]> git.saurik.com Git - apple/xnu.git/blob - bsd/vfs/vfs_cluster.c
xnu-4570.61.1.tar.gz
[apple/xnu.git] / bsd / vfs / vfs_cluster.c
1 /*
2 * Copyright (c) 2000-2014 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Copyright (c) 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)vfs_cluster.c 8.10 (Berkeley) 3/28/95
62 */
63
64 #include <sys/param.h>
65 #include <sys/proc_internal.h>
66 #include <sys/buf_internal.h>
67 #include <sys/mount_internal.h>
68 #include <sys/vnode_internal.h>
69 #include <sys/trace.h>
70 #include <sys/malloc.h>
71 #include <sys/time.h>
72 #include <sys/kernel.h>
73 #include <sys/resourcevar.h>
74 #include <miscfs/specfs/specdev.h>
75 #include <sys/uio_internal.h>
76 #include <libkern/libkern.h>
77 #include <machine/machine_routines.h>
78
79 #include <sys/ubc_internal.h>
80 #include <vm/vnode_pager.h>
81
82 #include <mach/mach_types.h>
83 #include <mach/memory_object_types.h>
84 #include <mach/vm_map.h>
85 #include <mach/upl.h>
86 #include <kern/task.h>
87 #include <kern/policy_internal.h>
88
89 #include <vm/vm_kern.h>
90 #include <vm/vm_map.h>
91 #include <vm/vm_pageout.h>
92 #include <vm/vm_fault.h>
93
94 #include <sys/kdebug.h>
95 #include <libkern/OSAtomic.h>
96
97 #include <sys/sdt.h>
98
99 #include <stdbool.h>
100
101 #include <vfs/vfs_disk_conditioner.h>
102
103 #if 0
104 #undef KERNEL_DEBUG
105 #define KERNEL_DEBUG KERNEL_DEBUG_CONSTANT
106 #endif
107
108
109 #define CL_READ 0x01
110 #define CL_WRITE 0x02
111 #define CL_ASYNC 0x04
112 #define CL_COMMIT 0x08
113 #define CL_PAGEOUT 0x10
114 #define CL_AGE 0x20
115 #define CL_NOZERO 0x40
116 #define CL_PAGEIN 0x80
117 #define CL_DEV_MEMORY 0x100
118 #define CL_PRESERVE 0x200
119 #define CL_THROTTLE 0x400
120 #define CL_KEEPCACHED 0x800
121 #define CL_DIRECT_IO 0x1000
122 #define CL_PASSIVE 0x2000
123 #define CL_IOSTREAMING 0x4000
124 #define CL_CLOSE 0x8000
125 #define CL_ENCRYPTED 0x10000
126 #define CL_RAW_ENCRYPTED 0x20000
127 #define CL_NOCACHE 0x40000
128
129 #define MAX_VECTOR_UPL_ELEMENTS 8
130 #define MAX_VECTOR_UPL_SIZE (2 * MAX_UPL_SIZE_BYTES)
131
132 #define CLUSTER_IO_WAITING ((buf_t)1)
133
134 extern upl_t vector_upl_create(vm_offset_t);
135 extern boolean_t vector_upl_is_valid(upl_t);
136 extern boolean_t vector_upl_set_subupl(upl_t,upl_t, u_int32_t);
137 extern void vector_upl_set_pagelist(upl_t);
138 extern void vector_upl_set_iostate(upl_t, upl_t, vm_offset_t, u_int32_t);
139
140 struct clios {
141 lck_mtx_t io_mtxp;
142 u_int io_completed; /* amount of io that has currently completed */
143 u_int io_issued; /* amount of io that was successfully issued */
144 int io_error; /* error code of first error encountered */
145 int io_wanted; /* someone is sleeping waiting for a change in state */
146 };
147
148 struct cl_direct_read_lock {
149 LIST_ENTRY(cl_direct_read_lock) chain;
150 int32_t ref_count;
151 vnode_t vp;
152 lck_rw_t rw_lock;
153 };
154
155 #define CL_DIRECT_READ_LOCK_BUCKETS 61
156
157 static LIST_HEAD(cl_direct_read_locks, cl_direct_read_lock)
158 cl_direct_read_locks[CL_DIRECT_READ_LOCK_BUCKETS];
159
160 static lck_spin_t cl_direct_read_spin_lock;
161
162 static lck_grp_t *cl_mtx_grp;
163 static lck_attr_t *cl_mtx_attr;
164 static lck_grp_attr_t *cl_mtx_grp_attr;
165 static lck_mtx_t *cl_transaction_mtxp;
166
167 #define IO_UNKNOWN 0
168 #define IO_DIRECT 1
169 #define IO_CONTIG 2
170 #define IO_COPY 3
171
172 #define PUSH_DELAY 0x01
173 #define PUSH_ALL 0x02
174 #define PUSH_SYNC 0x04
175
176
177 static void cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset);
178 static void cluster_wait_IO(buf_t cbp_head, int async);
179 static void cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait);
180
181 static int cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length);
182
183 static int cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size,
184 int flags, buf_t real_bp, struct clios *iostate, int (*)(buf_t, void *), void *callback_arg);
185 static int cluster_iodone(buf_t bp, void *callback_arg);
186 static int cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp);
187 static int cluster_is_throttled(vnode_t vp);
188
189 static void cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name);
190
191 static void cluster_syncup(vnode_t vp, off_t newEOF, int (*)(buf_t, void *), void *callback_arg, int flags);
192
193 static void cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference);
194 static int cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference);
195
196 static int cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags,
197 int (*)(buf_t, void *), void *callback_arg);
198 static int cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
199 int flags, int (*)(buf_t, void *), void *callback_arg);
200 static int cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
201 int (*)(buf_t, void *), void *callback_arg, int flags);
202
203 static int cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF,
204 off_t headOff, off_t tailOff, int flags, int (*)(buf_t, void *), void *callback_arg);
205 static int cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF,
206 int *write_type, u_int32_t *write_length, int flags, int (*)(buf_t, void *), void *callback_arg);
207 static int cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF,
208 int *write_type, u_int32_t *write_length, int (*)(buf_t, void *), void *callback_arg, int bflag);
209
210 static int cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*)(buf_t, void *), void *callback_arg);
211
212 static int cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag);
213 static void cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *ra, int (*callback)(buf_t, void *), void *callback_arg, int bflag);
214
215 static int cluster_push_now(vnode_t vp, struct cl_extent *, off_t EOF, int flags, int (*)(buf_t, void *), void *callback_arg);
216
217 static int cluster_try_push(struct cl_writebehind *, vnode_t vp, off_t EOF, int push_flag, int flags, int (*)(buf_t, void *), void *callback_arg, int *err);
218
219 static void sparse_cluster_switch(struct cl_writebehind *, vnode_t vp, off_t EOF, int (*)(buf_t, void *), void *callback_arg);
220 static int sparse_cluster_push(void **cmapp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*)(buf_t, void *), void *callback_arg);
221 static void sparse_cluster_add(void **cmapp, vnode_t vp, struct cl_extent *, off_t EOF, int (*)(buf_t, void *), void *callback_arg);
222
223 static kern_return_t vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp);
224 static kern_return_t vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp);
225 static kern_return_t vfs_drt_control(void **cmapp, int op_type);
226
227
228 /*
229 * For throttled IO to check whether
230 * a block is cached by the boot cache
231 * and thus it can avoid delaying the IO.
232 *
233 * bootcache_contains_block is initially
234 * NULL. The BootCache will set it while
235 * the cache is active and clear it when
236 * the cache is jettisoned.
237 *
238 * Returns 0 if the block is not
239 * contained in the cache, 1 if it is
240 * contained.
241 *
242 * The function pointer remains valid
243 * after the cache has been evicted even
244 * if bootcache_contains_block has been
245 * cleared.
246 *
247 * See rdar://9974130 The new throttling mechanism breaks the boot cache for throttled IOs
248 */
249 int (*bootcache_contains_block)(dev_t device, u_int64_t blkno) = NULL;
250
251
252 /*
253 * limit the internal I/O size so that we
254 * can represent it in a 32 bit int
255 */
256 #define MAX_IO_REQUEST_SIZE (1024 * 1024 * 512)
257 #define MAX_IO_CONTIG_SIZE MAX_UPL_SIZE_BYTES
258 #define MAX_VECTS 16
259 /*
260 * The MIN_DIRECT_WRITE_SIZE governs how much I/O should be issued before we consider
261 * allowing the caller to bypass the buffer cache. For small I/Os (less than 16k),
262 * we have not historically allowed the write to bypass the UBC.
263 */
264 #define MIN_DIRECT_WRITE_SIZE (16384)
265
266 #define WRITE_THROTTLE 6
267 #define WRITE_THROTTLE_SSD 2
268 #define WRITE_BEHIND 1
269 #define WRITE_BEHIND_SSD 1
270
271 #if CONFIG_EMBEDDED
272 #define PREFETCH 1
273 #define PREFETCH_SSD 1
274 uint32_t speculative_prefetch_max = (2048 * 1024); /* maximum bytes in a specluative read-ahead */
275 uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use in a specluative read-ahead */
276 #else
277 #define PREFETCH 3
278 #define PREFETCH_SSD 2
279 uint32_t speculative_prefetch_max = (MAX_UPL_SIZE_BYTES * 3); /* maximum bytes in a specluative read-ahead */
280 uint32_t speculative_prefetch_max_iosize = (512 * 1024); /* maximum I/O size to use in a specluative read-ahead on SSDs*/
281 #endif
282
283
284 #define IO_SCALE(vp, base) (vp->v_mount->mnt_ioscale * (base))
285 #define MAX_CLUSTER_SIZE(vp) (cluster_max_io_size(vp->v_mount, CL_WRITE))
286 #define MAX_PREFETCH(vp, size, is_ssd) (size * IO_SCALE(vp, ((is_ssd) ? PREFETCH_SSD : PREFETCH)))
287
288 int speculative_reads_disabled = 0;
289
290 /*
291 * throttle the number of async writes that
292 * can be outstanding on a single vnode
293 * before we issue a synchronous write
294 */
295 #define THROTTLE_MAXCNT 0
296
297 uint32_t throttle_max_iosize = (128 * 1024);
298
299 #define THROTTLE_MAX_IOSIZE (throttle_max_iosize)
300
301 SYSCTL_INT(_debug, OID_AUTO, lowpri_throttle_max_iosize, CTLFLAG_RW | CTLFLAG_LOCKED, &throttle_max_iosize, 0, "");
302
303
304 void
305 cluster_init(void) {
306 /*
307 * allocate lock group attribute and group
308 */
309 cl_mtx_grp_attr = lck_grp_attr_alloc_init();
310 cl_mtx_grp = lck_grp_alloc_init("cluster I/O", cl_mtx_grp_attr);
311
312 /*
313 * allocate the lock attribute
314 */
315 cl_mtx_attr = lck_attr_alloc_init();
316
317 cl_transaction_mtxp = lck_mtx_alloc_init(cl_mtx_grp, cl_mtx_attr);
318
319 if (cl_transaction_mtxp == NULL)
320 panic("cluster_init: failed to allocate cl_transaction_mtxp");
321
322 lck_spin_init(&cl_direct_read_spin_lock, cl_mtx_grp, cl_mtx_attr);
323
324 for (int i = 0; i < CL_DIRECT_READ_LOCK_BUCKETS; ++i)
325 LIST_INIT(&cl_direct_read_locks[i]);
326 }
327
328
329 uint32_t
330 cluster_max_io_size(mount_t mp, int type)
331 {
332 uint32_t max_io_size;
333 uint32_t segcnt;
334 uint32_t maxcnt;
335
336 switch(type) {
337
338 case CL_READ:
339 segcnt = mp->mnt_segreadcnt;
340 maxcnt = mp->mnt_maxreadcnt;
341 break;
342 case CL_WRITE:
343 segcnt = mp->mnt_segwritecnt;
344 maxcnt = mp->mnt_maxwritecnt;
345 break;
346 default:
347 segcnt = min(mp->mnt_segreadcnt, mp->mnt_segwritecnt);
348 maxcnt = min(mp->mnt_maxreadcnt, mp->mnt_maxwritecnt);
349 break;
350 }
351 if (segcnt > (MAX_UPL_SIZE_BYTES >> PAGE_SHIFT)) {
352 /*
353 * don't allow a size beyond the max UPL size we can create
354 */
355 segcnt = MAX_UPL_SIZE_BYTES >> PAGE_SHIFT;
356 }
357 max_io_size = min((segcnt * PAGE_SIZE), maxcnt);
358
359 if (max_io_size < MAX_UPL_TRANSFER_BYTES) {
360 /*
361 * don't allow a size smaller than the old fixed limit
362 */
363 max_io_size = MAX_UPL_TRANSFER_BYTES;
364 } else {
365 /*
366 * make sure the size specified is a multiple of PAGE_SIZE
367 */
368 max_io_size &= ~PAGE_MASK;
369 }
370 return (max_io_size);
371 }
372
373
374
375
376 #define CLW_ALLOCATE 0x01
377 #define CLW_RETURNLOCKED 0x02
378 #define CLW_IONOCACHE 0x04
379 #define CLW_IOPASSIVE 0x08
380
381 /*
382 * if the read ahead context doesn't yet exist,
383 * allocate and initialize it...
384 * the vnode lock serializes multiple callers
385 * during the actual assignment... first one
386 * to grab the lock wins... the other callers
387 * will release the now unnecessary storage
388 *
389 * once the context is present, try to grab (but don't block on)
390 * the lock associated with it... if someone
391 * else currently owns it, than the read
392 * will run without read-ahead. this allows
393 * multiple readers to run in parallel and
394 * since there's only 1 read ahead context,
395 * there's no real loss in only allowing 1
396 * reader to have read-ahead enabled.
397 */
398 static struct cl_readahead *
399 cluster_get_rap(vnode_t vp)
400 {
401 struct ubc_info *ubc;
402 struct cl_readahead *rap;
403
404 ubc = vp->v_ubcinfo;
405
406 if ((rap = ubc->cl_rahead) == NULL) {
407 MALLOC_ZONE(rap, struct cl_readahead *, sizeof *rap, M_CLRDAHEAD, M_WAITOK);
408
409 bzero(rap, sizeof *rap);
410 rap->cl_lastr = -1;
411 lck_mtx_init(&rap->cl_lockr, cl_mtx_grp, cl_mtx_attr);
412
413 vnode_lock(vp);
414
415 if (ubc->cl_rahead == NULL)
416 ubc->cl_rahead = rap;
417 else {
418 lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp);
419 FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD);
420 rap = ubc->cl_rahead;
421 }
422 vnode_unlock(vp);
423 }
424 if (lck_mtx_try_lock(&rap->cl_lockr) == TRUE)
425 return(rap);
426
427 return ((struct cl_readahead *)NULL);
428 }
429
430
431 /*
432 * if the write behind context doesn't yet exist,
433 * and CLW_ALLOCATE is specified, allocate and initialize it...
434 * the vnode lock serializes multiple callers
435 * during the actual assignment... first one
436 * to grab the lock wins... the other callers
437 * will release the now unnecessary storage
438 *
439 * if CLW_RETURNLOCKED is set, grab (blocking if necessary)
440 * the lock associated with the write behind context before
441 * returning
442 */
443
444 static struct cl_writebehind *
445 cluster_get_wbp(vnode_t vp, int flags)
446 {
447 struct ubc_info *ubc;
448 struct cl_writebehind *wbp;
449
450 ubc = vp->v_ubcinfo;
451
452 if ((wbp = ubc->cl_wbehind) == NULL) {
453
454 if ( !(flags & CLW_ALLOCATE))
455 return ((struct cl_writebehind *)NULL);
456
457 MALLOC_ZONE(wbp, struct cl_writebehind *, sizeof *wbp, M_CLWRBEHIND, M_WAITOK);
458
459 bzero(wbp, sizeof *wbp);
460 lck_mtx_init(&wbp->cl_lockw, cl_mtx_grp, cl_mtx_attr);
461
462 vnode_lock(vp);
463
464 if (ubc->cl_wbehind == NULL)
465 ubc->cl_wbehind = wbp;
466 else {
467 lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp);
468 FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND);
469 wbp = ubc->cl_wbehind;
470 }
471 vnode_unlock(vp);
472 }
473 if (flags & CLW_RETURNLOCKED)
474 lck_mtx_lock(&wbp->cl_lockw);
475
476 return (wbp);
477 }
478
479
480 static void
481 cluster_syncup(vnode_t vp, off_t newEOF, int (*callback)(buf_t, void *), void *callback_arg, int flags)
482 {
483 struct cl_writebehind *wbp;
484
485 if ((wbp = cluster_get_wbp(vp, 0)) != NULL) {
486
487 if (wbp->cl_number) {
488 lck_mtx_lock(&wbp->cl_lockw);
489
490 cluster_try_push(wbp, vp, newEOF, PUSH_ALL | flags, 0, callback, callback_arg, NULL);
491
492 lck_mtx_unlock(&wbp->cl_lockw);
493 }
494 }
495 }
496
497
498 static int
499 cluster_io_present_in_BC(vnode_t vp, off_t f_offset)
500 {
501 daddr64_t blkno;
502 size_t io_size;
503 int (*bootcache_check_fn)(dev_t device, u_int64_t blkno) = bootcache_contains_block;
504
505 if (bootcache_check_fn && vp->v_mount && vp->v_mount->mnt_devvp) {
506 if (VNOP_BLOCKMAP(vp, f_offset, PAGE_SIZE, &blkno, &io_size, NULL, VNODE_READ | VNODE_BLOCKMAP_NO_TRACK, NULL))
507 return(0);
508
509 if (io_size == 0)
510 return (0);
511
512 if (bootcache_check_fn(vp->v_mount->mnt_devvp->v_rdev, blkno))
513 return(1);
514 }
515 return(0);
516 }
517
518
519 static int
520 cluster_is_throttled(vnode_t vp)
521 {
522 return (throttle_io_will_be_throttled(-1, vp->v_mount));
523 }
524
525
526 static void
527 cluster_iostate_wait(struct clios *iostate, u_int target, const char *wait_name)
528 {
529
530 lck_mtx_lock(&iostate->io_mtxp);
531
532 while ((iostate->io_issued - iostate->io_completed) > target) {
533
534 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_START,
535 iostate->io_issued, iostate->io_completed, target, 0, 0);
536
537 iostate->io_wanted = 1;
538 msleep((caddr_t)&iostate->io_wanted, &iostate->io_mtxp, PRIBIO + 1, wait_name, NULL);
539
540 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 95)) | DBG_FUNC_END,
541 iostate->io_issued, iostate->io_completed, target, 0, 0);
542 }
543 lck_mtx_unlock(&iostate->io_mtxp);
544 }
545
546 static void cluster_handle_associated_upl(struct clios *iostate, upl_t upl,
547 upl_offset_t upl_offset, upl_size_t size)
548 {
549 if (!size)
550 return;
551
552 upl_t associated_upl = upl_associated_upl(upl);
553
554 if (!associated_upl)
555 return;
556
557 #if 0
558 printf("1: %d %d\n", upl_offset, upl_offset + size);
559 #endif
560
561 /*
562 * The associated UPL is page aligned to file offsets whereas the
563 * UPL it's attached to has different alignment requirements. The
564 * upl_offset that we have refers to @upl. The code that follows
565 * has to deal with the first and last pages in this transaction
566 * which might straddle pages in the associated UPL. To keep
567 * track of these pages, we use the mark bits: if the mark bit is
568 * set, we know another transaction has completed its part of that
569 * page and so we can unlock that page here.
570 *
571 * The following illustrates what we have to deal with:
572 *
573 * MEM u <------------ 1 PAGE ------------> e
574 * +-------------+----------------------+-----------------
575 * | |######################|#################
576 * +-------------+----------------------+-----------------
577 * FILE | <--- a ---> o <------------ 1 PAGE ------------>
578 *
579 * So here we show a write to offset @o. The data that is to be
580 * written is in a buffer that is not page aligned; it has offset
581 * @a in the page. The upl that carries the data starts in memory
582 * at @u. The associated upl starts in the file at offset @o. A
583 * transaction will always end on a page boundary (like @e above)
584 * except for the very last transaction in the group. We cannot
585 * unlock the page at @o in the associated upl until both the
586 * transaction ending at @e and the following transaction (that
587 * starts at @e) has completed.
588 */
589
590 /*
591 * We record whether or not the two UPLs are aligned as the mark
592 * bit in the first page of @upl.
593 */
594 upl_page_info_t *pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
595 bool is_unaligned = upl_page_get_mark(pl, 0);
596
597 if (is_unaligned) {
598 upl_page_info_t *assoc_pl = UPL_GET_INTERNAL_PAGE_LIST(associated_upl);
599
600 upl_offset_t upl_end = upl_offset + size;
601 assert(upl_end >= PAGE_SIZE);
602
603 upl_size_t assoc_upl_size = upl_get_size(associated_upl);
604
605 /*
606 * In the very first transaction in the group, upl_offset will
607 * not be page aligned, but after that it will be and in that
608 * case we want the preceding page in the associated UPL hence
609 * the minus one.
610 */
611 assert(upl_offset);
612 if (upl_offset)
613 upl_offset = trunc_page_32(upl_offset - 1);
614
615 lck_mtx_lock_spin(&iostate->io_mtxp);
616
617 // Look at the first page...
618 if (upl_offset
619 && !upl_page_get_mark(assoc_pl, upl_offset >> PAGE_SHIFT)) {
620 /*
621 * The first page isn't marked so let another transaction
622 * completion handle it.
623 */
624 upl_page_set_mark(assoc_pl, upl_offset >> PAGE_SHIFT, true);
625 upl_offset += PAGE_SIZE;
626 }
627
628 // And now the last page...
629
630 /*
631 * This needs to be > rather than >= because if it's equal, it
632 * means there's another transaction that is sharing the last
633 * page.
634 */
635 if (upl_end > assoc_upl_size)
636 upl_end = assoc_upl_size;
637 else {
638 upl_end = trunc_page_32(upl_end);
639 const int last_pg = (upl_end >> PAGE_SHIFT) - 1;
640
641 if (!upl_page_get_mark(assoc_pl, last_pg)) {
642 /*
643 * The last page isn't marked so mark the page and let another
644 * transaction completion handle it.
645 */
646 upl_page_set_mark(assoc_pl, last_pg, true);
647 upl_end -= PAGE_SIZE;
648 }
649 }
650
651 lck_mtx_unlock(&iostate->io_mtxp);
652
653 #if 0
654 printf("2: %d %d\n", upl_offset, upl_end);
655 #endif
656
657 if (upl_end <= upl_offset)
658 return;
659
660 size = upl_end - upl_offset;
661 } else {
662 assert(!(upl_offset & PAGE_MASK));
663 assert(!(size & PAGE_MASK));
664 }
665
666 boolean_t empty;
667
668 /*
669 * We can unlock these pages now and as this is for a
670 * direct/uncached write, we want to dump the pages too.
671 */
672 kern_return_t kr = upl_abort_range(associated_upl, upl_offset, size,
673 UPL_ABORT_DUMP_PAGES, &empty);
674
675 assert(!kr);
676
677 if (!kr && empty) {
678 upl_set_associated_upl(upl, NULL);
679 upl_deallocate(associated_upl);
680 }
681 }
682
683 static int
684 cluster_ioerror(upl_t upl, int upl_offset, int abort_size, int error, int io_flags, vnode_t vp)
685 {
686 int upl_abort_code = 0;
687 int page_in = 0;
688 int page_out = 0;
689
690 if ((io_flags & (B_PHYS | B_CACHE)) == (B_PHYS | B_CACHE))
691 /*
692 * direct write of any flavor, or a direct read that wasn't aligned
693 */
694 ubc_upl_commit_range(upl, upl_offset, abort_size, UPL_COMMIT_FREE_ON_EMPTY);
695 else {
696 if (io_flags & B_PAGEIO) {
697 if (io_flags & B_READ)
698 page_in = 1;
699 else
700 page_out = 1;
701 }
702 if (io_flags & B_CACHE)
703 /*
704 * leave pages in the cache unchanged on error
705 */
706 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
707 else if (page_out && ((error != ENXIO) || vnode_isswap(vp)))
708 /*
709 * transient error... leave pages unchanged
710 */
711 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY;
712 else if (page_in)
713 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR;
714 else
715 upl_abort_code = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES;
716
717 ubc_upl_abort_range(upl, upl_offset, abort_size, upl_abort_code);
718 }
719 return (upl_abort_code);
720 }
721
722
723 static int
724 cluster_iodone(buf_t bp, void *callback_arg)
725 {
726 int b_flags;
727 int error;
728 int total_size;
729 int total_resid;
730 int upl_offset;
731 int zero_offset;
732 int pg_offset = 0;
733 int commit_size = 0;
734 int upl_flags = 0;
735 int transaction_size = 0;
736 upl_t upl;
737 buf_t cbp;
738 buf_t cbp_head;
739 buf_t cbp_next;
740 buf_t real_bp;
741 vnode_t vp;
742 struct clios *iostate;
743 boolean_t transaction_complete = FALSE;
744
745 __IGNORE_WCASTALIGN(cbp_head = (buf_t)(bp->b_trans_head));
746
747 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_START,
748 cbp_head, bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
749
750 if (cbp_head->b_trans_next || !(cbp_head->b_flags & B_EOT)) {
751 lck_mtx_lock_spin(cl_transaction_mtxp);
752
753 bp->b_flags |= B_TDONE;
754
755 for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next) {
756 /*
757 * all I/O requests that are part of this transaction
758 * have to complete before we can process it
759 */
760 if ( !(cbp->b_flags & B_TDONE)) {
761
762 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
763 cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0);
764
765 lck_mtx_unlock(cl_transaction_mtxp);
766
767 return 0;
768 }
769
770 if (cbp->b_trans_next == CLUSTER_IO_WAITING) {
771 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
772 cbp_head, cbp, cbp->b_bcount, cbp->b_flags, 0);
773
774 lck_mtx_unlock(cl_transaction_mtxp);
775 wakeup(cbp);
776
777 return 0;
778 }
779
780 if (cbp->b_flags & B_EOT)
781 transaction_complete = TRUE;
782 }
783 lck_mtx_unlock(cl_transaction_mtxp);
784
785 if (transaction_complete == FALSE) {
786 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
787 cbp_head, 0, 0, 0, 0);
788 return 0;
789 }
790 }
791 error = 0;
792 total_size = 0;
793 total_resid = 0;
794
795 cbp = cbp_head;
796 vp = cbp->b_vp;
797 upl_offset = cbp->b_uploffset;
798 upl = cbp->b_upl;
799 b_flags = cbp->b_flags;
800 real_bp = cbp->b_real_bp;
801 zero_offset= cbp->b_validend;
802 iostate = (struct clios *)cbp->b_iostate;
803
804 if (real_bp)
805 real_bp->b_dev = cbp->b_dev;
806
807 while (cbp) {
808 if ((cbp->b_flags & B_ERROR) && error == 0)
809 error = cbp->b_error;
810
811 total_resid += cbp->b_resid;
812 total_size += cbp->b_bcount;
813
814 cbp_next = cbp->b_trans_next;
815
816 if (cbp_next == NULL)
817 /*
818 * compute the overall size of the transaction
819 * in case we created one that has 'holes' in it
820 * 'total_size' represents the amount of I/O we
821 * did, not the span of the transaction w/r to the UPL
822 */
823 transaction_size = cbp->b_uploffset + cbp->b_bcount - upl_offset;
824
825 if (cbp != cbp_head)
826 free_io_buf(cbp);
827
828 cbp = cbp_next;
829 }
830
831 if (ISSET(b_flags, B_COMMIT_UPL)) {
832 cluster_handle_associated_upl(iostate,
833 cbp_head->b_upl,
834 upl_offset,
835 transaction_size);
836 }
837
838 if (error == 0 && total_resid)
839 error = EIO;
840
841 if (error == 0) {
842 int (*cliodone_func)(buf_t, void *) = (int (*)(buf_t, void *))(cbp_head->b_cliodone);
843
844 if (cliodone_func != NULL) {
845 cbp_head->b_bcount = transaction_size;
846
847 error = (*cliodone_func)(cbp_head, callback_arg);
848 }
849 }
850 if (zero_offset)
851 cluster_zero(upl, zero_offset, PAGE_SIZE - (zero_offset & PAGE_MASK), real_bp);
852
853 free_io_buf(cbp_head);
854
855 if (iostate) {
856 int need_wakeup = 0;
857
858 /*
859 * someone has issued multiple I/Os asynchrounsly
860 * and is waiting for them to complete (streaming)
861 */
862 lck_mtx_lock_spin(&iostate->io_mtxp);
863
864 if (error && iostate->io_error == 0)
865 iostate->io_error = error;
866
867 iostate->io_completed += total_size;
868
869 if (iostate->io_wanted) {
870 /*
871 * someone is waiting for the state of
872 * this io stream to change
873 */
874 iostate->io_wanted = 0;
875 need_wakeup = 1;
876 }
877 lck_mtx_unlock(&iostate->io_mtxp);
878
879 if (need_wakeup)
880 wakeup((caddr_t)&iostate->io_wanted);
881 }
882
883 if (b_flags & B_COMMIT_UPL) {
884 pg_offset = upl_offset & PAGE_MASK;
885 commit_size = (pg_offset + transaction_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
886
887 if (error)
888 upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, commit_size, error, b_flags, vp);
889 else {
890 upl_flags = UPL_COMMIT_FREE_ON_EMPTY;
891
892 if ((b_flags & B_PHYS) && (b_flags & B_READ))
893 upl_flags |= UPL_COMMIT_SET_DIRTY;
894
895 if (b_flags & B_AGE)
896 upl_flags |= UPL_COMMIT_INACTIVATE;
897
898 ubc_upl_commit_range(upl, upl_offset - pg_offset, commit_size, upl_flags);
899 }
900 }
901 if (real_bp) {
902 if (error) {
903 real_bp->b_flags |= B_ERROR;
904 real_bp->b_error = error;
905 }
906 real_bp->b_resid = total_resid;
907
908 buf_biodone(real_bp);
909 }
910 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 20)) | DBG_FUNC_END,
911 upl, upl_offset - pg_offset, commit_size, (error << 24) | upl_flags, 0);
912
913 return (error);
914 }
915
916
917 uint32_t
918 cluster_throttle_io_limit(vnode_t vp, uint32_t *limit)
919 {
920 if (cluster_is_throttled(vp)) {
921 *limit = THROTTLE_MAX_IOSIZE;
922 return 1;
923 }
924 return 0;
925 }
926
927
928 void
929 cluster_zero(upl_t upl, upl_offset_t upl_offset, int size, buf_t bp)
930 {
931
932 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_START,
933 upl_offset, size, bp, 0, 0);
934
935 if (bp == NULL || bp->b_datap == 0) {
936 upl_page_info_t *pl;
937 addr64_t zero_addr;
938
939 pl = ubc_upl_pageinfo(upl);
940
941 if (upl_device_page(pl) == TRUE) {
942 zero_addr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + upl_offset;
943
944 bzero_phys_nc(zero_addr, size);
945 } else {
946 while (size) {
947 int page_offset;
948 int page_index;
949 int zero_cnt;
950
951 page_index = upl_offset / PAGE_SIZE;
952 page_offset = upl_offset & PAGE_MASK;
953
954 zero_addr = ((addr64_t)upl_phys_page(pl, page_index) << PAGE_SHIFT) + page_offset;
955 zero_cnt = min(PAGE_SIZE - page_offset, size);
956
957 bzero_phys(zero_addr, zero_cnt);
958
959 size -= zero_cnt;
960 upl_offset += zero_cnt;
961 }
962 }
963 } else
964 bzero((caddr_t)((vm_offset_t)bp->b_datap + upl_offset), size);
965
966 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 23)) | DBG_FUNC_END,
967 upl_offset, size, 0, 0, 0);
968 }
969
970
971 static void
972 cluster_EOT(buf_t cbp_head, buf_t cbp_tail, int zero_offset)
973 {
974 cbp_head->b_validend = zero_offset;
975 cbp_tail->b_flags |= B_EOT;
976 }
977
978 static void
979 cluster_wait_IO(buf_t cbp_head, int async)
980 {
981 buf_t cbp;
982
983 if (async) {
984 /*
985 * Async callback completion will not normally generate a
986 * wakeup upon I/O completion. To get woken up, we set
987 * b_trans_next (which is safe for us to modify) on the last
988 * buffer to CLUSTER_IO_WAITING so that cluster_iodone knows
989 * to wake us up when all buffers as part of this transaction
990 * are completed. This is done under the umbrella of
991 * cl_transaction_mtxp which is also taken in cluster_iodone.
