]> git.saurik.com Git - apple/xnu.git/blob - bsd/net/route.c
xnu-2050.18.24.tar.gz
[apple/xnu.git] / bsd / net / route.c
1 /*
2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1980, 1986, 1991, 1993
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)route.c 8.2 (Berkeley) 11/15/93
61 * $FreeBSD: src/sys/net/route.c,v 1.59.2.3 2001/07/29 19:18:02 ume Exp $
62 */
63
64 #include <sys/param.h>
65 #include <sys/sysctl.h>
66 #include <sys/systm.h>
67 #include <sys/malloc.h>
68 #include <sys/mbuf.h>
69 #include <sys/socket.h>
70 #include <sys/domain.h>
71 #include <sys/syslog.h>
72 #include <sys/queue.h>
73 #include <sys/mcache.h>
74 #include <sys/protosw.h>
75 #include <kern/lock.h>
76 #include <kern/zalloc.h>
77
78 #include <net/if.h>
79 #include <net/route.h>
80 #include <net/ntstat.h>
81
82 #include <netinet/in.h>
83 #include <netinet/in_var.h>
84 #include <netinet/ip_mroute.h>
85 #include <netinet/ip_var.h>
86 #include <netinet/ip6.h>
87
88 #if INET6
89 #include <netinet6/ip6_var.h>
90 #include <netinet6/in6_var.h>
91 #endif /* INET6 */
92
93 #include <net/if_dl.h>
94
95 #include <libkern/OSAtomic.h>
96 #include <libkern/OSDebug.h>
97
98 #include <pexpert/pexpert.h>
99
100 /*
101 * Synchronization notes:
102 *
103 * Routing entries fall under two locking domains: the global routing table
104 * lock (rnh_lock) and the per-entry lock (rt_lock); the latter is a mutex that
105 * resides (statically defined) in the rtentry structure.
106 *
107 * The locking domains for routing are defined as follows:
108 *
109 * The global routing lock is used to serialize all accesses to the radix
110 * trees defined by rt_tables[], as well as the tree of masks. This includes
111 * lookups, insertions and removals of nodes to/from the respective tree.
112 * It is also used to protect certain fields in the route entry that aren't
113 * often modified and/or require global serialization (more details below.)
114 *
115 * The per-route entry lock is used to serialize accesses to several routing
116 * entry fields (more details below.) Acquiring and releasing this lock is
117 * done via RT_LOCK() and RT_UNLOCK() routines.
118 *
119 * In cases where both rnh_lock and rt_lock must be held, the former must be
120 * acquired first in order to maintain lock ordering. It is not a requirement
121 * that rnh_lock be acquired first before rt_lock, but in case both must be
122 * acquired in succession, the correct lock ordering must be followed.
123 *
124 * The fields of the rtentry structure are protected in the following way:
125 *
126 * rt_nodes[]
127 *
128 * - Routing table lock (rnh_lock).
129 *
130 * rt_parent, rt_mask, rt_llinfo_free
131 *
132 * - Set once during creation and never changes; no locks to read.
133 *
134 * rt_flags, rt_genmask, rt_llinfo, rt_rmx, rt_refcnt, rt_gwroute
135 *
136 * - Routing entry lock (rt_lock) for read/write access.
137 *
138 * - Some values of rt_flags are either set once at creation time,
139 * or aren't currently used, and thus checking against them can
140 * be done without rt_lock: RTF_GATEWAY, RTF_HOST, RTF_DYNAMIC,
141 * RTF_DONE, RTF_XRESOLVE, RTF_STATIC, RTF_BLACKHOLE, RTF_ANNOUNCE,
142 * RTF_USETRAILERS, RTF_WASCLONED, RTF_PINNED, RTF_LOCAL,
143 * RTF_BROADCAST, RTF_MULTICAST, RTF_IFSCOPE, RTF_IFREF.
144 *
145 * rt_key, rt_gateway, rt_ifp, rt_ifa
146 *
147 * - Always written/modified with both rnh_lock and rt_lock held.
148 *
149 * - May be read freely with rnh_lock held, else must hold rt_lock
150 * for read access; holding both locks for read is also okay.
151 *
152 * - In the event rnh_lock is not acquired, or is not possible to be
153 * acquired across the operation, setting RTF_CONDEMNED on a route
154 * entry will prevent its rt_key, rt_gateway, rt_ifp and rt_ifa
155 * from being modified. This is typically done on a route that
156 * has been chosen for a removal (from the tree) prior to dropping
157 * the rt_lock, so that those values will remain the same until
158 * the route is freed.
159 *
160 * When rnh_lock is held rt_setgate(), rt_setif(), and rtsetifa() are
161 * single-threaded, thus exclusive. This flag will also prevent the
162 * route from being looked up via rt_lookup().
163 *
164 * generation_id
165 *
166 * - Assumes that 32-bit writes are atomic; no locks.
167 *
168 * rt_dlt, rt_output
169 *
170 * - Currently unused; no locks.
171 *
172 * Operations on a route entry can be described as follows:
173 *
174 * CREATE an entry with reference count set to 0 as part of RTM_ADD/RESOLVE.
175 *
176 * INSERTION of an entry into the radix tree holds the rnh_lock, checks
177 * for duplicates and then adds the entry. rtrequest returns the entry
178 * after bumping up the reference count to 1 (for the caller).
179 *
180 * LOOKUP of an entry holds the rnh_lock and bumps up the reference count
181 * before returning; it is valid to also bump up the reference count using
182 * RT_ADDREF after the lookup has returned an entry.
183 *
184 * REMOVAL of an entry from the radix tree holds the rnh_lock, removes the
185 * entry but does not decrement the reference count. Removal happens when
186 * the route is explicitly deleted (RTM_DELETE) or when it is in the cached
187 * state and it expires. The route is said to be "down" when it is no
188 * longer present in the tree. Freeing the entry will happen on the last
189 * reference release of such a "down" route.
190 *
191 * RT_ADDREF/RT_REMREF operates on the routing entry which increments/
192 * decrements the reference count, rt_refcnt, atomically on the rtentry.
193 * rt_refcnt is modified only using this routine. The general rule is to
194 * do RT_ADDREF in the function that is passing the entry as an argument,
195 * in order to prevent the entry from being freed by the callee.
196 */
197
198 #define equal(a1, a2) (bcmp((caddr_t)(a1), (caddr_t)(a2), (a1)->sa_len) == 0)
199
200 extern void kdp_set_gateway_mac (void *gatewaymac);
201
202 extern struct domain routedomain;
203 struct route_cb route_cb;
204 __private_extern__ struct rtstat rtstat = { 0, 0, 0, 0, 0 };
205 struct radix_node_head *rt_tables[AF_MAX+1];
206
207 decl_lck_mtx_data(,rnh_lock_data); /* global routing tables mutex */
208 lck_mtx_t *rnh_lock = &rnh_lock_data;
209 static lck_attr_t *rnh_lock_attr;
210 static lck_grp_t *rnh_lock_grp;
211 static lck_grp_attr_t *rnh_lock_grp_attr;
212
213 /* Lock group and attribute for routing entry locks */
214 static lck_attr_t *rte_mtx_attr;
215 static lck_grp_t *rte_mtx_grp;
216 static lck_grp_attr_t *rte_mtx_grp_attr;
217
218 int rttrash = 0; /* routes not in table but not freed */
219
220 unsigned int rte_debug;
221
222 /* Possible flags for rte_debug */
223 #define RTD_DEBUG 0x1 /* enable or disable rtentry debug facility */
224 #define RTD_TRACE 0x2 /* trace alloc, free, refcnt and lock */
225 #define RTD_NO_FREE 0x4 /* don't free (good to catch corruptions) */
226
227 #define RTE_NAME "rtentry" /* name for zone and rt_lock */
228
229 static struct zone *rte_zone; /* special zone for rtentry */
230 #define RTE_ZONE_MAX 65536 /* maximum elements in zone */
231 #define RTE_ZONE_NAME RTE_NAME /* name of rtentry zone */
232
233 #define RTD_INUSE 0xFEEDFACE /* entry is in use */
234 #define RTD_FREED 0xDEADBEEF /* entry is freed */
235
236 /* For gdb */
237 __private_extern__ unsigned int ctrace_stack_size = CTRACE_STACK_SIZE;
238 __private_extern__ unsigned int ctrace_hist_size = CTRACE_HIST_SIZE;
239
240 /*
241 * Debug variant of rtentry structure.
242 */
243 struct rtentry_dbg {
244 struct rtentry rtd_entry; /* rtentry */
245 struct rtentry rtd_entry_saved; /* saved rtentry */
246 uint32_t rtd_inuse; /* in use pattern */
247 uint16_t rtd_refhold_cnt; /* # of rtref */
248 uint16_t rtd_refrele_cnt; /* # of rtunref */
249 uint32_t rtd_lock_cnt; /* # of locks */
250 uint32_t rtd_unlock_cnt; /* # of unlocks */
251 /*
252 * Alloc and free callers.
253 */
254 ctrace_t rtd_alloc;
255 ctrace_t rtd_free;
256 /*
257 * Circular lists of rtref and rtunref callers.
258 */
259 ctrace_t rtd_refhold[CTRACE_HIST_SIZE];
260 ctrace_t rtd_refrele[CTRACE_HIST_SIZE];
261 /*
262 * Circular lists of locks and unlocks.
263 */
264 ctrace_t rtd_lock[CTRACE_HIST_SIZE];
265 ctrace_t rtd_unlock[CTRACE_HIST_SIZE];
266 /*
267 * Trash list linkage
268 */
269 TAILQ_ENTRY(rtentry_dbg) rtd_trash_link;
270 };
271
272 /* List of trash route entries protected by rnh_lock */
273 static TAILQ_HEAD(, rtentry_dbg) rttrash_head;
274
275 static void rte_lock_init(struct rtentry *);
276 static void rte_lock_destroy(struct rtentry *);
277 static inline struct rtentry *rte_alloc_debug(void);
278 static inline void rte_free_debug(struct rtentry *);
279 static inline void rte_lock_debug(struct rtentry_dbg *);
280 static inline void rte_unlock_debug(struct rtentry_dbg *);
281 static void rt_maskedcopy(struct sockaddr *,
282 struct sockaddr *, struct sockaddr *);
283 static void rtable_init(void **);
284 static inline void rtref_audit(struct rtentry_dbg *);
285 static inline void rtunref_audit(struct rtentry_dbg *);
286 static struct rtentry *rtalloc1_common_locked(struct sockaddr *, int, uint32_t,
287 unsigned int);
288 static int rtrequest_common_locked(int, struct sockaddr *,
289 struct sockaddr *, struct sockaddr *, int, struct rtentry **,
290 unsigned int);
291 static struct rtentry *rtalloc1_locked(struct sockaddr *, int, uint32_t);
292 static void rtalloc_ign_common_locked(struct route *, uint32_t, unsigned int);
293 static inline void sin6_set_ifscope(struct sockaddr *, unsigned int);
294 static inline void sin6_set_embedded_ifscope(struct sockaddr *, unsigned int);
295 static inline unsigned int sin6_get_embedded_ifscope(struct sockaddr *);
296 static struct sockaddr *sa_copy(struct sockaddr *, struct sockaddr_storage *,
297 unsigned int *);
298 static struct sockaddr *ma_copy(int, struct sockaddr *,
299 struct sockaddr_storage *, unsigned int);
300 static struct sockaddr *sa_trim(struct sockaddr *, int);
301 static struct radix_node *node_lookup(struct sockaddr *, struct sockaddr *,
302 unsigned int);
303 static struct radix_node *node_lookup_default(int);
304 static int rn_match_ifscope(struct radix_node *, void *);
305 static struct ifaddr *ifa_ifwithroute_common_locked(int,
306 const struct sockaddr *, const struct sockaddr *, unsigned int);
307 static struct rtentry *rte_alloc(void);
308 static void rte_free(struct rtentry *);
309 static void rtfree_common(struct rtentry *, boolean_t);
310 static void rte_if_ref(struct ifnet *, int);
311
312 uint32_t route_generation = 0;
313
314 /*
315 * sockaddr_in with scope ID field; this is used internally to keep
316 * track of scoped route entries in the routing table. The fact that
317 * such a value is embedded in the structure is an artifact of the
318 * current implementation which could change in future.
319 */
320 struct sockaddr_inifscope {
321 __uint8_t sin_len;
322 sa_family_t sin_family;
323 in_port_t sin_port;
324 struct in_addr sin_addr;
325 /*
326 * To avoid possible conflict with an overlaid sockaddr_inarp
327 * having sin_other set to SIN_PROXY, we use the first 4-bytes
328 * of sin_zero since sin_srcaddr is one of the unused fields
329 * in sockaddr_inarp.
330 */
331 union {
332 char sin_zero[8];
333 struct {
334 __uint32_t ifscope;
335 } _in_index;
336 } un;
337 #define sin_scope_id un._in_index.ifscope
338 };
339
340 #define SINIFSCOPE(sa) ((struct sockaddr_inifscope *)(size_t)(sa))
341 #define SIN6IFSCOPE(sa) SIN6(sa)
342
343 #define ASSERT_SINIFSCOPE(sa) { \
344 if ((sa)->sa_family != AF_INET || \
345 (sa)->sa_len < sizeof (struct sockaddr_in)) \
346 panic("%s: bad sockaddr_in %p\n", __func__, sa); \
347 }
348
349 #define ASSERT_SIN6IFSCOPE(sa) { \
350 if ((sa)->sa_family != AF_INET6 || \
351 (sa)->sa_len < sizeof (struct sockaddr_in6)) \
352 panic("%s: bad sockaddr_in %p\n", __func__, sa); \
353 }
354
355 /*
356 * Argument to leaf-matching routine; at present it is scoped routing
357 * specific but can be expanded in future to include other search filters.
358 */
359 struct matchleaf_arg {
360 unsigned int ifscope; /* interface scope */
361 };
362
363 /*
364 * For looking up the non-scoped default route (sockaddr instead
365 * of sockaddr_in for convenience).
366 */
367 static struct sockaddr sin_def = {
368 sizeof (struct sockaddr_in), AF_INET, { 0, }
369 };
370
371 static struct sockaddr_in6 sin6_def = {
372 sizeof (struct sockaddr_in6), AF_INET6, 0, 0, IN6ADDR_ANY_INIT, 0
373 };
374
375 /*
376 * Interface index (scope) of the primary interface; determined at
377 * the time when the default, non-scoped route gets added, changed
378 * or deleted. Protected by rnh_lock.
379 */
380 static unsigned int primary_ifscope = IFSCOPE_NONE;
381 static unsigned int primary6_ifscope = IFSCOPE_NONE;
382
383 #define INET_DEFAULT(sa) \
384 ((sa)->sa_family == AF_INET && SIN(sa)->sin_addr.s_addr == 0)
385
386 #define INET6_DEFAULT(sa) \
387 ((sa)->sa_family == AF_INET6 && \
388 IN6_IS_ADDR_UNSPECIFIED(&SIN6(sa)->sin6_addr))
389
390 #define SA_DEFAULT(sa) (INET_DEFAULT(sa) || INET6_DEFAULT(sa))
391 #define RT(r) ((struct rtentry *)r)
392 #define RN(r) ((struct radix_node *)r)
393 #define RT_HOST(r) (RT(r)->rt_flags & RTF_HOST)
394
395 SYSCTL_DECL(_net_idle_route);
396
397 static int rt_if_idle_expire_timeout = RT_IF_IDLE_EXPIRE_TIMEOUT;
398 SYSCTL_INT(_net_idle_route, OID_AUTO, expire_timeout, CTLFLAG_RW|CTLFLAG_LOCKED,
399 &rt_if_idle_expire_timeout, 0, "Default expiration time on routes for "
400 "interface idle reference counting");
401
402 /*
403 * Given a route, determine whether or not it is the non-scoped default
404 * route; dst typically comes from rt_key(rt) but may be coming from
405 * a separate place when rt is in the process of being created.
406 */
407 boolean_t
408 rt_primary_default(struct rtentry *rt, struct sockaddr *dst)
409 {
410 return (SA_DEFAULT(dst) && !(rt->rt_flags & RTF_IFSCOPE));
411 }
412
413 /*
414 * Set the ifscope of the primary interface; caller holds rnh_lock.
415 */
416 void
417 set_primary_ifscope(int af, unsigned int ifscope)
418 {
419 if (af == AF_INET)
420 primary_ifscope = ifscope;
421 else
422 primary6_ifscope = ifscope;
423 }
424
425 /*
426 * Return the ifscope of the primary interface; caller holds rnh_lock.
427 */
428 unsigned int
429 get_primary_ifscope(int af)
430 {
431 return (af == AF_INET ? primary_ifscope : primary6_ifscope);
432 }
433
434 /*
435 * Set the scope ID of a given a sockaddr_in.
436 */
437 void
438 sin_set_ifscope(struct sockaddr *sa, unsigned int ifscope)
439 {
440 /* Caller must pass in sockaddr_in */
441 ASSERT_SINIFSCOPE(sa);
442
443 SINIFSCOPE(sa)->sin_scope_id = ifscope;
444 }
445
446 /*
447 * Set the scope ID of given a sockaddr_in6.
