]> git.saurik.com Git - apple/xnu.git/blob - bsd/net/radix.c
xnu-2050.18.24.tar.gz
[apple/xnu.git] / bsd / net / radix.c
1 /*
2 * Copyright (c) 2000-2008 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1988, 1989, 1993
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)radix.c 8.4 (Berkeley) 11/2/94
61 * $FreeBSD: src/sys/net/radix.c,v 1.20.2.2 2001/03/06 00:56:50 obrien Exp $
62 */
63
64 /*
65 * Routines to build and maintain radix trees for routing lookups.
66 */
67 #ifndef _RADIX_H_
68 #include <sys/param.h>
69 #ifdef KERNEL
70 #include <sys/systm.h>
71 #include <sys/malloc.h>
72 #define M_DONTWAIT M_NOWAIT
73 #include <sys/domain.h>
74 #else
75 #include <stdlib.h>
76 #endif
77 #include <sys/syslog.h>
78 #include <net/radix.h>
79 #include <sys/socket.h>
80 #include <sys/socketvar.h>
81 #include <kern/locks.h>
82 #endif
83
84 static int rn_walktree_from(struct radix_node_head *h, void *a,
85 void *m, walktree_f_t *f, void *w);
86 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
87 static struct radix_node
88 *rn_insert(void *, struct radix_node_head *, int *,
89 struct radix_node [2]),
90 *rn_newpair(void *, int, struct radix_node[2]),
91 *rn_search(void *, struct radix_node *),
92 *rn_search_m(void *, struct radix_node *, void *);
93
94 static int max_keylen;
95 static struct radix_mask *rn_mkfreelist;
96 static struct radix_node_head *mask_rnhead;
97 static char *addmask_key;
98 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
99 static char *rn_zeros, *rn_ones;
100
101
102 extern lck_grp_t *domain_proto_mtx_grp;
103 extern lck_attr_t *domain_proto_mtx_attr;
104
105 #define rn_masktop (mask_rnhead->rnh_treetop)
106 #undef Bcmp
107 #define Bcmp(a, b, l) \
108 (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (uint32_t)l))
109
110 static int rn_lexobetter(void *m_arg, void *n_arg);
111 static struct radix_mask *
112 rn_new_radix_mask(struct radix_node *tt,
113 struct radix_mask *next);
114 static int rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip,
115 rn_matchf_t *f, void *w);
116
117 #define RN_MATCHF(rn, f, arg) (f == NULL || (*f)((rn), arg))
118
119 /*
120 * The data structure for the keys is a radix tree with one way
121 * branching removed. The index rn_bit at an internal node n represents a bit
122 * position to be tested. The tree is arranged so that all descendants
123 * of a node n have keys whose bits all agree up to position rn_bit - 1.
124 * (We say the index of n is rn_bit.)
125 *
126 * There is at least one descendant which has a one bit at position rn_bit,
127 * and at least one with a zero there.
128 *
129 * A route is determined by a pair of key and mask. We require that the
130 * bit-wise logical and of the key and mask to be the key.
131 * We define the index of a route to associated with the mask to be
132 * the first bit number in the mask where 0 occurs (with bit number 0
133 * representing the highest order bit).
134 *
135 * We say a mask is normal if every bit is 0, past the index of the mask.
136 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
137 * and m is a normal mask, then the route applies to every descendant of n.
138 * If the index(m) < rn_bit, this implies the trailing last few bits of k
139 * before bit b are all 0, (and hence consequently true of every descendant
140 * of n), so the route applies to all descendants of the node as well.
141 *
142 * Similar logic shows that a non-normal mask m such that
143 * index(m) <= index(n) could potentially apply to many children of n.
144 * Thus, for each non-host route, we attach its mask to a list at an internal
145 * node as high in the tree as we can go.
146 *
147 * The present version of the code makes use of normal routes in short-
148 * circuiting an explict mask and compare operation when testing whether
149 * a key satisfies a normal route, and also in remembering the unique leaf
150 * that governs a subtree.