992 */
993 bool done = true;
994 buf_t last = NULL;
995
996 lck_mtx_lock_spin(cl_transaction_mtxp);
997
998 for (cbp = cbp_head; cbp; last = cbp, cbp = cbp->b_trans_next) {
999 if (!ISSET(cbp->b_flags, B_TDONE))
1000 done = false;
1001 }
1002
1003 if (!done) {
1004 last->b_trans_next = CLUSTER_IO_WAITING;
1005
1006 DTRACE_IO1(wait__start, buf_t, last);
1007 do {
1008 msleep(last, cl_transaction_mtxp, PSPIN | (PRIBIO+1), "cluster_wait_IO", NULL);
1009
1010 /*
1011 * We should only have been woken up if all the
1012 * buffers are completed, but just in case...
1013 */
1014 done = true;
1015 for (cbp = cbp_head; cbp != CLUSTER_IO_WAITING; cbp = cbp->b_trans_next) {
1016 if (!ISSET(cbp->b_flags, B_TDONE)) {
1017 done = false;
1018 break;
1019 }
1020 }
1021 } while (!done);
1022 DTRACE_IO1(wait__done, buf_t, last);
1023
1024 last->b_trans_next = NULL;
1025 }
1026
1027 lck_mtx_unlock(cl_transaction_mtxp);
1028 } else { // !async
1029 for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next)
1030 buf_biowait(cbp);
1031 }
1032 }
1033
1034 static void
1035 cluster_complete_transaction(buf_t *cbp_head, void *callback_arg, int *retval, int flags, int needwait)
1036 {
1037 buf_t cbp;
1038 int error;
1039 boolean_t isswapout = FALSE;
1040
1041 /*
1042 * cluster_complete_transaction will
1043 * only be called if we've issued a complete chain in synchronous mode
1044 * or, we've already done a cluster_wait_IO on an incomplete chain
1045 */
1046 if (needwait) {
1047 for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next)
1048 buf_biowait(cbp);
1049 }
1050 /*
1051 * we've already waited on all of the I/Os in this transaction,
1052 * so mark all of the buf_t's in this transaction as B_TDONE
1053 * so that cluster_iodone sees the transaction as completed
1054 */
1055 for (cbp = *cbp_head; cbp; cbp = cbp->b_trans_next)
1056 cbp->b_flags |= B_TDONE;
1057 cbp = *cbp_head;
1058
1059 if ((flags & (CL_ASYNC | CL_PAGEOUT)) == CL_PAGEOUT && vnode_isswap(cbp->b_vp))
1060 isswapout = TRUE;
1061
1062 error = cluster_iodone(cbp, callback_arg);
1063
1064 if ( !(flags & CL_ASYNC) && error && *retval == 0) {
1065 if (((flags & (CL_PAGEOUT | CL_KEEPCACHED)) != CL_PAGEOUT) || (error != ENXIO))
1066 *retval = error;
1067 else if (isswapout == TRUE)
1068 *retval = error;
1069 }
1070 *cbp_head = (buf_t)NULL;
1071 }
1072
1073
1074 static int
1075 cluster_io(vnode_t vp, upl_t upl, vm_offset_t upl_offset, off_t f_offset, int non_rounded_size,
1076 int flags, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg)
1077 {
1078 buf_t cbp;
1079 u_int size;
1080 u_int io_size;
1081 int io_flags;
1082 int bmap_flags;
1083 int error = 0;
1084 int retval = 0;
1085 buf_t cbp_head = NULL;
1086 buf_t cbp_tail = NULL;
1087 int trans_count = 0;
1088 int max_trans_count;
1089 u_int pg_count;
1090 int pg_offset;
1091 u_int max_iosize;
1092 u_int max_vectors;
1093 int priv;
1094 int zero_offset = 0;
1095 int async_throttle = 0;
1096 mount_t mp;
1097 vm_offset_t upl_end_offset;
1098 boolean_t need_EOT = FALSE;
1099
1100 /*
1101 * we currently don't support buffers larger than a page
1102 */
1103 if (real_bp && non_rounded_size > PAGE_SIZE)
1104 panic("%s(): Called with real buffer of size %d bytes which "
1105 "is greater than the maximum allowed size of "
1106 "%d bytes (the system PAGE_SIZE).\n",
1107 __FUNCTION__, non_rounded_size, PAGE_SIZE);
1108
1109 mp = vp->v_mount;
1110
1111 /*
1112 * we don't want to do any funny rounding of the size for IO requests
1113 * coming through the DIRECT or CONTIGUOUS paths... those pages don't
1114 * belong to us... we can't extend (nor do we need to) the I/O to fill
1115 * out a page
1116 */
1117 if (mp->mnt_devblocksize > 1 && !(flags & (CL_DEV_MEMORY | CL_DIRECT_IO))) {
1118 /*
1119 * round the requested size up so that this I/O ends on a
1120 * page boundary in case this is a 'write'... if the filesystem
1121 * has blocks allocated to back the page beyond the EOF, we want to
1122 * make sure to write out the zero's that are sitting beyond the EOF
1123 * so that in case the filesystem doesn't explicitly zero this area
1124 * if a hole is created via a lseek/write beyond the current EOF,
1125 * it will return zeros when it's read back from the disk. If the
1126 * physical allocation doesn't extend for the whole page, we'll
1127 * only write/read from the disk up to the end of this allocation
1128 * via the extent info returned from the VNOP_BLOCKMAP call.
1129 */
1130 pg_offset = upl_offset & PAGE_MASK;
1131
1132 size = (((non_rounded_size + pg_offset) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - pg_offset;
1133 } else {
1134 /*
1135 * anyone advertising a blocksize of 1 byte probably
1136 * can't deal with us rounding up the request size
1137 * AFP is one such filesystem/device
1138 */
1139 size = non_rounded_size;
1140 }
1141 upl_end_offset = upl_offset + size;
1142
1143 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_START, (int)f_offset, size, upl_offset, flags, 0);
1144
1145 /*
1146 * Set the maximum transaction size to the maximum desired number of
1147 * buffers.
1148 */
1149 max_trans_count = 8;
1150 if (flags & CL_DEV_MEMORY)
1151 max_trans_count = 16;
1152
1153 if (flags & CL_READ) {
1154 io_flags = B_READ;
1155 bmap_flags = VNODE_READ;
1156
1157 max_iosize = mp->mnt_maxreadcnt;
1158 max_vectors = mp->mnt_segreadcnt;
1159 } else {
1160 io_flags = B_WRITE;
1161 bmap_flags = VNODE_WRITE;
1162
1163 max_iosize = mp->mnt_maxwritecnt;
1164 max_vectors = mp->mnt_segwritecnt;
1165 }
1166 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_NONE, max_iosize, max_vectors, mp->mnt_devblocksize, 0, 0);
1167
1168 /*
1169 * make sure the maximum iosize is a
1170 * multiple of the page size
1171 */
1172 max_iosize &= ~PAGE_MASK;
1173
1174 /*
1175 * Ensure the maximum iosize is sensible.
1176 */
1177 if (!max_iosize)
1178 max_iosize = PAGE_SIZE;
1179
1180 if (flags & CL_THROTTLE) {
1181 if ( !(flags & CL_PAGEOUT) && cluster_is_throttled(vp)) {
1182 if (max_iosize > THROTTLE_MAX_IOSIZE)
1183 max_iosize = THROTTLE_MAX_IOSIZE;
1184 async_throttle = THROTTLE_MAXCNT;
1185 } else {
1186 if ( (flags & CL_DEV_MEMORY) )
1187 async_throttle = IO_SCALE(vp, VNODE_ASYNC_THROTTLE);
1188 else {
1189 u_int max_cluster;
1190 u_int max_cluster_size;
1191 u_int scale;
1192
1193 if (vp->v_mount->mnt_minsaturationbytecount) {
1194 max_cluster_size = vp->v_mount->mnt_minsaturationbytecount;
1195
1196 scale = 1;
1197 } else {
1198 max_cluster_size = MAX_CLUSTER_SIZE(vp);
1199
1200 if (disk_conditioner_mount_is_ssd(vp->v_mount))
1201 scale = WRITE_THROTTLE_SSD;
1202 else
1203 scale = WRITE_THROTTLE;
1204 }
1205 if (max_iosize > max_cluster_size)
1206 max_cluster = max_cluster_size;
1207 else
1208 max_cluster = max_iosize;
1209
1210 if (size < max_cluster)
1211 max_cluster = size;
1212
1213 if (flags & CL_CLOSE)
1214 scale += MAX_CLUSTERS;
1215
1216 async_throttle = min(IO_SCALE(vp, VNODE_ASYNC_THROTTLE), ((scale * max_cluster_size) / max_cluster) - 1);
1217 }
1218 }
1219 }
1220 if (flags & CL_AGE)
1221 io_flags |= B_AGE;
1222 if (flags & (CL_PAGEIN | CL_PAGEOUT))
1223 io_flags |= B_PAGEIO;
1224 if (flags & (CL_IOSTREAMING))
1225 io_flags |= B_IOSTREAMING;
1226 if (flags & CL_COMMIT)
1227 io_flags |= B_COMMIT_UPL;
1228 if (flags & CL_DIRECT_IO)
1229 io_flags |= B_PHYS;
1230 if (flags & (CL_PRESERVE | CL_KEEPCACHED))
1231 io_flags |= B_CACHE;
1232 if (flags & CL_PASSIVE)
1233 io_flags |= B_PASSIVE;
1234 if (flags & CL_ENCRYPTED)
1235 io_flags |= B_ENCRYPTED_IO;
1236
1237 if (vp->v_flag & VSYSTEM)
1238 io_flags |= B_META;
1239
1240 if ((flags & CL_READ) && ((upl_offset + non_rounded_size) & PAGE_MASK) && (!(flags & CL_NOZERO))) {
1241 /*
1242 * then we are going to end up
1243 * with a page that we can't complete (the file size wasn't a multiple
1244 * of PAGE_SIZE and we're trying to read to the end of the file
1245 * so we'll go ahead and zero out the portion of the page we can't
1246 * read in from the file
1247 */
1248 zero_offset = upl_offset + non_rounded_size;
1249 } else if (!ISSET(flags, CL_READ) && ISSET(flags, CL_DIRECT_IO)) {
1250 assert(ISSET(flags, CL_COMMIT));
1251
1252 // For a direct/uncached write, we need to lock pages...
1253
1254 upl_t cached_upl;
1255
1256 /*
1257 * Create a UPL to lock the pages in the cache whilst the
1258 * write is in progress.
1259 */
1260 ubc_create_upl_kernel(vp, f_offset, non_rounded_size, &cached_upl,
1261 NULL, UPL_SET_LITE, VM_KERN_MEMORY_FILE);
1262
1263 /*
1264 * Attach this UPL to the other UPL so that we can find it
1265 * later.
1266 */
1267 upl_set_associated_upl(upl, cached_upl);
1268
1269 if (upl_offset & PAGE_MASK) {
1270 /*
1271 * The two UPLs are not aligned, so mark the first page in
1272 * @upl so that cluster_handle_associated_upl can handle
1273 * it accordingly.
1274 */
1275 upl_page_info_t *pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
1276 upl_page_set_mark(pl, 0, true);
1277 }
1278 }
1279
1280 while (size) {
1281 daddr64_t blkno;
1282 daddr64_t lblkno;
1283 u_int io_size_wanted;
1284 size_t io_size_tmp;
1285
1286 if (size > max_iosize)
1287 io_size = max_iosize;
1288 else
1289 io_size = size;
1290
1291 io_size_wanted = io_size;
1292 io_size_tmp = (size_t)io_size;
1293
1294 if ((error = VNOP_BLOCKMAP(vp, f_offset, io_size, &blkno, &io_size_tmp, NULL, bmap_flags, NULL)))
1295 break;
1296
1297 if (io_size_tmp > io_size_wanted)
1298 io_size = io_size_wanted;
1299 else
1300 io_size = (u_int)io_size_tmp;
1301
1302 if (real_bp && (real_bp->b_blkno == real_bp->b_lblkno))
1303 real_bp->b_blkno = blkno;
1304
1305 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 24)) | DBG_FUNC_NONE,
1306 (int)f_offset, (int)(blkno>>32), (int)blkno, io_size, 0);
1307
1308 if (io_size == 0) {
1309 /*
1310 * vnop_blockmap didn't return an error... however, it did
1311 * return an extent size of 0 which means we can't
1312 * make forward progress on this I/O... a hole in the
1313 * file would be returned as a blkno of -1 with a non-zero io_size
1314 * a real extent is returned with a blkno != -1 and a non-zero io_size
1315 */
1316 error = EINVAL;
1317 break;
1318 }
1319 if ( !(flags & CL_READ) && blkno == -1) {
1320 off_t e_offset;
1321 int pageout_flags;
1322
1323 if (upl_get_internal_vectorupl(upl))
1324 panic("Vector UPLs should not take this code-path\n");
1325 /*
1326 * we're writing into a 'hole'
1327 */
1328 if (flags & CL_PAGEOUT) {
1329 /*
1330 * if we got here via cluster_pageout
1331 * then just error the request and return
1332 * the 'hole' should already have been covered
1333 */
1334 error = EINVAL;
1335 break;
1336 }
1337 /*
1338 * we can get here if the cluster code happens to
1339 * pick up a page that was dirtied via mmap vs
1340 * a 'write' and the page targets a 'hole'...
1341 * i.e. the writes to the cluster were sparse
1342 * and the file was being written for the first time
1343 *
1344 * we can also get here if the filesystem supports
1345 * 'holes' that are less than PAGE_SIZE.... because
1346 * we can't know if the range in the page that covers
1347 * the 'hole' has been dirtied via an mmap or not,
1348 * we have to assume the worst and try to push the
1349 * entire page to storage.
1350 *
1351 * Try paging out the page individually before
1352 * giving up entirely and dumping it (the pageout
1353 * path will insure that the zero extent accounting
1354 * has been taken care of before we get back into cluster_io)
1355 *
1356 * go direct to vnode_pageout so that we don't have to
1357 * unbusy the page from the UPL... we used to do this
1358 * so that we could call ubc_msync, but that results
1359 * in a potential deadlock if someone else races us to acquire
1360 * that page and wins and in addition needs one of the pages
1361 * we're continuing to hold in the UPL
1362 */
1363 pageout_flags = UPL_MSYNC | UPL_VNODE_PAGER | UPL_NESTED_PAGEOUT;
1364
1365 if ( !(flags & CL_ASYNC))
1366 pageout_flags |= UPL_IOSYNC;
1367 if ( !(flags & CL_COMMIT))
1368 pageout_flags |= UPL_NOCOMMIT;
1369
1370 if (cbp_head) {
1371 buf_t prev_cbp;
1372 int bytes_in_last_page;
1373
1374 /*
1375 * first we have to wait for the the current outstanding I/Os
1376 * to complete... EOT hasn't been set yet on this transaction
1377 * so the pages won't be released
1378 */
1379 cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
1380
1381 bytes_in_last_page = cbp_head->b_uploffset & PAGE_MASK;
1382 for (cbp = cbp_head; cbp; cbp = cbp->b_trans_next)
1383 bytes_in_last_page += cbp->b_bcount;
1384 bytes_in_last_page &= PAGE_MASK;
1385
1386 while (bytes_in_last_page) {
1387 /*
1388 * we've got a transcation that
1389 * includes the page we're about to push out through vnode_pageout...
1390 * find the bp's in the list which intersect this page and either
1391 * remove them entirely from the transaction (there could be multiple bp's), or
1392 * round it's iosize down to the page boundary (there can only be one)...
1393 *
1394 * find the last bp in the list and act on it
1395 */
1396 for (prev_cbp = cbp = cbp_head; cbp->b_trans_next; cbp = cbp->b_trans_next)
1397 prev_cbp = cbp;
1398
1399 if (bytes_in_last_page >= cbp->b_bcount) {
1400 /*
1401 * this buf no longer has any I/O associated with it
1402 */
1403 bytes_in_last_page -= cbp->b_bcount;
1404 cbp->b_bcount = 0;
1405
1406 free_io_buf(cbp);
1407
1408 if (cbp == cbp_head) {
1409 assert(bytes_in_last_page == 0);
1410 /*
1411 * the buf we just freed was the only buf in
1412 * this transaction... so there's no I/O to do
1413 */
1414 cbp_head = NULL;
1415 cbp_tail = NULL;
1416 } else {
1417 /*
1418 * remove the buf we just freed from
1419 * the transaction list
1420 */
1421 prev_cbp->b_trans_next = NULL;
1422 cbp_tail = prev_cbp;
1423 }
1424 } else {
1425 /*
1426 * this is the last bp that has I/O
1427 * intersecting the page of interest
1428 * only some of the I/O is in the intersection
1429 * so clip the size but keep it in the transaction list
1430 */
1431 cbp->b_bcount -= bytes_in_last_page;
1432 cbp_tail = cbp;
1433 bytes_in_last_page = 0;
1434 }
1435 }
1436 if (cbp_head) {
1437 /*
1438 * there was more to the current transaction
1439 * than just the page we are pushing out via vnode_pageout...
1440 * mark it as finished and complete it... we've already
1441 * waited for the I/Os to complete above in the call to cluster_wait_IO
1442 */
1443 cluster_EOT(cbp_head, cbp_tail, 0);
1444
1445 cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0);
1446
1447 trans_count = 0;
1448 }
1449 }
1450 if (vnode_pageout(vp, upl, trunc_page(upl_offset), trunc_page_64(f_offset), PAGE_SIZE, pageout_flags, NULL) != PAGER_SUCCESS) {
1451 error = EINVAL;
1452 }
1453 e_offset = round_page_64(f_offset + 1);
1454 io_size = e_offset - f_offset;
1455
1456 f_offset += io_size;
1457 upl_offset += io_size;
1458
1459 if (size >= io_size)
1460 size -= io_size;
1461 else
1462 size = 0;
1463 /*
1464 * keep track of how much of the original request
1465 * that we've actually completed... non_rounded_size
1466 * may go negative due to us rounding the request
1467 * to a page size multiple (i.e. size > non_rounded_size)
1468 */
1469 non_rounded_size -= io_size;
1470
1471 if (non_rounded_size <= 0) {
1472 /*
1473 * we've transferred all of the data in the original
1474 * request, but we were unable to complete the tail
1475 * of the last page because the file didn't have
1476 * an allocation to back that portion... this is ok.
1477 */
1478 size = 0;
1479 }
1480 if (error) {
1481 if (size == 0)
1482 flags &= ~CL_COMMIT;
1483 break;
1484 }
1485 continue;
1486 }
1487 lblkno = (daddr64_t)(f_offset / 0x1000);
1488 /*
1489 * we have now figured out how much I/O we can do - this is in 'io_size'
1490 * pg_offset is the starting point in the first page for the I/O
1491 * pg_count is the number of full and partial pages that 'io_size' encompasses
1492 */
1493 pg_offset = upl_offset & PAGE_MASK;
1494
1495 if (flags & CL_DEV_MEMORY) {
1496 /*
1497 * treat physical requests as one 'giant' page
1498 */
1499 pg_count = 1;
1500 } else
1501 pg_count = (io_size + pg_offset + (PAGE_SIZE - 1)) / PAGE_SIZE;
1502
1503 if ((flags & CL_READ) && blkno == -1) {
1504 vm_offset_t commit_offset;
1505 int bytes_to_zero;
1506 int complete_transaction_now = 0;
1507
1508 /*
1509 * if we're reading and blkno == -1, then we've got a
1510 * 'hole' in the file that we need to deal with by zeroing
1511 * out the affected area in the upl
1512 */
1513 if (io_size >= (u_int)non_rounded_size) {
1514 /*
1515 * if this upl contains the EOF and it is not a multiple of PAGE_SIZE
1516 * than 'zero_offset' will be non-zero
1517 * if the 'hole' returned by vnop_blockmap extends all the way to the eof
1518 * (indicated by the io_size finishing off the I/O request for this UPL)
1519 * than we're not going to issue an I/O for the
1520 * last page in this upl... we need to zero both the hole and the tail
1521 * of the page beyond the EOF, since the delayed zero-fill won't kick in
1522 */
1523 bytes_to_zero = non_rounded_size;
1524 if (!(flags & CL_NOZERO))
1525 bytes_to_zero = (((upl_offset + io_size) + (PAGE_SIZE - 1)) & ~PAGE_MASK) - upl_offset;
1526
1527 zero_offset = 0;
1528 } else
1529 bytes_to_zero = io_size;
1530
1531 pg_count = 0;
1532
1533 cluster_zero(upl, upl_offset, bytes_to_zero, real_bp);
1534
1535 if (cbp_head) {
1536 int pg_resid;
1537
1538 /*
1539 * if there is a current I/O chain pending
1540 * then the first page of the group we just zero'd
1541 * will be handled by the I/O completion if the zero
1542 * fill started in the middle of the page
1543 */
1544 commit_offset = (upl_offset + (PAGE_SIZE - 1)) & ~PAGE_MASK;
1545
1546 pg_resid = commit_offset - upl_offset;
1547
1548 if (bytes_to_zero >= pg_resid) {
1549 /*
1550 * the last page of the current I/O
1551 * has been completed...
1552 * compute the number of fully zero'd
1553 * pages that are beyond it
1554 * plus the last page if its partial
1555 * and we have no more I/O to issue...
1556 * otherwise a partial page is left
1557 * to begin the next I/O
1558 */
1559 if ((int)io_size >= non_rounded_size)
1560 pg_count = (bytes_to_zero - pg_resid + (PAGE_SIZE - 1)) / PAGE_SIZE;
1561 else
1562 pg_count = (bytes_to_zero - pg_resid) / PAGE_SIZE;
1563
1564 complete_transaction_now = 1;
1565 }
1566 } else {
1567 /*
1568 * no pending I/O to deal with
1569 * so, commit all of the fully zero'd pages
1570 * plus the last page if its partial
1571 * and we have no more I/O to issue...
1572 * otherwise a partial page is left
1573 * to begin the next I/O
1574 */
1575 if ((int)io_size >= non_rounded_size)
1576 pg_count = (pg_offset + bytes_to_zero + (PAGE_SIZE - 1)) / PAGE_SIZE;
1577 else
1578 pg_count = (pg_offset + bytes_to_zero) / PAGE_SIZE;
1579
1580 commit_offset = upl_offset & ~PAGE_MASK;
1581 }
1582
1583 // Associated UPL is currently only used in the direct write path
1584 assert(!upl_associated_upl(upl));
1585
1586 if ( (flags & CL_COMMIT) && pg_count) {
1587 ubc_upl_commit_range(upl, commit_offset, pg_count * PAGE_SIZE,
1588 UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY);
1589 }
1590 upl_offset += io_size;
1591 f_offset += io_size;
1592 size -= io_size;
1593
1594 /*
1595 * keep track of how much of the original request
1596 * that we've actually completed... non_rounded_size
1597 * may go negative due to us rounding the request
1598 * to a page size multiple (i.e. size > non_rounded_size)
1599 */
1600 non_rounded_size -= io_size;
1601
1602 if (non_rounded_size <= 0) {
1603 /*
1604 * we've transferred all of the data in the original
1605 * request, but we were unable to complete the tail
1606 * of the last page because the file didn't have
1607 * an allocation to back that portion... this is ok.
1608 */
1609 size = 0;
1610 }
1611 if (cbp_head && (complete_transaction_now || size == 0)) {
1612 cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
1613
1614 cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0);
1615
1616 cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 0);
1617
1618 trans_count = 0;
1619 }
1620 continue;
1621 }
1622 if (pg_count > max_vectors) {
1623 if (((pg_count - max_vectors) * PAGE_SIZE) > io_size) {
1624 io_size = PAGE_SIZE - pg_offset;
1625 pg_count = 1;
1626 } else {
1627 io_size -= (pg_count - max_vectors) * PAGE_SIZE;
1628 pg_count = max_vectors;
1629 }
1630 }
1631 /*
1632 * If the transaction is going to reach the maximum number of
1633 * desired elements, truncate the i/o to the nearest page so
1634 * that the actual i/o is initiated after this buffer is
1635 * created and added to the i/o chain.
1636 *
1637 * I/O directed to physically contiguous memory
1638 * doesn't have a requirement to make sure we 'fill' a page
1639 */
1640 if ( !(flags & CL_DEV_MEMORY) && trans_count >= max_trans_count &&
1641 ((upl_offset + io_size) & PAGE_MASK)) {
1642 vm_offset_t aligned_ofs;
1643
1644 aligned_ofs = (upl_offset + io_size) & ~PAGE_MASK;
1645 /*
1646 * If the io_size does not actually finish off even a
1647 * single page we have to keep adding buffers to the
1648 * transaction despite having reached the desired limit.
1649 *
1650 * Eventually we get here with the page being finished
1651 * off (and exceeded) and then we truncate the size of
1652 * this i/o request so that it is page aligned so that
1653 * we can finally issue the i/o on the transaction.
1654 */
1655 if (aligned_ofs > upl_offset) {
1656 io_size = aligned_ofs - upl_offset;
1657 pg_count--;
1658 }
1659 }
1660
1661 if ( !(mp->mnt_kern_flag & MNTK_VIRTUALDEV))
1662 /*
1663 * if we're not targeting a virtual device i.e. a disk image
1664 * it's safe to dip into the reserve pool since real devices
1665 * can complete this I/O request without requiring additional
1666 * bufs from the alloc_io_buf pool
1667 */
1668 priv = 1;
1669 else if ((flags & CL_ASYNC) && !(flags & CL_PAGEOUT))
1670 /*
1671 * Throttle the speculative IO
1672 */
1673 priv = 0;
1674 else
1675 priv = 1;
1676
1677 cbp = alloc_io_buf(vp, priv);
1678
1679 if (flags & CL_PAGEOUT) {
1680 u_int i;
1681
1682 /*
1683 * since blocks are in offsets of 0x1000, scale
1684 * iteration to (PAGE_SIZE * pg_count) of blks.
1685 */
1686 for (i = 0; i < (PAGE_SIZE * pg_count)/0x1000; i++) {
1687 if (buf_invalblkno(vp, lblkno + i, 0) == EBUSY)
1688 panic("BUSY bp found in cluster_io");
1689 }
1690 }
1691 if (flags & CL_ASYNC) {
1692 if (buf_setcallback(cbp, (void *)cluster_iodone, callback_arg))
1693 panic("buf_setcallback failed\n");
1694 }
1695 cbp->b_cliodone = (void *)callback;
1696 cbp->b_flags |= io_flags;
1697 if (flags & CL_NOCACHE)
1698 cbp->b_attr.ba_flags |= BA_NOCACHE;
1699
1700 cbp->b_lblkno = lblkno;
1701 cbp->b_blkno = blkno;
1702 cbp->b_bcount = io_size;
1703
1704 if (buf_setupl(cbp, upl, upl_offset))
1705 panic("buf_setupl failed\n");
1706 #if CONFIG_IOSCHED
1707 upl_set_blkno(upl, upl_offset, io_size, blkno);
1708 #endif
1709 cbp->b_trans_next = (buf_t)NULL;
1710
1711 if ((cbp->b_iostate = (void *)iostate))
1712 /*
1713 * caller wants to track the state of this
1714 * io... bump the amount issued against this stream
1715 */
1716 iostate->io_issued += io_size;
1717
1718 if (flags & CL_READ) {
1719 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 26)) | DBG_FUNC_NONE,
1720 (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0);
1721 }
1722 else {
1723 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 27)) | DBG_FUNC_NONE,
1724 (int)cbp->b_lblkno, (int)cbp->b_blkno, upl_offset, io_size, 0);
1725 }
1726
1727 if (cbp_head) {
1728 cbp_tail->b_trans_next = cbp;
1729 cbp_tail = cbp;
1730 } else {
1731 cbp_head = cbp;
1732 cbp_tail = cbp;
1733
1734 if ( (cbp_head->b_real_bp = real_bp) )
1735 real_bp = (buf_t)NULL;
1736 }
1737 *(buf_t *)(&cbp->b_trans_head) = cbp_head;
1738
1739 trans_count++;
1740
1741 upl_offset += io_size;
1742 f_offset += io_size;
1743 size -= io_size;
1744 /*
1745 * keep track of how much of the original request
1746 * that we've actually completed... non_rounded_size
1747 * may go negative due to us rounding the request
1748 * to a page size multiple (i.e. size > non_rounded_size)
1749 */
1750 non_rounded_size -= io_size;
1751
1752 if (non_rounded_size <= 0) {
1753 /*
1754 * we've transferred all of the data in the original
1755 * request, but we were unable to complete the tail
1756 * of the last page because the file didn't have
1757 * an allocation to back that portion... this is ok.
1758 */
1759 size = 0;
1760 }
1761 if (size == 0) {
1762 /*
1763 * we have no more I/O to issue, so go
1764 * finish the final transaction
1765 */
1766 need_EOT = TRUE;
1767 } else if ( ((flags & CL_DEV_MEMORY) || (upl_offset & PAGE_MASK) == 0) &&
1768 ((flags & CL_ASYNC) || trans_count > max_trans_count) ) {
1769 /*
1770 * I/O directed to physically contiguous memory...
1771 * which doesn't have a requirement to make sure we 'fill' a page
1772 * or...
1773 * the current I/O we've prepared fully
1774 * completes the last page in this request
1775 * and ...
1776 * it's either an ASYNC request or
1777 * we've already accumulated more than 8 I/O's into
1778 * this transaction so mark it as complete so that
1779 * it can finish asynchronously or via the cluster_complete_transaction
1780 * below if the request is synchronous
1781 */
1782 need_EOT = TRUE;
1783 }
1784 if (need_EOT == TRUE)
1785 cluster_EOT(cbp_head, cbp_tail, size == 0 ? zero_offset : 0);
1786
1787 if (flags & CL_THROTTLE)
1788 (void)vnode_waitforwrites(vp, async_throttle, 0, 0, "cluster_io");
1789
1790 if ( !(io_flags & B_READ))
1791 vnode_startwrite(vp);
1792
1793 if (flags & CL_RAW_ENCRYPTED) {
1794 /*
1795 * User requested raw encrypted bytes.
1796 * Twiddle the bit in the ba_flags for the buffer
1797 */
1798 cbp->b_attr.ba_flags |= BA_RAW_ENCRYPTED_IO;
1799 }
1800
1801 (void) VNOP_STRATEGY(cbp);
1802
1803 if (need_EOT == TRUE) {
1804 if ( !(flags & CL_ASYNC))
1805 cluster_complete_transaction(&cbp_head, callback_arg, &retval, flags, 1);
1806
1807 need_EOT = FALSE;
1808 trans_count = 0;
1809 cbp_head = NULL;
1810 }
1811 }
1812 if (error) {
1813 int abort_size;
1814
1815 io_size = 0;
1816
1817 if (cbp_head) {
1818 /*
1819 * Wait until all of the outstanding I/O
1820 * for this partial transaction has completed
1821 */
1822 cluster_wait_IO(cbp_head, (flags & CL_ASYNC));
1823
1824 /*
1825 * Rewind the upl offset to the beginning of the
1826 * transaction.
