2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
29 #include <sys/systm.h>
30 #include <sys/param.h>
31 #include <sys/kernel.h>
32 #include <sys/file_internal.h>
33 #include <sys/dirent.h>
36 #include <sys/buf_internal.h>
37 #include <sys/mount.h>
38 #include <sys/vnode_if.h>
39 #include <sys/vnode_internal.h>
40 #include <sys/malloc.h>
42 #include <sys/ubc_internal.h>
43 #include <sys/paths.h>
44 #include <sys/quota.h>
47 #include <sys/kauth.h>
48 #include <sys/uio_internal.h>
49 #include <sys/fsctl.h>
50 #include <sys/cprotect.h>
51 #include <sys/xattr.h>
54 #include <miscfs/specfs/specdev.h>
55 #include <miscfs/fifofs/fifo.h>
56 #include <vfs/vfs_support.h>
57 #include <machine/spl.h>
59 #include <sys/kdebug.h>
60 #include <sys/sysctl.h>
63 #include "hfs_catalog.h"
64 #include "hfs_cnode.h"
66 #include "hfs_mount.h"
67 #include "hfs_quota.h"
68 #include "hfs_endian.h"
70 #include "hfscommon/headers/BTreesInternal.h"
71 #include "hfscommon/headers/FileMgrInternal.h"
73 #define KNDETACH_VNLOCKED 0x00000001
75 /* Global vfs data structures for hfs */
77 /* Always F_FULLFSYNC? 1=yes,0=no (default due to "various" reasons is 'no') */
78 int always_do_fullfsync
= 0;
79 SYSCTL_DECL(_vfs_generic
);
80 SYSCTL_INT (_vfs_generic
, OID_AUTO
, always_do_fullfsync
, CTLFLAG_RW
| CTLFLAG_LOCKED
, &always_do_fullfsync
, 0, "always F_FULLFSYNC when fsync is called");
82 int hfs_makenode(struct vnode
*dvp
, struct vnode
**vpp
,
83 struct componentname
*cnp
, struct vnode_attr
*vap
,
85 int hfs_metasync(struct hfsmount
*hfsmp
, daddr64_t node
, __unused
struct proc
*p
);
86 int hfs_metasync_all(struct hfsmount
*hfsmp
);
88 int hfs_removedir(struct vnode
*, struct vnode
*, struct componentname
*,
90 int hfs_removefile(struct vnode
*, struct vnode
*, struct componentname
*,
91 int, int, int, struct vnode
*, int);
93 /* Used here and in cnode teardown -- for symlinks */
94 int hfs_removefile_callback(struct buf
*bp
, void *hfsmp
);
96 int hfs_movedata (struct vnode
*, struct vnode
*);
97 static int hfs_move_fork (struct filefork
*srcfork
, struct cnode
*src
,
98 struct filefork
*dstfork
, struct cnode
*dst
);
101 static int hfsfifo_read(struct vnop_read_args
*);
102 static int hfsfifo_write(struct vnop_write_args
*);
103 static int hfsfifo_close(struct vnop_close_args
*);
105 extern int (**fifo_vnodeop_p
)(void *);
108 int hfs_vnop_close(struct vnop_close_args
*);
109 int hfs_vnop_create(struct vnop_create_args
*);
110 int hfs_vnop_exchange(struct vnop_exchange_args
*);
111 int hfs_vnop_fsync(struct vnop_fsync_args
*);
112 int hfs_vnop_mkdir(struct vnop_mkdir_args
*);
113 int hfs_vnop_mknod(struct vnop_mknod_args
*);
114 int hfs_vnop_getattr(struct vnop_getattr_args
*);
115 int hfs_vnop_open(struct vnop_open_args
*);
116 int hfs_vnop_readdir(struct vnop_readdir_args
*);
117 int hfs_vnop_remove(struct vnop_remove_args
*);
118 int hfs_vnop_rename(struct vnop_rename_args
*);
119 int hfs_vnop_rmdir(struct vnop_rmdir_args
*);
120 int hfs_vnop_symlink(struct vnop_symlink_args
*);
121 int hfs_vnop_setattr(struct vnop_setattr_args
*);
122 int hfs_vnop_readlink(struct vnop_readlink_args
*);
123 int hfs_vnop_pathconf(struct vnop_pathconf_args
*);
124 int hfs_vnop_whiteout(struct vnop_whiteout_args
*);
125 int hfs_vnop_mmap(struct vnop_mmap_args
*ap
);
126 int hfsspec_read(struct vnop_read_args
*);
127 int hfsspec_write(struct vnop_write_args
*);
128 int hfsspec_close(struct vnop_close_args
*);
130 /* Options for hfs_removedir and hfs_removefile */
131 #define HFSRM_SKIP_RESERVE 0x01
136 /*****************************************************************************
138 * Common Operations on vnodes
140 *****************************************************************************/
143 * Is the given cnode either the .journal or .journal_info_block file on
144 * a volume with an active journal? Many VNOPs use this to deny access
147 * Note: the .journal file on a volume with an external journal still
148 * returns true here, even though it does not actually hold the contents
149 * of the volume's journal.
152 hfs_is_journal_file(struct hfsmount
*hfsmp
, struct cnode
*cp
)
154 if (hfsmp
->jnl
!= NULL
&&
155 (cp
->c_fileid
== hfsmp
->hfs_jnlinfoblkid
||
156 cp
->c_fileid
== hfsmp
->hfs_jnlfileid
)) {
164 * Create a regular file.
167 hfs_vnop_create(struct vnop_create_args
*ap
)
172 error
= hfs_makenode(ap
->a_dvp
, ap
->a_vpp
, ap
->a_cnp
, ap
->a_vap
, ap
->a_context
);
175 * We speculatively skipped the original lookup of the leaf
176 * for CREATE. Since it exists, go get it as long as they
177 * didn't want an exclusive create.
179 if ((error
== EEXIST
) && !(ap
->a_vap
->va_vaflags
& VA_EXCLUSIVE
)) {
180 struct vnop_lookup_args args
;
182 args
.a_desc
= &vnop_lookup_desc
;
183 args
.a_dvp
= ap
->a_dvp
;
184 args
.a_vpp
= ap
->a_vpp
;
185 args
.a_cnp
= ap
->a_cnp
;
186 args
.a_context
= ap
->a_context
;
187 args
.a_cnp
->cn_nameiop
= LOOKUP
;
188 error
= hfs_vnop_lookup(&args
);
190 * We can also race with remove for this file.
192 if (error
== ENOENT
) {
196 /* Make sure it was file. */
197 if ((error
== 0) && !vnode_isreg(*args
.a_vpp
)) {
198 vnode_put(*args
.a_vpp
);
199 *args
.a_vpp
= NULLVP
;
202 args
.a_cnp
->cn_nameiop
= CREATE
;
208 * Make device special file.
211 hfs_vnop_mknod(struct vnop_mknod_args
*ap
)
213 struct vnode_attr
*vap
= ap
->a_vap
;
214 struct vnode
*dvp
= ap
->a_dvp
;
215 struct vnode
**vpp
= ap
->a_vpp
;
219 if (VTOVCB(dvp
)->vcbSigWord
!= kHFSPlusSigWord
) {
223 /* Create the vnode */
224 error
= hfs_makenode(dvp
, vpp
, ap
->a_cnp
, vap
, ap
->a_context
);
229 cp
->c_touch_acctime
= TRUE
;
230 cp
->c_touch_chgtime
= TRUE
;
231 cp
->c_touch_modtime
= TRUE
;
233 if ((vap
->va_rdev
!= VNOVAL
) &&
234 (vap
->va_type
== VBLK
|| vap
->va_type
== VCHR
))
235 cp
->c_rdev
= vap
->va_rdev
;
242 * hfs_ref_data_vp(): returns the data fork vnode for a given cnode.
243 * In the (hopefully rare) case where the data fork vnode is not
244 * present, it will use hfs_vget() to create a new vnode for the
247 * NOTE: If successful and a vnode is returned, the caller is responsible
248 * for releasing the returned vnode with vnode_rele().
251 hfs_ref_data_vp(struct cnode
*cp
, struct vnode
**data_vp
, int skiplock
)
255 if (!data_vp
|| !cp
) /* sanity check incoming parameters */
258 /* maybe we should take the hfs cnode lock here, and if so, use the skiplock parameter to tell us not to */
260 if (!skiplock
) hfs_lock(cp
, HFS_SHARED_LOCK
);
261 struct vnode
*c_vp
= cp
->c_vp
;
263 /* we already have a data vnode */
265 vref
= vnode_ref(*data_vp
);
266 if (!skiplock
) hfs_unlock(cp
);
272 /* no data fork vnode in the cnode, so ask hfs for one. */
274 if (!cp
->c_rsrc_vp
) {
275 /* if we don't have either a c_vp or c_rsrc_vp, we can't really do anything useful */
277 if (!skiplock
) hfs_unlock(cp
);
281 if (0 == hfs_vget(VTOHFS(cp
->c_rsrc_vp
), cp
->c_cnid
, data_vp
, 1, 0) &&
283 vref
= vnode_ref(*data_vp
);
285 if (!skiplock
) hfs_unlock(cp
);
291 /* there was an error getting the vnode */
293 if (!skiplock
) hfs_unlock(cp
);
298 * hfs_lazy_init_decmpfs_cnode(): returns the decmpfs_cnode for a cnode,
299 * allocating it if necessary; returns NULL if there was an allocation error
301 static decmpfs_cnode
*
302 hfs_lazy_init_decmpfs_cnode(struct cnode
*cp
)
305 decmpfs_cnode
*dp
= NULL
;
306 MALLOC_ZONE(dp
, decmpfs_cnode
*, sizeof(decmpfs_cnode
), M_DECMPFS_CNODE
, M_WAITOK
);
308 /* error allocating a decmpfs cnode */
311 decmpfs_cnode_init(dp
);
312 if (!OSCompareAndSwapPtr(NULL
, dp
, (void * volatile *)&cp
->c_decmp
)) {
313 /* another thread got here first, so free the decmpfs_cnode we allocated */
314 decmpfs_cnode_destroy(dp
);
315 FREE_ZONE(dp
, sizeof(*dp
), M_DECMPFS_CNODE
);
323 * hfs_file_is_compressed(): returns 1 if the file is compressed, and 0 (zero) if not.
324 * if the file's compressed flag is set, makes sure that the decmpfs_cnode field
325 * is allocated by calling hfs_lazy_init_decmpfs_cnode(), then makes sure it is populated,
326 * or else fills it in via the decmpfs_file_is_compressed() function.
329 hfs_file_is_compressed(struct cnode
*cp
, int skiplock
)
333 /* fast check to see if file is compressed. If flag is clear, just answer no */
334 if (!(cp
->c_bsdflags
& UF_COMPRESSED
)) {
338 decmpfs_cnode
*dp
= hfs_lazy_init_decmpfs_cnode(cp
);
340 /* error allocating a decmpfs cnode, treat the file as uncompressed */
344 /* flag was set, see if the decmpfs_cnode state is valid (zero == invalid) */
345 uint32_t decmpfs_state
= decmpfs_cnode_get_vnode_state(dp
);
346 switch(decmpfs_state
) {
347 case FILE_IS_COMPRESSED
:
348 case FILE_IS_CONVERTING
: /* treat decompressing files as if they are compressed */
350 case FILE_IS_NOT_COMPRESSED
:
352 /* otherwise the state is not cached yet */
355 /* decmpfs hasn't seen this file yet, so call decmpfs_file_is_compressed() to init the decmpfs_cnode struct */
356 struct vnode
*data_vp
= NULL
;
357 if (0 == hfs_ref_data_vp(cp
, &data_vp
, skiplock
)) {
359 ret
= decmpfs_file_is_compressed(data_vp
, VTOCMP(data_vp
)); // fill in decmpfs_cnode
366 /* hfs_uncompressed_size_of_compressed_file() - get the uncompressed size of the file.
367 * if the caller has passed a valid vnode (has a ref count > 0), then hfsmp and fid are not required.
368 * if the caller doesn't have a vnode, pass NULL in vp, and pass valid hfsmp and fid.
369 * files size is returned in size (required)
370 * if the indicated file is a directory (or something that doesn't have a data fork), then this call
371 * will return an error and the caller should fall back to treating the item as an uncompressed file
374 hfs_uncompressed_size_of_compressed_file(struct hfsmount
*hfsmp
, struct vnode
*vp
, cnid_t fid
, off_t
*size
, int skiplock
)
377 int putaway
= 0; /* flag to remember if we used hfs_vget() */
380 return EINVAL
; /* no place to put the file size */
384 if (!hfsmp
|| !fid
) { /* make sure we have the required parameters */
387 if (0 != hfs_vget(hfsmp
, fid
, &vp
, skiplock
, 0)) { /* vnode is null, use hfs_vget() to get it */
390 putaway
= 1; /* note that hfs_vget() was used to aquire the vnode */
393 /* this double check for compression (hfs_file_is_compressed)
394 * ensures the cached size is present in case decmpfs hasn't
395 * encountered this node yet.
398 if (hfs_file_is_compressed(VTOC(vp
), skiplock
) ) {
399 *size
= decmpfs_cnode_get_vnode_cached_size(VTOCMP(vp
)); /* file info will be cached now, so get size */
401 if (VTOCMP(vp
) && VTOCMP(vp
)->cmp_type
>= CMP_MAX
) {
402 if (VTOCMP(vp
)->cmp_type
!= DATALESS_CMPFS_TYPE
) {
403 // if we don't recognize this type, just use the real data fork size
404 if (VTOC(vp
)->c_datafork
) {
405 *size
= VTOC(vp
)->c_datafork
->ff_size
;
411 *size
= decmpfs_cnode_get_vnode_cached_size(VTOCMP(vp
)); /* file info will be cached now, so get size */
420 if (putaway
) { /* did we use hfs_vget() to get this vnode? */
421 vnode_put(vp
); /* if so, release it and set it to null */
428 hfs_hides_rsrc(vfs_context_t ctx
, struct cnode
*cp
, int skiplock
)
430 if (ctx
== decmpfs_ctx
)
432 if (!hfs_file_is_compressed(cp
, skiplock
))
434 return decmpfs_hides_rsrc(ctx
, cp
->c_decmp
);
438 hfs_hides_xattr(vfs_context_t ctx
, struct cnode
*cp
, const char *name
, int skiplock
)
440 if (ctx
== decmpfs_ctx
)
442 if (!hfs_file_is_compressed(cp
, skiplock
))
444 return decmpfs_hides_xattr(ctx
, cp
->c_decmp
, name
);
446 #endif /* HFS_COMPRESSION */
449 * Open a file/directory.
452 hfs_vnop_open(struct vnop_open_args
*ap
)
454 struct vnode
*vp
= ap
->a_vp
;
458 static int past_bootup
= 0;
459 struct cnode
*cp
= VTOC(vp
);
460 struct hfsmount
*hfsmp
= VTOHFS(vp
);
463 if (ap
->a_mode
& FWRITE
) {
465 if ( hfs_file_is_compressed(cp
, 1) ) { /* 1 == don't take the cnode lock */
466 /* opening a compressed file for write, so convert it to decompressed */
467 struct vnode
*data_vp
= NULL
;
468 error
= hfs_ref_data_vp(cp
, &data_vp
, 1); /* 1 == don't take the cnode lock */
471 error
= decmpfs_decompress_file(data_vp
, VTOCMP(data_vp
), -1, 1, 0);
482 if (hfs_file_is_compressed(cp
, 1) ) { /* 1 == don't take the cnode lock */
483 if (VNODE_IS_RSRC(vp
)) {
484 /* opening the resource fork of a compressed file, so nothing to do */
486 /* opening a compressed file for read, make sure it validates */
487 error
= decmpfs_validate_compressed_file(vp
, VTOCMP(vp
));
496 * Files marked append-only must be opened for appending.
498 if ((cp
->c_bsdflags
& APPEND
) && !vnode_isdir(vp
) &&
499 (ap
->a_mode
& (FWRITE
| O_APPEND
)) == FWRITE
)
502 if (vnode_isreg(vp
) && !UBCINFOEXISTS(vp
))
503 return (EBUSY
); /* file is in use by the kernel */
505 /* Don't allow journal to be opened externally. */
506 if (hfs_is_journal_file(hfsmp
, cp
))
509 if ((hfsmp
->hfs_flags
& HFS_READ_ONLY
) ||
510 (hfsmp
->jnl
== NULL
) ||
512 !vnode_isreg(vp
) || vnode_isinuse(vp
, 0) || vnode_isnamedstream(vp
)) {
514 !vnode_isreg(vp
) || vnode_isinuse(vp
, 0)) {
519 if ((error
= hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
)))
523 /* If we're going to write to the file, initialize quotas. */
524 if ((ap
->a_mode
& FWRITE
) && (hfsmp
->hfs_flags
& HFS_QUOTAS
))
525 (void)hfs_getinoquota(cp
);
529 * On the first (non-busy) open of a fragmented
530 * file attempt to de-frag it (if its less than 20MB).
534 fp
->ff_extents
[7].blockCount
!= 0 &&
535 fp
->ff_size
<= (20 * 1024 * 1024)) {
539 * Wait until system bootup is done (3 min).
540 * And don't relocate a file that's been modified
541 * within the past minute -- this can lead to
547 if (tv
.tv_sec
> (60*3)) {
553 if ((now
.tv_sec
- cp
->c_mtime
) > 60) {
557 if (past_bootup
&& no_mods
) {
558 (void) hfs_relocate(vp
, hfsmp
->nextAllocation
+ 4096,
559 vfs_context_ucred(ap
->a_context
),
560 vfs_context_proc(ap
->a_context
));
571 * Close a file/directory.
575 struct vnop_close_args
/* {
578 vfs_context_t a_context;
581 register struct vnode
*vp
= ap
->a_vp
;
582 register struct cnode
*cp
;
583 struct proc
*p
= vfs_context_proc(ap
->a_context
);
584 struct hfsmount
*hfsmp
;
586 int tooktrunclock
= 0;
589 if ( hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
) != 0)
595 * If the rsrc fork is a named stream, it can cause the data fork to
596 * stay around, preventing de-allocation of these blocks.
597 * Do checks for truncation on close. Purge extra extents if they exist.
598 * Make sure the vp is not a directory, and that it has a resource fork,
599 * and that resource fork is also a named stream.
602 if ((vp
->v_type
== VREG
) && (cp
->c_rsrc_vp
)
603 && (vnode_isnamedstream(cp
->c_rsrc_vp
))) {
606 blks
= howmany(VTOF(vp
)->ff_size
, VTOVCB(vp
)->blockSize
);
608 * If there are extra blocks and there are only 2 refs on
609 * this vp (ourselves + rsrc fork holding ref on us), go ahead
610 * and try to truncate.
612 if ((blks
< VTOF(vp
)->ff_blocks
) && (!vnode_isinuse(vp
, 2))) {
613 // release cnode lock; must acquire truncate lock BEFORE cnode lock
616 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
);
619 if (hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
) != 0) {
620 hfs_unlock_truncate(cp
, 0);
621 // bail out if we can't re-acquire cnode lock
624 // now re-test to make sure it's still valid
626 knownrefs
= 1 + vnode_isnamedstream(cp
->c_rsrc_vp
);
627 if (!vnode_isinuse(vp
, knownrefs
)){
628 // now we can truncate the file, if necessary
629 blks
= howmany(VTOF(vp
)->ff_size
, VTOVCB(vp
)->blockSize
);
630 if (blks
< VTOF(vp
)->ff_blocks
){
631 (void) hfs_truncate(vp
, VTOF(vp
)->ff_size
, IO_NDELAY
, 0, 0, ap
->a_context
);
639 // if we froze the fs and we're exiting, then "thaw" the fs
640 if (hfsmp
->hfs_freezing_proc
== p
&& proc_exiting(p
)) {
641 hfsmp
->hfs_freezing_proc
= NULL
;
642 hfs_unlock_global (hfsmp
);
643 lck_rw_unlock_exclusive(&hfsmp
->hfs_insync
);
646 busy
= vnode_isinuse(vp
, 1);
649 hfs_touchtimes(VTOHFS(vp
), cp
);
651 if (vnode_isdir(vp
)) {
652 hfs_reldirhints(cp
, busy
);
653 } else if (vnode_issystem(vp
) && !busy
) {
658 hfs_unlock_truncate(cp
, 0);
662 if (ap
->a_fflag
& FWASWRITTEN
) {
663 hfs_sync_ejectable(hfsmp
);
670 * Get basic attributes.
673 hfs_vnop_getattr(struct vnop_getattr_args
*ap
)
675 #define VNODE_ATTR_TIMES \
676 (VNODE_ATTR_va_access_time|VNODE_ATTR_va_change_time|VNODE_ATTR_va_modify_time)
677 #define VNODE_ATTR_AUTH \
678 (VNODE_ATTR_va_mode | VNODE_ATTR_va_uid | VNODE_ATTR_va_gid | \
679 VNODE_ATTR_va_flags | VNODE_ATTR_va_acl)
681 struct vnode
*vp
= ap
->a_vp
;
682 struct vnode_attr
*vap
= ap
->a_vap
;
683 struct vnode
*rvp
= NULLVP
;
684 struct hfsmount
*hfsmp
;
692 /* we need to inspect the decmpfs state of the file before we take the hfs cnode lock */
695 off_t uncompressed_size
= -1;
696 if (VATTR_IS_ACTIVE(vap
, va_data_size
) || VATTR_IS_ACTIVE(vap
, va_total_alloc
) || VATTR_IS_ACTIVE(vap
, va_data_alloc
) || VATTR_IS_ACTIVE(vap
, va_total_size
)) {
697 /* we only care about whether the file is compressed if asked for the uncompressed size */
698 if (VNODE_IS_RSRC(vp
)) {
699 /* if it's a resource fork, decmpfs may want us to hide the size */
700 hide_size
= hfs_hides_rsrc(ap
->a_context
, cp
, 0);
702 /* if it's a data fork, we need to know if it was compressed so we can report the uncompressed size */
703 compressed
= hfs_file_is_compressed(cp
, 0);
705 if ((VATTR_IS_ACTIVE(vap
, va_data_size
) || VATTR_IS_ACTIVE(vap
, va_total_size
))) {
706 // if it's compressed
707 if (compressed
|| (!VNODE_IS_RSRC(vp
) && cp
->c_decmp
&& cp
->c_decmp
->cmp_type
>= CMP_MAX
)) {
708 if (0 != hfs_uncompressed_size_of_compressed_file(NULL
, vp
, 0, &uncompressed_size
, 0)) {
709 /* failed to get the uncompressed size, we'll check for this later */
710 uncompressed_size
= -1;
712 // fake that it's compressed
721 * Shortcut for vnode_authorize path. Each of the attributes
722 * in this set is updated atomically so we don't need to take
723 * the cnode lock to access them.
725 if ((vap
->va_active
& ~VNODE_ATTR_AUTH
) == 0) {
726 /* Make sure file still exists. */
727 if (cp
->c_flag
& C_NOEXISTS
)
730 vap
->va_uid
= cp
->c_uid
;
731 vap
->va_gid
= cp
->c_gid
;
732 vap
->va_mode
= cp
->c_mode
;
733 vap
->va_flags
= cp
->c_bsdflags
;
734 vap
->va_supported
|= VNODE_ATTR_AUTH
& ~VNODE_ATTR_va_acl
;
736 if ((cp
->c_attr
.ca_recflags
& kHFSHasSecurityMask
) == 0) {
737 vap
->va_acl
= (kauth_acl_t
) KAUTH_FILESEC_NONE
;
738 VATTR_SET_SUPPORTED(vap
, va_acl
);
745 v_type
= vnode_vtype(vp
);
747 * If time attributes are requested and we have cnode times
748 * that require updating, then acquire an exclusive lock on
749 * the cnode before updating the times. Otherwise we can
750 * just acquire a shared lock.
752 if ((vap
->va_active
& VNODE_ATTR_TIMES
) &&
753 (cp
->c_touch_acctime
|| cp
->c_touch_chgtime
|| cp
->c_touch_modtime
)) {
754 if ((error
= hfs_lock(cp
, HFS_EXCLUSIVE_LOCK
)))
756 hfs_touchtimes(hfsmp
, cp
);
759 if ((error
= hfs_lock(cp
, HFS_SHARED_LOCK
)))
763 if (v_type
== VDIR
) {
764 data_size
= (cp
->c_entries
+ 2) * AVERAGE_HFSDIRENTRY_SIZE
;
766 if (VATTR_IS_ACTIVE(vap
, va_nlink
)) {
770 * For directories, the va_nlink is esentially a count
771 * of the ".." references to a directory plus the "."
772 * reference and the directory itself. So for HFS+ this
773 * becomes the sub-directory count plus two.
775 * In the absence of a sub-directory count we use the
776 * directory's item count. This will be too high in
777 * most cases since it also includes files.
