2 * Copyright (c) 2004-2014 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/event.h> // for kqueue related stuff
32 #include <sys/fsevents.h>
35 #include <sys/namei.h>
36 #include <sys/filedesc.h>
37 #include <sys/kernel.h>
38 #include <sys/file_internal.h>
40 #include <sys/vnode_internal.h>
41 #include <sys/mount_internal.h>
42 #include <sys/proc_internal.h>
43 #include <sys/kauth.h>
45 #include <sys/malloc.h>
46 #include <sys/dirent.h>
48 #include <sys/sysctl.h>
50 #include <machine/cons.h>
51 #include <miscfs/specfs/specdev.h>
52 #include <miscfs/devfs/devfs.h>
53 #include <sys/filio.h>
54 #include <kern/locks.h>
55 #include <libkern/OSAtomic.h>
56 #include <kern/zalloc.h>
57 #include <mach/mach_time.h>
58 #include <kern/thread_call.h>
59 #include <kern/clock.h>
61 #include <security/audit/audit.h>
62 #include <bsm/audit_kevents.h>
64 #include <pexpert/pexpert.h>
65 #include <libkern/section_keywords.h>
67 typedef struct kfs_event
{
68 LIST_ENTRY(kfs_event
) kevent_list
;
69 int16_t type
; // type code of this event
70 u_int16_t flags
, // per-event flags
71 len
; // the length of the path in "str"
72 int32_t refcount
; // number of clients referencing this
73 pid_t pid
; // pid of the process that did the op
75 uint64_t abstime
; // when this event happened (mach_absolute_time())
84 struct kfs_event
*dest
; // if this is a two-file op
87 // flags for the flags field
88 #define KFSE_COMBINED_EVENTS 0x0001
89 #define KFSE_CONTAINS_DROPPED_EVENTS 0x0002
90 #define KFSE_RECYCLED_EVENT 0x0004
91 #define KFSE_BEING_CREATED 0x0008
93 LIST_HEAD(kfse_list
, kfs_event
) kfse_list_head
= LIST_HEAD_INITIALIZER(x
);
94 int num_events_outstanding
= 0;
95 int num_pending_rename
= 0;
98 struct fsevent_handle
;
100 typedef struct fs_event_watcher
{
101 int8_t *event_list
; // the events we're interested in
103 dev_t
*devices_not_to_watch
; // report events from devices not in this list
104 uint32_t num_devices
;
106 kfs_event
**event_queue
;
107 int32_t eventq_size
; // number of event pointers in queue
109 int32_t rd
; // read index into the event_queue
110 int32_t wr
; // write index into the event_queue
113 uint32_t num_dropped
;
114 uint64_t max_event_id
;
115 struct fsevent_handle
*fseh
;
117 char proc_name
[(2 * MAXCOMLEN
) + 1];
120 // fs_event_watcher flags
121 #define WATCHER_DROPPED_EVENTS 0x0001
122 #define WATCHER_CLOSING 0x0002
123 #define WATCHER_WANTS_COMPACT_EVENTS 0x0004
124 #define WATCHER_WANTS_EXTENDED_INFO 0x0008
125 #define WATCHER_APPLE_SYSTEM_SERVICE 0x0010 // fseventsd, coreservicesd, mds, revisiond
127 #define MAX_WATCHERS 8
128 static fs_event_watcher
*watcher_table
[MAX_WATCHERS
];
130 #define DEFAULT_MAX_KFS_EVENTS 4096
131 static int max_kfs_events
= DEFAULT_MAX_KFS_EVENTS
;
133 // we allocate kfs_event structures out of this zone
134 static zone_t event_zone
;
135 static int fs_event_init
= 0;
138 // this array records whether anyone is interested in a
139 // particular type of event. if no one is, we bail out
140 // early from the event delivery
142 static int16_t fs_event_type_watchers
[FSE_MAX_EVENTS
];
144 // the device currently being unmounted:
145 static dev_t fsevent_unmount_dev
= 0;
146 // how many ACKs are still outstanding:
147 static int fsevent_unmount_ack_count
= 0;
149 static int watcher_add_event(fs_event_watcher
*watcher
, kfs_event
*kfse
);
150 static void fsevents_wakeup(fs_event_watcher
*watcher
);
155 static lck_grp_attr_t
* fsevent_group_attr
;
156 static lck_attr_t
* fsevent_lock_attr
;
157 static lck_grp_t
* fsevent_mutex_group
;
159 static lck_grp_t
* fsevent_rw_group
;
161 static lck_rw_t event_handling_lock
; // handles locking for event manipulation and recycling
162 static lck_mtx_t watch_table_lock
;
163 static lck_mtx_t event_buf_lock
;
164 static lck_mtx_t event_writer_lock
;
167 /* Explicitly declare qsort so compiler doesn't complain */
168 __private_extern__
void qsort(
172 int (*)(const void *, const void *));
175 is_ignored_directory(const char *path
) {
181 #define IS_TLD(x) strnstr(__DECONST(char *, path), x, MAXPATHLEN)
182 if (IS_TLD("/.Spotlight-V100/") ||
183 IS_TLD("/.MobileBackups/") ||
184 IS_TLD("/Backups.backupdb/")) {
193 fsevents_internal_init(void)
197 if (fs_event_init
++ != 0) {
201 for(i
=0; i
< FSE_MAX_EVENTS
; i
++) {
202 fs_event_type_watchers
[i
] = 0;
205 memset(watcher_table
, 0, sizeof(watcher_table
));
207 fsevent_lock_attr
= lck_attr_alloc_init();
208 fsevent_group_attr
= lck_grp_attr_alloc_init();
209 fsevent_mutex_group
= lck_grp_alloc_init("fsevent-mutex", fsevent_group_attr
);
210 fsevent_rw_group
= lck_grp_alloc_init("fsevent-rw", fsevent_group_attr
);
212 lck_mtx_init(&watch_table_lock
, fsevent_mutex_group
, fsevent_lock_attr
);
213 lck_mtx_init(&event_buf_lock
, fsevent_mutex_group
, fsevent_lock_attr
);
214 lck_mtx_init(&event_writer_lock
, fsevent_mutex_group
, fsevent_lock_attr
);
216 lck_rw_init(&event_handling_lock
, fsevent_rw_group
, fsevent_lock_attr
);
218 PE_get_default("kern.maxkfsevents", &max_kfs_events
, sizeof(max_kfs_events
));
220 event_zone
= zinit(sizeof(kfs_event
),
221 max_kfs_events
* sizeof(kfs_event
),
222 max_kfs_events
* sizeof(kfs_event
),
224 if (event_zone
== NULL
) {
225 printf("fsevents: failed to initialize the event zone.\n");
228 // mark the zone as exhaustible so that it will not
229 // ever grow beyond what we initially filled it with
230 zone_change(event_zone
, Z_EXHAUST
, TRUE
);
231 zone_change(event_zone
, Z_COLLECT
, FALSE
);
232 zone_change(event_zone
, Z_CALLERACCT
, FALSE
);
234 if (zfill(event_zone
, max_kfs_events
) < max_kfs_events
) {
235 printf("fsevents: failed to pre-fill the event zone.\n");
241 lock_watch_table(void)
243 lck_mtx_lock(&watch_table_lock
);
247 unlock_watch_table(void)
249 lck_mtx_unlock(&watch_table_lock
);
253 lock_fs_event_list(void)
255 lck_mtx_lock(&event_buf_lock
);
259 unlock_fs_event_list(void)
261 lck_mtx_unlock(&event_buf_lock
);
265 static void release_event_ref(kfs_event
*kfse
);
268 watcher_cares_about_dev(fs_event_watcher
*watcher
, dev_t dev
)
272 // if devices_not_to_watch is NULL then we care about all
273 // events from all devices
274 if (watcher
->devices_not_to_watch
== NULL
) {
278 for(i
=0; i
< watcher
->num_devices
; i
++) {
279 if (dev
== watcher
->devices_not_to_watch
[i
]) {
280 // found a match! that means we do not
281 // want events from this device.
286 // if we're here it's not in the devices_not_to_watch[]
287 // list so that means we do care about it
293 need_fsevent(int type
, vnode_t vp
)
295 if (type
>= 0 && type
< FSE_MAX_EVENTS
&& fs_event_type_watchers
[type
] == 0)
298 // events in /dev aren't really interesting...
299 if (vp
->v_tag
== VT_DEVFS
) {
307 #define is_throw_away(x) ((x) == FSE_STAT_CHANGED || (x) == FSE_CONTENT_MODIFIED)
310 // Ways that an event can be reused:
312 // "combined" events mean that there were two events for
313 // the same vnode or path and we're combining both events
314 // into a single event. The primary event gets a bit that
315 // marks it as having been combined. The secondary event
316 // is essentially dropped and the kfse structure reused.
318 // "collapsed" means that multiple events below a given
319 // directory are collapsed into a single event. in this
320 // case, the directory that we collapse into and all of
321 // its children must be re-scanned.
323 // "recycled" means that we're completely blowing away
324 // the event since there are other events that have info
325 // about the same vnode or path (and one of those other
326 // events will be marked as combined or collapsed as
329 #define KFSE_COMBINED 0x0001
330 #define KFSE_COLLAPSED 0x0002
331 #define KFSE_RECYCLED 0x0004
334 int num_parent_switch
= 0;
335 int num_recycled_rename
= 0;
337 static struct timeval last_print
;
340 // These variables are used to track coalescing multiple identical
341 // events for the same vnode/pathname. If we get the same event
342 // type and same vnode/pathname as the previous event, we just drop
343 // the event since it's superfluous. This improves some micro-
344 // benchmarks considerably and actually has a real-world impact on
345 // tests like a Finder copy where multiple stat-changed events can
348 static int last_event_type
=-1;
349 static void *last_ptr
=NULL
;
350 static char last_str
[MAXPATHLEN
];
351 static int last_nlen
=0;
352 static int last_vid
=-1;
353 static uint64_t last_coalesced_time
=0;
354 static void *last_event_ptr
=NULL
;
355 int last_coalesced
= 0;
356 static mach_timebase_info_data_t sTimebaseInfo
= { 0, 0 };
360 add_fsevent(int type
, vfs_context_t ctx
, ...)