1827 */
1828 upl_offset = cbp_head->b_uploffset;
1829 }
1830
1831 if (ISSET(flags, CL_COMMIT)) {
1832 cluster_handle_associated_upl(iostate, upl, upl_offset,
1833 upl_end_offset - upl_offset);
1834 }
1835
1836 // Free all the IO buffers in this transaction
1837 for (cbp = cbp_head; cbp;) {
1838 buf_t cbp_next;
1839
1840 size += cbp->b_bcount;
1841 io_size += cbp->b_bcount;
1842
1843 cbp_next = cbp->b_trans_next;
1844 free_io_buf(cbp);
1845 cbp = cbp_next;
1846 }
1847
1848 if (iostate) {
1849 int need_wakeup = 0;
1850
1851 /*
1852 * update the error condition for this stream
1853 * since we never really issued the io
1854 * just go ahead and adjust it back
1855 */
1856 lck_mtx_lock_spin(&iostate->io_mtxp);
1857
1858 if (iostate->io_error == 0)
1859 iostate->io_error = error;
1860 iostate->io_issued -= io_size;
1861
1862 if (iostate->io_wanted) {
1863 /*
1864 * someone is waiting for the state of
1865 * this io stream to change
1866 */
1867 iostate->io_wanted = 0;
1868 need_wakeup = 1;
1869 }
1870 lck_mtx_unlock(&iostate->io_mtxp);
1871
1872 if (need_wakeup)
1873 wakeup((caddr_t)&iostate->io_wanted);
1874 }
1875
1876 if (flags & CL_COMMIT) {
1877 int upl_flags;
1878
1879 pg_offset = upl_offset & PAGE_MASK;
1880 abort_size = (upl_end_offset - upl_offset + PAGE_MASK) & ~PAGE_MASK;
1881
1882 upl_flags = cluster_ioerror(upl, upl_offset - pg_offset, abort_size, error, io_flags, vp);
1883
1884 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 28)) | DBG_FUNC_NONE,
1885 upl, upl_offset - pg_offset, abort_size, (error << 24) | upl_flags, 0);
1886 }
1887 if (retval == 0)
1888 retval = error;
1889 } else if (cbp_head)
1890 panic("%s(): cbp_head is not NULL.\n", __FUNCTION__);
1891
1892 if (real_bp) {
1893 /*
1894 * can get here if we either encountered an error
1895 * or we completely zero-filled the request and
1896 * no I/O was issued
1897 */
1898 if (error) {
1899 real_bp->b_flags |= B_ERROR;
1900 real_bp->b_error = error;
1901 }
1902 buf_biodone(real_bp);
1903 }
1904 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 22)) | DBG_FUNC_END, (int)f_offset, size, upl_offset, retval, 0);
1905
1906 return (retval);
1907 }
1908
1909 #define reset_vector_run_state() \
1910 issueVectorUPL = vector_upl_offset = vector_upl_index = vector_upl_iosize = vector_upl_size = 0;
1911
1912 static int
1913 vector_cluster_io(vnode_t vp, upl_t vector_upl, vm_offset_t vector_upl_offset, off_t v_upl_uio_offset, int vector_upl_iosize,
1914 int io_flag, buf_t real_bp, struct clios *iostate, int (*callback)(buf_t, void *), void *callback_arg)
1915 {
1916 vector_upl_set_pagelist(vector_upl);
1917
1918 if(io_flag & CL_READ) {
1919 if(vector_upl_offset == 0 && ((vector_upl_iosize & PAGE_MASK)==0))
1920 io_flag &= ~CL_PRESERVE; /*don't zero fill*/
1921 else
1922 io_flag |= CL_PRESERVE; /*zero fill*/
1923 }
1924 return (cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, real_bp, iostate, callback, callback_arg));
1925
1926 }
1927
1928 static int
1929 cluster_read_prefetch(vnode_t vp, off_t f_offset, u_int size, off_t filesize, int (*callback)(buf_t, void *), void *callback_arg, int bflag)
1930 {
1931 int pages_in_prefetch;
1932
1933 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_START,
1934 (int)f_offset, size, (int)filesize, 0, 0);
1935
1936 if (f_offset >= filesize) {
1937 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END,
1938 (int)f_offset, 0, 0, 0, 0);
1939 return(0);
1940 }
1941 if ((off_t)size > (filesize - f_offset))
1942 size = filesize - f_offset;
1943 pages_in_prefetch = (size + (PAGE_SIZE - 1)) / PAGE_SIZE;
1944
1945 advisory_read_ext(vp, filesize, f_offset, size, callback, callback_arg, bflag);
1946
1947 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 49)) | DBG_FUNC_END,
1948 (int)f_offset + size, pages_in_prefetch, 0, 1, 0);
1949
1950 return (pages_in_prefetch);
1951 }
1952
1953
1954
1955 static void
1956 cluster_read_ahead(vnode_t vp, struct cl_extent *extent, off_t filesize, struct cl_readahead *rap, int (*callback)(buf_t, void *), void *callback_arg,
1957 int bflag)
1958 {
1959 daddr64_t r_addr;
1960 off_t f_offset;
1961 int size_of_prefetch;
1962 u_int max_prefetch;
1963
1964
1965 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_START,
1966 (int)extent->b_addr, (int)extent->e_addr, (int)rap->cl_lastr, 0, 0);
1967
1968 if (extent->b_addr == rap->cl_lastr && extent->b_addr == extent->e_addr) {
1969 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1970 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 0, 0);
1971 return;
1972 }
1973 if (rap->cl_lastr == -1 || (extent->b_addr != rap->cl_lastr && extent->b_addr != (rap->cl_lastr + 1))) {
1974 rap->cl_ralen = 0;
1975 rap->cl_maxra = 0;
1976
1977 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1978 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 1, 0);
1979
1980 return;
1981 }
1982 max_prefetch = MAX_PREFETCH(vp, cluster_max_io_size(vp->v_mount, CL_READ), disk_conditioner_mount_is_ssd(vp->v_mount));
1983
1984 if (max_prefetch > speculative_prefetch_max)
1985 max_prefetch = speculative_prefetch_max;
1986
1987 if (max_prefetch <= PAGE_SIZE) {
1988 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1989 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 6, 0);
1990 return;
1991 }
1992 if (extent->e_addr < rap->cl_maxra && rap->cl_ralen >= 4) {
1993 if ((rap->cl_maxra - extent->e_addr) > (rap->cl_ralen / 4)) {
1994
1995 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
1996 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 2, 0);
1997 return;
1998 }
1999 }
2000 r_addr = max(extent->e_addr, rap->cl_maxra) + 1;
2001 f_offset = (off_t)(r_addr * PAGE_SIZE_64);
2002
2003 size_of_prefetch = 0;
2004
2005 ubc_range_op(vp, f_offset, f_offset + PAGE_SIZE_64, UPL_ROP_PRESENT, &size_of_prefetch);
2006
2007 if (size_of_prefetch) {
2008 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
2009 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 3, 0);
2010 return;
2011 }
2012 if (f_offset < filesize) {
2013 daddr64_t read_size;
2014
2015 rap->cl_ralen = rap->cl_ralen ? min(max_prefetch / PAGE_SIZE, rap->cl_ralen << 1) : 1;
2016
2017 read_size = (extent->e_addr + 1) - extent->b_addr;
2018
2019 if (read_size > rap->cl_ralen) {
2020 if (read_size > max_prefetch / PAGE_SIZE)
2021 rap->cl_ralen = max_prefetch / PAGE_SIZE;
2022 else
2023 rap->cl_ralen = read_size;
2024 }
2025 size_of_prefetch = cluster_read_prefetch(vp, f_offset, rap->cl_ralen * PAGE_SIZE, filesize, callback, callback_arg, bflag);
2026
2027 if (size_of_prefetch)
2028 rap->cl_maxra = (r_addr + size_of_prefetch) - 1;
2029 }
2030 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 48)) | DBG_FUNC_END,
2031 rap->cl_ralen, (int)rap->cl_maxra, (int)rap->cl_lastr, 4, 0);
2032 }
2033
2034
2035 int
2036 cluster_pageout(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
2037 int size, off_t filesize, int flags)
2038 {
2039 return cluster_pageout_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL);
2040
2041 }
2042
2043
2044 int
2045 cluster_pageout_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
2046 int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
2047 {
2048 int io_size;
2049 int rounded_size;
2050 off_t max_size;
2051 int local_flags;
2052
2053 local_flags = CL_PAGEOUT | CL_THROTTLE;
2054
2055 if ((flags & UPL_IOSYNC) == 0)
2056 local_flags |= CL_ASYNC;
2057 if ((flags & UPL_NOCOMMIT) == 0)
2058 local_flags |= CL_COMMIT;
2059 if ((flags & UPL_KEEPCACHED))
2060 local_flags |= CL_KEEPCACHED;
2061 if (flags & UPL_PAGING_ENCRYPTED)
2062 local_flags |= CL_ENCRYPTED;
2063
2064
2065 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 52)) | DBG_FUNC_NONE,
2066 (int)f_offset, size, (int)filesize, local_flags, 0);
2067
2068 /*
2069 * If they didn't specify any I/O, then we are done...
2070 * we can't issue an abort because we don't know how
2071 * big the upl really is
2072 */
2073 if (size <= 0)
2074 return (EINVAL);
2075
2076 if (vp->v_mount->mnt_flag & MNT_RDONLY) {
2077 if (local_flags & CL_COMMIT)
2078 ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY);
2079 return (EROFS);
2080 }
2081 /*
2082 * can't page-in from a negative offset
2083 * or if we're starting beyond the EOF
2084 * or if the file offset isn't page aligned
2085 * or the size requested isn't a multiple of PAGE_SIZE
2086 */
2087 if (f_offset < 0 || f_offset >= filesize ||
2088 (f_offset & PAGE_MASK_64) || (size & PAGE_MASK)) {
2089 if (local_flags & CL_COMMIT)
2090 ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY);
2091 return (EINVAL);
2092 }
2093 max_size = filesize - f_offset;
2094
2095 if (size < max_size)
2096 io_size = size;
2097 else
2098 io_size = max_size;
2099
2100 rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
2101
2102 if (size > rounded_size) {
2103 if (local_flags & CL_COMMIT)
2104 ubc_upl_abort_range(upl, upl_offset + rounded_size, size - rounded_size,
2105 UPL_ABORT_FREE_ON_EMPTY);
2106 }
2107 return (cluster_io(vp, upl, upl_offset, f_offset, io_size,
2108 local_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg));
2109 }
2110
2111
2112 int
2113 cluster_pagein(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
2114 int size, off_t filesize, int flags)
2115 {
2116 return cluster_pagein_ext(vp, upl, upl_offset, f_offset, size, filesize, flags, NULL, NULL);
2117 }
2118
2119
2120 int
2121 cluster_pagein_ext(vnode_t vp, upl_t upl, upl_offset_t upl_offset, off_t f_offset,
2122 int size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
2123 {
2124 u_int io_size;
2125 int rounded_size;
2126 off_t max_size;
2127 int retval;
2128 int local_flags = 0;
2129
2130 if (upl == NULL || size < 0)
2131 panic("cluster_pagein: NULL upl passed in");
2132
2133 if ((flags & UPL_IOSYNC) == 0)
2134 local_flags |= CL_ASYNC;
2135 if ((flags & UPL_NOCOMMIT) == 0)
2136 local_flags |= CL_COMMIT;
2137 if (flags & UPL_IOSTREAMING)
2138 local_flags |= CL_IOSTREAMING;
2139 if (flags & UPL_PAGING_ENCRYPTED)
2140 local_flags |= CL_ENCRYPTED;
2141
2142
2143 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 56)) | DBG_FUNC_NONE,
2144 (int)f_offset, size, (int)filesize, local_flags, 0);
2145
2146 /*
2147 * can't page-in from a negative offset
2148 * or if we're starting beyond the EOF
2149 * or if the file offset isn't page aligned
2150 * or the size requested isn't a multiple of PAGE_SIZE
2151 */
2152 if (f_offset < 0 || f_offset >= filesize ||
2153 (f_offset & PAGE_MASK_64) || (size & PAGE_MASK) || (upl_offset & PAGE_MASK)) {
2154 if (local_flags & CL_COMMIT)
2155 ubc_upl_abort_range(upl, upl_offset, size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR);
2156 return (EINVAL);
2157 }
2158 max_size = filesize - f_offset;
2159
2160 if (size < max_size)
2161 io_size = size;
2162 else
2163 io_size = max_size;
2164
2165 rounded_size = (io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
2166
2167 if (size > rounded_size && (local_flags & CL_COMMIT))
2168 ubc_upl_abort_range(upl, upl_offset + rounded_size,
2169 size - rounded_size, UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_ERROR);
2170
2171 retval = cluster_io(vp, upl, upl_offset, f_offset, io_size,
2172 local_flags | CL_READ | CL_PAGEIN, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
2173
2174 return (retval);
2175 }
2176
2177
2178 int
2179 cluster_bp(buf_t bp)
2180 {
2181 return cluster_bp_ext(bp, NULL, NULL);
2182 }
2183
2184
2185 int
2186 cluster_bp_ext(buf_t bp, int (*callback)(buf_t, void *), void *callback_arg)
2187 {
2188 off_t f_offset;
2189 int flags;
2190
2191 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 19)) | DBG_FUNC_START,
2192 bp, (int)bp->b_lblkno, bp->b_bcount, bp->b_flags, 0);
2193
2194 if (bp->b_flags & B_READ)
2195 flags = CL_ASYNC | CL_READ;
2196 else
2197 flags = CL_ASYNC;
2198 if (bp->b_flags & B_PASSIVE)
2199 flags |= CL_PASSIVE;
2200
2201 f_offset = ubc_blktooff(bp->b_vp, bp->b_lblkno);
2202
2203 return (cluster_io(bp->b_vp, bp->b_upl, 0, f_offset, bp->b_bcount, flags, bp, (struct clios *)NULL, callback, callback_arg));
2204 }
2205
2206
2207
2208 int
2209 cluster_write(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff, int xflags)
2210 {
2211 return cluster_write_ext(vp, uio, oldEOF, newEOF, headOff, tailOff, xflags, NULL, NULL);
2212 }
2213
2214
2215 int
2216 cluster_write_ext(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, off_t headOff, off_t tailOff,
2217 int xflags, int (*callback)(buf_t, void *), void *callback_arg)
2218 {
2219 user_ssize_t cur_resid;
2220 int retval = 0;
2221 int flags;
2222 int zflags;
2223 int bflag;
2224 int write_type = IO_COPY;
2225 u_int32_t write_length;
2226
2227 flags = xflags;
2228
2229 if (flags & IO_PASSIVE)
2230 bflag = CL_PASSIVE;
2231 else
2232 bflag = 0;
2233
2234 if (vp->v_flag & VNOCACHE_DATA){
2235 flags |= IO_NOCACHE;
2236 bflag |= CL_NOCACHE;
2237 }
2238 if (uio == NULL) {
2239 /*
2240 * no user data...
2241 * this call is being made to zero-fill some range in the file
2242 */
2243 retval = cluster_write_copy(vp, NULL, (u_int32_t)0, oldEOF, newEOF, headOff, tailOff, flags, callback, callback_arg);
2244
2245 return(retval);
2246 }
2247 /*
2248 * do a write through the cache if one of the following is true....
2249 * NOCACHE is not true or NODIRECT is true
2250 * the uio request doesn't target USERSPACE
2251 * otherwise, find out if we want the direct or contig variant for
2252 * the first vector in the uio request
2253 */
2254 if ( ((flags & (IO_NOCACHE | IO_NODIRECT)) == IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg) )
2255 retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE);
2256
2257 if ( (flags & (IO_TAILZEROFILL | IO_HEADZEROFILL)) && write_type == IO_DIRECT)
2258 /*
2259 * must go through the cached variant in this case
2260 */
2261 write_type = IO_COPY;
2262
2263 while ((cur_resid = uio_resid(uio)) && uio->uio_offset < newEOF && retval == 0) {
2264
2265 switch (write_type) {
2266
2267 case IO_COPY:
2268 /*
2269 * make sure the uio_resid isn't too big...
2270 * internally, we want to handle all of the I/O in
2271 * chunk sizes that fit in a 32 bit int
2272 */
2273 if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE)) {
2274 /*
2275 * we're going to have to call cluster_write_copy
2276 * more than once...
2277 *
2278 * only want the last call to cluster_write_copy to
2279 * have the IO_TAILZEROFILL flag set and only the
2280 * first call should have IO_HEADZEROFILL
2281 */
2282 zflags = flags & ~IO_TAILZEROFILL;
2283 flags &= ~IO_HEADZEROFILL;
2284
2285 write_length = MAX_IO_REQUEST_SIZE;
2286 } else {
2287 /*
2288 * last call to cluster_write_copy
2289 */
2290 zflags = flags;
2291
2292 write_length = (u_int32_t)cur_resid;
2293 }
2294 retval = cluster_write_copy(vp, uio, write_length, oldEOF, newEOF, headOff, tailOff, zflags, callback, callback_arg);
2295 break;
2296
2297 case IO_CONTIG:
2298 zflags = flags & ~(IO_TAILZEROFILL | IO_HEADZEROFILL);
2299
2300 if (flags & IO_HEADZEROFILL) {
2301 /*
2302 * only do this once per request
2303 */
2304 flags &= ~IO_HEADZEROFILL;
2305
2306 retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, uio->uio_offset,
2307 headOff, (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg);
2308 if (retval)
2309 break;
2310 }
2311 retval = cluster_write_contig(vp, uio, newEOF, &write_type, &write_length, callback, callback_arg, bflag);
2312
2313 if (retval == 0 && (flags & IO_TAILZEROFILL) && uio_resid(uio) == 0) {
2314 /*
2315 * we're done with the data from the user specified buffer(s)
2316 * and we've been requested to zero fill at the tail
2317 * treat this as an IO_HEADZEROFILL which doesn't require a uio
2318 * by rearranging the args and passing in IO_HEADZEROFILL
2319 */
2320 retval = cluster_write_copy(vp, (struct uio *)0, (u_int32_t)0, (off_t)0, tailOff, uio->uio_offset,
2321 (off_t)0, zflags | IO_HEADZEROFILL | IO_SYNC, callback, callback_arg);
2322 }
2323 break;
2324
2325 case IO_DIRECT:
2326 /*
2327 * cluster_write_direct is never called with IO_TAILZEROFILL || IO_HEADZEROFILL
2328 */
2329 retval = cluster_write_direct(vp, uio, oldEOF, newEOF, &write_type, &write_length, flags, callback, callback_arg);
2330 break;
2331
2332 case IO_UNKNOWN:
2333 retval = cluster_io_type(uio, &write_type, &write_length, MIN_DIRECT_WRITE_SIZE);
2334 break;
2335 }
2336 /*
2337 * in case we end up calling cluster_write_copy (from cluster_write_direct)
2338 * multiple times to service a multi-vector request that is not aligned properly
2339 * we need to update the oldEOF so that we
2340 * don't zero-fill the head of a page if we've successfully written
2341 * data to that area... 'cluster_write_copy' will zero-fill the head of a
2342 * page that is beyond the oldEOF if the write is unaligned... we only
2343 * want that to happen for the very first page of the cluster_write,
2344 * NOT the first page of each vector making up a multi-vector write.
2345 */
2346 if (uio->uio_offset > oldEOF)
2347 oldEOF = uio->uio_offset;
2348 }
2349 return (retval);
2350 }
2351
2352
2353 static int
2354 cluster_write_direct(vnode_t vp, struct uio *uio, off_t oldEOF, off_t newEOF, int *write_type, u_int32_t *write_length,
2355 int flags, int (*callback)(buf_t, void *), void *callback_arg)
2356 {
2357 upl_t upl;
2358 upl_page_info_t *pl;
2359 vm_offset_t upl_offset;
2360 vm_offset_t vector_upl_offset = 0;
2361 u_int32_t io_req_size;
2362 u_int32_t offset_in_file;
2363 u_int32_t offset_in_iovbase;
2364 u_int32_t io_size;
2365 int io_flag = 0;
2366 upl_size_t upl_size, vector_upl_size = 0;
2367 vm_size_t upl_needed_size;
2368 mach_msg_type_number_t pages_in_pl;
2369 upl_control_flags_t upl_flags;
2370 kern_return_t kret;
2371 mach_msg_type_number_t i;
2372 int force_data_sync;
2373 int retval = 0;
2374 int first_IO = 1;
2375 struct clios iostate;
2376 user_addr_t iov_base;
2377 u_int32_t mem_alignment_mask;
2378 u_int32_t devblocksize;
2379 u_int32_t max_io_size;
2380 u_int32_t max_upl_size;
2381 u_int32_t max_vector_size;
2382 u_int32_t bytes_outstanding_limit;
2383 boolean_t io_throttled = FALSE;
2384
2385 u_int32_t vector_upl_iosize = 0;
2386 int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1);
2387 off_t v_upl_uio_offset = 0;
2388 int vector_upl_index=0;
2389 upl_t vector_upl = NULL;
2390
2391
2392 /*
2393 * When we enter this routine, we know
2394 * -- the resid will not exceed iov_len
2395 */
2396 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_START,
2397 (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0);
2398
2399 max_upl_size = cluster_max_io_size(vp->v_mount, CL_WRITE);
2400
2401 io_flag = CL_ASYNC | CL_PRESERVE | CL_COMMIT | CL_THROTTLE | CL_DIRECT_IO;
2402
2403 if (flags & IO_PASSIVE)
2404 io_flag |= CL_PASSIVE;
2405
2406 if (flags & IO_NOCACHE)
2407 io_flag |= CL_NOCACHE;
2408
2409 if (flags & IO_SKIP_ENCRYPTION)
2410 io_flag |= CL_ENCRYPTED;
2411
2412 iostate.io_completed = 0;
2413 iostate.io_issued = 0;
2414 iostate.io_error = 0;
2415 iostate.io_wanted = 0;
2416
2417 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
2418
2419 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
2420 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
2421
2422 if (devblocksize == 1) {
2423 /*
2424 * the AFP client advertises a devblocksize of 1
2425 * however, its BLOCKMAP routine maps to physical
2426 * blocks that are PAGE_SIZE in size...
2427 * therefore we can't ask for I/Os that aren't page aligned
2428 * or aren't multiples of PAGE_SIZE in size
2429 * by setting devblocksize to PAGE_SIZE, we re-instate
2430 * the old behavior we had before the mem_alignment_mask
2431 * changes went in...
2432 */
2433 devblocksize = PAGE_SIZE;
2434 }
2435
2436 next_dwrite:
2437 io_req_size = *write_length;
2438 iov_base = uio_curriovbase(uio);
2439
2440 offset_in_file = (u_int32_t)uio->uio_offset & PAGE_MASK;
2441 offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask;
2442
2443 if (offset_in_file || offset_in_iovbase) {
2444 /*
2445 * one of the 2 important offsets is misaligned
2446 * so fire an I/O through the cache for this entire vector
2447 */
2448 goto wait_for_dwrites;
2449 }
2450 if (iov_base & (devblocksize - 1)) {
2451 /*
2452 * the offset in memory must be on a device block boundary
2453 * so that we can guarantee that we can generate an
2454 * I/O that ends on a page boundary in cluster_io
2455 */
2456 goto wait_for_dwrites;
2457 }
2458
2459 task_update_logical_writes(current_task(), (io_req_size & ~PAGE_MASK), TASK_WRITE_IMMEDIATE, vp);
2460 while (io_req_size >= PAGE_SIZE && uio->uio_offset < newEOF && retval == 0) {
2461 int throttle_type;
2462
2463 if ( (throttle_type = cluster_is_throttled(vp)) ) {
2464 /*
2465 * we're in the throttle window, at the very least
2466 * we want to limit the size of the I/O we're about
2467 * to issue
2468 */
2469 if ( (flags & IO_RETURN_ON_THROTTLE) && throttle_type == THROTTLE_NOW) {
2470 /*
2471 * we're in the throttle window and at least 1 I/O
2472 * has already been issued by a throttleable thread
2473 * in this window, so return with EAGAIN to indicate
2474 * to the FS issuing the cluster_write call that it
2475 * should now throttle after dropping any locks
2476 */
2477 throttle_info_update_by_mount(vp->v_mount);
2478
2479 io_throttled = TRUE;
2480 goto wait_for_dwrites;
2481 }
2482 max_vector_size = THROTTLE_MAX_IOSIZE;
2483 max_io_size = THROTTLE_MAX_IOSIZE;
2484 } else {
2485 max_vector_size = MAX_VECTOR_UPL_SIZE;
2486 max_io_size = max_upl_size;
2487 }
2488
2489 if (first_IO) {
2490 cluster_syncup(vp, newEOF, callback, callback_arg, callback ? PUSH_SYNC : 0);
2491 first_IO = 0;
2492 }
2493 io_size = io_req_size & ~PAGE_MASK;
2494 iov_base = uio_curriovbase(uio);
2495
2496 if (io_size > max_io_size)
2497 io_size = max_io_size;
2498
2499 if(useVectorUPL && (iov_base & PAGE_MASK)) {
2500 /*
2501 * We have an iov_base that's not page-aligned.
2502 * Issue all I/O's that have been collected within
2503 * this Vectored UPL.
2504 */
2505 if(vector_upl_index) {
2506 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
2507 reset_vector_run_state();
2508 }
2509
2510 /*
2511 * After this point, if we are using the Vector UPL path and the base is
2512 * not page-aligned then the UPL with that base will be the first in the vector UPL.
2513 */
2514 }
2515
2516 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
2517 upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK;
2518
2519 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_START,
2520 (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0);
2521
2522 vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
2523 for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) {
2524 pages_in_pl = 0;
2525 upl_size = upl_needed_size;
2526 upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
2527 UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
2528
2529 kret = vm_map_get_upl(map,
2530 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
2531 &upl_size,
2532 &upl,
2533 NULL,
2534 &pages_in_pl,
2535 &upl_flags,
2536 VM_KERN_MEMORY_FILE,
2537 force_data_sync);
2538
2539 if (kret != KERN_SUCCESS) {
2540 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
2541 0, 0, 0, kret, 0);
2542 /*
2543 * failed to get pagelist
2544 *
2545 * we may have already spun some portion of this request
2546 * off as async requests... we need to wait for the I/O
2547 * to complete before returning
2548 */
2549 goto wait_for_dwrites;
2550 }
2551 pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
2552 pages_in_pl = upl_size / PAGE_SIZE;
2553
2554 for (i = 0; i < pages_in_pl; i++) {
2555 if (!upl_valid_page(pl, i))
2556 break;
2557 }
2558 if (i == pages_in_pl)
2559 break;
2560
2561 /*
2562 * didn't get all the pages back that we
2563 * needed... release this upl and try again
2564 */
2565 ubc_upl_abort(upl, 0);
2566 }
2567 if (force_data_sync >= 3) {
2568 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
2569 i, pages_in_pl, upl_size, kret, 0);
2570 /*
2571 * for some reason, we couldn't acquire a hold on all
2572 * the pages needed in the user's address space
2573 *
2574 * we may have already spun some portion of this request
2575 * off as async requests... we need to wait for the I/O
2576 * to complete before returning
2577 */
2578 goto wait_for_dwrites;
2579 }
2580
2581 /*
2582 * Consider the possibility that upl_size wasn't satisfied.
2583 */
2584 if (upl_size < upl_needed_size) {
2585 if (upl_size && upl_offset == 0)
2586 io_size = upl_size;
2587 else
2588 io_size = 0;
2589 }
2590 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 76)) | DBG_FUNC_END,
2591 (int)upl_offset, upl_size, (int)iov_base, io_size, 0);
2592
2593 if (io_size == 0) {
2594 ubc_upl_abort(upl, 0);
2595 /*
2596 * we may have already spun some portion of this request
2597 * off as async requests... we need to wait for the I/O
2598 * to complete before returning
2599 */
2600 goto wait_for_dwrites;
2601 }
2602
2603 if(useVectorUPL) {
2604 vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK);
2605 if(end_off)
2606 issueVectorUPL = 1;
2607 /*
2608 * After this point, if we are using a vector UPL, then
2609 * either all the UPL elements end on a page boundary OR
2610 * this UPL is the last element because it does not end
2611 * on a page boundary.
2612 */
2613 }
2614
2615 /*
2616 * we want push out these writes asynchronously so that we can overlap
2617 * the preparation of the next I/O
2618 * if there are already too many outstanding writes
2619 * wait until some complete before issuing the next
2620 */
2621 if (vp->v_mount->mnt_minsaturationbytecount)
2622 bytes_outstanding_limit = vp->v_mount->mnt_minsaturationbytecount;
2623 else
2624 bytes_outstanding_limit = max_upl_size * IO_SCALE(vp, 2);
2625
2626 cluster_iostate_wait(&iostate, bytes_outstanding_limit, "cluster_write_direct");
2627
2628 if (iostate.io_error) {
2629 /*
2630 * one of the earlier writes we issued ran into a hard error
2631 * don't issue any more writes, cleanup the UPL
2632 * that was just created but not used, then
2633 * go wait for all writes that are part of this stream
2634 * to complete before returning the error to the caller
2635 */
2636 ubc_upl_abort(upl, 0);
2637
2638 goto wait_for_dwrites;
2639 }
2640
2641 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_START,
2642 (int)upl_offset, (int)uio->uio_offset, io_size, io_flag, 0);
2643
2644 if(!useVectorUPL)
2645 retval = cluster_io(vp, upl, upl_offset, uio->uio_offset,
2646 io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
2647
2648 else {
2649 if(!vector_upl_index) {
2650 vector_upl = vector_upl_create(upl_offset);
2651 v_upl_uio_offset = uio->uio_offset;
2652 vector_upl_offset = upl_offset;
2653 }
2654
2655 vector_upl_set_subupl(vector_upl,upl,upl_size);
2656 vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size);
2657 vector_upl_index++;
2658 vector_upl_iosize += io_size;
2659 vector_upl_size += upl_size;
2660
2661 if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) {
2662 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
2663 reset_vector_run_state();
2664 }
2665 }
2666
2667 /*
2668 * update the uio structure to
2669 * reflect the I/O that we just issued
2670 */
2671 uio_update(uio, (user_size_t)io_size);
2672
2673 /*
2674 * in case we end up calling through to cluster_write_copy to finish
2675 * the tail of this request, we need to update the oldEOF so that we
2676 * don't zero-fill the head of a page if we've successfully written
2677 * data to that area... 'cluster_write_copy' will zero-fill the head of a
2678 * page that is beyond the oldEOF if the write is unaligned... we only
2679 * want that to happen for the very first page of the cluster_write,
2680 * NOT the first page of each vector making up a multi-vector write.
