165 vnode_t vp;
9166 int nvnodes = 0;
9167 const char *type;
9168 char *nm;
9169 char vname[257];
9170
9171 paniclog_append_noflush("\n***** VNODES *****\n"
9172 "TYPE UREF ICNT PATH\n");
9173
9174 /* NULL-terminate the path name */
9175 vname[sizeof(vname)-1] = '\0';
9176
9177 /*
9178 * iterate all vnodelist items in all mounts (mntlist) -> mnt_vnodelist
9179 */
9180 TAILQ_FOREACH(mnt, &mountlist, mnt_list) {
9181
9182 if (!ml_validate_nofault((vm_offset_t)mnt, sizeof(mount_t))) {
9183 paniclog_append_noflush("Unable to iterate the mount list %p - encountered an invalid mount pointer %p \n",
9184 &mountlist, mnt);
9185 break;
9186 }
9187
9188 TAILQ_FOREACH(vp, &mnt->mnt_vnodelist, v_mntvnodes) {
9189
9190 if (!ml_validate_nofault((vm_offset_t)vp, sizeof(vnode_t))) {
9191 paniclog_append_noflush("Unable to iterate the vnode list %p - encountered an invalid vnode pointer %p \n",
9192 &mnt->mnt_vnodelist, vp);
9193 break;
9194 }
9195
9196 if (++nvnodes > SANE_VNODE_PRINT_LIMIT)
9197 return;
9198 type = __vtype(vp->v_type);
9199 nm = __vpath(vp, vname, sizeof(vname)-1, 0);
9200 paniclog_append_noflush("%s %0d %0d %s\n",
9201 type, vp->v_usecount, vp->v_iocount, nm);
9202 }
9203 }
9204 }
9205
9206 #else /* !PANIC_PRINTS_VNODES */
9207 void panic_print_vnodes(void)
9208 {
9209 return;
9210 }
9211 #endif
9212
9213
9214 #ifdef JOE_DEBUG
9215 static void record_vp(vnode_t vp, int count) {
9216 struct uthread *ut;
9217
9218 #if CONFIG_TRIGGERS
9219 if (vp->v_resolve)
9220 return;
9221 #endif
9222 if ((vp->v_flag & VSYSTEM))
9223 return;
9224
9225 ut = get_bsdthread_info(current_thread());
9226 ut->uu_iocount += count;
9227
9228 if (count == 1) {
9229 if (ut->uu_vpindex < 32) {
9230 OSBacktrace((void **)&ut->uu_pcs[ut->uu_vpindex][0], 10);
9231
9232 ut->uu_vps[ut->uu_vpindex] = vp;
9233 ut->uu_vpindex++;
9234 }
9235 }
9236 }
9237 #endif
9238
9239
9240 #if CONFIG_TRIGGERS
9241
9242 #define TRIG_DEBUG 0
9243
9244 #if TRIG_DEBUG
9245 #define TRIG_LOG(...) do { printf("%s: ", __FUNCTION__); printf(__VA_ARGS__); } while (0)
9246 #else
9247 #define TRIG_LOG(...)