362 struct proc
*p
= vfs_context_proc(ctx
);
363 int i
, arg_type
, ret
;
364 kfs_event
*kfse
, *kfse_dest
=NULL
, *cur
;
365 fs_event_watcher
*watcher
;
367 int error
= 0, did_alloc
=0;
369 uint64_t now
, elapsed
;
377 // ignore bogus event types..
378 if (type
< 0 || type
>= FSE_MAX_EVENTS
) {
382 // if no one cares about this type of event, bail out
383 if (fs_event_type_watchers
[type
] == 0) {
389 now
= mach_absolute_time();
391 // find a free event and snag it for our use
392 // NOTE: do not do anything that would block until
393 // the lock is dropped.
394 lock_fs_event_list();
397 // check if this event is identical to the previous one...
398 // (as long as it's not an event type that can never be the
399 // same as a previous event)
401 if (type
!= FSE_CREATE_FILE
&& type
!= FSE_DELETE
&& type
!= FSE_RENAME
&& type
!= FSE_EXCHANGE
&& type
!= FSE_CHOWN
&& type
!= FSE_DOCID_CHANGED
&& type
!= FSE_DOCID_CREATED
&& type
!= FSE_CLONE
) {
403 int vid
=0, was_str
=0, nlen
=0;
405 for(arg_type
=va_arg(ap
, int32_t); arg_type
!= FSE_ARG_DONE
; arg_type
=va_arg(ap
, int32_t)) {
407 case FSE_ARG_VNODE
: {
408 ptr
= va_arg(ap
, void *);
409 vid
= vnode_vid((struct vnode
*)ptr
);
413 case FSE_ARG_STRING
: {
414 nlen
= va_arg(ap
, int32_t);
415 ptr
= va_arg(ap
, void *);
425 if ( sTimebaseInfo
.denom
== 0 ) {
426 (void) clock_timebase_info(&sTimebaseInfo
);
429 elapsed
= (now
- last_coalesced_time
);
430 if (sTimebaseInfo
.denom
!= sTimebaseInfo
.numer
) {
431 if (sTimebaseInfo
.denom
== 1) {
432 elapsed
*= sTimebaseInfo
.numer
;
434 // this could overflow... the worst that will happen is that we'll
435 // send (or not send) an extra event so I'm not going to worry about
436 // doing the math right like dtrace_abs_to_nano() does.
437 elapsed
= (elapsed
* sTimebaseInfo
.numer
) / (uint64_t)sTimebaseInfo
.denom
;
441 if (type
== last_event_type
442 && (elapsed
< 1000000000)
444 ((vid
&& vid
== last_vid
&& last_ptr
== ptr
)
446 (last_str
[0] && last_nlen
== nlen
&& ptr
&& strcmp(last_str
, ptr
) == 0))
450 unlock_fs_event_list();
457 strlcpy(last_str
, ptr
, sizeof(last_str
));
461 last_event_type
= type
;
462 last_coalesced_time
= now
;
468 kfse
= zalloc_noblock(event_zone
);
469 if (kfse
&& (type
== FSE_RENAME
|| type
== FSE_EXCHANGE
|| type
== FSE_CLONE
)) {
470 kfse_dest
= zalloc_noblock(event_zone
);
471 if (kfse_dest
== NULL
) {
473 zfree(event_zone
, kfse
);
479 if (kfse
== NULL
) { // yikes! no free events
480 unlock_fs_event_list();
483 for(i
=0; i
< MAX_WATCHERS
; i
++) {
484 watcher
= watcher_table
[i
];
485 if (watcher
== NULL
) {
489 watcher
->flags
|= WATCHER_DROPPED_EVENTS
;
490 fsevents_wakeup(watcher
);
492 unlock_watch_table();
495 struct timeval current_tv
;
499 // only print a message at most once every 5 seconds
500 microuptime(¤t_tv
);
501 if ((current_tv
.tv_sec
- last_print
.tv_sec
) > 10) {
503 void *junkptr
=zalloc_noblock(event_zone
), *listhead
=kfse_list_head
.lh_first
;
505 printf("add_fsevent: event queue is full! dropping events (num dropped events: %d; num events outstanding: %d).\n", num_dropped
, num_events_outstanding
);
506 printf("add_fsevent: kfse_list head %p ; num_pending_rename %d\n", listhead
, num_pending_rename
);
507 printf("add_fsevent: zalloc sez: %p\n", junkptr
);
508 printf("add_fsevent: event_zone info: %d 0x%x\n", ((int *)event_zone
)[0], ((int *)event_zone
)[1]);
510 for(ii
=0; ii
< MAX_WATCHERS
; ii
++) {
511 if (watcher_table
[ii
] == NULL
) {
515 printf("add_fsevent: watcher %s %p: rd %4d wr %4d q_size %4d flags 0x%x\n",
516 watcher_table
[ii
]->proc_name
,
518 watcher_table
[ii
]->rd
, watcher_table
[ii
]->wr
,
519 watcher_table
[ii
]->eventq_size
, watcher_table
[ii
]->flags
);
521 unlock_watch_table();
523 last_print
= current_tv
;
525 zfree(event_zone
, junkptr
);
531 release_pathbuff(pathbuff
);
537 memset(kfse
, 0, sizeof(kfs_event
));
539 OSBitOrAtomic16(KFSE_BEING_CREATED
, &kfse
->flags
);
541 last_event_ptr
= kfse
;
544 kfse
->pid
= p
->p_pid
;
545 if (type
== FSE_RENAME
|| type
== FSE_EXCHANGE
|| type
== FSE_CLONE
) {
546 memset(kfse_dest
, 0, sizeof(kfs_event
));
547 kfse_dest
->refcount
= 1;
548 OSBitOrAtomic16(KFSE_BEING_CREATED
, &kfse_dest
->flags
);
549 kfse_dest
->type
= type
;
550 kfse_dest
->pid
= p
->p_pid
;
551 kfse_dest
->abstime
= now
;
553 kfse
->dest
= kfse_dest
;
556 num_events_outstanding
++;
557 if (kfse
->type
== FSE_RENAME
) {
558 num_pending_rename
++;
560 LIST_INSERT_HEAD(&kfse_list_head
, kfse
, kevent_list
);
562 if (kfse
->refcount
< 1) {
563 panic("add_fsevent: line %d: kfse recount %d but should be at least 1\n", __LINE__
, kfse
->refcount
);
566 unlock_fs_event_list(); // at this point it's safe to unlock
569 // now process the arguments passed in and copy them into
575 if (type
== FSE_DOCID_CREATED
|| type
== FSE_DOCID_CHANGED
) {
579 // These events are special and not like the other events. They only
580 // have a dev_t, src inode #, dest inode #, and a doc-id. We use the
581 // fields that we can in the kfse but have to overlay the dest inode
582 // number and the doc-id on the other fields.
586 arg_type
= va_arg(ap
, int32_t);
587 if (arg_type
== FSE_ARG_DEV
) {
588 cur
->dev
= (dev_t
)(va_arg(ap
, dev_t
));
590 cur
->dev
= (dev_t
)0xbadc0de1;
593 // next the source inode #
594 arg_type
= va_arg(ap
, int32_t);
595 if (arg_type
== FSE_ARG_INO
) {
596 cur
->ino
= (ino64_t
)(va_arg(ap
, ino64_t
));
598 cur
->ino
= 0xbadc0de2;
601 // now the dest inode #
602 arg_type
= va_arg(ap
, int32_t);
603 if (arg_type
== FSE_ARG_INO
) {
604 val
= (ino64_t
)(va_arg(ap
, ino64_t
));
608 // overlay the dest inode number on the str/dest pointer fields
609 memcpy(&cur
->str
, &val
, sizeof(ino64_t
));
612 // and last the document-id
613 arg_type
= va_arg(ap
, int32_t);
614 if (arg_type
== FSE_ARG_INT32
) {
615 val
= (uint64_t)va_arg(ap
, uint32_t);
616 } else if (arg_type
== FSE_ARG_INT64
) {
617 val
= (uint64_t)va_arg(ap
, uint64_t);
622 // the docid is 64-bit and overlays the uid/gid fields
623 memcpy(&cur
->uid
, &val
, sizeof(uint64_t));
628 if (type
== FSE_UNMOUNT_PENDING
) {
631 arg_type
= va_arg(ap
, int32_t);
632 if (arg_type
== FSE_ARG_DEV
) {
633 cur
->dev
= (dev_t
)(va_arg(ap
, dev_t
));
635 cur
->dev
= (dev_t
)0xbadc0de1;
641 for(arg_type
=va_arg(ap
, int32_t); arg_type
!= FSE_ARG_DONE
; arg_type
=va_arg(ap
, int32_t))
644 case FSE_ARG_VNODE
: {
645 // this expands out into multiple arguments to the client
647 struct vnode_attr va
;
649 if (kfse
->str
!= NULL
) {
653 vp
= va_arg(ap
, struct vnode
*);
655 panic("add_fsevent: you can't pass me a NULL vnode ptr (type %d)!\n",
660 VATTR_WANTED(&va
, va_fsid
);
661 VATTR_WANTED(&va
, va_fileid
);
662 VATTR_WANTED(&va
, va_mode
);
663 VATTR_WANTED(&va
, va_uid
);
664 VATTR_WANTED(&va
, va_gid
);
665 VATTR_WANTED(&va
, va_nlink
);
666 if ((ret
= vnode_getattr(vp
, &va
, vfs_context_kernel())) != 0) {
667 // printf("add_fsevent: failed to getattr on vp %p (%d)\n", cur->fref.vp, ret);
673 cur
->dev
= dev
= (dev_t
)va
.va_fsid
;
674 cur
->ino
= (ino64_t
)va
.va_fileid
;
675 cur
->mode
= (int32_t)vnode_vttoif(vnode_vtype(vp
)) | va
.va_mode
;
676 cur
->uid
= va
.va_uid
;
677 cur
->gid
= va
.va_gid
;
678 if (vp
->v_flag
& VISHARDLINK
) {
679 cur
->mode
|= FSE_MODE_HLINK
;
680 if ((vp
->v_type
== VDIR
&& va
.va_dirlinkcount
== 0) || (vp
->v_type
== VREG
&& va
.va_nlink
== 0)) {
681 cur
->mode
|= FSE_MODE_LAST_HLINK
;
685 // if we haven't gotten the path yet, get it.