151 */
152
153 static struct radix_node *
154 rn_search(void *v_arg, struct radix_node *head)
155 {
156 struct radix_node *x;
157 caddr_t v;
158
159 for (x = head, v = v_arg; x->rn_bit >= 0;) {
160 if (x->rn_bmask & v[x->rn_offset])
161 x = x->rn_right;
162 else
163 x = x->rn_left;
164 }
165 return (x);
166 }
167
168 static struct radix_node *
169 rn_search_m(void *v_arg, struct radix_node *head, void *m_arg)
170 {
171 struct radix_node *x;
172 caddr_t v = v_arg, m = m_arg;
173
174 for (x = head; x->rn_bit >= 0;) {
175 if ((x->rn_bmask & m[x->rn_offset]) &&
176 (x->rn_bmask & v[x->rn_offset]))
177 x = x->rn_right;
178 else
179 x = x->rn_left;
180 }
181 return x;
182 }
183
184 int
185 rn_refines(void *m_arg, void *n_arg)
186 {
187 caddr_t m = m_arg, n = n_arg;
188 caddr_t lim, lim2 = lim = n + *(u_char *)n;
189 int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
190 int masks_are_equal = 1;
191
192 if (longer > 0)
193 lim -= longer;
194 while (n < lim) {
195 if (*n & ~(*m))
196 return 0;
197 if (*n++ != *m++)
198 masks_are_equal = 0;
199 }
200 while (n < lim2)
201 if (*n++)
202 return 0;
203 if (masks_are_equal && (longer < 0))
204 for (lim2 = m - longer; m < lim2; )
205 if (*m++)
206 return 1;
207 return (!masks_are_equal);
208 }
209
210 struct radix_node *
211 rn_lookup(void *v_arg, void *m_arg, struct radix_node_head *head)
212 {
213 return (rn_lookup_args(v_arg, m_arg, head, NULL, NULL));
214 }
215
216 struct radix_node *
217 rn_lookup_args(void *v_arg, void *m_arg, struct radix_node_head *head,
218 rn_matchf_t *f, void *w)
219 {
220 struct radix_node *x;
221 caddr_t netmask = NULL;
222
223 if (m_arg) {
224 x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset);
225 if (x == 0)
226 return (NULL);
227 netmask = x->rn_key;
228 }
229 x = rn_match_args(v_arg, head, f, w);
230 if (x && netmask) {
231 while (x && x->rn_mask != netmask)
232 x = x->rn_dupedkey;
233 }
234 return x;
235 }
236
237 /*
238 * Returns true if address 'trial' has no bits differing from the
239 * leaf's key when compared under the leaf's mask. In other words,
240 * returns true when 'trial' matches leaf. If a leaf-matching
241 * routine is passed in, it is also used to find a match on the
242 * conditions defined by the caller of rn_match.
243 */
244 static int
245 rn_satisfies_leaf(char *trial, struct radix_node *leaf, int skip,
246 rn_matchf_t *f, void *w)
247 {
248 char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
249 char *cplim;
250 int length = min(*(u_char *)cp, *(u_char *)cp2);
251
252 if (cp3 == 0)
253 cp3 = rn_ones;
254 else
255 length = min(length, *(u_char *)cp3);
256 cplim = cp + length; cp3 += skip; cp2 += skip;
257 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
258 if ((*cp ^ *cp2) & *cp3)
259 return 0;
260
261 return (RN_MATCHF(leaf, f, w));
262 }
263
264 struct radix_node *
265 rn_match(void *v_arg, struct radix_node_head *head)
266 {
267 return (rn_match_args(v_arg, head, NULL, NULL));
268 }
269
270 struct radix_node *
271 rn_match_args(void *v_arg, struct radix_node_head *head,
272 rn_matchf_t *f, void *w)
273 {
274 caddr_t v = v_arg;
275 struct radix_node *t = head->rnh_treetop, *x;
276 caddr_t cp = v, cp2;
277 caddr_t cplim;
278 struct radix_node *saved_t, *top = t;
279 int off = t->rn_offset, vlen = *(u_char *)cp, matched_off;
280 int test, b, rn_bit;
281
282 /*
283 * Open code rn_search(v, top) to avoid overhead of extra
284 * subroutine call.
285 */
286 for (; t->rn_bit >= 0; ) {
287 if (t->rn_bmask & cp[t->rn_offset])
288 t = t->rn_right;
289 else
290 t = t->rn_left;
291 }
292 /*
293 * See if we match exactly as a host destination
294 * or at least learn how many bits match, for normal mask finesse.
295 *
296 * It doesn't hurt us to limit how many bytes to check
297 * to the length of the mask, since if it matches we had a genuine
298 * match and the leaf we have is the most specific one anyway;
299 * if it didn't match with a shorter length it would fail
300 * with a long one. This wins big for class B&C netmasks which
301 * are probably the most common case...
302 */
303 if (t->rn_mask)
304 vlen = *(u_char *)t->rn_mask;
305 cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
306 for (; cp < cplim; cp++, cp2++)
307 if (*cp != *cp2)
308 goto on1;
309 /*
310 * This extra grot is in case we are explicitly asked
311 * to look up the default. Ugh!
312 *
313 * Never return the root node itself, it seems to cause a
314 * lot of confusion.
315 */
316 if (t->rn_flags & RNF_ROOT)
317 t = t->rn_dupedkey;
318 if (t == NULL || RN_MATCHF(t, f, w)) {
319 return (t);
320 } else {
321 /*
322 * Although we found an exact match on the key,
323 * f() is looking for some other criteria as well.