9248 #endif
9249
9250 /*
9251 * Resolver result functions
9252 */
9253
9254 resolver_result_t
9255 vfs_resolver_result(uint32_t seq, enum resolver_status stat, int aux)
9256 {
9257 /*
9258 * |<--- 32 --->|<--- 28 --->|<- 4 ->|
9259 * sequence auxiliary status
9260 */
9261 return (((uint64_t)seq) << 32) |
9262 (((uint64_t)(aux & 0x0fffffff)) << 4) |
9263 (uint64_t)(stat & 0x0000000F);
9264 }
9265
9266 enum resolver_status
9267 vfs_resolver_status(resolver_result_t result)
9268 {
9269 /* lower 4 bits is status */
9270 return (result & 0x0000000F);
9271 }
9272
9273 uint32_t
9274 vfs_resolver_sequence(resolver_result_t result)
9275 {
9276 /* upper 32 bits is sequence */
9277 return (uint32_t)(result >> 32);
9278 }
9279
9280 int
9281 vfs_resolver_auxiliary(resolver_result_t result)
9282 {
9283 /* 28 bits of auxiliary */
9284 return (int)(((uint32_t)(result & 0xFFFFFFF0)) >> 4);
9285 }
9286
9287 /*
9288 * SPI
9289 * Call in for resolvers to update vnode trigger state
9290 */
9291 int
9292 vnode_trigger_update(vnode_t vp, resolver_result_t result)
9293 {
9294 vnode_resolve_t rp;
9295 uint32_t seq;
9296 enum resolver_status stat;
9297
9298 if (vp->v_resolve == NULL) {
9299 return (EINVAL);
9300 }
9301
9302 stat = vfs_resolver_status(result);
9303 seq = vfs_resolver_sequence(result);
9304
9305 if ((stat != RESOLVER_RESOLVED) && (stat != RESOLVER_UNRESOLVED)) {
9306 return (EINVAL);
9307 }
9308
9309 rp = vp->v_resolve;
9310 lck_mtx_lock(&rp->vr_lock);
9311
9312 if (seq > rp->vr_lastseq) {
9313 if (stat == RESOLVER_RESOLVED)
9314 rp->vr_flags |= VNT_RESOLVED;
9315 else
9316 rp->vr_flags &= ~VNT_RESOLVED;
9317
9318 rp->vr_lastseq = seq;
9319 }
9320
9321 lck_mtx_unlock(&rp->vr_lock);
9322
9323 return (0);
9324 }
9325
9326 static int
9327 vnode_resolver_attach(vnode_t vp, vnode_resolve_t rp, boolean_t ref)
9328 {
9329 int error;
9330
9331 vnode_lock_spin(vp);
9332 if (vp->v_resolve != NULL) {
9333 vnode_unlock(vp);
9334 return EINVAL;
9335 } else {
9336 vp->v_resolve = rp;
9337 }
9338 vnode_unlock(vp);
9339
9340 if (ref) {
9341 error = vnode_ref_ext(vp, O_EVTONLY, VNODE_REF_FORCE);
9342 if (error != 0) {
9343 panic("VNODE_REF_FORCE didn't help...");
9344 }
9345 }
9346
9347 return 0;
9348 }
9349
9350 /*
9351 * VFS internal interfaces for vnode triggers
9352 *
9353 * vnode must already have an io count on entry
9354 * v_resolve is stable when io count is non-zero
9355 */
9356 static int
9357 vnode_resolver_create(mount_t mp, vnode_t vp, struct vnode_trigger_param *tinfo, boolean_t external)
9358 {
9359 vnode_resolve_t rp;
9360 int result;
9361 char byte;
9362
9363 #if 1
9364 /* minimum pointer test (debugging) */
9365 if (tinfo->vnt_data)
9366 byte = *((char *)tinfo->vnt_data);
9367 #endif
9368 MALLOC(rp, vnode_resolve_t, sizeof(*rp), M_TEMP, M_WAITOK);
9369 if (rp == NULL)
9370 return (ENOMEM);
9371
9372 lck_mtx_init(&rp->vr_lock, trigger_vnode_lck_grp, trigger_vnode_lck_attr);
9373
9374 rp->vr_resolve_func = tinfo->vnt_resolve_func;
9375 rp->vr_unresolve_func = tinfo->vnt_unresolve_func;
9376 rp->vr_rearm_func = tinfo->vnt_rearm_func;
9377 rp->vr_reclaim_func = tinfo->vnt_reclaim_func;
9378 rp->vr_data = tinfo->vnt_data;
9379 rp->vr_lastseq = 0;
9380 rp->vr_flags = tinfo->vnt_flags & VNT_VALID_MASK;
9381 if (external) {
9382 rp->vr_flags |= VNT_EXTERNAL;
9383 }
9384
9385 result = vnode_resolver_attach(vp, rp, external);