2681 */
2682 if (uio->uio_offset > oldEOF)
2683 oldEOF = uio->uio_offset;
2684
2685 io_req_size -= io_size;
2686
2687 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 77)) | DBG_FUNC_END,
2688 (int)upl_offset, (int)uio->uio_offset, io_req_size, retval, 0);
2689
2690 } /* end while */
2691
2692 if (retval == 0 && iostate.io_error == 0 && io_req_size == 0) {
2693
2694 retval = cluster_io_type(uio, write_type, write_length, MIN_DIRECT_WRITE_SIZE);
2695
2696 if (retval == 0 && *write_type == IO_DIRECT) {
2697
2698 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_NONE,
2699 (int)uio->uio_offset, *write_length, (int)newEOF, 0, 0);
2700
2701 goto next_dwrite;
2702 }
2703 }
2704
2705 wait_for_dwrites:
2706
2707 if (retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) {
2708 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
2709 reset_vector_run_state();
2710 }
2711 /*
2712 * make sure all async writes issued as part of this stream
2713 * have completed before we return
2714 */
2715 cluster_iostate_wait(&iostate, 0, "cluster_write_direct");
2716
2717 if (iostate.io_error)
2718 retval = iostate.io_error;
2719
2720 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
2721
2722 if (io_throttled == TRUE && retval == 0)
2723 retval = EAGAIN;
2724
2725 if (io_req_size && retval == 0) {
2726 /*
2727 * we couldn't handle the tail of this request in DIRECT mode
2728 * so fire it through the copy path
2729 *
2730 * note that flags will never have IO_HEADZEROFILL or IO_TAILZEROFILL set
2731 * so we can just pass 0 in for the headOff and tailOff
2732 */
2733 if (uio->uio_offset > oldEOF)
2734 oldEOF = uio->uio_offset;
2735
2736 retval = cluster_write_copy(vp, uio, io_req_size, oldEOF, newEOF, (off_t)0, (off_t)0, flags, callback, callback_arg);
2737
2738 *write_type = IO_UNKNOWN;
2739 }
2740 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 75)) | DBG_FUNC_END,
2741 (int)uio->uio_offset, io_req_size, retval, 4, 0);
2742
2743 return (retval);
2744 }
2745
2746
2747 static int
2748 cluster_write_contig(vnode_t vp, struct uio *uio, off_t newEOF, int *write_type, u_int32_t *write_length,
2749 int (*callback)(buf_t, void *), void *callback_arg, int bflag)
2750 {
2751 upl_page_info_t *pl;
2752 addr64_t src_paddr = 0;
2753 upl_t upl[MAX_VECTS];
2754 vm_offset_t upl_offset;
2755 u_int32_t tail_size = 0;
2756 u_int32_t io_size;
2757 u_int32_t xsize;
2758 upl_size_t upl_size;
2759 vm_size_t upl_needed_size;
2760 mach_msg_type_number_t pages_in_pl;
2761 upl_control_flags_t upl_flags;
2762 kern_return_t kret;
2763 struct clios iostate;
2764 int error = 0;
2765 int cur_upl = 0;
2766 int num_upl = 0;
2767 int n;
2768 user_addr_t iov_base;
2769 u_int32_t devblocksize;
2770 u_int32_t mem_alignment_mask;
2771
2772 /*
2773 * When we enter this routine, we know
2774 * -- the io_req_size will not exceed iov_len
2775 * -- the target address is physically contiguous
2776 */
2777 cluster_syncup(vp, newEOF, callback, callback_arg, callback ? PUSH_SYNC : 0);
2778
2779 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
2780 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
2781
2782 iostate.io_completed = 0;
2783 iostate.io_issued = 0;
2784 iostate.io_error = 0;
2785 iostate.io_wanted = 0;
2786
2787 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
2788
2789 next_cwrite:
2790 io_size = *write_length;
2791
2792 iov_base = uio_curriovbase(uio);
2793
2794 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
2795 upl_needed_size = upl_offset + io_size;
2796
2797 pages_in_pl = 0;
2798 upl_size = upl_needed_size;
2799 upl_flags = UPL_FILE_IO | UPL_COPYOUT_FROM | UPL_NO_SYNC |
2800 UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
2801
2802 vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
2803 kret = vm_map_get_upl(map,
2804 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
2805 &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, VM_KERN_MEMORY_FILE, 0);
2806
2807 if (kret != KERN_SUCCESS) {
2808 /*
2809 * failed to get pagelist
2810 */
2811 error = EINVAL;
2812 goto wait_for_cwrites;
2813 }
2814 num_upl++;
2815
2816 /*
2817 * Consider the possibility that upl_size wasn't satisfied.
2818 */
2819 if (upl_size < upl_needed_size) {
2820 /*
2821 * This is a failure in the physical memory case.
2822 */
2823 error = EINVAL;
2824 goto wait_for_cwrites;
2825 }
2826 pl = ubc_upl_pageinfo(upl[cur_upl]);
2827
2828 src_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)upl_offset;
2829
2830 while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) {
2831 u_int32_t head_size;
2832
2833 head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1));
2834
2835 if (head_size > io_size)
2836 head_size = io_size;
2837
2838 error = cluster_align_phys_io(vp, uio, src_paddr, head_size, 0, callback, callback_arg);
2839
2840 if (error)
2841 goto wait_for_cwrites;
2842
2843 upl_offset += head_size;
2844 src_paddr += head_size;
2845 io_size -= head_size;
2846
2847 iov_base += head_size;
2848 }
2849 if ((u_int32_t)iov_base & mem_alignment_mask) {
2850 /*
2851 * request doesn't set up on a memory boundary
2852 * the underlying DMA engine can handle...
2853 * return an error instead of going through
2854 * the slow copy path since the intent of this
2855 * path is direct I/O from device memory
2856 */
2857 error = EINVAL;
2858 goto wait_for_cwrites;
2859 }
2860
2861 tail_size = io_size & (devblocksize - 1);
2862 io_size -= tail_size;
2863
2864 while (io_size && error == 0) {
2865
2866 if (io_size > MAX_IO_CONTIG_SIZE)
2867 xsize = MAX_IO_CONTIG_SIZE;
2868 else
2869 xsize = io_size;
2870 /*
2871 * request asynchronously so that we can overlap
2872 * the preparation of the next I/O... we'll do
2873 * the commit after all the I/O has completed
2874 * since its all issued against the same UPL
2875 * if there are already too many outstanding writes
2876 * wait until some have completed before issuing the next
2877 */
2878 cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_write_contig");
2879
2880 if (iostate.io_error) {
2881 /*
2882 * one of the earlier writes we issued ran into a hard error
2883 * don't issue any more writes...
2884 * go wait for all writes that are part of this stream
2885 * to complete before returning the error to the caller
2886 */
2887 goto wait_for_cwrites;
2888 }
2889 /*
2890 * issue an asynchronous write to cluster_io
2891 */
2892 error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset,
2893 xsize, CL_DEV_MEMORY | CL_ASYNC | bflag, (buf_t)NULL, (struct clios *)&iostate, callback, callback_arg);
2894
2895 if (error == 0) {
2896 /*
2897 * The cluster_io write completed successfully,
2898 * update the uio structure
2899 */
2900 uio_update(uio, (user_size_t)xsize);
2901
2902 upl_offset += xsize;
2903 src_paddr += xsize;
2904 io_size -= xsize;
2905 }
2906 }
2907 if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS) {
2908
2909 error = cluster_io_type(uio, write_type, write_length, 0);
2910
2911 if (error == 0 && *write_type == IO_CONTIG) {
2912 cur_upl++;
2913 goto next_cwrite;
2914 }
2915 } else
2916 *write_type = IO_UNKNOWN;
2917
2918 wait_for_cwrites:
2919 /*
2920 * make sure all async writes that are part of this stream
2921 * have completed before we proceed
2922 */
2923 cluster_iostate_wait(&iostate, 0, "cluster_write_contig");
2924
2925 if (iostate.io_error)
2926 error = iostate.io_error;
2927
2928 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
2929
2930 if (error == 0 && tail_size)
2931 error = cluster_align_phys_io(vp, uio, src_paddr, tail_size, 0, callback, callback_arg);
2932
2933 for (n = 0; n < num_upl; n++)
2934 /*
2935 * just release our hold on each physically contiguous
2936 * region without changing any state
2937 */
2938 ubc_upl_abort(upl[n], 0);
2939
2940 return (error);
2941 }
2942
2943
2944 /*
2945 * need to avoid a race between an msync of a range of pages dirtied via mmap
2946 * vs a filesystem such as HFS deciding to write a 'hole' to disk via cluster_write's
2947 * zerofill mechanism before it has seen the VNOP_PAGEOUTs for the pages being msync'd
2948 *
2949 * we should never force-zero-fill pages that are already valid in the cache...
2950 * the entire page contains valid data (either from disk, zero-filled or dirtied
2951 * via an mmap) so we can only do damage by trying to zero-fill
2952 *
2953 */
2954 static int
2955 cluster_zero_range(upl_t upl, upl_page_info_t *pl, int flags, int io_offset, off_t zero_off, off_t upl_f_offset, int bytes_to_zero)
2956 {
2957 int zero_pg_index;
2958 boolean_t need_cluster_zero = TRUE;
2959
2960 if ((flags & (IO_NOZEROVALID | IO_NOZERODIRTY))) {
2961
2962 bytes_to_zero = min(bytes_to_zero, PAGE_SIZE - (int)(zero_off & PAGE_MASK_64));
2963 zero_pg_index = (int)((zero_off - upl_f_offset) / PAGE_SIZE_64);
2964
2965 if (upl_valid_page(pl, zero_pg_index)) {
2966 /*
2967 * never force zero valid pages - dirty or clean
2968 * we'll leave these in the UPL for cluster_write_copy to deal with
2969 */
2970 need_cluster_zero = FALSE;
2971 }
2972 }
2973 if (need_cluster_zero == TRUE)
2974 cluster_zero(upl, io_offset, bytes_to_zero, NULL);
2975
2976 return (bytes_to_zero);
2977 }
2978
2979
2980 static int
2981 cluster_write_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t oldEOF, off_t newEOF, off_t headOff,
2982 off_t tailOff, int flags, int (*callback)(buf_t, void *), void *callback_arg)
2983 {
2984 upl_page_info_t *pl;
2985 upl_t upl;
2986 vm_offset_t upl_offset = 0;
2987 vm_size_t upl_size;
2988 off_t upl_f_offset;
2989 int pages_in_upl;
2990 int start_offset;
2991 int xfer_resid;
2992 int io_size;
2993 int io_offset;
2994 int bytes_to_zero;
2995 int bytes_to_move;
2996 kern_return_t kret;
2997 int retval = 0;
2998 int io_resid;
2999 long long total_size;
3000 long long zero_cnt;
3001 off_t zero_off;
3002 long long zero_cnt1;
3003 off_t zero_off1;
3004 off_t write_off = 0;
3005 int write_cnt = 0;
3006 boolean_t first_pass = FALSE;
3007 struct cl_extent cl;
3008 struct cl_writebehind *wbp;
3009 int bflag;
3010 u_int max_cluster_pgcount;
3011 u_int max_io_size;
3012
3013 if (uio) {
3014 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START,
3015 (int)uio->uio_offset, io_req_size, (int)oldEOF, (int)newEOF, 0);
3016
3017 io_resid = io_req_size;
3018 } else {
3019 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_START,
3020 0, 0, (int)oldEOF, (int)newEOF, 0);
3021
3022 io_resid = 0;
3023 }
3024 if (flags & IO_PASSIVE)
3025 bflag = CL_PASSIVE;
3026 else
3027 bflag = 0;
3028 if (flags & IO_NOCACHE)
3029 bflag |= CL_NOCACHE;
3030
3031 if (flags & IO_SKIP_ENCRYPTION)
3032 bflag |= CL_ENCRYPTED;
3033
3034 zero_cnt = 0;
3035 zero_cnt1 = 0;
3036 zero_off = 0;
3037 zero_off1 = 0;
3038
3039 max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE;
3040 max_io_size = cluster_max_io_size(vp->v_mount, CL_WRITE);
3041
3042 if (flags & IO_HEADZEROFILL) {
3043 /*
3044 * some filesystems (HFS is one) don't support unallocated holes within a file...
3045 * so we zero fill the intervening space between the old EOF and the offset
3046 * where the next chunk of real data begins.... ftruncate will also use this
3047 * routine to zero fill to the new EOF when growing a file... in this case, the
3048 * uio structure will not be provided
3049 */
3050 if (uio) {
3051 if (headOff < uio->uio_offset) {
3052 zero_cnt = uio->uio_offset - headOff;
3053 zero_off = headOff;
3054 }
3055 } else if (headOff < newEOF) {
3056 zero_cnt = newEOF - headOff;
3057 zero_off = headOff;
3058 }
3059 } else {
3060 if (uio && uio->uio_offset > oldEOF) {
3061 zero_off = uio->uio_offset & ~PAGE_MASK_64;
3062
3063 if (zero_off >= oldEOF) {
3064 zero_cnt = uio->uio_offset - zero_off;
3065
3066 flags |= IO_HEADZEROFILL;
3067 }
3068 }
3069 }
3070 if (flags & IO_TAILZEROFILL) {
3071 if (uio) {
3072 zero_off1 = uio->uio_offset + io_req_size;
3073
3074 if (zero_off1 < tailOff)
3075 zero_cnt1 = tailOff - zero_off1;
3076 }
3077 } else {
3078 if (uio && newEOF > oldEOF) {
3079 zero_off1 = uio->uio_offset + io_req_size;
3080
3081 if (zero_off1 == newEOF && (zero_off1 & PAGE_MASK_64)) {
3082 zero_cnt1 = PAGE_SIZE_64 - (zero_off1 & PAGE_MASK_64);
3083
3084 flags |= IO_TAILZEROFILL;
3085 }
3086 }
3087 }
3088 if (zero_cnt == 0 && uio == (struct uio *) 0) {
3089 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END,
3090 retval, 0, 0, 0, 0);
3091 return (0);
3092 }
3093 if (uio) {
3094 write_off = uio->uio_offset;
3095 write_cnt = uio_resid(uio);
3096 /*
3097 * delay updating the sequential write info
3098 * in the control block until we've obtained
3099 * the lock for it
3100 */
3101 first_pass = TRUE;
3102 }
3103 while ((total_size = (io_resid + zero_cnt + zero_cnt1)) && retval == 0) {
3104 /*
3105 * for this iteration of the loop, figure out where our starting point is
3106 */
3107 if (zero_cnt) {
3108 start_offset = (int)(zero_off & PAGE_MASK_64);
3109 upl_f_offset = zero_off - start_offset;
3110 } else if (io_resid) {
3111 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
3112 upl_f_offset = uio->uio_offset - start_offset;
3113 } else {
3114 start_offset = (int)(zero_off1 & PAGE_MASK_64);
3115 upl_f_offset = zero_off1 - start_offset;
3116 }
3117 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 46)) | DBG_FUNC_NONE,
3118 (int)zero_off, (int)zero_cnt, (int)zero_off1, (int)zero_cnt1, 0);
3119
3120 if (total_size > max_io_size)
3121 total_size = max_io_size;
3122
3123 cl.b_addr = (daddr64_t)(upl_f_offset / PAGE_SIZE_64);
3124
3125 if (uio && ((flags & (IO_SYNC | IO_HEADZEROFILL | IO_TAILZEROFILL)) == 0)) {
3126 /*
3127 * assumption... total_size <= io_resid
3128 * because IO_HEADZEROFILL and IO_TAILZEROFILL not set
3129 */
3130 if ((start_offset + total_size) > max_io_size)
3131 total_size = max_io_size - start_offset;
3132 xfer_resid = total_size;
3133
3134 retval = cluster_copy_ubc_data_internal(vp, uio, &xfer_resid, 1, 1);
3135
3136 if (retval)
3137 break;
3138
3139 io_resid -= (total_size - xfer_resid);
3140 total_size = xfer_resid;
3141 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
3142 upl_f_offset = uio->uio_offset - start_offset;
3143
3144 if (total_size == 0) {
3145 if (start_offset) {
3146 /*
3147 * the write did not finish on a page boundary
3148 * which will leave upl_f_offset pointing to the
3149 * beginning of the last page written instead of
3150 * the page beyond it... bump it in this case
3151 * so that the cluster code records the last page
3152 * written as dirty
3153 */
3154 upl_f_offset += PAGE_SIZE_64;
3155 }
3156 upl_size = 0;
3157
3158 goto check_cluster;
3159 }
3160 }
3161 /*
3162 * compute the size of the upl needed to encompass
3163 * the requested write... limit each call to cluster_io
3164 * to the maximum UPL size... cluster_io will clip if
3165 * this exceeds the maximum io_size for the device,
3166 * make sure to account for
3167 * a starting offset that's not page aligned
3168 */
3169 upl_size = (start_offset + total_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
3170
3171 if (upl_size > max_io_size)
3172 upl_size = max_io_size;
3173
3174 pages_in_upl = upl_size / PAGE_SIZE;
3175 io_size = upl_size - start_offset;
3176
3177 if ((long long)io_size > total_size)
3178 io_size = total_size;
3179
3180 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, io_size, total_size, 0, 0);
3181
3182
3183 /*
3184 * Gather the pages from the buffer cache.
3185 * The UPL_WILL_MODIFY flag lets the UPL subsystem know
3186 * that we intend to modify these pages.
3187 */
3188 kret = ubc_create_upl_kernel(vp,
3189 upl_f_offset,
3190 upl_size,
3191 &upl,
3192 &pl,
3193 UPL_SET_LITE | (( uio!=NULL && (uio->uio_flags & UIO_FLAGS_IS_COMPRESSED_FILE)) ? 0 : UPL_WILL_MODIFY),
3194 VM_KERN_MEMORY_FILE);
3195 if (kret != KERN_SUCCESS)
3196 panic("cluster_write_copy: failed to get pagelist");
3197
3198 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END,
3199 upl, (int)upl_f_offset, start_offset, 0, 0);
3200
3201 if (start_offset && upl_f_offset < oldEOF && !upl_valid_page(pl, 0)) {
3202 int read_size;
3203
3204 /*
3205 * we're starting in the middle of the first page of the upl
3206 * and the page isn't currently valid, so we're going to have
3207 * to read it in first... this is a synchronous operation
3208 */
3209 read_size = PAGE_SIZE;
3210
3211 if ((upl_f_offset + read_size) > oldEOF)
3212 read_size = oldEOF - upl_f_offset;
3213
3214 retval = cluster_io(vp, upl, 0, upl_f_offset, read_size,
3215 CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
3216 if (retval) {
3217 /*
3218 * we had an error during the read which causes us to abort
3219 * the current cluster_write request... before we do, we need
3220 * to release the rest of the pages in the upl without modifying
3221 * there state and mark the failed page in error
3222 */
3223 ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY);
3224
3225 if (upl_size > PAGE_SIZE)
3226 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
3227
3228 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
3229 upl, 0, 0, retval, 0);
3230 break;
3231 }
3232 }
3233 if ((start_offset == 0 || upl_size > PAGE_SIZE) && ((start_offset + io_size) & PAGE_MASK)) {
3234 /*
3235 * the last offset we're writing to in this upl does not end on a page
3236 * boundary... if it's not beyond the old EOF, then we'll also need to
3237 * pre-read this page in if it isn't already valid
3238 */
3239 upl_offset = upl_size - PAGE_SIZE;
3240
3241 if ((upl_f_offset + start_offset + io_size) < oldEOF &&
3242 !upl_valid_page(pl, upl_offset / PAGE_SIZE)) {
3243 int read_size;
3244
3245 read_size = PAGE_SIZE;
3246
3247 if ((off_t)(upl_f_offset + upl_offset + read_size) > oldEOF)
3248 read_size = oldEOF - (upl_f_offset + upl_offset);
3249
3250 retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, read_size,
3251 CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
3252 if (retval) {
3253 /*
3254 * we had an error during the read which causes us to abort
3255 * the current cluster_write request... before we do, we
3256 * need to release the rest of the pages in the upl without
3257 * modifying there state and mark the failed page in error
3258 */
3259 ubc_upl_abort_range(upl, upl_offset, PAGE_SIZE, UPL_ABORT_DUMP_PAGES|UPL_ABORT_FREE_ON_EMPTY);
3260
3261 if (upl_size > PAGE_SIZE)
3262 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
3263
3264 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
3265 upl, 0, 0, retval, 0);
3266 break;
3267 }
3268 }
3269 }
3270 xfer_resid = io_size;
3271 io_offset = start_offset;
3272
3273 while (zero_cnt && xfer_resid) {
3274
3275 if (zero_cnt < (long long)xfer_resid)
3276 bytes_to_zero = zero_cnt;
3277 else
3278 bytes_to_zero = xfer_resid;
3279
3280 bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off, upl_f_offset, bytes_to_zero);
3281
3282 xfer_resid -= bytes_to_zero;
3283 zero_cnt -= bytes_to_zero;
3284 zero_off += bytes_to_zero;
3285 io_offset += bytes_to_zero;
3286 }
3287 if (xfer_resid && io_resid) {
3288 u_int32_t io_requested;
3289
3290 bytes_to_move = min(io_resid, xfer_resid);
3291 io_requested = bytes_to_move;
3292
3293 retval = cluster_copy_upl_data(uio, upl, io_offset, (int *)&io_requested);
3294
3295 if (retval) {
3296 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
3297
3298 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 45)) | DBG_FUNC_NONE,
3299 upl, 0, 0, retval, 0);
3300 } else {
3301 io_resid -= bytes_to_move;
3302 xfer_resid -= bytes_to_move;
3303 io_offset += bytes_to_move;
3304 }
3305 }
3306 while (xfer_resid && zero_cnt1 && retval == 0) {
3307
3308 if (zero_cnt1 < (long long)xfer_resid)
3309 bytes_to_zero = zero_cnt1;
3310 else
3311 bytes_to_zero = xfer_resid;
3312
3313 bytes_to_zero = cluster_zero_range(upl, pl, flags, io_offset, zero_off1, upl_f_offset, bytes_to_zero);
3314
3315 xfer_resid -= bytes_to_zero;
3316 zero_cnt1 -= bytes_to_zero;
3317 zero_off1 += bytes_to_zero;
3318 io_offset += bytes_to_zero;
3319 }
3320 if (retval == 0) {
3321 int cl_index;
3322 int ret_cluster_try_push;
3323 int do_zeroing = 1;
3324
3325
3326 io_size += start_offset;
3327
3328
3329 /* Force more restrictive zeroing behavior only on APFS */
3330 if ((vnode_tag(vp) == VT_APFS) && (newEOF < oldEOF)) {
3331 do_zeroing = 0;
3332 }
3333
3334
3335 if (do_zeroing && (upl_f_offset + io_size) >= newEOF && (u_int)io_size < upl_size) {
3336
3337 /*
3338 * if we're extending the file with this write
3339 * we'll zero fill the rest of the page so that
3340 * if the file gets extended again in such a way as to leave a
3341 * hole starting at this EOF, we'll have zero's in the correct spot
3342 */
3343 cluster_zero(upl, io_size, upl_size - io_size, NULL);
3344 }
3345 /*
3346 * release the upl now if we hold one since...
3347 * 1) pages in it may be present in the sparse cluster map
3348 * and may span 2 separate buckets there... if they do and
3349 * we happen to have to flush a bucket to make room and it intersects
3350 * this upl, a deadlock may result on page BUSY
3351 * 2) we're delaying the I/O... from this point forward we're just updating
3352 * the cluster state... no need to hold the pages, so commit them
3353 * 3) IO_SYNC is set...
3354 * because we had to ask for a UPL that provides currenty non-present pages, the
3355 * UPL has been automatically set to clear the dirty flags (both software and hardware)
3356 * upon committing it... this is not the behavior we want since it's possible for
3357 * pages currently present as part of a mapped file to be dirtied while the I/O is in flight.
3358 * we'll pick these pages back up later with the correct behavior specified.
3359 * 4) we don't want to hold pages busy in a UPL and then block on the cluster lock... if a flush
3360 * of this vnode is in progress, we will deadlock if the pages being flushed intersect the pages
3361 * we hold since the flushing context is holding the cluster lock.
3362 */
3363 ubc_upl_commit_range(upl, 0, upl_size,
3364 UPL_COMMIT_SET_DIRTY | UPL_COMMIT_INACTIVATE | UPL_COMMIT_FREE_ON_EMPTY);
3365 check_cluster:
3366 /*
3367 * calculate the last logical block number
3368 * that this delayed I/O encompassed
3369 */
3370 cl.e_addr = (daddr64_t)((upl_f_offset + (off_t)upl_size) / PAGE_SIZE_64);
3371
3372 if (flags & IO_SYNC) {
3373 /*
3374 * if the IO_SYNC flag is set than we need to
3375 * bypass any clusters and immediately issue
3376 * the I/O
3377 */
3378 goto issue_io;
3379 }
3380 /*
3381 * take the lock to protect our accesses
3382 * of the writebehind and sparse cluster state
3383 */
3384 wbp = cluster_get_wbp(vp, CLW_ALLOCATE | CLW_RETURNLOCKED);
3385
3386 if (wbp->cl_scmap) {
3387
3388 if ( !(flags & IO_NOCACHE)) {
3389 /*
3390 * we've fallen into the sparse
3391 * cluster method of delaying dirty pages
3392 */
3393 sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg);
3394
3395 lck_mtx_unlock(&wbp->cl_lockw);
3396
3397 continue;
3398 }
3399 /*
3400 * must have done cached writes that fell into
3401 * the sparse cluster mechanism... we've switched
3402 * to uncached writes on the file, so go ahead
3403 * and push whatever's in the sparse map
3404 * and switch back to normal clustering
3405 */
3406 wbp->cl_number = 0;
3407
3408 sparse_cluster_push(&(wbp->cl_scmap), vp, newEOF, PUSH_ALL, 0, callback, callback_arg);
3409 /*
3410 * no clusters of either type present at this point
3411 * so just go directly to start_new_cluster since
3412 * we know we need to delay this I/O since we've
3413 * already released the pages back into the cache
3414 * to avoid the deadlock with sparse_cluster_push
3415 */
3416 goto start_new_cluster;
3417 }
3418 if (first_pass) {
3419 if (write_off == wbp->cl_last_write)
3420 wbp->cl_seq_written += write_cnt;
3421 else
3422 wbp->cl_seq_written = write_cnt;
3423
3424 wbp->cl_last_write = write_off + write_cnt;
3425
3426 first_pass = FALSE;
3427 }
3428 if (wbp->cl_number == 0)
3429 /*
3430 * no clusters currently present
3431 */
3432 goto start_new_cluster;
3433
3434 for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
3435 /*
3436 * check each cluster that we currently hold
3437 * try to merge some or all of this write into
3438 * one or more of the existing clusters... if
3439 * any portion of the write remains, start a
3440 * new cluster
3441 */
3442 if (cl.b_addr >= wbp->cl_clusters[cl_index].b_addr) {
3443 /*
3444 * the current write starts at or after the current cluster
3445 */
3446 if (cl.e_addr <= (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) {
3447 /*
3448 * we have a write that fits entirely
3449 * within the existing cluster limits
3450 */
3451 if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr)
3452 /*
3453 * update our idea of where the cluster ends
3454 */
3455 wbp->cl_clusters[cl_index].e_addr = cl.e_addr;
3456 break;
3457 }
3458 if (cl.b_addr < (wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount)) {
3459 /*
3460 * we have a write that starts in the middle of the current cluster
3461 * but extends beyond the cluster's limit... we know this because
3462 * of the previous checks
3463 * we'll extend the current cluster to the max
3464 * and update the b_addr for the current write to reflect that
3465 * the head of it was absorbed into this cluster...
3466 * note that we'll always have a leftover tail in this case since
3467 * full absorbtion would have occurred in the clause above
3468 */
3469 wbp->cl_clusters[cl_index].e_addr = wbp->cl_clusters[cl_index].b_addr + max_cluster_pgcount;
3470
3471 cl.b_addr = wbp->cl_clusters[cl_index].e_addr;
3472 }
3473 /*
3474 * we come here for the case where the current write starts
3475 * beyond the limit of the existing cluster or we have a leftover
3476 * tail after a partial absorbtion
3477 *
3478 * in either case, we'll check the remaining clusters before
3479 * starting a new one
3480 */
3481 } else {
3482 /*
3483 * the current write starts in front of the cluster we're currently considering
3484 */
3485 if ((wbp->cl_clusters[cl_index].e_addr - cl.b_addr) <= max_cluster_pgcount) {
3486 /*
3487 * we can just merge the new request into
3488 * this cluster and leave it in the cache
3489 * since the resulting cluster is still
3490 * less than the maximum allowable size
3491 */
3492 wbp->cl_clusters[cl_index].b_addr = cl.b_addr;
3493
3494 if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr) {
3495 /*
3496 * the current write completely
3497 * envelops the existing cluster and since
3498 * each write is limited to at most max_cluster_pgcount pages
3499 * we can just use the start and last blocknos of the write
3500 * to generate the cluster limits
3501 */
3502 wbp->cl_clusters[cl_index].e_addr = cl.e_addr;
3503 }
3504 break;
3505 }
3506
3507 /*
3508 * if we were to combine this write with the current cluster
3509 * we would exceed the cluster size limit.... so,
3510 * let's see if there's any overlap of the new I/O with
3511 * the cluster we're currently considering... in fact, we'll
3512 * stretch the cluster out to it's full limit and see if we
3513 * get an intersection with the current write
3514 *
3515 */
3516 if (cl.e_addr > wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount) {
3517 /*
3518 * the current write extends into the proposed cluster
3519 * clip the length of the current write after first combining it's
3520 * tail with the newly shaped cluster
3521 */
3522 wbp->cl_clusters[cl_index].b_addr = wbp->cl_clusters[cl_index].e_addr - max_cluster_pgcount;
3523
3524 cl.e_addr = wbp->cl_clusters[cl_index].b_addr;
3525 }
3526 /*
3527 * if we get here, there was no way to merge
3528 * any portion of this write with this cluster
3529 * or we could only merge part of it which
3530 * will leave a tail...
3531 * we'll check the remaining clusters before starting a new one
3532 */
3533 }
3534 }
3535 if (cl_index < wbp->cl_number)
3536 /*
3537 * we found an existing cluster(s) that we
3538 * could entirely merge this I/O into
3539 */
3540 goto delay_io;
3541
3542 if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) &&
3543 wbp->cl_number == MAX_CLUSTERS &&
3544 wbp->cl_seq_written >= (MAX_CLUSTERS * (max_cluster_pgcount * PAGE_SIZE))) {
3545 uint32_t n;
3546
3547 if (vp->v_mount->mnt_minsaturationbytecount) {
3548 n = vp->v_mount->mnt_minsaturationbytecount / MAX_CLUSTER_SIZE(vp);
3549
3550 if (n > MAX_CLUSTERS)
3551 n = MAX_CLUSTERS;
3552 } else
3553 n = 0;
3554
3555 if (n == 0) {
3556 if (disk_conditioner_mount_is_ssd(vp->v_mount))
3557 n = WRITE_BEHIND_SSD;
3558 else
3559 n = WRITE_BEHIND;
3560 }
3561 while (n--)
3562 cluster_try_push(wbp, vp, newEOF, 0, 0, callback, callback_arg, NULL);
3563 }
3564 if (wbp->cl_number < MAX_CLUSTERS) {
3565 /*
3566 * we didn't find an existing cluster to
3567 * merge into, but there's room to start
3568 * a new one
3569 */
3570 goto start_new_cluster;
3571 }
3572 /*
3573 * no exisitng cluster to merge with and no
3574 * room to start a new one... we'll try
3575 * pushing one of the existing ones... if none of
3576 * them are able to be pushed, we'll switch
3577 * to the sparse cluster mechanism
3578 * cluster_try_push updates cl_number to the
3579 * number of remaining clusters... and
3580 * returns the number of currently unused clusters
3581 */
3582 ret_cluster_try_push = 0;
3583
3584 /*
3585 * if writes are not deferred, call cluster push immediately
3586 */
3587 if (!((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE)) {
3588
3589 ret_cluster_try_push = cluster_try_push(wbp, vp, newEOF, (flags & IO_NOCACHE) ? 0 : PUSH_DELAY, 0, callback, callback_arg, NULL);
3590 }
3591
3592 /*
3593 * execute following regardless of writes being deferred or not
3594 */
3595 if (ret_cluster_try_push == 0) {
3596 /*
3597 * no more room in the normal cluster mechanism
3598 * so let's switch to the more expansive but expensive
3599 * sparse mechanism....