779 if ((hfsmp
->hfs_flags
& HFS_FOLDERCOUNT
) &&
780 (cp
->c_attr
.ca_recflags
& kHFSHasFolderCountMask
))
781 nlink
= cp
->c_attr
.ca_dircount
; /* implied ".." entries */
783 nlink
= cp
->c_entries
;
785 /* Account for ourself and our "." entry */
787 /* Hide our private directories. */
788 if (cp
->c_cnid
== kHFSRootFolderID
) {
789 if (hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
!= 0) {
792 if (hfsmp
->hfs_private_desc
[DIR_HARDLINKS
].cd_cnid
!= 0) {
796 VATTR_RETURN(vap
, va_nlink
, (u_int64_t
)nlink
);
798 if (VATTR_IS_ACTIVE(vap
, va_nchildren
)) {
801 entries
= cp
->c_entries
;
802 /* Hide our private files and directories. */
803 if (cp
->c_cnid
== kHFSRootFolderID
) {
804 if (hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
!= 0)
806 if (hfsmp
->hfs_private_desc
[DIR_HARDLINKS
].cd_cnid
!= 0)
808 if (hfsmp
->jnl
|| ((hfsmp
->vcbAtrb
& kHFSVolumeJournaledMask
) && (hfsmp
->hfs_flags
& HFS_READ_ONLY
)))
809 entries
-= 2; /* hide the journal files */
811 VATTR_RETURN(vap
, va_nchildren
, entries
);
814 * The va_dirlinkcount is the count of real directory hard links.
815 * (i.e. its not the sum of the implied "." and ".." references)
817 if (VATTR_IS_ACTIVE(vap
, va_dirlinkcount
)) {
818 VATTR_RETURN(vap
, va_dirlinkcount
, (uint32_t)cp
->c_linkcount
);
821 data_size
= VCTOF(vp
, cp
)->ff_size
;
823 VATTR_RETURN(vap
, va_nlink
, (u_int64_t
)cp
->c_linkcount
);
824 if (VATTR_IS_ACTIVE(vap
, va_data_alloc
)) {
829 VATTR_RETURN(vap
, va_data_alloc
, 0);
830 } else if (compressed
) {
831 /* for compressed files, we report all allocated blocks as belonging to the data fork */
832 blocks
= cp
->c_blocks
;
833 VATTR_RETURN(vap
, va_data_alloc
, blocks
* (u_int64_t
)hfsmp
->blockSize
);
838 blocks
= VCTOF(vp
, cp
)->ff_blocks
;
839 VATTR_RETURN(vap
, va_data_alloc
, blocks
* (u_int64_t
)hfsmp
->blockSize
);
844 /* conditional because 64-bit arithmetic can be expensive */
845 if (VATTR_IS_ACTIVE(vap
, va_total_size
)) {
846 if (v_type
== VDIR
) {
847 VATTR_RETURN(vap
, va_total_size
, (cp
->c_entries
+ 2) * AVERAGE_HFSDIRENTRY_SIZE
);
849 u_int64_t total_size
= ~0ULL;
853 /* we're hiding the size of this file, so just return 0 */
855 } else if (compressed
) {
856 if (uncompressed_size
== -1) {
858 * We failed to get the uncompressed size above,
859 * so we'll fall back to the standard path below
860 * since total_size is still -1
863 /* use the uncompressed size we fetched above */
864 total_size
= uncompressed_size
;
868 if (total_size
== ~0ULL) {
869 if (cp
->c_datafork
) {
870 total_size
= cp
->c_datafork
->ff_size
;
873 if (cp
->c_blocks
- VTOF(vp
)->ff_blocks
) {
874 /* We deal with rsrc fork vnode iocount at the end of the function */
875 error
= hfs_vgetrsrc(hfsmp
, vp
, &rvp
, TRUE
, FALSE
);
878 * Note that we call hfs_vgetrsrc with error_on_unlinked
879 * set to FALSE. This is because we may be invoked via
880 * fstat() on an open-unlinked file descriptor and we must
881 * continue to support access to the rsrc fork until it disappears.
882 * The code at the end of this function will be
883 * responsible for releasing the iocount generated by
884 * hfs_vgetrsrc. This is because we can't drop the iocount
885 * without unlocking the cnode first.
891 if (rcp
&& rcp
->c_rsrcfork
) {
892 total_size
+= rcp
->c_rsrcfork
->ff_size
;
897 VATTR_RETURN(vap
, va_total_size
, total_size
);
900 if (VATTR_IS_ACTIVE(vap
, va_total_alloc
)) {
901 if (v_type
== VDIR
) {
902 VATTR_RETURN(vap
, va_total_alloc
, 0);
904 VATTR_RETURN(vap
, va_total_alloc
, (u_int64_t
)cp
->c_blocks
* (u_int64_t
)hfsmp
->blockSize
);
909 * If the VFS wants extended security data, and we know that we
910 * don't have any (because it never told us it was setting any)
911 * then we can return the supported bit and no data. If we do
912 * have extended security, we can just leave the bit alone and
913 * the VFS will use the fallback path to fetch it.
915 if (VATTR_IS_ACTIVE(vap
, va_acl
)) {
916 if ((cp
->c_attr
.ca_recflags
& kHFSHasSecurityMask
) == 0) {
917 vap
->va_acl
= (kauth_acl_t
) KAUTH_FILESEC_NONE
;
918 VATTR_SET_SUPPORTED(vap
, va_acl
);
921 if (VATTR_IS_ACTIVE(vap
, va_access_time
)) {
922 /* Access times are lazily updated, get current time if needed */
923 if (cp
->c_touch_acctime
) {
927 vap
->va_access_time
.tv_sec
= tv
.tv_sec
;
929 vap
->va_access_time
.tv_sec
= cp
->c_atime
;
931 vap
->va_access_time
.tv_nsec
= 0;
932 VATTR_SET_SUPPORTED(vap
, va_access_time
);
934 vap
->va_create_time
.tv_sec
= cp
->c_itime
;
935 vap
->va_create_time
.tv_nsec
= 0;
936 vap
->va_modify_time
.tv_sec
= cp
->c_mtime
;
937 vap
->va_modify_time
.tv_nsec
= 0;
938 vap
->va_change_time
.tv_sec
= cp
->c_ctime
;
939 vap
->va_change_time
.tv_nsec
= 0;
940 vap
->va_backup_time
.tv_sec
= cp
->c_btime
;
941 vap
->va_backup_time
.tv_nsec
= 0;
943 /* See if we need to emit the date added field to the user */
944 if (VATTR_IS_ACTIVE(vap
, va_addedtime
)) {
945 u_int32_t dateadded
= hfs_get_dateadded (cp
);
947 vap
->va_addedtime
.tv_sec
= dateadded
;
948 vap
->va_addedtime
.tv_nsec
= 0;
949 VATTR_SET_SUPPORTED (vap
, va_addedtime
);
953 /* XXX is this really a good 'optimal I/O size'? */
954 vap
->va_iosize
= hfsmp
->hfs_logBlockSize
;
955 vap
->va_uid
= cp
->c_uid
;
956 vap
->va_gid
= cp
->c_gid
;
957 vap
->va_mode
= cp
->c_mode
;
958 vap
->va_flags
= cp
->c_bsdflags
;
961 * Exporting file IDs from HFS Plus:
963 * For "normal" files the c_fileid is the same value as the
964 * c_cnid. But for hard link files, they are different - the
965 * c_cnid belongs to the active directory entry (ie the link)
966 * and the c_fileid is for the actual inode (ie the data file).
968 * The stat call (getattr) uses va_fileid and the Carbon APIs,
969 * which are hardlink-ignorant, will ask for va_linkid.
971 vap
->va_fileid
= (u_int64_t
)cp
->c_fileid
;
973 * We need to use the origin cache for both hardlinked files
974 * and directories. Hardlinked directories have multiple cnids
975 * and parents (one per link). Hardlinked files also have their
976 * own parents and link IDs separate from the indirect inode number.
977 * If we don't use the cache, we could end up vending the wrong ID
978 * because the cnode will only reflect the link that was looked up most recently.
980 if (cp
->c_flag
& C_HARDLINK
) {
981 vap
->va_linkid
= (u_int64_t
)hfs_currentcnid(cp
);
982 vap
->va_parentid
= (u_int64_t
)hfs_currentparent(cp
);
984 vap
->va_linkid
= (u_int64_t
)cp
->c_cnid
;
985 vap
->va_parentid
= (u_int64_t
)cp
->c_parentcnid
;
987 vap
->va_fsid
= hfsmp
->hfs_raw_dev
;
989 vap
->va_encoding
= cp
->c_encoding
;
990 vap
->va_rdev
= (v_type
== VBLK
|| v_type
== VCHR
) ? cp
->c_rdev
: 0;
992 if (VATTR_IS_ACTIVE(vap
, va_data_size
)) {
994 vap
->va_data_size
= 0;
995 else if (compressed
) {
996 if (uncompressed_size
== -1) {
997 /* failed to get the uncompressed size above, so just return data_size */
998 vap
->va_data_size
= data_size
;
1000 /* use the uncompressed size we fetched above */
1001 vap
->va_data_size
= uncompressed_size
;
1004 vap
->va_data_size
= data_size
;
1005 // vap->va_supported |= VNODE_ATTR_va_data_size;
1006 VATTR_SET_SUPPORTED(vap
, va_data_size
);
1009 vap
->va_data_size
= data_size
;
1010 vap
->va_supported
|= VNODE_ATTR_va_data_size
;
1013 /* Mark them all at once instead of individual VATTR_SET_SUPPORTED calls. */
1014 vap
->va_supported
|= VNODE_ATTR_va_create_time
| VNODE_ATTR_va_modify_time
|
1015 VNODE_ATTR_va_change_time
| VNODE_ATTR_va_backup_time
|
1016 VNODE_ATTR_va_iosize
| VNODE_ATTR_va_uid
|
1017 VNODE_ATTR_va_gid
| VNODE_ATTR_va_mode
|
1018 VNODE_ATTR_va_flags
|VNODE_ATTR_va_fileid
|
1019 VNODE_ATTR_va_linkid
| VNODE_ATTR_va_parentid
|
1020 VNODE_ATTR_va_fsid
| VNODE_ATTR_va_filerev
|
1021 VNODE_ATTR_va_encoding
| VNODE_ATTR_va_rdev
;
1023 /* If this is the root, let VFS to find out the mount name, which
1024 * may be different from the real name. Otherwise, we need to take care
1025 * for hardlinked files, which need to be looked up, if necessary
1027 if (VATTR_IS_ACTIVE(vap
, va_name
) && (cp
->c_cnid
!= kHFSRootFolderID
)) {
1028 struct cat_desc linkdesc
;
1030 int uselinkdesc
= 0;
1031 cnid_t nextlinkid
= 0;
1032 cnid_t prevlinkid
= 0;
1034 /* Get the name for ATTR_CMN_NAME. We need to take special care for hardlinks
1035 * here because the info. for the link ID requested by getattrlist may be
1036 * different than what's currently in the cnode. This is because the cnode
1037 * will be filled in with the information for the most recent link ID that went
1038 * through namei/lookup(). If there are competing lookups for hardlinks that point
1039 * to the same inode, one (or more) getattrlists could be vended incorrect name information.
1040 * Also, we need to beware of open-unlinked files which could have a namelen of 0.
1043 if ((cp
->c_flag
& C_HARDLINK
) &&
1044 ((cp
->c_desc
.cd_namelen
== 0) || (vap
->va_linkid
!= cp
->c_cnid
))) {
1045 /* If we have no name and our link ID is the raw inode number, then we may
1046 * have an open-unlinked file. Go to the next link in this case.
1048 if ((cp
->c_desc
.cd_namelen
== 0) && (vap
->va_linkid
== cp
->c_fileid
)) {
1049 if ((error
= hfs_lookup_siblinglinks(hfsmp
, vap
->va_linkid
, &prevlinkid
, &nextlinkid
))){
1054 /* just use link obtained from vap above */
1055 nextlinkid
= vap
->va_linkid
;
1058 /* We need to probe the catalog for the descriptor corresponding to the link ID
1059 * stored in nextlinkid. Note that we don't know if we have the exclusive lock
1060 * for the cnode here, so we can't just update the descriptor. Instead,
1061 * we should just store the descriptor's value locally and then use it to pass
1062 * out the name value as needed below.
1065 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
1066 error
= cat_findname(hfsmp
, nextlinkid
, &linkdesc
);
1067 hfs_systemfile_unlock(hfsmp
, lockflags
);
1074 /* By this point, we've either patched up the name above and the c_desc
1075 * points to the correct data, or it already did, in which case we just proceed
1076 * by copying the name into the vap. Note that we will never set va_name to
1077 * supported if nextlinkid is never initialized. This could happen in the degenerate
1078 * case above involving the raw inode number, where it has no nextlinkid. In this case
1079 * we will simply not mark the name bit as supported.
1082 strlcpy(vap
->va_name
, (const char*) linkdesc
.cd_nameptr
, MAXPATHLEN
);
1083 VATTR_SET_SUPPORTED(vap
, va_name
);
1084 cat_releasedesc(&linkdesc
);
1086 else if (cp
->c_desc
.cd_namelen
) {
1087 strlcpy(vap
->va_name
, (const char*) cp
->c_desc
.cd_nameptr
, MAXPATHLEN
);
1088 VATTR_SET_SUPPORTED(vap
, va_name
);
1095 * We need to vnode_put the rsrc fork vnode only *after* we've released
1096 * the cnode lock, since vnode_put can trigger an inactive call, which
1097 * will go back into HFS and try to acquire a cnode lock.
1107 hfs_vnop_setattr(ap
)
1108 struct vnop_setattr_args
/* {
1110 struct vnode_attr *a_vap;
1111 vfs_context_t a_context;
1114 struct vnode_attr
*vap
= ap
->a_vap
;
1115 struct vnode
*vp
= ap
->a_vp
;
1116 struct cnode
*cp
= NULL
;
1117 struct hfsmount
*hfsmp
;
1118 kauth_cred_t cred
= vfs_context_ucred(ap
->a_context
);
1119 struct proc
*p
= vfs_context_proc(ap
->a_context
);
1125 orig_ctime
= VTOC(vp
)->c_ctime
;
1128 int decmpfs_reset_state
= 0;
1130 we call decmpfs_update_attributes even if the file is not compressed
1131 because we want to update the incoming flags if the xattrs are invalid
1133 error
= decmpfs_update_attributes(vp
, vap
);
1138 // if this is not a size-changing setattr and it is not just
1139 // an atime update, then check for a snapshot.
1141 if (!VATTR_IS_ACTIVE(vap
, va_data_size
) && !(vap
->va_active
== VNODE_ATTR_va_access_time
)) {
1142 check_for_tracked_file(vp
, orig_ctime
, NAMESPACE_HANDLER_METADATA_MOD
, NULL
);
1148 if ((error
= cp_handle_vnop(vp
, CP_WRITE_ACCESS
, 0)) != 0) {
1151 #endif /* CONFIG_PROTECT */
1155 /* Don't allow modification of the journal. */
1156 if (hfs_is_journal_file(hfsmp
, VTOC(vp
))) {
1161 * File size change request.
1162 * We are guaranteed that this is not a directory, and that
1163 * the filesystem object is writeable.
1165 * NOTE: HFS COMPRESSION depends on the data_size being set *before* the bsd flags are updated
1167 VATTR_SET_SUPPORTED(vap
, va_data_size
);
1168 if (VATTR_IS_ACTIVE(vap
, va_data_size
) && !vnode_islnk(vp
)) {
1170 /* keep the compressed state locked until we're done truncating the file */
1171 decmpfs_cnode
*dp
= VTOCMP(vp
);
1174 * call hfs_lazy_init_decmpfs_cnode() to make sure that the decmpfs_cnode
1175 * is filled in; we need a decmpfs_cnode to lock out decmpfs state changes
1176 * on this file while it's truncating
1178 dp
= hfs_lazy_init_decmpfs_cnode(VTOC(vp
));
1180 /* failed to allocate a decmpfs_cnode */
1181 return ENOMEM
; /* what should this be? */
1185 check_for_tracked_file(vp
, orig_ctime
, vap
->va_data_size
== 0 ? NAMESPACE_HANDLER_TRUNCATE_OP
|NAMESPACE_HANDLER_DELETE_OP
: NAMESPACE_HANDLER_TRUNCATE_OP
, NULL
);
1187 decmpfs_lock_compressed_data(dp
, 1);
1188 if (hfs_file_is_compressed(VTOC(vp
), 1)) {
1189 error
= decmpfs_decompress_file(vp
, dp
, -1/*vap->va_data_size*/, 0, 1);
1191 decmpfs_unlock_compressed_data(dp
, 1);
1197 /* Take truncate lock before taking cnode lock. */
1198 hfs_lock_truncate(VTOC(vp
), HFS_EXCLUSIVE_LOCK
);
1200 /* Perform the ubc_setsize before taking the cnode lock. */
1201 ubc_setsize(vp
, vap
->va_data_size
);
1203 if ((error
= hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
))) {
1204 hfs_unlock_truncate(VTOC(vp
), 0);
1206 decmpfs_unlock_compressed_data(dp
, 1);
1212 error
= hfs_truncate(vp
, vap
->va_data_size
, vap
->va_vaflags
& 0xffff, 1, 0, ap
->a_context
);
1214 hfs_unlock_truncate(cp
, 0);
1216 decmpfs_unlock_compressed_data(dp
, 1);
1222 if ((error
= hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
)))
1228 * If it is just an access time update request by itself
1229 * we know the request is from kernel level code, and we
1230 * can delay it without being as worried about consistency.
1231 * This change speeds up mmaps, in the rare case that they
1232 * get caught behind a sync.
1235 if (vap
->va_active
== VNODE_ATTR_va_access_time
) {
1236 cp
->c_touch_acctime
=TRUE
;
1243 * Owner/group change request.
1244 * We are guaranteed that the new owner/group is valid and legal.
1246 VATTR_SET_SUPPORTED(vap
, va_uid
);
1247 VATTR_SET_SUPPORTED(vap
, va_gid
);
1248 nuid
= VATTR_IS_ACTIVE(vap
, va_uid
) ? vap
->va_uid
: (uid_t
)VNOVAL
;
1249 ngid
= VATTR_IS_ACTIVE(vap
, va_gid
) ? vap
->va_gid
: (gid_t
)VNOVAL
;
1250 if (((nuid
!= (uid_t
)VNOVAL
) || (ngid
!= (gid_t
)VNOVAL
)) &&
1251 ((error
= hfs_chown(vp
, nuid
, ngid
, cred
, p
)) != 0))
1255 * Mode change request.
1256 * We are guaranteed that the mode value is valid and that in
1257 * conjunction with the owner and group, this change is legal.
1259 VATTR_SET_SUPPORTED(vap
, va_mode
);
1260 if (VATTR_IS_ACTIVE(vap
, va_mode
) &&
1261 ((error
= hfs_chmod(vp
, (int)vap
->va_mode
, cred
, p
)) != 0))
1265 * File flags change.
1266 * We are guaranteed that only flags allowed to change given the
1267 * current securelevel are being changed.
1269 VATTR_SET_SUPPORTED(vap
, va_flags
);
1270 if (VATTR_IS_ACTIVE(vap
, va_flags
)) {
1274 if ((cp
->c_bsdflags
^ vap
->va_flags
) & UF_COMPRESSED
) {
1276 * the UF_COMPRESSED was toggled, so reset our cached compressed state
1277 * but we don't want to actually do the update until we've released the cnode lock down below
1278 * NOTE: turning the flag off doesn't actually decompress the file, so that we can
1279 * turn off the flag and look at the "raw" file for debugging purposes
1281 decmpfs_reset_state
= 1;
1285 cp
->c_bsdflags
= vap
->va_flags
;
1286 cp
->c_touch_chgtime
= TRUE
;
1289 * Mirror the UF_HIDDEN flag to the invisible bit of the Finder Info.
1291 * The fdFlags for files and frFlags for folders are both 8 bytes
1292 * into the userInfo (the first 16 bytes of the Finder Info). They
1293 * are both 16-bit fields.
1295 fdFlags
= (u_int16_t
*) &cp
->c_finderinfo
[8];
1296 if (vap
->va_flags
& UF_HIDDEN
)
1297 *fdFlags
|= OSSwapHostToBigConstInt16(kFinderInvisibleMask
);
1299 *fdFlags
&= ~OSSwapHostToBigConstInt16(kFinderInvisibleMask
);
1303 * Timestamp updates.
1305 VATTR_SET_SUPPORTED(vap
, va_create_time
);
1306 VATTR_SET_SUPPORTED(vap
, va_access_time
);
1307 VATTR_SET_SUPPORTED(vap
, va_modify_time
);
1308 VATTR_SET_SUPPORTED(vap
, va_backup_time
);
1309 VATTR_SET_SUPPORTED(vap
, va_change_time
);
1310 if (VATTR_IS_ACTIVE(vap
, va_create_time
) ||
1311 VATTR_IS_ACTIVE(vap
, va_access_time
) ||
1312 VATTR_IS_ACTIVE(vap
, va_modify_time
) ||
1313 VATTR_IS_ACTIVE(vap
, va_backup_time
)) {
1314 if (VATTR_IS_ACTIVE(vap
, va_create_time
))
1315 cp
->c_itime
= vap
->va_create_time
.tv_sec
;
1316 if (VATTR_IS_ACTIVE(vap
, va_access_time
)) {
1317 cp
->c_atime
= vap
->va_access_time
.tv_sec
;
1318 cp
->c_touch_acctime
= FALSE
;
1320 if (VATTR_IS_ACTIVE(vap
, va_modify_time
)) {
1321 cp
->c_mtime
= vap
->va_modify_time
.tv_sec
;
1322 cp
->c_touch_modtime
= FALSE
;
1323 cp
->c_touch_chgtime
= TRUE
;
1326 * The utimes system call can reset the modification
1327 * time but it doesn't know about HFS create times.
1328 * So we need to ensure that the creation time is
1329 * always at least as old as the modification time.
1331 if ((VTOVCB(vp
)->vcbSigWord
== kHFSPlusSigWord
) &&
1332 (cp
->c_cnid
!= kHFSRootFolderID
) &&
1333 (cp
->c_mtime
< cp
->c_itime
)) {
1334 cp
->c_itime
= cp
->c_mtime
;
1337 if (VATTR_IS_ACTIVE(vap
, va_backup_time
))
1338 cp
->c_btime
= vap
->va_backup_time
.tv_sec
;
1339 cp
->c_flag
|= C_MODIFIED
;
1343 * Set name encoding.
1345 VATTR_SET_SUPPORTED(vap
, va_encoding
);
1346 if (VATTR_IS_ACTIVE(vap
, va_encoding
)) {
1347 cp
->c_encoding
= vap
->va_encoding
;
1348 hfs_setencodingbits(hfsmp
, cp
->c_encoding
);
1351 if ((error
= hfs_update(vp
, TRUE
)) != 0)
1355 /* Purge origin cache for cnode, since caller now has correct link ID for it
1356 * We purge it here since it was acquired for us during lookup, and we no longer need it.
1358 if ((cp
->c_flag
& C_HARDLINK
) && (vp
->v_type
!= VDIR
)){
1359 hfs_relorigin(cp
, 0);
1364 if (decmpfs_reset_state
) {
1366 * we've changed the UF_COMPRESSED flag, so reset the decmpfs state for this cnode
1367 * but don't do it while holding the hfs cnode lock
1369 decmpfs_cnode
*dp
= VTOCMP(vp
);
1372 * call hfs_lazy_init_decmpfs_cnode() to make sure that the decmpfs_cnode
1373 * is filled in; we need a decmpfs_cnode to prevent decmpfs state changes
1374 * on this file if it's locked
1376 dp
= hfs_lazy_init_decmpfs_cnode(VTOC(vp
));
1378 /* failed to allocate a decmpfs_cnode */
1379 return ENOMEM
; /* what should this be? */
1382 decmpfs_cnode_set_vnode_state(dp
, FILE_TYPE_UNKNOWN
, 0);
1391 * Change the mode on a file.
1392 * cnode must be locked before calling.
1395 hfs_chmod(struct vnode
*vp
, int mode
, __unused kauth_cred_t cred
, __unused
struct proc
*p
)
1397 register struct cnode
*cp
= VTOC(vp
);
1399 if (VTOVCB(vp
)->vcbSigWord
!= kHFSPlusSigWord
)
1402 // Don't allow modification of the journal or journal_info_block
1403 if (hfs_is_journal_file(VTOHFS(vp
), cp
)) {
1407 #if OVERRIDE_UNKNOWN_PERMISSIONS
1408 if (((unsigned int)vfs_flags(VTOVFS(vp
))) & MNT_UNKNOWNPERMISSIONS
) {
1412 cp
->c_mode
&= ~ALLPERMS
;
1413 cp
->c_mode
|= (mode
& ALLPERMS
);
1414 cp
->c_touch_chgtime
= TRUE
;
1420 hfs_write_access(struct vnode
*vp
, kauth_cred_t cred
, struct proc
*p
, Boolean considerFlags
)
1422 struct cnode
*cp
= VTOC(vp
);
1427 * Disallow write attempts on read-only file systems;
1428 * unless the file is a socket, fifo, or a block or
1429 * character device resident on the file system.
1431 switch (vnode_vtype(vp
)) {
1435 if (VTOHFS(vp
)->hfs_flags
& HFS_READ_ONLY
)
1442 /* If immutable bit set, nobody gets to write it. */
1443 if (considerFlags
&& (cp
->c_bsdflags
& IMMUTABLE
))
1446 /* Otherwise, user id 0 always gets access. */
1447 if (!suser(cred
, NULL
))
1450 /* Otherwise, check the owner. */
1451 if ((retval
= hfs_owner_rights(VTOHFS(vp
), cp
->c_uid
, cred
, p
, false)) == 0)
1452 return ((cp
->c_mode
& S_IWUSR
) == S_IWUSR
? 0 : EACCES
);
1454 /* Otherwise, check the groups. */
1455 if (kauth_cred_ismember_gid(cred
, cp
->c_gid
, &is_member
) == 0 && is_member
) {
1456 return ((cp
->c_mode
& S_IWGRP
) == S_IWGRP
? 0 : EACCES
);
1459 /* Otherwise, check everyone else. */
1460 return ((cp
->c_mode
& S_IWOTH
) == S_IWOTH
? 0 : EACCES
);
1465 * Perform chown operation on cnode cp;
1466 * code must be locked prior to call.