9386 if (result != 0) {
9387 goto out;
9388 }
9389
9390 if (mp) {
9391 OSAddAtomic(1, &mp->mnt_numtriggers);
9392 }
9393
9394 return (result);
9395
9396 out:
9397 FREE(rp, M_TEMP);
9398 return result;
9399 }
9400
9401 static void
9402 vnode_resolver_release(vnode_resolve_t rp)
9403 {
9404 /*
9405 * Give them a chance to free any private data
9406 */
9407 if (rp->vr_data && rp->vr_reclaim_func) {
9408 rp->vr_reclaim_func(NULLVP, rp->vr_data);
9409 }
9410
9411 lck_mtx_destroy(&rp->vr_lock, trigger_vnode_lck_grp);
9412 FREE(rp, M_TEMP);
9413
9414 }
9415
9416 /* Called after the vnode has been drained */
9417 static void
9418 vnode_resolver_detach(vnode_t vp)
9419 {
9420 vnode_resolve_t rp;
9421 mount_t mp;
9422
9423 mp = vnode_mount(vp);
9424
9425 vnode_lock(vp);
9426 rp = vp->v_resolve;
9427 vp->v_resolve = NULL;
9428 vnode_unlock(vp);
9429
9430 if ((rp->vr_flags & VNT_EXTERNAL) != 0) {
9431 vnode_rele_ext(vp, O_EVTONLY, 1);
9432 }
9433
9434 vnode_resolver_release(rp);
9435
9436 /* Keep count of active trigger vnodes per mount */
9437 OSAddAtomic(-1, &mp->mnt_numtriggers);
9438 }
9439
9440 __private_extern__
9441 void
9442 vnode_trigger_rearm(vnode_t vp, vfs_context_t ctx)
9443 {
9444 vnode_resolve_t rp;
9445 resolver_result_t result;
9446 enum resolver_status status;
9447 uint32_t seq;
9448
9449 if ((vp->v_resolve == NULL) ||
9450 (vp->v_resolve->vr_rearm_func == NULL) ||
9451 (vp->v_resolve->vr_flags & VNT_AUTO_REARM) == 0) {
9452 return;
9453 }
9454
9455 rp = vp->v_resolve;
9456 lck_mtx_lock(&rp->vr_lock);
9457
9458 /*
9459 * Check if VFS initiated this unmount. If so, we'll catch it after the unresolve completes.
9460 */
9461 if (rp->vr_flags & VNT_VFS_UNMOUNTED) {
9462 lck_mtx_unlock(&rp->vr_lock);
9463 return;
9464 }
9465
9466 /* Check if this vnode is already armed */
9467 if ((rp->vr_flags & VNT_RESOLVED) == 0) {
9468 lck_mtx_unlock(&rp->vr_lock);
9469 return;
9470 }
9471
9472 lck_mtx_unlock(&rp->vr_lock);
9473
9474 result = rp->vr_rearm_func(vp, 0, rp->vr_data, ctx);
9475 status = vfs_resolver_status(result);
9476 seq = vfs_resolver_sequence(result);
9477
9478 lck_mtx_lock(&rp->vr_lock);
9479 if (seq > rp->vr_lastseq) {
9480 if (status == RESOLVER_UNRESOLVED)
9481 rp->vr_flags &= ~VNT_RESOLVED;
9482 rp->vr_lastseq = seq;
9483 }
9484 lck_mtx_unlock(&rp->vr_lock);
9485 }
9486
9487 __private_extern__
9488 int
9489 vnode_trigger_resolve(vnode_t vp, struct nameidata *ndp, vfs_context_t ctx)
9490 {
9491 vnode_resolve_t rp;
9492 enum path_operation op;
9493 resolver_result_t result;
9494 enum resolver_status status;
9495 uint32_t seq;
9496
9497 /* Only trigger on topmost vnodes */
9498 if ((vp->v_resolve == NULL) ||
9499 (vp->v_resolve->vr_resolve_func == NULL) ||
9500 (vp->v_mountedhere != NULL)) {
9501 return (0);
9502 }
9503
9504 rp = vp->v_resolve;
9505 lck_mtx_lock(&rp->vr_lock);
9506
9507 /* Check if this vnode is already resolved */
9508 if (rp->vr_flags & VNT_RESOLVED) {
9509 lck_mtx_unlock(&rp->vr_lock);
9510 return (0);
9511 }
9512
9513 lck_mtx_unlock(&rp->vr_lock);
9514
9515 #if CONFIG_MACF
9516 int rv = mac_vnode_check_trigger_resolve(ctx, vp, &ndp->ni_cnd);
9517 if (rv != 0)
9518 return rv;
9519 #endif
9520
9521 /*
9522 * XXX
9523 * assumes that resolver will not access this trigger vnode (otherwise the kernel will deadlock)
9524 * is there anyway to know this???