3600 */
3601 sparse_cluster_switch(wbp, vp, newEOF, callback, callback_arg);
3602 sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, newEOF, callback, callback_arg);
3603
3604 lck_mtx_unlock(&wbp->cl_lockw);
3605
3606 continue;
3607 }
3608 start_new_cluster:
3609 wbp->cl_clusters[wbp->cl_number].b_addr = cl.b_addr;
3610 wbp->cl_clusters[wbp->cl_number].e_addr = cl.e_addr;
3611
3612 wbp->cl_clusters[wbp->cl_number].io_flags = 0;
3613
3614 if (flags & IO_NOCACHE)
3615 wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IONOCACHE;
3616
3617 if (bflag & CL_PASSIVE)
3618 wbp->cl_clusters[wbp->cl_number].io_flags |= CLW_IOPASSIVE;
3619
3620 wbp->cl_number++;
3621 delay_io:
3622 lck_mtx_unlock(&wbp->cl_lockw);
3623
3624 continue;
3625 issue_io:
3626 /*
3627 * we don't hold the lock at this point
3628 *
3629 * we've already dropped the current upl, so pick it back up with COPYOUT_FROM set
3630 * so that we correctly deal with a change in state of the hardware modify bit...
3631 * we do this via cluster_push_now... by passing along the IO_SYNC flag, we force
3632 * cluster_push_now to wait until all the I/Os have completed... cluster_push_now is also
3633 * responsible for generating the correct sized I/O(s)
3634 */
3635 retval = cluster_push_now(vp, &cl, newEOF, flags, callback, callback_arg);
3636 }
3637 }
3638 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 40)) | DBG_FUNC_END, retval, 0, io_resid, 0, 0);
3639
3640 return (retval);
3641 }
3642
3643
3644
3645 int
3646 cluster_read(vnode_t vp, struct uio *uio, off_t filesize, int xflags)
3647 {
3648 return cluster_read_ext(vp, uio, filesize, xflags, NULL, NULL);
3649 }
3650
3651
3652 int
3653 cluster_read_ext(vnode_t vp, struct uio *uio, off_t filesize, int xflags, int (*callback)(buf_t, void *), void *callback_arg)
3654 {
3655 int retval = 0;
3656 int flags;
3657 user_ssize_t cur_resid;
3658 u_int32_t io_size;
3659 u_int32_t read_length = 0;
3660 int read_type = IO_COPY;
3661
3662 flags = xflags;
3663
3664 if (vp->v_flag & VNOCACHE_DATA)
3665 flags |= IO_NOCACHE;
3666 if ((vp->v_flag & VRAOFF) || speculative_reads_disabled)
3667 flags |= IO_RAOFF;
3668
3669 if (flags & IO_SKIP_ENCRYPTION)
3670 flags |= IO_ENCRYPTED;
3671
3672 /*
3673 * do a read through the cache if one of the following is true....
3674 * NOCACHE is not true
3675 * the uio request doesn't target USERSPACE
3676 * Alternatively, if IO_ENCRYPTED is set, then we want to bypass the cache as well.
3677 * Reading encrypted data from a CP filesystem should never result in the data touching
3678 * the UBC.
3679 *
3680 * otherwise, find out if we want the direct or contig variant for
3681 * the first vector in the uio request
3682 */
3683 if ( ((flags & IO_NOCACHE) && UIO_SEG_IS_USER_SPACE(uio->uio_segflg)) || (flags & IO_ENCRYPTED) ) {
3684
3685 retval = cluster_io_type(uio, &read_type, &read_length, 0);
3686 }
3687
3688 while ((cur_resid = uio_resid(uio)) && uio->uio_offset < filesize && retval == 0) {
3689
3690 switch (read_type) {
3691
3692 case IO_COPY:
3693 /*
3694 * make sure the uio_resid isn't too big...
3695 * internally, we want to handle all of the I/O in
3696 * chunk sizes that fit in a 32 bit int
3697 */
3698 if (cur_resid > (user_ssize_t)(MAX_IO_REQUEST_SIZE))
3699 io_size = MAX_IO_REQUEST_SIZE;
3700 else
3701 io_size = (u_int32_t)cur_resid;
3702
3703 retval = cluster_read_copy(vp, uio, io_size, filesize, flags, callback, callback_arg);
3704 break;
3705
3706 case IO_DIRECT:
3707 retval = cluster_read_direct(vp, uio, filesize, &read_type, &read_length, flags, callback, callback_arg);
3708 break;
3709
3710 case IO_CONTIG:
3711 retval = cluster_read_contig(vp, uio, filesize, &read_type, &read_length, callback, callback_arg, flags);
3712 break;
3713
3714 case IO_UNKNOWN:
3715 retval = cluster_io_type(uio, &read_type, &read_length, 0);
3716 break;
3717 }
3718 }
3719 return (retval);
3720 }
3721
3722
3723
3724 static void
3725 cluster_read_upl_release(upl_t upl, int start_pg, int last_pg, int take_reference)
3726 {
3727 int range;
3728 int abort_flags = UPL_ABORT_FREE_ON_EMPTY;
3729
3730 if ((range = last_pg - start_pg)) {
3731 if (take_reference)
3732 abort_flags |= UPL_ABORT_REFERENCE;
3733
3734 ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, range * PAGE_SIZE, abort_flags);
3735 }
3736 }
3737
3738
3739 static int
3740 cluster_read_copy(vnode_t vp, struct uio *uio, u_int32_t io_req_size, off_t filesize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
3741 {
3742 upl_page_info_t *pl;
3743 upl_t upl;
3744 vm_offset_t upl_offset;
3745 u_int32_t upl_size;
3746 off_t upl_f_offset;
3747 int start_offset;
3748 int start_pg;
3749 int last_pg;
3750 int uio_last = 0;
3751 int pages_in_upl;
3752 off_t max_size;
3753 off_t last_ioread_offset;
3754 off_t last_request_offset;
3755 kern_return_t kret;
3756 int error = 0;
3757 int retval = 0;
3758 u_int32_t size_of_prefetch;
3759 u_int32_t xsize;
3760 u_int32_t io_size;
3761 u_int32_t max_rd_size;
3762 u_int32_t max_io_size;
3763 u_int32_t max_prefetch;
3764 u_int rd_ahead_enabled = 1;
3765 u_int prefetch_enabled = 1;
3766 struct cl_readahead * rap;
3767 struct clios iostate;
3768 struct cl_extent extent;
3769 int bflag;
3770 int take_reference = 1;
3771 int policy = IOPOL_DEFAULT;
3772 boolean_t iolock_inited = FALSE;
3773
3774 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_START,
3775 (int)uio->uio_offset, io_req_size, (int)filesize, flags, 0);
3776
3777 if (flags & IO_ENCRYPTED) {
3778 panic ("encrypted blocks will hit UBC!");
3779 }
3780
3781 policy = throttle_get_io_policy(NULL);
3782
3783 if (policy == THROTTLE_LEVEL_TIER3 || policy == THROTTLE_LEVEL_TIER2 || (flags & IO_NOCACHE))
3784 take_reference = 0;
3785
3786 if (flags & IO_PASSIVE)
3787 bflag = CL_PASSIVE;
3788 else
3789 bflag = 0;
3790
3791 if (flags & IO_NOCACHE)
3792 bflag |= CL_NOCACHE;
3793
3794 if (flags & IO_SKIP_ENCRYPTION)
3795 bflag |= CL_ENCRYPTED;
3796
3797 max_io_size = cluster_max_io_size(vp->v_mount, CL_READ);
3798 max_prefetch = MAX_PREFETCH(vp, max_io_size, disk_conditioner_mount_is_ssd(vp->v_mount));
3799 max_rd_size = max_prefetch;
3800
3801 last_request_offset = uio->uio_offset + io_req_size;
3802
3803 if (last_request_offset > filesize)
3804 last_request_offset = filesize;
3805
3806 if ((flags & (IO_RAOFF|IO_NOCACHE)) || ((last_request_offset & ~PAGE_MASK_64) == (uio->uio_offset & ~PAGE_MASK_64))) {
3807 rd_ahead_enabled = 0;
3808 rap = NULL;
3809 } else {
3810 if (cluster_is_throttled(vp)) {
3811 /*
3812 * we're in the throttle window, at the very least
3813 * we want to limit the size of the I/O we're about
3814 * to issue
3815 */
3816 rd_ahead_enabled = 0;
3817 prefetch_enabled = 0;
3818
3819 max_rd_size = THROTTLE_MAX_IOSIZE;
3820 }
3821 if ((rap = cluster_get_rap(vp)) == NULL)
3822 rd_ahead_enabled = 0;
3823 else {
3824 extent.b_addr = uio->uio_offset / PAGE_SIZE_64;
3825 extent.e_addr = (last_request_offset - 1) / PAGE_SIZE_64;
3826 }
3827 }
3828 if (rap != NULL && rap->cl_ralen && (rap->cl_lastr == extent.b_addr || (rap->cl_lastr + 1) == extent.b_addr)) {
3829 /*
3830 * determine if we already have a read-ahead in the pipe courtesy of the
3831 * last read systemcall that was issued...
3832 * if so, pick up it's extent to determine where we should start
3833 * with respect to any read-ahead that might be necessary to
3834 * garner all the data needed to complete this read systemcall
3835 */
3836 last_ioread_offset = (rap->cl_maxra * PAGE_SIZE_64) + PAGE_SIZE_64;
3837
3838 if (last_ioread_offset < uio->uio_offset)
3839 last_ioread_offset = (off_t)0;
3840 else if (last_ioread_offset > last_request_offset)
3841 last_ioread_offset = last_request_offset;
3842 } else
3843 last_ioread_offset = (off_t)0;
3844
3845 while (io_req_size && uio->uio_offset < filesize && retval == 0) {
3846
3847 max_size = filesize - uio->uio_offset;
3848
3849 if ((off_t)(io_req_size) < max_size)
3850 io_size = io_req_size;
3851 else
3852 io_size = max_size;
3853
3854 if (!(flags & IO_NOCACHE)) {
3855
3856 while (io_size) {
3857 u_int32_t io_resid;
3858 u_int32_t io_requested;
3859
3860 /*
3861 * if we keep finding the pages we need already in the cache, then
3862 * don't bother to call cluster_read_prefetch since it costs CPU cycles
3863 * to determine that we have all the pages we need... once we miss in
3864 * the cache and have issued an I/O, than we'll assume that we're likely
3865 * to continue to miss in the cache and it's to our advantage to try and prefetch
3866 */
3867 if (last_request_offset && last_ioread_offset && (size_of_prefetch = (last_request_offset - last_ioread_offset))) {
3868 if ((last_ioread_offset - uio->uio_offset) <= max_rd_size && prefetch_enabled) {
3869 /*
3870 * we've already issued I/O for this request and
3871 * there's still work to do and
3872 * our prefetch stream is running dry, so issue a
3873 * pre-fetch I/O... the I/O latency will overlap
3874 * with the copying of the data
3875 */
3876 if (size_of_prefetch > max_rd_size)
3877 size_of_prefetch = max_rd_size;
3878
3879 size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag);
3880
3881 last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE);
3882
3883 if (last_ioread_offset > last_request_offset)
3884 last_ioread_offset = last_request_offset;
3885 }
3886 }
3887 /*
3888 * limit the size of the copy we're about to do so that
3889 * we can notice that our I/O pipe is running dry and
3890 * get the next I/O issued before it does go dry
3891 */
3892 if (last_ioread_offset && io_size > (max_io_size / 4))
3893 io_resid = (max_io_size / 4);
3894 else
3895 io_resid = io_size;
3896
3897 io_requested = io_resid;
3898
3899 retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_resid, 0, take_reference);
3900
3901 xsize = io_requested - io_resid;
3902
3903 io_size -= xsize;
3904 io_req_size -= xsize;
3905
3906 if (retval || io_resid)
3907 /*
3908 * if we run into a real error or
3909 * a page that is not in the cache
3910 * we need to leave streaming mode
3911 */
3912 break;
3913
3914 if (rd_ahead_enabled && (io_size == 0 || last_ioread_offset == last_request_offset)) {
3915 /*
3916 * we're already finished the I/O for this read request
3917 * let's see if we should do a read-ahead
3918 */
3919 cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag);
3920 }
3921 }
3922 if (retval)
3923 break;
3924 if (io_size == 0) {
3925 if (rap != NULL) {
3926 if (extent.e_addr < rap->cl_lastr)
3927 rap->cl_maxra = 0;
3928 rap->cl_lastr = extent.e_addr;
3929 }
3930 break;
3931 }
3932 /*
3933 * recompute max_size since cluster_copy_ubc_data_internal
3934 * may have advanced uio->uio_offset
3935 */
3936 max_size = filesize - uio->uio_offset;
3937 }
3938
3939 iostate.io_completed = 0;
3940 iostate.io_issued = 0;
3941 iostate.io_error = 0;
3942 iostate.io_wanted = 0;
3943
3944 if ( (flags & IO_RETURN_ON_THROTTLE) ) {
3945 if (cluster_is_throttled(vp) == THROTTLE_NOW) {
3946 if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) {
3947 /*
3948 * we're in the throttle window and at least 1 I/O
3949 * has already been issued by a throttleable thread
3950 * in this window, so return with EAGAIN to indicate
3951 * to the FS issuing the cluster_read call that it
3952 * should now throttle after dropping any locks
3953 */
3954 throttle_info_update_by_mount(vp->v_mount);
3955
3956 retval = EAGAIN;
3957 break;
3958 }
3959 }
3960 }
3961
3962 /*
3963 * compute the size of the upl needed to encompass
3964 * the requested read... limit each call to cluster_io
3965 * to the maximum UPL size... cluster_io will clip if
3966 * this exceeds the maximum io_size for the device,
3967 * make sure to account for
3968 * a starting offset that's not page aligned
3969 */
3970 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
3971 upl_f_offset = uio->uio_offset - (off_t)start_offset;
3972
3973 if (io_size > max_rd_size)
3974 io_size = max_rd_size;
3975
3976 upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
3977
3978 if (flags & IO_NOCACHE) {
3979 if (upl_size > max_io_size)
3980 upl_size = max_io_size;
3981 } else {
3982 if (upl_size > max_io_size / 4) {
3983 upl_size = max_io_size / 4;
3984 upl_size &= ~PAGE_MASK;
3985
3986 if (upl_size == 0)
3987 upl_size = PAGE_SIZE;
3988 }
3989 }
3990 pages_in_upl = upl_size / PAGE_SIZE;
3991
3992 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_START,
3993 upl, (int)upl_f_offset, upl_size, start_offset, 0);
3994
3995 kret = ubc_create_upl_kernel(vp,
3996 upl_f_offset,
3997 upl_size,
3998 &upl,
3999 &pl,
4000 UPL_FILE_IO | UPL_SET_LITE,
4001 VM_KERN_MEMORY_FILE);
4002 if (kret != KERN_SUCCESS)
4003 panic("cluster_read_copy: failed to get pagelist");
4004
4005 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 33)) | DBG_FUNC_END,
4006 upl, (int)upl_f_offset, upl_size, start_offset, 0);
4007
4008 /*
4009 * scan from the beginning of the upl looking for the first
4010 * non-valid page.... this will become the first page in
4011 * the request we're going to make to 'cluster_io'... if all
4012 * of the pages are valid, we won't call through to 'cluster_io'
4013 */
4014 for (start_pg = 0; start_pg < pages_in_upl; start_pg++) {
4015 if (!upl_valid_page(pl, start_pg))
4016 break;
4017 }
4018
4019 /*
4020 * scan from the starting invalid page looking for a valid
4021 * page before the end of the upl is reached, if we
4022 * find one, then it will be the last page of the request to
4023 * 'cluster_io'
4024 */
4025 for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
4026 if (upl_valid_page(pl, last_pg))
4027 break;
4028 }
4029
4030 if (start_pg < last_pg) {
4031 /*
4032 * we found a range of 'invalid' pages that must be filled
4033 * if the last page in this range is the last page of the file
4034 * we may have to clip the size of it to keep from reading past
4035 * the end of the last physical block associated with the file
4036 */
4037 if (iolock_inited == FALSE) {
4038 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
4039
4040 iolock_inited = TRUE;
4041 }
4042 upl_offset = start_pg * PAGE_SIZE;
4043 io_size = (last_pg - start_pg) * PAGE_SIZE;
4044
4045 if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize)
4046 io_size = filesize - (upl_f_offset + upl_offset);
4047
4048 /*
4049 * issue an asynchronous read to cluster_io
4050 */
4051
4052 error = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset,
4053 io_size, CL_READ | CL_ASYNC | bflag, (buf_t)NULL, &iostate, callback, callback_arg);
4054
4055 if (rap) {
4056 if (extent.e_addr < rap->cl_maxra) {
4057 /*
4058 * we've just issued a read for a block that should have been
4059 * in the cache courtesy of the read-ahead engine... something
4060 * has gone wrong with the pipeline, so reset the read-ahead
4061 * logic which will cause us to restart from scratch
4062 */
4063 rap->cl_maxra = 0;
4064 }
4065 }
4066 }
4067 if (error == 0) {
4068 /*
4069 * if the read completed successfully, or there was no I/O request
4070 * issued, than copy the data into user land via 'cluster_upl_copy_data'
4071 * we'll first add on any 'valid'
4072 * pages that were present in the upl when we acquired it.
4073 */
4074 u_int val_size;
4075
4076 for (uio_last = last_pg; uio_last < pages_in_upl; uio_last++) {
4077 if (!upl_valid_page(pl, uio_last))
4078 break;
4079 }
4080 if (uio_last < pages_in_upl) {
4081 /*
4082 * there were some invalid pages beyond the valid pages
4083 * that we didn't issue an I/O for, just release them
4084 * unchanged now, so that any prefetch/readahed can
4085 * include them
4086 */
4087 ubc_upl_abort_range(upl, uio_last * PAGE_SIZE,
4088 (pages_in_upl - uio_last) * PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
4089 }
4090
4091 /*
4092 * compute size to transfer this round, if io_req_size is
4093 * still non-zero after this attempt, we'll loop around and
4094 * set up for another I/O.
4095 */
4096 val_size = (uio_last * PAGE_SIZE) - start_offset;
4097
4098 if (val_size > max_size)
4099 val_size = max_size;
4100
4101 if (val_size > io_req_size)
4102 val_size = io_req_size;
4103
4104 if ((uio->uio_offset + val_size) > last_ioread_offset)
4105 last_ioread_offset = uio->uio_offset + val_size;
4106
4107 if ((size_of_prefetch = (last_request_offset - last_ioread_offset)) && prefetch_enabled) {
4108
4109 if ((last_ioread_offset - (uio->uio_offset + val_size)) <= upl_size) {
4110 /*
4111 * if there's still I/O left to do for this request, and...
4112 * we're not in hard throttle mode, and...
4113 * we're close to using up the previous prefetch, then issue a
4114 * new pre-fetch I/O... the I/O latency will overlap
4115 * with the copying of the data
4116 */
4117 if (size_of_prefetch > max_rd_size)
4118 size_of_prefetch = max_rd_size;
4119
4120 size_of_prefetch = cluster_read_prefetch(vp, last_ioread_offset, size_of_prefetch, filesize, callback, callback_arg, bflag);
4121
4122 last_ioread_offset += (off_t)(size_of_prefetch * PAGE_SIZE);
4123
4124 if (last_ioread_offset > last_request_offset)
4125 last_ioread_offset = last_request_offset;
4126 }
4127
4128 } else if ((uio->uio_offset + val_size) == last_request_offset) {
4129 /*
4130 * this transfer will finish this request, so...
4131 * let's try to read ahead if we're in
4132 * a sequential access pattern and we haven't
4133 * explicitly disabled it
4134 */
4135 if (rd_ahead_enabled)
4136 cluster_read_ahead(vp, &extent, filesize, rap, callback, callback_arg, bflag);
4137
4138 if (rap != NULL) {
4139 if (extent.e_addr < rap->cl_lastr)
4140 rap->cl_maxra = 0;
4141 rap->cl_lastr = extent.e_addr;
4142 }
4143 }
4144 if (iolock_inited == TRUE)
4145 cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
4146
4147 if (iostate.io_error)
4148 error = iostate.io_error;
4149 else {
4150 u_int32_t io_requested;
4151
4152 io_requested = val_size;
4153
4154 retval = cluster_copy_upl_data(uio, upl, start_offset, (int *)&io_requested);
4155
4156 io_req_size -= (val_size - io_requested);
4157 }
4158 } else {
4159 if (iolock_inited == TRUE)
4160 cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
4161 }
4162 if (start_pg < last_pg) {
4163 /*
4164 * compute the range of pages that we actually issued an I/O for
4165 * and either commit them as valid if the I/O succeeded
4166 * or abort them if the I/O failed or we're not supposed to
4167 * keep them in the cache
4168 */
4169 io_size = (last_pg - start_pg) * PAGE_SIZE;
4170
4171 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START, upl, start_pg * PAGE_SIZE, io_size, error, 0);
4172
4173 if (error || (flags & IO_NOCACHE))
4174 ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, io_size,
4175 UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
4176 else {
4177 int commit_flags = UPL_COMMIT_CLEAR_DIRTY | UPL_COMMIT_FREE_ON_EMPTY;
4178
4179 if (take_reference)
4180 commit_flags |= UPL_COMMIT_INACTIVATE;
4181 else
4182 commit_flags |= UPL_COMMIT_SPECULATE;
4183
4184 ubc_upl_commit_range(upl, start_pg * PAGE_SIZE, io_size, commit_flags);
4185 }
4186 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, start_pg * PAGE_SIZE, io_size, error, 0);
4187 }
4188 if ((last_pg - start_pg) < pages_in_upl) {
4189 /*
4190 * the set of pages that we issued an I/O for did not encompass
4191 * the entire upl... so just release these without modifying
4192 * their state
4193 */
4194 if (error)
4195 ubc_upl_abort_range(upl, 0, upl_size, UPL_ABORT_FREE_ON_EMPTY);
4196 else {
4197
4198 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_START,
4199 upl, -1, pages_in_upl - (last_pg - start_pg), 0, 0);
4200
4201 /*
4202 * handle any valid pages at the beginning of
4203 * the upl... release these appropriately
4204 */
4205 cluster_read_upl_release(upl, 0, start_pg, take_reference);
4206
4207 /*
4208 * handle any valid pages immediately after the
4209 * pages we issued I/O for... ... release these appropriately
4210 */
4211 cluster_read_upl_release(upl, last_pg, uio_last, take_reference);
4212
4213 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 35)) | DBG_FUNC_END, upl, -1, -1, 0, 0);
4214 }
4215 }
4216 if (retval == 0)
4217 retval = error;
4218
4219 if (io_req_size) {
4220 if (cluster_is_throttled(vp)) {
4221 /*
4222 * we're in the throttle window, at the very least
4223 * we want to limit the size of the I/O we're about
4224 * to issue
4225 */
4226 rd_ahead_enabled = 0;
4227 prefetch_enabled = 0;
4228 max_rd_size = THROTTLE_MAX_IOSIZE;
4229 } else {
4230 if (max_rd_size == THROTTLE_MAX_IOSIZE) {
4231 /*
4232 * coming out of throttled state
4233 */
4234 if (policy != THROTTLE_LEVEL_TIER3 && policy != THROTTLE_LEVEL_TIER2) {
4235 if (rap != NULL)
4236 rd_ahead_enabled = 1;
4237 prefetch_enabled = 1;
4238 }
4239 max_rd_size = max_prefetch;
4240 last_ioread_offset = 0;
4241 }
4242 }
4243 }
4244 }
4245 if (iolock_inited == TRUE) {
4246 /*
4247 * cluster_io returned an error after it
4248 * had already issued some I/O. we need
4249 * to wait for that I/O to complete before
4250 * we can destroy the iostate mutex...
4251 * 'retval' already contains the early error
4252 * so no need to pick it up from iostate.io_error
4253 */
4254 cluster_iostate_wait(&iostate, 0, "cluster_read_copy");
4255
4256 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
4257 }
4258 if (rap != NULL) {
4259 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
4260 (int)uio->uio_offset, io_req_size, rap->cl_lastr, retval, 0);
4261
4262 lck_mtx_unlock(&rap->cl_lockr);
4263 } else {
4264 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 32)) | DBG_FUNC_END,
4265 (int)uio->uio_offset, io_req_size, 0, retval, 0);
4266 }
4267
4268 return (retval);
4269 }
4270
4271 /*
4272 * We don't want another read/write lock for every vnode in the system
4273 * so we keep a hash of them here. There should never be very many of
4274 * these around at any point in time.
4275 */
4276 cl_direct_read_lock_t *cluster_lock_direct_read(vnode_t vp, lck_rw_type_t type)
4277 {
4278 struct cl_direct_read_locks *head
4279 = &cl_direct_read_locks[(uintptr_t)vp / sizeof(*vp)
4280 % CL_DIRECT_READ_LOCK_BUCKETS];
4281
4282 struct cl_direct_read_lock *lck, *new_lck = NULL;
4283
4284 for (;;) {
4285 lck_spin_lock(&cl_direct_read_spin_lock);
4286
4287 LIST_FOREACH(lck, head, chain) {
4288 if (lck->vp == vp) {
4289 ++lck->ref_count;
4290 lck_spin_unlock(&cl_direct_read_spin_lock);
4291 if (new_lck) {
4292 // Someone beat us to it, ditch the allocation
4293 lck_rw_destroy(&new_lck->rw_lock, cl_mtx_grp);
4294 FREE(new_lck, M_TEMP);
4295 }
4296 lck_rw_lock(&lck->rw_lock, type);
4297 return lck;
4298 }
4299 }
4300
4301 if (new_lck) {
4302 // Use the lock we allocated
4303 LIST_INSERT_HEAD(head, new_lck, chain);
4304 lck_spin_unlock(&cl_direct_read_spin_lock);
4305 lck_rw_lock(&new_lck->rw_lock, type);
4306 return new_lck;
4307 }
4308
4309 lck_spin_unlock(&cl_direct_read_spin_lock);
4310
4311 // Allocate a new lock
4312 MALLOC(new_lck, cl_direct_read_lock_t *, sizeof(*new_lck),
4313 M_TEMP, M_WAITOK);
4314 lck_rw_init(&new_lck->rw_lock, cl_mtx_grp, cl_mtx_attr);
4315 new_lck->vp = vp;
4316 new_lck->ref_count = 1;
4317
4318 // Got to go round again
4319 }
4320 }
4321
4322 void cluster_unlock_direct_read(cl_direct_read_lock_t *lck)
4323 {
4324 lck_rw_done(&lck->rw_lock);
4325
4326 lck_spin_lock(&cl_direct_read_spin_lock);
4327 if (lck->ref_count == 1) {
4328 LIST_REMOVE(lck, chain);
4329 lck_spin_unlock(&cl_direct_read_spin_lock);
4330 lck_rw_destroy(&lck->rw_lock, cl_mtx_grp);
4331 FREE(lck, M_TEMP);
4332 } else {
4333 --lck->ref_count;
4334 lck_spin_unlock(&cl_direct_read_spin_lock);
4335 }
4336 }
4337
4338 static int
4339 cluster_read_direct(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
4340 int flags, int (*callback)(buf_t, void *), void *callback_arg)
4341 {
4342 upl_t upl;
4343 upl_page_info_t *pl;
4344 off_t max_io_size;
4345 vm_offset_t upl_offset, vector_upl_offset = 0;
4346 upl_size_t upl_size, vector_upl_size = 0;
4347 vm_size_t upl_needed_size;
4348 unsigned int pages_in_pl;
4349 upl_control_flags_t upl_flags;
4350 kern_return_t kret;
4351 unsigned int i;
4352 int force_data_sync;
4353 int retval = 0;
4354 int no_zero_fill = 0;
4355 int io_flag = 0;
4356 int misaligned = 0;
4357 struct clios iostate;
4358 user_addr_t iov_base;
4359 u_int32_t io_req_size;
4360 u_int32_t offset_in_file;
4361 u_int32_t offset_in_iovbase;
4362 u_int32_t io_size;
4363 u_int32_t io_min;
4364 u_int32_t xsize;
4365 u_int32_t devblocksize;
4366 u_int32_t mem_alignment_mask;
4367 u_int32_t max_upl_size;
4368 u_int32_t max_rd_size;
4369 u_int32_t max_rd_ahead;
4370 u_int32_t max_vector_size;
4371 boolean_t strict_uncached_IO = FALSE;
4372 boolean_t io_throttled = FALSE;
4373
4374 u_int32_t vector_upl_iosize = 0;
4375 int issueVectorUPL = 0,useVectorUPL = (uio->uio_iovcnt > 1);
4376 off_t v_upl_uio_offset = 0;
4377 int vector_upl_index=0;
4378 upl_t vector_upl = NULL;
4379 cl_direct_read_lock_t *lock = NULL;
4380
4381 user_addr_t orig_iov_base = 0;
4382 user_addr_t last_iov_base = 0;
4383 user_addr_t next_iov_base = 0;
4384
4385 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_START,
4386 (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0);
4387
4388 max_upl_size = cluster_max_io_size(vp->v_mount, CL_READ);
4389
4390 max_rd_size = max_upl_size;
4391 max_rd_ahead = max_rd_size * IO_SCALE(vp, 2);
4392
4393 io_flag = CL_COMMIT | CL_READ | CL_ASYNC | CL_NOZERO | CL_DIRECT_IO;
4394
4395 if (flags & IO_PASSIVE)
4396 io_flag |= CL_PASSIVE;
4397
4398 if (flags & IO_ENCRYPTED) {
4399 io_flag |= CL_RAW_ENCRYPTED;
4400 }
4401
4402 if (flags & IO_NOCACHE) {
4403 io_flag |= CL_NOCACHE;
4404 }
4405
4406 if (flags & IO_SKIP_ENCRYPTION)
4407 io_flag |= CL_ENCRYPTED;
4408
4409 iostate.io_completed = 0;
4410 iostate.io_issued = 0;
4411 iostate.io_error = 0;
4412 iostate.io_wanted = 0;
4413
4414 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
4415
4416 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
4417 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
4418
4419 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE,
4420 (int)devblocksize, (int)mem_alignment_mask, 0, 0, 0);
4421
4422 if (devblocksize == 1) {
4423 /*
4424 * the AFP client advertises a devblocksize of 1
4425 * however, its BLOCKMAP routine maps to physical
4426 * blocks that are PAGE_SIZE in size...
4427 * therefore we can't ask for I/Os that aren't page aligned
4428 * or aren't multiples of PAGE_SIZE in size
4429 * by setting devblocksize to PAGE_SIZE, we re-instate
4430 * the old behavior we had before the mem_alignment_mask
4431 * changes went in...