1470 hfs_chown(struct vnode
*vp
, uid_t uid
, gid_t gid
, __unused kauth_cred_t cred
,
1471 __unused
struct proc
*p
)
1473 hfs_chown(struct vnode
*vp
, uid_t uid
, gid_t gid
, kauth_cred_t cred
,
1474 __unused
struct proc
*p
)
1477 register struct cnode
*cp
= VTOC(vp
);
1486 if (VTOVCB(vp
)->vcbSigWord
!= kHFSPlusSigWord
)
1489 if (((unsigned int)vfs_flags(VTOVFS(vp
))) & MNT_UNKNOWNPERMISSIONS
)
1492 if (uid
== (uid_t
)VNOVAL
)
1494 if (gid
== (gid_t
)VNOVAL
)
1497 #if 0 /* we are guaranteed that this is already the case */
1499 * If we don't own the file, are trying to change the owner
1500 * of the file, or are not a member of the target group,
1501 * the caller must be superuser or the call fails.
1503 if ((kauth_cred_getuid(cred
) != cp
->c_uid
|| uid
!= cp
->c_uid
||
1504 (gid
!= cp
->c_gid
&&
1505 (kauth_cred_ismember_gid(cred
, gid
, &is_member
) || !is_member
))) &&
1506 (error
= suser(cred
, 0)))
1513 if ((error
= hfs_getinoquota(cp
)))
1516 dqrele(cp
->c_dquot
[USRQUOTA
]);
1517 cp
->c_dquot
[USRQUOTA
] = NODQUOT
;
1520 dqrele(cp
->c_dquot
[GRPQUOTA
]);
1521 cp
->c_dquot
[GRPQUOTA
] = NODQUOT
;
1525 * Eventually need to account for (fake) a block per directory
1526 * if (vnode_isdir(vp))
1527 * change = VTOHFS(vp)->blockSize;
1531 change
= (int64_t)(cp
->c_blocks
) * (int64_t)VTOVCB(vp
)->blockSize
;
1532 (void) hfs_chkdq(cp
, -change
, cred
, CHOWN
);
1533 (void) hfs_chkiq(cp
, -1, cred
, CHOWN
);
1534 for (i
= 0; i
< MAXQUOTAS
; i
++) {
1535 dqrele(cp
->c_dquot
[i
]);
1536 cp
->c_dquot
[i
] = NODQUOT
;
1542 if ((error
= hfs_getinoquota(cp
)) == 0) {
1544 dqrele(cp
->c_dquot
[USRQUOTA
]);
1545 cp
->c_dquot
[USRQUOTA
] = NODQUOT
;
1548 dqrele(cp
->c_dquot
[GRPQUOTA
]);
1549 cp
->c_dquot
[GRPQUOTA
] = NODQUOT
;
1551 if ((error
= hfs_chkdq(cp
, change
, cred
, CHOWN
)) == 0) {
1552 if ((error
= hfs_chkiq(cp
, 1, cred
, CHOWN
)) == 0)
1555 (void) hfs_chkdq(cp
, -change
, cred
, CHOWN
|FORCE
);
1557 for (i
= 0; i
< MAXQUOTAS
; i
++) {
1558 dqrele(cp
->c_dquot
[i
]);
1559 cp
->c_dquot
[i
] = NODQUOT
;
1564 if (hfs_getinoquota(cp
) == 0) {
1566 dqrele(cp
->c_dquot
[USRQUOTA
]);
1567 cp
->c_dquot
[USRQUOTA
] = NODQUOT
;
1570 dqrele(cp
->c_dquot
[GRPQUOTA
]);
1571 cp
->c_dquot
[GRPQUOTA
] = NODQUOT
;
1573 (void) hfs_chkdq(cp
, change
, cred
, FORCE
|CHOWN
);
1574 (void) hfs_chkiq(cp
, 1, cred
, FORCE
|CHOWN
);
1575 (void) hfs_getinoquota(cp
);
1579 if (hfs_getinoquota(cp
))
1580 panic("hfs_chown: lost quota");
1585 According to the SUSv3 Standard, chown() shall mark
1586 for update the st_ctime field of the file.
1587 (No exceptions mentioned)
1589 cp
->c_touch_chgtime
= TRUE
;
1595 * The hfs_exchange routine swaps the fork data in two files by
1596 * exchanging some of the information in the cnode. It is used
1597 * to preserve the file ID when updating an existing file, in
1598 * case the file is being tracked through its file ID. Typically
1599 * its used after creating a new file during a safe-save.
1602 hfs_vnop_exchange(ap
)
1603 struct vnop_exchange_args
/* {
1604 struct vnode *a_fvp;
1605 struct vnode *a_tvp;
1607 vfs_context_t a_context;
1610 struct vnode
*from_vp
= ap
->a_fvp
;
1611 struct vnode
*to_vp
= ap
->a_tvp
;
1612 struct cnode
*from_cp
;
1613 struct cnode
*to_cp
;
1614 struct hfsmount
*hfsmp
;
1615 struct cat_desc tempdesc
;
1616 struct cat_attr tempattr
;
1617 const unsigned char *from_nameptr
;
1618 const unsigned char *to_nameptr
;
1619 char from_iname
[32];
1625 int error
= 0, started_tr
= 0, got_cookie
= 0;
1626 cat_cookie_t cookie
;
1627 time_t orig_from_ctime
, orig_to_ctime
;
1629 /* The files must be on the same volume. */
1630 if (vnode_mount(from_vp
) != vnode_mount(to_vp
))
1633 if (from_vp
== to_vp
)
1636 orig_from_ctime
= VTOC(from_vp
)->c_ctime
;
1637 orig_to_ctime
= VTOC(to_vp
)->c_ctime
;
1642 * Do not allow exchangedata/F_MOVEDATAEXTENTS on data-protected filesystems
1643 * because the EAs will not be swapped. As a result, the persistent keys would not
1644 * match and the files will be garbage.
1646 if (cp_fs_protected (vnode_mount(from_vp
))) {
1652 if ( hfs_file_is_compressed(VTOC(from_vp
), 0) ) {
1653 if ( 0 != ( error
= decmpfs_decompress_file(from_vp
, VTOCMP(from_vp
), -1, 0, 1) ) ) {
1658 if ( hfs_file_is_compressed(VTOC(to_vp
), 0) ) {
1659 if ( 0 != ( error
= decmpfs_decompress_file(to_vp
, VTOCMP(to_vp
), -1, 0, 1) ) ) {
1663 #endif // HFS_COMPRESSION
1666 * Normally, we want to notify the user handlers about the event,
1667 * except if it's a handler driving the event.
1669 if ((ap
->a_options
& FSOPT_EXCHANGE_DATA_ONLY
) == 0) {
1670 check_for_tracked_file(from_vp
, orig_from_ctime
, NAMESPACE_HANDLER_WRITE_OP
, NULL
);
1671 check_for_tracked_file(to_vp
, orig_to_ctime
, NAMESPACE_HANDLER_WRITE_OP
, NULL
);
1674 * We're doing a data-swap.
1675 * Take the truncate lock/cnode lock, then verify there are no mmap references.
1676 * Issue a hfs_filedone to flush out all of the remaining state for this file.
1677 * Allow the rest of the codeflow to re-acquire the cnode locks in order.
1680 hfs_lock_truncate (VTOC(from_vp
), HFS_SHARED_LOCK
);
1682 if ((error
= hfs_lock(VTOC(from_vp
), HFS_EXCLUSIVE_LOCK
))) {
1683 hfs_unlock_truncate (VTOC(from_vp
), 0);
1687 /* Verify the source file is not in use by anyone besides us (including mmap refs) */
1688 if (vnode_isinuse(from_vp
, 1)) {
1690 hfs_unlock(VTOC(from_vp
));
1691 hfs_unlock_truncate (VTOC(from_vp
), 0);
1695 /* Flush out the data in the source file */
1696 VTOC(from_vp
)->c_flag
|= C_SWAPINPROGRESS
;
1697 error
= hfs_filedone (from_vp
, ap
->a_context
);
1698 VTOC(from_vp
)->c_flag
&= ~C_SWAPINPROGRESS
;
1699 hfs_unlock(VTOC(from_vp
));
1700 hfs_unlock_truncate(VTOC(from_vp
), 0);
1707 if ((error
= hfs_lockpair(VTOC(from_vp
), VTOC(to_vp
), HFS_EXCLUSIVE_LOCK
)))
1710 from_cp
= VTOC(from_vp
);
1711 to_cp
= VTOC(to_vp
);
1712 hfsmp
= VTOHFS(from_vp
);
1714 /* Only normal files can be exchanged. */
1715 if (!vnode_isreg(from_vp
) || !vnode_isreg(to_vp
) ||
1716 VNODE_IS_RSRC(from_vp
) || VNODE_IS_RSRC(to_vp
)) {
1721 // Don't allow modification of the journal or journal_info_block
1722 if (hfs_is_journal_file(hfsmp
, from_cp
) ||
1723 hfs_is_journal_file(hfsmp
, to_cp
)) {
1729 * Ok, now that all of the pre-flighting is done, call the underlying
1730 * function if needed.
1732 if (ap
->a_options
& FSOPT_EXCHANGE_DATA_ONLY
) {
1733 error
= hfs_movedata(from_vp
, to_vp
);
1738 if ((error
= hfs_start_transaction(hfsmp
)) != 0) {
1744 * Reserve some space in the Catalog file.
1746 if ((error
= cat_preflight(hfsmp
, CAT_EXCHANGE
, &cookie
, vfs_context_proc(ap
->a_context
)))) {
1751 /* The backend code always tries to delete the virtual
1752 * extent id for exchanging files so we need to lock
1753 * the extents b-tree.
1755 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
| SFL_EXTENTS
| SFL_ATTRIBUTE
, HFS_EXCLUSIVE_LOCK
);
1757 /* Account for the location of the catalog objects. */
1758 if (from_cp
->c_flag
& C_HARDLINK
) {
1759 MAKE_INODE_NAME(from_iname
, sizeof(from_iname
),
1760 from_cp
->c_attr
.ca_linkref
);
1761 from_nameptr
= (unsigned char *)from_iname
;
1762 from_parid
= hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
;
1763 from_cp
->c_hint
= 0;
1765 from_nameptr
= from_cp
->c_desc
.cd_nameptr
;
1766 from_parid
= from_cp
->c_parentcnid
;
1768 if (to_cp
->c_flag
& C_HARDLINK
) {
1769 MAKE_INODE_NAME(to_iname
, sizeof(to_iname
),
1770 to_cp
->c_attr
.ca_linkref
);
1771 to_nameptr
= (unsigned char *)to_iname
;
1772 to_parid
= hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
;
1775 to_nameptr
= to_cp
->c_desc
.cd_nameptr
;
1776 to_parid
= to_cp
->c_parentcnid
;
1779 /* Do the exchange */
1780 error
= ExchangeFileIDs(hfsmp
, from_nameptr
, to_nameptr
, from_parid
,
1781 to_parid
, from_cp
->c_hint
, to_cp
->c_hint
);
1782 hfs_systemfile_unlock(hfsmp
, lockflags
);
1785 * Note that we don't need to exchange any extended attributes
1786 * since the attributes are keyed by file ID.
1789 if (error
!= E_NONE
) {
1790 error
= MacToVFSError(error
);
1794 /* Purge the vnodes from the name cache */
1796 cache_purge(from_vp
);
1800 /* Save a copy of from attributes before swapping. */
1801 bcopy(&from_cp
->c_desc
, &tempdesc
, sizeof(struct cat_desc
));
1802 bcopy(&from_cp
->c_attr
, &tempattr
, sizeof(struct cat_attr
));
1803 tempflag
= from_cp
->c_flag
& (C_HARDLINK
| C_HASXATTRS
);
1806 * Swap the descriptors and all non-fork related attributes.
1807 * (except the modify date)
1809 bcopy(&to_cp
->c_desc
, &from_cp
->c_desc
, sizeof(struct cat_desc
));
1811 from_cp
->c_hint
= 0;
1812 from_cp
->c_fileid
= from_cp
->c_cnid
;
1813 from_cp
->c_itime
= to_cp
->c_itime
;
1814 from_cp
->c_btime
= to_cp
->c_btime
;
1815 from_cp
->c_atime
= to_cp
->c_atime
;
1816 from_cp
->c_ctime
= to_cp
->c_ctime
;
1817 from_cp
->c_gid
= to_cp
->c_gid
;
1818 from_cp
->c_uid
= to_cp
->c_uid
;
1819 from_cp
->c_bsdflags
= to_cp
->c_bsdflags
;
1820 from_cp
->c_mode
= to_cp
->c_mode
;
1821 from_cp
->c_linkcount
= to_cp
->c_linkcount
;
1822 from_cp
->c_flag
= to_cp
->c_flag
& (C_HARDLINK
| C_HASXATTRS
);
1823 from_cp
->c_attr
.ca_recflags
= to_cp
->c_attr
.ca_recflags
;
1824 bcopy(to_cp
->c_finderinfo
, from_cp
->c_finderinfo
, 32);
1826 bcopy(&tempdesc
, &to_cp
->c_desc
, sizeof(struct cat_desc
));
1828 to_cp
->c_fileid
= to_cp
->c_cnid
;
1829 to_cp
->c_itime
= tempattr
.ca_itime
;
1830 to_cp
->c_btime
= tempattr
.ca_btime
;
1831 to_cp
->c_atime
= tempattr
.ca_atime
;
1832 to_cp
->c_ctime
= tempattr
.ca_ctime
;
1833 to_cp
->c_gid
= tempattr
.ca_gid
;
1834 to_cp
->c_uid
= tempattr
.ca_uid
;
1835 to_cp
->c_bsdflags
= tempattr
.ca_flags
;
1836 to_cp
->c_mode
= tempattr
.ca_mode
;
1837 to_cp
->c_linkcount
= tempattr
.ca_linkcount
;
1838 to_cp
->c_flag
= tempflag
;
1839 to_cp
->c_attr
.ca_recflags
= tempattr
.ca_recflags
;
1840 bcopy(tempattr
.ca_finderinfo
, to_cp
->c_finderinfo
, 32);
1842 /* Rehash the cnodes using their new file IDs */
1843 hfs_chash_rehash(hfsmp
, from_cp
, to_cp
);
1846 * When a file moves out of "Cleanup At Startup"
1847 * we can drop its NODUMP status.
1849 if ((from_cp
->c_bsdflags
& UF_NODUMP
) &&
1850 (from_cp
->c_parentcnid
!= to_cp
->c_parentcnid
)) {
1851 from_cp
->c_bsdflags
&= ~UF_NODUMP
;
1852 from_cp
->c_touch_chgtime
= TRUE
;
1854 if ((to_cp
->c_bsdflags
& UF_NODUMP
) &&
1855 (to_cp
->c_parentcnid
!= from_cp
->c_parentcnid
)) {
1856 to_cp
->c_bsdflags
&= ~UF_NODUMP
;
1857 to_cp
->c_touch_chgtime
= TRUE
;
1862 cat_postflight(hfsmp
, &cookie
, vfs_context_proc(ap
->a_context
));
1865 hfs_end_transaction(hfsmp
);
1868 hfs_unlockpair(from_cp
, to_cp
);
1873 hfs_vnop_mmap(struct vnop_mmap_args
*ap
)
1875 struct vnode
*vp
= ap
->a_vp
;
1878 if (VNODE_IS_RSRC(vp
)) {
1879 /* allow pageins of the resource fork */
1881 int compressed
= hfs_file_is_compressed(VTOC(vp
), 1); /* 1 == don't take the cnode lock */
1882 time_t orig_ctime
= VTOC(vp
)->c_ctime
;
1884 if (!compressed
&& (VTOC(vp
)->c_bsdflags
& UF_COMPRESSED
)) {
1885 error
= check_for_dataless_file(vp
, NAMESPACE_HANDLER_READ_OP
);
1891 if (ap
->a_fflags
& PROT_WRITE
) {
1892 check_for_tracked_file(vp
, orig_ctime
, NAMESPACE_HANDLER_WRITE_OP
, NULL
);
1897 // NOTE: we return ENOTSUP because we want the cluster layer
1898 // to actually do all the real work.
1906 * This is a non-symmetric variant of exchangedata. In this function,
1907 * the contents of the fork in from_vp are moved to the fork
1908 * specified by to_vp.
1910 * The cnodes pointed to by 'from_vp' and 'to_vp' must be locked.
1912 * The vnode pointed to by 'to_vp' *must* be empty prior to invoking this function.
1913 * We impose this restriction because we may not be able to fully delete the entire
1914 * file's contents in a single transaction, particularly if it has a lot of extents.
1915 * In the normal file deletion codepath, the file is screened for two conditions:
1916 * 1) bigger than 400MB, and 2) more than 8 extents. If so, the file is relocated to
1917 * the hidden directory and the deletion is broken up into multiple truncates. We can't
1918 * do that here because both files need to exist in the namespace. The main reason this
1919 * is imposed is that we may have to touch a whole lot of bitmap blocks if there are
1922 * Any data written to 'from_vp' after this call completes is not guaranteed
1926 * vnode from_vp: source file
1927 * vnode to_vp: destination file; must be empty
1930 * EFBIG - Destination file was not empty
1935 int hfs_movedata (struct vnode
*from_vp
, struct vnode
*to_vp
) {
1937 struct cnode
*from_cp
;
1938 struct cnode
*to_cp
;
1939 struct hfsmount
*hfsmp
= NULL
;
1943 int overflow_blocks
;
1947 /* Get the HFS pointers */
1948 from_cp
= VTOC(from_vp
);
1949 to_cp
= VTOC(to_vp
);
1950 hfsmp
= VTOHFS(from_vp
);
1952 /* Verify that neither source/dest file is open-unlinked */
1953 if (from_cp
->c_flag
& (C_DELETED
| C_NOEXISTS
)) {
1958 if (to_cp
->c_flag
& (C_DELETED
| C_NOEXISTS
)) {
1964 * Verify the source file is not in use by anyone besides us.
1966 * This function is typically invoked by a namespace handler
1967 * process responding to a temporarily stalled system call.
1968 * The FD that it is working off of is opened O_EVTONLY, so
1969 * it really has no active usecounts (the kusecount from O_EVTONLY
1970 * is subtracted from the total usecounts).
1972 * As a result, we shouldn't have any active usecounts against
1973 * this vnode when we go to check it below.
1975 if (vnode_isinuse(from_vp
, 0)) {
1980 if (from_cp
->c_rsrc_vp
== from_vp
) {
1985 * We assume that the destination file is already empty.
1986 * Verify that it is.
1989 if (to_cp
->c_rsrcfork
->ff_size
> 0) {
1995 if (to_cp
->c_datafork
->ff_size
> 0) {
2001 /* If the source has the rsrc open, make sure the destination is also the rsrc */
2003 if (to_vp
!= to_cp
->c_rsrc_vp
) {
2009 /* Verify that both forks are data forks */
2010 if (to_vp
!= to_cp
->c_vp
) {
2017 * See if the source file has overflow extents. If it doesn't, we don't
2018 * need to call into MoveData, and the catalog will be enough.
2021 overflow_blocks
= overflow_extents(from_cp
->c_rsrcfork
);
2024 overflow_blocks
= overflow_extents(from_cp
->c_datafork
);
2027 if ((error
= hfs_start_transaction (hfsmp
)) != 0) {
2032 /* Lock the system files: catalog, extents, attributes */
2033 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
| SFL_EXTENTS
| SFL_ATTRIBUTE
, HFS_EXCLUSIVE_LOCK
);
2035 /* Copy over any catalog allocation data into the new spot. */
2037 if ((error
= hfs_move_fork (from_cp
->c_rsrcfork
, from_cp
, to_cp
->c_rsrcfork
, to_cp
))){
2038 hfs_systemfile_unlock(hfsmp
, lockflags
);
2043 if ((error
= hfs_move_fork (from_cp
->c_datafork
, from_cp
, to_cp
->c_datafork
, to_cp
))) {
2044 hfs_systemfile_unlock(hfsmp
, lockflags
);
2050 * Note that because all we're doing is moving the extents around, we can
2051 * probably do this in a single transaction: Each extent record (group of 8)
2052 * is 64 bytes. A extent overflow B-Tree node is typically 4k. This means
2053 * each node can hold roughly ~60 extent records == (480 extents).
2055 * If a file was massively fragmented and had 20k extents, this means we'd
2056 * roughly touch 20k/480 == 41 to 42 nodes, plus the index nodes, for half
2057 * of the operation. (inserting or deleting). So if we're manipulating 80-100
2058 * nodes, this is basically 320k of data to write to the journal in
2061 if (overflow_blocks
!= 0) {
2063 error
= MoveData(hfsmp
, from_cp
->c_cnid
, to_cp
->c_cnid
, 1);
2066 error
= MoveData (hfsmp
, from_cp
->c_cnid
, to_cp
->c_cnid
, 0);
2071 /* Reverse the operation. Copy the fork data back into the source */
2073 hfs_move_fork (to_cp
->c_rsrcfork
, to_cp
, from_cp
->c_rsrcfork
, from_cp
);
2076 hfs_move_fork (to_cp
->c_datafork
, to_cp
, from_cp
->c_datafork
, from_cp
);
2080 struct cat_fork
*src_data
= NULL
;
2081 struct cat_fork
*src_rsrc
= NULL
;
2082 struct cat_fork
*dst_data
= NULL
;
2083 struct cat_fork
*dst_rsrc
= NULL
;
2085 /* Touch the times*/
2086 to_cp
->c_touch_acctime
= TRUE
;
2087 to_cp
->c_touch_chgtime
= TRUE
;
2088 to_cp
->c_touch_modtime
= TRUE
;
2090 from_cp
->c_touch_acctime
= TRUE
;
2091 from_cp
->c_touch_chgtime
= TRUE
;
2092 from_cp
->c_touch_modtime
= TRUE
;
2094 hfs_touchtimes(hfsmp
, to_cp
);
2095 hfs_touchtimes(hfsmp
, from_cp
);
2097 if (from_cp
->c_datafork
) {
2098 src_data
= &from_cp
->c_datafork
->ff_data
;
2100 if (from_cp
->c_rsrcfork
) {
2101 src_rsrc
= &from_cp
->c_rsrcfork
->ff_data
;
2104 if (to_cp
->c_datafork
) {
2105 dst_data
= &to_cp
->c_datafork
->ff_data
;
2107 if (to_cp
->c_rsrcfork
) {
2108 dst_rsrc
= &to_cp
->c_rsrcfork
->ff_data
;
2111 /* Update the catalog nodes */
2112 (void) cat_update(hfsmp
, &from_cp
->c_desc
, &from_cp
->c_attr
,
2113 src_data
, src_rsrc
);
2115 (void) cat_update(hfsmp
, &to_cp
->c_desc
, &to_cp
->c_attr
,
2116 dst_data
, dst_rsrc
);
2119 /* unlock the system files */
2120 hfs_systemfile_unlock(hfsmp
, lockflags
);
2125 hfs_end_transaction(hfsmp
);
2133 * Copy all of the catalog and runtime data in srcfork to dstfork.
2135 * This allows us to maintain the invalid ranges across the movedata operation so
2136 * we don't need to force all of the pending IO right now. In addition, we move all
2137 * non overflow-extent extents into the destination here.
2139 static int hfs_move_fork (struct filefork
*srcfork
, struct cnode
*src_cp
,
2140 struct filefork
*dstfork
, struct cnode
*dst_cp
) {
2141 struct rl_entry
*invalid_range
;
2142 int size
= sizeof(struct HFSPlusExtentDescriptor
);
2143 size
= size
* kHFSPlusExtentDensity
;
2145 /* If the dstfork has any invalid ranges, bail out */
2146 invalid_range
= TAILQ_FIRST(&dstfork
->ff_invalidranges
);
2147 if (invalid_range
!= NULL
) {
2151 if (dstfork
->ff_data
.cf_size
!= 0 || dstfork
->ff_data
.cf_new_size
!= 0) {
2155 /* First copy the invalid ranges */
2156 while ((invalid_range
= TAILQ_FIRST(&srcfork
->ff_invalidranges
))) {
2157 off_t start
= invalid_range
->rl_start
;
2158 off_t end
= invalid_range
->rl_end
;
2160 /* Remove it from the srcfork and add it to dstfork */
2161 rl_remove(start
, end
, &srcfork
->ff_invalidranges
);
2162 rl_add(start
, end
, &dstfork
->ff_invalidranges
);
2166 * Ignore the ff_union. We don't move symlinks or system files.
2167 * Now copy the in-catalog extent information
2169 dstfork
->ff_data
.cf_size
= srcfork
->ff_data
.cf_size
;
2170 dstfork
->ff_data
.cf_new_size
= srcfork
->ff_data
.cf_new_size
;
2171 dstfork
->ff_data
.cf_vblocks
= srcfork
->ff_data
.cf_vblocks
;
2172 dstfork
->ff_data
.cf_blocks
= srcfork
->ff_data
.cf_blocks
;
2174 /* just memcpy the whole array of extents to the new location. */
2175 memcpy (dstfork
->ff_data
.cf_extents
, srcfork
->ff_data
.cf_extents
, size
);
2178 * Copy the cnode attribute data.