448 */
449 static inline void
450 sin6_set_ifscope(struct sockaddr *sa, unsigned int ifscope)
451 {
452 /* Caller must pass in sockaddr_in6 */
453 ASSERT_SIN6IFSCOPE(sa);
454
455 SIN6IFSCOPE(sa)->sin6_scope_id = ifscope;
456 }
457
458 /*
459 * Given a sockaddr_in, return the scope ID to the caller.
460 */
461 unsigned int
462 sin_get_ifscope(struct sockaddr *sa)
463 {
464 /* Caller must pass in sockaddr_in */
465 ASSERT_SINIFSCOPE(sa);
466
467 return (SINIFSCOPE(sa)->sin_scope_id);
468 }
469
470 /*
471 * Given a sockaddr_in6, return the scope ID to the caller.
472 */
473 unsigned int
474 sin6_get_ifscope(struct sockaddr *sa)
475 {
476 /* Caller must pass in sockaddr_in6 */
477 ASSERT_SIN6IFSCOPE(sa);
478
479 return (SIN6IFSCOPE(sa)->sin6_scope_id);
480 }
481
482 static inline void
483 sin6_set_embedded_ifscope(struct sockaddr *sa, unsigned int ifscope)
484 {
485 /* Caller must pass in sockaddr_in6 */
486 ASSERT_SIN6IFSCOPE(sa);
487 VERIFY(IN6_IS_SCOPE_EMBED(&(SIN6(sa)->sin6_addr)));
488
489 SIN6(sa)->sin6_addr.s6_addr16[1] = htons(ifscope);
490 }
491
492 static inline unsigned int
493 sin6_get_embedded_ifscope(struct sockaddr *sa)
494 {
495 /* Caller must pass in sockaddr_in6 */
496 ASSERT_SIN6IFSCOPE(sa);
497
498 return (ntohs(SIN6(sa)->sin6_addr.s6_addr16[1]));
499 }
500
501 /*
502 * Copy a sockaddr_{in,in6} src to a dst storage and set scope ID into dst.
503 *
504 * To clear the scope ID, pass is a NULL pifscope. To set the scope ID, pass
505 * in a non-NULL pifscope with non-zero ifscope. Otherwise if pifscope is
506 * non-NULL and ifscope is IFSCOPE_NONE, the existing scope ID is left intact.
507 * In any case, the effective scope ID value is returned to the caller via
508 * pifscope, if it is non-NULL.
509 */
510 static struct sockaddr *
511 sa_copy(struct sockaddr *src, struct sockaddr_storage *dst,
512 unsigned int *pifscope)
513 {
514 int af = src->sa_family;
515 unsigned int ifscope = (pifscope != NULL) ? *pifscope : IFSCOPE_NONE;
516
517 VERIFY(af == AF_INET || af == AF_INET6);
518
519 bzero(dst, sizeof (*dst));
520
521 if (af == AF_INET) {
522 bcopy(src, dst, sizeof (struct sockaddr_in));
523 if (pifscope == NULL || ifscope != IFSCOPE_NONE)
524 sin_set_ifscope(SA(dst), ifscope);
525 } else {
526 bcopy(src, dst, sizeof (struct sockaddr_in6));
527 if (pifscope != NULL &&
528 IN6_IS_SCOPE_EMBED(&SIN6(dst)->sin6_addr)) {
529 unsigned int eifscope;
530 /*
531 * If the address contains the embedded scope ID,
532 * use that as the value for sin6_scope_id as long
533 * the caller doesn't insist on clearing it (by
534 * passing NULL) or setting it.
535 */
536 eifscope = sin6_get_embedded_ifscope(SA(dst));
537 if (eifscope != IFSCOPE_NONE && ifscope == IFSCOPE_NONE)
538 ifscope = eifscope;
539 sin6_set_ifscope(SA(dst), ifscope);
540 /*
541 * If sin6_scope_id is set but the address doesn't
542 * contain the equivalent embedded value, set it.
543 */
544 if (ifscope != IFSCOPE_NONE && eifscope != ifscope)
545 sin6_set_embedded_ifscope(SA(dst), ifscope);
546 } else if (pifscope == NULL || ifscope != IFSCOPE_NONE) {
547 sin6_set_ifscope(SA(dst), ifscope);
548 }
549 }
550
551 if (pifscope != NULL) {
552 *pifscope = (af == AF_INET) ? sin_get_ifscope(SA(dst)) :
553 sin6_get_ifscope(SA(dst));
554 }
555
556 return (SA(dst));
557 }
558
559 /*
560 * Copy a mask from src to a dst storage and set scope ID into dst.
561 */
562 static struct sockaddr *
563 ma_copy(int af, struct sockaddr *src, struct sockaddr_storage *dst,
564 unsigned int ifscope)
565 {
566 VERIFY(af == AF_INET || af == AF_INET6);
567
568 bzero(dst, sizeof (*dst));
569 rt_maskedcopy(src, SA(dst), src);
570
571 /*
572 * The length of the mask sockaddr would need to be adjusted
573 * to cover the additional {sin,sin6}_ifscope field; when ifscope
574 * is IFSCOPE_NONE, we'd end up clearing the scope ID field on
575 * the destination mask in addition to extending the length
576 * of the sockaddr, as a side effect. This is okay, as any
577 * trailing zeroes would be skipped by rn_addmask prior to
578 * inserting or looking up the mask in the mask tree.
579 */
580 if (af == AF_INET) {
581 SINIFSCOPE(dst)->sin_scope_id = ifscope;
582 SINIFSCOPE(dst)->sin_len =
583 offsetof(struct sockaddr_inifscope, sin_scope_id) +
584 sizeof (SINIFSCOPE(dst)->sin_scope_id);
585 } else {
586 SIN6IFSCOPE(dst)->sin6_scope_id = ifscope;
587 SIN6IFSCOPE(dst)->sin6_len =
588 offsetof(struct sockaddr_in6, sin6_scope_id) +
589 sizeof (SIN6IFSCOPE(dst)->sin6_scope_id);
590 }
591
592 return (SA(dst));
593 }
594
595 /*
596 * Trim trailing zeroes on a sockaddr and update its length.
597 */
598 static struct sockaddr *
599 sa_trim(struct sockaddr *sa, int skip)
600 {
601 caddr_t cp, base = (caddr_t)sa + skip;
602
603 if (sa->sa_len <= skip)
604 return (sa);
605
606 for (cp = base + (sa->sa_len - skip); cp > base && cp[-1] == 0;)
607 cp--;
608
609 sa->sa_len = (cp - base) + skip;
610 if (sa->sa_len < skip) {
611 /* Must not happen, and if so, panic */
612 panic("%s: broken logic (sa_len %d < skip %d )", __func__,
613 sa->sa_len, skip);
614 /* NOTREACHED */
615 } else if (sa->sa_len == skip) {
616 /* If we end up with all zeroes, then there's no mask */
617 sa->sa_len = 0;
618 }
619
620 return (sa);
621 }
622
623 /*
624 * Called by rtm_msg{1,2} routines to "scrub" the scope ID field away from
625 * the socket address structure, so that clients of the routing socket will
626 * not be confused by the presence of the information, or the side effect of
627 * the increased length due to that. The source sockaddr is not modified;
628 * instead, the scrubbing happens on the destination sockaddr storage that
629 * is passed in by the caller.
630 */
631 struct sockaddr *
632 rtm_scrub_ifscope(int type, int idx, struct sockaddr *hint, struct sockaddr *sa,
633 struct sockaddr_storage *ss)
634 {
635 struct sockaddr *ret = sa;
636
637 switch (idx) {
638 case RTAX_DST:
639 /*
640 * If this is for an AF_INET/AF_INET6 destination address,
641 * call sa_copy() to clear the scope ID field.
642 */
643 if (sa->sa_family == AF_INET &&
644 SINIFSCOPE(sa)->sin_scope_id != IFSCOPE_NONE) {
645 ret = sa_copy(sa, ss, NULL);
646 } else if (sa->sa_family == AF_INET6 &&
647 SIN6IFSCOPE(sa)->sin6_scope_id != IFSCOPE_NONE) {
648 ret = sa_copy(sa, ss, NULL);
649 }
650 break;
651
652 case RTAX_NETMASK: {
653 int skip, af;
654 /*
655 * If this is for a mask, we can't tell whether or not there
656 * is an valid scope ID value, as the span of bytes between
657 * sa_len and the beginning of the mask (offset of sin_addr in
658 * the case of AF_INET, or sin6_addr for AF_INET6) may be
659 * filled with all-ones by rn_addmask(), and hence we cannot
660 * rely on sa_family. Because of this, we use the sa_family
661 * of the hint sockaddr (RTAX_{DST,IFA}) as indicator as to
662 * whether or not the mask is to be treated as one for AF_INET
663 * or AF_INET6. Clearing the scope ID field involves setting
664 * it to IFSCOPE_NONE followed by calling sa_trim() to trim
665 * trailing zeroes from the storage sockaddr, which reverses
666 * what was done earlier by ma_copy() on the source sockaddr.
667 */
668 if (hint == NULL ||
669 ((af = hint->sa_family) != AF_INET && af != AF_INET6))
670 break; /* nothing to do */
671
672 skip = (af == AF_INET) ?
673 offsetof(struct sockaddr_in, sin_addr) :
674 offsetof(struct sockaddr_in6, sin6_addr);
675
676 if (sa->sa_len > skip && sa->sa_len <= sizeof (*ss)) {
677 bzero(ss, sizeof (*ss));
678 bcopy(sa, ss, sa->sa_len);
679 /*
680 * Don't use {sin,sin6}_set_ifscope() as sa_family
681 * and sa_len for the netmask might not be set to
682 * the corresponding expected values of the hint.
683 */
684 if (hint->sa_family == AF_INET)
685 SINIFSCOPE(ss)->sin_scope_id = IFSCOPE_NONE;
686 else
687 SIN6IFSCOPE(ss)->sin6_scope_id = IFSCOPE_NONE;
688 ret = sa_trim(SA(ss), skip);
689
690 /*
691 * For AF_INET6 mask, set sa_len appropriately unless
692 * this is requested via systl_dumpentry(), in which
693 * case we return the raw value.
694 */
695 if (hint->sa_family == AF_INET6 &&
696 type != RTM_GET && type != RTM_GET2)
697 SA(ret)->sa_len = sizeof (struct sockaddr_in6);
698 }
699 break;
700 }
701 default:
702 break;
703 }
704
705 return (ret);
706 }
707
708 /*
709 * Callback leaf-matching routine for rn_matchaddr_args used
710 * for looking up an exact match for a scoped route entry.
711 */
712 static int
713 rn_match_ifscope(struct radix_node *rn, void *arg)
714 {
715 struct rtentry *rt = (struct rtentry *)rn;
716 struct matchleaf_arg *ma = arg;
717 int af = rt_key(rt)->sa_family;
718
719 if (!(rt->rt_flags & RTF_IFSCOPE) || (af != AF_INET && af != AF_INET6))
720 return (0);
721
722 return (af == AF_INET ?
723 (SINIFSCOPE(rt_key(rt))->sin_scope_id == ma->ifscope) :
724 (SIN6IFSCOPE(rt_key(rt))->sin6_scope_id == ma->ifscope));
725 }
726
727 static void
728 rtable_init(void **table)
729 {
730 struct domain *dom;
731 for (dom = domains; dom; dom = dom->dom_next)
732 if (dom->dom_rtattach)
733 dom->dom_rtattach(&table[dom->dom_family],
734 dom->dom_rtoffset);
735 }
736
737 void
738 route_init(void)
739 {
740 int size;
741
742 PE_parse_boot_argn("rte_debug", &rte_debug, sizeof (rte_debug));
743 if (rte_debug != 0)
744 rte_debug |= RTD_DEBUG;
745
746 rnh_lock_grp_attr = lck_grp_attr_alloc_init();
747 rnh_lock_grp = lck_grp_alloc_init("route", rnh_lock_grp_attr);
748 rnh_lock_attr = lck_attr_alloc_init();
749 lck_mtx_init(rnh_lock, rnh_lock_grp, rnh_lock_attr);
750
751 rte_mtx_grp_attr = lck_grp_attr_alloc_init();
752 rte_mtx_grp = lck_grp_alloc_init(RTE_NAME, rte_mtx_grp_attr);
753 rte_mtx_attr = lck_attr_alloc_init();
754
755 lck_mtx_lock(rnh_lock);
756 rn_init(); /* initialize all zeroes, all ones, mask table */
757 lck_mtx_unlock(rnh_lock);
758 rtable_init((void **)rt_tables);
759
760 if (rte_debug & RTD_DEBUG)
761 size = sizeof (struct rtentry_dbg);
762 else
763 size = sizeof (struct rtentry);
764
765 rte_zone = zinit(size, RTE_ZONE_MAX * size, 0, RTE_ZONE_NAME);
766 if (rte_zone == NULL)
767 panic("route_init: failed allocating rte_zone");
768
769 zone_change(rte_zone, Z_EXPAND, TRUE);
770 zone_change(rte_zone, Z_CALLERACCT, FALSE);
771 zone_change(rte_zone, Z_NOENCRYPT, TRUE);
772
773 TAILQ_INIT(&rttrash_head);
774 }
775
776 /*
777 * Atomically increment route generation counter
778 */
779 void
780 routegenid_update(void)
781 {
782 (void) atomic_add_32_ov(&route_generation, 1);
783 }
784
785 /*
786 * Packet routing routines.
787 */
788 void
789 rtalloc(struct route *ro)
790 {
791 rtalloc_ign(ro, 0);
792 }
793
794 void
795 rtalloc_scoped(struct route *ro, unsigned int ifscope)
796 {
797 rtalloc_scoped_ign(ro, 0, ifscope);
798 }
799
800 static void
801 rtalloc_ign_common_locked(struct route *ro, uint32_t ignore,
802 unsigned int ifscope)
803 {
804 struct rtentry *rt;
805
806 if ((rt = ro->ro_rt) != NULL) {
807 RT_LOCK_SPIN(rt);
808 if (rt->rt_ifp != NULL && (rt->rt_flags & RTF_UP) &&
809 rt->generation_id == route_generation) {
810 RT_UNLOCK(rt);
811 return;
812 }
813 RT_UNLOCK(rt);
814 rtfree_locked(rt);
815 ro->ro_rt = NULL;
816 }
817 ro->ro_rt = rtalloc1_common_locked(&ro->ro_dst, 1, ignore, ifscope);
818 if (ro->ro_rt != NULL) {
819 ro->ro_rt->generation_id = route_generation;
820 RT_LOCK_ASSERT_NOTHELD(ro->ro_rt);
821 }
822 }
823
824 void
825 rtalloc_ign(struct route *ro, uint32_t ignore)
826 {
827 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
828 lck_mtx_lock(rnh_lock);
829 rtalloc_ign_common_locked(ro, ignore, IFSCOPE_NONE);
830 lck_mtx_unlock(rnh_lock);
831 }
832
833 void
834 rtalloc_scoped_ign(struct route *ro, uint32_t ignore, unsigned int ifscope)
835 {
836 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
837 lck_mtx_lock(rnh_lock);
838 rtalloc_ign_common_locked(ro, ignore, ifscope);
839 lck_mtx_unlock(rnh_lock);
840 }
841
842 static struct rtentry *
843 rtalloc1_locked(struct sockaddr *dst, int report, uint32_t ignflags)
844 {
845 return (rtalloc1_common_locked(dst, report, ignflags, IFSCOPE_NONE));
846 }
847
848 struct rtentry *
849 rtalloc1_scoped_locked(struct sockaddr *dst, int report, uint32_t ignflags,
850 unsigned int ifscope)
851 {
852 return (rtalloc1_common_locked(dst, report, ignflags, ifscope));
853 }
854
855 /*
856 * Look up the route that matches the address given
857 * Or, at least try.. Create a cloned route if needed.
858 */
859 static struct rtentry *
860 rtalloc1_common_locked(struct sockaddr *dst, int report, uint32_t ignflags,
861 unsigned int ifscope)
862 {
863 struct radix_node_head *rnh = rt_tables[dst->sa_family];
864 struct rtentry *rt, *newrt = NULL;
865 struct rt_addrinfo info;
866 uint32_t nflags;
867 int err = 0, msgtype = RTM_MISS;
868
869 if (rnh == NULL)
870 goto unreachable;
871
872 /*
873 * Find the longest prefix or exact (in the scoped case) address match;
874 * callee adds a reference to entry and checks for root node as well
875 */
876 rt = rt_lookup(FALSE, dst, NULL, rnh, ifscope);
877 if (rt == NULL)
878 goto unreachable;
879
880 RT_LOCK_SPIN(rt);
881 newrt = rt;
882 nflags = rt->rt_flags & ~ignflags;
883 RT_UNLOCK(rt);
884 if (report && (nflags & (RTF_CLONING | RTF_PRCLONING))) {
885 /*
886 * We are apparently adding (report = 0 in delete).
887 * If it requires that it be cloned, do so.
888 * (This implies it wasn't a HOST route.)
889 */
890 err = rtrequest_locked(RTM_RESOLVE, dst, NULL, NULL, 0, &newrt);
891 if (err) {
892 /*
893 * If the cloning didn't succeed, maybe what we
894 * have from lookup above will do. Return that;
895 * no need to hold another reference since it's
896 * already done.
897 */
898 newrt = rt;
899 goto miss;
900 }
901
902 /*
903 * We cloned it; drop the original route found during lookup.