4432 */
4433 devblocksize = PAGE_SIZE;
4434 }
4435
4436 strict_uncached_IO = ubc_strict_uncached_IO(vp);
4437
4438 orig_iov_base = uio_curriovbase(uio);
4439 last_iov_base = orig_iov_base;
4440
4441 next_dread:
4442 io_req_size = *read_length;
4443 iov_base = uio_curriovbase(uio);
4444
4445 offset_in_file = (u_int32_t)uio->uio_offset & (devblocksize - 1);
4446 offset_in_iovbase = (u_int32_t)iov_base & mem_alignment_mask;
4447
4448 if (offset_in_file || offset_in_iovbase) {
4449 /*
4450 * one of the 2 important offsets is misaligned
4451 * so fire an I/O through the cache for this entire vector
4452 */
4453 misaligned = 1;
4454 }
4455 if (iov_base & (devblocksize - 1)) {
4456 /*
4457 * the offset in memory must be on a device block boundary
4458 * so that we can guarantee that we can generate an
4459 * I/O that ends on a page boundary in cluster_io
4460 */
4461 misaligned = 1;
4462 }
4463
4464 max_io_size = filesize - uio->uio_offset;
4465
4466 /*
4467 * The user must request IO in aligned chunks. If the
4468 * offset into the file is bad, or the userland pointer
4469 * is non-aligned, then we cannot service the encrypted IO request.
4470 */
4471 if (flags & IO_ENCRYPTED) {
4472 if (misaligned || (io_req_size & (devblocksize - 1)))
4473 retval = EINVAL;
4474
4475 max_io_size = roundup(max_io_size, devblocksize);
4476 }
4477
4478 if ((off_t)io_req_size > max_io_size)
4479 io_req_size = max_io_size;
4480
4481 /*
4482 * When we get to this point, we know...
4483 * -- the offset into the file is on a devblocksize boundary
4484 */
4485
4486 while (io_req_size && retval == 0) {
4487 u_int32_t io_start;
4488
4489 if (cluster_is_throttled(vp)) {
4490 /*
4491 * we're in the throttle window, at the very least
4492 * we want to limit the size of the I/O we're about
4493 * to issue
4494 */
4495 max_rd_size = THROTTLE_MAX_IOSIZE;
4496 max_rd_ahead = THROTTLE_MAX_IOSIZE - 1;
4497 max_vector_size = THROTTLE_MAX_IOSIZE;
4498 } else {
4499 max_rd_size = max_upl_size;
4500 max_rd_ahead = max_rd_size * IO_SCALE(vp, 2);
4501 max_vector_size = MAX_VECTOR_UPL_SIZE;
4502 }
4503 io_start = io_size = io_req_size;
4504
4505 /*
4506 * First look for pages already in the cache
4507 * and move them to user space. But only do this
4508 * check if we are not retrieving encrypted data directly
4509 * from the filesystem; those blocks should never
4510 * be in the UBC.
4511 *
4512 * cluster_copy_ubc_data returns the resid
4513 * in io_size
4514 */
4515 if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) {
4516 retval = cluster_copy_ubc_data_internal(vp, uio, (int *)&io_size, 0, 0);
4517 }
4518 /*
4519 * calculate the number of bytes actually copied
4520 * starting size - residual
4521 */
4522 xsize = io_start - io_size;
4523
4524 io_req_size -= xsize;
4525
4526 if(useVectorUPL && (xsize || (iov_base & PAGE_MASK))) {
4527 /*
4528 * We found something in the cache or we have an iov_base that's not
4529 * page-aligned.
4530 *
4531 * Issue all I/O's that have been collected within this Vectored UPL.
4532 */
4533 if(vector_upl_index) {
4534 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
4535 reset_vector_run_state();
4536 }
4537
4538 if(xsize)
4539 useVectorUPL = 0;
4540
4541 /*
4542 * After this point, if we are using the Vector UPL path and the base is
4543 * not page-aligned then the UPL with that base will be the first in the vector UPL.
4544 */
4545 }
4546
4547 /*
4548 * check to see if we are finished with this request.
4549 *
4550 * If we satisfied this IO already, then io_req_size will be 0.
4551 * Otherwise, see if the IO was mis-aligned and needs to go through
4552 * the UBC to deal with the 'tail'.
4553 *
4554 */
4555 if (io_req_size == 0 || (misaligned)) {
4556 /*
4557 * see if there's another uio vector to
4558 * process that's of type IO_DIRECT
4559 *
4560 * break out of while loop to get there
4561 */
4562 break;
4563 }
4564 /*
4565 * assume the request ends on a device block boundary
4566 */
4567 io_min = devblocksize;
4568
4569 /*
4570 * we can handle I/O's in multiples of the device block size
4571 * however, if io_size isn't a multiple of devblocksize we
4572 * want to clip it back to the nearest page boundary since
4573 * we are going to have to go through cluster_read_copy to
4574 * deal with the 'overhang'... by clipping it to a PAGE_SIZE
4575 * multiple, we avoid asking the drive for the same physical
4576 * blocks twice.. once for the partial page at the end of the
4577 * request and a 2nd time for the page we read into the cache
4578 * (which overlaps the end of the direct read) in order to
4579 * get at the overhang bytes
4580 */
4581 if (io_size & (devblocksize - 1)) {
4582 assert(!(flags & IO_ENCRYPTED));
4583 /*
4584 * Clip the request to the previous page size boundary
4585 * since request does NOT end on a device block boundary
4586 */
4587 io_size &= ~PAGE_MASK;
4588 io_min = PAGE_SIZE;
4589 }
4590 if (retval || io_size < io_min) {
4591 /*
4592 * either an error or we only have the tail left to
4593 * complete via the copy path...
4594 * we may have already spun some portion of this request
4595 * off as async requests... we need to wait for the I/O
4596 * to complete before returning
4597 */
4598 goto wait_for_dreads;
4599 }
4600
4601 /*
4602 * Don't re-check the UBC data if we are looking for uncached IO
4603 * or asking for encrypted blocks.
4604 */
4605 if ((strict_uncached_IO == FALSE) && ((flags & IO_ENCRYPTED) == 0)) {
4606
4607 if ((xsize = io_size) > max_rd_size)
4608 xsize = max_rd_size;
4609
4610 io_size = 0;
4611
4612 if (!lock) {
4613 /*
4614 * We hold a lock here between the time we check the
4615 * cache and the time we issue I/O. This saves us
4616 * from having to lock the pages in the cache. Not
4617 * all clients will care about this lock but some
4618 * clients may want to guarantee stability between
4619 * here and when the I/O is issued in which case they
4620 * will take the lock exclusively.
4621 */
4622 lock = cluster_lock_direct_read(vp, LCK_RW_TYPE_SHARED);
4623 }
4624
4625 ubc_range_op(vp, uio->uio_offset, uio->uio_offset + xsize, UPL_ROP_ABSENT, (int *)&io_size);
4626
4627 if (io_size == 0) {
4628 /*
4629 * a page must have just come into the cache
4630 * since the first page in this range is no
4631 * longer absent, go back and re-evaluate
4632 */
4633 continue;
4634 }
4635 }
4636 if ( (flags & IO_RETURN_ON_THROTTLE) ) {
4637 if (cluster_is_throttled(vp) == THROTTLE_NOW) {
4638 if ( !cluster_io_present_in_BC(vp, uio->uio_offset)) {
4639 /*
4640 * we're in the throttle window and at least 1 I/O
4641 * has already been issued by a throttleable thread
4642 * in this window, so return with EAGAIN to indicate
4643 * to the FS issuing the cluster_read call that it
4644 * should now throttle after dropping any locks
4645 */
4646 throttle_info_update_by_mount(vp->v_mount);
4647
4648 io_throttled = TRUE;
4649 goto wait_for_dreads;
4650 }
4651 }
4652 }
4653 if (io_size > max_rd_size)
4654 io_size = max_rd_size;
4655
4656 iov_base = uio_curriovbase(uio);
4657
4658 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
4659 upl_needed_size = (upl_offset + io_size + (PAGE_SIZE -1)) & ~PAGE_MASK;
4660
4661 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_START,
4662 (int)upl_offset, upl_needed_size, (int)iov_base, io_size, 0);
4663
4664 if (upl_offset == 0 && ((io_size & PAGE_MASK) == 0))
4665 no_zero_fill = 1;
4666 else
4667 no_zero_fill = 0;
4668
4669 vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
4670 for (force_data_sync = 0; force_data_sync < 3; force_data_sync++) {
4671 pages_in_pl = 0;
4672 upl_size = upl_needed_size;
4673 upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
4674 if (no_zero_fill)
4675 upl_flags |= UPL_NOZEROFILL;
4676 if (force_data_sync)
4677 upl_flags |= UPL_FORCE_DATA_SYNC;
4678
4679 kret = vm_map_create_upl(map,
4680 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
4681 &upl_size, &upl, NULL, &pages_in_pl, &upl_flags, VM_KERN_MEMORY_FILE);
4682
4683 if (kret != KERN_SUCCESS) {
4684 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
4685 (int)upl_offset, upl_size, io_size, kret, 0);
4686 /*
4687 * failed to get pagelist
4688 *
4689 * we may have already spun some portion of this request
4690 * off as async requests... we need to wait for the I/O
4691 * to complete before returning
4692 */
4693 goto wait_for_dreads;
4694 }
4695 pages_in_pl = upl_size / PAGE_SIZE;
4696 pl = UPL_GET_INTERNAL_PAGE_LIST(upl);
4697
4698 for (i = 0; i < pages_in_pl; i++) {
4699 if (!upl_page_present(pl, i))
4700 break;
4701 }
4702 if (i == pages_in_pl)
4703 break;
4704
4705 ubc_upl_abort(upl, 0);
4706 }
4707 if (force_data_sync >= 3) {
4708 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
4709 (int)upl_offset, upl_size, io_size, kret, 0);
4710
4711 goto wait_for_dreads;
4712 }
4713 /*
4714 * Consider the possibility that upl_size wasn't satisfied.
4715 */
4716 if (upl_size < upl_needed_size) {
4717 if (upl_size && upl_offset == 0)
4718 io_size = upl_size;
4719 else
4720 io_size = 0;
4721 }
4722 if (io_size == 0) {
4723 ubc_upl_abort(upl, 0);
4724 goto wait_for_dreads;
4725 }
4726 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 72)) | DBG_FUNC_END,
4727 (int)upl_offset, upl_size, io_size, kret, 0);
4728
4729 if(useVectorUPL) {
4730 vm_offset_t end_off = ((iov_base + io_size) & PAGE_MASK);
4731 if(end_off)
4732 issueVectorUPL = 1;
4733 /*
4734 * After this point, if we are using a vector UPL, then
4735 * either all the UPL elements end on a page boundary OR
4736 * this UPL is the last element because it does not end
4737 * on a page boundary.
4738 */
4739 }
4740
4741 /*
4742 * request asynchronously so that we can overlap
4743 * the preparation of the next I/O
4744 * if there are already too many outstanding reads
4745 * wait until some have completed before issuing the next read
4746 */
4747 cluster_iostate_wait(&iostate, max_rd_ahead, "cluster_read_direct");
4748
4749 if (iostate.io_error) {
4750 /*
4751 * one of the earlier reads we issued ran into a hard error
4752 * don't issue any more reads, cleanup the UPL
4753 * that was just created but not used, then
4754 * go wait for any other reads to complete before
4755 * returning the error to the caller
4756 */
4757 ubc_upl_abort(upl, 0);
4758
4759 goto wait_for_dreads;
4760 }
4761 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_START,
4762 upl, (int)upl_offset, (int)uio->uio_offset, io_size, 0);
4763
4764 if(!useVectorUPL) {
4765 if (no_zero_fill)
4766 io_flag &= ~CL_PRESERVE;
4767 else
4768 io_flag |= CL_PRESERVE;
4769
4770 retval = cluster_io(vp, upl, upl_offset, uio->uio_offset, io_size, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
4771
4772 } else {
4773
4774 if(!vector_upl_index) {
4775 vector_upl = vector_upl_create(upl_offset);
4776 v_upl_uio_offset = uio->uio_offset;
4777 vector_upl_offset = upl_offset;
4778 }
4779
4780 vector_upl_set_subupl(vector_upl,upl, upl_size);
4781 vector_upl_set_iostate(vector_upl, upl, vector_upl_size, upl_size);
4782 vector_upl_index++;
4783 vector_upl_size += upl_size;
4784 vector_upl_iosize += io_size;
4785
4786 if(issueVectorUPL || vector_upl_index == MAX_VECTOR_UPL_ELEMENTS || vector_upl_size >= max_vector_size) {
4787 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
4788 reset_vector_run_state();
4789 }
4790 }
4791 last_iov_base = iov_base + io_size;
4792
4793 if (lock) {
4794 // We don't need to wait for the I/O to complete
4795 cluster_unlock_direct_read(lock);
4796 lock = NULL;
4797 }
4798
4799 /*
4800 * update the uio structure
4801 */
4802 if ((flags & IO_ENCRYPTED) && (max_io_size < io_size)) {
4803 uio_update(uio, (user_size_t)max_io_size);
4804 }
4805 else {
4806 uio_update(uio, (user_size_t)io_size);
4807 }
4808
4809 io_req_size -= io_size;
4810
4811 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 73)) | DBG_FUNC_END,
4812 upl, (int)uio->uio_offset, io_req_size, retval, 0);
4813
4814 } /* end while */
4815
4816 if (retval == 0 && iostate.io_error == 0 && io_req_size == 0 && uio->uio_offset < filesize) {
4817
4818 retval = cluster_io_type(uio, read_type, read_length, 0);
4819
4820 if (retval == 0 && *read_type == IO_DIRECT) {
4821
4822 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_NONE,
4823 (int)uio->uio_offset, (int)filesize, *read_type, *read_length, 0);
4824
4825 goto next_dread;
4826 }
4827 }
4828
4829 wait_for_dreads:
4830
4831 if(retval == 0 && iostate.io_error == 0 && useVectorUPL && vector_upl_index) {
4832 retval = vector_cluster_io(vp, vector_upl, vector_upl_offset, v_upl_uio_offset, vector_upl_iosize, io_flag, (buf_t)NULL, &iostate, callback, callback_arg);
4833 reset_vector_run_state();
4834 }
4835
4836 // We don't need to wait for the I/O to complete
4837 if (lock)
4838 cluster_unlock_direct_read(lock);
4839
4840 /*
4841 * make sure all async reads that are part of this stream
4842 * have completed before we return
4843 */
4844 cluster_iostate_wait(&iostate, 0, "cluster_read_direct");
4845
4846 if (iostate.io_error)
4847 retval = iostate.io_error;
4848
4849 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
4850
4851 if (io_throttled == TRUE && retval == 0)
4852 retval = EAGAIN;
4853
4854 for (next_iov_base = orig_iov_base; next_iov_base < last_iov_base; next_iov_base += PAGE_SIZE) {
4855 /*
4856 * This is specifically done for pmap accounting purposes.
4857 * vm_pre_fault() will call vm_fault() to enter the page into
4858 * the pmap if there isn't _a_ physical page for that VA already.
4859 */
4860 vm_pre_fault(vm_map_trunc_page(next_iov_base, PAGE_MASK));
4861 }
4862
4863 if (io_req_size && retval == 0) {
4864 /*
4865 * we couldn't handle the tail of this request in DIRECT mode
4866 * so fire it through the copy path
4867 */
4868 retval = cluster_read_copy(vp, uio, io_req_size, filesize, flags, callback, callback_arg);
4869
4870 *read_type = IO_UNKNOWN;
4871 }
4872 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 70)) | DBG_FUNC_END,
4873 (int)uio->uio_offset, (int)uio_resid(uio), io_req_size, retval, 0);
4874
4875 return (retval);
4876 }
4877
4878
4879 static int
4880 cluster_read_contig(vnode_t vp, struct uio *uio, off_t filesize, int *read_type, u_int32_t *read_length,
4881 int (*callback)(buf_t, void *), void *callback_arg, int flags)
4882 {
4883 upl_page_info_t *pl;
4884 upl_t upl[MAX_VECTS];
4885 vm_offset_t upl_offset;
4886 addr64_t dst_paddr = 0;
4887 user_addr_t iov_base;
4888 off_t max_size;
4889 upl_size_t upl_size;
4890 vm_size_t upl_needed_size;
4891 mach_msg_type_number_t pages_in_pl;
4892 upl_control_flags_t upl_flags;
4893 kern_return_t kret;
4894 struct clios iostate;
4895 int error= 0;
4896 int cur_upl = 0;
4897 int num_upl = 0;
4898 int n;
4899 u_int32_t xsize;
4900 u_int32_t io_size;
4901 u_int32_t devblocksize;
4902 u_int32_t mem_alignment_mask;
4903 u_int32_t tail_size = 0;
4904 int bflag;
4905
4906 if (flags & IO_PASSIVE)
4907 bflag = CL_PASSIVE;
4908 else
4909 bflag = 0;
4910
4911 if (flags & IO_NOCACHE)
4912 bflag |= CL_NOCACHE;
4913
4914 /*
4915 * When we enter this routine, we know
4916 * -- the read_length will not exceed the current iov_len
4917 * -- the target address is physically contiguous for read_length
4918 */
4919 cluster_syncup(vp, filesize, callback, callback_arg, PUSH_SYNC);
4920
4921 devblocksize = (u_int32_t)vp->v_mount->mnt_devblocksize;
4922 mem_alignment_mask = (u_int32_t)vp->v_mount->mnt_alignmentmask;
4923
4924 iostate.io_completed = 0;
4925 iostate.io_issued = 0;
4926 iostate.io_error = 0;
4927 iostate.io_wanted = 0;
4928
4929 lck_mtx_init(&iostate.io_mtxp, cl_mtx_grp, cl_mtx_attr);
4930
4931 next_cread:
4932 io_size = *read_length;
4933
4934 max_size = filesize - uio->uio_offset;
4935
4936 if (io_size > max_size)
4937 io_size = max_size;
4938
4939 iov_base = uio_curriovbase(uio);
4940
4941 upl_offset = (vm_offset_t)((u_int32_t)iov_base & PAGE_MASK);
4942 upl_needed_size = upl_offset + io_size;
4943
4944 pages_in_pl = 0;
4945 upl_size = upl_needed_size;
4946 upl_flags = UPL_FILE_IO | UPL_NO_SYNC | UPL_CLEAN_IN_PLACE | UPL_SET_INTERNAL | UPL_SET_LITE | UPL_SET_IO_WIRE;
4947
4948
4949 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_START,
4950 (int)upl_offset, (int)upl_size, (int)iov_base, io_size, 0);
4951
4952 vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
4953 kret = vm_map_get_upl(map,
4954 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
4955 &upl_size, &upl[cur_upl], NULL, &pages_in_pl, &upl_flags, VM_KERN_MEMORY_FILE, 0);
4956
4957 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 92)) | DBG_FUNC_END,
4958 (int)upl_offset, upl_size, io_size, kret, 0);
4959
4960 if (kret != KERN_SUCCESS) {
4961 /*
4962 * failed to get pagelist
4963 */
4964 error = EINVAL;
4965 goto wait_for_creads;
4966 }
4967 num_upl++;
4968
4969 if (upl_size < upl_needed_size) {
4970 /*
4971 * The upl_size wasn't satisfied.
4972 */
4973 error = EINVAL;
4974 goto wait_for_creads;
4975 }
4976 pl = ubc_upl_pageinfo(upl[cur_upl]);
4977
4978 dst_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)upl_offset;
4979
4980 while (((uio->uio_offset & (devblocksize - 1)) || io_size < devblocksize) && io_size) {
4981 u_int32_t head_size;
4982
4983 head_size = devblocksize - (u_int32_t)(uio->uio_offset & (devblocksize - 1));
4984
4985 if (head_size > io_size)
4986 head_size = io_size;
4987
4988 error = cluster_align_phys_io(vp, uio, dst_paddr, head_size, CL_READ, callback, callback_arg);
4989
4990 if (error)
4991 goto wait_for_creads;
4992
4993 upl_offset += head_size;
4994 dst_paddr += head_size;
4995 io_size -= head_size;
4996
4997 iov_base += head_size;
4998 }
4999 if ((u_int32_t)iov_base & mem_alignment_mask) {
5000 /*
5001 * request doesn't set up on a memory boundary
5002 * the underlying DMA engine can handle...
5003 * return an error instead of going through
5004 * the slow copy path since the intent of this
5005 * path is direct I/O to device memory
5006 */
5007 error = EINVAL;
5008 goto wait_for_creads;
5009 }
5010
5011 tail_size = io_size & (devblocksize - 1);
5012
5013 io_size -= tail_size;
5014
5015 while (io_size && error == 0) {
5016
5017 if (io_size > MAX_IO_CONTIG_SIZE)
5018 xsize = MAX_IO_CONTIG_SIZE;
5019 else
5020 xsize = io_size;
5021 /*
5022 * request asynchronously so that we can overlap
5023 * the preparation of the next I/O... we'll do
5024 * the commit after all the I/O has completed
5025 * since its all issued against the same UPL
5026 * if there are already too many outstanding reads
5027 * wait until some have completed before issuing the next
5028 */
5029 cluster_iostate_wait(&iostate, MAX_IO_CONTIG_SIZE * IO_SCALE(vp, 2), "cluster_read_contig");
5030
5031 if (iostate.io_error) {
5032 /*
5033 * one of the earlier reads we issued ran into a hard error
5034 * don't issue any more reads...
5035 * go wait for any other reads to complete before
5036 * returning the error to the caller
5037 */
5038 goto wait_for_creads;
5039 }
5040 error = cluster_io(vp, upl[cur_upl], upl_offset, uio->uio_offset, xsize,
5041 CL_READ | CL_NOZERO | CL_DEV_MEMORY | CL_ASYNC | bflag,
5042 (buf_t)NULL, &iostate, callback, callback_arg);
5043 /*
5044 * The cluster_io read was issued successfully,
5045 * update the uio structure
5046 */
5047 if (error == 0) {
5048 uio_update(uio, (user_size_t)xsize);
5049
5050 dst_paddr += xsize;
5051 upl_offset += xsize;
5052 io_size -= xsize;
5053 }
5054 }
5055 if (error == 0 && iostate.io_error == 0 && tail_size == 0 && num_upl < MAX_VECTS && uio->uio_offset < filesize) {
5056
5057 error = cluster_io_type(uio, read_type, read_length, 0);
5058
5059 if (error == 0 && *read_type == IO_CONTIG) {
5060 cur_upl++;
5061 goto next_cread;
5062 }
5063 } else
5064 *read_type = IO_UNKNOWN;
5065
5066 wait_for_creads:
5067 /*
5068 * make sure all async reads that are part of this stream
5069 * have completed before we proceed
5070 */
5071 cluster_iostate_wait(&iostate, 0, "cluster_read_contig");
5072
5073 if (iostate.io_error)
5074 error = iostate.io_error;
5075
5076 lck_mtx_destroy(&iostate.io_mtxp, cl_mtx_grp);
5077
5078 if (error == 0 && tail_size)
5079 error = cluster_align_phys_io(vp, uio, dst_paddr, tail_size, CL_READ, callback, callback_arg);
5080
5081 for (n = 0; n < num_upl; n++)
5082 /*
5083 * just release our hold on each physically contiguous
5084 * region without changing any state
5085 */
5086 ubc_upl_abort(upl[n], 0);
5087
5088 return (error);
5089 }
5090
5091
5092 static int
5093 cluster_io_type(struct uio *uio, int *io_type, u_int32_t *io_length, u_int32_t min_length)
5094 {
5095 user_size_t iov_len;
5096 user_addr_t iov_base = 0;
5097 upl_t upl;
5098 upl_size_t upl_size;
5099 upl_control_flags_t upl_flags;
5100 int retval = 0;
5101
5102 /*
5103 * skip over any emtpy vectors
5104 */
5105 uio_update(uio, (user_size_t)0);
5106
5107 iov_len = uio_curriovlen(uio);
5108
5109 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_START, uio, (int)iov_len, 0, 0, 0);
5110
5111 if (iov_len) {
5112 iov_base = uio_curriovbase(uio);
5113 /*
5114 * make sure the size of the vector isn't too big...
5115 * internally, we want to handle all of the I/O in
5116 * chunk sizes that fit in a 32 bit int
5117 */
5118 if (iov_len > (user_size_t)MAX_IO_REQUEST_SIZE)
5119 upl_size = MAX_IO_REQUEST_SIZE;
5120 else
5121 upl_size = (u_int32_t)iov_len;
5122
5123 upl_flags = UPL_QUERY_OBJECT_TYPE;
5124
5125 vm_map_t map = UIO_SEG_IS_USER_SPACE(uio->uio_segflg) ? current_map() : kernel_map;
5126 if ((vm_map_get_upl(map,
5127 (vm_map_offset_t)(iov_base & ~((user_addr_t)PAGE_MASK)),
5128 &upl_size, &upl, NULL, NULL, &upl_flags, VM_KERN_MEMORY_FILE, 0)) != KERN_SUCCESS) {
5129 /*
5130 * the user app must have passed in an invalid address
5131 */
5132 retval = EFAULT;
5133 }
5134 if (upl_size == 0)
5135 retval = EFAULT;
5136
5137 *io_length = upl_size;
5138
5139 if (upl_flags & UPL_PHYS_CONTIG)
5140 *io_type = IO_CONTIG;
5141 else if (iov_len >= min_length)
5142 *io_type = IO_DIRECT;
5143 else
5144 *io_type = IO_COPY;
5145 } else {
5146 /*
5147 * nothing left to do for this uio
5148 */
5149 *io_length = 0;
5150 *io_type = IO_UNKNOWN;
5151 }
5152 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 94)) | DBG_FUNC_END, iov_base, *io_type, *io_length, retval, 0);
5153
5154 return (retval);
5155 }
5156
5157
5158 /*
5159 * generate advisory I/O's in the largest chunks possible
5160 * the completed pages will be released into the VM cache
5161 */
5162 int
5163 advisory_read(vnode_t vp, off_t filesize, off_t f_offset, int resid)
5164 {
5165 return advisory_read_ext(vp, filesize, f_offset, resid, NULL, NULL, CL_PASSIVE);
5166 }
5167
5168 int
5169 advisory_read_ext(vnode_t vp, off_t filesize, off_t f_offset, int resid, int (*callback)(buf_t, void *), void *callback_arg, int bflag)
5170 {
5171 upl_page_info_t *pl;
5172 upl_t upl;
5173 vm_offset_t upl_offset;
5174 int upl_size;
5175 off_t upl_f_offset;
5176 int start_offset;
5177 int start_pg;
5178 int last_pg;
5179 int pages_in_upl;
5180 off_t max_size;
5181 int io_size;
5182 kern_return_t kret;
5183 int retval = 0;
5184 int issued_io;
5185 int skip_range;
5186 uint32_t max_io_size;
5187
5188
5189 if ( !UBCINFOEXISTS(vp))
5190 return(EINVAL);
5191
5192 if (resid < 0)
5193 return(EINVAL);
5194
5195 max_io_size = cluster_max_io_size(vp->v_mount, CL_READ);
5196
5197 #if CONFIG_EMBEDDED
5198 if (max_io_size > speculative_prefetch_max_iosize)
5199 max_io_size = speculative_prefetch_max_iosize;
5200 #else
5201 if (disk_conditioner_mount_is_ssd(vp->v_mount)) {
5202 if (max_io_size > speculative_prefetch_max_iosize)
5203 max_io_size = speculative_prefetch_max_iosize;
5204 }
5205 #endif
5206
5207 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_START,
5208 (int)f_offset, resid, (int)filesize, 0, 0);
5209
5210 while (resid && f_offset < filesize && retval == 0) {
5211 /*
5212 * compute the size of the upl needed to encompass
5213 * the requested read... limit each call to cluster_io
5214 * to the maximum UPL size... cluster_io will clip if
5215 * this exceeds the maximum io_size for the device,
5216 * make sure to account for
5217 * a starting offset that's not page aligned
5218 */
5219 start_offset = (int)(f_offset & PAGE_MASK_64);
5220 upl_f_offset = f_offset - (off_t)start_offset;
5221 max_size = filesize - f_offset;
5222
5223 if (resid < max_size)
5224 io_size = resid;
5225 else
5226 io_size = max_size;
5227
5228 upl_size = (start_offset + io_size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
5229 if ((uint32_t)upl_size > max_io_size)
5230 upl_size = max_io_size;
5231
5232 skip_range = 0;
5233 /*
5234 * return the number of contiguously present pages in the cache
5235 * starting at upl_f_offset within the file
5236 */
5237 ubc_range_op(vp, upl_f_offset, upl_f_offset + upl_size, UPL_ROP_PRESENT, &skip_range);
5238
5239 if (skip_range) {
5240 /*
5241 * skip over pages already present in the cache
5242 */
5243 io_size = skip_range - start_offset;
5244
5245 f_offset += io_size;
5246 resid -= io_size;
5247
5248 if (skip_range == upl_size)
5249 continue;
5250 /*
5251 * have to issue some real I/O
5252 * at this point, we know it's starting on a page boundary
5253 * because we've skipped over at least the first page in the request
5254 */
5255 start_offset = 0;
5256 upl_f_offset += skip_range;
5257 upl_size -= skip_range;
5258 }
5259 pages_in_upl = upl_size / PAGE_SIZE;
5260
5261 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_START,
5262 upl, (int)upl_f_offset, upl_size, start_offset, 0);
5263
5264 kret = ubc_create_upl_kernel(vp,
5265 upl_f_offset,
5266 upl_size,
5267 &upl,
5268 &pl,
5269 UPL_RET_ONLY_ABSENT | UPL_SET_LITE,
5270 VM_KERN_MEMORY_FILE);
5271 if (kret != KERN_SUCCESS)
5272 return(retval);
5273 issued_io = 0;
5274
5275 /*
5276 * before we start marching forward, we must make sure we end on
5277 * a present page, otherwise we will be working with a freed
5278 * upl
5279 */
5280 for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) {
5281 if (upl_page_present(pl, last_pg))
5282 break;
5283 }
5284 pages_in_upl = last_pg + 1;
5285
5286
5287 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 61)) | DBG_FUNC_END,
5288 upl, (int)upl_f_offset, upl_size, start_offset, 0);
5289
5290
5291 for (last_pg = 0; last_pg < pages_in_upl; ) {
5292 /*
5293 * scan from the beginning of the upl looking for the first
5294 * page that is present.... this will become the first page in
5295 * the request we're going to make to 'cluster_io'... if all
5296 * of the pages are absent, we won't call through to 'cluster_io'
5297 */
5298 for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) {
5299 if (upl_page_present(pl, start_pg))
5300 break;
5301 }
5302
5303 /*
5304 * scan from the starting present page looking for an absent
5305 * page before the end of the upl is reached, if we
5306 * find one, then it will terminate the range of pages being
5307 * presented to 'cluster_io'
5308 */
5309 for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
5310 if (!upl_page_present(pl, last_pg))
5311 break;
5312 }
5313
5314 if (last_pg > start_pg) {
5315 /*
5316 * we found a range of pages that must be filled
5317 * if the last page in this range is the last page of the file
5318 * we may have to clip the size of it to keep from reading past
5319 * the end of the last physical block associated with the file
5320 */
5321 upl_offset = start_pg * PAGE_SIZE;
5322 io_size = (last_pg - start_pg) * PAGE_SIZE;
5323
5324 if ((off_t)(upl_f_offset + upl_offset + io_size) > filesize)
5325 io_size = filesize - (upl_f_offset + upl_offset);
5326
5327 /*
5328 * issue an asynchronous read to cluster_io
5329 */
5330 retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size,
5331 CL_ASYNC | CL_READ | CL_COMMIT | CL_AGE | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
5332
5333 issued_io = 1;
5334 }
5335 }
5336 if (issued_io == 0)
5337 ubc_upl_abort(upl, 0);
5338
5339 io_size = upl_size - start_offset;
5340
5341 if (io_size > resid)
5342 io_size = resid;
5343 f_offset += io_size;
5344 resid -= io_size;
5345 }
5346
5347 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 60)) | DBG_FUNC_END,
5348 (int)f_offset, resid, retval, 0, 0);
5349
5350 return(retval);
5351 }
5352
5353
5354 int
5355 cluster_push(vnode_t vp, int flags)
5356 {
5357 return cluster_push_ext(vp, flags, NULL, NULL);
5358 }
5359
5360
5361 int
5362 cluster_push_ext(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg)
5363 {
5364 return cluster_push_err(vp, flags, callback, callback_arg, NULL);
5365 }
5366
5367 /* write errors via err, but return the number of clusters written */
5368 int
5369 cluster_push_err(vnode_t vp, int flags, int (*callback)(buf_t, void *), void *callback_arg, int *err)
5370 {
5371 int retval;
5372 int my_sparse_wait = 0;
5373 struct cl_writebehind *wbp;
5374
5375 if (err)
5376 *err = 0;
5377
5378 if ( !UBCINFOEXISTS(vp)) {
5379 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -1, 0);
5380 return (0);
5381 }
5382 /* return if deferred write is set */
5383 if (((unsigned int)vfs_flags(vp->v_mount) & MNT_DEFWRITE) && (flags & IO_DEFWRITE)) {
5384 return (0);
5385 }
5386 if ((wbp = cluster_get_wbp(vp, CLW_RETURNLOCKED)) == NULL) {
5387 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -2, 0);
5388 return (0);
5389 }
5390 if (!ISSET(flags, IO_SYNC) && wbp->cl_number == 0 && wbp->cl_scmap == NULL) {
5391 lck_mtx_unlock(&wbp->cl_lockw);
5392
5393 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_NONE, kdebug_vnode(vp), flags, 0, -3, 0);
5394 return(0);
5395 }
5396 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_START,
5397 wbp->cl_scmap, wbp->cl_number, flags, 0, 0);
5398
5399 /*
5400 * if we have an fsync in progress, we don't want to allow any additional
5401 * sync/fsync/close(s) to occur until it finishes.