686 if (pathbuff
== NULL
) {
687 pathbuff
= get_pathbuff();
688 pathbuff_len
= MAXPATHLEN
;
691 if ((ret
= vn_getpath(vp
, pathbuff
, &pathbuff_len
)) != 0 || pathbuff
[0] == '\0') {
693 cur
->flags
|= KFSE_CONTAINS_DROPPED_EVENTS
;
696 if (vp
->v_parent
!= NULL
) {
698 } else if (vp
->v_mount
) {
699 strlcpy(pathbuff
, vp
->v_mount
->mnt_vfsstat
.f_mntonname
, MAXPATHLEN
);
709 pathbuff_len
= MAXPATHLEN
;
710 ret
= vn_getpath(vp
, pathbuff
, &pathbuff_len
);
711 } while (ret
== ENOSPC
);
713 if (ret
!= 0 || vp
== NULL
) {
720 // store the path by adding it to the global string table
721 cur
->len
= pathbuff_len
;
722 cur
->str
= vfs_addname(pathbuff
, pathbuff_len
, 0, 0);
723 if (cur
->str
== NULL
|| cur
->str
[0] == '\0') {
724 panic("add_fsevent: was not able to add path %s to event %p.\n", pathbuff
, cur
);
727 release_pathbuff(pathbuff
);
733 case FSE_ARG_FINFO
: {
736 fse
= va_arg(ap
, fse_info
*);
738 cur
->dev
= dev
= (dev_t
)fse
->dev
;
739 cur
->ino
= (ino64_t
)fse
->ino
;
740 cur
->mode
= (int32_t)fse
->mode
;
741 cur
->uid
= (uid_t
)fse
->uid
;
742 cur
->gid
= (uid_t
)fse
->gid
;
743 // if it's a hard-link and this is the last link, flag it
744 if ((fse
->mode
& FSE_MODE_HLINK
) && fse
->nlink
== 0) {
745 cur
->mode
|= FSE_MODE_LAST_HLINK
;
747 if (cur
->mode
& FSE_TRUNCATED_PATH
) {
748 cur
->flags
|= KFSE_CONTAINS_DROPPED_EVENTS
;
749 cur
->mode
&= ~FSE_TRUNCATED_PATH
;
755 if (kfse
->str
!= NULL
) {
759 cur
->len
= (int16_t)(va_arg(ap
, int32_t) & 0x7fff);
761 cur
->str
= vfs_addname(va_arg(ap
, char *), cur
->len
, 0, 0);
763 printf("add_fsevent: funny looking string length: %d\n", (int)cur
->len
);
765 cur
->str
= vfs_addname("/", cur
->len
, 0, 0);
767 if (cur
->str
[0] == 0) {
768 printf("add_fsevent: bogus looking string (len %d)\n", cur
->len
);
772 case FSE_ARG_INT32
: {
773 uint32_t ival
= (uint32_t)va_arg(ap
, int32_t);
774 kfse
->uid
= (ino64_t
)ival
;
779 printf("add_fsevent: unknown type %d\n", arg_type
);
780 // just skip one 32-bit word and hope we sync up...
781 (void)va_arg(ap
, int32_t);
787 OSBitAndAtomic16(~KFSE_BEING_CREATED
, &kfse
->flags
);
789 OSBitAndAtomic16(~KFSE_BEING_CREATED
, &kfse_dest
->flags
);
793 // now we have to go and let everyone know that
794 // is interested in this type of event
798 for(i
=0; i
< MAX_WATCHERS
; i
++) {
799 watcher
= watcher_table
[i
];
800 if (watcher
== NULL
) {
804 if ( type
< watcher
->num_events
805 && watcher
->event_list
[type
] == FSE_REPORT
806 && watcher_cares_about_dev(watcher
, dev
)) {
808 if (watcher_add_event(watcher
, kfse
) != 0) {
809 watcher
->num_dropped
++;
814 // if (kfse->refcount < 1) {
815 // panic("add_fsevent: line %d: kfse recount %d but should be at least 1\n", __LINE__, kfse->refcount);
819 unlock_watch_table();
824 release_pathbuff(pathbuff
);
828 release_event_ref(kfse
);
835 release_event_ref(kfs_event
*kfse
)
838 kfs_event copy
, dest_copy
;
841 old_refcount
= OSAddAtomic(-1, &kfse
->refcount
);
842 if (old_refcount
> 1) {
846 lock_fs_event_list();
847 if (last_event_ptr
== kfse
) {
848 last_event_ptr
= NULL
;
849 last_event_type
= -1;
850 last_coalesced_time
= 0;
853 if (kfse
->refcount
< 0) {
854 panic("release_event_ref: bogus kfse refcount %d\n", kfse
->refcount
);
857 if (kfse
->refcount
> 0 || kfse
->type
== FSE_INVALID
) {
858 // This is very subtle. Either of these conditions can
859 // be true if an event got recycled while we were waiting
860 // on the fs_event_list lock or the event got recycled,
861 // delivered, _and_ free'd by someone else while we were
862 // waiting on the fs event list lock. In either case
863 // we need to just unlock the list and return without
864 // doing anything because if the refcount is > 0 then
865 // someone else will take care of free'ing it and when
866 // the kfse->type is invalid then someone else already
867 // has handled free'ing the event (while we were blocked
868 // on the event list lock).
870 unlock_fs_event_list();
875 // make a copy of this so we can free things without
876 // holding the fs_event_buf lock
879 if (kfse
->type
!= FSE_DOCID_CREATED
&& kfse
->type
!= FSE_DOCID_CHANGED
&& kfse
->dest
&& OSAddAtomic(-1, &kfse
->dest
->refcount
) == 1) {
880 dest_copy
= *kfse
->dest
;
882 dest_copy
.str
= NULL
;
884 dest_copy
.type
= FSE_INVALID
;
887 kfse
->pid
= kfse
->type
; // save this off for debugging...
888 kfse
->uid
= (uid_t
)(long)kfse
->str
; // save this off for debugging...
889 kfse
->gid
= (gid_t
)(long)current_thread();
891 kfse
->str
= (char *)0xdeadbeef; // XXXdbg - catch any cheaters...
893 if (dest_copy
.type
!= FSE_INVALID
) {
894 kfse
->dest
->str
= (char *)0xbadc0de; // XXXdbg - catch any cheaters...
895 kfse
->dest
->type
= FSE_INVALID
;
897 if (kfse
->dest
->kevent_list
.le_prev
!= NULL
) {
898 num_events_outstanding
--;
899 LIST_REMOVE(kfse
->dest
, kevent_list
);
900 memset(&kfse
->dest
->kevent_list
, 0xa5, sizeof(kfse
->dest
->kevent_list
));
903 zfree(event_zone
, kfse
->dest
);
906 // mark this fsevent as invalid
911 kfse
->type
= FSE_INVALID
;
913 if (kfse
->kevent_list
.le_prev
!= NULL
) {
914 num_events_outstanding
--;
915 if (otype
== FSE_RENAME
) {
916 num_pending_rename
--;
918 LIST_REMOVE(kfse
, kevent_list
);
919 memset(&kfse
->kevent_list
, 0, sizeof(kfse
->kevent_list
));
923 zfree(event_zone
, kfse
);
925 unlock_fs_event_list();
927 // if we have a pointer in the union
928 if (copy
.str
&& copy
.type
!= FSE_DOCID_CREATED
&& copy
.type
!= FSE_DOCID_CHANGED
) {
929 if (copy
.len
== 0) { // and it's not a string
930 panic("%s:%d: no more fref.vp!\n", __FILE__
, __LINE__
);
931 // vnode_rele_ext(copy.fref.vp, O_EVTONLY, 0);
932 } else { // else it's a string
933 vfs_removename(copy
.str
);
937 if (dest_copy
.type
!= FSE_INVALID
&& dest_copy
.str
) {
938 if (dest_copy
.len
== 0) {
939 panic("%s:%d: no more fref.vp!\n", __FILE__
, __LINE__
);
940 // vnode_rele_ext(dest_copy.fref.vp, O_EVTONLY, 0);
942 vfs_removename(dest_copy
.str
);
948 add_watcher(int8_t *event_list
, int32_t num_events
, int32_t eventq_size
, fs_event_watcher
**watcher_out
, void *fseh
)
951 fs_event_watcher
*watcher
;
953 if (eventq_size
<= 0 || eventq_size
> 100*max_kfs_events
) {
954 eventq_size
= max_kfs_events
;
957 // Note: the event_queue follows the fs_event_watcher struct
958 // in memory so we only have to do one allocation
961 sizeof(fs_event_watcher
) + eventq_size
* sizeof(kfs_event
*),
963 if (watcher
== NULL
) {
967 watcher
->event_list
= event_list
;
968 watcher
->num_events
= num_events
;
969 watcher
->devices_not_to_watch
= NULL
;
970 watcher
->num_devices
= 0;
972 watcher
->event_queue
= (kfs_event
**)&watcher
[1];
973 watcher
->eventq_size
= eventq_size
;
976 watcher
->blockers
= 0;
977 watcher
->num_readers
= 0;
978 watcher
->max_event_id
= 0;
979 watcher
->fseh
= fseh
;
980 watcher
->pid
= proc_selfpid();
981 proc_selfname(watcher
->proc_name
, sizeof(watcher
->proc_name
));
983 watcher
->num_dropped
= 0; // XXXdbg - debugging
985 if (!strncmp(watcher
->proc_name
, "fseventsd", sizeof(watcher
->proc_name
)) ||
986 !strncmp(watcher
->proc_name
, "coreservicesd", sizeof(watcher
->proc_name
)) ||
987 !strncmp(watcher
->proc_name
, "revisiond", sizeof(watcher
->proc_name
)) ||
988 !strncmp(watcher
->proc_name
, "mds", sizeof(watcher
->proc_name
))) {
989 watcher
->flags
|= WATCHER_APPLE_SYSTEM_SERVICE
;
991 printf("fsevents: watcher %s (pid: %d) - Using /dev/fsevents directly is unsupported. Migrate to FSEventsFramework\n",
992 watcher
->proc_name
, watcher
->pid
);
997 // find a slot for the new watcher
998 for(i
=0; i
< MAX_WATCHERS
; i
++) {
999 if (watcher_table
[i
] == NULL
) {
1001 watcher_table
[i
] = watcher
;
1006 if (i
>= MAX_WATCHERS
) {
1007 printf("fsevents: too many watchers!\n");
1008 unlock_watch_table();
1009 FREE(watcher
, M_TEMP
);
1013 // now update the global list of who's interested in
1014 // events of a particular type...