2181 src_cp
->c_blocks
-= srcfork
->ff_data
.cf_vblocks
;
2182 src_cp
->c_blocks
-= srcfork
->ff_data
.cf_blocks
;
2184 dst_cp
->c_blocks
+= srcfork
->ff_data
.cf_vblocks
;
2185 dst_cp
->c_blocks
+= srcfork
->ff_data
.cf_blocks
;
2187 /* Now delete the entries in the source fork */
2188 srcfork
->ff_data
.cf_size
= 0;
2189 srcfork
->ff_data
.cf_new_size
= 0;
2190 srcfork
->ff_data
.cf_union
.cfu_bytesread
= 0;
2191 srcfork
->ff_data
.cf_vblocks
= 0;
2192 srcfork
->ff_data
.cf_blocks
= 0;
2194 /* Zero out the old extents */
2195 bzero (srcfork
->ff_data
.cf_extents
, size
);
2201 * cnode must be locked
2204 hfs_fsync(struct vnode
*vp
, int waitfor
, int fullsync
, struct proc
*p
)
2206 struct cnode
*cp
= VTOC(vp
);
2207 struct filefork
*fp
= NULL
;
2209 struct hfsmount
*hfsmp
= VTOHFS(vp
);
2210 struct rl_entry
*invalid_range
;
2212 int waitdata
; /* attributes necessary for data retrieval */
2213 int wait
; /* all other attributes (e.g. atime, etc.) */
2215 int took_trunc_lock
= 0;
2216 int locked_buffers
= 0;
2219 * Applications which only care about data integrity rather than full
2220 * file integrity may opt out of (delay) expensive metadata update
2221 * operations as a performance optimization.
2223 wait
= (waitfor
== MNT_WAIT
);
2224 waitdata
= (waitfor
== MNT_DWAIT
) | wait
;
2225 if (always_do_fullfsync
)
2228 /* HFS directories don't have any data blocks. */
2229 if (vnode_isdir(vp
))
2234 * For system files flush the B-tree header and
2235 * for regular files write out any clusters
2237 if (vnode_issystem(vp
)) {
2238 if (VTOF(vp
)->fcbBTCBPtr
!= NULL
) {
2240 if (hfsmp
->jnl
== NULL
) {
2241 BTFlushPath(VTOF(vp
));
2244 } else if (UBCINFOEXISTS(vp
)) {
2246 hfs_lock_truncate(cp
, HFS_SHARED_LOCK
);
2247 took_trunc_lock
= 1;
2249 if (fp
->ff_unallocblocks
!= 0) {
2250 hfs_unlock_truncate(cp
, 0);
2252 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
);
2254 /* Don't hold cnode lock when calling into cluster layer. */
2255 (void) cluster_push(vp
, waitdata
? IO_SYNC
: 0);
2257 hfs_lock(cp
, HFS_FORCE_LOCK
);
2260 * When MNT_WAIT is requested and the zero fill timeout
2261 * has expired then we must explicitly zero out any areas
2262 * that are currently marked invalid (holes).
2264 * Files with NODUMP can bypass zero filling here.
2266 if (fp
&& (((cp
->c_flag
& C_ALWAYS_ZEROFILL
) && !TAILQ_EMPTY(&fp
->ff_invalidranges
)) ||
2267 ((wait
|| (cp
->c_flag
& C_ZFWANTSYNC
)) &&
2268 ((cp
->c_bsdflags
& UF_NODUMP
) == 0) &&
2269 UBCINFOEXISTS(vp
) && (vnode_issystem(vp
) ==0) &&
2270 cp
->c_zftimeout
!= 0))) {
2273 if ((cp
->c_flag
& C_ALWAYS_ZEROFILL
) == 0 && !fullsync
&& tv
.tv_sec
< (long)cp
->c_zftimeout
) {
2274 /* Remember that a force sync was requested. */
2275 cp
->c_flag
|= C_ZFWANTSYNC
;
2278 if (!TAILQ_EMPTY(&fp
->ff_invalidranges
)) {
2279 if (!took_trunc_lock
|| (cp
->c_truncatelockowner
== HFS_SHARED_OWNER
)) {
2281 if (took_trunc_lock
) {
2282 hfs_unlock_truncate(cp
, 0);
2284 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
);
2285 hfs_lock(cp
, HFS_FORCE_LOCK
);
2286 took_trunc_lock
= 1;
2288 while ((invalid_range
= TAILQ_FIRST(&fp
->ff_invalidranges
))) {
2289 off_t start
= invalid_range
->rl_start
;
2290 off_t end
= invalid_range
->rl_end
;
2292 /* The range about to be written must be validated
2293 * first, so that VNOP_BLOCKMAP() will return the
2294 * appropriate mapping for the cluster code:
2296 rl_remove(start
, end
, &fp
->ff_invalidranges
);
2298 /* Don't hold cnode lock when calling into cluster layer. */
2300 (void) cluster_write(vp
, (struct uio
*) 0,
2301 fp
->ff_size
, end
+ 1, start
, (off_t
)0,
2302 IO_HEADZEROFILL
| IO_NOZERODIRTY
| IO_NOCACHE
);
2303 hfs_lock(cp
, HFS_FORCE_LOCK
);
2304 cp
->c_flag
|= C_MODIFIED
;
2307 (void) cluster_push(vp
, waitdata
? IO_SYNC
: 0);
2308 hfs_lock(cp
, HFS_FORCE_LOCK
);
2310 cp
->c_flag
&= ~C_ZFWANTSYNC
;
2311 cp
->c_zftimeout
= 0;
2314 if (took_trunc_lock
) {
2315 hfs_unlock_truncate(cp
, 0);
2316 took_trunc_lock
= 0;
2319 * if we have a journal and if journal_active() returns != 0 then the
2320 * we shouldn't do anything to a locked block (because it is part
2321 * of a transaction). otherwise we'll just go through the normal
2322 * code path and flush the buffer. note journal_active() can return
2323 * -1 if the journal is invalid -- however we still need to skip any
2324 * locked blocks as they get cleaned up when we finish the transaction
2325 * or close the journal.
2327 // if (hfsmp->jnl && journal_active(hfsmp->jnl) >= 0)
2329 lockflag
= BUF_SKIP_LOCKED
;
2334 * Flush all dirty buffers associated with a vnode.
2335 * Record how many of them were dirty AND locked (if necessary).
2337 locked_buffers
= buf_flushdirtyblks_skipinfo(vp
, waitdata
, lockflag
, "hfs_fsync");
2338 if ((lockflag
& BUF_SKIP_LOCKED
) && (locked_buffers
) && (vnode_vtype(vp
) == VLNK
)) {
2340 * If there are dirty symlink buffers, then we may need to take action
2341 * to prevent issues later on if we are journaled. If we're fsyncing a
2342 * symlink vnode then we are in one of three cases:
2344 * 1) automatic sync has fired. In this case, we don't want the behavior to change.
2346 * 2) Someone has opened the FD for the symlink (not what it points to)
2347 * and has issued an fsync against it. This should be rare, and we don't
2348 * want the behavior to change.
2350 * 3) We are being called by a vclean which is trying to reclaim this
2351 * symlink vnode. If this is the case, then allowing this fsync to
2352 * proceed WITHOUT flushing the journal could result in the vclean
2353 * invalidating the buffer's blocks before the journal transaction is
2354 * written to disk. To prevent this, we force a journal flush
2355 * if the vnode is in the middle of a recycle (VL_TERMINATE or VL_DEAD is set).
2357 if (vnode_isrecycled(vp
)) {
2363 if (vnode_isreg(vp
) && vnode_issystem(vp
)) {
2364 if (VTOF(vp
)->fcbBTCBPtr
!= NULL
) {
2366 BTSetLastSync(VTOF(vp
), tv
.tv_sec
);
2368 cp
->c_touch_acctime
= FALSE
;
2369 cp
->c_touch_chgtime
= FALSE
;
2370 cp
->c_touch_modtime
= FALSE
;
2371 } else if ( !(vp
->v_flag
& VSWAP
) ) /* User file */ {
2372 retval
= hfs_update(vp
, wait
);
2375 * When MNT_WAIT is requested push out the catalog record for
2376 * this file. If they asked for a full fsync, we can skip this
2377 * because the journal_flush or hfs_metasync_all will push out
2378 * all of the metadata changes.
2380 if ((retval
== 0) && wait
&& !fullsync
&& cp
->c_hint
&&
2381 !ISSET(cp
->c_flag
, C_DELETED
| C_NOEXISTS
)) {
2382 hfs_metasync(VTOHFS(vp
), (daddr64_t
)cp
->c_hint
, p
);
2386 * If this was a full fsync, make sure all metadata
2387 * changes get to stable storage.
2391 hfs_journal_flush(hfsmp
, FALSE
);
2393 if (journal_uses_fua(hfsmp
->jnl
)) {
2395 * the journal_flush did NOT issue a sync track cache command,
2396 * and the fullsync indicates we are supposed to flush all cached
2397 * data to the media, so issue the sync track cache command
2400 VNOP_IOCTL(hfsmp
->hfs_devvp
, DKIOCSYNCHRONIZECACHE
, NULL
, FWRITE
, NULL
);
2403 retval
= hfs_metasync_all(hfsmp
);
2404 /* XXX need to pass context! */
2405 VNOP_IOCTL(hfsmp
->hfs_devvp
, DKIOCSYNCHRONIZECACHE
, NULL
, FWRITE
, NULL
);
2414 /* Sync an hfs catalog b-tree node */
2416 hfs_metasync(struct hfsmount
*hfsmp
, daddr64_t node
, __unused
struct proc
*p
)
2422 vp
= HFSTOVCB(hfsmp
)->catalogRefNum
;
2424 // XXXdbg - don't need to do this on a journaled volume
2429 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_EXCLUSIVE_LOCK
);
2431 * Look for a matching node that has been delayed
2432 * but is not part of a set (B_LOCKED).
2434 * BLK_ONLYVALID causes buf_getblk to return a
2435 * buf_t for the daddr64_t specified only if it's
2436 * currently resident in the cache... the size
2437 * parameter to buf_getblk is ignored when this flag
2440 bp
= buf_getblk(vp
, node
, 0, 0, 0, BLK_META
| BLK_ONLYVALID
);
2443 if ((buf_flags(bp
) & (B_LOCKED
| B_DELWRI
)) == B_DELWRI
)
2444 (void) VNOP_BWRITE(bp
);
2449 hfs_systemfile_unlock(hfsmp
, lockflags
);
2456 * Sync all hfs B-trees. Use this instead of journal_flush for a volume
2457 * without a journal. Note that the volume bitmap does not get written;
2458 * we rely on fsck_hfs to fix that up (which it can do without any loss
2462 hfs_metasync_all(struct hfsmount
*hfsmp
)
2466 /* Lock all of the B-trees so we get a mutually consistent state */
2467 lockflags
= hfs_systemfile_lock(hfsmp
,
2468 SFL_CATALOG
|SFL_EXTENTS
|SFL_ATTRIBUTE
, HFS_EXCLUSIVE_LOCK
);
2470 /* Sync each of the B-trees */
2471 if (hfsmp
->hfs_catalog_vp
)
2472 hfs_btsync(hfsmp
->hfs_catalog_vp
, 0);
2473 if (hfsmp
->hfs_extents_vp
)
2474 hfs_btsync(hfsmp
->hfs_extents_vp
, 0);
2475 if (hfsmp
->hfs_attribute_vp
)
2476 hfs_btsync(hfsmp
->hfs_attribute_vp
, 0);
2478 /* Wait for all of the writes to complete */
2479 if (hfsmp
->hfs_catalog_vp
)
2480 vnode_waitforwrites(hfsmp
->hfs_catalog_vp
, 0, 0, 0, "hfs_metasync_all");
2481 if (hfsmp
->hfs_extents_vp
)
2482 vnode_waitforwrites(hfsmp
->hfs_extents_vp
, 0, 0, 0, "hfs_metasync_all");
2483 if (hfsmp
->hfs_attribute_vp
)
2484 vnode_waitforwrites(hfsmp
->hfs_attribute_vp
, 0, 0, 0, "hfs_metasync_all");
2486 hfs_systemfile_unlock(hfsmp
, lockflags
);
2494 hfs_btsync_callback(struct buf
*bp
, __unused
void *dummy
)
2496 buf_clearflags(bp
, B_LOCKED
);
2497 (void) buf_bawrite(bp
);
2499 return(BUF_CLAIMED
);
2504 hfs_btsync(struct vnode
*vp
, int sync_transaction
)
2506 struct cnode
*cp
= VTOC(vp
);
2510 if (sync_transaction
)
2511 flags
|= BUF_SKIP_NONLOCKED
;
2513 * Flush all dirty buffers associated with b-tree.
2515 buf_iterate(vp
, hfs_btsync_callback
, flags
, 0);
2518 if (vnode_issystem(vp
) && (VTOF(vp
)->fcbBTCBPtr
!= NULL
))
2519 (void) BTSetLastSync(VTOF(vp
), tv
.tv_sec
);
2520 cp
->c_touch_acctime
= FALSE
;
2521 cp
->c_touch_chgtime
= FALSE
;
2522 cp
->c_touch_modtime
= FALSE
;
2528 * Remove a directory.
2532 struct vnop_rmdir_args
/* {
2533 struct vnode *a_dvp;
2535 struct componentname *a_cnp;
2536 vfs_context_t a_context;
2539 struct vnode
*dvp
= ap
->a_dvp
;
2540 struct vnode
*vp
= ap
->a_vp
;
2541 struct cnode
*dcp
= VTOC(dvp
);
2542 struct cnode
*cp
= VTOC(vp
);
2546 orig_ctime
= VTOC(vp
)->c_ctime
;
2548 if (!S_ISDIR(cp
->c_mode
)) {
2555 check_for_tracked_file(vp
, orig_ctime
, NAMESPACE_HANDLER_DELETE_OP
, NULL
);
2558 if ((error
= hfs_lockpair(dcp
, cp
, HFS_EXCLUSIVE_LOCK
))) {
2562 /* Check for a race with rmdir on the parent directory */
2563 if (dcp
->c_flag
& (C_DELETED
| C_NOEXISTS
)) {
2564 hfs_unlockpair (dcp
, cp
);
2567 error
= hfs_removedir(dvp
, vp
, ap
->a_cnp
, 0, 0);
2569 hfs_unlockpair(dcp
, cp
);
2575 * Remove a directory
2577 * Both dvp and vp cnodes are locked
2580 hfs_removedir(struct vnode
*dvp
, struct vnode
*vp
, struct componentname
*cnp
,
2581 int skip_reserve
, int only_unlink
)
2585 struct hfsmount
* hfsmp
;
2586 struct cat_desc desc
;
2588 int error
= 0, started_tr
= 0;
2595 return (EINVAL
); /* cannot remove "." */
2597 if (cp
->c_flag
& (C_NOEXISTS
| C_DELETED
)) {
2600 if (cp
->c_entries
!= 0) {
2605 * If the directory is open or in use (e.g. opendir() or current working
2606 * directory for some process); wait for inactive/reclaim to actually
2607 * remove cnode from the catalog. Both inactive and reclaim codepaths are capable
2608 * of removing open-unlinked directories from the catalog, as well as getting rid
2609 * of EAs still on the element. So change only_unlink to true, so that it will get
2612 * Otherwise, we can get into a weird old mess where the directory has C_DELETED,
2613 * but it really means C_NOEXISTS because the item was actually removed from the
2614 * catalog. Then when we try to remove the entry from the catalog later on, it won't
2615 * really be there anymore.
2617 if (vnode_isinuse(vp
, 0)) {
2621 /* Deal with directory hardlinks */
2622 if (cp
->c_flag
& C_HARDLINK
) {
2624 * Note that if we have a directory which was a hardlink at any point,
2625 * its actual directory data is stored in the directory inode in the hidden
2626 * directory rather than the leaf element(s) present in the namespace.
2628 * If there are still other hardlinks to this directory,
2629 * then we'll just eliminate this particular link and the vnode will still exist.
2630 * If this is the last link to an empty directory, then we'll open-unlink the
2631 * directory and it will be only tagged with C_DELETED (as opposed to C_NOEXISTS).
2633 * We could also return EBUSY here.
2636 return hfs_unlink(hfsmp
, dvp
, vp
, cnp
, skip_reserve
);
2640 * In a few cases, we may want to allow the directory to persist in an
2641 * open-unlinked state. If the directory is being open-unlinked (still has usecount
2642 * references), or if it has EAs, or if it was being deleted as part of a rename,
2643 * then we go ahead and move it to the hidden directory.
2645 * If the directory is being open-unlinked, then we want to keep the catalog entry
2646 * alive so that future EA calls and fchmod/fstat etc. do not cause issues later.
2648 * If the directory had EAs, then we want to use the open-unlink trick so that the
2649 * EA removal is not done in one giant transaction. Otherwise, it could cause a panic
2650 * due to overflowing the journal.
2652 * Finally, if it was deleted as part of a rename, we move it to the hidden directory
2653 * in order to maintain rename atomicity.
2655 * Note that the allow_dirs argument to hfs_removefile specifies that it is
2656 * supposed to handle directories for this case.
2659 if (((hfsmp
->hfs_attribute_vp
!= NULL
) &&
2660 ((cp
->c_attr
.ca_recflags
& kHFSHasAttributesMask
) != 0)) ||
2661 (only_unlink
!= 0)) {
2663 int ret
= hfs_removefile(dvp
, vp
, cnp
, 0, 0, 1, NULL
, only_unlink
);
2665 * Even though hfs_vnop_rename calls vnode_recycle for us on tvp we call
2666 * it here just in case we were invoked by rmdir() on a directory that had
2667 * EAs. To ensure that we start reclaiming the space as soon as possible,
2668 * we call vnode_recycle on the directory.
2676 dcp
->c_flag
|= C_DIR_MODIFICATION
;
2679 if (hfsmp
->hfs_flags
& HFS_QUOTAS
)
2680 (void)hfs_getinoquota(cp
);
2682 if ((error
= hfs_start_transaction(hfsmp
)) != 0) {
2688 * Verify the directory is empty (and valid).
2689 * (Rmdir ".." won't be valid since
2690 * ".." will contain a reference to
2691 * the current directory and thus be
2694 if ((dcp
->c_bsdflags
& APPEND
) || (cp
->c_bsdflags
& (IMMUTABLE
| APPEND
))) {
2699 /* Remove the entry from the namei cache: */
2703 * Protect against a race with rename by using the component
2704 * name passed in and parent id from dvp (instead of using
2705 * the cp->c_desc which may have changed).
2707 desc
.cd_nameptr
= (const u_int8_t
*)cnp
->cn_nameptr
;
2708 desc
.cd_namelen
= cnp
->cn_namelen
;
2709 desc
.cd_parentcnid
= dcp
->c_fileid
;
2710 desc
.cd_cnid
= cp
->c_cnid
;
2711 desc
.cd_flags
= CD_ISDIR
;
2712 desc
.cd_encoding
= cp
->c_encoding
;
2715 if (!hfs_valid_cnode(hfsmp
, dvp
, cnp
, cp
->c_fileid
, NULL
, &error
)) {
2720 /* Remove entry from catalog */
2721 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
| SFL_ATTRIBUTE
| SFL_BITMAP
, HFS_EXCLUSIVE_LOCK
);
2723 if (!skip_reserve
) {
2725 * Reserve some space in the Catalog file.
2727 if ((error
= cat_preflight(hfsmp
, CAT_DELETE
, NULL
, 0))) {
2728 hfs_systemfile_unlock(hfsmp
, lockflags
);
2733 error
= cat_delete(hfsmp
, &desc
, &cp
->c_attr
);
2735 /* The parent lost a child */
2736 if (dcp
->c_entries
> 0)
2738 DEC_FOLDERCOUNT(hfsmp
, dcp
->c_attr
);
2739 dcp
->c_dirchangecnt
++;
2740 dcp
->c_touch_chgtime
= TRUE
;
2741 dcp
->c_touch_modtime
= TRUE
;
2742 hfs_touchtimes(hfsmp
, cp
);
2743 (void) cat_update(hfsmp
, &dcp
->c_desc
, &dcp
->c_attr
, NULL
, NULL
);
2744 cp
->c_flag
&= ~(C_MODIFIED
| C_FORCEUPDATE
);
2747 hfs_systemfile_unlock(hfsmp
, lockflags
);
2753 if (hfsmp
->hfs_flags
& HFS_QUOTAS
)
2754 (void)hfs_chkiq(cp
, -1, NOCRED
, 0);
2757 hfs_volupdate(hfsmp
, VOL_RMDIR
, (dcp
->c_cnid
== kHFSRootFolderID
));
2759 /* Mark C_NOEXISTS since the catalog entry is now gone */
2760 cp
->c_flag
|= C_NOEXISTS
;
2762 dcp
->c_flag
&= ~C_DIR_MODIFICATION
;
2763 wakeup((caddr_t
)&dcp
->c_flag
);
2766 hfs_end_transaction(hfsmp
);
2774 * Remove a file or link.
2778 struct vnop_remove_args
/* {
2779 struct vnode *a_dvp;
2781 struct componentname *a_cnp;
2783 vfs_context_t a_context;
2786 struct vnode
*dvp
= ap
->a_dvp
;
2787 struct vnode
*vp
= ap
->a_vp
;
2788 struct cnode
*dcp
= VTOC(dvp
);
2790 struct vnode
*rvp
= NULL
;
2791 int error
=0, recycle_rsrc
=0;
2793 uint32_t rsrc_vid
= 0;
2799 orig_ctime
= VTOC(vp
)->c_ctime
;
2800 if ( (!vnode_isnamedstream(vp
)) && ((ap
->a_flags
& VNODE_REMOVE_SKIP_NAMESPACE_EVENT
) == 0)) {
2801 error
= check_for_tracked_file(vp
, orig_ctime
, NAMESPACE_HANDLER_DELETE_OP
, NULL
);
2803 // XXXdbg - decide on a policy for handling namespace handler failures!
2804 // for now we just let them proceed.
2813 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
);
2815 if ((error
= hfs_lockpair(dcp
, cp
, HFS_EXCLUSIVE_LOCK
))) {
2816 hfs_unlock_truncate(cp
, 0);
2824 * Lazily respond to determining if there is a valid resource fork
2825 * vnode attached to 'cp' if it is a regular file or symlink.
2826 * If the vnode does not exist, then we may proceed without having to
2829 * If, however, it does exist, then we need to acquire an iocount on the
2830 * vnode after acquiring its vid. This ensures that if we have to do I/O
2831 * against it, it can't get recycled from underneath us in the middle
2834 * Note: this function may be invoked for directory hardlinks, so just skip these
2835 * steps if 'vp' is a directory.
2839 if ((vp
->v_type
== VLNK
) || (vp
->v_type
== VREG
)) {
2840 if ((cp
->c_rsrc_vp
) && (rvp
== NULL
)) {
2841 /* We need to acquire the rsrc vnode */
2842 rvp
= cp
->c_rsrc_vp
;
2843 rsrc_vid
= vnode_vid (rvp
);
2845 /* Unlock everything to acquire iocount on the rsrc vnode */
2846 hfs_unlock_truncate (cp
, 0);
2847 hfs_unlockpair (dcp
, cp
);
2849 /* Use the vid to maintain identity on rvp */
2850 if (vnode_getwithvid(rvp
, rsrc_vid
)) {
2852 * If this fails, then it was recycled or
2853 * reclaimed in the interim. Reset fields and
2864 * Check to see if we raced rmdir for the parent directory
2865 * hfs_removefile already checks for a race on vp/cp
2867 if (dcp
->c_flag
& (C_DELETED
| C_NOEXISTS
)) {
2872 error
= hfs_removefile(dvp
, vp
, ap
->a_cnp
, ap
->a_flags
, 0, 0, NULL
, 0);
2875 * If the remove succeeded in deleting the file, then we may need to mark
2876 * the resource fork for recycle so that it is reclaimed as quickly
2877 * as possible. If it were not recycled quickly, then this resource fork
2878 * vnode could keep a v_parent reference on the data fork, which prevents it
2879 * from going through reclaim (by giving it extra usecounts), except in the force-
2882 * However, a caveat: we need to continue to supply resource fork
2883 * access to open-unlinked files even if the resource fork is not open. This is
2884 * a requirement for the compressed files work. Luckily, hfs_vgetrsrc will handle
2885 * this already if the data fork has been re-parented to the hidden directory.
2887 * As a result, all we really need to do here is mark the resource fork vnode
2888 * for recycle. If it goes out of core, it can be brought in again if needed.
2889 * If the cnode was instead marked C_NOEXISTS, then there wouldn't be any
2892 if ((error
== 0) && (rvp
)) {
2897 * Drop the truncate lock before unlocking the cnode
2898 * (which can potentially perform a vnode_put and
2899 * recycle the vnode which in turn might require the
2903 hfs_unlock_truncate(cp
, 0);
2904 hfs_unlockpair(dcp
, cp
);
2907 /* inactive or reclaim on rvp will clean up the blocks from the rsrc fork */
2912 /* drop iocount on rsrc fork, was obtained at beginning of fxn */
2921 hfs_removefile_callback(struct buf
*bp
, void *hfsmp
) {
2923 if ( !(buf_flags(bp
) & B_META
))
2924 panic("hfs: symlink bp @ %p is not marked meta-data!\n", bp
);
2926 * it's part of the current transaction, kill it.