904 * The resulted cloned route (newrt) would now have an extra
905 * reference held during rtrequest.
906 */
907 rtfree_locked(rt);
908 if ((rt = newrt) && (rt->rt_flags & RTF_XRESOLVE)) {
909 /*
910 * If the new route specifies it be
911 * externally resolved, then go do that.
912 */
913 msgtype = RTM_RESOLVE;
914 goto miss;
915 }
916 }
917 goto done;
918
919 unreachable:
920 /*
921 * Either we hit the root or couldn't find any match,
922 * Which basically means "cant get there from here"
923 */
924 rtstat.rts_unreach++;
925 miss:
926 if (report) {
927 /*
928 * If required, report the failure to the supervising
929 * Authorities.
930 * For a delete, this is not an error. (report == 0)
931 */
932 bzero((caddr_t)&info, sizeof(info));
933 info.rti_info[RTAX_DST] = dst;
934 rt_missmsg(msgtype, &info, 0, err);
935 }
936 done:
937 return (newrt);
938 }
939
940 struct rtentry *
941 rtalloc1(struct sockaddr *dst, int report, uint32_t ignflags)
942 {
943 struct rtentry * entry;
944 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
945 lck_mtx_lock(rnh_lock);
946 entry = rtalloc1_locked(dst, report, ignflags);
947 lck_mtx_unlock(rnh_lock);
948 return (entry);
949 }
950
951 struct rtentry *
952 rtalloc1_scoped(struct sockaddr *dst, int report, uint32_t ignflags,
953 unsigned int ifscope)
954 {
955 struct rtentry * entry;
956 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
957 lck_mtx_lock(rnh_lock);
958 entry = rtalloc1_scoped_locked(dst, report, ignflags, ifscope);
959 lck_mtx_unlock(rnh_lock);
960 return (entry);
961 }
962
963 /*
964 * Remove a reference count from an rtentry.
965 * If the count gets low enough, take it out of the routing table
966 */
967 void
968 rtfree_locked(struct rtentry *rt)
969 {
970 rtfree_common(rt, TRUE);
971 }
972
973 static void
974 rtfree_common(struct rtentry *rt, boolean_t locked)
975 {
976 struct radix_node_head *rnh;
977
978 /*
979 * Atomically decrement the reference count and if it reaches 0,
980 * and there is a close function defined, call the close function.
981 */
982 RT_LOCK_SPIN(rt);
983 if (rtunref(rt) > 0) {
984 RT_UNLOCK(rt);
985 return;
986 }
987
988 /*
989 * To avoid violating lock ordering, we must drop rt_lock before
990 * trying to acquire the global rnh_lock. If we are called with
991 * rnh_lock held, then we already have exclusive access; otherwise
992 * we do the lock dance.
993 */
994 if (!locked) {
995 /*
996 * Note that we check it again below after grabbing rnh_lock,
997 * since it is possible that another thread doing a lookup wins
998 * the race, grabs the rnh_lock first, and bumps up the reference
999 * count in which case the route should be left alone as it is
1000 * still in use. It's also possible that another thread frees
1001 * the route after we drop rt_lock; to prevent the route from
1002 * being freed, we hold an extra reference.
1003 */
1004 RT_ADDREF_LOCKED(rt);
1005 RT_UNLOCK(rt);
1006 lck_mtx_lock(rnh_lock);
1007 RT_LOCK_SPIN(rt);
1008 RT_REMREF_LOCKED(rt);
1009 if (rt->rt_refcnt > 0) {
1010 /* We've lost the race, so abort */
1011 RT_UNLOCK(rt);
1012 goto done;
1013 }
1014 }
1015
1016 /*
1017 * We may be blocked on other lock(s) as part of freeing
1018 * the entry below, so convert from spin to full mutex.
1019 */
1020 RT_CONVERT_LOCK(rt);
1021
1022 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
1023
1024 /* Negative refcnt must never happen */
1025 if (rt->rt_refcnt != 0)
1026 panic("rt %p invalid refcnt %d", rt, rt->rt_refcnt);
1027
1028 /*
1029 * find the tree for that address family
1030 * Note: in the case of igmp packets, there might not be an rnh
1031 */
1032 rnh = rt_tables[rt_key(rt)->sa_family];
1033
1034 /*
1035 * On last reference give the "close method" a chance to cleanup
1036 * private state. This also permits (for IPv4 and IPv6) a chance
1037 * to decide if the routing table entry should be purged immediately
1038 * or at a later time. When an immediate purge is to happen the
1039 * close routine typically issues RTM_DELETE which clears the RTF_UP
1040 * flag on the entry so that the code below reclaims the storage.
1041 */
1042 if (rnh != NULL && rnh->rnh_close != NULL)
1043 rnh->rnh_close((struct radix_node *)rt, rnh);
1044
1045 /*
1046 * If we are no longer "up" (and ref == 0) then we can free the
1047 * resources associated with the route.
1048 */
1049 if (!(rt->rt_flags & RTF_UP)) {
1050 struct rtentry *rt_parent;
1051 struct ifaddr *rt_ifa;
1052
1053 if (rt->rt_nodes->rn_flags & (RNF_ACTIVE | RNF_ROOT))
1054 panic("rt %p freed while in radix tree\n", rt);
1055 /*
1056 * the rtentry must have been removed from the routing table
1057 * so it is represented in rttrash; remove that now.
1058 */
1059 (void) OSDecrementAtomic(&rttrash);
1060 if (rte_debug & RTD_DEBUG) {
1061 TAILQ_REMOVE(&rttrash_head, (struct rtentry_dbg *)rt,
1062 rtd_trash_link);
1063 }
1064
1065 /*
1066 * release references on items we hold them on..
1067 * e.g other routes and ifaddrs.
1068 */
1069 if ((rt_parent = rt->rt_parent) != NULL)
1070 rt->rt_parent = NULL;
1071
1072 if ((rt_ifa = rt->rt_ifa) != NULL)
1073 rt->rt_ifa = NULL;
1074
1075 /*
1076 * Now free any attached link-layer info.
1077 */
1078 if (rt->rt_llinfo != NULL) {
1079 if (rt->rt_llinfo_free != NULL)
1080 (*rt->rt_llinfo_free)(rt->rt_llinfo);
1081 else
1082 R_Free(rt->rt_llinfo);
1083 rt->rt_llinfo = NULL;
1084 }
1085
1086 /*
1087 * Route is no longer in the tree and refcnt is 0;
1088 * we have exclusive access, so destroy it.
1089 */
1090 RT_UNLOCK(rt);
1091
1092 if (rt_parent != NULL)
1093 rtfree_locked(rt_parent);
1094
1095 if (rt_ifa != NULL)
1096 IFA_REMREF(rt_ifa);
1097
1098 /*
1099 * The key is separately alloc'd so free it (see rt_setgate()).
1100 * This also frees the gateway, as they are always malloc'd
1101 * together.
1102 */
1103 R_Free(rt_key(rt));
1104
1105 /*
1106 * Free any statistics that may have been allocated
1107 */
1108 nstat_route_detach(rt);
1109
1110 /*
1111 * and the rtentry itself of course
1112 */
1113 rte_lock_destroy(rt);
1114 rte_free(rt);
1115 } else {
1116 /*
1117 * The "close method" has been called, but the route is
1118 * still in the radix tree with zero refcnt, i.e. "up"
1119 * and in the cached state.
1120 */
1121 RT_UNLOCK(rt);
1122 }
1123 done:
1124 if (!locked)
1125 lck_mtx_unlock(rnh_lock);
1126 }
1127
1128 void
1129 rtfree(struct rtentry *rt)
1130 {
1131 rtfree_common(rt, FALSE);
1132 }
1133
1134 /*
1135 * Decrements the refcount but does not free the route when
1136 * the refcount reaches zero. Unless you have really good reason,
1137 * use rtfree not rtunref.
1138 */
1139 int
1140 rtunref(struct rtentry *p)
1141 {
1142 RT_LOCK_ASSERT_HELD(p);
1143
1144 if (p->rt_refcnt == 0)
1145 panic("%s(%p) bad refcnt\n", __func__, p);
1146
1147 --p->rt_refcnt;
1148
1149 if (rte_debug & RTD_DEBUG)
1150 rtunref_audit((struct rtentry_dbg *)p);
1151
1152 /* Return new value */
1153 return (p->rt_refcnt);
1154 }
1155
1156 static inline void
1157 rtunref_audit(struct rtentry_dbg *rte)
1158 {
1159 uint16_t idx;
1160
1161 if (rte->rtd_inuse != RTD_INUSE)
1162 panic("rtunref: on freed rte=%p\n", rte);
1163
1164 idx = atomic_add_16_ov(&rte->rtd_refrele_cnt, 1) % CTRACE_HIST_SIZE;
1165 if (rte_debug & RTD_TRACE)
1166 ctrace_record(&rte->rtd_refrele[idx]);
1167 }
1168
1169 /*
1170 * Add a reference count from an rtentry.
1171 */
1172 void
1173 rtref(struct rtentry *p)
1174 {
1175 RT_LOCK_ASSERT_HELD(p);
1176
1177 if (++p->rt_refcnt == 0)
1178 panic("%s(%p) bad refcnt\n", __func__, p);
1179
1180 if (rte_debug & RTD_DEBUG)
1181 rtref_audit((struct rtentry_dbg *)p);
1182 }
1183
1184 static inline void
1185 rtref_audit(struct rtentry_dbg *rte)
1186 {
1187 uint16_t idx;
1188
1189 if (rte->rtd_inuse != RTD_INUSE)
1190 panic("rtref_audit: on freed rte=%p\n", rte);
1191
1192 idx = atomic_add_16_ov(&rte->rtd_refhold_cnt, 1) % CTRACE_HIST_SIZE;
1193 if (rte_debug & RTD_TRACE)
1194 ctrace_record(&rte->rtd_refhold[idx]);
1195 }
1196
1197 void
1198 rtsetifa(struct rtentry *rt, struct ifaddr* ifa)
1199 {
1200 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
1201
1202 RT_LOCK_ASSERT_HELD(rt);
1203
1204 if (rt->rt_ifa == ifa)
1205 return;
1206
1207 /* Become a regular mutex, just in case */
1208 RT_CONVERT_LOCK(rt);
1209
1210 /* Release the old ifa */
1211 if (rt->rt_ifa)
1212 IFA_REMREF(rt->rt_ifa);
1213
1214 /* Set rt_ifa */
1215 rt->rt_ifa = ifa;
1216
1217 /* Take a reference to the ifa */
1218 if (rt->rt_ifa)
1219 IFA_ADDREF(rt->rt_ifa);
1220 }
1221
1222 /*
1223 * Force a routing table entry to the specified
1224 * destination to go through the given gateway.
1225 * Normally called as a result of a routing redirect
1226 * message from the network layer.
1227 */
1228 void
1229 rtredirect(struct ifnet *ifp, struct sockaddr *dst, struct sockaddr *gateway,
1230 struct sockaddr *netmask, int flags, struct sockaddr *src,
1231 struct rtentry **rtp)
1232 {
1233 struct rtentry *rt = NULL;
1234 int error = 0;
1235 short *stat = 0;
1236 struct rt_addrinfo info;
1237 struct ifaddr *ifa = NULL;
1238 unsigned int ifscope = (ifp != NULL) ? ifp->if_index : IFSCOPE_NONE;
1239 struct sockaddr_storage ss;
1240
1241 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
1242 lck_mtx_lock(rnh_lock);
1243
1244 /*
1245 * Transform src into the internal routing table form for
1246 * comparison against rt_gateway below.
1247 */
1248 #if INET6
1249 if ((src->sa_family == AF_INET && ip_doscopedroute) ||
1250 (src->sa_family == AF_INET6 && ip6_doscopedroute))
1251 #else
1252 if (src->sa_family == AF_INET && ip_doscopedroute)
1253 #endif /* !INET6 */
1254 src = sa_copy(src, &ss, &ifscope);
1255
1256 /*
1257 * Verify the gateway is directly reachable; if scoped routing
1258 * is enabled, verify that it is reachable from the interface
1259 * where the ICMP redirect arrived on.
1260 */
1261 if ((ifa = ifa_ifwithnet_scoped(gateway, ifscope)) == NULL) {
1262 error = ENETUNREACH;
1263 goto out;
1264 }
1265
1266 /* Lookup route to the destination (from the original IP header) */
1267 rt = rtalloc1_scoped_locked(dst, 0, RTF_CLONING|RTF_PRCLONING, ifscope);
1268 if (rt != NULL)
1269 RT_LOCK(rt);
1270
1271 /*
1272 * If the redirect isn't from our current router for this dst,
1273 * it's either old or wrong. If it redirects us to ourselves,
1274 * we have a routing loop, perhaps as a result of an interface
1275 * going down recently. Holding rnh_lock here prevents the
1276 * possibility of rt_ifa/ifa's ifa_addr from changing (e.g.
1277 * in_ifinit), so okay to access ifa_addr without locking.
1278 */
1279 if (!(flags & RTF_DONE) && rt != NULL &&
1280 (!equal(src, rt->rt_gateway) || !equal(rt->rt_ifa->ifa_addr,
1281 ifa->ifa_addr))) {
1282 error = EINVAL;
1283 } else {
1284 IFA_REMREF(ifa);
1285 if ((ifa = ifa_ifwithaddr(gateway))) {
1286 IFA_REMREF(ifa);
1287 ifa = NULL;
1288 error = EHOSTUNREACH;
1289 }
1290 }
1291
1292 if (ifa) {
1293 IFA_REMREF(ifa);
1294 ifa = NULL;
1295 }
1296
1297 if (error) {
1298 if (rt != NULL)
1299 RT_UNLOCK(rt);
1300 goto done;
1301 }
1302
1303 /*
1304 * Create a new entry if we just got back a wildcard entry
1305 * or the the lookup failed. This is necessary for hosts
1306 * which use routing redirects generated by smart gateways
1307 * to dynamically build the routing tables.
1308 */
1309 if ((rt == NULL) || (rt_mask(rt) != NULL && rt_mask(rt)->sa_len < 2))
1310 goto create;
1311 /*
1312 * Don't listen to the redirect if it's
1313 * for a route to an interface.
1314 */
1315 RT_LOCK_ASSERT_HELD(rt);
1316 if (rt->rt_flags & RTF_GATEWAY) {
1317 if (((rt->rt_flags & RTF_HOST) == 0) && (flags & RTF_HOST)) {
1318 /*
1319 * Changing from route to net => route to host.
1320 * Create new route, rather than smashing route
1321 * to net; similar to cloned routes, the newly
1322 * created host route is scoped as well.
1323 */
1324 create:
1325 if (rt != NULL)
1326 RT_UNLOCK(rt);
1327 flags |= RTF_GATEWAY | RTF_DYNAMIC;
1328 error = rtrequest_scoped_locked(RTM_ADD, dst,
1329 gateway, netmask, flags, NULL, ifscope);
1330 stat = &rtstat.rts_dynamic;
1331 } else {
1332 /*
1333 * Smash the current notion of the gateway to
1334 * this destination. Should check about netmask!!!
1335 */
1336 rt->rt_flags |= RTF_MODIFIED;
1337 flags |= RTF_MODIFIED;
1338 stat = &rtstat.rts_newgateway;
1339 /*
1340 * add the key and gateway (in one malloc'd chunk).
1341 */
1342 error = rt_setgate(rt, rt_key(rt), gateway);
1343 RT_UNLOCK(rt);
1344 }
1345 } else {
1346 RT_UNLOCK(rt);
1347 error = EHOSTUNREACH;
1348 }
1349 done:
1350 if (rt != NULL) {
1351 RT_LOCK_ASSERT_NOTHELD(rt);
1352 if (rtp && !error)
1353 *rtp = rt;
1354 else
1355 rtfree_locked(rt);
1356 }
1357 out:
1358 if (error) {
1359 rtstat.rts_badredirect++;
1360 } else {
1361 if (stat != NULL)
1362 (*stat)++;
1363 if (use_routegenid)
1364 routegenid_update();
1365 }
1366 lck_mtx_unlock(rnh_lock);
1367 bzero((caddr_t)&info, sizeof(info));
1368 info.rti_info[RTAX_DST] = dst;
1369 info.rti_info[RTAX_GATEWAY] = gateway;
1370 info.rti_info[RTAX_NETMASK] = netmask;
1371 info.rti_info[RTAX_AUTHOR] = src;
1372 rt_missmsg(RTM_REDIRECT, &info, flags, error);
1373 }
1374
1375 /*
1376 * Routing table ioctl interface.