1015 for(i
=0; i
< num_events
; i
++) {
1016 if (event_list
[i
] != FSE_IGNORE
&& i
< FSE_MAX_EVENTS
) {
1017 fs_event_type_watchers
[i
]++;
1021 unlock_watch_table();
1023 *watcher_out
= watcher
;
1031 remove_watcher(fs_event_watcher
*target
)
1033 int i
, j
, counter
=0;
1034 fs_event_watcher
*watcher
;
1039 for(j
=0; j
< MAX_WATCHERS
; j
++) {
1040 watcher
= watcher_table
[j
];
1041 if (watcher
!= target
) {
1045 watcher_table
[j
] = NULL
;
1047 for(i
=0; i
< watcher
->num_events
; i
++) {
1048 if (watcher
->event_list
[i
] != FSE_IGNORE
&& i
< FSE_MAX_EVENTS
) {
1049 fs_event_type_watchers
[i
]--;
1053 if (watcher
->flags
& WATCHER_CLOSING
) {
1054 unlock_watch_table();
1058 // printf("fsevents: removing watcher %p (rd %d wr %d num_readers %d flags 0x%x)\n", watcher, watcher->rd, watcher->wr, watcher->num_readers, watcher->flags);
1059 watcher
->flags
|= WATCHER_CLOSING
;
1060 OSAddAtomic(1, &watcher
->num_readers
);
1062 unlock_watch_table();
1064 while (watcher
->num_readers
> 1 && counter
++ < 5000) {
1066 fsevents_wakeup(watcher
); // in case they're asleep
1067 unlock_watch_table();
1069 tsleep(watcher
, PRIBIO
, "fsevents-close", 1);
1071 if (counter
++ >= 5000) {
1072 // printf("fsevents: close: still have readers! (%d)\n", watcher->num_readers);
1073 panic("fsevents: close: still have readers! (%d)\n", watcher
->num_readers
);
1076 // drain the event_queue
1078 lck_rw_lock_exclusive(&event_handling_lock
);
1079 while(watcher
->rd
!= watcher
->wr
) {
1080 kfse
= watcher
->event_queue
[watcher
->rd
];
1081 watcher
->event_queue
[watcher
->rd
] = NULL
;
1082 watcher
->rd
= (watcher
->rd
+1) % watcher
->eventq_size
;
1084 if (kfse
!= NULL
&& kfse
->type
!= FSE_INVALID
&& kfse
->refcount
>= 1) {
1085 release_event_ref(kfse
);
1088 lck_rw_unlock_exclusive(&event_handling_lock
);
1090 if (watcher
->event_list
) {
1091 FREE(watcher
->event_list
, M_TEMP
);
1092 watcher
->event_list
= NULL
;
1094 if (watcher
->devices_not_to_watch
) {
1095 FREE(watcher
->devices_not_to_watch
, M_TEMP
);
1096 watcher
->devices_not_to_watch
= NULL
;
1098 FREE(watcher
, M_TEMP
);
1103 unlock_watch_table();
1107 #define EVENT_DELAY_IN_MS 10
1108 static thread_call_t event_delivery_timer
= NULL
;
1109 static int timer_set
= 0;
1113 delayed_event_delivery(__unused
void *param0
, __unused
void *param1
)
1119 for(i
=0; i
< MAX_WATCHERS
; i
++) {
1120 if (watcher_table
[i
] != NULL
&& watcher_table
[i
]->rd
!= watcher_table
[i
]->wr
) {
1121 fsevents_wakeup(watcher_table
[i
]);
1127 unlock_watch_table();
1132 // The watch table must be locked before calling this function.
1135 schedule_event_wakeup(void)
1139 if (event_delivery_timer
== NULL
) {
1140 event_delivery_timer
= thread_call_allocate((thread_call_func_t
)delayed_event_delivery
, NULL
);
1143 clock_interval_to_deadline(EVENT_DELAY_IN_MS
, 1000 * 1000, &deadline
);
1145 thread_call_enter_delayed(event_delivery_timer
, deadline
);
1151 #define MAX_NUM_PENDING 16
1154 // NOTE: the watch table must be locked before calling
1158 watcher_add_event(fs_event_watcher
*watcher
, kfs_event
*kfse
)
1160 if (kfse
->abstime
> watcher
->max_event_id
) {
1161 watcher
->max_event_id
= kfse
->abstime
;
1164 if (((watcher
->wr
+ 1) % watcher
->eventq_size
) == watcher
->rd
) {
1165 watcher
->flags
|= WATCHER_DROPPED_EVENTS
;
1166 fsevents_wakeup(watcher
);
1170 OSAddAtomic(1, &kfse
->refcount
);
1171 watcher
->event_queue
[watcher
->wr
] = kfse
;
1173 watcher
->wr
= (watcher
->wr
+ 1) % watcher
->eventq_size
;
1176 // wake up the watcher if there are more than MAX_NUM_PENDING events.
1177 // otherwise schedule a timer (if one isn't already set) which will
1178 // send any pending events if no more are received in the next
1179 // EVENT_DELAY_IN_MS milli-seconds.
1181 int32_t num_pending
= 0;
1182 if (watcher
->rd
< watcher
->wr
) {
1183 num_pending
= watcher
->wr
- watcher
->rd
;
1186 if (watcher
->rd
> watcher
->wr
) {
1187 num_pending
= watcher
->wr
+ watcher
->eventq_size
- watcher
->rd
;
1190 if (num_pending
> (watcher
->eventq_size
*3/4) && !(watcher
->flags
& WATCHER_APPLE_SYSTEM_SERVICE
)) {
1191 /* Non-Apple Service is falling behind, start dropping events for this process */
1192 lck_rw_lock_exclusive(&event_handling_lock
);
1193 while (watcher
->rd
!= watcher
->wr
) {
1194 kfse
= watcher
->event_queue
[watcher
->rd
];
1195 watcher
->event_queue
[watcher
->rd
] = NULL
;
1196 watcher
->rd
= (watcher
->rd
+1) % watcher
->eventq_size
;
1198 if (kfse
!= NULL
&& kfse
->type
!= FSE_INVALID
&& kfse
->refcount
>= 1) {
1199 release_event_ref(kfse
);
1202 watcher
->flags
|= WATCHER_DROPPED_EVENTS
;
1203 lck_rw_unlock_exclusive(&event_handling_lock
);
1205 printf("fsevents: watcher falling behind: %s (pid: %d) rd: %4d wr: %4d q_size: %4d flags: 0x%x\n",
1206 watcher
->proc_name
, watcher
->pid
, watcher
->rd
, watcher
->wr
,
1207 watcher
->eventq_size
, watcher
->flags
);
1209 fsevents_wakeup(watcher
);
1210 } else if (num_pending
> MAX_NUM_PENDING
) {
1211 fsevents_wakeup(watcher
);
1212 } else if (timer_set
== 0) {
1213 schedule_event_wakeup();
1220 fill_buff(uint16_t type
, int32_t size
, const void *data
,
1221 char *buff
, int32_t *_buff_idx
, int32_t buff_sz
,
1224 int32_t amt
, error
= 0, buff_idx
= *_buff_idx
;
1228 // the +1 on the size is to guarantee that the main data
1229 // copy loop will always copy at least 1 byte
1231 if ((buff_sz
- buff_idx
) <= (int)(2*sizeof(uint16_t) + 1)) {
1232 if (buff_idx
> uio_resid(uio
)) {
1237 error
= uiomove(buff
, buff_idx
, uio
);
1244 // copy out the header (type & size)
1245 memcpy(&buff
[buff_idx
], &type
, sizeof(uint16_t));
1246 buff_idx
+= sizeof(uint16_t);
1248 tmp
= size
& 0xffff;
1249 memcpy(&buff
[buff_idx
], &tmp
, sizeof(uint16_t));
1250 buff_idx
+= sizeof(uint16_t);
1252 // now copy the body of the data, flushing along the way
1253 // if the buffer fills up.
1256 amt
= (size
< (buff_sz
- buff_idx
)) ? size
: (buff_sz
- buff_idx
);
1257 memcpy(&buff
[buff_idx
], data
, amt
);
1261 data
= (const char *)data
+ amt
;
1262 if (size
> (buff_sz
- buff_idx
)) {
1263 if (buff_idx
> uio_resid(uio
)) {
1267 error
= uiomove(buff
, buff_idx
, uio
);
1274 if (amt
== 0) { // just in case...