2928 journal_kill_block(((struct hfsmount
*)hfsmp
)->jnl
, bp
);
2930 return (BUF_CLAIMED
);
2936 * Similar to hfs_vnop_remove except there are additional options.
2937 * This function may be used to remove directories if they have
2938 * lots of EA's -- note the 'allow_dirs' argument.
2940 * This function is able to delete blocks & fork data for the resource
2941 * fork even if it does not exist in core (and have a backing vnode).
2942 * It should infer the correct behavior based on the number of blocks
2943 * in the cnode and whether or not the resource fork pointer exists or
2944 * not. As a result, one only need pass in the 'vp' corresponding to the
2945 * data fork of this file (or main vnode in the case of a directory).
2946 * Passing in a resource fork will result in an error.
2948 * Because we do not create any vnodes in this function, we are not at
2949 * risk of deadlocking against ourselves by double-locking.
2951 * Requires cnode and truncate locks to be held.
2954 hfs_removefile(struct vnode
*dvp
, struct vnode
*vp
, struct componentname
*cnp
,
2955 int flags
, int skip_reserve
, int allow_dirs
,
2956 __unused
struct vnode
*rvp
, int only_unlink
)
2960 struct vnode
*rsrc_vp
= NULL
;
2961 struct hfsmount
*hfsmp
;
2962 struct cat_desc desc
;
2964 int dataforkbusy
= 0;
2965 int rsrcforkbusy
= 0;
2969 int isbigfile
= 0, defer_remove
=0, isdir
=0;
2976 /* Check if we lost a race post lookup. */
2977 if (cp
->c_flag
& (C_NOEXISTS
| C_DELETED
)) {
2981 if (!hfs_valid_cnode(hfsmp
, dvp
, cnp
, cp
->c_fileid
, NULL
, &error
)) {
2985 /* Make sure a remove is permitted */
2986 if (VNODE_IS_RSRC(vp
)) {
2991 * We know it's a data fork.
2992 * Probe the cnode to see if we have a valid resource fork
2995 rsrc_vp
= cp
->c_rsrc_vp
;
2998 /* Don't allow deleting the journal or journal_info_block. */
2999 if (hfs_is_journal_file(hfsmp
, cp
)) {
3004 * If removing a symlink, then we need to ensure that the
3005 * data blocks for the symlink are not still in-flight or pending.
3006 * If so, we will unlink the symlink here, making its blocks
3007 * available for re-allocation by a subsequent transaction. That is OK, but
3008 * then the I/O for the data blocks could then go out before the journal
3009 * transaction that created it was flushed, leading to I/O ordering issues.
3011 if (vp
->v_type
== VLNK
) {
3013 * This will block if the asynchronous journal flush is in progress.
3014 * If this symlink is not being renamed over and doesn't have any open FDs,
3015 * then we'll remove it from the journal's bufs below in kill_block.
3017 buf_wait_for_shadow_io (vp
, 0);
3021 * Hard links require special handling.
3023 if (cp
->c_flag
& C_HARDLINK
) {
3024 if ((flags
& VNODE_REMOVE_NODELETEBUSY
) && vnode_isinuse(vp
, 0)) {
3027 /* A directory hard link with a link count of one is
3028 * treated as a regular directory. Therefore it should
3029 * only be removed using rmdir().
3031 if ((vnode_isdir(vp
) == 1) && (cp
->c_linkcount
== 1) &&
3032 (allow_dirs
== 0)) {
3035 return hfs_unlink(hfsmp
, dvp
, vp
, cnp
, skip_reserve
);
3039 /* Directories should call hfs_rmdir! (unless they have a lot of attributes) */
3040 if (vnode_isdir(vp
)) {
3041 if (allow_dirs
== 0)
3042 return (EPERM
); /* POSIX */
3045 /* Sanity check the parent ids. */
3046 if ((cp
->c_parentcnid
!= hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
) &&
3047 (cp
->c_parentcnid
!= dcp
->c_fileid
)) {
3051 dcp
->c_flag
|= C_DIR_MODIFICATION
;
3053 // this guy is going away so mark him as such
3054 cp
->c_flag
|= C_DELETED
;
3057 /* Remove our entry from the namei cache. */
3061 * If the caller was operating on a file (as opposed to a
3062 * directory with EAs), then we need to figure out
3063 * whether or not it has a valid resource fork vnode.
3065 * If there was a valid resource fork vnode, then we need
3066 * to use hfs_truncate to eliminate its data. If there is
3067 * no vnode, then we hold the cnode lock which would
3068 * prevent it from being created. As a result,
3069 * we can use the data deletion functions which do not
3070 * require that a cnode/vnode pair exist.
3073 /* Check if this file is being used. */
3075 dataforkbusy
= vnode_isinuse(vp
, 0);
3077 * At this point, we know that 'vp' points to the
3078 * a data fork because we checked it up front. And if
3079 * there is no rsrc fork, rsrc_vp will be NULL.
3081 if (rsrc_vp
&& (cp
->c_blocks
- VTOF(vp
)->ff_blocks
)) {
3082 rsrcforkbusy
= vnode_isinuse(rsrc_vp
, 0);
3086 /* Check if we have to break the deletion into multiple pieces. */
3088 isbigfile
= ((cp
->c_datafork
->ff_size
>= HFS_BIGFILE_SIZE
) && overflow_extents(VTOF(vp
)));
3091 /* Check if the file has xattrs. If it does we'll have to delete them in
3092 individual transactions in case there are too many */
3093 if ((hfsmp
->hfs_attribute_vp
!= NULL
) &&
3094 (cp
->c_attr
.ca_recflags
& kHFSHasAttributesMask
) != 0) {
3098 /* If we are explicitly told to only unlink item and move to hidden dir, then do it */
3104 * Carbon semantics prohibit deleting busy files.
3105 * (enforced when VNODE_REMOVE_NODELETEBUSY is requested)
3107 if (dataforkbusy
|| rsrcforkbusy
) {
3108 if ((flags
& VNODE_REMOVE_NODELETEBUSY
) ||
3109 (hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
== 0)) {
3116 if (hfsmp
->hfs_flags
& HFS_QUOTAS
)
3117 (void)hfs_getinoquota(cp
);
3121 * Do a ubc_setsize to indicate we need to wipe contents if:
3122 * 1) item is a regular file.
3123 * 2) Neither fork is busy AND we are not told to unlink this.
3125 * We need to check for the defer_remove since it can be set without
3126 * having a busy data or rsrc fork
3128 if (isdir
== 0 && (!dataforkbusy
|| !rsrcforkbusy
) && (defer_remove
== 0)) {
3130 * A ubc_setsize can cause a pagein so defer it
3131 * until after the cnode lock is dropped. The
3132 * cnode lock cannot be dropped/reacquired here
3133 * since we might already hold the journal lock.
3135 if (!dataforkbusy
&& cp
->c_datafork
->ff_blocks
&& !isbigfile
) {
3136 cp
->c_flag
|= C_NEED_DATA_SETSIZE
;
3138 if (!rsrcforkbusy
&& rsrc_vp
) {
3139 cp
->c_flag
|= C_NEED_RSRC_SETSIZE
;
3143 if ((error
= hfs_start_transaction(hfsmp
)) != 0) {
3148 // XXXdbg - if we're journaled, kill any dirty symlink buffers
3149 if (hfsmp
->jnl
&& vnode_islnk(vp
) && (defer_remove
== 0)) {
3150 buf_iterate(vp
, hfs_removefile_callback
, BUF_SKIP_NONLOCKED
, (void *)hfsmp
);
3154 * Prepare to truncate any non-busy forks. Busy forks will
3155 * get truncated when their vnode goes inactive.
3156 * Note that we will only enter this region if we
3157 * can avoid creating an open-unlinked file. If
3158 * either region is busy, we will have to create an open
3161 * Since we are deleting the file, we need to stagger the runtime
3162 * modifications to do things in such a way that a crash won't
3163 * result in us getting overlapped extents or any other
3164 * bad inconsistencies. As such, we call prepare_release_storage
3165 * which updates the UBC, updates quota information, and releases
3166 * any loaned blocks that belong to this file. No actual
3167 * truncation or bitmap manipulation is done until *AFTER*
3168 * the catalog record is removed.
3170 if (isdir
== 0 && (!dataforkbusy
&& !rsrcforkbusy
) && (only_unlink
== 0)) {
3172 if (!dataforkbusy
&& !isbigfile
&& cp
->c_datafork
->ff_blocks
!= 0) {
3174 error
= hfs_prepare_release_storage (hfsmp
, vp
);
3182 * If the resource fork vnode does not exist, we can skip this step.
3184 if (!rsrcforkbusy
&& rsrc_vp
) {
3185 error
= hfs_prepare_release_storage (hfsmp
, rsrc_vp
);
3194 * Protect against a race with rename by using the component
3195 * name passed in and parent id from dvp (instead of using
3196 * the cp->c_desc which may have changed). Also, be aware that
3197 * because we allow directories to be passed in, we need to special case
3198 * this temporary descriptor in case we were handed a directory.
3201 desc
.cd_flags
= CD_ISDIR
;
3206 desc
.cd_encoding
= cp
->c_desc
.cd_encoding
;
3207 desc
.cd_nameptr
= (const u_int8_t
*)cnp
->cn_nameptr
;
3208 desc
.cd_namelen
= cnp
->cn_namelen
;
3209 desc
.cd_parentcnid
= dcp
->c_fileid
;
3210 desc
.cd_hint
= cp
->c_desc
.cd_hint
;
3211 desc
.cd_cnid
= cp
->c_cnid
;
3215 * There are two cases to consider:
3216 * 1. File/Dir is busy/big/defer_remove ==> move/rename the file/dir
3217 * 2. File is not in use ==> remove the file
3219 * We can get a directory in case 1 because it may have had lots of attributes,
3220 * which need to get removed here.
3222 if (dataforkbusy
|| rsrcforkbusy
|| isbigfile
|| defer_remove
) {
3224 struct cat_desc to_desc
;
3225 struct cat_desc todir_desc
;
3228 * Orphan this file or directory (move to hidden directory).
3229 * Again, we need to take care that we treat directories as directories,
3230 * and files as files. Because directories with attributes can be passed in
3231 * check to make sure that we have a directory or a file before filling in the
3232 * temporary descriptor's flags. We keep orphaned directories AND files in
3233 * the FILE_HARDLINKS private directory since we're generalizing over all
3234 * orphaned filesystem objects.
3236 bzero(&todir_desc
, sizeof(todir_desc
));
3237 todir_desc
.cd_parentcnid
= 2;
3239 MAKE_DELETED_NAME(delname
, sizeof(delname
), cp
->c_fileid
);
3240 bzero(&to_desc
, sizeof(to_desc
));
3241 to_desc
.cd_nameptr
= (const u_int8_t
*)delname
;
3242 to_desc
.cd_namelen
= strlen(delname
);
3243 to_desc
.cd_parentcnid
= hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
;
3245 to_desc
.cd_flags
= CD_ISDIR
;
3248 to_desc
.cd_flags
= 0;
3250 to_desc
.cd_cnid
= cp
->c_cnid
;
3252 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_EXCLUSIVE_LOCK
);
3253 if (!skip_reserve
) {
3254 if ((error
= cat_preflight(hfsmp
, CAT_RENAME
, NULL
, 0))) {
3255 hfs_systemfile_unlock(hfsmp
, lockflags
);
3260 error
= cat_rename(hfsmp
, &desc
, &todir_desc
,
3261 &to_desc
, (struct cat_desc
*)NULL
);
3264 hfsmp
->hfs_private_attr
[FILE_HARDLINKS
].ca_entries
++;
3266 INC_FOLDERCOUNT(hfsmp
, hfsmp
->hfs_private_attr
[FILE_HARDLINKS
]);
3268 (void) cat_update(hfsmp
, &hfsmp
->hfs_private_desc
[FILE_HARDLINKS
],
3269 &hfsmp
->hfs_private_attr
[FILE_HARDLINKS
], NULL
, NULL
);
3271 /* Update the parent directory */
3272 if (dcp
->c_entries
> 0)
3275 DEC_FOLDERCOUNT(hfsmp
, dcp
->c_attr
);
3277 dcp
->c_dirchangecnt
++;
3278 dcp
->c_ctime
= tv
.tv_sec
;
3279 dcp
->c_mtime
= tv
.tv_sec
;
3280 (void) cat_update(hfsmp
, &dcp
->c_desc
, &dcp
->c_attr
, NULL
, NULL
);
3282 /* Update the file or directory's state */
3283 cp
->c_flag
|= C_DELETED
;
3284 cp
->c_ctime
= tv
.tv_sec
;
3286 (void) cat_update(hfsmp
, &to_desc
, &cp
->c_attr
, NULL
, NULL
);
3288 hfs_systemfile_unlock(hfsmp
, lockflags
);
3295 * Nobody is using this item; we can safely remove everything.
3297 struct filefork
*temp_rsrc_fork
= NULL
;
3300 int blksize
= hfsmp
->blockSize
;
3302 u_int32_t fileid
= cp
->c_fileid
;
3305 * Figure out if we need to read the resource fork data into
3306 * core before wiping out the catalog record.
3308 * 1) Must not be a directory
3309 * 2) cnode's c_rsrcfork ptr must be NULL.
3310 * 3) rsrc fork must have actual blocks
3312 if ((isdir
== 0) && (cp
->c_rsrcfork
== NULL
) &&
3313 (cp
->c_blocks
- VTOF(vp
)->ff_blocks
)) {
3315 * The resource fork vnode & filefork did not exist.
3316 * Create a temporary one for use in this function only.
3318 MALLOC_ZONE (temp_rsrc_fork
, struct filefork
*, sizeof (struct filefork
), M_HFSFORK
, M_WAITOK
);
3319 bzero(temp_rsrc_fork
, sizeof(struct filefork
));
3320 temp_rsrc_fork
->ff_cp
= cp
;
3321 rl_init(&temp_rsrc_fork
->ff_invalidranges
);
3324 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
| SFL_ATTRIBUTE
| SFL_BITMAP
, HFS_EXCLUSIVE_LOCK
);
3326 /* Look up the resource fork first, if necessary */
3327 if (temp_rsrc_fork
) {
3328 error
= cat_lookup (hfsmp
, &desc
, 1, (struct cat_desc
*) NULL
,
3329 (struct cat_attr
*) NULL
, &temp_rsrc_fork
->ff_data
, NULL
);
3331 FREE_ZONE (temp_rsrc_fork
, sizeof(struct filefork
), M_HFSFORK
);
3332 hfs_systemfile_unlock (hfsmp
, lockflags
);
3337 if (!skip_reserve
) {
3338 if ((error
= cat_preflight(hfsmp
, CAT_DELETE
, NULL
, 0))) {
3339 if (temp_rsrc_fork
) {
3340 FREE_ZONE (temp_rsrc_fork
, sizeof(struct filefork
), M_HFSFORK
);
3342 hfs_systemfile_unlock(hfsmp
, lockflags
);
3347 error
= cat_delete(hfsmp
, &desc
, &cp
->c_attr
);
3349 if (error
&& error
!= ENXIO
&& error
!= ENOENT
) {
3350 printf("hfs_removefile: deleting file %s (%d), err: %d\n",
3351 cp
->c_desc
.cd_nameptr
, cp
->c_attr
.ca_fileid
, error
);
3355 /* Update the parent directory */
3356 if (dcp
->c_entries
> 0)
3358 dcp
->c_dirchangecnt
++;
3359 dcp
->c_ctime
= tv
.tv_sec
;
3360 dcp
->c_mtime
= tv
.tv_sec
;
3361 (void) cat_update(hfsmp
, &dcp
->c_desc
, &dcp
->c_attr
, NULL
, NULL
);
3363 hfs_systemfile_unlock(hfsmp
, lockflags
);
3366 if (temp_rsrc_fork
) {
3367 FREE_ZONE (temp_rsrc_fork
, sizeof(struct filefork
), M_HFSFORK
);
3373 * Now that we've wiped out the catalog record, the file effectively doesn't
3374 * exist anymore. So update the quota records to reflect the loss of the
3375 * data fork and the resource fork.
3378 if (cp
->c_datafork
->ff_blocks
> 0) {
3379 savedbytes
= ((off_t
)cp
->c_datafork
->ff_blocks
* (off_t
)blksize
);
3380 (void) hfs_chkdq(cp
, (int64_t)-(savedbytes
), NOCRED
, 0);
3384 * We may have just deleted the catalog record for a resource fork even
3385 * though it did not exist in core as a vnode. However, just because there
3386 * was a resource fork pointer in the cnode does not mean that it had any blocks.
3388 if (temp_rsrc_fork
|| cp
->c_rsrcfork
) {
3389 if (cp
->c_rsrcfork
) {
3390 if (cp
->c_rsrcfork
->ff_blocks
> 0) {
3391 savedbytes
= ((off_t
)cp
->c_rsrcfork
->ff_blocks
* (off_t
)blksize
);
3392 (void) hfs_chkdq(cp
, (int64_t)-(savedbytes
), NOCRED
, 0);
3396 /* we must have used a temporary fork */
3397 savedbytes
= ((off_t
)temp_rsrc_fork
->ff_blocks
* (off_t
)blksize
);
3398 (void) hfs_chkdq(cp
, (int64_t)-(savedbytes
), NOCRED
, 0);
3402 if (hfsmp
->hfs_flags
& HFS_QUOTAS
) {
3403 (void)hfs_chkiq(cp
, -1, NOCRED
, 0);
3408 * If we didn't get any errors deleting the catalog entry, then go ahead
3409 * and release the backing store now. The filefork pointers are still valid.
3411 if (temp_rsrc_fork
) {
3412 error
= hfs_release_storage (hfsmp
, cp
->c_datafork
, temp_rsrc_fork
, fileid
);
3415 /* if cp->c_rsrcfork == NULL, hfs_release_storage will skip over it. */
3416 error
= hfs_release_storage (hfsmp
, cp
->c_datafork
, cp
->c_rsrcfork
, fileid
);
3420 * If we encountered an error updating the extents and bitmap,
3421 * mark the volume inconsistent. At this point, the catalog record has
3422 * already been deleted, so we can't recover it at this point. We need
3423 * to proceed and update the volume header and mark the cnode C_NOEXISTS.
3424 * The subsequent fsck should be able to recover the free space for us.
3426 hfs_mark_volume_inconsistent(hfsmp
);
3429 /* reset update_vh to 0, since hfs_release_storage should have done it for us */
3433 /* Get rid of the temporary rsrc fork */
3434 if (temp_rsrc_fork
) {
3435 FREE_ZONE (temp_rsrc_fork
, sizeof(struct filefork
), M_HFSFORK
);
3438 cp
->c_flag
|= C_NOEXISTS
;
3439 cp
->c_flag
&= ~C_DELETED
;
3441 cp
->c_touch_chgtime
= TRUE
; /* XXX needed ? */
3445 * We must never get a directory if we're in this else block. We could
3446 * accidentally drop the number of files in the volume header if we did.
3448 hfs_volupdate(hfsmp
, VOL_RMFILE
, (dcp
->c_cnid
== kHFSRootFolderID
));
3453 * All done with this cnode's descriptor...
3455 * Note: all future catalog calls for this cnode must be by
3456 * fileid only. This is OK for HFS (which doesn't have file
3457 * thread records) since HFS doesn't support the removal of
3460 cat_releasedesc(&cp
->c_desc
);
3464 cp
->c_flag
&= ~C_DELETED
;
3469 * If we bailed out earlier, we may need to update the volume header
3470 * to deal with the borrowed blocks accounting.
3472 hfs_volupdate (hfsmp
, VOL_UPDATE
, 0);
3476 hfs_end_transaction(hfsmp
);
3479 dcp
->c_flag
&= ~C_DIR_MODIFICATION
;
3480 wakeup((caddr_t
)&dcp
->c_flag
);
3486 __private_extern__
void
3487 replace_desc(struct cnode
*cp
, struct cat_desc
*cdp
)
3489 // fixes 4348457 and 4463138
3490 if (&cp
->c_desc
== cdp
) {
3494 /* First release allocated name buffer */
3495 if (cp
->c_desc
.cd_flags
& CD_HASBUF
&& cp
->c_desc
.cd_nameptr
!= 0) {
3496 const u_int8_t
*name
= cp
->c_desc
.cd_nameptr
;
3498 cp
->c_desc
.cd_nameptr
= 0;
3499 cp
->c_desc
.cd_namelen
= 0;
3500 cp
->c_desc
.cd_flags
&= ~CD_HASBUF
;
3501 vfs_removename((const char *)name
);
3503 bcopy(cdp
, &cp
->c_desc
, sizeof(cp
->c_desc
));
3505 /* Cnode now owns the name buffer */
3506 cdp
->cd_nameptr
= 0;
3507 cdp
->cd_namelen
= 0;
3508 cdp
->cd_flags
&= ~CD_HASBUF
;
3515 * The VFS layer guarantees that:
3516 * - source and destination will either both be directories, or
3517 * both not be directories.
3518 * - all the vnodes are from the same file system
3520 * When the target is a directory, HFS must ensure that its empty.
3522 * Note that this function requires up to 6 vnodes in order to work properly
3523 * if it is operating on files (and not on directories). This is because only
3524 * files can have resource forks, and we now require iocounts to be held on the
3525 * vnodes corresponding to the resource forks (if applicable) as well as
3526 * the files or directories undergoing rename. The problem with not holding
3527 * iocounts on the resource fork vnodes is that it can lead to a deadlock
3528 * situation: The rsrc fork of the source file may be recycled and reclaimed
3529 * in order to provide a vnode for the destination file's rsrc fork. Since
3530 * data and rsrc forks share the same cnode, we'd eventually try to lock the
3531 * source file's cnode in order to sync its rsrc fork to disk, but it's already
3532 * been locked. By taking the rsrc fork vnodes up front we ensure that they
3533 * cannot be recycled, and that the situation mentioned above cannot happen.
3537 struct vnop_rename_args
/* {
3538 struct vnode *a_fdvp;
3539 struct vnode *a_fvp;
3540 struct componentname *a_fcnp;
3541 struct vnode *a_tdvp;
3542 struct vnode *a_tvp;
3543 struct componentname *a_tcnp;
3544 vfs_context_t a_context;
3547 struct vnode
*tvp
= ap
->a_tvp
;
3548 struct vnode
*tdvp
= ap
->a_tdvp
;
3549 struct vnode
*fvp
= ap
->a_fvp
;
3550 struct vnode
*fdvp
= ap
->a_fdvp
;
3552 * Note that we only need locals for the target/destination's
3553 * resource fork vnode (and only if necessary). We don't care if the
3554 * source has a resource fork vnode or not.
3556 struct vnode
*tvp_rsrc
= NULLVP
;
3557 uint32_t tvp_rsrc_vid
= 0;
3558 struct componentname
*tcnp
= ap
->a_tcnp
;
3559 struct componentname
*fcnp
= ap
->a_fcnp
;
3560 struct proc
*p
= vfs_context_proc(ap
->a_context
);
3565 struct cnode
*error_cnode
;
3566 struct cat_desc from_desc
;
3567 struct cat_desc to_desc
;
3568 struct cat_desc out_desc
;
3569 struct hfsmount
*hfsmp
;
3570 cat_cookie_t cookie
;
3571 int tvp_deleted
= 0;
3572 int started_tr
= 0, got_cookie
= 0;
3573 int took_trunc_lock
= 0;
3576 time_t orig_from_ctime
, orig_to_ctime
;
3577 int emit_rename
= 1;
3578 int emit_delete
= 1;
3580 orig_from_ctime
= VTOC(fvp
)->c_ctime
;
3581 if (tvp
&& VTOC(tvp
)) {
3582 orig_to_ctime
= VTOC(tvp
)->c_ctime
;
3587 hfsmp
= VTOHFS(tdvp
);
3589 * Do special case checks here. If fvp == tvp then we need to check the
3590 * cnode with locks held.
3593 int is_hardlink
= 0;
3595 * In this case, we do *NOT* ever emit a DELETE event.
3596 * We may not necessarily emit a RENAME event
3599 if ((error
= hfs_lock(VTOC(fvp
), HFS_SHARED_LOCK
))) {
3602 /* Check to see if the item is a hardlink or not */
3603 is_hardlink
= (VTOC(fvp
)->c_flag
& C_HARDLINK
);
3604 hfs_unlock (VTOC(fvp
));
3607 * If the item is not a hardlink, then case sensitivity must be off, otherwise
3608 * two names should not resolve to the same cnode unless they were case variants.