1377 */
1378 int
1379 rtioctl(unsigned long req, caddr_t data, struct proc *p)
1380 {
1381 #pragma unused(p)
1382 #if INET && MROUTING
1383 return mrt_ioctl(req, data);
1384 #else
1385 #pragma unused(req)
1386 #pragma unused(data)
1387 return ENXIO;
1388 #endif
1389 }
1390
1391 struct ifaddr *
1392 ifa_ifwithroute(
1393 int flags,
1394 const struct sockaddr *dst,
1395 const struct sockaddr *gateway)
1396 {
1397 struct ifaddr *ifa;
1398
1399 lck_mtx_lock(rnh_lock);
1400 ifa = ifa_ifwithroute_locked(flags, dst, gateway);
1401 lck_mtx_unlock(rnh_lock);
1402
1403 return (ifa);
1404 }
1405
1406 struct ifaddr *
1407 ifa_ifwithroute_locked(int flags, const struct sockaddr *dst,
1408 const struct sockaddr *gateway)
1409 {
1410 return (ifa_ifwithroute_common_locked((flags & ~RTF_IFSCOPE), dst,
1411 gateway, IFSCOPE_NONE));
1412 }
1413
1414 struct ifaddr *
1415 ifa_ifwithroute_scoped_locked(int flags, const struct sockaddr *dst,
1416 const struct sockaddr *gateway, unsigned int ifscope)
1417 {
1418 if (ifscope != IFSCOPE_NONE)
1419 flags |= RTF_IFSCOPE;
1420 else
1421 flags &= ~RTF_IFSCOPE;
1422
1423 return (ifa_ifwithroute_common_locked(flags, dst, gateway, ifscope));
1424 }
1425
1426 static struct ifaddr *
1427 ifa_ifwithroute_common_locked(int flags, const struct sockaddr *dst,
1428 const struct sockaddr *gw, unsigned int ifscope)
1429 {
1430 struct ifaddr *ifa = NULL;
1431 struct rtentry *rt = NULL;
1432 struct sockaddr_storage dst_ss, gw_ss;
1433
1434 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
1435
1436 /*
1437 * Just in case the sockaddr passed in by the caller
1438 * contains a scope ID, make sure to clear it since
1439 * interface addresses aren't scoped.
1440 */
1441 #if INET6
1442 if (dst != NULL &&
1443 ((dst->sa_family == AF_INET && ip_doscopedroute) ||
1444 (dst->sa_family == AF_INET6 && ip6_doscopedroute)))
1445 #else
1446 if (dst != NULL && dst->sa_family == AF_INET && ip_doscopedroute)
1447 #endif /* !INET6 */
1448 dst = sa_copy(SA((uintptr_t)dst), &dst_ss, NULL);
1449
1450 #if INET6
1451 if (gw != NULL &&
1452 ((gw->sa_family == AF_INET && ip_doscopedroute) ||
1453 (gw->sa_family == AF_INET6 && ip6_doscopedroute)))
1454 #else
1455 if (gw != NULL && gw->sa_family == AF_INET && ip_doscopedroute)
1456 #endif /* !INET6 */
1457 gw = sa_copy(SA((uintptr_t)gw), &gw_ss, NULL);
1458
1459 if (!(flags & RTF_GATEWAY)) {
1460 /*
1461 * If we are adding a route to an interface,
1462 * and the interface is a pt to pt link
1463 * we should search for the destination
1464 * as our clue to the interface. Otherwise
1465 * we can use the local address.
1466 */
1467 if (flags & RTF_HOST) {
1468 ifa = ifa_ifwithdstaddr(dst);
1469 }
1470 if (ifa == NULL)
1471 ifa = ifa_ifwithaddr_scoped(gw, ifscope);
1472 } else {
1473 /*
1474 * If we are adding a route to a remote net
1475 * or host, the gateway may still be on the
1476 * other end of a pt to pt link.
1477 */
1478 ifa = ifa_ifwithdstaddr(gw);
1479 }
1480 if (ifa == NULL)
1481 ifa = ifa_ifwithnet_scoped(gw, ifscope);
1482 if (ifa == NULL) {
1483 /* Workaround to avoid gcc warning regarding const variable */
1484 rt = rtalloc1_scoped_locked((struct sockaddr *)(size_t)dst,
1485 0, 0, ifscope);
1486 if (rt != NULL) {
1487 RT_LOCK_SPIN(rt);
1488 ifa = rt->rt_ifa;
1489 if (ifa != NULL) {
1490 /* Become a regular mutex */
1491 RT_CONVERT_LOCK(rt);
1492 IFA_ADDREF(ifa);
1493 }
1494 RT_REMREF_LOCKED(rt);
1495 RT_UNLOCK(rt);
1496 rt = NULL;
1497 }
1498 }
1499 /*
1500 * Holding rnh_lock here prevents the possibility of ifa from
1501 * changing (e.g. in_ifinit), so it is safe to access its
1502 * ifa_addr (here and down below) without locking.
1503 */
1504 if (ifa != NULL && ifa->ifa_addr->sa_family != dst->sa_family) {
1505 struct ifaddr *newifa;
1506 /* Callee adds reference to newifa upon success */
1507 newifa = ifaof_ifpforaddr(dst, ifa->ifa_ifp);
1508 if (newifa != NULL) {
1509 IFA_REMREF(ifa);
1510 ifa = newifa;
1511 }
1512 }
1513 /*
1514 * If we are adding a gateway, it is quite possible that the
1515 * routing table has a static entry in place for the gateway,
1516 * that may not agree with info garnered from the interfaces.
1517 * The routing table should carry more precedence than the
1518 * interfaces in this matter. Must be careful not to stomp
1519 * on new entries from rtinit, hence (ifa->ifa_addr != gw).
1520 */
1521 if ((ifa == NULL ||
1522 !equal(ifa->ifa_addr, (struct sockaddr *)(size_t)gw)) &&
1523 (rt = rtalloc1_scoped_locked((struct sockaddr *)(size_t)gw,
1524 0, 0, ifscope)) != NULL) {
1525 if (ifa != NULL)
1526 IFA_REMREF(ifa);
1527 RT_LOCK_SPIN(rt);
1528 ifa = rt->rt_ifa;
1529 if (ifa != NULL) {
1530 /* Become a regular mutex */
1531 RT_CONVERT_LOCK(rt);
1532 IFA_ADDREF(ifa);
1533 }
1534 RT_REMREF_LOCKED(rt);
1535 RT_UNLOCK(rt);
1536 }
1537 /*
1538 * If an interface scope was specified, the interface index of
1539 * the found ifaddr must be equivalent to that of the scope;
1540 * otherwise there is no match.
1541 */
1542 if ((flags & RTF_IFSCOPE) &&
1543 ifa != NULL && ifa->ifa_ifp->if_index != ifscope) {
1544 IFA_REMREF(ifa);
1545 ifa = NULL;
1546 }
1547
1548 return (ifa);
1549 }
1550
1551 static int rt_fixdelete(struct radix_node *, void *);
1552 static int rt_fixchange(struct radix_node *, void *);
1553
1554 struct rtfc_arg {
1555 struct rtentry *rt0;
1556 struct radix_node_head *rnh;
1557 };
1558
1559 int
1560 rtrequest_locked(int req, struct sockaddr *dst, struct sockaddr *gateway,
1561 struct sockaddr *netmask, int flags, struct rtentry **ret_nrt)
1562 {
1563 return (rtrequest_common_locked(req, dst, gateway, netmask,
1564 (flags & ~RTF_IFSCOPE), ret_nrt, IFSCOPE_NONE));
1565 }
1566
1567 int
1568 rtrequest_scoped_locked(int req, struct sockaddr *dst,
1569 struct sockaddr *gateway, struct sockaddr *netmask, int flags,
1570 struct rtentry **ret_nrt, unsigned int ifscope)
1571 {
1572 if (ifscope != IFSCOPE_NONE)
1573 flags |= RTF_IFSCOPE;
1574 else
1575 flags &= ~RTF_IFSCOPE;
1576
1577 return (rtrequest_common_locked(req, dst, gateway, netmask,
1578 flags, ret_nrt, ifscope));
1579 }
1580
1581 /*
1582 * Do appropriate manipulations of a routing tree given all the bits of
1583 * info needed.
1584 *
1585 * Storing the scope ID in the radix key is an internal job that should be
1586 * left to routines in this module. Callers should specify the scope value
1587 * to the "scoped" variants of route routines instead of manipulating the
1588 * key itself. This is typically done when creating a scoped route, e.g.
1589 * rtrequest(RTM_ADD). Once such a route is created and marked with the
1590 * RTF_IFSCOPE flag, callers can simply use its rt_key(rt) to clone it
1591 * (RTM_RESOLVE) or to remove it (RTM_DELETE). An exception to this is
1592 * during certain routing socket operations where the search key might be
1593 * derived from the routing message itself, in which case the caller must
1594 * specify the destination address and scope value for RTM_ADD/RTM_DELETE.
1595 */
1596 static int
1597 rtrequest_common_locked(int req, struct sockaddr *dst0,
1598 struct sockaddr *gateway, struct sockaddr *netmask, int flags,
1599 struct rtentry **ret_nrt, unsigned int ifscope)
1600 {
1601 int error = 0;
1602 struct rtentry *rt;
1603 struct radix_node *rn;
1604 struct radix_node_head *rnh;
1605 struct ifaddr *ifa = NULL;
1606 struct sockaddr *ndst, *dst = dst0;
1607 struct sockaddr_storage ss, mask;
1608 struct timeval curr_calendartime;
1609 int af = dst->sa_family;
1610 void (*ifa_rtrequest)(int, struct rtentry *, struct sockaddr *);
1611
1612 #define senderr(x) { error = x ; goto bad; }
1613
1614 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
1615 /*
1616 * Find the correct routing tree to use for this Address Family
1617 */
1618 if ((rnh = rt_tables[af]) == NULL)
1619 senderr(ESRCH);
1620 /*
1621 * If we are adding a host route then we don't want to put
1622 * a netmask in the tree
1623 */
1624 if (flags & RTF_HOST)
1625 netmask = NULL;
1626
1627 /*
1628 * If Scoped Routing is enabled, use a local copy of the destination
1629 * address to store the scope ID into. This logic is repeated below
1630 * in the RTM_RESOLVE handler since the caller does not normally
1631 * specify such a flag during a resolve, as well as for the handling
1632 * of IPv4 link-local address; instead, it passes in the route used for
1633 * cloning for which the scope info is derived from. Note also that
1634 * in the case of RTM_DELETE, the address passed in by the caller
1635 * might already contain the scope ID info when it is the key itself,
1636 * thus making RTF_IFSCOPE unnecessary; one instance where it is
1637 * explicitly set is inside route_output() as part of handling a
1638 * routing socket request.
1639 */
1640 #if INET6
1641 if (req != RTM_RESOLVE &&
1642 ((af == AF_INET && ip_doscopedroute) ||
1643 (af == AF_INET6 && ip6_doscopedroute))) {
1644 #else
1645 if (req != RTM_RESOLVE && af == AF_INET && ip_doscopedroute) {
1646 #endif /* !INET6 */
1647 /* Transform dst into the internal routing table form */
1648 dst = sa_copy(dst, &ss, &ifscope);
1649
1650 /* Transform netmask into the internal routing table form */
1651 if (netmask != NULL)
1652 netmask = ma_copy(af, netmask, &mask, ifscope);
1653
1654 if (ifscope != IFSCOPE_NONE)
1655 flags |= RTF_IFSCOPE;
1656 } else {
1657 if ((flags & RTF_IFSCOPE) && (af != AF_INET && af != AF_INET6))
1658 senderr(EINVAL);
1659
1660 #if INET6
1661 if ((af == AF_INET && !ip_doscopedroute) ||
1662 (af == AF_INET6 && !ip6_doscopedroute))
1663 #else
1664 if (af == AF_INET && !ip_doscopedroute)
1665 #endif /* !INET6 */
1666 ifscope = IFSCOPE_NONE;
1667 }
1668
1669 if (ifscope == IFSCOPE_NONE)
1670 flags &= ~RTF_IFSCOPE;
1671
1672 switch (req) {
1673 case RTM_DELETE: {
1674 struct rtentry *gwrt = NULL;
1675 /*
1676 * Remove the item from the tree and return it.
1677 * Complain if it is not there and do no more processing.
1678 */
1679 if ((rn = rnh->rnh_deladdr(dst, netmask, rnh)) == NULL)
1680 senderr(ESRCH);
1681 if (rn->rn_flags & (RNF_ACTIVE | RNF_ROOT))
1682 panic ("rtrequest delete");
1683 rt = (struct rtentry *)rn;
1684
1685 /*
1686 * Take an extra reference to handle the deletion of a route
1687 * entry whose reference count is already 0; e.g. an expiring
1688 * cloned route entry or an entry that was added to the table
1689 * with 0 reference. If the caller is interested in this route,
1690 * we will return it with the reference intact. Otherwise we
1691 * will decrement the reference via rtfree_locked() and then
1692 * possibly deallocate it.
1693 */
1694 RT_LOCK(rt);
1695 RT_ADDREF_LOCKED(rt);
1696 rt->rt_flags &= ~RTF_UP;
1697
1698 /*
1699 * For consistency, in case the caller didn't set the flag.
1700 */
1701 rt->rt_flags |= RTF_CONDEMNED;
1702
1703 /*
1704 * Clear RTF_ROUTER if it's set.
1705 */
1706 if (rt->rt_flags & RTF_ROUTER) {
1707 VERIFY(rt->rt_flags & RTF_HOST);
1708 rt->rt_flags &= ~RTF_ROUTER;
1709 }
1710
1711 /*
1712 * Now search what's left of the subtree for any cloned
1713 * routes which might have been formed from this node.
1714 */
1715 if ((rt->rt_flags & (RTF_CLONING | RTF_PRCLONING)) &&
1716 rt_mask(rt)) {
1717 RT_UNLOCK(rt);
1718 rnh->rnh_walktree_from(rnh, dst, rt_mask(rt),
1719 rt_fixdelete, rt);
1720 RT_LOCK(rt);
1721 }
1722
1723 /*
1724 * Remove any external references we may have.
1725 */
1726 if ((gwrt = rt->rt_gwroute) != NULL)
1727 rt->rt_gwroute = NULL;
1728
1729 /*
1730 * give the protocol a chance to keep things in sync.
1731 */
1732 if ((ifa = rt->rt_ifa) != NULL) {
1733 IFA_LOCK_SPIN(ifa);
1734 ifa_rtrequest = ifa->ifa_rtrequest;
1735 IFA_UNLOCK(ifa);
1736 if (ifa_rtrequest != NULL)
1737 ifa_rtrequest(RTM_DELETE, rt, NULL);
1738 /* keep reference on rt_ifa */
1739 ifa = NULL;
1740 }
1741
1742 /*
1743 * one more rtentry floating around that is not
1744 * linked to the routing table.
1745 */
1746 (void) OSIncrementAtomic(&rttrash);
1747 if (rte_debug & RTD_DEBUG) {
1748 TAILQ_INSERT_TAIL(&rttrash_head,
1749 (struct rtentry_dbg *)rt, rtd_trash_link);
1750 }
1751
1752 /*
1753 * If this is the (non-scoped) default route, clear
1754 * the interface index used for the primary ifscope.
1755 */
1756 if (rt_primary_default(rt, rt_key(rt))) {
1757 set_primary_ifscope(rt_key(rt)->sa_family,
1758 IFSCOPE_NONE);
1759 }
1760 rt_clear_idleref(rt);
1761
1762 RT_UNLOCK(rt);
1763
1764 /*
1765 * This might result in another rtentry being freed if
1766 * we held its last reference. Do this after the rtentry
1767 * lock is dropped above, as it could lead to the same
1768 * lock being acquired if gwrt is a clone of rt.
1769 */
1770 if (gwrt != NULL)
1771 rtfree_locked(gwrt);
1772
1773 /*
1774 * If the caller wants it, then it can have it,
1775 * but it's up to it to free the rtentry as we won't be
1776 * doing it.
1777 */
1778 if (ret_nrt != NULL) {
1779 /* Return the route to caller with reference intact */
1780 *ret_nrt = rt;
1781 } else {
1782 /* Dereference or deallocate the route */
1783 rtfree_locked(rt);
1784 }
1785 break;
1786 }
1787 case RTM_RESOLVE:
1788 if (ret_nrt == NULL || (rt = *ret_nrt) == NULL)
1789 senderr(EINVAL);
1790 /*
1791 * If cloning, we have the parent route given by the caller
1792 * and will use its rt_gateway, rt_rmx as part of the cloning
1793 * process below. Since rnh_lock is held at this point, the
1794 * parent's rt_ifa and rt_gateway will not change, and its
1795 * relevant rt_flags will not change as well. The only thing
1796 * that could change are the metrics, and thus we hold the
1797 * parent route's rt_lock later on during the actual copying
1798 * of rt_rmx.
1799 */
1800 ifa = rt->rt_ifa;
1801 IFA_ADDREF(ifa);
1802 flags = rt->rt_flags &
1803 ~(RTF_CLONING | RTF_PRCLONING | RTF_STATIC);
1804 flags |= RTF_WASCLONED;
1805 gateway = rt->rt_gateway;
1806 if ((netmask = rt->rt_genmask) == NULL)
1807 flags |= RTF_HOST;
1808
1809 #if INET6
1810 if ((af != AF_INET && af != AF_INET6) ||
1811 (af == AF_INET && !ip_doscopedroute) ||
1812 (af == AF_INET6 && !ip6_doscopedroute))
1813 #else
1814 if (af != AF_INET || !ip_doscopedroute)
1815 #endif /* !INET6 */
1816 goto makeroute;
1817
1818 /*
1819 * When scoped routing is enabled, cloned entries are
1820 * always scoped according to the interface portion of
1821 * the parent route. The exception to this are IPv4
1822 * link local addresses, or those routes that are cloned
1823 * from a RTF_PROXY route. For the latter, the clone
1824 * gets to keep the RTF_PROXY flag.