1280 *_buff_idx
= buff_idx
;
1286 static int copy_out_kfse(fs_event_watcher
*watcher
, kfs_event
*kfse
, struct uio
*uio
) __attribute__((noinline
));
1289 copy_out_kfse(fs_event_watcher
*watcher
, kfs_event
*kfse
, struct uio
*uio
)
1298 if (kfse
->type
== FSE_INVALID
) {
1299 panic("fsevents: copy_out_kfse: asked to copy out an invalid event (kfse %p, refcount %d fref ptr %p)\n", kfse
, kfse
->refcount
, kfse
->str
);
1302 if (kfse
->flags
& KFSE_BEING_CREATED
) {
1306 if (kfse
->type
== FSE_RENAME
&& kfse
->dest
== NULL
) {
1308 // This can happen if an event gets recycled but we had a
1309 // pointer to it in our event queue. The event is the
1310 // destination of a rename which we'll process separately
1311 // (that is, another kfse points to this one so it's ok
1312 // to skip this guy because we'll process it when we process
1318 if (watcher
->flags
& WATCHER_WANTS_EXTENDED_INFO
) {
1320 type
= (kfse
->type
& 0xfff);
1322 if (kfse
->flags
& KFSE_CONTAINS_DROPPED_EVENTS
) {
1323 type
|= (FSE_CONTAINS_DROPPED_EVENTS
<< FSE_FLAG_SHIFT
);
1324 } else if (kfse
->flags
& KFSE_COMBINED_EVENTS
) {
1325 type
|= (FSE_COMBINED_EVENTS
<< FSE_FLAG_SHIFT
);
1329 type
= (int32_t)kfse
->type
;
1332 // copy out the type of the event
1333 memcpy(evbuff
, &type
, sizeof(int32_t));
1334 evbuff_idx
+= sizeof(int32_t);
1336 // copy out the pid of the person that generated the event
1337 memcpy(&evbuff
[evbuff_idx
], &kfse
->pid
, sizeof(pid_t
));
1338 evbuff_idx
+= sizeof(pid_t
);
1344 if (kfse
->type
== FSE_DOCID_CHANGED
|| kfse
->type
== FSE_DOCID_CREATED
) {
1345 dev_t dev
= cur
->dev
;
1346 ino64_t ino
= cur
->ino
;
1349 error
= fill_buff(FSE_ARG_DEV
, sizeof(dev_t
), &dev
, evbuff
, &evbuff_idx
, sizeof(evbuff
), uio
);
1354 error
= fill_buff(FSE_ARG_INO
, sizeof(ino64_t
), &ino
, evbuff
, &evbuff_idx
, sizeof(evbuff
), uio
);
1359 memcpy(&ino
, &cur
->str
, sizeof(ino64_t
));
1360 error
= fill_buff(FSE_ARG_INO
, sizeof(ino64_t
), &ino
, evbuff
, &evbuff_idx
, sizeof(evbuff
), uio
);
1365 memcpy(&ival
, &cur
->uid
, sizeof(uint64_t)); // the docid gets stuffed into the ino field
1366 error
= fill_buff(FSE_ARG_INT64
, sizeof(uint64_t), &ival
, evbuff
, &evbuff_idx
, sizeof(evbuff
), uio
);
1374 if (kfse
->type
== FSE_UNMOUNT_PENDING
) {
1375 dev_t dev
= cur
->dev
;
1377 error
= fill_buff(FSE_ARG_DEV
, sizeof(dev_t
), &dev
, evbuff
, &evbuff_idx
, sizeof(evbuff
), uio
);
1385 if (cur
->str
== NULL
|| cur
->str
[0] == '\0') {
1386 printf("copy_out_kfse:2: empty/short path (%s)\n", cur
->str
);
1387 error
= fill_buff(FSE_ARG_STRING
, 2, "/", evbuff
, &evbuff_idx
, sizeof(evbuff
), uio
);
1389 error
= fill_buff(FSE_ARG_STRING
, cur
->len
, cur
->str
, evbuff
, &evbuff_idx
, sizeof(evbuff
), uio
);
1395 if (cur
->dev
== 0 && cur
->ino
== 0) {
1396 // this happens when a rename event happens and the
1397 // destination of the rename did not previously exist.
1398 // it thus has no other file info so skip copying out
1399 // the stuff below since it isn't initialized
1404 if (watcher
->flags
& WATCHER_WANTS_COMPACT_EVENTS
) {
1407 finfo_size
= sizeof(dev_t
) + sizeof(ino64_t
) + sizeof(int32_t) + sizeof(uid_t
) + sizeof(gid_t
);
1408 error
= fill_buff(FSE_ARG_FINFO
, finfo_size
, &cur
->ino
, evbuff
, &evbuff_idx
, sizeof(evbuff
), uio
);
1413 error
= fill_buff(FSE_ARG_DEV
, sizeof(dev_t
), &cur
->dev
, evbuff
, &evbuff_idx
, sizeof(evbuff
), uio
);
1418 error
= fill_buff(FSE_ARG_INO
, sizeof(ino64_t
), &cur
->ino
, evbuff
, &evbuff_idx
, sizeof(evbuff
), uio
);
1423 error
= fill_buff(FSE_ARG_MODE
, sizeof(int32_t), &cur
->mode
, evbuff
, &evbuff_idx
, sizeof(evbuff
), uio
);
1428 error
= fill_buff(FSE_ARG_UID
, sizeof(uid_t
), &cur
->uid
, evbuff
, &evbuff_idx
, sizeof(evbuff
), uio
);
1433 error
= fill_buff(FSE_ARG_GID
, sizeof(gid_t
), &cur
->gid
, evbuff
, &evbuff_idx
, sizeof(evbuff
), uio
);
1446 // very last thing: the time stamp
1447 error
= fill_buff(FSE_ARG_INT64
, sizeof(uint64_t), &cur
->abstime
, evbuff
, &evbuff_idx
, sizeof(evbuff
), uio
);
1452 // check if the FSE_ARG_DONE will fit
1453 if (sizeof(uint16_t) > sizeof(evbuff
) - evbuff_idx
) {
1454 if (evbuff_idx
> uio_resid(uio
)) {
1458 error
= uiomove(evbuff
, evbuff_idx
, uio
);
1465 tmp16
= FSE_ARG_DONE
;
1466 memcpy(&evbuff
[evbuff_idx
], &tmp16
, sizeof(uint16_t));
1467 evbuff_idx
+= sizeof(uint16_t);
1469 // flush any remaining data in the buffer (and hopefully
1470 // in most cases this is the only uiomove we'll do)
1471 if (evbuff_idx
> uio_resid(uio
)) {
1474 error
= uiomove(evbuff
, evbuff_idx
, uio
);
1485 fmod_watch(fs_event_watcher
*watcher
, struct uio
*uio
)
1488 user_ssize_t last_full_event_resid
;
1493 last_full_event_resid
= uio_resid(uio
);
1495 // need at least 2048 bytes of space (maxpathlen + 1 event buf)
1496 if (uio_resid(uio
) < 2048 || watcher
== NULL
) {
1500 if (watcher
->flags
& WATCHER_CLOSING
) {
1504 if (OSAddAtomic(1, &watcher
->num_readers
) != 0) {
1505 // don't allow multiple threads to read from the fd at the same time
1506 OSAddAtomic(-1, &watcher
->num_readers
);
1511 if (watcher
->rd
== watcher
->wr
) {
1512 if (watcher
->flags
& WATCHER_CLOSING
) {
1513 OSAddAtomic(-1, &watcher
->num_readers
);
1516 OSAddAtomic(1, &watcher
->blockers
);
1518 // there's nothing to do, go to sleep
1519 error
= tsleep((caddr_t
)watcher
, PUSER
|PCATCH
, "fsevents_empty", 0);
1521 OSAddAtomic(-1, &watcher
->blockers
);
1523 if (error
!= 0 || (watcher
->flags
& WATCHER_CLOSING
)) {
1524 OSAddAtomic(-1, &watcher
->num_readers
);
1529 // if we dropped events, return that as an event first
1530 if (watcher
->flags
& WATCHER_DROPPED_EVENTS
) {
1531 int32_t val
= FSE_EVENTS_DROPPED
;
1533 error
= uiomove((caddr_t
)&val
, sizeof(int32_t), uio
);
1535 val
= 0; // a fake pid
1536 error
= uiomove((caddr_t
)&val
, sizeof(int32_t), uio
);
1538 tmp16
= FSE_ARG_DONE
; // makes it a consistent msg
1539 error
= uiomove((caddr_t
)&tmp16
, sizeof(int16_t), uio
);
1541 last_full_event_resid
= uio_resid(uio
);
1545 OSAddAtomic(-1, &watcher
->num_readers
);
1549 watcher
->flags
&= ~WATCHER_DROPPED_EVENTS
;
1554 lck_rw_lock_shared(&event_handling_lock
);
1555 while (uio_resid(uio
) > 0 && watcher
->rd
!= watcher
->wr
) {
1556 if (watcher
->flags
& WATCHER_CLOSING
) {
1561 // check if the event is something of interest to us
1562 // (since it may have been recycled/reused and changed
1563 // its type or which device it is for)
1565 kfse
= watcher
->event_queue
[watcher
->rd
];
1566 if (!kfse
|| kfse
->type
== FSE_INVALID
|| kfse
->type
>= watcher
->num_events
|| kfse
->refcount
< 1) {
1570 if (watcher
->event_list
[kfse
->type
] == FSE_REPORT
&& watcher_cares_about_dev(watcher
, kfse
->dev
)) {
1572 if (!(watcher
->flags
& WATCHER_APPLE_SYSTEM_SERVICE
) && kfse
->type
!= FSE_DOCID_CREATED
&& kfse
->type
!= FSE_DOCID_CHANGED
&& is_ignored_directory(kfse
->str
)) {
1573 // If this is not an Apple System Service, skip specified directories
1580 if (last_event_ptr
== kfse
) {
1581 last_event_ptr
= NULL
;
1582 last_event_type
= -1;
1583 last_coalesced_time
= 0;
1585 error
= copy_out_kfse(watcher
, kfse
, uio
);
1587 // if an event won't fit or encountered an error while
1588 // we were copying it out, then backup to the last full
1589 // event and just bail out. if the error was ENOENT
1590 // then we can continue regular processing, otherwise
1591 // we should unlock things and return.
1592 uio_setresid(uio
, last_full_event_resid
);
1593 if (error
!= ENOENT
) {
1594 lck_rw_unlock_shared(&event_handling_lock
);
1600 last_full_event_resid
= uio_resid(uio
);
1604 watcher
->event_queue
[watcher
->rd
] = NULL
;
1605 watcher
->rd
= (watcher
->rd
+ 1) % watcher
->eventq_size
;
1607 release_event_ref(kfse
);
1609 lck_rw_unlock_shared(&event_handling_lock
);
1611 if (skipped
&& error
== 0) {
1616 OSAddAtomic(-1, &watcher
->num_readers
);
1623 // Shoo watchers away from a volume that's about to be unmounted
1624 // (so that it can be cleanly unmounted).