324 * Continue looking as if the exact match failed.
325 */
326 if (t->rn_parent->rn_flags & RNF_ROOT) {
327 /* Hit the top; have to give up */
328 return (NULL);
329 }
330 b = 0;
331 goto keeplooking;
332 }
333 on1:
334 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
335 for (b = 7; (test >>= 1) > 0;)
336 b--;
337 keeplooking:
338 matched_off = cp - v;
339 b += matched_off << 3;
340 rn_bit = -1 - b;
341 /*
342 * If there is a host route in a duped-key chain, it will be first.
343 */
344 if ((saved_t = t)->rn_mask == 0)
345 t = t->rn_dupedkey;
346 for (; t; t = t->rn_dupedkey) {
347 /*
348 * Even if we don't match exactly as a host,
349 * we may match if the leaf we wound up at is
350 * a route to a net.
351 */
352 if (t->rn_flags & RNF_NORMAL) {
353 if ((rn_bit <= t->rn_bit) && RN_MATCHF(t, f, w))
354 return (t);
355 } else if (rn_satisfies_leaf(v, t, matched_off, f, w)) {
356 return (t);
357 }
358 }
359 t = saved_t;
360 /* start searching up the tree */
361 do {
362 struct radix_mask *m;
363 t = t->rn_parent;
364 m = t->rn_mklist;
365 /*
366 * If non-contiguous masks ever become important
367 * we can restore the masking and open coding of
368 * the search and satisfaction test and put the
369 * calculation of "off" back before the "do".
370 */
371 while (m) {
372 if (m->rm_flags & RNF_NORMAL) {
373 if ((rn_bit <= m->rm_bit) &&
374 RN_MATCHF(m->rm_leaf, f, w))
375 return (m->rm_leaf);
376 } else {
377 off = min(t->rn_offset, matched_off);
378 x = rn_search_m(v, t, m->rm_mask);
379 while (x && x->rn_mask != m->rm_mask)
380 x = x->rn_dupedkey;
381 if (x && rn_satisfies_leaf(v, x, off, f, w))
382 return (x);
383 }
384 m = m->rm_mklist;
385 }
386 } while (t != top);
387 return (NULL);
388 }
389
390 #ifdef RN_DEBUG
391 int rn_nodenum;
392 struct radix_node *rn_clist;
393 int rn_saveinfo;
394 int rn_debug = 1;
395 #endif
396
397 static struct radix_node *
398 rn_newpair(void *v, int b, struct radix_node nodes[2])
399 {
400 struct radix_node *tt = nodes, *t = tt + 1;
401 t->rn_bit = b;
402 t->rn_bmask = 0x80 >> (b & 7);
403 t->rn_left = tt;
404 t->rn_offset = b >> 3;
405 tt->rn_bit = -1;
406 tt->rn_key = (caddr_t)v;
407 tt->rn_parent = t;
408 tt->rn_flags = t->rn_flags = RNF_ACTIVE;
409 tt->rn_mklist = t->rn_mklist = NULL;
410 #ifdef RN_DEBUG
411 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
412 tt->rn_twin = t;
413 tt->rn_ybro = rn_clist;
414 rn_clist = tt;
415 #endif
416 return t;
417 }
418
419 static struct radix_node *
420 rn_insert(void *v_arg, struct radix_node_head *head, int *dupentry,
421 struct radix_node nodes[2])
422 {
423 caddr_t v = v_arg;
424 struct radix_node *top = head->rnh_treetop;
425 int head_off = top->rn_offset, vlen = (int)*((u_char *)v);
426 struct radix_node *t = rn_search(v_arg, top);
427 caddr_t cp = v + head_off;
428 int b;
429 struct radix_node *tt;
430 /*
431 * Find first bit at which v and t->rn_key differ
432 */
433 {
434 caddr_t cp2 = t->rn_key + head_off;
435 int cmp_res;
436 caddr_t cplim = v + vlen;
437
438 while (cp < cplim)
439 if (*cp2++ != *cp++)
440 goto on1;
441 *dupentry = 1;
442 return t;
443 on1:
444 *dupentry = 0;
445 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
446 for (b = (cp - v) << 3; cmp_res; b--)
447 cmp_res >>= 1;
448 }
449 {
450 struct radix_node *p, *x = top;
451 cp = v;
452 do {
453 p = x;
454 if (cp[x->rn_offset] & x->rn_bmask)
455 x = x->rn_right;
456 else
457 x = x->rn_left;
458 } while (b > (unsigned) x->rn_bit);
459 /* x->rn_bit < b && x->rn_bit >= 0 */
460 #ifdef RN_DEBUG
461 if (rn_debug)
462 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
463 #endif
464 t = rn_newpair(v_arg, b, nodes);
465 tt = t->rn_left;
466 if ((cp[p->rn_offset] & p->rn_bmask) == 0)
467 p->rn_left = t;
468 else
469 p->rn_right = t;
470 x->rn_parent = t;
471 t->rn_parent = p; /* frees x, p as temp vars below */
472 if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
473 t->rn_right = x;
474 } else {
475 t->rn_right = tt;
476 t->rn_left = x;
477 }
478 #ifdef RN_DEBUG
479 if (rn_debug)
480 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
481 #endif
482 }
483 return (tt);
484 }
485
486 struct radix_node *
487 rn_addmask(void *n_arg, int search, int skip)
488 {
489 caddr_t netmask = (caddr_t)n_arg;
490 struct radix_node *x;
491 caddr_t cp, cplim;
492 int b = 0, mlen, j;
493 int maskduplicated, m0, isnormal;
494 struct radix_node *saved_x;
495 static int last_zeroed = 0;
496
497 if ((mlen = *(u_char *)netmask) > max_keylen)
498 mlen = max_keylen;
499 if (skip == 0)
500 skip = 1;
501 if (mlen <= skip)
502 return (mask_rnhead->rnh_nodes);
503 if (skip > 1)
504 Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
505 if ((m0 = mlen) > skip)
506 Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
507 /*
508 * Trim trailing zeroes.