1825 */
1826 if ((af == AF_INET &&
1827 IN_LINKLOCAL(ntohl(SIN(dst)->sin_addr.s_addr))) ||
1828 (rt->rt_flags & RTF_PROXY)) {
1829 ifscope = IFSCOPE_NONE;
1830 flags &= ~RTF_IFSCOPE;
1831 } else {
1832 if (flags & RTF_IFSCOPE) {
1833 ifscope = (af == AF_INET) ?
1834 sin_get_ifscope(rt_key(rt)) :
1835 sin6_get_ifscope(rt_key(rt));
1836 } else {
1837 ifscope = rt->rt_ifp->if_index;
1838 flags |= RTF_IFSCOPE;
1839 }
1840 VERIFY(ifscope != IFSCOPE_NONE);
1841 }
1842
1843 /*
1844 * Transform dst into the internal routing table form,
1845 * clearing out the scope ID field if ifscope isn't set.
1846 */
1847 dst = sa_copy(dst, &ss, (ifscope == IFSCOPE_NONE) ?
1848 NULL : &ifscope);
1849
1850 /* Transform netmask into the internal routing table form */
1851 if (netmask != NULL)
1852 netmask = ma_copy(af, netmask, &mask, ifscope);
1853
1854 goto makeroute;
1855
1856 case RTM_ADD:
1857 if ((flags & RTF_GATEWAY) && !gateway)
1858 panic("rtrequest: RTF_GATEWAY but no gateway");
1859
1860 if (flags & RTF_IFSCOPE) {
1861 ifa = ifa_ifwithroute_scoped_locked(flags, dst0,
1862 gateway, ifscope);
1863 } else {
1864 ifa = ifa_ifwithroute_locked(flags, dst0, gateway);
1865 }
1866 if (ifa == NULL)
1867 senderr(ENETUNREACH);
1868 makeroute:
1869 getmicrotime(&curr_calendartime);
1870 if ((rt = rte_alloc()) == NULL)
1871 senderr(ENOBUFS);
1872 Bzero(rt, sizeof(*rt));
1873 rte_lock_init(rt);
1874 rt->base_calendartime = curr_calendartime.tv_sec;
1875 rt->base_uptime = net_uptime();
1876 RT_LOCK(rt);
1877 rt->rt_flags = RTF_UP | flags;
1878
1879 /*
1880 * Add the gateway. Possibly re-malloc-ing the storage for it
1881 * also add the rt_gwroute if possible.
1882 */
1883 if ((error = rt_setgate(rt, dst, gateway)) != 0) {
1884 int tmp = error;
1885 RT_UNLOCK(rt);
1886 nstat_route_detach(rt);
1887 rte_lock_destroy(rt);
1888 rte_free(rt);
1889 senderr(tmp);
1890 }
1891
1892 /*
1893 * point to the (possibly newly malloc'd) dest address.
1894 */
1895 ndst = rt_key(rt);
1896
1897 /*
1898 * make sure it contains the value we want (masked if needed).
1899 */
1900 if (netmask)
1901 rt_maskedcopy(dst, ndst, netmask);
1902 else
1903 Bcopy(dst, ndst, dst->sa_len);
1904
1905 /*
1906 * Note that we now have a reference to the ifa.
1907 * This moved from below so that rnh->rnh_addaddr() can
1908 * examine the ifa and ifa->ifa_ifp if it so desires.
1909 */
1910 rtsetifa(rt, ifa);
1911 rt->rt_ifp = rt->rt_ifa->ifa_ifp;
1912
1913 /* XXX mtu manipulation will be done in rnh_addaddr -- itojun */
1914
1915 rn = rnh->rnh_addaddr((caddr_t)ndst, (caddr_t)netmask,
1916 rnh, rt->rt_nodes);
1917 if (rn == 0) {
1918 struct rtentry *rt2;
1919 /*
1920 * Uh-oh, we already have one of these in the tree.
1921 * We do a special hack: if the route that's already
1922 * there was generated by the protocol-cloning
1923 * mechanism, then we just blow it away and retry
1924 * the insertion of the new one.
1925 */
1926 if (flags & RTF_IFSCOPE) {
1927 rt2 = rtalloc1_scoped_locked(dst0, 0,
1928 RTF_CLONING | RTF_PRCLONING, ifscope);
1929 } else {
1930 rt2 = rtalloc1_locked(dst, 0,
1931 RTF_CLONING | RTF_PRCLONING);
1932 }
1933 if (rt2 && rt2->rt_parent) {
1934 /*
1935 * rnh_lock is held here, so rt_key and
1936 * rt_gateway of rt2 will not change.
1937 */
1938 (void) rtrequest_locked(RTM_DELETE, rt_key(rt2),
1939 rt2->rt_gateway, rt_mask(rt2),
1940 rt2->rt_flags, 0);
1941 rtfree_locked(rt2);
1942 rn = rnh->rnh_addaddr((caddr_t)ndst,
1943 (caddr_t)netmask,
1944 rnh, rt->rt_nodes);
1945 } else if (rt2) {
1946 /* undo the extra ref we got */
1947 rtfree_locked(rt2);
1948 }
1949 }
1950
1951 /*
1952 * If it still failed to go into the tree,
1953 * then un-make it (this should be a function)
1954 */
1955 if (rn == NULL) {
1956 /* Clear gateway route */
1957 rt_set_gwroute(rt, rt_key(rt), NULL);
1958 if (rt->rt_ifa) {
1959 IFA_REMREF(rt->rt_ifa);
1960 rt->rt_ifa = NULL;
1961 }
1962 R_Free(rt_key(rt));
1963 RT_UNLOCK(rt);
1964 nstat_route_detach(rt);
1965 rte_lock_destroy(rt);
1966 rte_free(rt);
1967 senderr(EEXIST);
1968 }
1969
1970 rt->rt_parent = NULL;
1971
1972 /*
1973 * If we got here from RESOLVE, then we are cloning so clone
1974 * the rest, and note that we are a clone (and increment the
1975 * parent's references). rnh_lock is still held, which prevents
1976 * a lookup from returning the newly-created route. Hence
1977 * holding and releasing the parent's rt_lock while still
1978 * holding the route's rt_lock is safe since the new route
1979 * is not yet externally visible.
1980 */
1981 if (req == RTM_RESOLVE) {
1982 RT_LOCK_SPIN(*ret_nrt);
1983 VERIFY((*ret_nrt)->rt_expire == 0 ||
1984 (*ret_nrt)->rt_rmx.rmx_expire != 0);
1985 VERIFY((*ret_nrt)->rt_expire != 0 ||
1986 (*ret_nrt)->rt_rmx.rmx_expire == 0);
1987 rt->rt_rmx = (*ret_nrt)->rt_rmx;
1988 rt_setexpire(rt, (*ret_nrt)->rt_expire);
1989 if ((*ret_nrt)->rt_flags & (RTF_CLONING | RTF_PRCLONING)) {
1990 rt->rt_parent = (*ret_nrt);
1991 RT_ADDREF_LOCKED(*ret_nrt);
1992 }
1993 RT_UNLOCK(*ret_nrt);
1994
1995 /*
1996 * Enable interface reference counting for unicast
1997 * cloned routes and bump up the reference count.
1998 */
1999 if (rt->rt_parent != NULL &&
2000 !(rt->rt_flags & (RTF_BROADCAST | RTF_MULTICAST))) {
2001 rt_set_idleref(rt);
2002 }
2003 }
2004
2005 /*
2006 * if this protocol has something to add to this then
2007 * allow it to do that as well.
2008 */
2009 IFA_LOCK_SPIN(ifa);
2010 ifa_rtrequest = ifa->ifa_rtrequest;
2011 IFA_UNLOCK(ifa);
2012 if (ifa_rtrequest != NULL)
2013 ifa_rtrequest(req, rt, SA(ret_nrt ? *ret_nrt : NULL));
2014 IFA_REMREF(ifa);
2015 ifa = NULL;
2016
2017 /*
2018 * If this is the (non-scoped) default route, record
2019 * the interface index used for the primary ifscope.
2020 */
2021 if (rt_primary_default(rt, rt_key(rt))) {
2022 set_primary_ifscope(rt_key(rt)->sa_family,
2023 rt->rt_ifp->if_index);
2024 }
2025
2026 /*
2027 * actually return a resultant rtentry and
2028 * give the caller a single reference.
2029 */
2030 if (ret_nrt) {
2031 *ret_nrt = rt;
2032 RT_ADDREF_LOCKED(rt);
2033 }
2034
2035 /*
2036 * We repeat the same procedures from rt_setgate() here
2037 * because they weren't completed when we called it earlier,
2038 * since the node was embryonic.
2039 */
2040 if ((rt->rt_flags & RTF_GATEWAY) && rt->rt_gwroute != NULL)
2041 rt_set_gwroute(rt, rt_key(rt), rt->rt_gwroute);
2042
2043 if (req == RTM_ADD &&
2044 !(rt->rt_flags & RTF_HOST) && rt_mask(rt) != NULL) {
2045 struct rtfc_arg arg;
2046 arg.rnh = rnh;
2047 arg.rt0 = rt;
2048 RT_UNLOCK(rt);
2049 rnh->rnh_walktree_from(rnh, rt_key(rt), rt_mask(rt),
2050 rt_fixchange, &arg);
2051 } else {
2052 RT_UNLOCK(rt);
2053 }
2054
2055 nstat_route_new_entry(rt);
2056 break;
2057 }
2058 bad:
2059 if (ifa)
2060 IFA_REMREF(ifa);
2061 return (error);
2062 }
2063 #undef senderr
2064
2065 int
2066 rtrequest(int req, struct sockaddr *dst, struct sockaddr *gateway,
2067 struct sockaddr *netmask, int flags, struct rtentry **ret_nrt)
2068 {
2069 int error;
2070 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
2071 lck_mtx_lock(rnh_lock);
2072 error = rtrequest_locked(req, dst, gateway, netmask, flags, ret_nrt);
2073 lck_mtx_unlock(rnh_lock);
2074 return (error);
2075 }
2076
2077 int
2078 rtrequest_scoped(int req, struct sockaddr *dst, struct sockaddr *gateway,
2079 struct sockaddr *netmask, int flags, struct rtentry **ret_nrt,
2080 unsigned int ifscope)
2081 {
2082 int error;
2083 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
2084 lck_mtx_lock(rnh_lock);
2085 error = rtrequest_scoped_locked(req, dst, gateway, netmask, flags,
2086 ret_nrt, ifscope);
2087 lck_mtx_unlock(rnh_lock);
2088 return (error);
2089 }
2090
2091 /*
2092 * Called from rtrequest(RTM_DELETE, ...) to fix up the route's ``family''
2093 * (i.e., the routes related to it by the operation of cloning). This
2094 * routine is iterated over all potential former-child-routes by way of
2095 * rnh->rnh_walktree_from() above, and those that actually are children of
2096 * the late parent (passed in as VP here) are themselves deleted.
2097 */
2098 static int
2099 rt_fixdelete(struct radix_node *rn, void *vp)
2100 {
2101 struct rtentry *rt = (struct rtentry *)rn;
2102 struct rtentry *rt0 = vp;
2103
2104 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
2105
2106 RT_LOCK(rt);
2107 if (rt->rt_parent == rt0 &&
2108 !(rt->rt_flags & (RTF_PINNED | RTF_CLONING | RTF_PRCLONING))) {
2109 /*
2110 * Safe to drop rt_lock and use rt_key, since holding
2111 * rnh_lock here prevents another thread from calling
2112 * rt_setgate() on this route.
2113 */
2114 RT_UNLOCK(rt);
2115 return (rtrequest_locked(RTM_DELETE, rt_key(rt), NULL,
2116 rt_mask(rt), rt->rt_flags, NULL));
2117 }
2118 RT_UNLOCK(rt);
2119 return 0;
2120 }
2121
2122 /*
2123 * This routine is called from rt_setgate() to do the analogous thing for
2124 * adds and changes. There is the added complication in this case of a
2125 * middle insert; i.e., insertion of a new network route between an older
2126 * network route and (cloned) host routes. For this reason, a simple check
2127 * of rt->rt_parent is insufficient; each candidate route must be tested
2128 * against the (mask, value) of the new route (passed as before in vp)
2129 * to see if the new route matches it.
2130 *
2131 * XXX - it may be possible to do fixdelete() for changes and reserve this
2132 * routine just for adds. I'm not sure why I thought it was necessary to do
2133 * changes this way.
2134 */
2135 static int
2136 rt_fixchange(struct radix_node *rn, void *vp)
2137 {
2138 struct rtentry *rt = (struct rtentry *)rn;
2139 struct rtfc_arg *ap = vp;
2140 struct rtentry *rt0 = ap->rt0;
2141 struct radix_node_head *rnh = ap->rnh;
2142 u_char *xk1, *xm1, *xk2, *xmp;
2143 int i, len;
2144
2145 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
2146
2147 RT_LOCK(rt);
2148
2149 if (!rt->rt_parent ||
2150 (rt->rt_flags & (RTF_PINNED | RTF_CLONING | RTF_PRCLONING))) {
2151 RT_UNLOCK(rt);
2152 return (0);
2153 }
2154
2155 if (rt->rt_parent == rt0)
2156 goto delete_rt;
2157
2158 /*
2159 * There probably is a function somewhere which does this...
2160 * if not, there should be.
2161 */
2162 len = imin(rt_key(rt0)->sa_len, rt_key(rt)->sa_len);
2163
2164 xk1 = (u_char *)rt_key(rt0);
2165 xm1 = (u_char *)rt_mask(rt0);
2166 xk2 = (u_char *)rt_key(rt);
2167
2168 /*
2169 * Avoid applying a less specific route; do this only if the parent
2170 * route (rt->rt_parent) is a network route, since otherwise its mask
2171 * will be NULL if it is a cloning host route.
2172 */
2173 if ((xmp = (u_char *)rt_mask(rt->rt_parent)) != NULL) {
2174 int mlen = rt_mask(rt->rt_parent)->sa_len;
2175 if (mlen > rt_mask(rt0)->sa_len) {
2176 RT_UNLOCK(rt);
2177 return (0);
2178 }
2179
2180 for (i = rnh->rnh_treetop->rn_offset; i < mlen; i++) {
2181 if ((xmp[i] & ~(xmp[i] ^ xm1[i])) != xmp[i]) {
2182 RT_UNLOCK(rt);
2183 return (0);
2184 }
2185 }
2186 }
2187
2188 for (i = rnh->rnh_treetop->rn_offset; i < len; i++) {
2189 if ((xk2[i] & xm1[i]) != xk1[i]) {
2190 RT_UNLOCK(rt);
2191 return (0);
2192 }
2193 }
2194
2195 /*
2196 * OK, this node is a clone, and matches the node currently being
2197 * changed/added under the node's mask. So, get rid of it.
2198 */
2199 delete_rt:
2200 /*
2201 * Safe to drop rt_lock and use rt_key, since holding rnh_lock here
2202 * prevents another thread from calling rt_setgate() on this route.
2203 */
2204 RT_UNLOCK(rt);
2205 return (rtrequest_locked(RTM_DELETE, rt_key(rt), NULL,
2206 rt_mask(rt), rt->rt_flags, NULL));
2207 }
2208
2209 /*
2210 * Round up sockaddr len to multiples of 32-bytes. This will reduce
2211 * or even eliminate the need to re-allocate the chunk of memory used
2212 * for rt_key and rt_gateway in the event the gateway portion changes.
2213 * Certain code paths (e.g. IPSec) are notorious for caching the address
2214 * of rt_gateway; this rounding-up would help ensure that the gateway
2215 * portion never gets deallocated (though it may change contents) and
2216 * thus greatly simplifies things.
2217 */
2218 #define SA_SIZE(x) (-(-((uintptr_t)(x)) & -(32)))
2219
2220 /*
2221 * Sets the gateway and/or gateway route portion of a route; may be
2222 * called on an existing route to modify the gateway portion. Both
2223 * rt_key and rt_gateway are allocated out of the same memory chunk.
2224 * Route entry lock must be held by caller; this routine will return
2225 * with the lock held.
2226 */
2227 int
2228 rt_setgate(struct rtentry *rt, struct sockaddr *dst, struct sockaddr *gate)
2229 {
2230 int dlen = SA_SIZE(dst->sa_len), glen = SA_SIZE(gate->sa_len);
2231 struct radix_node_head *rnh = rt_tables[dst->sa_family];
2232 boolean_t loop = FALSE;
2233
2234 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
2235 RT_LOCK_ASSERT_HELD(rt);
2236
2237 /*
2238 * If this is for a route that is on its way of being removed,
2239 * or is temporarily frozen, reject the modification request.
2240 */
2241 if (rt->rt_flags & RTF_CONDEMNED)
2242 return (EBUSY);
2243
2244 /* Add an extra ref for ourselves */
2245 RT_ADDREF_LOCKED(rt);
2246
2247 if (rt->rt_flags & RTF_GATEWAY) {
2248 if ((dst->sa_len == gate->sa_len) &&
2249 (dst->sa_family == AF_INET || dst->sa_family == AF_INET6)) {
2250 struct sockaddr_storage dst_ss, gate_ss;
2251
2252 (void) sa_copy(dst, &dst_ss, NULL);
2253 (void) sa_copy(gate, &gate_ss, NULL);
2254
2255 loop = equal(SA(&dst_ss), SA(&gate_ss));
2256 } else {
2257 loop = (dst->sa_len == gate->sa_len &&
2258 equal(dst, gate));
2259 }
2260 }
2261
2262 /*
2263 * A (cloning) network route with the destination equal to the gateway
2264 * will create an endless loop (see notes below), so disallow it.