1627 fsevent_unmount(__unused
struct mount
*mp
, __unused vfs_context_t ctx
)
1630 dev_t dev
= mp
->mnt_vfsstat
.f_fsid
.val
[0];
1631 int error
, waitcount
= 0;
1632 struct timespec ts
= {1, 0};
1634 // wait for any other pending unmounts to complete
1636 while (fsevent_unmount_dev
!= 0) {
1637 error
= msleep((caddr_t
)&fsevent_unmount_dev
, &watch_table_lock
, PRIBIO
, "fsevent_unmount_wait", &ts
);
1638 if (error
== EWOULDBLOCK
)
1640 if (!error
&& (++waitcount
>= 10)) {
1641 error
= EWOULDBLOCK
;
1642 printf("timeout waiting to signal unmount pending for dev %d (fsevent_unmount_dev %d)\n", dev
, fsevent_unmount_dev
);
1645 // there's a problem, bail out
1646 unlock_watch_table();
1650 if (fs_event_type_watchers
[FSE_UNMOUNT_PENDING
] == 0) {
1651 // nobody watching for unmount pending events
1652 unlock_watch_table();
1655 // this is now the current unmount pending
1656 fsevent_unmount_dev
= dev
;
1657 fsevent_unmount_ack_count
= fs_event_type_watchers
[FSE_UNMOUNT_PENDING
];
1658 unlock_watch_table();
1660 // send an event to notify the watcher they need to get off the mount
1661 error
= add_fsevent(FSE_UNMOUNT_PENDING
, ctx
, FSE_ARG_DEV
, dev
, FSE_ARG_DONE
);
1663 // wait for acknowledgment(s) (give up if it takes too long)
1666 while (fsevent_unmount_dev
== dev
) {
1667 error
= msleep((caddr_t
)&fsevent_unmount_dev
, &watch_table_lock
, PRIBIO
, "fsevent_unmount_pending", &ts
);
1668 if (error
== EWOULDBLOCK
)
1670 if (!error
&& (++waitcount
>= 10)) {
1671 error
= EWOULDBLOCK
;
1672 printf("unmount pending ack timeout for dev %d\n", dev
);
1675 // there's a problem, bail out
1676 if (fsevent_unmount_dev
== dev
) {
1677 fsevent_unmount_dev
= 0;
1678 fsevent_unmount_ack_count
= 0;
1680 wakeup((caddr_t
)&fsevent_unmount_dev
);
1684 unlock_watch_table();
1690 // /dev/fsevents device code
1692 static int fsevents_installed
= 0;
1694 typedef struct fsevent_handle
{
1697 fs_event_watcher
*watcher
;
1698 struct klist knotes
;
1702 #define FSEH_CLOSING 0x0001
1705 fseventsf_read(struct fileproc
*fp
, struct uio
*uio
,
1706 __unused
int flags
, __unused vfs_context_t ctx
)
1708 fsevent_handle
*fseh
= (struct fsevent_handle
*)fp
->f_fglob
->fg_data
;
1711 error
= fmod_watch(fseh
->watcher
, uio
);
1718 fseventsf_write(__unused
struct fileproc
*fp
, __unused
struct uio
*uio
,
1719 __unused
int flags
, __unused vfs_context_t ctx
)
1724 #pragma pack(push, 4)
1725 typedef struct fsevent_dev_filter_args32
{
1726 uint32_t num_devices
;
1727 user32_addr_t devices
;
1728 } fsevent_dev_filter_args32
;
1729 typedef struct fsevent_dev_filter_args64
{
1730 uint32_t num_devices
;
1731 user64_addr_t devices
;
1732 } fsevent_dev_filter_args64
;
1735 #define FSEVENTS_DEVICE_FILTER_32 _IOW('s', 100, fsevent_dev_filter_args32)
1736 #define FSEVENTS_DEVICE_FILTER_64 _IOW('s', 100, fsevent_dev_filter_args64)
1739 fseventsf_ioctl(struct fileproc
*fp
, u_long cmd
, caddr_t data
, vfs_context_t ctx
)
1741 fsevent_handle
*fseh
= (struct fsevent_handle
*)fp
->f_fglob
->fg_data
;
1743 fsevent_dev_filter_args64
*devfilt_args
, _devfilt_args
;
1745 OSAddAtomic(1, &fseh
->active
);
1746 if (fseh
->flags
& FSEH_CLOSING
) {
1747 OSAddAtomic(-1, &fseh
->active
);
1756 case FSEVENTS_WANT_COMPACT_EVENTS
: {
1757 fseh
->watcher
->flags
|= WATCHER_WANTS_COMPACT_EVENTS
;
1761 case FSEVENTS_WANT_EXTENDED_INFO
: {
1762 fseh
->watcher
->flags
|= WATCHER_WANTS_EXTENDED_INFO
;
1766 case FSEVENTS_GET_CURRENT_ID
: {
1767 *(uint64_t *)data
= fseh
->watcher
->max_event_id
;
1772 case FSEVENTS_DEVICE_FILTER_32
: {
1773 if (proc_is64bit(vfs_context_proc(ctx
))) {
1777 fsevent_dev_filter_args32
*devfilt_args32
= (fsevent_dev_filter_args32
*)data
;
1779 devfilt_args
= &_devfilt_args
;
1780 memset(devfilt_args
, 0, sizeof(fsevent_dev_filter_args64
));
1781 devfilt_args
->num_devices
= devfilt_args32
->num_devices
;
1782 devfilt_args
->devices
= CAST_USER_ADDR_T(devfilt_args32
->devices
);
1783 goto handle_dev_filter
;
1786 case FSEVENTS_DEVICE_FILTER_64
:
1787 if (!proc_is64bit(vfs_context_proc(ctx
))) {
1791 devfilt_args
= (fsevent_dev_filter_args64
*)data
;
1795 int new_num_devices
;
1796 dev_t
*devices_not_to_watch
, *tmp
=NULL
;
1798 if (devfilt_args
->num_devices
> 256) {
1803 new_num_devices
= devfilt_args
->num_devices
;
1804 if (new_num_devices
== 0) {
1807 tmp
= fseh
->watcher
->devices_not_to_watch
;
1808 fseh
->watcher
->devices_not_to_watch
= NULL
;
1809 fseh
->watcher
->num_devices
= new_num_devices
;
1811 unlock_watch_table();
1818 MALLOC(devices_not_to_watch
, dev_t
*,
1819 new_num_devices
* sizeof(dev_t
),
1821 if (devices_not_to_watch
== NULL
) {
1826 ret
= copyin(devfilt_args
->devices
,
1827 (void *)devices_not_to_watch
,
1828 new_num_devices
* sizeof(dev_t
));
1830 FREE(devices_not_to_watch
, M_TEMP
);
1835 fseh
->watcher
->num_devices
= new_num_devices
;
1836 tmp
= fseh
->watcher
->devices_not_to_watch
;
1837 fseh
->watcher
->devices_not_to_watch
= devices_not_to_watch
;
1838 unlock_watch_table();
1847 case FSEVENTS_UNMOUNT_PENDING_ACK
: {
1849 dev_t dev
= *(dev_t
*)data
;
1850 if (fsevent_unmount_dev
== dev
) {
1851 if (--fsevent_unmount_ack_count
<= 0) {
1852 fsevent_unmount_dev
= 0;
1853 wakeup((caddr_t
)&fsevent_unmount_dev
);
1856 printf("unexpected unmount pending ack %d (%d)\n", dev
, fsevent_unmount_dev
);
1859 unlock_watch_table();
1868 OSAddAtomic(-1, &fseh
->active
);
1874 fseventsf_select(struct fileproc
*fp
, int which
, __unused
void *wql
, vfs_context_t ctx
)
1876 fsevent_handle
*fseh
= (struct fsevent_handle
*)fp
->f_fglob
->fg_data
;
1879 if ((which
!= FREAD
) || (fseh
->watcher
->flags
& WATCHER_CLOSING
)) {
1884 // if there's nothing in the queue, we're not ready
1885 if (fseh
->watcher
->rd
!= fseh
->watcher
->wr
) {
1890 selrecord(vfs_context_proc(ctx
), &fseh
->si
, wql
);
1899 fseventsf_stat(__unused
struct fileproc
*fp
, __unused
struct stat
*sb
, __unused vfs_context_t ctx
)
1906 fseventsf_close(struct fileglob
*fg
, __unused vfs_context_t ctx
)
1908 fsevent_handle
*fseh
= (struct fsevent_handle
*)fg
->fg_data
;
1909 fs_event_watcher
*watcher
;
1911 OSBitOrAtomic(FSEH_CLOSING
, &fseh
->flags
);
1912 while (OSAddAtomic(0, &fseh
->active
) > 0) {
1913 tsleep((caddr_t
)fseh
->watcher
, PRIBIO
, "fsevents-close", 1);
1916 watcher
= fseh
->watcher
;
1918 fseh
->watcher
= NULL
;
1920 remove_watcher(watcher
);
1927 filt_fsevent_detach(struct knote
*kn
)
1929 fsevent_handle
*fseh
= (struct fsevent_handle
*)kn
->kn_hook
;
1933 KNOTE_DETACH(&fseh
->knotes
, kn
);
1935 unlock_watch_table();
1939 * Determine whether this knote should be active
1941 * This is kind of subtle.
1942 * --First, notice if the vnode has been revoked: in so, override hint
1943 * --EVFILT_READ knotes are checked no matter what the hint is
1944 * --Other knotes activate based on hint.