509 */
510 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
511 cp--;
512 mlen = cp - addmask_key;
513 if (mlen <= skip) {
514 if (m0 >= last_zeroed)
515 last_zeroed = mlen;
516 return (mask_rnhead->rnh_nodes);
517 }
518 if (m0 < last_zeroed)
519 Bzero(addmask_key + m0, last_zeroed - m0);
520 *addmask_key = last_zeroed = mlen;
521 x = rn_search(addmask_key, rn_masktop);
522 if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
523 x = NULL;
524 if (x || search)
525 return (x);
526 R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
527 if ((saved_x = x) == 0)
528 return (NULL);
529 Bzero(x, max_keylen + 2 * sizeof (*x));
530 netmask = cp = (caddr_t)(x + 2);
531 Bcopy(addmask_key, cp, mlen);
532 x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
533 if (maskduplicated) {
534 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
535 R_Free(saved_x);
536 return (x);
537 }
538 mask_rnhead->rnh_cnt++;
539 /*
540 * Calculate index of mask, and check for normalcy.
541 */
542 cplim = netmask + mlen; isnormal = 1;
543 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
544 cp++;
545 if (cp != cplim) {
546 for (j = 0x80; (j & *cp) != 0; j >>= 1)
547 b++;
548 if (*cp != normal_chars[b] || cp != (cplim - 1))
549 isnormal = 0;
550 }
551 b += (cp - netmask) << 3;
552 x->rn_bit = -1 - b;
553 if (isnormal)
554 x->rn_flags |= RNF_NORMAL;
555 return (x);
556 }
557
558 static int /* XXX: arbitrary ordering for non-contiguous masks */
559 rn_lexobetter(void *m_arg, void *n_arg)
560 {
561 u_char *mp = m_arg, *np = n_arg, *lim;
562
563 if (*mp > *np)
564 return 1; /* not really, but need to check longer one first */
565 if (*mp == *np)
566 for (lim = mp + *mp; mp < lim;)
567 if (*mp++ > *np++)
568 return 1;
569 return 0;
570 }
571
572 static struct radix_mask *
573 rn_new_radix_mask(struct radix_node *tt, struct radix_mask *next)
574 {
575 struct radix_mask *m;
576
577 MKGet(m);
578 if (m == 0) {
579 log(LOG_ERR, "Mask for route not entered\n");
580 return (NULL);
581 }
582 Bzero(m, sizeof *m);
583 m->rm_bit = tt->rn_bit;
584 m->rm_flags = tt->rn_flags;
585 if (tt->rn_flags & RNF_NORMAL)
586 m->rm_leaf = tt;
587 else
588 m->rm_mask = tt->rn_mask;
589 m->rm_mklist = next;
590 tt->rn_mklist = m;
591 return m;
592 }
593
594 struct radix_node *
595 rn_addroute(void *v_arg, void *n_arg, struct radix_node_head *head,
596 struct radix_node treenodes[2])
597 {
598 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
599 struct radix_node *t, *x = NULL, *tt;
600 struct radix_node *saved_tt, *top = head->rnh_treetop;
601 short b = 0, b_leaf = 0;
602 int keyduplicated;
603 caddr_t mmask;
604 struct radix_mask *m, **mp;
605
606 /*
607 * In dealing with non-contiguous masks, there may be
608 * many different routes which have the same mask.