3613 * Hardlinks are a little trickier. We only want to emit a rename event
3614 * if the item is a hardlink, the parent directories are the same, case sensitivity
3615 * is off, and the case folded names are the same. See the fvp == tvp case below for more
3619 if ((fdvp
== tdvp
) && ((hfsmp
->hfs_flags
& HFS_CASE_SENSITIVE
) == 0)) {
3620 if (hfs_namecmp((const u_int8_t
*)fcnp
->cn_nameptr
, fcnp
->cn_namelen
,
3621 (const u_int8_t
*)tcnp
->cn_nameptr
, tcnp
->cn_namelen
) == 0) {
3622 /* Then in this case only it is ok to emit a rename */
3629 check_for_tracked_file(fvp
, orig_from_ctime
, NAMESPACE_HANDLER_RENAME_OP
, NULL
);
3632 if (tvp
&& VTOC(tvp
)) {
3634 check_for_tracked_file(tvp
, orig_to_ctime
, NAMESPACE_HANDLER_DELETE_OP
, NULL
);
3639 /* When tvp exists, take the truncate lock for hfs_removefile(). */
3640 if (tvp
&& (vnode_isreg(tvp
) || vnode_islnk(tvp
))) {
3641 hfs_lock_truncate(VTOC(tvp
), HFS_EXCLUSIVE_LOCK
);
3642 took_trunc_lock
= 1;
3645 error
= hfs_lockfour(VTOC(fdvp
), VTOC(fvp
), VTOC(tdvp
), tvp
? VTOC(tvp
) : NULL
,
3646 HFS_EXCLUSIVE_LOCK
, &error_cnode
);
3648 if (took_trunc_lock
) {
3649 hfs_unlock_truncate(VTOC(tvp
), 0);
3650 took_trunc_lock
= 0;
3654 * We hit an error path. If we were trying to re-acquire the locks
3655 * after coming through here once, we might have already obtained
3656 * an iocount on tvp's resource fork vnode. Drop that before dealing
3657 * with the failure. Note this is safe -- since we are in an
3658 * error handling path, we can't be holding the cnode locks.
3661 vnode_put (tvp_rsrc
);
3667 * tvp might no longer exist. If the cause of the lock failure
3668 * was tvp, then we can try again with tvp/tcp set to NULL.
3669 * This is ok because the vfs syscall will vnode_put the vnodes
3670 * after we return from hfs_vnop_rename.
3672 if ((error
== ENOENT
) && (tvp
!= NULL
) && (error_cnode
== VTOC(tvp
))) {
3684 tcp
= tvp
? VTOC(tvp
) : NULL
;
3687 * Acquire iocounts on the destination's resource fork vnode
3688 * if necessary. If dst/src are files and the dst has a resource
3689 * fork vnode, then we need to try and acquire an iocount on the rsrc vnode.
3690 * If it does not exist, then we don't care and can skip it.
3692 if ((vnode_isreg(fvp
)) || (vnode_islnk(fvp
))) {
3693 if ((tvp
) && (tcp
->c_rsrc_vp
) && (tvp_rsrc
== NULL
)) {
3694 tvp_rsrc
= tcp
->c_rsrc_vp
;
3696 * We can look at the vid here because we're holding the
3697 * cnode lock on the underlying cnode for this rsrc vnode.
3699 tvp_rsrc_vid
= vnode_vid (tvp_rsrc
);
3701 /* Unlock everything to acquire iocount on this rsrc vnode */
3702 if (took_trunc_lock
) {
3703 hfs_unlock_truncate (VTOC(tvp
), 0);
3704 took_trunc_lock
= 0;
3706 hfs_unlockfour(fdcp
, fcp
, tdcp
, tcp
);
3708 if (vnode_getwithvid (tvp_rsrc
, tvp_rsrc_vid
)) {
3709 /* iocount acquisition failed. Reset fields and start over.. */
3717 /* Ensure we didn't race src or dst parent directories with rmdir. */
3718 if (fdcp
->c_flag
& (C_NOEXISTS
| C_DELETED
)) {
3723 if (tdcp
->c_flag
& (C_NOEXISTS
| C_DELETED
)) {
3729 /* Check for a race against unlink. The hfs_valid_cnode checks validate
3730 * the parent/child relationship with fdcp and tdcp, as well as the
3731 * component name of the target cnodes.
3733 if ((fcp
->c_flag
& (C_NOEXISTS
| C_DELETED
)) || !hfs_valid_cnode(hfsmp
, fdvp
, fcnp
, fcp
->c_fileid
, NULL
, &error
)) {
3738 if (tcp
&& ((tcp
->c_flag
& (C_NOEXISTS
| C_DELETED
)) || !hfs_valid_cnode(hfsmp
, tdvp
, tcnp
, tcp
->c_fileid
, NULL
, &error
))) {
3740 // hmm, the destination vnode isn't valid any more.
3741 // in this case we can just drop him and pretend he
3742 // never existed in the first place.
3744 if (took_trunc_lock
) {
3745 hfs_unlock_truncate(VTOC(tvp
), 0);
3746 took_trunc_lock
= 0;
3750 hfs_unlockfour(fdcp
, fcp
, tdcp
, tcp
);
3755 // retry the locking with tvp null'ed out
3759 fdcp
->c_flag
|= C_DIR_MODIFICATION
;
3761 tdcp
->c_flag
|= C_DIR_MODIFICATION
;
3765 * Disallow renaming of a directory hard link if the source and
3766 * destination parent directories are different, or a directory whose
3767 * descendant is a directory hard link and the one of the ancestors
3768 * of the destination directory is a directory hard link.
3770 if (vnode_isdir(fvp
) && (fdvp
!= tdvp
)) {
3771 if (fcp
->c_flag
& C_HARDLINK
) {
3775 if (fcp
->c_attr
.ca_recflags
& kHFSHasChildLinkMask
) {
3776 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
3777 if (cat_check_link_ancestry(hfsmp
, tdcp
->c_fileid
, 0)) {
3779 hfs_systemfile_unlock(hfsmp
, lockflags
);
3782 hfs_systemfile_unlock(hfsmp
, lockflags
);
3787 * The following edge case is caught here:
3788 * (to cannot be a descendent of from)
3801 if (tdcp
->c_parentcnid
== fcp
->c_fileid
) {
3807 * The following two edge cases are caught here:
3808 * (note tvp is not empty)
3821 if (tvp
&& vnode_isdir(tvp
) && (tcp
->c_entries
!= 0) && fvp
!= tvp
) {
3827 * The following edge case is caught here:
3828 * (the from child and parent are the same)
3841 * Make sure "from" vnode and its parent are changeable.
3843 if ((fcp
->c_bsdflags
& (IMMUTABLE
| APPEND
)) || (fdcp
->c_bsdflags
& APPEND
)) {
3849 * If the destination parent directory is "sticky", then the
3850 * user must own the parent directory, or the destination of
3851 * the rename, otherwise the destination may not be changed
3852 * (except by root). This implements append-only directories.
3854 * Note that checks for immutable and write access are done
3855 * by the call to hfs_removefile.
3857 if (tvp
&& (tdcp
->c_mode
& S_ISTXT
) &&
3858 (suser(vfs_context_ucred(tcnp
->cn_context
), NULL
)) &&
3859 (kauth_cred_getuid(vfs_context_ucred(tcnp
->cn_context
)) != tdcp
->c_uid
) &&
3860 (hfs_owner_rights(hfsmp
, tcp
->c_uid
, vfs_context_ucred(tcnp
->cn_context
), p
, false)) ) {
3865 /* Don't allow modification of the journal or journal_info_block */
3866 if (hfs_is_journal_file(hfsmp
, fcp
) ||
3867 (tcp
&& hfs_is_journal_file(hfsmp
, tcp
))) {
3874 (void)hfs_getinoquota(tcp
);
3876 /* Preflighting done, take fvp out of the name space. */
3879 bzero(&from_desc
, sizeof(from_desc
));
3880 from_desc
.cd_nameptr
= (const u_int8_t
*)fcnp
->cn_nameptr
;
3881 from_desc
.cd_namelen
= fcnp
->cn_namelen
;
3882 from_desc
.cd_parentcnid
= fdcp
->c_fileid
;
3883 from_desc
.cd_flags
= fcp
->c_desc
.cd_flags
& ~(CD_HASBUF
| CD_DECOMPOSED
);
3884 from_desc
.cd_cnid
= fcp
->c_cnid
;
3886 bzero(&to_desc
, sizeof(to_desc
));
3887 to_desc
.cd_nameptr
= (const u_int8_t
*)tcnp
->cn_nameptr
;
3888 to_desc
.cd_namelen
= tcnp
->cn_namelen
;
3889 to_desc
.cd_parentcnid
= tdcp
->c_fileid
;
3890 to_desc
.cd_flags
= fcp
->c_desc
.cd_flags
& ~(CD_HASBUF
| CD_DECOMPOSED
);
3891 to_desc
.cd_cnid
= fcp
->c_cnid
;
3893 if ((error
= hfs_start_transaction(hfsmp
)) != 0) {
3898 /* hfs_vnop_link() and hfs_vnop_rename() set kHFSHasChildLinkMask
3899 * inside a journal transaction and without holding a cnode lock.
3900 * As setting of this bit depends on being in journal transaction for
3901 * concurrency, check this bit again after we start journal transaction for rename
3902 * to ensure that this directory does not have any descendant that
3903 * is a directory hard link.
3905 if (vnode_isdir(fvp
) && (fdvp
!= tdvp
)) {
3906 if (fcp
->c_attr
.ca_recflags
& kHFSHasChildLinkMask
) {
3907 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
3908 if (cat_check_link_ancestry(hfsmp
, tdcp
->c_fileid
, 0)) {
3910 hfs_systemfile_unlock(hfsmp
, lockflags
);
3913 hfs_systemfile_unlock(hfsmp
, lockflags
);
3917 // if it's a hardlink then re-lookup the name so
3918 // that we get the correct cnid in from_desc (see
3919 // the comment in hfs_removefile for more details)
3921 if (fcp
->c_flag
& C_HARDLINK
) {
3922 struct cat_desc tmpdesc
;
3925 tmpdesc
.cd_nameptr
= (const u_int8_t
*)fcnp
->cn_nameptr
;
3926 tmpdesc
.cd_namelen
= fcnp
->cn_namelen
;
3927 tmpdesc
.cd_parentcnid
= fdcp
->c_fileid
;
3928 tmpdesc
.cd_hint
= fdcp
->c_childhint
;
3929 tmpdesc
.cd_flags
= fcp
->c_desc
.cd_flags
& CD_ISDIR
;
3930 tmpdesc
.cd_encoding
= 0;
3932 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
3934 if (cat_lookup(hfsmp
, &tmpdesc
, 0, NULL
, NULL
, NULL
, &real_cnid
) != 0) {
3935 hfs_systemfile_unlock(hfsmp
, lockflags
);
3939 // use the real cnid instead of whatever happened to be there
3940 from_desc
.cd_cnid
= real_cnid
;
3941 hfs_systemfile_unlock(hfsmp
, lockflags
);
3945 * Reserve some space in the Catalog file.
3947 if ((error
= cat_preflight(hfsmp
, CAT_RENAME
+ CAT_DELETE
, &cookie
, p
))) {
3953 * If the destination exists then it may need to be removed.
3955 * Due to HFS's locking system, we should always move the
3956 * existing 'tvp' element to the hidden directory in hfs_vnop_rename.
3957 * Because the VNOP_LOOKUP call enters and exits the filesystem independently
3958 * of the actual vnop that it was trying to do (stat, link, readlink),
3959 * we must release the cnode lock of that element during the interim to
3960 * do MAC checking, vnode authorization, and other calls. In that time,
3961 * the item can be deleted (or renamed over). However, only in the rename
3962 * case is it inappropriate to return ENOENT from any of those calls. Either
3963 * the call should return information about the old element (stale), or get
3964 * information about the newer element that we are about to write in its place.
3966 * HFS lookup has been modified to detect a rename and re-drive its
3967 * lookup internally. For other calls that have already succeeded in
3968 * their lookup call and are waiting to acquire the cnode lock in order
3969 * to proceed, that cnode lock will not fail due to the cnode being marked
3970 * C_NOEXISTS, because it won't have been marked as such. It will only
3971 * have C_DELETED. Thus, they will simply act on the stale open-unlinked
3972 * element. All future callers will get the new element.
3974 * To implement this behavior, we pass the "only_unlink" argument to
3975 * hfs_removefile and hfs_removedir. This will result in the vnode acting
3976 * as though it is open-unlinked. Additionally, when we are done moving the
3977 * element to the hidden directory, we vnode_recycle the target so that it is
3978 * reclaimed as soon as possible. Reclaim and inactive are both
3979 * capable of clearing out unused blocks for an open-unlinked file or dir.
3983 * When fvp matches tvp they could be case variants
3984 * or matching hard links.
3987 if (!(fcp
->c_flag
& C_HARDLINK
)) {
3989 * If they're not hardlinks, then fvp == tvp must mean we
3990 * are using case-insensitive HFS because case-sensitive would
3991 * not use the same vnode for both. In this case we just update
3992 * the catalog for: a -> A
3994 goto skip_rm
; /* simple case variant */
3997 /* For all cases below, we must be using hardlinks */
3998 else if ((fdvp
!= tdvp
) ||
3999 (hfsmp
->hfs_flags
& HFS_CASE_SENSITIVE
)) {
4001 * If the parent directories are not the same, AND the two items
4002 * are hardlinks, posix says to do nothing:
4003 * dir1/fred <-> dir2/bob and the op was mv dir1/fred -> dir2/bob
4004 * We just return 0 in this case.
4006 * If case sensitivity is on, and we are using hardlinks
4007 * then renaming is supposed to do nothing.
4008 * dir1/fred <-> dir2/FRED, and op == mv dir1/fred -> dir2/FRED
4010 goto out
; /* matching hardlinks, nothing to do */
4012 } else if (hfs_namecmp((const u_int8_t
*)fcnp
->cn_nameptr
, fcnp
->cn_namelen
,
4013 (const u_int8_t
*)tcnp
->cn_nameptr
, tcnp
->cn_namelen
) == 0) {
4015 * If we get here, then the following must be true:
4016 * a) We are running case-insensitive HFS+.
4017 * b) Both paths 'fvp' and 'tvp' are in the same parent directory.
4018 * c) the two names are case-variants of each other.
4020 * In this case, we are really only dealing with a single catalog record
4021 * whose name is being updated.
4023 * op is dir1/fred -> dir1/FRED
4025 * We need to special case the name matching, because if
4026 * dir1/fred <-> dir1/bob were the two links, and the
4027 * op was dir1/fred -> dir1/bob
4028 * That would fail/do nothing.
4030 goto skip_rm
; /* case-variant hardlink in the same dir */
4032 goto out
; /* matching hardlink, nothing to do */
4037 if (vnode_isdir(tvp
)) {
4039 * hfs_removedir will eventually call hfs_removefile on the directory
4040 * we're working on, because only hfs_removefile does the renaming of the
4041 * item to the hidden directory. The directory will stay around in the
4042 * hidden directory with C_DELETED until it gets an inactive or a reclaim.
4043 * That way, we can destroy all of the EAs as needed and allow new ones to be
4046 error
= hfs_removedir(tdvp
, tvp
, tcnp
, HFSRM_SKIP_RESERVE
, 1);
4049 error
= hfs_removefile(tdvp
, tvp
, tcnp
, 0, HFSRM_SKIP_RESERVE
, 0, NULL
, 1);
4052 * If the destination file had a resource fork vnode, then we need to get rid of
4053 * its blocks when there are no more references to it. Because the call to
4054 * hfs_removefile above always open-unlinks things, we need to force an inactive/reclaim
4055 * on the resource fork vnode, in order to prevent block leaks. Otherwise,
4056 * the resource fork vnode could prevent the data fork vnode from going out of scope
4057 * because it holds a v_parent reference on it. So we mark it for termination
4058 * with a call to vnode_recycle. hfs_vnop_reclaim has been modified so that it
4059 * can clean up the blocks of open-unlinked files and resource forks.
4061 * We can safely call vnode_recycle on the resource fork because we took an iocount
4062 * reference on it at the beginning of the function.
4065 if ((error
== 0) && (tcp
->c_flag
& C_DELETED
) && (tvp_rsrc
)) {
4066 vnode_recycle(tvp_rsrc
);
4076 /* Mark 'tcp' as being deleted due to a rename */
4077 tcp
->c_flag
|= C_RENAMED
;
4080 * Aggressively mark tvp/tcp for termination to ensure that we recover all blocks
4081 * as quickly as possible.
4087 * All done with tvp and fvp.
4089 * We also jump to this point if there was no destination observed during lookup and namei.
4090 * However, because only iocounts are held at the VFS layer, there is nothing preventing a
4091 * competing thread from racing us and creating a file or dir at the destination of this rename
4092 * operation. If this occurs, it may cause us to get a spurious EEXIST out of the cat_rename
4093 * call below. To preserve rename's atomicity, we need to signal VFS to re-drive the
4094 * namei/lookup and restart the rename operation. EEXIST is an allowable errno to be bubbled
4095 * out of the rename syscall, but not for this reason, since it is a synonym errno for ENOTEMPTY.
4096 * To signal VFS, we return ERECYCLE (which is also used for lookup restarts). This errno
4097 * will be swallowed and it will restart the operation.
4100 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_EXCLUSIVE_LOCK
);
4101 error
= cat_rename(hfsmp
, &from_desc
, &tdcp
->c_desc
, &to_desc
, &out_desc
);
4102 hfs_systemfile_unlock(hfsmp
, lockflags
);
4105 if (error
== EEXIST
) {
4111 /* Invalidate negative cache entries in the destination directory */
4112 if (tdcp
->c_flag
& C_NEG_ENTRIES
) {
4113 cache_purge_negatives(tdvp
);
4114 tdcp
->c_flag
&= ~C_NEG_ENTRIES
;
4117 /* Update cnode's catalog descriptor */
4118 replace_desc(fcp
, &out_desc
);
4119 fcp
->c_parentcnid
= tdcp
->c_fileid
;
4122 /* Now indicate this cnode needs to have date-added written to the finderinfo */
4123 fcp
->c_flag
|= C_NEEDS_DATEADDED
;
4124 (void) hfs_update (fvp
, 0);
4127 hfs_volupdate(hfsmp
, vnode_isdir(fvp
) ? VOL_RMDIR
: VOL_RMFILE
,
4128 (fdcp
->c_cnid
== kHFSRootFolderID
));
4129 hfs_volupdate(hfsmp
, vnode_isdir(fvp
) ? VOL_MKDIR
: VOL_MKFILE
,
4130 (tdcp
->c_cnid
== kHFSRootFolderID
));
4132 /* Update both parent directories. */
4134 if (vnode_isdir(fvp
)) {
4135 /* If the source directory has directory hard link
4136 * descendants, set the kHFSHasChildLinkBit in the
4137 * destination parent hierarchy
4139 if ((fcp
->c_attr
.ca_recflags
& kHFSHasChildLinkMask
) &&
4140 !(tdcp
->c_attr
.ca_recflags
& kHFSHasChildLinkMask
)) {
4142 tdcp
->c_attr
.ca_recflags
|= kHFSHasChildLinkMask
;
4144 error
= cat_set_childlinkbit(hfsmp
, tdcp
->c_parentcnid
);
4146 printf ("hfs_vnop_rename: error updating parent chain for %u\n", tdcp
->c_cnid
);
4150 INC_FOLDERCOUNT(hfsmp
, tdcp
->c_attr
);
4151 DEC_FOLDERCOUNT(hfsmp
, fdcp
->c_attr
);
4154 tdcp
->c_dirchangecnt
++;
4155 if (fdcp
->c_entries
> 0)
4157 fdcp
->c_dirchangecnt
++;
4158 fdcp
->c_touch_chgtime
= TRUE
;
4159 fdcp
->c_touch_modtime
= TRUE
;
4161 fdcp
->c_flag
|= C_FORCEUPDATE
; // XXXdbg - force it out!
4162 (void) hfs_update(fdvp
, 0);
4164 tdcp
->c_childhint
= out_desc
.cd_hint
; /* Cache directory's location */
4165 tdcp
->c_touch_chgtime
= TRUE
;
4166 tdcp
->c_touch_modtime
= TRUE
;
4168 tdcp
->c_flag
|= C_FORCEUPDATE
; // XXXdbg - force it out!
4169 (void) hfs_update(tdvp
, 0);
4171 /* Update the vnode's name now that the rename has completed. */
4172 vnode_update_identity(fvp
, tdvp
, tcnp
->cn_nameptr
, tcnp
->cn_namelen
,
4173 tcnp
->cn_hash
, (VNODE_UPDATE_PARENT
| VNODE_UPDATE_NAME
));
4176 * At this point, we may have a resource fork vnode attached to the
4177 * 'from' vnode. If it exists, we will want to update its name, because
4178 * it contains the old name + _PATH_RSRCFORKSPEC. ("/..namedfork/rsrc").
4180 * Note that the only thing we need to update here is the name attached to
4181 * the vnode, since a resource fork vnode does not have a separate resource
4182 * cnode -- it's still 'fcp'.
4184 if (fcp
->c_rsrc_vp
) {
4185 char* rsrc_path
= NULL
;
4188 /* Create a new temporary buffer that's going to hold the new name */
4189 MALLOC_ZONE (rsrc_path
, caddr_t
, MAXPATHLEN
, M_NAMEI
, M_WAITOK
);
4190 len
= snprintf (rsrc_path
, MAXPATHLEN
, "%s%s", tcnp
->cn_nameptr
, _PATH_RSRCFORKSPEC
);
4191 len
= MIN(len
, MAXPATHLEN
);
4194 * vnode_update_identity will do the following for us:
4195 * 1) release reference on the existing rsrc vnode's name.
4196 * 2) copy/insert new name into the name cache
4197 * 3) attach the new name to the resource vnode
4198 * 4) update the vnode's vid
4200 vnode_update_identity (fcp
->c_rsrc_vp
, fvp
, rsrc_path
, len
, 0, (VNODE_UPDATE_NAME
| VNODE_UPDATE_CACHE
));
4202 /* Free the memory associated with the resource fork's name */
4203 FREE_ZONE (rsrc_path
, MAXPATHLEN
, M_NAMEI
);
4207 cat_postflight(hfsmp
, &cookie
, p
);
4210 hfs_end_transaction(hfsmp
);
4213 fdcp
->c_flag
&= ~C_DIR_MODIFICATION
;
4214 wakeup((caddr_t
)&fdcp
->c_flag
);
4216 tdcp
->c_flag
&= ~C_DIR_MODIFICATION
;
4217 wakeup((caddr_t
)&tdcp
->c_flag
);
4220 if (took_trunc_lock
) {
4221 hfs_unlock_truncate(VTOC(tvp
), 0);
4224 hfs_unlockfour(fdcp
, fcp
, tdcp
, tcp
);
4226 /* Now vnode_put the resource fork vnode if necessary */
4228 vnode_put(tvp_rsrc
);
4232 /* After tvp is removed the only acceptable error is EIO */
4233 if (error
&& tvp_deleted
)
4244 hfs_vnop_mkdir(struct vnop_mkdir_args
*ap
)
4246 /***** HACK ALERT ********/
4247 ap
->a_cnp
->cn_flags
|= MAKEENTRY
;
4248 return hfs_makenode(ap
->a_dvp
, ap
->a_vpp
, ap
->a_cnp
, ap
->a_vap
, ap
->a_context
);
4253 * Create a symbolic link.
4256 hfs_vnop_symlink(struct vnop_symlink_args
*ap
)
4258 struct vnode
**vpp
= ap
->a_vpp
;
4259 struct vnode
*dvp
= ap
->a_dvp
;
4260 struct vnode
*vp
= NULL
;
4261 struct cnode
*cp
= NULL
;
4262 struct hfsmount
*hfsmp
;
4263 struct filefork
*fp
;
4264 struct buf
*bp
= NULL
;
4270 /* HFS standard disks don't support symbolic links */
4271 if (VTOVCB(dvp
)->vcbSigWord
!= kHFSPlusSigWord
)
4274 /* Check for empty target name */
4275 if (ap
->a_target
[0] == 0)
4278 hfsmp
= VTOHFS(dvp
);
4279 len
= strlen(ap
->a_target
);
4281 /* Check for free space */
4282 if (((u_int64_t
)hfs_freeblks(hfsmp
, 0) * (u_int64_t
)hfsmp
->blockSize
) < len
) {
4286 /* Create the vnode */
4287 ap
->a_vap
->va_mode
|= S_IFLNK
;
4288 if ((error
= hfs_makenode(dvp
, vpp
, ap
->a_cnp
, ap
->a_vap
, ap
->a_context
))) {
4292 if ((error
= hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
))) {
4298 if (cp
->c_flag
& (C_NOEXISTS
| C_DELETED
)) {
4303 (void)hfs_getinoquota(cp
);
4306 if ((error
= hfs_start_transaction(hfsmp
)) != 0) {
4312 * Allocate space for the link.
4314 * Since we're already inside a transaction,
4315 * tell hfs_truncate to skip the ubc_setsize.
4317 * Don't need truncate lock since a symlink is treated as a system file.
4319 error
= hfs_truncate(vp
, len
, IO_NOZEROFILL
, 1, 0, ap
->a_context
);
4321 /* On errors, remove the symlink file */
4324 * End the transaction so we don't re-take the cnode lock
4325 * below while inside a transaction (lock order violation).