5402 * note that its possible for writes to continue to occur to this file
5403 * while we're waiting and also once the fsync starts to clean if we're
5404 * in the sparse map case
5405 */
5406 while (wbp->cl_sparse_wait) {
5407 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_START, kdebug_vnode(vp), 0, 0, 0, 0);
5408
5409 msleep((caddr_t)&wbp->cl_sparse_wait, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL);
5410
5411 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 97)) | DBG_FUNC_END, kdebug_vnode(vp), 0, 0, 0, 0);
5412 }
5413 if (flags & IO_SYNC) {
5414 my_sparse_wait = 1;
5415 wbp->cl_sparse_wait = 1;
5416
5417 /*
5418 * this is an fsync (or equivalent)... we must wait for any existing async
5419 * cleaning operations to complete before we evaulate the current state
5420 * and finish cleaning... this insures that all writes issued before this
5421 * fsync actually get cleaned to the disk before this fsync returns
5422 */
5423 while (wbp->cl_sparse_pushes) {
5424 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_START, kdebug_vnode(vp), 0, 0, 0, 0);
5425
5426 msleep((caddr_t)&wbp->cl_sparse_pushes, &wbp->cl_lockw, PRIBIO + 1, "cluster_push_ext", NULL);
5427
5428 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 98)) | DBG_FUNC_END, kdebug_vnode(vp), 0, 0, 0, 0);
5429 }
5430 }
5431 if (wbp->cl_scmap) {
5432 void *scmap;
5433
5434 if (wbp->cl_sparse_pushes < SPARSE_PUSH_LIMIT) {
5435
5436 scmap = wbp->cl_scmap;
5437 wbp->cl_scmap = NULL;
5438
5439 wbp->cl_sparse_pushes++;
5440
5441 lck_mtx_unlock(&wbp->cl_lockw);
5442
5443 retval = sparse_cluster_push(&scmap, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg);
5444
5445 lck_mtx_lock(&wbp->cl_lockw);
5446
5447 wbp->cl_sparse_pushes--;
5448
5449 if (wbp->cl_sparse_wait && wbp->cl_sparse_pushes == 0)
5450 wakeup((caddr_t)&wbp->cl_sparse_pushes);
5451 } else {
5452 retval = sparse_cluster_push(&(wbp->cl_scmap), vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg);
5453 }
5454 if (err)
5455 *err = retval;
5456 retval = 1;
5457 } else {
5458 retval = cluster_try_push(wbp, vp, ubc_getsize(vp), PUSH_ALL, flags, callback, callback_arg, err);
5459 }
5460 lck_mtx_unlock(&wbp->cl_lockw);
5461
5462 if (flags & IO_SYNC)
5463 (void)vnode_waitforwrites(vp, 0, 0, 0, "cluster_push");
5464
5465 if (my_sparse_wait) {
5466 /*
5467 * I'm the owner of the serialization token
5468 * clear it and wakeup anyone that is waiting
5469 * for me to finish
5470 */
5471 lck_mtx_lock(&wbp->cl_lockw);
5472
5473 wbp->cl_sparse_wait = 0;
5474 wakeup((caddr_t)&wbp->cl_sparse_wait);
5475
5476 lck_mtx_unlock(&wbp->cl_lockw);
5477 }
5478 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 53)) | DBG_FUNC_END,
5479 wbp->cl_scmap, wbp->cl_number, retval, 0, 0);
5480
5481 return (retval);
5482 }
5483
5484
5485 __private_extern__ void
5486 cluster_release(struct ubc_info *ubc)
5487 {
5488 struct cl_writebehind *wbp;
5489 struct cl_readahead *rap;
5490
5491 if ((wbp = ubc->cl_wbehind)) {
5492
5493 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, wbp->cl_scmap, 0, 0, 0);
5494
5495 if (wbp->cl_scmap)
5496 vfs_drt_control(&(wbp->cl_scmap), 0);
5497 } else {
5498 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_START, ubc, 0, 0, 0, 0);
5499 }
5500
5501 rap = ubc->cl_rahead;
5502
5503 if (wbp != NULL) {
5504 lck_mtx_destroy(&wbp->cl_lockw, cl_mtx_grp);
5505 FREE_ZONE((void *)wbp, sizeof *wbp, M_CLWRBEHIND);
5506 }
5507 if ((rap = ubc->cl_rahead)) {
5508 lck_mtx_destroy(&rap->cl_lockr, cl_mtx_grp);
5509 FREE_ZONE((void *)rap, sizeof *rap, M_CLRDAHEAD);
5510 }
5511 ubc->cl_rahead = NULL;
5512 ubc->cl_wbehind = NULL;
5513
5514 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 81)) | DBG_FUNC_END, ubc, rap, wbp, 0, 0);
5515 }
5516
5517
5518 static int
5519 cluster_try_push(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg, int *err)
5520 {
5521 int cl_index;
5522 int cl_index1;
5523 int min_index;
5524 int cl_len;
5525 int cl_pushed = 0;
5526 struct cl_wextent l_clusters[MAX_CLUSTERS];
5527 u_int max_cluster_pgcount;
5528 int error = 0;
5529
5530 max_cluster_pgcount = MAX_CLUSTER_SIZE(vp) / PAGE_SIZE;
5531 /*
5532 * the write behind context exists and has
5533 * already been locked...
5534 */
5535 if (wbp->cl_number == 0)
5536 /*
5537 * no clusters to push
5538 * return number of empty slots
5539 */
5540 return (MAX_CLUSTERS);
5541
5542 /*
5543 * make a local 'sorted' copy of the clusters
5544 * and clear wbp->cl_number so that new clusters can
5545 * be developed
5546 */
5547 for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
5548 for (min_index = -1, cl_index1 = 0; cl_index1 < wbp->cl_number; cl_index1++) {
5549 if (wbp->cl_clusters[cl_index1].b_addr == wbp->cl_clusters[cl_index1].e_addr)
5550 continue;
5551 if (min_index == -1)
5552 min_index = cl_index1;
5553 else if (wbp->cl_clusters[cl_index1].b_addr < wbp->cl_clusters[min_index].b_addr)
5554 min_index = cl_index1;
5555 }
5556 if (min_index == -1)
5557 break;
5558
5559 l_clusters[cl_index].b_addr = wbp->cl_clusters[min_index].b_addr;
5560 l_clusters[cl_index].e_addr = wbp->cl_clusters[min_index].e_addr;
5561 l_clusters[cl_index].io_flags = wbp->cl_clusters[min_index].io_flags;
5562
5563 wbp->cl_clusters[min_index].b_addr = wbp->cl_clusters[min_index].e_addr;
5564 }
5565 wbp->cl_number = 0;
5566
5567 cl_len = cl_index;
5568
5569 /* skip switching to the sparse cluster mechanism if on diskimage */
5570 if ( ((push_flag & PUSH_DELAY) && cl_len == MAX_CLUSTERS ) &&
5571 !(vp->v_mount->mnt_kern_flag & MNTK_VIRTUALDEV) ) {
5572 int i;
5573
5574 /*
5575 * determine if we appear to be writing the file sequentially
5576 * if not, by returning without having pushed any clusters
5577 * we will cause this vnode to be pushed into the sparse cluster mechanism
5578 * used for managing more random I/O patterns
5579 *
5580 * we know that we've got all clusters currently in use and the next write doesn't fit into one of them...
5581 * that's why we're in try_push with PUSH_DELAY...
5582 *
5583 * check to make sure that all the clusters except the last one are 'full'... and that each cluster
5584 * is adjacent to the next (i.e. we're looking for sequential writes) they were sorted above
5585 * so we can just make a simple pass through, up to, but not including the last one...
5586 * note that e_addr is not inclusive, so it will be equal to the b_addr of the next cluster if they
5587 * are sequential
5588 *
5589 * we let the last one be partial as long as it was adjacent to the previous one...
5590 * we need to do this to deal with multi-threaded servers that might write an I/O or 2 out
5591 * of order... if this occurs at the tail of the last cluster, we don't want to fall into the sparse cluster world...
5592 */
5593 for (i = 0; i < MAX_CLUSTERS - 1; i++) {
5594 if ((l_clusters[i].e_addr - l_clusters[i].b_addr) != max_cluster_pgcount)
5595 goto dont_try;
5596 if (l_clusters[i].e_addr != l_clusters[i+1].b_addr)
5597 goto dont_try;
5598 }
5599 }
5600 for (cl_index = 0; cl_index < cl_len; cl_index++) {
5601 int flags;
5602 struct cl_extent cl;
5603 int retval;
5604
5605 flags = io_flags & (IO_PASSIVE|IO_CLOSE);
5606
5607 /*
5608 * try to push each cluster in turn...
5609 */
5610 if (l_clusters[cl_index].io_flags & CLW_IONOCACHE)
5611 flags |= IO_NOCACHE;
5612
5613 if (l_clusters[cl_index].io_flags & CLW_IOPASSIVE)
5614 flags |= IO_PASSIVE;
5615
5616 if (push_flag & PUSH_SYNC)
5617 flags |= IO_SYNC;
5618
5619 cl.b_addr = l_clusters[cl_index].b_addr;
5620 cl.e_addr = l_clusters[cl_index].e_addr;
5621
5622 retval = cluster_push_now(vp, &cl, EOF, flags, callback, callback_arg);
5623
5624 if (error == 0 && retval)
5625 error = retval;
5626
5627 l_clusters[cl_index].b_addr = 0;
5628 l_clusters[cl_index].e_addr = 0;
5629
5630 cl_pushed++;
5631
5632 if ( !(push_flag & PUSH_ALL) )
5633 break;
5634 }
5635 if (err)
5636 *err = error;
5637
5638 dont_try:
5639 if (cl_len > cl_pushed) {
5640 /*
5641 * we didn't push all of the clusters, so
5642 * lets try to merge them back in to the vnode
5643 */
5644 if ((MAX_CLUSTERS - wbp->cl_number) < (cl_len - cl_pushed)) {
5645 /*
5646 * we picked up some new clusters while we were trying to
5647 * push the old ones... this can happen because I've dropped
5648 * the vnode lock... the sum of the
5649 * leftovers plus the new cluster count exceeds our ability
5650 * to represent them, so switch to the sparse cluster mechanism
5651 *
5652 * collect the active public clusters...
5653 */
5654 sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg);
5655
5656 for (cl_index = 0, cl_index1 = 0; cl_index < cl_len; cl_index++) {
5657 if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr)
5658 continue;
5659 wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr;
5660 wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr;
5661 wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags;
5662
5663 cl_index1++;
5664 }
5665 /*
5666 * update the cluster count
5667 */
5668 wbp->cl_number = cl_index1;
5669
5670 /*
5671 * and collect the original clusters that were moved into the
5672 * local storage for sorting purposes
5673 */
5674 sparse_cluster_switch(wbp, vp, EOF, callback, callback_arg);
5675
5676 } else {
5677 /*
5678 * we've got room to merge the leftovers back in
5679 * just append them starting at the next 'hole'
5680 * represented by wbp->cl_number
5681 */
5682 for (cl_index = 0, cl_index1 = wbp->cl_number; cl_index < cl_len; cl_index++) {
5683 if (l_clusters[cl_index].b_addr == l_clusters[cl_index].e_addr)
5684 continue;
5685
5686 wbp->cl_clusters[cl_index1].b_addr = l_clusters[cl_index].b_addr;
5687 wbp->cl_clusters[cl_index1].e_addr = l_clusters[cl_index].e_addr;
5688 wbp->cl_clusters[cl_index1].io_flags = l_clusters[cl_index].io_flags;
5689
5690 cl_index1++;
5691 }
5692 /*
5693 * update the cluster count
5694 */
5695 wbp->cl_number = cl_index1;
5696 }
5697 }
5698 return (MAX_CLUSTERS - wbp->cl_number);
5699 }
5700
5701
5702
5703 static int
5704 cluster_push_now(vnode_t vp, struct cl_extent *cl, off_t EOF, int flags, int (*callback)(buf_t, void *), void *callback_arg)
5705 {
5706 upl_page_info_t *pl;
5707 upl_t upl;
5708 vm_offset_t upl_offset;
5709 int upl_size;
5710 off_t upl_f_offset;
5711 int pages_in_upl;
5712 int start_pg;
5713 int last_pg;
5714 int io_size;
5715 int io_flags;
5716 int upl_flags;
5717 int bflag;
5718 int size;
5719 int error = 0;
5720 int retval;
5721 kern_return_t kret;
5722
5723 if (flags & IO_PASSIVE)
5724 bflag = CL_PASSIVE;
5725 else
5726 bflag = 0;
5727
5728 if (flags & IO_SKIP_ENCRYPTION)
5729 bflag |= CL_ENCRYPTED;
5730
5731 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_START,
5732 (int)cl->b_addr, (int)cl->e_addr, (int)EOF, flags, 0);
5733
5734 if ((pages_in_upl = (int)(cl->e_addr - cl->b_addr)) == 0) {
5735 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 0, 0, 0, 0);
5736
5737 return (0);
5738 }
5739 upl_size = pages_in_upl * PAGE_SIZE;
5740 upl_f_offset = (off_t)(cl->b_addr * PAGE_SIZE_64);
5741
5742 if (upl_f_offset + upl_size >= EOF) {
5743
5744 if (upl_f_offset >= EOF) {
5745 /*
5746 * must have truncated the file and missed
5747 * clearing a dangling cluster (i.e. it's completely
5748 * beyond the new EOF
5749 */
5750 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 1, 0, 0, 0);
5751
5752 return(0);
5753 }
5754 size = EOF - upl_f_offset;
5755
5756 upl_size = (size + (PAGE_SIZE - 1)) & ~PAGE_MASK;
5757 pages_in_upl = upl_size / PAGE_SIZE;
5758 } else
5759 size = upl_size;
5760
5761 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_START, upl_size, size, 0, 0, 0);
5762
5763 /*
5764 * by asking for UPL_COPYOUT_FROM and UPL_RET_ONLY_DIRTY, we get the following desirable behavior
5765 *
5766 * - only pages that are currently dirty are returned... these are the ones we need to clean
5767 * - the hardware dirty bit is cleared when the page is gathered into the UPL... the software dirty bit is set
5768 * - if we have to abort the I/O for some reason, the software dirty bit is left set since we didn't clean the page
5769 * - when we commit the page, the software dirty bit is cleared... the hardware dirty bit is untouched so that if
5770 * someone dirties this page while the I/O is in progress, we don't lose track of the new state
5771 *
5772 * when the I/O completes, we no longer ask for an explicit clear of the DIRTY state (either soft or hard)
5773 */
5774
5775 if ((vp->v_flag & VNOCACHE_DATA) || (flags & IO_NOCACHE))
5776 upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE | UPL_WILL_BE_DUMPED;
5777 else
5778 upl_flags = UPL_COPYOUT_FROM | UPL_RET_ONLY_DIRTY | UPL_SET_LITE;
5779
5780 kret = ubc_create_upl_kernel(vp,
5781 upl_f_offset,
5782 upl_size,
5783 &upl,
5784 &pl,
5785 upl_flags,
5786 VM_KERN_MEMORY_FILE);
5787 if (kret != KERN_SUCCESS)
5788 panic("cluster_push: failed to get pagelist");
5789
5790 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 41)) | DBG_FUNC_END, upl, upl_f_offset, 0, 0, 0);
5791
5792 /*
5793 * since we only asked for the dirty pages back
5794 * it's possible that we may only get a few or even none, so...
5795 * before we start marching forward, we must make sure we know
5796 * where the last present page is in the UPL, otherwise we could
5797 * end up working with a freed upl due to the FREE_ON_EMPTY semantics
5798 * employed by commit_range and abort_range.
5799 */
5800 for (last_pg = pages_in_upl - 1; last_pg >= 0; last_pg--) {
5801 if (upl_page_present(pl, last_pg))
5802 break;
5803 }
5804 pages_in_upl = last_pg + 1;
5805
5806 if (pages_in_upl == 0) {
5807 ubc_upl_abort(upl, 0);
5808
5809 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 2, 0, 0, 0);
5810 return(0);
5811 }
5812
5813 for (last_pg = 0; last_pg < pages_in_upl; ) {
5814 /*
5815 * find the next dirty page in the UPL
5816 * this will become the first page in the
5817 * next I/O to generate
5818 */
5819 for (start_pg = last_pg; start_pg < pages_in_upl; start_pg++) {
5820 if (upl_dirty_page(pl, start_pg))
5821 break;
5822 if (upl_page_present(pl, start_pg))
5823 /*
5824 * RET_ONLY_DIRTY will return non-dirty 'precious' pages
5825 * just release these unchanged since we're not going
5826 * to steal them or change their state
5827 */
5828 ubc_upl_abort_range(upl, start_pg * PAGE_SIZE, PAGE_SIZE, UPL_ABORT_FREE_ON_EMPTY);
5829 }
5830 if (start_pg >= pages_in_upl)
5831 /*
5832 * done... no more dirty pages to push
5833 */
5834 break;
5835 if (start_pg > last_pg)
5836 /*
5837 * skipped over some non-dirty pages
5838 */
5839 size -= ((start_pg - last_pg) * PAGE_SIZE);
5840
5841 /*
5842 * find a range of dirty pages to write
5843 */
5844 for (last_pg = start_pg; last_pg < pages_in_upl; last_pg++) {
5845 if (!upl_dirty_page(pl, last_pg))
5846 break;
5847 }
5848 upl_offset = start_pg * PAGE_SIZE;
5849
5850 io_size = min(size, (last_pg - start_pg) * PAGE_SIZE);
5851
5852 io_flags = CL_THROTTLE | CL_COMMIT | CL_AGE | bflag;
5853
5854 if ( !(flags & IO_SYNC))
5855 io_flags |= CL_ASYNC;
5856
5857 if (flags & IO_CLOSE)
5858 io_flags |= CL_CLOSE;
5859
5860 if (flags & IO_NOCACHE)
5861 io_flags |= CL_NOCACHE;
5862
5863 retval = cluster_io(vp, upl, upl_offset, upl_f_offset + upl_offset, io_size,
5864 io_flags, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
5865
5866 if (error == 0 && retval)
5867 error = retval;
5868
5869 size -= io_size;
5870 }
5871 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 51)) | DBG_FUNC_END, 1, 3, 0, 0, 0);
5872
5873 return(error);
5874 }
5875
5876
5877 /*
5878 * sparse_cluster_switch is called with the write behind lock held
5879 */
5880 static void
5881 sparse_cluster_switch(struct cl_writebehind *wbp, vnode_t vp, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg)
5882 {
5883 int cl_index;
5884
5885 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_START, kdebug_vnode(vp), wbp->cl_scmap, 0, 0, 0);
5886
5887 for (cl_index = 0; cl_index < wbp->cl_number; cl_index++) {
5888 int flags;
5889 struct cl_extent cl;
5890
5891 for (cl.b_addr = wbp->cl_clusters[cl_index].b_addr; cl.b_addr < wbp->cl_clusters[cl_index].e_addr; cl.b_addr++) {
5892
5893 if (ubc_page_op(vp, (off_t)(cl.b_addr * PAGE_SIZE_64), 0, NULL, &flags) == KERN_SUCCESS) {
5894 if (flags & UPL_POP_DIRTY) {
5895 cl.e_addr = cl.b_addr + 1;
5896
5897 sparse_cluster_add(&(wbp->cl_scmap), vp, &cl, EOF, callback, callback_arg);
5898 }
5899 }
5900 }
5901 }
5902 wbp->cl_number = 0;
5903
5904 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 78)) | DBG_FUNC_END, kdebug_vnode(vp), wbp->cl_scmap, 0, 0, 0);
5905 }
5906
5907
5908 /*
5909 * sparse_cluster_push must be called with the write-behind lock held if the scmap is
5910 * still associated with the write-behind context... however, if the scmap has been disassociated
5911 * from the write-behind context (the cluster_push case), the wb lock is not held
5912 */
5913 static int
5914 sparse_cluster_push(void **scmap, vnode_t vp, off_t EOF, int push_flag, int io_flags, int (*callback)(buf_t, void *), void *callback_arg)
5915 {
5916 struct cl_extent cl;
5917 off_t offset;
5918 u_int length;
5919 int error = 0;
5920
5921 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_START, kdebug_vnode(vp), (*scmap), 0, push_flag, 0);
5922
5923 if (push_flag & PUSH_ALL)
5924 vfs_drt_control(scmap, 1);
5925
5926 for (;;) {
5927 int retval;
5928 if (vfs_drt_get_cluster(scmap, &offset, &length) != KERN_SUCCESS)
5929 break;
5930
5931 cl.b_addr = (daddr64_t)(offset / PAGE_SIZE_64);
5932 cl.e_addr = (daddr64_t)((offset + length) / PAGE_SIZE_64);
5933
5934 retval = cluster_push_now(vp, &cl, EOF, io_flags & (IO_PASSIVE|IO_CLOSE), callback, callback_arg);
5935 if (error == 0 && retval)
5936 error = retval;
5937
5938 if ( !(push_flag & PUSH_ALL) )
5939 break;
5940 }
5941 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 79)) | DBG_FUNC_END, kdebug_vnode(vp), (*scmap), 0, 0, 0);
5942
5943 return error;
5944 }
5945
5946
5947 /*
5948 * sparse_cluster_add is called with the write behind lock held
5949 */
5950 static void
5951 sparse_cluster_add(void **scmap, vnode_t vp, struct cl_extent *cl, off_t EOF, int (*callback)(buf_t, void *), void *callback_arg)
5952 {
5953 u_int new_dirty;
5954 u_int length;
5955 off_t offset;
5956
5957 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_START, (*scmap), 0, cl->b_addr, (int)cl->e_addr, 0);
5958
5959 offset = (off_t)(cl->b_addr * PAGE_SIZE_64);
5960 length = ((u_int)(cl->e_addr - cl->b_addr)) * PAGE_SIZE;
5961
5962 while (vfs_drt_mark_pages(scmap, offset, length, &new_dirty) != KERN_SUCCESS) {
5963 /*
5964 * no room left in the map
5965 * only a partial update was done
5966 * push out some pages and try again
5967 */
5968 sparse_cluster_push(scmap, vp, EOF, 0, 0, callback, callback_arg);
5969
5970 offset += (new_dirty * PAGE_SIZE_64);
5971 length -= (new_dirty * PAGE_SIZE);
5972 }
5973 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 80)) | DBG_FUNC_END, kdebug_vnode(vp), (*scmap), 0, 0, 0);
5974 }
5975
5976
5977 static int
5978 cluster_align_phys_io(vnode_t vp, struct uio *uio, addr64_t usr_paddr, u_int32_t xsize, int flags, int (*callback)(buf_t, void *), void *callback_arg)
5979 {
5980 upl_page_info_t *pl;
5981 upl_t upl;
5982 addr64_t ubc_paddr;
5983 kern_return_t kret;
5984 int error = 0;
5985 int did_read = 0;
5986 int abort_flags;
5987 int upl_flags;
5988 int bflag;
5989
5990 if (flags & IO_PASSIVE)
5991 bflag = CL_PASSIVE;
5992 else
5993 bflag = 0;
5994
5995 if (flags & IO_NOCACHE)
5996 bflag |= CL_NOCACHE;
5997
5998 upl_flags = UPL_SET_LITE;
5999
6000 if ( !(flags & CL_READ) ) {
6001 /*
6002 * "write" operation: let the UPL subsystem know
6003 * that we intend to modify the buffer cache pages
6004 * we're gathering.
6005 */
6006 upl_flags |= UPL_WILL_MODIFY;
6007 } else {
6008 /*
6009 * indicate that there is no need to pull the
6010 * mapping for this page... we're only going
6011 * to read from it, not modify it.
6012 */
6013 upl_flags |= UPL_FILE_IO;
6014 }
6015 kret = ubc_create_upl_kernel(vp,
6016 uio->uio_offset & ~PAGE_MASK_64,
6017 PAGE_SIZE,
6018 &upl,
6019 &pl,
6020 upl_flags,
6021 VM_KERN_MEMORY_FILE);
6022
6023 if (kret != KERN_SUCCESS)
6024 return(EINVAL);
6025
6026 if (!upl_valid_page(pl, 0)) {
6027 /*
6028 * issue a synchronous read to cluster_io
6029 */
6030 error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE,
6031 CL_READ | bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
6032 if (error) {
6033 ubc_upl_abort_range(upl, 0, PAGE_SIZE, UPL_ABORT_DUMP_PAGES | UPL_ABORT_FREE_ON_EMPTY);
6034
6035 return(error);
6036 }
6037 did_read = 1;
6038 }
6039 ubc_paddr = ((addr64_t)upl_phys_page(pl, 0) << PAGE_SHIFT) + (addr64_t)(uio->uio_offset & PAGE_MASK_64);
6040
6041 /*
6042 * NOTE: There is no prototype for the following in BSD. It, and the definitions
6043 * of the defines for cppvPsrc, cppvPsnk, cppvFsnk, and cppvFsrc will be found in
6044 * osfmk/ppc/mappings.h. They are not included here because there appears to be no
6045 * way to do so without exporting them to kexts as well.
6046 */
6047 if (flags & CL_READ)
6048 // copypv(ubc_paddr, usr_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsnk); /* Copy physical to physical and flush the destination */
6049 copypv(ubc_paddr, usr_paddr, xsize, 2 | 1 | 4); /* Copy physical to physical and flush the destination */
6050 else
6051 // copypv(usr_paddr, ubc_paddr, xsize, cppvPsrc | cppvPsnk | cppvFsrc); /* Copy physical to physical and flush the source */
6052 copypv(usr_paddr, ubc_paddr, xsize, 2 | 1 | 8); /* Copy physical to physical and flush the source */
6053
6054 if ( !(flags & CL_READ) || (upl_valid_page(pl, 0) && upl_dirty_page(pl, 0))) {
6055 /*
6056 * issue a synchronous write to cluster_io
6057 */
6058 error = cluster_io(vp, upl, 0, uio->uio_offset & ~PAGE_MASK_64, PAGE_SIZE,
6059 bflag, (buf_t)NULL, (struct clios *)NULL, callback, callback_arg);
6060 }
6061 if (error == 0)
6062 uio_update(uio, (user_size_t)xsize);
6063
6064 if (did_read)
6065 abort_flags = UPL_ABORT_FREE_ON_EMPTY;
6066 else
6067 abort_flags = UPL_ABORT_FREE_ON_EMPTY | UPL_ABORT_DUMP_PAGES;
6068
6069 ubc_upl_abort_range(upl, 0, PAGE_SIZE, abort_flags);
6070
6071 return (error);
6072 }
6073
6074 int
6075 cluster_copy_upl_data(struct uio *uio, upl_t upl, int upl_offset, int *io_resid)
6076 {
6077 int pg_offset;
6078 int pg_index;
6079 int csize;
6080 int segflg;
6081 int retval = 0;
6082 int xsize;
6083 upl_page_info_t *pl;
6084 int dirty_count;
6085
6086 xsize = *io_resid;
6087
6088 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
6089 (int)uio->uio_offset, upl_offset, xsize, 0, 0);
6090
6091 segflg = uio->uio_segflg;
6092
6093 switch(segflg) {
6094
6095 case UIO_USERSPACE32:
6096 case UIO_USERISPACE32:
6097 uio->uio_segflg = UIO_PHYS_USERSPACE32;
6098 break;
6099
6100 case UIO_USERSPACE:
6101 case UIO_USERISPACE:
6102 uio->uio_segflg = UIO_PHYS_USERSPACE;
6103 break;
6104
6105 case UIO_USERSPACE64:
6106 case UIO_USERISPACE64:
6107 uio->uio_segflg = UIO_PHYS_USERSPACE64;
6108 break;
6109
6110 case UIO_SYSSPACE:
6111 uio->uio_segflg = UIO_PHYS_SYSSPACE;
6112 break;
6113
6114 }
6115 pl = ubc_upl_pageinfo(upl);
6116
6117 pg_index = upl_offset / PAGE_SIZE;
6118 pg_offset = upl_offset & PAGE_MASK;
6119 csize = min(PAGE_SIZE - pg_offset, xsize);
6120
6121 dirty_count = 0;
6122 while (xsize && retval == 0) {
6123 addr64_t paddr;
6124
6125 paddr = ((addr64_t)upl_phys_page(pl, pg_index) << PAGE_SHIFT) + pg_offset;
6126 if ((uio->uio_rw == UIO_WRITE) && (upl_dirty_page(pl, pg_index) == FALSE))
6127 dirty_count++;
6128
6129 retval = uiomove64(paddr, csize, uio);
6130
6131 pg_index += 1;
6132 pg_offset = 0;
6133 xsize -= csize;
6134 csize = min(PAGE_SIZE, xsize);
6135 }
6136 *io_resid = xsize;
6137
6138 uio->uio_segflg = segflg;
6139
6140 task_update_logical_writes(current_task(), (dirty_count * PAGE_SIZE), TASK_WRITE_DEFERRED, upl_lookup_vnode(upl));
6141 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
6142 (int)uio->uio_offset, xsize, retval, segflg, 0);
6143
6144 return (retval);
6145 }
6146
6147
6148 int
6149 cluster_copy_ubc_data(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty)
6150 {
6151
6152 return (cluster_copy_ubc_data_internal(vp, uio, io_resid, mark_dirty, 1));
6153 }
6154
6155
6156 static int
6157 cluster_copy_ubc_data_internal(vnode_t vp, struct uio *uio, int *io_resid, int mark_dirty, int take_reference)
6158 {
6159 int segflg;
6160 int io_size;
6161 int xsize;
6162 int start_offset;
6163 int retval = 0;
6164 memory_object_control_t control;
6165
6166 io_size = *io_resid;
6167
6168 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_START,
6169 (int)uio->uio_offset, io_size, mark_dirty, take_reference, 0);
6170
6171 control = ubc_getobject(vp, UBC_FLAGS_NONE);
6172
6173 if (control == MEMORY_OBJECT_CONTROL_NULL) {
6174 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
6175 (int)uio->uio_offset, io_size, retval, 3, 0);
6176
6177 return(0);
6178 }
6179 segflg = uio->uio_segflg;
6180
6181 switch(segflg) {
6182
6183 case UIO_USERSPACE32:
6184 case UIO_USERISPACE32:
6185 uio->uio_segflg = UIO_PHYS_USERSPACE32;
6186 break;
6187
6188 case UIO_USERSPACE64:
6189 case UIO_USERISPACE64:
6190 uio->uio_segflg = UIO_PHYS_USERSPACE64;
6191 break;
6192
6193 case UIO_USERSPACE:
6194 case UIO_USERISPACE:
6195 uio->uio_segflg = UIO_PHYS_USERSPACE;
6196 break;
6197
6198 case UIO_SYSSPACE:
6199 uio->uio_segflg = UIO_PHYS_SYSSPACE;
6200 break;
6201 }
6202
6203 if ( (io_size = *io_resid) ) {
6204 start_offset = (int)(uio->uio_offset & PAGE_MASK_64);
6205 xsize = uio_resid(uio);
6206
6207 retval = memory_object_control_uiomove(control, uio->uio_offset - start_offset, uio,
6208 start_offset, io_size, mark_dirty, take_reference);
6209 xsize -= uio_resid(uio);
6210 io_size -= xsize;
6211 }
6212 uio->uio_segflg = segflg;
6213 *io_resid = io_size;
6214
6215 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW, 34)) | DBG_FUNC_END,
6216 (int)uio->uio_offset, io_size, retval, 0x80000000 | segflg, 0);
6217
6218 return(retval);
6219 }
6220
6221
6222 int
6223 is_file_clean(vnode_t vp, off_t filesize)
6224 {
6225 off_t f_offset;
6226 int flags;
6227 int total_dirty = 0;
6228
6229 for (f_offset = 0; f_offset < filesize; f_offset += PAGE_SIZE_64) {
6230 if (ubc_page_op(vp, f_offset, 0, NULL, &flags) == KERN_SUCCESS) {
6231 if (flags & UPL_POP_DIRTY) {
6232 total_dirty++;
6233 }
6234 }
6235 }
6236 if (total_dirty)
6237 return(EINVAL);
6238
6239 return (0);
6240 }
6241
6242
6243
6244 /*
6245 * Dirty region tracking/clustering mechanism.