609 * We will find it useful to have a unique pointer to
610 * the mask to speed avoiding duplicate references at
611 * nodes and possibly save time in calculating indices.
612 */
613 if (netmask) {
614 if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0)
615 return (NULL);
616 b_leaf = x->rn_bit;
617 b = -1 - x->rn_bit;
618 netmask = x->rn_key;
619 }
620 /*
621 * Deal with duplicated keys: attach node to previous instance
622 */
623 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
624 if (keyduplicated) {
625 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
626 if (tt->rn_mask == netmask)
627 return (NULL);
628 if (netmask == 0 ||
629 (tt->rn_mask &&
630 ((b_leaf < tt->rn_bit) /* index(netmask) > node */
631 || rn_refines(netmask, tt->rn_mask)
632 || rn_lexobetter(netmask, tt->rn_mask))))
633 break;
634 }
635 /*
636 * If the mask is not duplicated, we wouldn't
637 * find it among possible duplicate key entries
638 * anyway, so the above test doesn't hurt.
639 *
640 * We sort the masks for a duplicated key the same way as
641 * in a masklist -- most specific to least specific.
642 * This may require the unfortunate nuisance of relocating
643 * the head of the list.
644 */
645 if (tt == saved_tt) {
646 struct radix_node *xx = x;
647 /* link in at head of list */
648 (tt = treenodes)->rn_dupedkey = t;
649 tt->rn_flags = t->rn_flags;
650 tt->rn_parent = x = t->rn_parent;
651 t->rn_parent = tt; /* parent */
652 if (x->rn_left == t)
653 x->rn_left = tt;
654 else
655 x->rn_right = tt;
656 saved_tt = tt; x = xx;
657 } else {
658 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
659 t->rn_dupedkey = tt;
660 tt->rn_parent = t; /* parent */
661 if (tt->rn_dupedkey) /* parent */
662 tt->rn_dupedkey->rn_parent = tt; /* parent */
663 }
664 #ifdef RN_DEBUG
665 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
666 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
667 #endif
668 tt->rn_key = (caddr_t) v;
669 tt->rn_bit = -1;
670 tt->rn_flags = RNF_ACTIVE;
671 }
672 head->rnh_cnt++;
673 /*
674 * Put mask in tree.
675 */
676 if (netmask) {
677 tt->rn_mask = netmask;
678 tt->rn_bit = x->rn_bit;
679 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
680 }
681 t = saved_tt->rn_parent;
682 if (keyduplicated)
683 goto on2;
684 b_leaf = -1 - t->rn_bit;
685 if (t->rn_right == saved_tt)
686 x = t->rn_left;
687 else
688 x = t->rn_right;
689 /* Promote general routes from below */
690 if (x->rn_bit < 0) {
691 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
692 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
693 *mp = m = rn_new_radix_mask(x, NULL);
694 if (m)
695 mp = &m->rm_mklist;
696 }
697 } else if (x->rn_mklist) {
698 /*
699 * Skip over masks whose index is > that of new node
700 */
701 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
702 if (m->rm_bit >= b_leaf)
703 break;
704 t->rn_mklist = m; *mp = NULL;
705 }
706 on2:
707 /* Add new route to highest possible ancestor's list */
708 if ((netmask == 0) || (b > t->rn_bit ))
709 return tt; /* can't lift at all */
710 b_leaf = tt->rn_bit;
711 do {
712 x = t;
713 t = t->rn_parent;
714 } while (b <= t->rn_bit && x != top);
715 /*
716 * Search through routes associated with node to
717 * insert new route according to index.
718 * Need same criteria as when sorting dupedkeys to avoid
719 * double loop on deletion.
720 */
721 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
722 if (m->rm_bit < b_leaf)
723 continue;
724 if (m->rm_bit > b_leaf)
725 break;
726 if (m->rm_flags & RNF_NORMAL) {
727 mmask = m->rm_leaf->rn_mask;
728 if (tt->rn_flags & RNF_NORMAL) {
729 log(LOG_ERR,
730 "Non-unique normal route, mask not entered");
731 return tt;
732 }
733 } else
734 mmask = m->rm_mask;
735 if (mmask == netmask) {
736 m->rm_refs++;
737 tt->rn_mklist = m;
738 return tt;
739 }
740 if (rn_refines(netmask, mmask)
741 || rn_lexobetter(netmask, mmask))
742 break;
743 }
744 *mp = rn_new_radix_mask(tt, *mp);
745 return tt;
746 }
747
748 struct radix_node *
749 rn_delete(void *v_arg, void *netmask_arg, struct radix_node_head *head)
750 {
751 struct radix_node *t, *p, *x, *tt;
752 struct radix_mask *m, *saved_m, **mp;
753 struct radix_node *dupedkey, *saved_tt, *top;
754 caddr_t v, netmask;
755 int b, head_off, vlen;
756
757 v = v_arg;
758 netmask = netmask_arg;
759 x = head->rnh_treetop;
760 tt = rn_search(v, x);
761 head_off = x->rn_offset;
762 vlen = *(u_char *)v;
763 saved_tt = tt;
764 top = x;
765 if (tt == 0 ||
766 Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
767 return (NULL);
768 /*
769 * Delete our route from mask lists.