4327 hfs_end_transaction(hfsmp
);
4329 /* hfs_removefile() requires holding the truncate lock */
4331 hfs_lock_truncate(cp
, HFS_EXCLUSIVE_LOCK
);
4332 hfs_lock(cp
, HFS_FORCE_LOCK
);
4334 if (hfs_start_transaction(hfsmp
) != 0) {
4336 hfs_unlock_truncate(cp
, TRUE
);
4340 (void) hfs_removefile(dvp
, vp
, ap
->a_cnp
, 0, 0, 0, NULL
, 0);
4341 hfs_unlock_truncate(cp
, 0);
4345 /* Write the link to disk */
4346 bp
= buf_getblk(vp
, (daddr64_t
)0, roundup((int)fp
->ff_size
, hfsmp
->hfs_physical_block_size
),
4349 journal_modify_block_start(hfsmp
->jnl
, bp
);
4351 datap
= (char *)buf_dataptr(bp
);
4352 bzero(datap
, buf_size(bp
));
4353 bcopy(ap
->a_target
, datap
, len
);
4356 journal_modify_block_end(hfsmp
->jnl
, bp
, NULL
, NULL
);
4361 * We defered the ubc_setsize for hfs_truncate
4362 * since we were inside a transaction.
4364 * We don't need to drop the cnode lock here
4365 * since this is a symlink.
4367 ubc_setsize(vp
, len
);
4370 hfs_end_transaction(hfsmp
);
4371 if ((cp
!= NULL
) && (vp
!= NULL
)) {
4384 /* structures to hold a "." or ".." directory entry */
4385 struct hfs_stddotentry
{
4386 u_int32_t d_fileno
; /* unique file number */
4387 u_int16_t d_reclen
; /* length of this structure */
4388 u_int8_t d_type
; /* dirent file type */
4389 u_int8_t d_namlen
; /* len of filename */
4390 char d_name
[4]; /* "." or ".." */
4393 struct hfs_extdotentry
{
4394 u_int64_t d_fileno
; /* unique file number */
4395 u_int64_t d_seekoff
; /* seek offset (optional, used by servers) */
4396 u_int16_t d_reclen
; /* length of this structure */
4397 u_int16_t d_namlen
; /* len of filename */
4398 u_int8_t d_type
; /* dirent file type */
4399 u_char d_name
[3]; /* "." or ".." */
4403 struct hfs_stddotentry std
;
4404 struct hfs_extdotentry ext
;
4408 * hfs_vnop_readdir reads directory entries into the buffer pointed
4409 * to by uio, in a filesystem independent format. Up to uio_resid
4410 * bytes of data can be transferred. The data in the buffer is a
4411 * series of packed dirent structures where each one contains the
4412 * following entries:
4414 * u_int32_t d_fileno; // file number of entry
4415 * u_int16_t d_reclen; // length of this record
4416 * u_int8_t d_type; // file type
4417 * u_int8_t d_namlen; // length of string in d_name
4418 * char d_name[MAXNAMELEN+1]; // null terminated file name
4420 * The current position (uio_offset) refers to the next block of
4421 * entries. The offset can only be set to a value previously
4422 * returned by hfs_vnop_readdir or zero. This offset does not have
4423 * to match the number of bytes returned (in uio_resid).
4425 * In fact, the offset used by HFS is essentially an index (26 bits)
4426 * with a tag (6 bits). The tag is for associating the next request
4427 * with the current request. This enables us to have multiple threads
4428 * reading the directory while the directory is also being modified.
4430 * Each tag/index pair is tied to a unique directory hint. The hint
4431 * contains information (filename) needed to build the catalog b-tree
4432 * key for finding the next set of entries.
4434 * If the directory is marked as deleted-but-in-use (cp->c_flag & C_DELETED),
4435 * do NOT synthesize entries for "." and "..".
4438 hfs_vnop_readdir(ap
)
4439 struct vnop_readdir_args
/* {
4445 vfs_context_t a_context;
4448 struct vnode
*vp
= ap
->a_vp
;
4449 uio_t uio
= ap
->a_uio
;
4451 struct hfsmount
*hfsmp
;
4452 directoryhint_t
*dirhint
= NULL
;
4453 directoryhint_t localhint
;
4458 user_addr_t user_start
= 0;
4459 user_size_t user_len
= 0;
4466 cnid_t cnid_hint
= 0;
4469 startoffset
= offset
= uio_offset(uio
);
4470 extended
= (ap
->a_flags
& VNODE_READDIR_EXTENDED
);
4471 nfs_cookies
= extended
&& (ap
->a_flags
& VNODE_READDIR_REQSEEKOFF
);
4473 /* Sanity check the uio data. */
4474 if (uio_iovcnt(uio
) > 1)
4477 if (VTOC(vp
)->c_bsdflags
& UF_COMPRESSED
) {
4478 int compressed
= hfs_file_is_compressed(VTOC(vp
), 0); /* 0 == take the cnode lock */
4479 if (VTOCMP(vp
) != NULL
&& !compressed
) {
4480 error
= check_for_dataless_file(vp
, NAMESPACE_HANDLER_READ_OP
);
4490 /* Note that the dirhint calls require an exclusive lock. */
4491 if ((error
= hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
)))
4494 /* Pick up cnid hint (if any). */
4496 cnid_hint
= (cnid_t
)(uio_offset(uio
) >> 32);
4497 uio_setoffset(uio
, uio_offset(uio
) & 0x00000000ffffffffLL
);
4498 if (cnid_hint
== INT_MAX
) { /* searching pass the last item */
4504 * Synthesize entries for "." and "..", unless the directory has
4505 * been deleted, but not closed yet (lazy delete in progress).
4507 if (offset
== 0 && !(cp
->c_flag
& C_DELETED
)) {
4508 hfs_dotentry_t dotentry
[2];
4512 struct hfs_extdotentry
*entry
= &dotentry
[0].ext
;
4514 entry
->d_fileno
= cp
->c_cnid
;
4515 entry
->d_reclen
= sizeof(struct hfs_extdotentry
);
4516 entry
->d_type
= DT_DIR
;
4517 entry
->d_namlen
= 1;
4518 entry
->d_name
[0] = '.';
4519 entry
->d_name
[1] = '\0';
4520 entry
->d_name
[2] = '\0';
4521 entry
->d_seekoff
= 1;
4524 entry
->d_fileno
= cp
->c_parentcnid
;
4525 entry
->d_reclen
= sizeof(struct hfs_extdotentry
);
4526 entry
->d_type
= DT_DIR
;
4527 entry
->d_namlen
= 2;
4528 entry
->d_name
[0] = '.';
4529 entry
->d_name
[1] = '.';
4530 entry
->d_name
[2] = '\0';
4531 entry
->d_seekoff
= 2;
4532 uiosize
= 2 * sizeof(struct hfs_extdotentry
);
4534 struct hfs_stddotentry
*entry
= &dotentry
[0].std
;
4536 entry
->d_fileno
= cp
->c_cnid
;
4537 entry
->d_reclen
= sizeof(struct hfs_stddotentry
);
4538 entry
->d_type
= DT_DIR
;
4539 entry
->d_namlen
= 1;
4540 *(int *)&entry
->d_name
[0] = 0;
4541 entry
->d_name
[0] = '.';
4544 entry
->d_fileno
= cp
->c_parentcnid
;
4545 entry
->d_reclen
= sizeof(struct hfs_stddotentry
);
4546 entry
->d_type
= DT_DIR
;
4547 entry
->d_namlen
= 2;
4548 *(int *)&entry
->d_name
[0] = 0;
4549 entry
->d_name
[0] = '.';
4550 entry
->d_name
[1] = '.';
4551 uiosize
= 2 * sizeof(struct hfs_stddotentry
);
4553 if ((error
= uiomove((caddr_t
)&dotentry
, uiosize
, uio
))) {
4559 /* If there are no real entries then we're done. */
4560 if (cp
->c_entries
== 0) {
4563 uio_setoffset(uio
, offset
);
4568 // We have to lock the user's buffer here so that we won't
4569 // fault on it after we've acquired a shared lock on the
4570 // catalog file. The issue is that you can get a 3-way
4571 // deadlock if someone else starts a transaction and then
4572 // tries to lock the catalog file but can't because we're
4573 // here and we can't service our page fault because VM is
4574 // blocked trying to start a transaction as a result of
4575 // trying to free up pages for our page fault. It's messy
4576 // but it does happen on dual-processors that are paging
4577 // heavily (see radar 3082639 for more info). By locking
4578 // the buffer up-front we prevent ourselves from faulting
4579 // while holding the shared catalog file lock.
4581 // Fortunately this and hfs_search() are the only two places
4582 // currently (10/30/02) that can fault on user data with a
4583 // shared lock on the catalog file.
4585 if (hfsmp
->jnl
&& uio_isuserspace(uio
)) {
4586 user_start
= uio_curriovbase(uio
);
4587 user_len
= uio_curriovlen(uio
);
4589 if ((error
= vslock(user_start
, user_len
)) != 0) {
4594 /* Convert offset into a catalog directory index. */
4595 index
= (offset
& HFS_INDEX_MASK
) - 2;
4596 tag
= offset
& ~HFS_INDEX_MASK
;
4598 /* Lock catalog during cat_findname and cat_getdirentries. */
4599 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
4601 /* When called from NFS, try and resolve a cnid hint. */
4602 if (nfs_cookies
&& cnid_hint
!= 0) {
4603 if (cat_findname(hfsmp
, cnid_hint
, &localhint
.dh_desc
) == 0) {
4604 if ( localhint
.dh_desc
.cd_parentcnid
== cp
->c_fileid
) {
4605 localhint
.dh_index
= index
- 1;
4606 localhint
.dh_time
= 0;
4607 bzero(&localhint
.dh_link
, sizeof(localhint
.dh_link
));
4608 dirhint
= &localhint
; /* don't forget to release the descriptor */
4610 cat_releasedesc(&localhint
.dh_desc
);
4615 /* Get a directory hint (cnode must be locked exclusive) */
4616 if (dirhint
== NULL
) {
4617 dirhint
= hfs_getdirhint(cp
, ((index
- 1) & HFS_INDEX_MASK
) | tag
, 0);
4619 /* Hide tag from catalog layer. */
4620 dirhint
->dh_index
&= HFS_INDEX_MASK
;
4621 if (dirhint
->dh_index
== HFS_INDEX_MASK
) {
4622 dirhint
->dh_index
= -1;
4627 dirhint
->dh_threadhint
= cp
->c_dirthreadhint
;
4631 * If we have a non-zero index, there is a possibility that during the last
4632 * call to hfs_vnop_readdir we hit EOF for this directory. If that is the case
4633 * then we don't want to return any new entries for the caller. Just return 0
4634 * items, mark the eofflag, and bail out. Because we won't have done any work, the
4635 * code at the end of the function will release the dirhint for us.
4637 * Don't forget to unlock the catalog lock on the way out, too.
4639 if (dirhint
->dh_desc
.cd_flags
& CD_EOF
) {
4642 uio_setoffset(uio
, startoffset
);
4643 hfs_systemfile_unlock (hfsmp
, lockflags
);
4649 /* Pack the buffer with dirent entries. */
4650 error
= cat_getdirentries(hfsmp
, cp
->c_entries
, dirhint
, uio
, ap
->a_flags
, &items
, &eofflag
);
4652 if (index
== 0 && error
== 0) {
4653 cp
->c_dirthreadhint
= dirhint
->dh_threadhint
;
4656 hfs_systemfile_unlock(hfsmp
, lockflags
);
4662 /* Get index to the next item */
4665 if (items
>= (int)cp
->c_entries
) {
4669 /* Convert catalog directory index back into an offset. */
4671 tag
= (++cp
->c_dirhinttag
) << HFS_INDEX_BITS
;
4672 uio_setoffset(uio
, (index
+ 2) | tag
);
4673 dirhint
->dh_index
|= tag
;
4676 cp
->c_touch_acctime
= TRUE
;
4678 if (ap
->a_numdirent
) {
4679 if (startoffset
== 0)
4681 *ap
->a_numdirent
= items
;
4686 vsunlock(user_start
, user_len
, TRUE
);
4688 /* If we didn't do anything then go ahead and dump the hint. */
4689 if ((dirhint
!= NULL
) &&
4690 (dirhint
!= &localhint
) &&
4691 (uio_offset(uio
) == startoffset
)) {
4692 hfs_reldirhint(cp
, dirhint
);
4695 if (ap
->a_eofflag
) {
4696 *ap
->a_eofflag
= eofflag
;
4698 if (dirhint
== &localhint
) {
4699 cat_releasedesc(&localhint
.dh_desc
);
4707 * Read contents of a symbolic link.
4710 hfs_vnop_readlink(ap
)
4711 struct vnop_readlink_args
/* {
4714 vfs_context_t a_context;
4717 struct vnode
*vp
= ap
->a_vp
;
4719 struct filefork
*fp
;
4722 if (!vnode_islnk(vp
))
4725 if ((error
= hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
)))
4730 /* Zero length sym links are not allowed */
4731 if (fp
->ff_size
== 0 || fp
->ff_size
> MAXPATHLEN
) {
4736 /* Cache the path so we don't waste buffer cache resources */
4737 if (fp
->ff_symlinkptr
== NULL
) {
4738 struct buf
*bp
= NULL
;
4740 MALLOC(fp
->ff_symlinkptr
, char *, fp
->ff_size
, M_TEMP
, M_WAITOK
);
4741 if (fp
->ff_symlinkptr
== NULL
) {
4745 error
= (int)buf_meta_bread(vp
, (daddr64_t
)0,
4746 roundup((int)fp
->ff_size
, VTOHFS(vp
)->hfs_physical_block_size
),
4747 vfs_context_ucred(ap
->a_context
), &bp
);
4751 if (fp
->ff_symlinkptr
) {
4752 FREE(fp
->ff_symlinkptr
, M_TEMP
);
4753 fp
->ff_symlinkptr
= NULL
;
4757 bcopy((char *)buf_dataptr(bp
), fp
->ff_symlinkptr
, (size_t)fp
->ff_size
);
4759 if (VTOHFS(vp
)->jnl
&& (buf_flags(bp
) & B_LOCKED
) == 0) {
4760 buf_markinvalid(bp
); /* data no longer needed */
4764 error
= uiomove((caddr_t
)fp
->ff_symlinkptr
, (int)fp
->ff_size
, ap
->a_uio
);
4767 * Keep track blocks read
4769 if ((VTOHFS(vp
)->hfc_stage
== HFC_RECORDING
) && (error
== 0)) {
4772 * If this file hasn't been seen since the start of
4773 * the current sampling period then start over.
4775 if (cp
->c_atime
< VTOHFS(vp
)->hfc_timebase
)
4776 VTOF(vp
)->ff_bytesread
= fp
->ff_size
;
4778 VTOF(vp
)->ff_bytesread
+= fp
->ff_size
;
4780 // if (VTOF(vp)->ff_bytesread > fp->ff_size)
4781 // cp->c_touch_acctime = TRUE;
4791 * Get configurable pathname variables.
4794 hfs_vnop_pathconf(ap
)
4795 struct vnop_pathconf_args
/* {
4799 vfs_context_t a_context;
4802 switch (ap
->a_name
) {
4804 if (VTOHFS(ap
->a_vp
)->hfs_flags
& HFS_STANDARD
)
4807 *ap
->a_retval
= HFS_LINK_MAX
;
4810 if (VTOHFS(ap
->a_vp
)->hfs_flags
& HFS_STANDARD
)
4811 *ap
->a_retval
= kHFSMaxFileNameChars
; /* 31 */
4813 *ap
->a_retval
= kHFSPlusMaxFileNameChars
; /* 255 */
4816 *ap
->a_retval
= PATH_MAX
; /* 1024 */
4819 *ap
->a_retval
= PIPE_BUF
;
4821 case _PC_CHOWN_RESTRICTED
:
4822 *ap
->a_retval
= 200112; /* _POSIX_CHOWN_RESTRICTED */
4825 *ap
->a_retval
= 200112; /* _POSIX_NO_TRUNC */
4827 case _PC_NAME_CHARS_MAX
:
4828 if (VTOHFS(ap
->a_vp
)->hfs_flags
& HFS_STANDARD
)
4829 *ap
->a_retval
= kHFSMaxFileNameChars
; /* 31 */
4831 *ap
->a_retval
= kHFSPlusMaxFileNameChars
; /* 255 */
4833 case _PC_CASE_SENSITIVE
:
4834 if (VTOHFS(ap
->a_vp
)->hfs_flags
& HFS_CASE_SENSITIVE
)
4839 case _PC_CASE_PRESERVING
:
4842 case _PC_FILESIZEBITS
:
4843 if (VTOHFS(ap
->a_vp
)->hfs_flags
& HFS_STANDARD
)
4846 *ap
->a_retval
= 64; /* number of bits to store max file size */
4848 case _PC_XATTR_SIZE_BITS
:
4849 /* Number of bits to store maximum extended attribute size */
4850 *ap
->a_retval
= HFS_XATTR_SIZE_BITS
;
4861 * Update a cnode's on-disk metadata.
4863 * If waitfor is set, then wait for the disk write of
4864 * the node to complete.
4866 * The cnode must be locked exclusive
4869 hfs_update(struct vnode
*vp
, __unused
int waitfor
)
4871 struct cnode
*cp
= VTOC(vp
);
4873 struct cat_fork
*dataforkp
= NULL
;
4874 struct cat_fork
*rsrcforkp
= NULL
;
4875 struct cat_fork datafork
;
4876 struct cat_fork rsrcfork
;
4877 struct hfsmount
*hfsmp
;
4884 if (((vnode_issystem(vp
) && (cp
->c_cnid
< kHFSFirstUserCatalogNodeID
))) ||
4885 hfsmp
->hfs_catalog_vp
== NULL
){
4888 if ((hfsmp
->hfs_flags
& HFS_READ_ONLY
) || (cp
->c_mode
== 0)) {
4889 cp
->c_flag
&= ~C_MODIFIED
;
4890 cp
->c_touch_acctime
= 0;
4891 cp
->c_touch_chgtime
= 0;
4892 cp
->c_touch_modtime
= 0;
4896 hfs_touchtimes(hfsmp
, cp
);
4898 /* Nothing to update. */
4899 if ((cp
->c_flag
& (C_MODIFIED
| C_FORCEUPDATE
)) == 0) {
4904 dataforkp
= &cp
->c_datafork
->ff_data
;
4906 rsrcforkp
= &cp
->c_rsrcfork
->ff_data
;
4909 * For delayed allocations updates are
4910 * postponed until an fsync or the file
4911 * gets written to disk.
4913 * Deleted files can defer meta data updates until inactive.
4915 * If we're ever called with the C_FORCEUPDATE flag though
4916 * we have to do the update.
4918 if (ISSET(cp
->c_flag
, C_FORCEUPDATE
) == 0 &&
4919 (ISSET(cp
->c_flag
, C_DELETED
) ||
4920 (dataforkp
&& cp
->c_datafork
->ff_unallocblocks
) ||
4921 (rsrcforkp
&& cp
->c_rsrcfork
->ff_unallocblocks
))) {
4922 // cp->c_flag &= ~(C_ACCESS | C_CHANGE | C_UPDATE);
4923 cp
->c_flag
|= C_MODIFIED
;
4928 if ((error
= hfs_start_transaction(hfsmp
)) != 0) {
4933 * Modify the values passed to cat_update based on whether or not
4934 * the file has invalid ranges or borrowed blocks.
4939 /* copy the datafork into a temporary copy so we don't pollute the cnode's */
4940 bcopy(dataforkp
, &datafork
, sizeof(datafork
));
4941 dataforkp
= &datafork
;
4944 * If there are borrowed blocks, ensure that they are subtracted
4945 * from the total block count before writing the cnode entry to disk.
4946 * Only extents that have actually been marked allocated in the bitmap
4947 * should be reflected in the total block count for this fork.
4949 if (cp
->c_datafork
->ff_unallocblocks
!= 0) {
4950 // make sure that we don't assign a negative block count
4951 if (cp
->c_datafork
->ff_blocks
< cp
->c_datafork
->ff_unallocblocks
) {
4952 panic("hfs: ff_blocks %d is less than unalloc blocks %d\n",
4953 cp
->c_datafork
->ff_blocks
, cp
->c_datafork
->ff_unallocblocks
);
4956 /* Also cap the LEOF to the total number of bytes that are allocated. */
4957 datafork
.cf_blocks
= (cp
->c_datafork
->ff_blocks
- cp
->c_datafork
->ff_unallocblocks
);
4958 datafork
.cf_size
= datafork
.cf_blocks
* HFSTOVCB(hfsmp
)->blockSize
;
4962 * For files with invalid ranges (holes) the on-disk
4963 * field representing the size of the file (cf_size)
4964 * must be no larger than the start of the first hole.
4965 * However, note that if the first invalid range exists
4966 * solely within borrowed blocks, then our LEOF and block
4967 * count should both be zero. As a result, set it to the
4968 * min of the current cf_size and the start of the first
4969 * invalid range, because it may have already been reduced
4970 * to zero by the borrowed blocks check above.
4972 if (!TAILQ_EMPTY(&cp
->c_datafork
->ff_invalidranges
)) {
4973 numbytes
= TAILQ_FIRST(&cp
->c_datafork
->ff_invalidranges
)->rl_start
;
4974 datafork
.cf_size
= MIN((numbytes
), (datafork
.cf_size
));
4979 * For resource forks with delayed allocations, make sure
4980 * the block count and file size match the number of blocks
4981 * actually allocated to the file on disk.
4983 if (rsrcforkp
&& (cp
->c_rsrcfork
->ff_unallocblocks
!= 0)) {
4984 bcopy(rsrcforkp
, &rsrcfork
, sizeof(rsrcfork
));
4985 rsrcfork
.cf_blocks
= (cp
->c_rsrcfork
->ff_blocks
- cp
->c_rsrcfork
->ff_unallocblocks
);
4986 rsrcfork
.cf_size
= rsrcfork
.cf_blocks
* HFSTOVCB(hfsmp
)->blockSize
;
4987 rsrcforkp
= &rsrcfork
;
4991 * Lock the Catalog b-tree file.
4993 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_EXCLUSIVE_LOCK
);
4995 /* XXX - waitfor is not enforced */
4996 error
= cat_update(hfsmp
, &cp
->c_desc
, &cp
->c_attr
, dataforkp
, rsrcforkp
);
4998 hfs_systemfile_unlock(hfsmp
, lockflags
);
5000 /* After the updates are finished, clear the flags */
5001 cp
->c_flag
&= ~(C_MODIFIED
| C_FORCEUPDATE
);
5003 hfs_end_transaction(hfsmp
);
5009 * Allocate a new node
5010 * Note - Function does not create and return a vnode for whiteout creation.
5013 hfs_makenode(struct vnode
*dvp
, struct vnode
**vpp
, struct componentname
*cnp
,
5014 struct vnode_attr
*vap
, vfs_context_t ctx
)
5016 struct cnode
*cp
= NULL
;
5017 struct cnode
*dcp
= NULL
;
5019 struct hfsmount
*hfsmp
;
5020 struct cat_desc in_desc
, out_desc
;
5021 struct cat_attr attr
;
5024 int error
, started_tr
= 0;
5025 enum vtype vnodetype
;
5027 int newvnode_flags
= 0;
5028 u_int32_t gnv_flags
= 0;
5029 int protectable_target
= 0;
5032 struct cprotect
*entry
= NULL
;
5033 uint32_t cp_class
= 0;
5034 if (VATTR_IS_ACTIVE(vap
, va_dataprotect_class
)) {
5035 cp_class
= vap
->va_dataprotect_class
;
5037 int protected_mount
= 0;
5041 if ((error
= hfs_lock(VTOC(dvp
), HFS_EXCLUSIVE_LOCK
)))
5044 /* set the cnode pointer only after successfully acquiring lock */
5047 /* Don't allow creation of new entries in open-unlinked directories */
5048 if ((error
= hfs_checkdeleted(dcp
))) {
5053 dcp
->c_flag
|= C_DIR_MODIFICATION
;
5055 hfsmp
= VTOHFS(dvp
);
5059 out_desc
.cd_flags
= 0;
5060 out_desc
.cd_nameptr
= NULL
;
5062 vnodetype
= vap
->va_type
;
5063 if (vnodetype
== VNON
)
5065 mode
= MAKEIMODE(vnodetype
, vap
->va_mode
);
5067 if (S_ISDIR (mode
) || S_ISREG (mode
)) {
5068 protectable_target
= 1;
5072 /* Check if were out of usable disk space. */
5073 if ((hfs_freeblks(hfsmp
, 1) == 0) && (vfs_context_suser(ctx
) != 0)) {
5080 /* Setup the default attributes */
5081 bzero(&attr
, sizeof(attr
));
5082 attr
.ca_mode
= mode
;
5083 attr
.ca_linkcount
= 1;
5084 if (VATTR_IS_ACTIVE(vap
, va_rdev
)) {
5085 attr
.ca_rdev
= vap
->va_rdev
;
5087 if (VATTR_IS_ACTIVE(vap
, va_create_time
)) {
5088 VATTR_SET_SUPPORTED(vap
, va_create_time
);
5089 attr
.ca_itime
= vap
->va_create_time
.tv_sec
;
5091 attr
.ca_itime
= tv
.tv_sec
;
5093 if ((hfsmp
->hfs_flags
& HFS_STANDARD
) && gTimeZone
.tz_dsttime
) {
5094 attr
.ca_itime
+= 3600; /* Same as what hfs_update does */
5096 attr
.ca_atime
= attr
.ca_ctime
= attr
.ca_mtime
= attr
.ca_itime
;
5097 attr
.ca_atimeondisk
= attr
.ca_atime
;
5098 if (VATTR_IS_ACTIVE(vap
, va_flags
)) {
5099 VATTR_SET_SUPPORTED(vap
, va_flags
);
5100 attr
.ca_flags
= vap
->va_flags
;
5104 * HFS+ only: all files get ThreadExists
5105 * HFSX only: dirs get HasFolderCount
5107 if (!(hfsmp
->hfs_flags
& HFS_STANDARD
)) {
5108 if (vnodetype
== VDIR
) {
5109 if (hfsmp
->hfs_flags
& HFS_FOLDERCOUNT
)
5110 attr
.ca_recflags
= kHFSHasFolderCountMask
;
5112 attr
.ca_recflags
= kHFSThreadExistsMask
;
5117 if (cp_fs_protected(hfsmp
->hfs_mp
)) {
5118 protected_mount
= 1;
5121 * On a content-protected HFS+/HFSX filesystem, files and directories
5122 * cannot be created without atomically setting/creating the EA that
5123 * contains the protection class metadata and keys at the same time, in
5124 * the same transaction. As a result, pre-set the "EAs exist" flag
5125 * on the cat_attr for protectable catalog record creations. This will
5126 * cause the cnode creation routine in hfs_getnewvnode to mark the cnode
5129 if ((protected_mount
) && (protectable_target
)) {
5130 attr
.ca_recflags
|= kHFSHasAttributesMask
;
5136 * Add the date added to the item. See above, as
5137 * all of the dates are set to the itime.