9525 * there can also be other legitimate lookups in parallel
9526 *
9527 * XXX - should we call this on a separate thread with a timeout?
9528 *
9529 * XXX - should we use ISLASTCN to pick the op value??? Perhaps only leafs should
9530 * get the richer set and non-leafs should get generic OP_LOOKUP? TBD
9531 */
9532 op = (ndp->ni_op < OP_MAXOP) ? ndp->ni_op: OP_LOOKUP;
9533
9534 result = rp->vr_resolve_func(vp, &ndp->ni_cnd, op, 0, rp->vr_data, ctx);
9535 status = vfs_resolver_status(result);
9536 seq = vfs_resolver_sequence(result);
9537
9538 lck_mtx_lock(&rp->vr_lock);
9539 if (seq > rp->vr_lastseq) {
9540 if (status == RESOLVER_RESOLVED)
9541 rp->vr_flags |= VNT_RESOLVED;
9542 rp->vr_lastseq = seq;
9543 }
9544 lck_mtx_unlock(&rp->vr_lock);
9545
9546 /* On resolver errors, propagate the error back up */
9547 return (status == RESOLVER_ERROR ? vfs_resolver_auxiliary(result) : 0);
9548 }
9549
9550 static int
9551 vnode_trigger_unresolve(vnode_t vp, int flags, vfs_context_t ctx)
9552 {
9553 vnode_resolve_t rp;
9554 resolver_result_t result;
9555 enum resolver_status status;
9556 uint32_t seq;
9557
9558 if ((vp->v_resolve == NULL) || (vp->v_resolve->vr_unresolve_func == NULL)) {
9559 return (0);
9560 }
9561
9562 rp = vp->v_resolve;
9563 lck_mtx_lock(&rp->vr_lock);
9564
9565 /* Check if this vnode is already resolved */
9566 if ((rp->vr_flags & VNT_RESOLVED) == 0) {
9567 printf("vnode_trigger_unresolve: not currently resolved\n");
9568 lck_mtx_unlock(&rp->vr_lock);
9569 return (0);
9570 }
9571
9572 rp->vr_flags |= VNT_VFS_UNMOUNTED;
9573
9574 lck_mtx_unlock(&rp->vr_lock);
9575
9576 /*
9577 * XXX
9578 * assumes that resolver will not access this trigger vnode (otherwise the kernel will deadlock)
9579 * there can also be other legitimate lookups in parallel
9580 *
9581 * XXX - should we call this on a separate thread with a timeout?