770 */
771 if (netmask) {
772 if ((x = rn_addmask(netmask, 1, head_off)) == 0)
773 return (NULL);
774 netmask = x->rn_key;
775 while (tt->rn_mask != netmask)
776 if ((tt = tt->rn_dupedkey) == 0)
777 return (NULL);
778 }
779 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
780 goto on1;
781 if (tt->rn_flags & RNF_NORMAL) {
782 if (m->rm_leaf != tt || m->rm_refs > 0) {
783 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
784 return NULL; /* dangling ref could cause disaster */
785 }
786 } else {
787 if (m->rm_mask != tt->rn_mask) {
788 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
789 goto on1;
790 }
791 if (--m->rm_refs >= 0)
792 goto on1;
793 }
794 b = -1 - tt->rn_bit;
795 t = saved_tt->rn_parent;
796 if (b > t->rn_bit)
797 goto on1; /* Wasn't lifted at all */
798 do {
799 x = t;
800 t = t->rn_parent;
801 } while (b <= t->rn_bit && x != top);
802 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
803 if (m == saved_m) {
804 *mp = m->rm_mklist;
805 MKFree(m);
806 break;
807 }
808 if (m == 0) {
809 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
810 if (tt->rn_flags & RNF_NORMAL)
811 return (NULL); /* Dangling ref to us */
812 }
813 on1:
814 /*
815 * Eliminate us from tree
816 */
817 if (tt->rn_flags & RNF_ROOT)
818 return (NULL);
819 head->rnh_cnt--;
820 #ifdef RN_DEBUG
821 /* Get us out of the creation list */
822 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
823 if (t) t->rn_ybro = tt->rn_ybro;
824 #endif
825 t = tt->rn_parent;
826 dupedkey = saved_tt->rn_dupedkey;
827 if (dupedkey) {
828 /*
829 * at this point, tt is the deletion target and saved_tt
830 * is the head of the dupekey chain
831 */
832 if (tt == saved_tt) {
833 /* remove from head of chain */
834 x = dupedkey; x->rn_parent = t;
835 if (t->rn_left == tt)
836 t->rn_left = x;
837 else
838 t->rn_right = x;
839 } else {
840 /* find node in front of tt on the chain */
841 for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
842 p = p->rn_dupedkey;
843 if (p) {
844 p->rn_dupedkey = tt->rn_dupedkey;
845 if (tt->rn_dupedkey) /* parent */
846 tt->rn_dupedkey->rn_parent = p;
847 /* parent */
848 } else log(LOG_ERR, "rn_delete: couldn't find us\n");
849 }
850 t = tt + 1;
851 if (t->rn_flags & RNF_ACTIVE) {
852 #ifndef RN_DEBUG
853 *++x = *t;
854 p = t->rn_parent;
855 #else
856 b = t->rn_info;
857 *++x = *t;
858 t->rn_info = b;
859 p = t->rn_parent;
860 #endif
861 if (p->rn_left == t)
862 p->rn_left = x;
863 else
864 p->rn_right = x;
865 x->rn_left->rn_parent = x;
866 x->rn_right->rn_parent = x;
867 }
868 goto out;
869 }
870 if (t->rn_left == tt)
871 x = t->rn_right;
872 else
873 x = t->rn_left;
874 p = t->rn_parent;
875 if (p->rn_right == t)
876 p->rn_right = x;
877 else
878 p->rn_left = x;
879 x->rn_parent = p;
880 /*
881 * Demote routes attached to us.
882 */
883 if (t->rn_mklist) {
884 if (x->rn_bit >= 0) {
885 for (mp = &x->rn_mklist; (m = *mp);)
886 mp = &m->rm_mklist;
887 *mp = t->rn_mklist;
888 } else {
889 /* If there are any key,mask pairs in a sibling
890 duped-key chain, some subset will appear sorted
891 in the same order attached to our mklist */
892 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
893 if (m == x->rn_mklist) {
894 struct radix_mask *mm = m->rm_mklist;
895 x->rn_mklist = NULL;
896 if (--(m->rm_refs) < 0)
897 MKFree(m);
898 m = mm;
899 }
900 if (m)
901 log(LOG_ERR,
902 "rn_delete: Orphaned Mask %p at %p\n",
903 (void *)m, (void *)x);
904 }
905 }
906 /*
907 * We may be holding an active internal node in the tree.