1945 * --If hint is revoke, set special flags and activate
1948 filt_fsevent(struct knote
*kn
, long hint
)
1950 fsevent_handle
*fseh
= (struct fsevent_handle
*)kn
->kn_hook
;
1952 int32_t rd
, wr
, amt
;
1954 if (NOTE_REVOKE
== hint
) {
1955 kn
->kn_flags
|= (EV_EOF
| EV_ONESHOT
);
1959 rd
= fseh
->watcher
->rd
;
1960 wr
= fseh
->watcher
->wr
;
1964 amt
= fseh
->watcher
->eventq_size
- (rd
- wr
);
1967 switch(kn
->kn_filter
) {
1971 if (kn
->kn_data
!= 0) {
1976 /* Check events this note matches against the hint */
1977 if (kn
->kn_sfflags
& hint
) {
1978 kn
->kn_fflags
|= hint
; /* Set which event occurred */
1980 if (kn
->kn_fflags
!= 0) {
1995 filt_fsevent_touch(struct knote
*kn
, struct kevent_internal_s
*kev
)
2001 /* accept new fflags/data as saved */
2002 kn
->kn_sfflags
= kev
->fflags
;
2003 kn
->kn_sdata
= kev
->data
;
2004 if ((kn
->kn_status
& KN_UDATA_SPECIFIC
) == 0)
2005 kn
->kn_udata
= kev
->udata
;
2007 /* restrict the current results to the (smaller?) set of new interest */
2009 * For compatibility with previous implementations, we leave kn_fflags
2010 * as they were before.
2012 //kn->kn_fflags &= kev->fflags;
2014 /* determine if the filter is now fired */
2015 res
= filt_fsevent(kn
, 0);
2017 unlock_watch_table();
2023 filt_fsevent_process(struct knote
*kn
, struct filt_process_s
*data
, struct kevent_internal_s
*kev
)
2025 #pragma unused(data)
2030 res
= filt_fsevent(kn
, 0);
2032 *kev
= kn
->kn_kevent
;
2033 if (kev
->flags
& EV_CLEAR
) {
2039 unlock_watch_table();
2043 SECURITY_READ_ONLY_EARLY(struct filterops
) fsevent_filtops
= {
2046 .f_detach
= filt_fsevent_detach
,
2047 .f_event
= filt_fsevent
,
2048 .f_touch
= filt_fsevent_touch
,
2049 .f_process
= filt_fsevent_process
,
2053 fseventsf_kqfilter(__unused
struct fileproc
*fp
, __unused
struct knote
*kn
,
2054 __unused
struct kevent_internal_s
*kev
, __unused vfs_context_t ctx
)
2056 fsevent_handle
*fseh
= (struct fsevent_handle
*)fp
->f_fglob
->fg_data
;
2059 kn
->kn_hook
= (void*)fseh
;
2061 kn
->kn_filtid
= EVFILTID_FSEVENT
;
2065 KNOTE_ATTACH(&fseh
->knotes
, kn
);
2067 /* check to see if it is fired already */
2068 res
= filt_fsevent(kn
, 0);
2070 unlock_watch_table();
2077 fseventsf_drain(struct fileproc
*fp
, __unused vfs_context_t ctx
)
2080 fsevent_handle
*fseh
= (struct fsevent_handle
*)fp
->f_fglob
->fg_data
;
2082 fseh
->watcher
->flags
|= WATCHER_CLOSING
;
2084 // if there are people still waiting, sleep for 10ms to
2085 // let them clean up and get out of there. however we
2086 // also don't want to get stuck forever so if they don't
2087 // exit after 5 seconds we're tearing things down anyway.
2088 while(fseh
->watcher
->blockers
&& counter
++ < 500) {
2089 // issue wakeup in case anyone is blocked waiting for an event
2090 // do this each time we wakeup in case the blocker missed
2091 // the wakeup due to the unprotected test of WATCHER_CLOSING
2092 // and decision to tsleep in fmod_watch... this bit of
2093 // latency is a decent tradeoff against not having to
2094 // take and drop a lock in fmod_watch
2096 fsevents_wakeup(fseh
->watcher
);
2097 unlock_watch_table();
2099 tsleep((caddr_t
)fseh
->watcher
, PRIBIO
, "watcher-close", 1);
2107 fseventsopen(__unused dev_t dev
, __unused
int flag
, __unused
int mode
, __unused
struct proc
*p
)
2109 if (!kauth_cred_issuser(kauth_cred_get())) {
2117 fseventsclose(__unused dev_t dev
, __unused
int flag
, __unused
int mode
, __unused
struct proc
*p
)
2123 fseventsread(__unused dev_t dev
, __unused
struct uio
*uio
, __unused
int ioflag
)
2130 parse_buffer_and_add_events(const char *buffer
, int bufsize
, vfs_context_t ctx
, long *remainder
)
2132 const fse_info
*finfo
, *dest_finfo
;
2133 const char *path
, *ptr
, *dest_path
, *event_start
=buffer
;
2134 int path_len
, type
, dest_path_len
, err
= 0;
2138 while ((ptr
+sizeof(int)+sizeof(fse_info
)+1) < buffer
+bufsize
) {
2139 type
= *(const int *)ptr
;
2140 if (type
< 0 || type
>= FSE_MAX_EVENTS
) {
2147 finfo
= (const fse_info
*)ptr
;
2148 ptr
+= sizeof(fse_info
);
2151 while(ptr
< buffer
+bufsize
&& *ptr
!= '\0') {
2155 if (ptr
>= buffer
+bufsize
) {
2159 ptr
++; // advance over the trailing '\0'
2161 path_len
= ptr
- path
;
2163 if (type
!= FSE_RENAME
&& type
!= FSE_EXCHANGE
&& type
!= FSE_CLONE
) {
2164 event_start
= ptr
; // record where the next event starts
2166 err
= add_fsevent(type
, ctx
, FSE_ARG_STRING
, path_len
, path
, FSE_ARG_FINFO
, finfo
, FSE_ARG_DONE
);
2174 // if we're here we have to slurp up the destination finfo
2175 // and path so that we can pass them to the add_fsevent()
2176 // call. basically it's a copy of the above code.
2178 dest_finfo
= (const fse_info
*)ptr
;
2179 ptr
+= sizeof(fse_info
);
2182 while(ptr
< buffer
+bufsize
&& *ptr
!= '\0') {
2186 if (ptr
>= buffer
+bufsize
) {
2190 ptr
++; // advance over the trailing '\0'
2191 event_start
= ptr
; // record where the next event starts
2193 dest_path_len
= ptr
- dest_path
;
2195 // If the destination inode number is non-zero, generate a rename
2196 // with both source and destination FSE_ARG_FINFO. Otherwise generate
2197 // a rename with only one FSE_ARG_FINFO. If you need to inject an
2198 // exchange with an inode of zero, just make that inode (and its path)
2199 // come in as the first one, not the second.
2201 if (dest_finfo
->ino
) {
2202 err
= add_fsevent(type
, ctx
,
2203 FSE_ARG_STRING
, path_len
, path
, FSE_ARG_FINFO
, finfo
,
2204 FSE_ARG_STRING
, dest_path_len
, dest_path
, FSE_ARG_FINFO
, dest_finfo
,
2207 err
= add_fsevent(type
, ctx
,
2208 FSE_ARG_STRING
, path_len
, path
, FSE_ARG_FINFO
, finfo
,
2209 FSE_ARG_STRING
, dest_path_len
, dest_path
,
2219 // if the last event wasn't complete, set the remainder
2220 // to be the last event start boundary.
2222 *remainder
= (long)((buffer
+bufsize
) - event_start
);
2229 // Note: this buffer size can not ever be less than
2230 // 2*MAXPATHLEN + 2*sizeof(fse_info) + sizeof(int)
2231 // because that is the max size for a single event.
2232 // I made it 4k to be a "nice" size. making it
2233 // smaller is not a good idea.
2235 #define WRITE_BUFFER_SIZE 4096
2236 char *write_buffer
=NULL
;
2239 fseventswrite(__unused dev_t dev
, struct uio
*uio
, __unused
int ioflag
)
2242 vfs_context_t ctx
= vfs_context_current();
2243 long offset
=0, remainder
;
2245 lck_mtx_lock(&event_writer_lock
);
2247 if (write_buffer
== NULL
) {
2248 if (kmem_alloc(kernel_map
, (vm_offset_t
*)&write_buffer
, WRITE_BUFFER_SIZE
, VM_KERN_MEMORY_FILE
)) {
2249 lck_mtx_unlock(&event_writer_lock
);
2255 // this loop copies in and processes the events written.
2256 // it takes care to copy in reasonable size chunks and
2257 // process them. if there is an event that spans a chunk
2258 // boundary we're careful to copy those bytes down to the
2259 // beginning of the buffer and read the next chunk in just
2262 while(uio_resid(uio
)) {
2263 if (uio_resid(uio
) > (WRITE_BUFFER_SIZE
-offset
)) {
2264 count
= WRITE_BUFFER_SIZE
- offset
;
2266 count
= uio_resid(uio
);
2269 error
= uiomove(write_buffer
+offset
, count
, uio
);
2274 // printf("fsevents: write: copied in %d bytes (offset: %ld)\n", count, offset);
2275 error
= parse_buffer_and_add_events(write_buffer
, offset
+count
, ctx
, &remainder
);
2281 // if there's any remainder, copy it down to the beginning
2282 // of the buffer so that it will get processed the next time
2283 // through the loop. note that the remainder always starts
2284 // at an event boundary.