2265 */
2266 if (((rt->rt_flags & (RTF_HOST|RTF_GATEWAY|RTF_LLINFO)) ==
2267 RTF_GATEWAY) && loop) {
2268 /* Release extra ref */
2269 RT_REMREF_LOCKED(rt);
2270 return (EADDRNOTAVAIL);
2271 }
2272
2273 /*
2274 * A host route with the destination equal to the gateway
2275 * will interfere with keeping LLINFO in the routing
2276 * table, so disallow it.
2277 */
2278 if (((rt->rt_flags & (RTF_HOST|RTF_GATEWAY|RTF_LLINFO)) ==
2279 (RTF_HOST|RTF_GATEWAY)) && loop) {
2280 /*
2281 * The route might already exist if this is an RTM_CHANGE
2282 * or a routing redirect, so try to delete it.
2283 */
2284 if (rt_key(rt) != NULL) {
2285 /*
2286 * Safe to drop rt_lock and use rt_key, rt_gateway,
2287 * since holding rnh_lock here prevents another thread
2288 * from calling rt_setgate() on this route.
2289 */
2290 RT_UNLOCK(rt);
2291 (void) rtrequest_locked(RTM_DELETE, rt_key(rt),
2292 rt->rt_gateway, rt_mask(rt), rt->rt_flags, NULL);
2293 RT_LOCK(rt);
2294 }
2295 /* Release extra ref */
2296 RT_REMREF_LOCKED(rt);
2297 return (EADDRNOTAVAIL);
2298 }
2299
2300 /*
2301 * The destination is not directly reachable. Get a route
2302 * to the next-hop gateway and store it in rt_gwroute.
2303 */
2304 if (rt->rt_flags & RTF_GATEWAY) {
2305 struct rtentry *gwrt;
2306 unsigned int ifscope;
2307
2308 if (dst->sa_family == AF_INET)
2309 ifscope = sin_get_ifscope(dst);
2310 else if (dst->sa_family == AF_INET6)
2311 ifscope = sin6_get_ifscope(dst);
2312 else
2313 ifscope = IFSCOPE_NONE;
2314
2315 RT_UNLOCK(rt);
2316 /*
2317 * Don't ignore RTF_CLONING, since we prefer that rt_gwroute
2318 * points to a clone rather than a cloning route; see above
2319 * check for cloning loop avoidance (dst == gate).
2320 */
2321 gwrt = rtalloc1_scoped_locked(gate, 1, RTF_PRCLONING, ifscope);
2322 if (gwrt != NULL)
2323 RT_LOCK_ASSERT_NOTHELD(gwrt);
2324 RT_LOCK(rt);
2325
2326 /*
2327 * Cloning loop avoidance:
2328 *
2329 * In the presence of protocol-cloning and bad configuration,
2330 * it is possible to get stuck in bottomless mutual recursion
2331 * (rtrequest rt_setgate rtalloc1). We avoid this by not
2332 * allowing protocol-cloning to operate for gateways (which
2333 * is probably the correct choice anyway), and avoid the
2334 * resulting reference loops by disallowing any route to run
2335 * through itself as a gateway. This is obviously mandatory
2336 * when we get rt->rt_output(). It implies that a route to
2337 * the gateway must already be present in the system in order
2338 * for the gateway to be referred to by another route.
2339 */
2340 if (gwrt == rt) {
2341 RT_REMREF_LOCKED(gwrt);
2342 /* Release extra ref */
2343 RT_REMREF_LOCKED(rt);
2344 return (EADDRINUSE); /* failure */
2345 }
2346
2347 /*
2348 * If scoped, the gateway route must use the same interface;
2349 * we're holding rnh_lock now, so rt_gateway and rt_ifp of gwrt
2350 * should not change and are freely accessible.
2351 */
2352 if (ifscope != IFSCOPE_NONE && (rt->rt_flags & RTF_IFSCOPE) &&
2353 gwrt != NULL && gwrt->rt_ifp != NULL &&
2354 gwrt->rt_ifp->if_index != ifscope) {
2355 rtfree_locked(gwrt); /* rt != gwrt, no deadlock */
2356 /* Release extra ref */
2357 RT_REMREF_LOCKED(rt);
2358 return ((rt->rt_flags & RTF_HOST) ?
2359 EHOSTUNREACH : ENETUNREACH);
2360 }
2361
2362 /* Check again since we dropped the lock above */
2363 if (rt->rt_flags & RTF_CONDEMNED) {
2364 if (gwrt != NULL)
2365 rtfree_locked(gwrt);
2366 /* Release extra ref */
2367 RT_REMREF_LOCKED(rt);
2368 return (EBUSY);
2369 }
2370
2371 /* Set gateway route; callee adds ref to gwrt if non-NULL */
2372 rt_set_gwroute(rt, dst, gwrt);
2373
2374 /*
2375 * In case the (non-scoped) default route gets modified via
2376 * an ICMP redirect, record the interface index used for the
2377 * primary ifscope. Also done in rt_setif() to take care
2378 * of the non-redirect cases.
2379 */
2380 if (rt_primary_default(rt, dst) && rt->rt_ifp != NULL) {
2381 set_primary_ifscope(dst->sa_family,
2382 rt->rt_ifp->if_index);
2383 }
2384
2385 /*
2386 * Tell the kernel debugger about the new default gateway
2387 * if the gateway route uses the primary interface, or
2388 * if we are in a transient state before the non-scoped
2389 * default gateway is installed (similar to how the system
2390 * was behaving in the past). In future, it would be good
2391 * to do all this only when KDP is enabled.
2392 */
2393 if ((dst->sa_family == AF_INET) &&
2394 gwrt != NULL && gwrt->rt_gateway->sa_family == AF_LINK &&
2395 (gwrt->rt_ifp->if_index == get_primary_ifscope(AF_INET) ||
2396 get_primary_ifscope(AF_INET) == IFSCOPE_NONE)) {
2397 kdp_set_gateway_mac(SDL((void *)gwrt->rt_gateway)->
2398 sdl_data);
2399 }
2400
2401 /* Release extra ref from rtalloc1() */
2402 if (gwrt != NULL)
2403 RT_REMREF(gwrt);
2404 }
2405
2406 /*
2407 * Prepare to store the gateway in rt_gateway. Both dst and gateway
2408 * are stored one after the other in the same malloc'd chunk. If we
2409 * have room, reuse the old buffer since rt_gateway already points
2410 * to the right place. Otherwise, malloc a new block and update
2411 * the 'dst' address and point rt_gateway to the right place.
2412 */
2413 if (rt->rt_gateway == NULL || glen > SA_SIZE(rt->rt_gateway->sa_len)) {
2414 caddr_t new;
2415
2416 /* The underlying allocation is done with M_WAITOK set */
2417 R_Malloc(new, caddr_t, dlen + glen);
2418 if (new == NULL) {
2419 /* Clear gateway route */
2420 rt_set_gwroute(rt, dst, NULL);
2421 /* Release extra ref */
2422 RT_REMREF_LOCKED(rt);
2423 return (ENOBUFS);
2424 }
2425
2426 /*
2427 * Copy from 'dst' and not rt_key(rt) because we can get
2428 * here to initialize a newly allocated route entry, in
2429 * which case rt_key(rt) is NULL (and so does rt_gateway).
2430 */
2431 bzero(new, dlen + glen);
2432 Bcopy(dst, new, dst->sa_len);
2433 R_Free(rt_key(rt)); /* free old block; NULL is okay */
2434 rt->rt_nodes->rn_key = new;
2435 rt->rt_gateway = (struct sockaddr *)(new + dlen);
2436 }
2437
2438 /*
2439 * Copy the new gateway value into the memory chunk.
2440 */
2441 Bcopy(gate, rt->rt_gateway, gate->sa_len);
2442
2443 /*
2444 * For consistency between rt_gateway and rt_key(gwrt).
2445 */
2446 if ((rt->rt_flags & RTF_GATEWAY) && rt->rt_gwroute != NULL &&
2447 (rt->rt_gwroute->rt_flags & RTF_IFSCOPE)) {
2448 if (rt->rt_gateway->sa_family == AF_INET &&
2449 rt_key(rt->rt_gwroute)->sa_family == AF_INET) {
2450 sin_set_ifscope(rt->rt_gateway,
2451 sin_get_ifscope(rt_key(rt->rt_gwroute)));
2452 } else if (rt->rt_gateway->sa_family == AF_INET6 &&
2453 rt_key(rt->rt_gwroute)->sa_family == AF_INET6) {
2454 sin6_set_ifscope(rt->rt_gateway,
2455 sin6_get_ifscope(rt_key(rt->rt_gwroute)));
2456 }
2457 }
2458
2459 /*
2460 * This isn't going to do anything useful for host routes, so
2461 * don't bother. Also make sure we have a reasonable mask
2462 * (we don't yet have one during adds).
2463 */
2464 if (!(rt->rt_flags & RTF_HOST) && rt_mask(rt) != 0) {
2465 struct rtfc_arg arg;
2466 arg.rnh = rnh;
2467 arg.rt0 = rt;
2468 RT_UNLOCK(rt);
2469 rnh->rnh_walktree_from(rnh, rt_key(rt), rt_mask(rt),
2470 rt_fixchange, &arg);
2471 RT_LOCK(rt);
2472 }
2473
2474 /* Release extra ref */
2475 RT_REMREF_LOCKED(rt);
2476 return (0);
2477 }
2478
2479 #undef SA_SIZE
2480
2481 void
2482 rt_set_gwroute(struct rtentry *rt, struct sockaddr *dst, struct rtentry *gwrt)
2483 {
2484 boolean_t gwrt_isrouter;
2485
2486 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
2487 RT_LOCK_ASSERT_HELD(rt);
2488
2489 if (gwrt != NULL)
2490 RT_ADDREF(gwrt); /* for this routine */
2491
2492 /*
2493 * Get rid of existing gateway route; if rt_gwroute is already
2494 * set to gwrt, this is slightly redundant (though safe since
2495 * we held an extra ref above) but makes the code simpler.
2496 */
2497 if (rt->rt_gwroute != NULL) {
2498 struct rtentry *ogwrt = rt->rt_gwroute;
2499
2500 VERIFY(rt != ogwrt); /* sanity check */
2501 rt->rt_gwroute = NULL;
2502 RT_UNLOCK(rt);
2503 rtfree_locked(ogwrt);
2504 RT_LOCK(rt);
2505 VERIFY(rt->rt_gwroute == NULL);
2506 }
2507
2508 /*
2509 * And associate the new gateway route.
2510 */
2511 if ((rt->rt_gwroute = gwrt) != NULL) {
2512 RT_ADDREF(gwrt); /* for rt */
2513
2514 if (rt->rt_flags & RTF_WASCLONED) {
2515 /* rt_parent might be NULL if rt is embryonic */
2516 gwrt_isrouter = (rt->rt_parent != NULL &&
2517 SA_DEFAULT(rt_key(rt->rt_parent)) &&
2518 !RT_HOST(rt->rt_parent));
2519 } else {
2520 gwrt_isrouter = (SA_DEFAULT(dst) && !RT_HOST(rt));
2521 }
2522
2523 /* If gwrt points to a default router, mark it accordingly */
2524 if (gwrt_isrouter && RT_HOST(gwrt) &&
2525 !(gwrt->rt_flags & RTF_ROUTER)) {
2526 RT_LOCK(gwrt);
2527 gwrt->rt_flags |= RTF_ROUTER;
2528 RT_UNLOCK(gwrt);
2529 }
2530
2531 RT_REMREF(gwrt); /* for this routine */
2532 }
2533 }
2534
2535 static void
2536 rt_maskedcopy(struct sockaddr *src, struct sockaddr *dst,
2537 struct sockaddr *netmask)
2538 {
2539 u_char *cp1 = (u_char *)src;
2540 u_char *cp2 = (u_char *)dst;
2541 u_char *cp3 = (u_char *)netmask;
2542 u_char *cplim = cp2 + *cp3;
2543 u_char *cplim2 = cp2 + *cp1;
2544
2545 *cp2++ = *cp1++; *cp2++ = *cp1++; /* copies sa_len & sa_family */
2546 cp3 += 2;
2547 if (cplim > cplim2)
2548 cplim = cplim2;
2549 while (cp2 < cplim)
2550 *cp2++ = *cp1++ & *cp3++;
2551 if (cp2 < cplim2)
2552 bzero((caddr_t)cp2, (unsigned)(cplim2 - cp2));
2553 }
2554
2555 /*
2556 * Lookup an AF_INET/AF_INET6 scoped or non-scoped route depending on the
2557 * ifscope value passed in by the caller (IFSCOPE_NONE implies non-scoped).
2558 */
2559 static struct radix_node *
2560 node_lookup(struct sockaddr *dst, struct sockaddr *netmask,
2561 unsigned int ifscope)
2562 {
2563 struct radix_node_head *rnh;
2564 struct radix_node *rn;
2565 struct sockaddr_storage ss, mask;
2566 int af = dst->sa_family;
2567 struct matchleaf_arg ma = { ifscope };
2568 rn_matchf_t *f = rn_match_ifscope;
2569 void *w = &ma;
2570
2571 if (af != AF_INET && af != AF_INET6)
2572 return (NULL);
2573
2574 rnh = rt_tables[af];
2575
2576 /*
2577 * Transform dst into the internal routing table form,
2578 * clearing out the scope ID field if ifscope isn't set.
2579 */
2580 dst = sa_copy(dst, &ss, (ifscope == IFSCOPE_NONE) ? NULL : &ifscope);
2581
2582 /* Transform netmask into the internal routing table form */
2583 if (netmask != NULL)
2584 netmask = ma_copy(af, netmask, &mask, ifscope);
2585
2586 if (ifscope == IFSCOPE_NONE)
2587 f = w = NULL;
2588
2589 rn = rnh->rnh_lookup_args(dst, netmask, rnh, f, w);
2590 if (rn != NULL && (rn->rn_flags & RNF_ROOT))
2591 rn = NULL;
2592
2593 return (rn);
2594 }
2595
2596 /*
2597 * Lookup the AF_INET/AF_INET6 non-scoped default route.
2598 */
2599 static struct radix_node *
2600 node_lookup_default(int af)
2601 {
2602 struct radix_node_head *rnh;
2603
2604 VERIFY(af == AF_INET || af == AF_INET6);
2605 rnh = rt_tables[af];
2606
2607 return (af == AF_INET ? rnh->rnh_lookup(&sin_def, NULL, rnh) :
2608 rnh->rnh_lookup(&sin6_def, NULL, rnh));
2609 }
2610
2611 /*
2612 * Common routine to lookup/match a route. It invokes the lookup/matchaddr
2613 * callback which could be address family-specific. The main difference
2614 * between the two (at least for AF_INET/AF_INET6) is that a lookup does
2615 * not alter the expiring state of a route, whereas a match would unexpire
2616 * or revalidate the route.
2617 *
2618 * The optional scope or interface index property of a route allows for a
2619 * per-interface route instance. This permits multiple route entries having
2620 * the same destination (but not necessarily the same gateway) to exist in
2621 * the routing table; each of these entries is specific to the corresponding
2622 * interface. This is made possible by storing the scope ID value into the
2623 * radix key, thus making each route entry unique. These scoped entries
2624 * exist along with the regular, non-scoped entries in the same radix tree
2625 * for a given address family (AF_INET/AF_INET6); the scope logically
2626 * partitions it into multiple per-interface sub-trees.
2627 *
2628 * When a scoped route lookup is performed, the routing table is searched for
2629 * the best match that would result in a route using the same interface as the
2630 * one associated with the scope (the exception to this are routes that point
2631 * to the loopback interface). The search rule follows the longest matching
2632 * prefix with the additional interface constraint.
2633 */
2634 struct rtentry *
2635 rt_lookup(boolean_t lookup_only, struct sockaddr *dst, struct sockaddr *netmask,
2636 struct radix_node_head *rnh, unsigned int ifscope)
2637 {
2638 struct radix_node *rn0, *rn;
2639 boolean_t dontcare;
2640 int af = dst->sa_family;
2641 struct sockaddr_storage dst_ss, mask_ss;
2642
2643 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_OWNED);
2644
2645 if (!lookup_only)
2646 netmask = NULL;
2647
2648 /*
2649 * Non-scoped route lookup.
2650 */
2651 #if INET6
2652 if ((af != AF_INET && af != AF_INET6) ||
2653 (af == AF_INET && !ip_doscopedroute) ||
2654 (af == AF_INET6 && !ip6_doscopedroute)) {
2655 #else
2656 if (af != AF_INET || !ip_doscopedroute) {
2657 #endif /* !INET6 */
2658 rn = rnh->rnh_matchaddr(dst, rnh);
2659
2660 /*
2661 * Don't return a root node; also, rnh_matchaddr callback
2662 * would have done the necessary work to clear RTPRF_OURS
2663 * for certain protocol families.