908 */
909 x = tt + 1;
910 if (t != x) {
911 #ifndef RN_DEBUG
912 *t = *x;
913 #else
914 b = t->rn_info;
915 *t = *x;
916 t->rn_info = b;
917 #endif
918 t->rn_left->rn_parent = t;
919 t->rn_right->rn_parent = t;
920 p = x->rn_parent;
921 if (p->rn_left == x)
922 p->rn_left = t;
923 else
924 p->rn_right = t;
925 }
926 out:
927 tt->rn_flags &= ~RNF_ACTIVE;
928 tt[1].rn_flags &= ~RNF_ACTIVE;
929 return (tt);
930 }
931
932 /*
933 * This is the same as rn_walktree() except for the parameters and the
934 * exit.
935 */
936 static int
937 rn_walktree_from(struct radix_node_head *h, void *a, void *m, walktree_f_t *f,
938 void *w)
939 {
940 int error;
941 struct radix_node *base, *next;
942 u_char *xa = (u_char *)a;
943 u_char *xm = (u_char *)m;
944 struct radix_node *rn, *last;
945 int stopping;
946 int lastb;
947 int rnh_cnt;
948
949 /*
950 * This gets complicated because we may delete the node while
951 * applying the function f to it; we cannot simply use the next
952 * leaf as the successor node in advance, because that leaf may
953 * be removed as well during deletion when it is a clone of the
954 * current node. When that happens, we would end up referring
955 * to an already-freed radix node as the successor node. To get
956 * around this issue, if we detect that the radix tree has changed
957 * in dimension (smaller than before), we simply restart the walk
958 * from the top of tree.
959 */
960 restart:
961 last = NULL;
962 stopping = 0;
963 rnh_cnt = h->rnh_cnt;
964
965 /*
966 * rn_search_m is sort-of-open-coded here.
967 */
968 for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
969 last = rn;
970 if (!(rn->rn_bmask & xm[rn->rn_offset]))
971 break;
972
973 if (rn->rn_bmask & xa[rn->rn_offset])
974 rn = rn->rn_right;
975 else
976 rn = rn->rn_left;
977 }
978
979 /*
980 * Two cases: either we stepped off the end of our mask,
981 * in which case last == rn, or we reached a leaf, in which
982 * case we want to start from the last node we looked at.
983 * Either way, last is the node we want to start from.
984 */
985 rn = last;
986 lastb = rn->rn_bit;
987
988 /* First time through node, go left */
989 while (rn->rn_bit >= 0)
990 rn = rn->rn_left;
991
992 while (!stopping) {
993 base = rn;
994 /* If at right child go back up, otherwise, go right */
995 while (rn->rn_parent->rn_right == rn
996 && !(rn->rn_flags & RNF_ROOT)) {
997 rn = rn->rn_parent;
998
999 /* if went up beyond last, stop */
1000 if (rn->rn_bit <= lastb) {
1001 stopping = 1;
1002 /*
1003 * XXX we should jump to the 'Process leaves'
1004 * part, because the values of 'rn' and 'next'
1005 * we compute will not be used. Not a big deal
1006 * because this loop will terminate, but it is
1007 * inefficient and hard to understand!
1008 */
1009 }
1010 }
1011
1012 /*
1013 * The following code (bug fix) inherited from FreeBSD is
1014 * currently disabled, because our implementation uses the
1015 * RTF_PRCLONING scheme that has been abandoned in current
1016 * FreeBSD release. The scheme involves setting such a flag
1017 * for the default route entry, and therefore all off-link
1018 * destinations would become clones of that entry. Enabling
1019 * the following code would be problematic at this point,
1020 * because the removal of default route would cause only
1021 * the left-half of the tree to be traversed, leaving the
1022 * right-half untouched. If there are clones of the entry
1023 * that reside in that right-half, they would not be deleted
1024 * and would linger around until they expire or explicitly
1025 * deleted, which is a very bad thing.
1026 *
1027 * This code should be uncommented only after we get rid
1028 * of the RTF_PRCLONING scheme.
1029 */
1030 #if 0
1031 /*
1032 * At the top of the tree, no need to traverse the right
1033 * half, prevent the traversal of the entire tree in the
1034 * case of default route.