9582 */
9583
9584 result = rp->vr_unresolve_func(vp, flags, rp->vr_data, ctx);
9585 status = vfs_resolver_status(result);
9586 seq = vfs_resolver_sequence(result);
9587
9588 lck_mtx_lock(&rp->vr_lock);
9589 if (seq > rp->vr_lastseq) {
9590 if (status == RESOLVER_UNRESOLVED)
9591 rp->vr_flags &= ~VNT_RESOLVED;
9592 rp->vr_lastseq = seq;
9593 }
9594 rp->vr_flags &= ~VNT_VFS_UNMOUNTED;
9595 lck_mtx_unlock(&rp->vr_lock);
9596
9597 /* On resolver errors, propagate the error back up */
9598 return (status == RESOLVER_ERROR ? vfs_resolver_auxiliary(result) : 0);
9599 }
9600
9601 static int
9602 triggerisdescendant(mount_t mp, mount_t rmp)
9603 {
9604 int match = FALSE;
9605
9606 /*
9607 * walk up vnode covered chain looking for a match
9608 */
9609 name_cache_lock_shared();
9610
9611 while (1) {
9612 vnode_t vp;
9613
9614 /* did we encounter "/" ? */
9615 if (mp->mnt_flag & MNT_ROOTFS)
9616 break;
9617
9618 vp = mp->mnt_vnodecovered;
9619 if (vp == NULLVP)
9620 break;
9621
9622 mp = vp->v_mount;
9623 if (mp == rmp) {
9624 match = TRUE;
9625 break;
9626 }
9627 }
9628
9629 name_cache_unlock();
9630
9631 return (match);
9632 }
9633
9634 struct trigger_unmount_info {
9635 vfs_context_t ctx;
9636 mount_t top_mp;
9637 vnode_t trigger_vp;
9638 mount_t trigger_mp;
9639 uint32_t trigger_vid;
9640 int flags;
9641 };
9642
9643 static int
9644 trigger_unmount_callback(mount_t mp, void * arg)
9645 {
9646 struct trigger_unmount_info * infop = (struct trigger_unmount_info *)arg;
9647 boolean_t mountedtrigger = FALSE;
9648
9649 /*
9650 * When we encounter the top level mount we're done
9651 */
9652 if (mp == infop->top_mp)
9653 return (VFS_RETURNED_DONE);
9654
9655 if ((mp->mnt_vnodecovered == NULL) ||
9656 (vnode_getwithref(mp->mnt_vnodecovered) != 0)) {
9657 return (VFS_RETURNED);
9658 }
9659
9660 if ((mp->mnt_vnodecovered->v_mountedhere == mp) &&
9661 (mp->mnt_vnodecovered->v_resolve != NULL) &&
9662 (mp->mnt_vnodecovered->v_resolve->vr_flags & VNT_RESOLVED)) {
9663 mountedtrigger = TRUE;
9664 }
9665 vnode_put(mp->mnt_vnodecovered);
9666
9667 /*
9668 * When we encounter a mounted trigger, check if its under the top level mount
9669 */
9670 if ( !mountedtrigger || !triggerisdescendant(mp, infop->top_mp) )
9671 return (VFS_RETURNED);
9672
9673 /*
9674 * Process any pending nested mount (now that its not referenced)
9675 */
9676 if ((infop->trigger_vp != NULLVP) &&
9677 (vnode_getwithvid(infop->trigger_vp, infop->trigger_vid) == 0)) {
9678 vnode_t vp = infop->trigger_vp;
9679 int error;
9680
9681 infop->trigger_vp = NULLVP;
9682
9683 if (mp == vp->v_mountedhere) {
9684 vnode_put(vp);
9685 printf("trigger_unmount_callback: unexpected match '%s'\n",
9686 mp->mnt_vfsstat.f_mntonname);
9687 return (VFS_RETURNED);
9688 }
9689 if (infop->trigger_mp != vp->v_mountedhere) {
9690 vnode_put(vp);
9691 printf("trigger_unmount_callback: trigger mnt changed! (%p != %p)\n",
9692 infop->trigger_mp, vp->v_mountedhere);
9693 goto savenext;
9694 }
9695
9696 error = vnode_trigger_unresolve(vp, infop->flags, infop->ctx);
9697 vnode_put(vp);
9698 if (error) {
9699 printf("unresolving: '%s', err %d\n",
9700 vp->v_mountedhere ? vp->v_mountedhere->mnt_vfsstat.f_mntonname :
9701 "???", error);
9702 return (VFS_RETURNED_DONE); /* stop iteration on errors */
9703 }
9704 }
9705 savenext:
9706 /*
9707 * We can't call resolver here since we hold a mount iter
9708 * ref on mp so save its covered vp for later processing
9709 */
9710 infop->trigger_vp = mp->mnt_vnodecovered;
9711 if ((infop->trigger_vp != NULLVP) &&
9712 (vnode_getwithref(infop->trigger_vp) == 0)) {
9713 if (infop->trigger_vp->v_mountedhere == mp) {
9714 infop->trigger_vid = infop->trigger_vp->v_id;
9715 infop->trigger_mp = mp;
9716 }
9717 vnode_put(infop->trigger_vp);
9718 }
9719
9720 return (VFS_RETURNED);
9721 }
9722
9723 /*
9724 * Attempt to unmount any trigger mounts nested underneath a mount.