2664 */
2665 if (rn != NULL && (rn->rn_flags & RNF_ROOT))
2666 rn = NULL;
2667 if (rn != NULL) {
2668 RT_LOCK_SPIN(RT(rn));
2669 if (!(RT(rn)->rt_flags & RTF_CONDEMNED)) {
2670 RT_ADDREF_LOCKED(RT(rn));
2671 RT_UNLOCK(RT(rn));
2672 } else {
2673 RT_UNLOCK(RT(rn));
2674 rn = NULL;
2675 }
2676 }
2677 return (RT(rn));
2678 }
2679
2680 /* Transform dst/netmask into the internal routing table form */
2681 dst = sa_copy(dst, &dst_ss, &ifscope);
2682 if (netmask != NULL)
2683 netmask = ma_copy(af, netmask, &mask_ss, ifscope);
2684 dontcare = (ifscope == IFSCOPE_NONE);
2685
2686 /*
2687 * Scoped route lookup:
2688 *
2689 * We first perform a non-scoped lookup for the original result.
2690 * Afterwards, depending on whether or not the caller has specified
2691 * a scope, we perform a more specific scoped search and fallback
2692 * to this original result upon failure.
2693 */
2694 rn0 = rn = node_lookup(dst, netmask, IFSCOPE_NONE);
2695
2696 /*
2697 * If the caller did not specify a scope, use the primary scope
2698 * derived from the system's non-scoped default route. If, for
2699 * any reason, there is no primary interface, ifscope will be
2700 * set to IFSCOPE_NONE; if the above lookup resulted in a route,
2701 * we'll do a more-specific search below, scoped to the interface
2702 * of that route.
2703 */
2704 if (dontcare)
2705 ifscope = get_primary_ifscope(af);
2706
2707 /*
2708 * Keep the original result if either of the following is true:
2709 *
2710 * 1) The interface portion of the route has the same interface
2711 * index as the scope value and it is marked with RTF_IFSCOPE.
2712 * 2) The route uses the loopback interface, in which case the
2713 * destination (host/net) is local/loopback.
2714 *
2715 * Otherwise, do a more specified search using the scope;
2716 * we're holding rnh_lock now, so rt_ifp should not change.
2717 */
2718 if (rn != NULL) {
2719 struct rtentry *rt = RT(rn);
2720 if (rt->rt_ifp != lo_ifp) {
2721 if (rt->rt_ifp->if_index != ifscope) {
2722 /*
2723 * Wrong interface; keep the original result
2724 * only if the caller did not specify a scope,
2725 * and do a more specific scoped search using
2726 * the scope of the found route. Otherwise,
2727 * start again from scratch.
2728 */
2729 rn = NULL;
2730 if (dontcare)
2731 ifscope = rt->rt_ifp->if_index;
2732 else
2733 rn0 = NULL;
2734 } else if (!(rt->rt_flags & RTF_IFSCOPE)) {
2735 /*
2736 * Right interface, except that this route
2737 * isn't marked with RTF_IFSCOPE. Do a more
2738 * specific scoped search. Keep the original
2739 * result and return it it in case the scoped
2740 * search fails.
2741 */
2742 rn = NULL;
2743 }
2744 }
2745 }
2746
2747 /*
2748 * Scoped search. Find the most specific entry having the same
2749 * interface scope as the one requested. The following will result
2750 * in searching for the longest prefix scoped match.
2751 */
2752 if (rn == NULL)
2753 rn = node_lookup(dst, netmask, ifscope);
2754
2755 /*
2756 * Use the original result if either of the following is true:
2757 *
2758 * 1) The scoped search did not yield any result.
2759 * 2) The result from the scoped search is a scoped default route,
2760 * and the original (non-scoped) result is not a default route,
2761 * i.e. the original result is a more specific host/net route.
2762 * 3) The scoped search yielded a net route but the original
2763 * result is a host route, i.e. the original result is treated
2764 * as a more specific route.
2765 */
2766 if (rn == NULL || (rn0 != NULL &&
2767 ((SA_DEFAULT(rt_key(RT(rn))) && !SA_DEFAULT(rt_key(RT(rn0)))) ||
2768 (!RT_HOST(rn) && RT_HOST(rn0)))))
2769 rn = rn0;
2770
2771 /*
2772 * If we still don't have a route, use the non-scoped default
2773 * route as long as the interface portion satistifes the scope.
2774 */
2775 if (rn == NULL && (rn = node_lookup_default(af)) != NULL &&
2776 RT(rn)->rt_ifp->if_index != ifscope)
2777 rn = NULL;
2778
2779 if (rn != NULL) {
2780 /*
2781 * Manually clear RTPRF_OURS using rt_validate() and
2782 * bump up the reference count after, and not before;
2783 * we only get here for AF_INET/AF_INET6. node_lookup()
2784 * has done the check against RNF_ROOT, so we can be sure
2785 * that we're not returning a root node here.
2786 */
2787 RT_LOCK_SPIN(RT(rn));
2788 if (rt_validate(RT(rn))) {
2789 RT_ADDREF_LOCKED(RT(rn));
2790 RT_UNLOCK(RT(rn));
2791 } else {
2792 RT_UNLOCK(RT(rn));
2793 rn = NULL;
2794 }
2795 }
2796
2797 return (RT(rn));
2798 }
2799
2800 boolean_t
2801 rt_validate(struct rtentry *rt)
2802 {
2803 RT_LOCK_ASSERT_HELD(rt);
2804
2805 if ((rt->rt_flags & (RTF_UP | RTF_CONDEMNED)) == RTF_UP) {
2806 int af = rt_key(rt)->sa_family;
2807
2808 if (af == AF_INET)
2809 (void) in_validate(RN(rt));
2810 else if (af == AF_INET6)
2811 (void) in6_validate(RN(rt));
2812 } else {
2813 rt = NULL;
2814 }
2815
2816 return (rt != NULL);
2817 }
2818
2819 /*
2820 * Set up a routing table entry, normally
2821 * for an interface.
2822 */
2823 int
2824 rtinit(struct ifaddr *ifa, int cmd, int flags)
2825 {
2826 int error;
2827 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
2828 lck_mtx_lock(rnh_lock);
2829 error = rtinit_locked(ifa, cmd, flags);
2830 lck_mtx_unlock(rnh_lock);
2831 return (error);
2832 }
2833
2834 int
2835 rtinit_locked(struct ifaddr *ifa, int cmd, int flags)
2836 {
2837 struct rtentry *rt;
2838 struct sockaddr *dst;
2839 struct sockaddr *deldst;
2840 struct mbuf *m = 0;
2841 struct rtentry *nrt = 0;
2842 u_int32_t ifa_flags;
2843 int error;
2844
2845 /*
2846 * Holding rnh_lock here prevents the possibility of ifa from
2847 * changing (e.g. in_ifinit), so it is safe to access its
2848 * ifa_{dst}addr (here and down below) without locking.
2849 */
2850 dst = flags & RTF_HOST ? ifa->ifa_dstaddr : ifa->ifa_addr;
2851 /*
2852 * If it's a delete, check that if it exists, it's on the correct
2853 * interface or we might scrub a route to another ifa which would
2854 * be confusing at best and possibly worse.
2855 */
2856 if (cmd == RTM_DELETE) {
2857 /*
2858 * It's a delete, so it should already exist..
2859 * If it's a net, mask off the host bits
2860 * (Assuming we have a mask)
2861 */
2862 if ((flags & RTF_HOST) == 0 && ifa->ifa_netmask) {
2863 m = m_get(M_DONTWAIT, MT_SONAME);
2864 if (m == NULL) {
2865 return(ENOBUFS);
2866 }
2867 deldst = mtod(m, struct sockaddr *);
2868 rt_maskedcopy(dst, deldst, ifa->ifa_netmask);
2869 dst = deldst;
2870 }
2871 /*
2872 * Get an rtentry that is in the routing tree and
2873 * contains the correct info. (if this fails, can't get there).
2874 * We set "report" to FALSE so that if it doesn't exist,
2875 * it doesn't report an error or clone a route, etc. etc.
2876 */
2877 rt = rtalloc1_locked(dst, 0, 0);
2878 if (rt) {
2879 /*
2880 * Ok so we found the rtentry. it has an extra reference
2881 * for us at this stage. we won't need that so
2882 * lop that off now.
2883 */
2884 RT_LOCK_SPIN(rt);
2885 if (rt->rt_ifa != ifa) {
2886 RT_REMREF_LOCKED(rt);
2887 RT_UNLOCK(rt);
2888 /*
2889 * If the interface in the rtentry doesn't match
2890 * the interface we are using, then we don't
2891 * want to delete it, so return an error.
2892 * This seems to be the only point of
2893 * this whole RTM_DELETE clause.
2894 */
2895 if (m)
2896 (void) m_free(m);
2897 return (flags & RTF_HOST ? EHOSTUNREACH
2898 : ENETUNREACH);
2899 } else {
2900 RT_REMREF_LOCKED(rt);
2901 RT_UNLOCK(rt);
2902 }
2903 }
2904 /* XXX */
2905 #if 0
2906 else {
2907 /*
2908 * One would think that as we are deleting, and we know
2909 * it doesn't exist, we could just return at this point
2910 * with an "ELSE" clause, but apparently not..
2911 */
2912 lck_mtx_unlock(rnh_lock);
2913 return (flags & RTF_HOST ? EHOSTUNREACH
2914 : ENETUNREACH);
2915 }
2916 #endif
2917 }
2918 /*
2919 * Do the actual request
2920 */
2921 IFA_LOCK_SPIN(ifa);
2922 ifa_flags = ifa->ifa_flags;
2923 IFA_UNLOCK(ifa);
2924 error = rtrequest_locked(cmd, dst, ifa->ifa_addr, ifa->ifa_netmask,
2925 flags | ifa_flags, &nrt);
2926 if (m)
2927 (void) m_free(m);
2928 /*
2929 * If we are deleting, and we found an entry, then
2930 * it's been removed from the tree.. now throw it away.
2931 */
2932 if (cmd == RTM_DELETE && error == 0 && (rt = nrt)) {
2933 /*
2934 * notify any listening routing agents of the change
2935 */
2936 RT_LOCK(rt);
2937 rt_newaddrmsg(cmd, ifa, error, nrt);
2938 if (use_routegenid)
2939 routegenid_update();
2940 RT_UNLOCK(rt);
2941 rtfree_locked(rt);
2942 }
2943
2944 /*
2945 * We are adding, and we have a returned routing entry.
2946 * We need to sanity check the result.
2947 */
2948 if (cmd == RTM_ADD && error == 0 && (rt = nrt)) {
2949 RT_LOCK(rt);
2950 /*
2951 * If it came back with an unexpected interface, then it must
2952 * have already existed or something. (XXX)
2953 */
2954 if (rt->rt_ifa != ifa) {
2955 void (*ifa_rtrequest)
2956 (int, struct rtentry *, struct sockaddr *);
2957
2958 if (!(rt->rt_ifa->ifa_ifp->if_flags &
2959 (IFF_POINTOPOINT|IFF_LOOPBACK)))
2960 printf("rtinit: wrong ifa (%p) was (%p)\n",
2961 ifa, rt->rt_ifa);
2962 /*
2963 * Ask that the protocol in question
2964 * remove anything it has associated with
2965 * this route and ifaddr.
2966 */
2967 IFA_LOCK_SPIN(rt->rt_ifa);
2968 ifa_rtrequest = rt->rt_ifa->ifa_rtrequest;
2969 IFA_UNLOCK(rt->rt_ifa);
2970 if (ifa_rtrequest != NULL)
2971 ifa_rtrequest(RTM_DELETE, rt, SA(0));
2972 /*
2973 * Set the route's ifa.
2974 */
2975 rtsetifa(rt, ifa);
2976
2977 if (rt->rt_ifp != ifa->ifa_ifp) {
2978 /*
2979 * Purge any link-layer info caching.
2980 */
2981 if (rt->rt_llinfo_purge != NULL)
2982 rt->rt_llinfo_purge(rt);
2983 /*
2984 * Adjust route ref count for the interfaces.
2985 */
2986 if (rt->rt_if_ref_fn != NULL) {
2987 rt->rt_if_ref_fn(ifa->ifa_ifp, 1);
2988 rt->rt_if_ref_fn(rt->rt_ifp, -1);
2989 }
2990 }
2991
2992 /*
2993 * And substitute in references to the ifaddr
2994 * we are adding.
2995 */
2996 rt->rt_ifp = ifa->ifa_ifp;
2997 rt->rt_rmx.rmx_mtu = ifa->ifa_ifp->if_mtu; /*XXX*/
2998 /*
2999 * Now ask the protocol to check if it needs
3000 * any special processing in its new form.
3001 */
3002 IFA_LOCK_SPIN(ifa);
3003 ifa_rtrequest = ifa->ifa_rtrequest;
3004 IFA_UNLOCK(ifa);
3005 if (ifa_rtrequest != NULL)
3006 ifa_rtrequest(RTM_ADD, rt, SA(0));
3007 }
3008 /*
3009 * notify any listenning routing agents of the change
3010 */
3011 rt_newaddrmsg(cmd, ifa, error, nrt);
3012 if (use_routegenid)
3013 routegenid_update();
3014 /*
3015 * We just wanted to add it; we don't actually need a
3016 * reference. This will result in a route that's added
3017 * to the routing table without a reference count. The
3018 * RTM_DELETE code will do the necessary step to adjust
3019 * the reference count at deletion time.
3020 */
3021 RT_REMREF_LOCKED(rt);
3022 RT_UNLOCK(rt);
3023 }
3024 return (error);
3025 }
3026
3027 u_int64_t
3028 rt_expiry(struct rtentry *rt, u_int64_t base, u_int32_t delta)
3029 {
3030 u_int64_t retval;
3031
3032 /*
3033 * If the interface of the route doesn't demand aggressive draining,
3034 * return the expiration time based on the caller-supplied delta.
3035 * Otherwise use the more aggressive route expiration delta (or
3036 * the caller-supplied delta, whichever is less.)
3037 */
3038 if (rt->rt_ifp == NULL || rt->rt_ifp->if_want_aggressive_drain == 0)
3039 retval = base + delta;
3040 else
3041 retval = base + MIN(rt_if_idle_expire_timeout, delta);
3042
3043 return (retval);
3044 }
3045
3046 void
3047 rt_set_idleref(struct rtentry *rt)
3048 {
3049 RT_LOCK_ASSERT_HELD(rt);
3050
3051 rt_clear_idleref(rt);
3052 rt->rt_if_ref_fn = rte_if_ref;
3053 rt->rt_if_ref_fn(rt->rt_ifp, 1);
3054 rt->rt_flags |= RTF_IFREF;
3055 }
3056
3057 void
3058 rt_clear_idleref(struct rtentry *rt)
3059 {
3060 RT_LOCK_ASSERT_HELD(rt);
3061
3062 if (rt->rt_if_ref_fn != NULL) {
3063 rt->rt_if_ref_fn(rt->rt_ifp, -1);
3064 rt->rt_flags &= ~RTF_IFREF;
3065 rt->rt_if_ref_fn = NULL;
3066 }
3067 }
3068
3069 void
3070 rt_set_proxy(struct rtentry *rt, boolean_t set)
3071 {
3072 lck_mtx_lock(rnh_lock);
3073 RT_LOCK(rt);
3074 /*
3075 * Search for any cloned routes which might have
3076 * been formed from this node, and delete them.