1035 */
1036 if (rn->rn_parent->rn_flags & RNF_ROOT)
1037 stopping = 1;
1038 #endif
1039
1040 /* Find the next *leaf* to start from */
1041 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1042 rn = rn->rn_left;
1043 next = rn;
1044 /* Process leaves */
1045 while ((rn = base) != 0) {
1046 base = rn->rn_dupedkey;
1047 if (!(rn->rn_flags & RNF_ROOT)
1048 && (error = (*f)(rn, w)))
1049 return (error);
1050 }
1051 /* If one or more nodes got deleted, restart from top */
1052 if (h->rnh_cnt < rnh_cnt)
1053 goto restart;
1054 rn = next;
1055 if (rn->rn_flags & RNF_ROOT)
1056 stopping = 1;
1057 }
1058 return 0;
1059 }
1060
1061 static int
1062 rn_walktree(struct radix_node_head *h, walktree_f_t *f, void *w)
1063 {
1064 int error;
1065 struct radix_node *base, *next;
1066 struct radix_node *rn;
1067 int rnh_cnt;
1068
1069 /*
1070 * This gets complicated because we may delete the node while
1071 * applying the function f to it; we cannot simply use the next
1072 * leaf as the successor node in advance, because that leaf may
1073 * be removed as well during deletion when it is a clone of the
1074 * current node. When that happens, we would end up referring
1075 * to an already-freed radix node as the successor node. To get
1076 * around this issue, if we detect that the radix tree has changed
1077 * in dimension (smaller than before), we simply restart the walk
1078 * from the top of tree.
1079 */
1080 restart:
1081 rn = h->rnh_treetop;
1082 rnh_cnt = h->rnh_cnt;
1083
1084 /* First time through node, go left */
1085 while (rn->rn_bit >= 0)
1086 rn = rn->rn_left;
1087 for (;;) {
1088 base = rn;
1089 /* If at right child go back up, otherwise, go right */
1090 while (rn->rn_parent->rn_right == rn &&
1091 (rn->rn_flags & RNF_ROOT) == 0)
1092 rn = rn->rn_parent;
1093 /* Find the next *leaf* to start from */
1094 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
1095 rn = rn->rn_left;
1096 next = rn;
1097 /* Process leaves */
1098 while ((rn = base) != NULL) {
1099 base = rn->rn_dupedkey;
1100 if (!(rn->rn_flags & RNF_ROOT)
1101 && (error = (*f)(rn, w)))
1102 return (error);
1103 }
1104 /* If one or more nodes got deleted, restart from top */
1105 if (h->rnh_cnt < rnh_cnt)
1106 goto restart;
1107 rn = next;
1108 if (rn->rn_flags & RNF_ROOT)
1109 return (0);
1110 }
1111 /* NOTREACHED */
1112 }
1113
1114 int
1115 rn_inithead(void **head, int off)
1116 {
1117 struct radix_node_head *rnh;
1118 struct radix_node *t, *tt, *ttt;
1119 if (*head)
1120 return (1);
1121 R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
1122 if (rnh == 0)
1123 return (0);
1124 Bzero(rnh, sizeof (*rnh));
1125 *head = rnh;
1126 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1127 ttt = rnh->rnh_nodes + 2;
1128 t->rn_right = ttt;
1129 t->rn_parent = t;
1130 tt = t->rn_left;
1131 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1132 tt->rn_bit = -1 - off;
1133 *ttt = *tt;
1134 ttt->rn_key = rn_ones;
1135 rnh->rnh_addaddr = rn_addroute;
1136 rnh->rnh_deladdr = rn_delete;
1137 rnh->rnh_matchaddr = rn_match;
1138 rnh->rnh_matchaddr_args = rn_match_args;
1139 rnh->rnh_lookup = rn_lookup;
1140 rnh->rnh_lookup_args = rn_lookup_args;
1141 rnh->rnh_walktree = rn_walktree;
1142 rnh->rnh_walktree_from = rn_walktree_from;
1143 rnh->rnh_treetop = t;
1144 rnh->rnh_cnt = 3;
1145 return (1);
1146 }
1147
1148 void
1149 rn_init(void)
1150 {
1151 char *cp, *cplim;
1152 #ifdef KERNEL
1153 struct domain *dom;
1154
1155 /* lock already held when rn_init is called */
1156 for (dom = domains; dom; dom = dom->dom_next)
1157 if (dom->dom_maxrtkey > max_keylen)
1158 max_keylen = dom->dom_maxrtkey;
1159 #endif
1160 if (max_keylen == 0) {
1161 log(LOG_ERR,
1162 "rn_init: radix functions require max_keylen be set\n");
1163 return;
1164 }
1165 R_Malloc(rn_zeros, char *, 3 * max_keylen);
1166 if (rn_zeros == NULL)
1167 panic("rn_init");
1168 Bzero(rn_zeros, 3 * max_keylen);
1169 rn_ones = cp = rn_zeros + max_keylen;
1170 addmask_key = cplim = rn_ones + max_keylen;
1171 while (cp < cplim)
1172 *cp++ = -1;
1173 if (rn_inithead((void **)&mask_rnhead, 0) == 0)
1174 panic("rn_init 2");
1175 }