9725 * This is a best effort attempt and no retries are performed here.
9726 *
9727 * Note: mp->mnt_rwlock is held exclusively on entry (so be carefull)
9728 */
9729 __private_extern__
9730 void
9731 vfs_nested_trigger_unmounts(mount_t mp, int flags, vfs_context_t ctx)
9732 {
9733 struct trigger_unmount_info info;
9734
9735 /* Must have trigger vnodes */
9736 if (mp->mnt_numtriggers == 0) {
9737 return;
9738 }
9739 /* Avoid recursive requests (by checking covered vnode) */
9740 if ((mp->mnt_vnodecovered != NULL) &&
9741 (vnode_getwithref(mp->mnt_vnodecovered) == 0)) {
9742 boolean_t recursive = FALSE;
9743
9744 if ((mp->mnt_vnodecovered->v_mountedhere == mp) &&
9745 (mp->mnt_vnodecovered->v_resolve != NULL) &&
9746 (mp->mnt_vnodecovered->v_resolve->vr_flags & VNT_VFS_UNMOUNTED)) {
9747 recursive = TRUE;
9748 }
9749 vnode_put(mp->mnt_vnodecovered);
9750 if (recursive)
9751 return;
9752 }
9753
9754 /*
9755 * Attempt to unmount any nested trigger mounts (best effort)
9756 */
9757 info.ctx = ctx;
9758 info.top_mp = mp;
9759 info.trigger_vp = NULLVP;
9760 info.trigger_vid = 0;
9761 info.trigger_mp = NULL;
9762 info.flags = flags;
9763
9764 (void) vfs_iterate(VFS_ITERATE_TAIL_FIRST, trigger_unmount_callback, &info);
9765
9766 /*
9767 * Process remaining nested mount (now that its not referenced)
9768 */
9769 if ((info.trigger_vp != NULLVP) &&
9770 (vnode_getwithvid(info.trigger_vp, info.trigger_vid) == 0)) {
9771 vnode_t vp = info.trigger_vp;
9772
9773 if (info.trigger_mp == vp->v_mountedhere) {
9774 (void) vnode_trigger_unresolve(vp, flags, ctx);
9775 }
9776 vnode_put(vp);
9777 }
9778 }
9779
9780 int
9781 vfs_addtrigger(mount_t mp, const char *relpath, struct vnode_trigger_info *vtip, vfs_context_t ctx)
9782 {
9783 struct nameidata nd;
9784 int res;
9785 vnode_t rvp, vp;
9786 struct vnode_trigger_param vtp;
9787
9788 /*
9789 * Must be called for trigger callback, wherein rwlock is held
9790 */
9791 lck_rw_assert(&mp->mnt_rwlock, LCK_RW_ASSERT_HELD);
9792
9793 TRIG_LOG("Adding trigger at %s\n", relpath);
9794 TRIG_LOG("Trying VFS_ROOT\n");
9795
9796 /*
9797 * We do a lookup starting at the root of the mountpoint, unwilling
9798 * to cross into other mountpoints.
9799 */
9800 res = VFS_ROOT(mp, &rvp, ctx);
9801 if (res != 0) {
9802 goto out;
9803 }
9804
9805 TRIG_LOG("Trying namei\n");
9806
9807 NDINIT(&nd, LOOKUP, OP_LOOKUP, USEDVP | NOCROSSMOUNT | FOLLOW, UIO_SYSSPACE,
9808 CAST_USER_ADDR_T(relpath), ctx);
9809 nd.ni_dvp = rvp;
9810 res = namei(&nd);
9811 if (res != 0) {
9812 vnode_put(rvp);
9813 goto out;
9814 }
9815
9816 vp = nd.ni_vp;
9817 nameidone(&nd);
9818 vnode_put(rvp);
9819
9820 TRIG_LOG("Trying vnode_resolver_create()\n");
9821
9822 /*
9823 * Set up blob. vnode_create() takes a larger structure
9824 * with creation info, and we needed something different
9825 * for this case. One needs to win, or we need to munge both;
9826 * vnode_create() wins.