6246 *
6247 * This code (vfs_drt_*) provides a mechanism for tracking and clustering
6248 * dirty regions within a larger space (file). It is primarily intended to
6249 * support clustering in large files with many dirty areas.
6250 *
6251 * The implementation assumes that the dirty regions are pages.
6252 *
6253 * To represent dirty pages within the file, we store bit vectors in a
6254 * variable-size circular hash.
6255 */
6256
6257 /*
6258 * Bitvector size. This determines the number of pages we group in a
6259 * single hashtable entry. Each hashtable entry is aligned to this
6260 * size within the file.
6261 */
6262 #define DRT_BITVECTOR_PAGES ((1024 * 1024) / PAGE_SIZE)
6263
6264 /*
6265 * File offset handling.
6266 *
6267 * DRT_ADDRESS_MASK is dependent on DRT_BITVECTOR_PAGES;
6268 * the correct formula is (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1))
6269 */
6270 #define DRT_ADDRESS_MASK (~((DRT_BITVECTOR_PAGES * PAGE_SIZE) - 1))
6271 #define DRT_ALIGN_ADDRESS(addr) ((addr) & DRT_ADDRESS_MASK)
6272
6273 /*
6274 * Hashtable address field handling.
6275 *
6276 * The low-order bits of the hashtable address are used to conserve
6277 * space.
6278 *
6279 * DRT_HASH_COUNT_MASK must be large enough to store the range
6280 * 0-DRT_BITVECTOR_PAGES inclusive, as well as have one value
6281 * to indicate that the bucket is actually unoccupied.
6282 */
6283 #define DRT_HASH_GET_ADDRESS(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_ADDRESS_MASK)
6284 #define DRT_HASH_SET_ADDRESS(scm, i, a) \
6285 do { \
6286 (scm)->scm_hashtable[(i)].dhe_control = \
6287 ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_ADDRESS_MASK) | DRT_ALIGN_ADDRESS(a); \
6288 } while (0)
6289 #define DRT_HASH_COUNT_MASK 0x1ff
6290 #define DRT_HASH_GET_COUNT(scm, i) ((scm)->scm_hashtable[(i)].dhe_control & DRT_HASH_COUNT_MASK)
6291 #define DRT_HASH_SET_COUNT(scm, i, c) \
6292 do { \
6293 (scm)->scm_hashtable[(i)].dhe_control = \
6294 ((scm)->scm_hashtable[(i)].dhe_control & ~DRT_HASH_COUNT_MASK) | ((c) & DRT_HASH_COUNT_MASK); \
6295 } while (0)
6296 #define DRT_HASH_CLEAR(scm, i) \
6297 do { \
6298 (scm)->scm_hashtable[(i)].dhe_control = 0; \
6299 } while (0)
6300 #define DRT_HASH_VACATE(scm, i) DRT_HASH_SET_COUNT((scm), (i), DRT_HASH_COUNT_MASK)
6301 #define DRT_HASH_VACANT(scm, i) (DRT_HASH_GET_COUNT((scm), (i)) == DRT_HASH_COUNT_MASK)
6302 #define DRT_HASH_COPY(oscm, oi, scm, i) \
6303 do { \
6304 (scm)->scm_hashtable[(i)].dhe_control = (oscm)->scm_hashtable[(oi)].dhe_control; \
6305 DRT_BITVECTOR_COPY(oscm, oi, scm, i); \
6306 } while(0);
6307
6308
6309 /*
6310 * Hash table moduli.
6311 *
6312 * Since the hashtable entry's size is dependent on the size of
6313 * the bitvector, and since the hashtable size is constrained to
6314 * both being prime and fitting within the desired allocation
6315 * size, these values need to be manually determined.
6316 *
6317 * For DRT_BITVECTOR_SIZE = 256, the entry size is 40 bytes.
6318 *
6319 * The small hashtable allocation is 1024 bytes, so the modulus is 23.
6320 * The large hashtable allocation is 16384 bytes, so the modulus is 401.
6321 */
6322 #define DRT_HASH_SMALL_MODULUS 23
6323 #define DRT_HASH_LARGE_MODULUS 401
6324
6325 /*
6326 * Physical memory required before the large hash modulus is permitted.
6327 *
6328 * On small memory systems, the large hash modulus can lead to phsyical
6329 * memory starvation, so we avoid using it there.
6330 */
6331 #define DRT_HASH_LARGE_MEMORY_REQUIRED (1024LL * 1024LL * 1024LL) /* 1GiB */
6332
6333 #define DRT_SMALL_ALLOCATION 1024 /* 104 bytes spare */
6334 #define DRT_LARGE_ALLOCATION 16384 /* 344 bytes spare */
6335
6336 /* *** nothing below here has secret dependencies on DRT_BITVECTOR_PAGES *** */
6337
6338 /*
6339 * Hashtable bitvector handling.
6340 *
6341 * Bitvector fields are 32 bits long.
6342 */
6343
6344 #define DRT_HASH_SET_BIT(scm, i, bit) \
6345 (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] |= (1 << ((bit) % 32))
6346
6347 #define DRT_HASH_CLEAR_BIT(scm, i, bit) \
6348 (scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] &= ~(1 << ((bit) % 32))
6349
6350 #define DRT_HASH_TEST_BIT(scm, i, bit) \
6351 ((scm)->scm_hashtable[(i)].dhe_bitvector[(bit) / 32] & (1 << ((bit) % 32)))
6352
6353 #define DRT_BITVECTOR_CLEAR(scm, i) \
6354 bzero(&(scm)->scm_hashtable[(i)].dhe_bitvector[0], (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
6355
6356 #define DRT_BITVECTOR_COPY(oscm, oi, scm, i) \
6357 bcopy(&(oscm)->scm_hashtable[(oi)].dhe_bitvector[0], \
6358 &(scm)->scm_hashtable[(i)].dhe_bitvector[0], \
6359 (DRT_BITVECTOR_PAGES / 32) * sizeof(u_int32_t))
6360
6361
6362
6363 /*
6364 * Hashtable entry.
6365 */
6366 struct vfs_drt_hashentry {
6367 u_int64_t dhe_control;
6368 /*
6369 * dhe_bitvector was declared as dhe_bitvector[DRT_BITVECTOR_PAGES / 32];
6370 * DRT_BITVECTOR_PAGES is defined as ((1024 * 1024) / PAGE_SIZE)
6371 * Since PAGE_SIZE is only known at boot time,
6372 * -define MAX_DRT_BITVECTOR_PAGES for smallest supported page size (4k)
6373 * -declare dhe_bitvector array for largest possible length
6374 */
6375 #define MAX_DRT_BITVECTOR_PAGES (1024 * 1024)/( 4 * 1024)
6376 u_int32_t dhe_bitvector[MAX_DRT_BITVECTOR_PAGES/32];
6377 };
6378
6379 /*
6380 * Dirty Region Tracking structure.
6381 *
6382 * The hashtable is allocated entirely inside the DRT structure.
6383 *
6384 * The hash is a simple circular prime modulus arrangement, the structure
6385 * is resized from small to large if it overflows.
6386 */
6387
6388 struct vfs_drt_clustermap {
6389 u_int32_t scm_magic; /* sanity/detection */
6390 #define DRT_SCM_MAGIC 0x12020003
6391 u_int32_t scm_modulus; /* current ring size */
6392 u_int32_t scm_buckets; /* number of occupied buckets */
6393 u_int32_t scm_lastclean; /* last entry we cleaned */
6394 u_int32_t scm_iskips; /* number of slot skips */
6395
6396 struct vfs_drt_hashentry scm_hashtable[0];
6397 };
6398
6399
6400 #define DRT_HASH(scm, addr) ((addr) % (scm)->scm_modulus)
6401 #define DRT_HASH_NEXT(scm, addr) (((addr) + 1) % (scm)->scm_modulus)
6402
6403 /*
6404 * Debugging codes and arguments.
6405 */
6406 #define DRT_DEBUG_EMPTYFREE (FSDBG_CODE(DBG_FSRW, 82)) /* nil */
6407 #define DRT_DEBUG_RETCLUSTER (FSDBG_CODE(DBG_FSRW, 83)) /* offset, length */
6408 #define DRT_DEBUG_ALLOC (FSDBG_CODE(DBG_FSRW, 84)) /* copycount */
6409 #define DRT_DEBUG_INSERT (FSDBG_CODE(DBG_FSRW, 85)) /* offset, iskip */
6410 #define DRT_DEBUG_MARK (FSDBG_CODE(DBG_FSRW, 86)) /* offset, length,
6411 * dirty */
6412 /* 0, setcount */
6413 /* 1 (clean, no map) */
6414 /* 2 (map alloc fail) */
6415 /* 3, resid (partial) */
6416 #define DRT_DEBUG_6 (FSDBG_CODE(DBG_FSRW, 87))
6417 #define DRT_DEBUG_SCMDATA (FSDBG_CODE(DBG_FSRW, 88)) /* modulus, buckets,
6418 * lastclean, iskips */
6419
6420
6421 static kern_return_t vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp);
6422 static kern_return_t vfs_drt_free_map(struct vfs_drt_clustermap *cmap);
6423 static kern_return_t vfs_drt_search_index(struct vfs_drt_clustermap *cmap,
6424 u_int64_t offset, int *indexp);
6425 static kern_return_t vfs_drt_get_index(struct vfs_drt_clustermap **cmapp,
6426 u_int64_t offset,
6427 int *indexp,
6428 int recursed);
6429 static kern_return_t vfs_drt_do_mark_pages(
6430 void **cmapp,
6431 u_int64_t offset,
6432 u_int length,
6433 u_int *setcountp,
6434 int dirty);
6435 static void vfs_drt_trace(
6436 struct vfs_drt_clustermap *cmap,
6437 int code,
6438 int arg1,
6439 int arg2,
6440 int arg3,
6441 int arg4);
6442
6443
6444 /*
6445 * Allocate and initialise a sparse cluster map.
6446 *
6447 * Will allocate a new map, resize or compact an existing map.
6448 *
6449 * XXX we should probably have at least one intermediate map size,
6450 * as the 1:16 ratio seems a bit drastic.
6451 */
6452 static kern_return_t
6453 vfs_drt_alloc_map(struct vfs_drt_clustermap **cmapp)
6454 {
6455 struct vfs_drt_clustermap *cmap, *ocmap;
6456 kern_return_t kret;
6457 u_int64_t offset;
6458 u_int32_t i;
6459 int nsize, active_buckets, index, copycount;
6460
6461 ocmap = NULL;
6462 if (cmapp != NULL)
6463 ocmap = *cmapp;
6464
6465 /*
6466 * Decide on the size of the new map.
6467 */
6468 if (ocmap == NULL) {
6469 nsize = DRT_HASH_SMALL_MODULUS;
6470 } else {
6471 /* count the number of active buckets in the old map */
6472 active_buckets = 0;
6473 for (i = 0; i < ocmap->scm_modulus; i++) {
6474 if (!DRT_HASH_VACANT(ocmap, i) &&
6475 (DRT_HASH_GET_COUNT(ocmap, i) != 0))
6476 active_buckets++;
6477 }
6478 /*
6479 * If we're currently using the small allocation, check to
6480 * see whether we should grow to the large one.
6481 */
6482 if (ocmap->scm_modulus == DRT_HASH_SMALL_MODULUS) {
6483 /*
6484 * If the ring is nearly full and we are allowed to
6485 * use the large modulus, upgrade.
6486 */
6487 if ((active_buckets > (DRT_HASH_SMALL_MODULUS - 5)) &&
6488 (max_mem >= DRT_HASH_LARGE_MEMORY_REQUIRED)) {
6489 nsize = DRT_HASH_LARGE_MODULUS;
6490 } else {
6491 nsize = DRT_HASH_SMALL_MODULUS;
6492 }
6493 } else {
6494 /* already using the large modulus */
6495 nsize = DRT_HASH_LARGE_MODULUS;
6496 /*
6497 * If the ring is completely full, there's
6498 * nothing useful for us to do. Behave as
6499 * though we had compacted into the new
6500 * array and return.
6501 */
6502 if (active_buckets >= DRT_HASH_LARGE_MODULUS)
6503 return(KERN_SUCCESS);
6504 }
6505 }
6506
6507 /*
6508 * Allocate and initialise the new map.
6509 */
6510
6511 kret = kmem_alloc(kernel_map, (vm_offset_t *)&cmap,
6512 (nsize == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION, VM_KERN_MEMORY_FILE);
6513 if (kret != KERN_SUCCESS)
6514 return(kret);
6515 cmap->scm_magic = DRT_SCM_MAGIC;
6516 cmap->scm_modulus = nsize;
6517 cmap->scm_buckets = 0;
6518 cmap->scm_lastclean = 0;
6519 cmap->scm_iskips = 0;
6520 for (i = 0; i < cmap->scm_modulus; i++) {
6521 DRT_HASH_CLEAR(cmap, i);
6522 DRT_HASH_VACATE(cmap, i);
6523 DRT_BITVECTOR_CLEAR(cmap, i);
6524 }
6525
6526 /*
6527 * If there's an old map, re-hash entries from it into the new map.
6528 */
6529 copycount = 0;
6530 if (ocmap != NULL) {
6531 for (i = 0; i < ocmap->scm_modulus; i++) {
6532 /* skip empty buckets */
6533 if (DRT_HASH_VACANT(ocmap, i) ||
6534 (DRT_HASH_GET_COUNT(ocmap, i) == 0))
6535 continue;
6536 /* get new index */
6537 offset = DRT_HASH_GET_ADDRESS(ocmap, i);
6538 kret = vfs_drt_get_index(&cmap, offset, &index, 1);
6539 if (kret != KERN_SUCCESS) {
6540 /* XXX need to bail out gracefully here */
6541 panic("vfs_drt: new cluster map mysteriously too small");
6542 index = 0;
6543 }
6544 /* copy */
6545 DRT_HASH_COPY(ocmap, i, cmap, index);
6546 copycount++;
6547 }
6548 }
6549
6550 /* log what we've done */
6551 vfs_drt_trace(cmap, DRT_DEBUG_ALLOC, copycount, 0, 0, 0);
6552
6553 /*
6554 * It's important to ensure that *cmapp always points to
6555 * a valid map, so we must overwrite it before freeing
6556 * the old map.
6557 */
6558 *cmapp = cmap;
6559 if (ocmap != NULL) {
6560 /* emit stats into trace buffer */
6561 vfs_drt_trace(ocmap, DRT_DEBUG_SCMDATA,
6562 ocmap->scm_modulus,
6563 ocmap->scm_buckets,
6564 ocmap->scm_lastclean,
6565 ocmap->scm_iskips);
6566
6567 vfs_drt_free_map(ocmap);
6568 }
6569 return(KERN_SUCCESS);
6570 }
6571
6572
6573 /*
6574 * Free a sparse cluster map.
6575 */
6576 static kern_return_t
6577 vfs_drt_free_map(struct vfs_drt_clustermap *cmap)
6578 {
6579 kmem_free(kernel_map, (vm_offset_t)cmap,
6580 (cmap->scm_modulus == DRT_HASH_SMALL_MODULUS) ? DRT_SMALL_ALLOCATION : DRT_LARGE_ALLOCATION);
6581 return(KERN_SUCCESS);
6582 }
6583
6584
6585 /*
6586 * Find the hashtable slot currently occupied by an entry for the supplied offset.
6587 */
6588 static kern_return_t
6589 vfs_drt_search_index(struct vfs_drt_clustermap *cmap, u_int64_t offset, int *indexp)
6590 {
6591 int index;
6592 u_int32_t i;
6593
6594 offset = DRT_ALIGN_ADDRESS(offset);
6595 index = DRT_HASH(cmap, offset);
6596
6597 /* traverse the hashtable */
6598 for (i = 0; i < cmap->scm_modulus; i++) {
6599
6600 /*
6601 * If the slot is vacant, we can stop.
6602 */
6603 if (DRT_HASH_VACANT(cmap, index))
6604 break;
6605
6606 /*
6607 * If the address matches our offset, we have success.
6608 */
6609 if (DRT_HASH_GET_ADDRESS(cmap, index) == offset) {
6610 *indexp = index;
6611 return(KERN_SUCCESS);
6612 }
6613
6614 /*
6615 * Move to the next slot, try again.
6616 */
6617 index = DRT_HASH_NEXT(cmap, index);
6618 }
6619 /*
6620 * It's not there.
6621 */
6622 return(KERN_FAILURE);
6623 }
6624
6625 /*
6626 * Find the hashtable slot for the supplied offset. If we haven't allocated
6627 * one yet, allocate one and populate the address field. Note that it will
6628 * not have a nonzero page count and thus will still technically be free, so
6629 * in the case where we are called to clean pages, the slot will remain free.
6630 */
6631 static kern_return_t
6632 vfs_drt_get_index(struct vfs_drt_clustermap **cmapp, u_int64_t offset, int *indexp, int recursed)
6633 {
6634 struct vfs_drt_clustermap *cmap;
6635 kern_return_t kret;
6636 u_int32_t index;
6637 u_int32_t i;
6638
6639 cmap = *cmapp;
6640
6641 /* look for an existing entry */
6642 kret = vfs_drt_search_index(cmap, offset, indexp);
6643 if (kret == KERN_SUCCESS)
6644 return(kret);
6645
6646 /* need to allocate an entry */
6647 offset = DRT_ALIGN_ADDRESS(offset);
6648 index = DRT_HASH(cmap, offset);
6649
6650 /* scan from the index forwards looking for a vacant slot */
6651 for (i = 0; i < cmap->scm_modulus; i++) {
6652 /* slot vacant? */
6653 if (DRT_HASH_VACANT(cmap, index) || DRT_HASH_GET_COUNT(cmap,index) == 0) {
6654 cmap->scm_buckets++;
6655 if (index < cmap->scm_lastclean)
6656 cmap->scm_lastclean = index;
6657 DRT_HASH_SET_ADDRESS(cmap, index, offset);
6658 DRT_HASH_SET_COUNT(cmap, index, 0);
6659 DRT_BITVECTOR_CLEAR(cmap, index);
6660 *indexp = index;
6661 vfs_drt_trace(cmap, DRT_DEBUG_INSERT, (int)offset, i, 0, 0);
6662 return(KERN_SUCCESS);
6663 }
6664 cmap->scm_iskips += i;
6665 index = DRT_HASH_NEXT(cmap, index);
6666 }
6667
6668 /*
6669 * We haven't found a vacant slot, so the map is full. If we're not
6670 * already recursed, try reallocating/compacting it.
6671 */
6672 if (recursed)
6673 return(KERN_FAILURE);
6674 kret = vfs_drt_alloc_map(cmapp);
6675 if (kret == KERN_SUCCESS) {
6676 /* now try to insert again */
6677 kret = vfs_drt_get_index(cmapp, offset, indexp, 1);
6678 }
6679 return(kret);
6680 }
6681
6682 /*
6683 * Implementation of set dirty/clean.
6684 *
6685 * In the 'clean' case, not finding a map is OK.
6686 */
6687 static kern_return_t
6688 vfs_drt_do_mark_pages(
6689 void **private,
6690 u_int64_t offset,
6691 u_int length,
6692 u_int *setcountp,
6693 int dirty)
6694 {
6695 struct vfs_drt_clustermap *cmap, **cmapp;
6696 kern_return_t kret;
6697 int i, index, pgoff, pgcount, setcount, ecount;
6698
6699 cmapp = (struct vfs_drt_clustermap **)private;
6700 cmap = *cmapp;
6701
6702 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_START, (int)offset, (int)length, dirty, 0);
6703
6704 if (setcountp != NULL)
6705 *setcountp = 0;
6706
6707 /* allocate a cluster map if we don't already have one */
6708 if (cmap == NULL) {
6709 /* no cluster map, nothing to clean */
6710 if (!dirty) {
6711 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 1, 0, 0, 0);
6712 return(KERN_SUCCESS);
6713 }
6714 kret = vfs_drt_alloc_map(cmapp);
6715 if (kret != KERN_SUCCESS) {
6716 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 2, 0, 0, 0);
6717 return(kret);
6718 }
6719 }
6720 setcount = 0;
6721
6722 /*
6723 * Iterate over the length of the region.
6724 */
6725 while (length > 0) {
6726 /*
6727 * Get the hashtable index for this offset.
6728 *
6729 * XXX this will add blank entries if we are clearing a range
6730 * that hasn't been dirtied.
6731 */
6732 kret = vfs_drt_get_index(cmapp, offset, &index, 0);
6733 cmap = *cmapp; /* may have changed! */
6734 /* this may be a partial-success return */
6735 if (kret != KERN_SUCCESS) {
6736 if (setcountp != NULL)
6737 *setcountp = setcount;
6738 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 3, (int)length, 0, 0);
6739
6740 return(kret);
6741 }
6742
6743 /*
6744 * Work out how many pages we're modifying in this
6745 * hashtable entry.
6746 */
6747 pgoff = (offset - DRT_ALIGN_ADDRESS(offset)) / PAGE_SIZE;
6748 pgcount = min((length / PAGE_SIZE), (DRT_BITVECTOR_PAGES - pgoff));
6749
6750 /*
6751 * Iterate over pages, dirty/clearing as we go.
6752 */
6753 ecount = DRT_HASH_GET_COUNT(cmap, index);
6754 for (i = 0; i < pgcount; i++) {
6755 if (dirty) {
6756 if (!DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) {
6757 DRT_HASH_SET_BIT(cmap, index, pgoff + i);
6758 ecount++;
6759 setcount++;
6760 }
6761 } else {
6762 if (DRT_HASH_TEST_BIT(cmap, index, pgoff + i)) {
6763 DRT_HASH_CLEAR_BIT(cmap, index, pgoff + i);
6764 ecount--;
6765 setcount++;
6766 }
6767 }
6768 }
6769 DRT_HASH_SET_COUNT(cmap, index, ecount);
6770
6771 offset += pgcount * PAGE_SIZE;
6772 length -= pgcount * PAGE_SIZE;
6773 }
6774 if (setcountp != NULL)
6775 *setcountp = setcount;
6776
6777 vfs_drt_trace(cmap, DRT_DEBUG_MARK | DBG_FUNC_END, 0, setcount, 0, 0);
6778
6779 return(KERN_SUCCESS);
6780 }
6781
6782 /*
6783 * Mark a set of pages as dirty/clean.
6784 *
6785 * This is a public interface.
6786 *
6787 * cmapp
6788 * Pointer to storage suitable for holding a pointer. Note that
6789 * this must either be NULL or a value set by this function.
6790 *
6791 * size
6792 * Current file size in bytes.
6793 *
6794 * offset
6795 * Offset of the first page to be marked as dirty, in bytes. Must be
6796 * page-aligned.
6797 *
6798 * length
6799 * Length of dirty region, in bytes. Must be a multiple of PAGE_SIZE.
6800 *
6801 * setcountp
6802 * Number of pages newly marked dirty by this call (optional).
6803 *
6804 * Returns KERN_SUCCESS if all the pages were successfully marked.
6805 */
6806 static kern_return_t
6807 vfs_drt_mark_pages(void **cmapp, off_t offset, u_int length, u_int *setcountp)
6808 {
6809 /* XXX size unused, drop from interface */
6810 return(vfs_drt_do_mark_pages(cmapp, offset, length, setcountp, 1));
6811 }
6812
6813 #if 0
6814 static kern_return_t
6815 vfs_drt_unmark_pages(void **cmapp, off_t offset, u_int length)
6816 {
6817 return(vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0));
6818 }
6819 #endif
6820
6821 /*
6822 * Get a cluster of dirty pages.
6823 *
6824 * This is a public interface.
6825 *
6826 * cmapp
6827 * Pointer to storage managed by drt_mark_pages. Note that this must
6828 * be NULL or a value set by drt_mark_pages.
6829 *
6830 * offsetp
6831 * Returns the byte offset into the file of the first page in the cluster.
6832 *
6833 * lengthp
6834 * Returns the length in bytes of the cluster of dirty pages.
6835 *
6836 * Returns success if a cluster was found. If KERN_FAILURE is returned, there
6837 * are no dirty pages meeting the minmum size criteria. Private storage will
6838 * be released if there are no more dirty pages left in the map
6839 *
6840 */
6841 static kern_return_t
6842 vfs_drt_get_cluster(void **cmapp, off_t *offsetp, u_int *lengthp)
6843 {
6844 struct vfs_drt_clustermap *cmap;
6845 u_int64_t offset;
6846 u_int length;
6847 u_int32_t j;
6848 int index, i, fs, ls;
6849
6850 /* sanity */
6851 if ((cmapp == NULL) || (*cmapp == NULL))
6852 return(KERN_FAILURE);
6853 cmap = *cmapp;
6854
6855 /* walk the hashtable */
6856 for (offset = 0, j = 0; j < cmap->scm_modulus; offset += (DRT_BITVECTOR_PAGES * PAGE_SIZE), j++) {
6857 index = DRT_HASH(cmap, offset);
6858
6859 if (DRT_HASH_VACANT(cmap, index) || (DRT_HASH_GET_COUNT(cmap, index) == 0))
6860 continue;
6861
6862 /* scan the bitfield for a string of bits */
6863 fs = -1;
6864
6865 for (i = 0; i < DRT_BITVECTOR_PAGES; i++) {
6866 if (DRT_HASH_TEST_BIT(cmap, index, i)) {
6867 fs = i;
6868 break;
6869 }
6870 }
6871 if (fs == -1) {
6872 /* didn't find any bits set */
6873 panic("vfs_drt: entry summary count > 0 but no bits set in map");
6874 }
6875 for (ls = 0; i < DRT_BITVECTOR_PAGES; i++, ls++) {
6876 if (!DRT_HASH_TEST_BIT(cmap, index, i))
6877 break;
6878 }
6879
6880 /* compute offset and length, mark pages clean */
6881 offset = DRT_HASH_GET_ADDRESS(cmap, index) + (PAGE_SIZE * fs);
6882 length = ls * PAGE_SIZE;
6883 vfs_drt_do_mark_pages(cmapp, offset, length, NULL, 0);
6884 cmap->scm_lastclean = index;
6885
6886 /* return successful */
6887 *offsetp = (off_t)offset;
6888 *lengthp = length;
6889
6890 vfs_drt_trace(cmap, DRT_DEBUG_RETCLUSTER, (int)offset, (int)length, 0, 0);
6891 return(KERN_SUCCESS);
6892 }
6893 /*
6894 * We didn't find anything... hashtable is empty
6895 * emit stats into trace buffer and
6896 * then free it
6897 */
6898 vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA,
6899 cmap->scm_modulus,
6900 cmap->scm_buckets,
6901 cmap->scm_lastclean,
6902 cmap->scm_iskips);
6903
6904 vfs_drt_free_map(cmap);
6905 *cmapp = NULL;
6906
6907 return(KERN_FAILURE);
6908 }
6909
6910
6911 static kern_return_t
6912 vfs_drt_control(void **cmapp, int op_type)
6913 {
6914 struct vfs_drt_clustermap *cmap;
6915
6916 /* sanity */
6917 if ((cmapp == NULL) || (*cmapp == NULL))
6918 return(KERN_FAILURE);
6919 cmap = *cmapp;
6920
6921 switch (op_type) {
6922 case 0:
6923 /* emit stats into trace buffer */
6924 vfs_drt_trace(cmap, DRT_DEBUG_SCMDATA,
6925 cmap->scm_modulus,
6926 cmap->scm_buckets,
6927 cmap->scm_lastclean,
6928 cmap->scm_iskips);
6929
6930 vfs_drt_free_map(cmap);
6931 *cmapp = NULL;
6932 break;
6933
6934 case 1:
6935 cmap->scm_lastclean = 0;
6936 break;
6937 }
6938 return(KERN_SUCCESS);
6939 }
6940
6941
6942
6943 /*
6944 * Emit a summary of the state of the clustermap into the trace buffer
6945 * along with some caller-provided data.
6946 */
6947 #if KDEBUG
6948 static void
6949 vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, int code, int arg1, int arg2, int arg3, int arg4)
6950 {
6951 KERNEL_DEBUG(code, arg1, arg2, arg3, arg4, 0);
6952 }
6953 #else
6954 static void
6955 vfs_drt_trace(__unused struct vfs_drt_clustermap *cmap, __unused int code,
6956 __unused int arg1, __unused int arg2, __unused int arg3,
6957 __unused int arg4)
6958 {
6959 }
6960 #endif
6961
6962 #if 0
6963 /*
6964 * Perform basic sanity check on the hash entry summary count
6965 * vs. the actual bits set in the entry.
6966 */
6967 static void
6968 vfs_drt_sanity(struct vfs_drt_clustermap *cmap)
6969 {
6970 int index, i;
6971 int bits_on;
6972
6973 for (index = 0; index < cmap->scm_modulus; index++) {
6974 if (DRT_HASH_VACANT(cmap, index))
6975 continue;
6976
6977 for (bits_on = 0, i = 0; i < DRT_BITVECTOR_PAGES; i++) {
6978 if (DRT_HASH_TEST_BIT(cmap, index, i))
6979 bits_on++;
6980 }
6981 if (bits_on != DRT_HASH_GET_COUNT(cmap, index))
6982 panic("bits_on = %d, index = %d\n", bits_on, index);
6983 }
6984 }
6985 #endif