3077 */
3078 if (rt->rt_flags & (RTF_CLONING | RTF_PRCLONING)) {
3079 struct radix_node_head *rnh = rt_tables[rt_key(rt)->sa_family];
3080
3081 if (set)
3082 rt->rt_flags |= RTF_PROXY;
3083 else
3084 rt->rt_flags &= ~RTF_PROXY;
3085
3086 RT_UNLOCK(rt);
3087 if (rnh != NULL && rt_mask(rt)) {
3088 rnh->rnh_walktree_from(rnh, rt_key(rt), rt_mask(rt),
3089 rt_fixdelete, rt);
3090 }
3091 } else {
3092 RT_UNLOCK(rt);
3093 }
3094 lck_mtx_unlock(rnh_lock);
3095 }
3096
3097 static void
3098 rte_lock_init(struct rtentry *rt)
3099 {
3100 lck_mtx_init(&rt->rt_lock, rte_mtx_grp, rte_mtx_attr);
3101 }
3102
3103 static void
3104 rte_lock_destroy(struct rtentry *rt)
3105 {
3106 RT_LOCK_ASSERT_NOTHELD(rt);
3107 lck_mtx_destroy(&rt->rt_lock, rte_mtx_grp);
3108 }
3109
3110 void
3111 rt_lock(struct rtentry *rt, boolean_t spin)
3112 {
3113 RT_LOCK_ASSERT_NOTHELD(rt);
3114 if (spin)
3115 lck_mtx_lock_spin(&rt->rt_lock);
3116 else
3117 lck_mtx_lock(&rt->rt_lock);
3118 if (rte_debug & RTD_DEBUG)
3119 rte_lock_debug((struct rtentry_dbg *)rt);
3120 }
3121
3122 void
3123 rt_unlock(struct rtentry *rt)
3124 {
3125 RT_LOCK_ASSERT_HELD(rt);
3126 if (rte_debug & RTD_DEBUG)
3127 rte_unlock_debug((struct rtentry_dbg *)rt);
3128 lck_mtx_unlock(&rt->rt_lock);
3129
3130 }
3131
3132 static inline void
3133 rte_lock_debug(struct rtentry_dbg *rte)
3134 {
3135 uint32_t idx;
3136
3137 idx = atomic_add_32_ov(&rte->rtd_lock_cnt, 1) % CTRACE_HIST_SIZE;
3138 if (rte_debug & RTD_TRACE)
3139 ctrace_record(&rte->rtd_lock[idx]);
3140 }
3141
3142 static inline void
3143 rte_unlock_debug(struct rtentry_dbg *rte)
3144 {
3145 uint32_t idx;
3146
3147 idx = atomic_add_32_ov(&rte->rtd_unlock_cnt, 1) % CTRACE_HIST_SIZE;
3148 if (rte_debug & RTD_TRACE)
3149 ctrace_record(&rte->rtd_unlock[idx]);
3150 }
3151
3152 static struct rtentry *
3153 rte_alloc(void)
3154 {
3155 if (rte_debug & RTD_DEBUG)
3156 return (rte_alloc_debug());
3157
3158 return ((struct rtentry *)zalloc(rte_zone));
3159 }
3160
3161 static void
3162 rte_free(struct rtentry *p)
3163 {
3164 if (rte_debug & RTD_DEBUG) {
3165 rte_free_debug(p);
3166 return;
3167 }
3168
3169 if (p->rt_refcnt != 0)
3170 panic("rte_free: rte=%p refcnt=%d non-zero\n", p, p->rt_refcnt);
3171
3172 zfree(rte_zone, p);
3173 }
3174
3175 static void
3176 rte_if_ref(struct ifnet *ifp, int cnt)
3177 {
3178 struct kev_msg ev_msg;
3179 struct net_event_data ev_data;
3180 uint32_t old;
3181
3182 /* Force cnt to 1 increment/decrement */
3183 if (cnt < -1 || cnt > 1)
3184 panic("%s: invalid count argument (%d)", __func__, cnt);
3185
3186 old = atomic_add_32_ov(&ifp->if_route_refcnt, cnt);
3187 if (cnt < 0 && old == 0)
3188 panic("%s: ifp=%p negative route refcnt!", __func__, ifp);
3189
3190 /*
3191 * The following is done without first holding the ifnet lock,
3192 * for performance reasons. The relevant ifnet fields, with
3193 * the exception of the if_idle_flags, are never changed
3194 * during the lifetime of the ifnet. The if_idle_flags
3195 * may possibly be modified, so in the event that the value
3196 * is stale because IFRF_IDLE_NOTIFY was cleared, we'd end up
3197 * sending the event anyway. This is harmless as it is just
3198 * a notification to the monitoring agent in user space, and
3199 * it is expected to check via SIOCGIFGETRTREFCNT again anyway.
3200 */
3201 if ((ifp->if_idle_flags & IFRF_IDLE_NOTIFY) && cnt < 0 && old == 1) {
3202 bzero(&ev_msg, sizeof (ev_msg));
3203 bzero(&ev_data, sizeof (ev_data));
3204
3205 ev_msg.vendor_code = KEV_VENDOR_APPLE;
3206 ev_msg.kev_class = KEV_NETWORK_CLASS;
3207 ev_msg.kev_subclass = KEV_DL_SUBCLASS;
3208 ev_msg.event_code = KEV_DL_IF_IDLE_ROUTE_REFCNT;
3209
3210 strlcpy(&ev_data.if_name[0], ifp->if_name, IFNAMSIZ);
3211
3212 ev_data.if_family = ifp->if_family;
3213 ev_data.if_unit = ifp->if_unit;
3214 ev_msg.dv[0].data_length = sizeof (struct net_event_data);
3215 ev_msg.dv[0].data_ptr = &ev_data;
3216
3217 kev_post_msg(&ev_msg);
3218 }
3219 }
3220
3221 static inline struct rtentry *
3222 rte_alloc_debug(void)
3223 {
3224 struct rtentry_dbg *rte;
3225
3226 rte = ((struct rtentry_dbg *)zalloc(rte_zone));
3227 if (rte != NULL) {
3228 bzero(rte, sizeof (*rte));
3229 if (rte_debug & RTD_TRACE)
3230 ctrace_record(&rte->rtd_alloc);
3231 rte->rtd_inuse = RTD_INUSE;
3232 }
3233 return ((struct rtentry *)rte);
3234 }
3235
3236 static inline void
3237 rte_free_debug(struct rtentry *p)
3238 {
3239 struct rtentry_dbg *rte = (struct rtentry_dbg *)p;
3240
3241 if (p->rt_refcnt != 0)
3242 panic("rte_free: rte=%p refcnt=%d\n", p, p->rt_refcnt);
3243
3244 if (rte->rtd_inuse == RTD_FREED)
3245 panic("rte_free: double free rte=%p\n", rte);
3246 else if (rte->rtd_inuse != RTD_INUSE)
3247 panic("rte_free: corrupted rte=%p\n", rte);
3248
3249 bcopy((caddr_t)p, (caddr_t)&rte->rtd_entry_saved, sizeof (*p));
3250 /* Preserve rt_lock to help catch use-after-free cases */
3251 bzero((caddr_t)p, offsetof(struct rtentry, rt_lock));
3252
3253 rte->rtd_inuse = RTD_FREED;
3254
3255 if (rte_debug & RTD_TRACE)
3256 ctrace_record(&rte->rtd_free);
3257
3258 if (!(rte_debug & RTD_NO_FREE))
3259 zfree(rte_zone, p);
3260 }
3261
3262 void
3263 ctrace_record(ctrace_t *tr)
3264 {
3265 tr->th = current_thread();
3266 bzero(tr->pc, sizeof (tr->pc));
3267 (void) OSBacktrace(tr->pc, CTRACE_STACK_SIZE);
3268 }
3269
3270 __private_extern__ void
3271 route_copyout(
3272 struct route *dst,
3273 const struct route *src,
3274 size_t length)
3275 {
3276 /* Copy everything (rt, dst, flags) from ifnet */
3277 bcopy(src, dst, length);
3278
3279 /* Hold one reference for the local copy of struct route */
3280 if (dst->ro_rt != NULL)
3281 RT_ADDREF(dst->ro_rt);
3282 }
3283
3284 __private_extern__ void
3285 route_copyin(
3286 struct route *src,
3287 struct route *dst,
3288 size_t length)
3289 {
3290 /* No cached route in the ifnet? */
3291 if (dst->ro_rt == NULL) {
3292 /*
3293 * Copy everything (rt, dst, flags) from ip_forward();
3294 * the reference to the route was held at the time
3295 * it was allocated and is kept intact.
3296 */
3297 bcopy(src, dst, length);
3298 } else if (src->ro_rt != NULL) {
3299 /*
3300 * If the same, update just the ro_flags and ditch the one
3301 * in the local copy. Else ditch the one that is currently
3302 * cached, and cache the new route.
3303 */
3304 if (dst->ro_rt == src->ro_rt) {
3305 dst->ro_flags = src->ro_flags;
3306 rtfree(src->ro_rt);
3307 } else {
3308 rtfree(dst->ro_rt);
3309 bcopy(src, dst, length);
3310 }
3311 }
3312
3313 /* This function consumes the reference */
3314 src->ro_rt = NULL;
3315 }
3316
3317 /*
3318 * route_to_gwroute will find the gateway route for a given route.
3319 *
3320 * If the route is down, look the route up again.
3321 * If the route goes through a gateway, get the route to the gateway.
3322 * If the gateway route is down, look it up again.
3323 * If the route is set to reject, verify it hasn't expired.
3324 *
3325 * If the returned route is non-NULL, the caller is responsible for
3326 * releasing the reference and unlocking the route.
3327 */
3328 #define senderr(e) { error = (e); goto bad; }
3329 errno_t
3330 route_to_gwroute(const struct sockaddr *net_dest, struct rtentry *hint0,
3331 struct rtentry **out_route)
3332 {
3333 uint64_t timenow;
3334 struct rtentry *rt = hint0, *hint = hint0;
3335 errno_t error = 0;
3336 unsigned int ifindex;
3337 boolean_t gwroute;
3338
3339 *out_route = NULL;
3340
3341 if (rt == NULL)
3342 return (0);
3343
3344 /*
3345 * Next hop determination. Because we may involve the gateway route
3346 * in addition to the original route, locking is rather complicated.
3347 * The general concept is that regardless of whether the route points
3348 * to the original route or to the gateway route, this routine takes
3349 * an extra reference on such a route. This extra reference will be
3350 * released at the end.
3351 *
3352 * Care must be taken to ensure that the "hint0" route never gets freed
3353 * via rtfree(), since the caller may have stored it inside a struct
3354 * route with a reference held for that placeholder.
3355 */
3356 RT_LOCK_SPIN(rt);
3357 ifindex = rt->rt_ifp->if_index;
3358 RT_ADDREF_LOCKED(rt);
3359 if (!(rt->rt_flags & RTF_UP)) {
3360 RT_REMREF_LOCKED(rt);
3361 RT_UNLOCK(rt);
3362 /* route is down, find a new one */
3363 hint = rt = rtalloc1_scoped((struct sockaddr *)
3364 (size_t)net_dest, 1, 0, ifindex);
3365 if (hint != NULL) {
3366 RT_LOCK_SPIN(rt);
3367 ifindex = rt->rt_ifp->if_index;
3368 } else {
3369 senderr(EHOSTUNREACH);
3370 }
3371 }
3372
3373 /*
3374 * We have a reference to "rt" by now; it will either
3375 * be released or freed at the end of this routine.
3376 */
3377 RT_LOCK_ASSERT_HELD(rt);
3378 if ((gwroute = (rt->rt_flags & RTF_GATEWAY))) {
3379 struct rtentry *gwrt = rt->rt_gwroute;
3380 struct sockaddr_storage ss;
3381 struct sockaddr *gw = (struct sockaddr *)&ss;
3382
3383 VERIFY(rt == hint);
3384 RT_ADDREF_LOCKED(hint);
3385
3386 /* If there's no gateway rt, look it up */
3387 if (gwrt == NULL) {
3388 bcopy(rt->rt_gateway, gw, MIN(sizeof (ss),
3389 rt->rt_gateway->sa_len));
3390 RT_UNLOCK(rt);
3391 goto lookup;
3392 }
3393 /* Become a regular mutex */
3394 RT_CONVERT_LOCK(rt);
3395
3396 /*
3397 * Take gwrt's lock while holding route's lock;
3398 * this is okay since gwrt never points back
3399 * to "rt", so no lock ordering issues.
3400 */
3401 RT_LOCK_SPIN(gwrt);
3402 if (!(gwrt->rt_flags & RTF_UP)) {
3403 rt->rt_gwroute = NULL;
3404 RT_UNLOCK(gwrt);
3405 bcopy(rt->rt_gateway, gw, MIN(sizeof (ss),
3406 rt->rt_gateway->sa_len));
3407 RT_UNLOCK(rt);
3408 rtfree(gwrt);
3409 lookup:
3410 lck_mtx_lock(rnh_lock);
3411 gwrt = rtalloc1_scoped_locked(gw, 1, 0, ifindex);
3412
3413 RT_LOCK(rt);
3414 /*
3415 * Bail out if the route is down, no route
3416 * to gateway, circular route, or if the
3417 * gateway portion of "rt" has changed.
3418 */
3419 if (!(rt->rt_flags & RTF_UP) || gwrt == NULL ||
3420 gwrt == rt || !equal(gw, rt->rt_gateway)) {
3421 if (gwrt == rt) {
3422 RT_REMREF_LOCKED(gwrt);
3423 gwrt = NULL;
3424 }
3425 VERIFY(rt == hint);
3426 RT_REMREF_LOCKED(hint);
3427 hint = NULL;
3428 RT_UNLOCK(rt);
3429 if (gwrt != NULL)
3430 rtfree_locked(gwrt);
3431 lck_mtx_unlock(rnh_lock);
3432 senderr(EHOSTUNREACH);
3433 }
3434 VERIFY(gwrt != NULL);
3435 /*
3436 * Set gateway route; callee adds ref to gwrt;
3437 * gwrt has an extra ref from rtalloc1() for
3438 * this routine.
3439 */
3440 rt_set_gwroute(rt, rt_key(rt), gwrt);
3441 VERIFY(rt == hint);
3442 RT_REMREF_LOCKED(rt); /* hint still holds a refcnt */
3443 RT_UNLOCK(rt);
3444 lck_mtx_unlock(rnh_lock);
3445 rt = gwrt;
3446 } else {
3447 RT_ADDREF_LOCKED(gwrt);
3448 RT_UNLOCK(gwrt);
3449 VERIFY(rt == hint);
3450 RT_REMREF_LOCKED(rt); /* hint still holds a refcnt */
3451 RT_UNLOCK(rt);
3452 rt = gwrt;
3453 }
3454 VERIFY(rt == gwrt && rt != hint);
3455
3456 /*
3457 * This is an opportunity to revalidate the parent route's
3458 * rt_gwroute, in case it now points to a dead route entry.
3459 * Parent route won't go away since the clone (hint) holds
3460 * a reference to it. rt == gwrt.
3461 */
3462 RT_LOCK_SPIN(hint);
3463 if ((hint->rt_flags & (RTF_WASCLONED | RTF_UP)) ==
3464 (RTF_WASCLONED | RTF_UP)) {
3465 struct rtentry *prt = hint->rt_parent;
3466 VERIFY(prt != NULL);
3467
3468 RT_CONVERT_LOCK(hint);
3469 RT_ADDREF(prt);
3470 RT_UNLOCK(hint);
3471 rt_revalidate_gwroute(prt, rt);
3472 RT_REMREF(prt);
3473 } else {
3474 RT_UNLOCK(hint);
3475 }
3476
3477 /* Clean up "hint" now; see notes above regarding hint0 */
3478 if (hint == hint0)
3479 RT_REMREF(hint);
3480 else
3481 rtfree(hint);
3482 hint = NULL;
3483
3484 /* rt == gwrt; if it is now down, give up */
3485 RT_LOCK_SPIN(rt);
3486 if (!(rt->rt_flags & RTF_UP)) {
3487 RT_UNLOCK(rt);
3488 senderr(EHOSTUNREACH);
3489 }
3490 }
3491
3492 if (rt->rt_flags & RTF_REJECT) {
3493 VERIFY(rt->rt_expire == 0 || rt->rt_rmx.rmx_expire != 0);
3494 VERIFY(rt->rt_expire != 0 || rt->rt_rmx.rmx_expire == 0);
3495 timenow = net_uptime();
3496 if (rt->rt_expire == 0 || timenow < rt->rt_expire) {
3497 RT_UNLOCK(rt);
3498 senderr(!gwroute ? EHOSTDOWN : EHOSTUNREACH);
3499 }
3500 }
3501
3502 /* Become a regular mutex */
3503 RT_CONVERT_LOCK(rt);
3504
3505 /* Caller is responsible for cleaning up "rt" */
3506 *out_route = rt;
3507 return (0);
3508
3509 bad:
3510 /* Clean up route (either it is "rt" or "gwrt") */
3511 if (rt != NULL) {
3512 RT_LOCK_SPIN(rt);
3513 if (rt == hint0) {
3514 RT_REMREF_LOCKED(rt);
3515 RT_UNLOCK(rt);
3516 } else {
3517 RT_UNLOCK(rt);
3518 rtfree(rt);
3519 }
3520 }
3521 return (error);
3522 }
3523 #undef senderr
3524
3525 void
3526 rt_revalidate_gwroute(struct rtentry *rt, struct rtentry *gwrt)
3527 {
3528 VERIFY(rt->rt_flags & (RTF_CLONING | RTF_PRCLONING));
3529 VERIFY(gwrt != NULL);
3530
3531 RT_LOCK_SPIN(rt);
3532 if ((rt->rt_flags & (RTF_GATEWAY | RTF_UP)) == (RTF_GATEWAY | RTF_UP) &&
3533 rt->rt_ifp == gwrt->rt_ifp && rt->rt_gateway->sa_family ==
3534 rt_key(gwrt)->sa_family && (rt->rt_gwroute == NULL ||
3535 !(rt->rt_gwroute->rt_flags & RTF_UP))) {
3536 boolean_t isequal;
3537
3538 if (rt->rt_gateway->sa_family == AF_INET ||
3539 rt->rt_gateway->sa_family == AF_INET6) {
3540 struct sockaddr_storage key_ss, gw_ss;
3541 /*
3542 * We need to compare rt_key and rt_gateway; create
3543 * local copies to get rid of any ifscope association.
3544 */
3545 (void) sa_copy(rt_key(gwrt), &key_ss, NULL);
3546 (void) sa_copy(rt->rt_gateway, &gw_ss, NULL);
3547
3548 isequal = equal(SA(&key_ss), SA(&gw_ss));
3549 } else {
3550 isequal = equal(rt_key(gwrt), rt->rt_gateway);
3551 }
3552
3553 /* If they are the same, update gwrt */
3554 if (isequal) {
3555 RT_UNLOCK(rt);
3556 lck_mtx_lock(rnh_lock);
3557 RT_LOCK(rt);
3558 rt_set_gwroute(rt, rt_key(rt), gwrt);
3559 RT_UNLOCK(rt);
3560 lck_mtx_unlock(rnh_lock);
3561 } else {
3562 RT_UNLOCK(rt);
3563 }
3564 } else {
3565 RT_UNLOCK(rt);
3566 }
3567 }