2286 if (remainder
!= 0) {
2287 // printf("fsevents: write: an event spanned a %d byte boundary. remainder: %ld\n",
2288 // WRITE_BUFFER_SIZE, remainder);
2289 memmove(write_buffer
, (write_buffer
+count
+offset
) - remainder
, remainder
);
2296 lck_mtx_unlock(&event_writer_lock
);
2302 static const struct fileops fsevents_fops
= {
2303 .fo_type
= DTYPE_FSEVENTS
,
2304 .fo_read
= fseventsf_read
,
2305 .fo_write
= fseventsf_write
,
2306 .fo_ioctl
= fseventsf_ioctl
,
2307 .fo_select
= fseventsf_select
,
2308 .fo_close
= fseventsf_close
,
2309 .fo_kqfilter
= fseventsf_kqfilter
,
2310 .fo_drain
= fseventsf_drain
,
2313 typedef struct fsevent_clone_args32
{
2314 user32_addr_t event_list
;
2316 int32_t event_queue_depth
;
2318 } fsevent_clone_args32
;
2320 typedef struct fsevent_clone_args64
{
2321 user64_addr_t event_list
;
2323 int32_t event_queue_depth
;
2325 } fsevent_clone_args64
;
2327 #define FSEVENTS_CLONE_32 _IOW('s', 1, fsevent_clone_args32)
2328 #define FSEVENTS_CLONE_64 _IOW('s', 1, fsevent_clone_args64)
2331 fseventsioctl(__unused dev_t dev
, u_long cmd
, caddr_t data
, __unused
int flag
, struct proc
*p
)
2335 fsevent_handle
*fseh
= NULL
;
2336 fsevent_clone_args64
*fse_clone_args
, _fse_clone
;
2338 int is64bit
= proc_is64bit(p
);
2341 case FSEVENTS_CLONE_32
: {
2345 fsevent_clone_args32
*args32
= (fsevent_clone_args32
*)data
;
2347 fse_clone_args
= &_fse_clone
;
2348 memset(fse_clone_args
, 0, sizeof(fsevent_clone_args64
));
2350 fse_clone_args
->event_list
= CAST_USER_ADDR_T(args32
->event_list
);
2351 fse_clone_args
->num_events
= args32
->num_events
;
2352 fse_clone_args
->event_queue_depth
= args32
->event_queue_depth
;
2353 fse_clone_args
->fd
= CAST_USER_ADDR_T(args32
->fd
);
2357 case FSEVENTS_CLONE_64
:
2361 fse_clone_args
= (fsevent_clone_args64
*)data
;
2364 if (fse_clone_args
->num_events
< 0 || fse_clone_args
->num_events
> 4096) {
2368 MALLOC(fseh
, fsevent_handle
*, sizeof(fsevent_handle
),
2373 memset(fseh
, 0, sizeof(fsevent_handle
));
2375 klist_init(&fseh
->knotes
);
2377 MALLOC(event_list
, int8_t *,
2378 fse_clone_args
->num_events
* sizeof(int8_t),
2380 if (event_list
== NULL
) {
2385 error
= copyin(fse_clone_args
->event_list
,
2387 fse_clone_args
->num_events
* sizeof(int8_t));
2389 FREE(event_list
, M_TEMP
);
2394 error
= add_watcher(event_list
,
2395 fse_clone_args
->num_events
,
2396 fse_clone_args
->event_queue_depth
,
2400 FREE(event_list
, M_TEMP
);
2405 fseh
->watcher
->fseh
= fseh
;
2407 error
= falloc(p
, &f
, &fd
, vfs_context_current());
2409 remove_watcher(fseh
->watcher
);
2410 FREE(event_list
, M_TEMP
);
2415 f
->f_fglob
->fg_flag
= FREAD
| FWRITE
;
2416 f
->f_fglob
->fg_ops
= &fsevents_fops
;
2417 f
->f_fglob
->fg_data
= (caddr_t
) fseh
;
2419 error
= copyout((void *)&fd
, fse_clone_args
->fd
, sizeof(int32_t));
2424 procfdtbl_releasefd(p
, fd
, NULL
);
2425 fp_drop(p
, fd
, f
, 1);
2439 fsevents_wakeup(fs_event_watcher
*watcher
)
2441 selwakeup(&watcher
->fseh
->si
);
2442 KNOTE(&watcher
->fseh
->knotes
, NOTE_WRITE
|NOTE_NONE
);
2443 wakeup((caddr_t
)watcher
);
2448 * A struct describing which functions will get invoked for certain
2451 static struct cdevsw fsevents_cdevsw
=
2453 fseventsopen
, /* open */
2454 fseventsclose
, /* close */
2455 fseventsread
, /* read */
2456 fseventswrite
, /* write */
2457 fseventsioctl
, /* ioctl */
2458 (stop_fcn_t
*)&nulldev
, /* stop */
2459 (reset_fcn_t
*)&nulldev
, /* reset */
2461 eno_select
, /* select */
2462 eno_mmap
, /* mmap */
2463 eno_strat
, /* strategy */
2464 eno_getc
, /* getc */
2465 eno_putc
, /* putc */
2471 * Called to initialize our device,
2472 * and to register ourselves with devfs
2480 if (fsevents_installed
) {
2484 fsevents_installed
= 1;
2486 ret
= cdevsw_add(-1, &fsevents_cdevsw
);
2488 fsevents_installed
= 0;
2492 devfs_make_node(makedev (ret
, 0), DEVFS_CHAR
,
2493 UID_ROOT
, GID_WHEEL
, 0644, "fsevents", 0);
2495 fsevents_internal_init();
2504 MALLOC_ZONE(path
, char *, MAXPATHLEN
, M_NAMEI
, M_WAITOK
);
2509 release_pathbuff(char *path
)
2515 FREE_ZONE(path
, MAXPATHLEN
, M_NAMEI
);
2519 get_fse_info(struct vnode
*vp
, fse_info
*fse
, __unused vfs_context_t ctx
)
2521 struct vnode_attr va
;
2524 VATTR_WANTED(&va
, va_fsid
);
2525 VATTR_WANTED(&va
, va_fileid
);
2526 VATTR_WANTED(&va
, va_mode
);
2527 VATTR_WANTED(&va
, va_uid
);
2528 VATTR_WANTED(&va
, va_gid
);
2529 if (vp
->v_flag
& VISHARDLINK
) {
2530 if (vp
->v_type
== VDIR
) {
2531 VATTR_WANTED(&va
, va_dirlinkcount
);
2533 VATTR_WANTED(&va
, va_nlink
);
2537 if (vnode_getattr(vp
, &va
, vfs_context_kernel()) != 0) {
2538 memset(fse
, 0, sizeof(fse_info
));
2542 return vnode_get_fse_info_from_vap(vp
, fse
, &va
);
2546 vnode_get_fse_info_from_vap(vnode_t vp
, fse_info
*fse
, struct vnode_attr
*vap
)
2548 fse
->ino
= (ino64_t
)vap
->va_fileid
;
2549 fse
->dev
= (dev_t
)vap
->va_fsid
;
2550 fse
->mode
= (int32_t)vnode_vttoif(vnode_vtype(vp
)) | vap
->va_mode
;
2551 fse
->uid
= (uid_t
)vap
->va_uid
;
2552 fse
->gid
= (gid_t
)vap
->va_gid
;
2553 if (vp
->v_flag
& VISHARDLINK
) {
2554 fse
->mode
|= FSE_MODE_HLINK
;
2555 if (vp
->v_type
== VDIR
) {
2556 fse
->nlink
= (uint64_t)vap
->va_dirlinkcount
;
2558 fse
->nlink
= (uint64_t)vap
->va_nlink
;
2566 create_fsevent_from_kevent(vnode_t vp
, uint32_t kevents
, struct vnode_attr
*vap
)
2568 int fsevent_type
=FSE_CONTENT_MODIFIED
, len
; // the default is the most pessimistic
2569 char pathbuf
[MAXPATHLEN
];
2573 if (kevents
& VNODE_EVENT_DELETE
) {
2574 fsevent_type
= FSE_DELETE
;
2575 } else if (kevents
& (VNODE_EVENT_EXTEND
|VNODE_EVENT_WRITE
)) {
2576 fsevent_type
= FSE_CONTENT_MODIFIED
;
2577 } else if (kevents
& VNODE_EVENT_LINK
) {
2578 fsevent_type
= FSE_CREATE_FILE
;
2579 } else if (kevents
& VNODE_EVENT_RENAME
) {
2580 fsevent_type
= FSE_CREATE_FILE
; // XXXdbg - should use FSE_RENAME but we don't have the destination info;
2581 } else if (kevents
& (VNODE_EVENT_FILE_CREATED
|VNODE_EVENT_FILE_REMOVED
|VNODE_EVENT_DIR_CREATED
|VNODE_EVENT_DIR_REMOVED
)) {
2582 fsevent_type
= FSE_STAT_CHANGED
; // XXXdbg - because vp is a dir and the thing created/removed lived inside it
2583 } else { // a catch all for VNODE_EVENT_PERMS, VNODE_EVENT_ATTRIB and anything else
2584 fsevent_type
= FSE_STAT_CHANGED
;
2587 // printf("convert_kevent: kevents 0x%x fsevent type 0x%x (for %s)\n", kevents, fsevent_type, vp->v_name ? vp->v_name : "(no-name)");
2589 fse
.dev
= vap
->va_fsid
;
2590 fse
.ino
= vap
->va_fileid
;
2591 fse
.mode
= vnode_vttoif(vnode_vtype(vp
)) | (uint32_t)vap
->va_mode
;
2592 if (vp
->v_flag
& VISHARDLINK
) {
2593 fse
.mode
|= FSE_MODE_HLINK
;
2594 if (vp
->v_type
== VDIR
) {
2595 fse
.nlink
= vap
->va_dirlinkcount
;
2597 fse
.nlink
= vap
->va_nlink
;
2601 if (vp
->v_type
== VDIR
) {
2602 fse
.mode
|= FSE_REMOTE_DIR_EVENT
;
2606 fse
.uid
= vap
->va_uid
;
2607 fse
.gid
= vap
->va_gid
;
2609 len
= sizeof(pathbuf
);
2610 if (vn_getpath(vp
, pathbuf
, &len
) == 0) {
2611 add_fsevent(fsevent_type
, vfs_context_current(), FSE_ARG_STRING
, len
, pathbuf
, FSE_ARG_FINFO
, &fse
, FSE_ARG_DONE
);
2616 #else /* CONFIG_FSE */
2618 #include <sys/fsevents.h>
2621 * The get_pathbuff and release_pathbuff routines are used in places not
2622 * related to fsevents, and it's a handy abstraction, so define trivial
2623 * versions that don't cache a pool of buffers. This way, we don't have
2624 * to conditionalize the callers, and they still get the advantage of the
2625 * pool of buffers if CONFIG_FSE is turned on.
2631 MALLOC_ZONE(path
, char *, MAXPATHLEN
, M_NAMEI
, M_WAITOK
);
2636 release_pathbuff(char *path
)
2638 FREE_ZONE(path
, MAXPATHLEN
, M_NAMEI
);
2642 add_fsevent(__unused
int type
, __unused vfs_context_t ctx
, ...)
2647 int need_fsevent(__unused
int type
, __unused vnode_t vp
)
2652 #endif /* CONFIG_FSE */