9827 */
9828 bzero(&vtp, sizeof(vtp));
9829 vtp.vnt_resolve_func = vtip->vti_resolve_func;
9830 vtp.vnt_unresolve_func = vtip->vti_unresolve_func;
9831 vtp.vnt_rearm_func = vtip->vti_rearm_func;
9832 vtp.vnt_reclaim_func = vtip->vti_reclaim_func;
9833 vtp.vnt_reclaim_func = vtip->vti_reclaim_func;
9834 vtp.vnt_data = vtip->vti_data;
9835 vtp.vnt_flags = vtip->vti_flags;
9836
9837 res = vnode_resolver_create(mp, vp, &vtp, TRUE);
9838 vnode_put(vp);
9839 out:
9840 TRIG_LOG("Returning %d\n", res);
9841 return res;
9842 }
9843
9844 #endif /* CONFIG_TRIGGERS */
9845
9846 vm_offset_t kdebug_vnode(vnode_t vp)
9847 {
9848 return VM_KERNEL_ADDRPERM(vp);
9849 }
9850
9851 static int flush_cache_on_write = 0;
9852 SYSCTL_INT (_kern, OID_AUTO, flush_cache_on_write,
9853 CTLFLAG_RW | CTLFLAG_LOCKED, &flush_cache_on_write, 0,
9854 "always flush the drive cache on writes to uncached files");
9855
9856 int vnode_should_flush_after_write(vnode_t vp, int ioflag)
9857 {
9858 return (flush_cache_on_write
9859 && (ISSET(ioflag, IO_NOCACHE) || vnode_isnocache(vp)));
9860 }
9861
9862 /*
9863 * sysctl for use by disk I/O tracing tools to get the list of existing
9864 * vnodes' paths
9865 */
9866
9867 struct vnode_trace_paths_context {
9868 uint64_t count;
9869 long path[MAXPATHLEN / sizeof (long) + 1]; /* + 1 in case sizeof (long) does not divide MAXPATHLEN */
9870 };
9871
9872 static int vnode_trace_path_callback(struct vnode *vp, void *arg) {
9873 int len, rv;
9874 struct vnode_trace_paths_context *ctx;
9875
9876 ctx = arg;
9877
9878 len = sizeof (ctx->path);
9879 rv = vn_getpath(vp, (char *)ctx->path, &len);
9880 /* vn_getpath() NUL-terminates, and len includes the NUL */
9881
9882 if (!rv) {
9883 kdebug_lookup_gen_events(ctx->path, len, vp, TRUE);
9884
9885 if (++(ctx->count) == 1000) {
9886 thread_yield_to_preemption();
9887 ctx->count = 0;
9888 }
9889 }
9890
9891 return VNODE_RETURNED;
9892 }
9893
9894 static int vfs_trace_paths_callback(mount_t mp, void *arg) {
9895 if (mp->mnt_flag & MNT_LOCAL)
9896 vnode_iterate(mp, VNODE_ITERATE_ALL, vnode_trace_path_callback, arg);
9897
9898 return VFS_RETURNED;
9899 }
9900
9901 static int sysctl_vfs_trace_paths SYSCTL_HANDLER_ARGS {
9902 struct vnode_trace_paths_context ctx;
9903
9904 (void)oidp;
9905 (void)arg1;
9906 (void)arg2;
9907 (void)req;
9908
9909 if (!kauth_cred_issuser(kauth_cred_get()))
9910 return EPERM;
9911
9912 if (!kdebug_enable || !kdebug_debugid_enabled(VFS_LOOKUP))
9913 return EINVAL;
9914
9915 bzero(&ctx, sizeof (struct vnode_trace_paths_context));
9916
9917 vfs_iterate(0, vfs_trace_paths_callback, &ctx);
9918
9919 return 0;
9920 }
9921
9922 SYSCTL_PROC(_vfs_generic, OID_AUTO, trace_paths, CTLFLAG_RD | CTLFLAG_LOCKED | CTLFLAG_MASKED, NULL, 0, &sysctl_vfs_trace_paths, "-", "trace_paths");