5139 hfs_write_dateadded (&attr
, attr
.ca_atime
);
5141 attr
.ca_uid
= vap
->va_uid
;
5142 attr
.ca_gid
= vap
->va_gid
;
5143 VATTR_SET_SUPPORTED(vap
, va_mode
);
5144 VATTR_SET_SUPPORTED(vap
, va_uid
);
5145 VATTR_SET_SUPPORTED(vap
, va_gid
);
5148 /* check to see if this node's creation would cause us to go over
5149 * quota. If so, abort this operation.
5151 if (hfsmp
->hfs_flags
& HFS_QUOTAS
) {
5152 if ((error
= hfs_quotacheck(hfsmp
, 1, attr
.ca_uid
, attr
.ca_gid
,
5153 vfs_context_ucred(ctx
)))) {
5160 /* Tag symlinks with a type and creator. */
5161 if (vnodetype
== VLNK
) {
5162 struct FndrFileInfo
*fip
;
5164 fip
= (struct FndrFileInfo
*)&attr
.ca_finderinfo
;
5165 fip
->fdType
= SWAP_BE32(kSymLinkFileType
);
5166 fip
->fdCreator
= SWAP_BE32(kSymLinkCreator
);
5168 if (cnp
->cn_flags
& ISWHITEOUT
)
5169 attr
.ca_flags
|= UF_OPAQUE
;
5171 /* Setup the descriptor */
5172 in_desc
.cd_nameptr
= (const u_int8_t
*)cnp
->cn_nameptr
;
5173 in_desc
.cd_namelen
= cnp
->cn_namelen
;
5174 in_desc
.cd_parentcnid
= dcp
->c_fileid
;
5175 in_desc
.cd_flags
= S_ISDIR(mode
) ? CD_ISDIR
: 0;
5176 in_desc
.cd_hint
= dcp
->c_childhint
;
5177 in_desc
.cd_encoding
= 0;
5181 * To preserve file creation atomicity with regards to the content protection EA,
5182 * we must create the file in the catalog and then write out the EA in the same
5183 * transaction. Pre-flight any operations that we can (such as allocating/preparing
5184 * the buffer, wrapping the keys) before we start the txn and take the requisite
5185 * b-tree locks. We pass '0' as the fileid because we do not know it yet.
5187 if ((protected_mount
) && (protectable_target
)) {
5188 error
= cp_entry_create_keys (&entry
, dcp
, hfsmp
, cp_class
, 0, attr
.ca_mode
);
5195 if ((error
= hfs_start_transaction(hfsmp
)) != 0) {
5200 // have to also lock the attribute file because cat_create() needs
5201 // to check that any fileID it wants to use does not have orphaned
5202 // attributes in it.
5203 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
| SFL_ATTRIBUTE
, HFS_EXCLUSIVE_LOCK
);
5205 /* Reserve some space in the Catalog file. */
5206 if ((error
= cat_preflight(hfsmp
, CAT_CREATE
, NULL
, 0))) {
5207 hfs_systemfile_unlock(hfsmp
, lockflags
);
5210 error
= cat_create(hfsmp
, &in_desc
, &attr
, &out_desc
);
5212 /* Update the parent directory */
5213 dcp
->c_childhint
= out_desc
.cd_hint
; /* Cache directory's location */
5215 if (vnodetype
== VDIR
) {
5216 INC_FOLDERCOUNT(hfsmp
, dcp
->c_attr
);
5218 dcp
->c_dirchangecnt
++;
5219 dcp
->c_ctime
= tv
.tv_sec
;
5220 dcp
->c_mtime
= tv
.tv_sec
;
5221 (void) cat_update(hfsmp
, &dcp
->c_desc
, &dcp
->c_attr
, NULL
, NULL
);
5225 * If we are creating a content protected file, now is when
5226 * we create the EA. We must create it in the same transaction
5227 * that creates the file. We can also guarantee that the file
5228 * MUST exist because we are still holding the catalog lock
5231 if ((attr
.ca_fileid
!= 0) && (protected_mount
) && (protectable_target
)) {
5232 error
= cp_setxattr (NULL
, entry
, hfsmp
, attr
.ca_fileid
, XATTR_CREATE
);
5237 * If we fail the EA creation, then we need to delete the file.
5238 * Luckily, we are still holding all of the right locks.
5240 delete_err
= cat_delete (hfsmp
, &out_desc
, &attr
);
5241 if (delete_err
== 0) {
5242 /* Update the parent directory */
5243 if (dcp
->c_entries
> 0)
5245 dcp
->c_dirchangecnt
++;
5246 dcp
->c_ctime
= tv
.tv_sec
;
5247 dcp
->c_mtime
= tv
.tv_sec
;
5248 (void) cat_update(hfsmp
, &dcp
->c_desc
, &dcp
->c_attr
, NULL
, NULL
);
5251 /* Emit EINVAL if we fail to create EA*/
5257 hfs_systemfile_unlock(hfsmp
, lockflags
);
5261 /* Invalidate negative cache entries in the directory */
5262 if (dcp
->c_flag
& C_NEG_ENTRIES
) {
5263 cache_purge_negatives(dvp
);
5264 dcp
->c_flag
&= ~C_NEG_ENTRIES
;
5267 hfs_volupdate(hfsmp
, vnodetype
== VDIR
? VOL_MKDIR
: VOL_MKFILE
,
5268 (dcp
->c_cnid
== kHFSRootFolderID
));
5271 // have to end the transaction here before we call hfs_getnewvnode()
5272 // because that can cause us to try and reclaim a vnode on a different
5273 // file system which could cause us to start a transaction which can
5274 // deadlock with someone on that other file system (since we could be
5275 // holding two transaction locks as well as various vnodes and we did
5276 // not obtain the locks on them in the proper order).
5278 // NOTE: this means that if the quota check fails or we have to update
5279 // the change time on a block-special device that those changes
5280 // will happen as part of independent transactions.
5283 hfs_end_transaction(hfsmp
);
5289 * At this point, we must have encountered success with writing the EA.
5290 * Update MKB with the data for the cached key, then destroy it. This may
5291 * prevent information leakage by ensuring the cache key is only unwrapped
5292 * to perform file I/O and it is allowed.
5295 if ((attr
.ca_fileid
!= 0) && (protected_mount
) && (protectable_target
)) {
5296 cp_update_mkb (entry
, attr
.ca_fileid
);
5297 cp_entry_destroy (&entry
);
5301 /* Do not create vnode for whiteouts */
5302 if (S_ISWHT(mode
)) {
5306 gnv_flags
|= GNV_CREATE
;
5309 * Create a vnode for the object just created.
5311 * NOTE: Maintaining the cnode lock on the parent directory is important,
5312 * as it prevents race conditions where other threads want to look up entries
5313 * in the directory and/or add things as we are in the process of creating
5314 * the vnode below. However, this has the potential for causing a
5315 * double lock panic when dealing with shadow files on a HFS boot partition.
5316 * The panic could occur if we are not cleaning up after ourselves properly
5317 * when done with a shadow file or in the error cases. The error would occur if we
5318 * try to create a new vnode, and then end up reclaiming another shadow vnode to
5319 * create the new one. However, if everything is working properly, this should
5320 * be a non-issue as we would never enter that reclaim codepath.
5322 * The cnode is locked on successful return.
5324 error
= hfs_getnewvnode(hfsmp
, dvp
, cnp
, &out_desc
, gnv_flags
, &attr
,
5325 NULL
, &tvp
, &newvnode_flags
);
5334 * Once we create this vnode, we need to initialize its quota data
5335 * structures, if necessary. We know that it is OK to just go ahead and
5336 * initialize because we've already validated earlier (through the hfs_quotacheck
5337 * function) to see if creating this cnode/vnode would cause us to go over quota.
5339 if (hfsmp
->hfs_flags
& HFS_QUOTAS
) {
5340 (void) hfs_getinoquota(cp
);
5345 cat_releasedesc(&out_desc
);
5349 * We may have jumped here in error-handling various situations above.
5350 * If we haven't already dumped the temporary CP used to initialize
5351 * the file atomically, then free it now. cp_entry_destroy should null
5352 * out the pointer if it was called already.
5355 cp_entry_destroy (&entry
);
5360 * Make sure we release cnode lock on dcp.
5363 dcp
->c_flag
&= ~C_DIR_MODIFICATION
;
5364 wakeup((caddr_t
)&dcp
->c_flag
);
5368 if (error
== 0 && cp
!= NULL
) {
5372 hfs_end_transaction(hfsmp
);
5381 * hfs_vgetrsrc acquires a resource fork vnode corresponding to the cnode that is
5382 * found in 'vp'. The rsrc fork vnode is returned with the cnode locked and iocount
5383 * on the rsrc vnode.
5385 * *rvpp is an output argument for returning the pointer to the resource fork vnode.
5386 * In most cases, the resource fork vnode will not be set if we return an error.
5387 * However, if error_on_unlinked is set, we may have already acquired the resource fork vnode
5388 * before we discover the error (the file has gone open-unlinked). In this case only,
5389 * we may return a vnode in the output argument despite an error.
5391 * If can_drop_lock is set, then it is safe for this function to temporarily drop
5392 * and then re-acquire the cnode lock. We may need to do this, for example, in order to
5393 * acquire an iocount or promote our lock.
5395 * error_on_unlinked is an argument which indicates that we are to return an error if we
5396 * discover that the cnode has gone into an open-unlinked state ( C_DELETED or C_NOEXISTS)
5397 * is set in the cnode flags. This is only necessary if can_drop_lock is true, otherwise
5398 * there's really no reason to double-check for errors on the cnode.
5402 hfs_vgetrsrc(struct hfsmount
*hfsmp
, struct vnode
*vp
, struct vnode
**rvpp
,
5403 int can_drop_lock
, int error_on_unlinked
)
5406 struct vnode
*dvp
= NULLVP
;
5407 struct cnode
*cp
= VTOC(vp
);
5410 int delete_status
= 0;
5412 if (vnode_vtype(vp
) == VDIR
) {
5417 * Need to check the status of the cnode to validate it hasn't gone
5418 * open-unlinked on us before we can actually do work with it.
5420 delete_status
= hfs_checkdeleted(cp
);
5421 if ((delete_status
) && (error_on_unlinked
)) {
5422 return delete_status
;
5426 /* Attempt to use existing vnode */
5427 if ((rvp
= cp
->c_rsrc_vp
)) {
5428 vid
= vnode_vid(rvp
);
5431 * It is not safe to hold the cnode lock when calling vnode_getwithvid()
5432 * for the alternate fork -- vnode_getwithvid() could deadlock waiting
5433 * for a VL_WANTTERM while another thread has an iocount on the alternate
5434 * fork vnode and is attempting to acquire the common cnode lock.
5436 * But it's also not safe to drop the cnode lock when we're holding
5437 * multiple cnode locks, like during a hfs_removefile() operation
5438 * since we could lock out of order when re-acquiring the cnode lock.
5440 * So we can only drop the lock here if its safe to drop it -- which is
5441 * most of the time with the exception being hfs_removefile().
5446 error
= vnode_getwithvid(rvp
, vid
);
5448 if (can_drop_lock
) {
5449 (void) hfs_lock(cp
, HFS_FORCE_LOCK
);
5452 * When we relinquished our cnode lock, the cnode could have raced
5453 * with a delete and gotten deleted. If the caller did not want
5454 * us to ignore open-unlinked files, then re-check the C_DELETED
5455 * state and see if we need to return an ENOENT here because the item
5456 * got deleted in the intervening time.
5458 if (error_on_unlinked
) {
5459 if ((delete_status
= hfs_checkdeleted(cp
))) {
5461 * If error == 0, this means that we succeeded in acquiring an iocount on the
5462 * rsrc fork vnode. However, if we're in this block of code, that means that we noticed
5463 * that the cnode has gone open-unlinked. In this case, the caller requested that we
5464 * not do any other work and return an errno. The caller will be responsible for
5465 * dropping the iocount we just acquired because we can't do it until we've released
5471 return delete_status
;
5476 * When our lock was relinquished, the resource fork
5477 * could have been recycled. Check for this and try
5480 if (error
== ENOENT
)
5484 const char * name
= (const char *)VTOC(vp
)->c_desc
.cd_nameptr
;
5487 printf("hfs_vgetrsrc: couldn't get resource"
5488 " fork for %s, err %d\n", name
, error
);
5492 struct cat_fork rsrcfork
;
5493 struct componentname cn
;
5494 struct cat_desc
*descptr
= NULL
;
5495 struct cat_desc to_desc
;
5498 int newvnode_flags
= 0;
5501 * Make sure cnode lock is exclusive, if not upgrade it.
5503 * We assume that we were called from a read-only VNOP (getattr)
5504 * and that its safe to have the cnode lock dropped and reacquired.
5506 if (cp
->c_lockowner
!= current_thread()) {
5507 if (!can_drop_lock
) {
5511 * If the upgrade fails we lose the lock and
5512 * have to take the exclusive lock on our own.
5514 if (lck_rw_lock_shared_to_exclusive(&cp
->c_rwlock
) == FALSE
)
5515 lck_rw_lock_exclusive(&cp
->c_rwlock
);
5516 cp
->c_lockowner
= current_thread();
5520 * hfs_vgetsrc may be invoked for a cnode that has already been marked
5521 * C_DELETED. This is because we need to continue to provide rsrc
5522 * fork access to open-unlinked files. In this case, build a fake descriptor
5523 * like in hfs_removefile. If we don't do this, buildkey will fail in
5524 * cat_lookup because this cnode has no name in its descriptor. However,
5525 * only do this if the caller did not specify that they wanted us to
5526 * error out upon encountering open-unlinked files.
5529 if ((error_on_unlinked
) && (can_drop_lock
)) {
5530 if ((error
= hfs_checkdeleted(cp
))) {
5535 if ((cp
->c_flag
& C_DELETED
) && (cp
->c_desc
.cd_namelen
== 0)) {
5536 bzero (&to_desc
, sizeof(to_desc
));
5537 bzero (delname
, 32);
5538 MAKE_DELETED_NAME(delname
, sizeof(delname
), cp
->c_fileid
);
5539 to_desc
.cd_nameptr
= (const u_int8_t
*) delname
;
5540 to_desc
.cd_namelen
= strlen(delname
);
5541 to_desc
.cd_parentcnid
= hfsmp
->hfs_private_desc
[FILE_HARDLINKS
].cd_cnid
;
5542 to_desc
.cd_flags
= 0;
5543 to_desc
.cd_cnid
= cp
->c_cnid
;
5548 descptr
= &cp
->c_desc
;
5552 lockflags
= hfs_systemfile_lock(hfsmp
, SFL_CATALOG
, HFS_SHARED_LOCK
);
5554 /* Get resource fork data */
5555 error
= cat_lookup(hfsmp
, descptr
, 1, (struct cat_desc
*)0,
5556 (struct cat_attr
*)0, &rsrcfork
, NULL
);
5558 hfs_systemfile_unlock(hfsmp
, lockflags
);
5563 * Supply hfs_getnewvnode with a component name.
5566 if (descptr
->cd_nameptr
) {
5567 MALLOC_ZONE(cn
.cn_pnbuf
, caddr_t
, MAXPATHLEN
, M_NAMEI
, M_WAITOK
);
5568 cn
.cn_nameiop
= LOOKUP
;
5569 cn
.cn_flags
= ISLASTCN
| HASBUF
;
5570 cn
.cn_context
= NULL
;
5571 cn
.cn_pnlen
= MAXPATHLEN
;
5572 cn
.cn_nameptr
= cn
.cn_pnbuf
;
5575 cn
.cn_namelen
= snprintf(cn
.cn_nameptr
, MAXPATHLEN
,
5576 "%s%s", descptr
->cd_nameptr
,
5577 _PATH_RSRCFORKSPEC
);
5579 dvp
= vnode_getparent(vp
);
5580 error
= hfs_getnewvnode(hfsmp
, dvp
, cn
.cn_pnbuf
? &cn
: NULL
,
5581 descptr
, GNV_WANTRSRC
| GNV_SKIPLOCK
, &cp
->c_attr
,
5582 &rsrcfork
, &rvp
, &newvnode_flags
);
5586 FREE_ZONE(cn
.cn_pnbuf
, cn
.cn_pnlen
, M_NAMEI
);
5596 * Wrapper for special device reads
5600 struct vnop_read_args
/* {
5604 vfs_context_t a_context;
5610 VTOC(ap
->a_vp
)->c_touch_acctime
= TRUE
;
5611 return (VOCALL (spec_vnodeop_p
, VOFFSET(vnop_read
), ap
));
5615 * Wrapper for special device writes
5619 struct vnop_write_args
/* {
5623 vfs_context_t a_context;
5627 * Set update and change flags.
5629 VTOC(ap
->a_vp
)->c_touch_chgtime
= TRUE
;
5630 VTOC(ap
->a_vp
)->c_touch_modtime
= TRUE
;
5631 return (VOCALL (spec_vnodeop_p
, VOFFSET(vnop_write
), ap
));
5635 * Wrapper for special device close
5637 * Update the times on the cnode then do device close.
5641 struct vnop_close_args
/* {
5644 vfs_context_t a_context;
5647 struct vnode
*vp
= ap
->a_vp
;
5650 if (vnode_isinuse(ap
->a_vp
, 0)) {
5651 if (hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
) == 0) {
5653 hfs_touchtimes(VTOHFS(vp
), cp
);
5657 return (VOCALL (spec_vnodeop_p
, VOFFSET(vnop_close
), ap
));
5662 * Wrapper for fifo reads
5666 struct vnop_read_args
/* {
5670 vfs_context_t a_context;
5676 VTOC(ap
->a_vp
)->c_touch_acctime
= TRUE
;
5677 return (VOCALL (fifo_vnodeop_p
, VOFFSET(vnop_read
), ap
));
5681 * Wrapper for fifo writes
5685 struct vnop_write_args
/* {
5689 vfs_context_t a_context;
5693 * Set update and change flags.
5695 VTOC(ap
->a_vp
)->c_touch_chgtime
= TRUE
;
5696 VTOC(ap
->a_vp
)->c_touch_modtime
= TRUE
;
5697 return (VOCALL (fifo_vnodeop_p
, VOFFSET(vnop_write
), ap
));
5701 * Wrapper for fifo close
5703 * Update the times on the cnode then do device close.
5707 struct vnop_close_args
/* {
5710 vfs_context_t a_context;
5713 struct vnode
*vp
= ap
->a_vp
;
5716 if (vnode_isinuse(ap
->a_vp
, 1)) {
5717 if (hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
) == 0) {
5719 hfs_touchtimes(VTOHFS(vp
), cp
);
5723 return (VOCALL (fifo_vnodeop_p
, VOFFSET(vnop_close
), ap
));
5730 * Synchronize a file's in-core state with that on disk.
5734 struct vnop_fsync_args
/* {
5737 vfs_context_t a_context;
5740 struct vnode
* vp
= ap
->a_vp
;
5743 /* Note: We check hfs flags instead of vfs mount flag because during
5744 * read-write update, hfs marks itself read-write much earlier than
5745 * the vfs, and hence won't result in skipping of certain writes like
5746 * zero'ing out of unused nodes, creation of hotfiles btree, etc.
5748 if (VTOHFS(vp
)->hfs_flags
& HFS_READ_ONLY
) {
5753 if ((error
= cp_handle_vnop(vp
, CP_WRITE_ACCESS
, 0)) != 0) {
5756 #endif /* CONFIG_PROTECT */
5759 * We need to allow ENOENT lock errors since unlink
5760 * systenm call can call VNOP_FSYNC during vclean.
5762 error
= hfs_lock(VTOC(vp
), HFS_EXCLUSIVE_LOCK
);
5766 error
= hfs_fsync(vp
, ap
->a_waitfor
, 0, vfs_context_proc(ap
->a_context
));
5768 hfs_unlock(VTOC(vp
));
5774 hfs_vnop_whiteout(ap
)
5775 struct vnop_whiteout_args
/* {
5776 struct vnode *a_dvp;
5777 struct componentname *a_cnp;
5779 vfs_context_t a_context;
5783 struct vnode
*vp
= NULL
;
5784 struct vnode_attr va
;
5785 struct vnop_lookup_args lookup_args
;
5786 struct vnop_remove_args remove_args
;
5787 struct hfsmount
*hfsmp
;
5789 hfsmp
= VTOHFS(ap
->a_dvp
);
5790 if (hfsmp
->hfs_flags
& HFS_STANDARD
) {
5795 switch (ap
->a_flags
) {
5802 VATTR_SET(&va
, va_type
, VREG
);
5803 VATTR_SET(&va
, va_mode
, S_IFWHT
);
5804 VATTR_SET(&va
, va_uid
, 0);
5805 VATTR_SET(&va
, va_gid
, 0);
5807 error
= hfs_makenode(ap
->a_dvp
, &vp
, ap
->a_cnp
, &va
, ap
->a_context
);
5808 /* No need to release the vnode as no vnode is created for whiteouts */
5812 lookup_args
.a_dvp
= ap
->a_dvp
;
5813 lookup_args
.a_vpp
= &vp
;
5814 lookup_args
.a_cnp
= ap
->a_cnp
;
5815 lookup_args
.a_context
= ap
->a_context
;
5817 error
= hfs_vnop_lookup(&lookup_args
);
5822 remove_args
.a_dvp
= ap
->a_dvp
;
5823 remove_args
.a_vp
= vp
;
5824 remove_args
.a_cnp
= ap
->a_cnp
;
5825 remove_args
.a_flags
= 0;
5826 remove_args
.a_context
= ap
->a_context
;
5828 error
= hfs_vnop_remove(&remove_args
);
5833 panic("hfs_vnop_whiteout: unknown operation (flag = %x)\n", ap
->a_flags
);
5840 int (**hfs_vnodeop_p
)(void *);
5841 int (**hfs_std_vnodeop_p
) (void *);
5843 #define VOPFUNC int (*)(void *)
5845 static int hfs_readonly_op (__unused
void* ap
) { return (EROFS
); }
5848 * In 10.6 and forward, HFS Standard is read-only and deprecated. The vnop table below
5849 * is for use with HFS standard to block out operations that would modify the file system
5852 struct vnodeopv_entry_desc hfs_standard_vnodeop_entries
[] = {
5853 { &vnop_default_desc
, (VOPFUNC
)vn_default_error
},
5854 { &vnop_lookup_desc
, (VOPFUNC
)hfs_vnop_lookup
}, /* lookup */
5855 { &vnop_create_desc
, (VOPFUNC
)hfs_readonly_op
}, /* create (READONLY) */
5856 { &vnop_mknod_desc
, (VOPFUNC
)hfs_readonly_op
}, /* mknod (READONLY) */
5857 { &vnop_open_desc
, (VOPFUNC
)hfs_vnop_open
}, /* open */
5858 { &vnop_close_desc
, (VOPFUNC
)hfs_vnop_close
}, /* close */
5859 { &vnop_getattr_desc
, (VOPFUNC
)hfs_vnop_getattr
}, /* getattr */
5860 { &vnop_setattr_desc
, (VOPFUNC
)hfs_readonly_op
}, /* setattr */
5861 { &vnop_read_desc
, (VOPFUNC
)hfs_vnop_read
}, /* read */
5862 { &vnop_write_desc
, (VOPFUNC
)hfs_readonly_op
}, /* write (READONLY) */
5863 { &vnop_ioctl_desc
, (VOPFUNC
)hfs_vnop_ioctl
}, /* ioctl */
5864 { &vnop_select_desc
, (VOPFUNC
)hfs_vnop_select
}, /* select */
5865 { &vnop_revoke_desc
, (VOPFUNC
)nop_revoke
}, /* revoke */
5866 { &vnop_exchange_desc
, (VOPFUNC
)hfs_readonly_op
}, /* exchange (READONLY)*/
5867 { &vnop_mmap_desc
, (VOPFUNC
)err_mmap
}, /* mmap */
5868 { &vnop_fsync_desc
, (VOPFUNC
)hfs_readonly_op
}, /* fsync (READONLY) */
5869 { &vnop_remove_desc
, (VOPFUNC
)hfs_readonly_op
}, /* remove (READONLY) */
5870 { &vnop_link_desc
, (VOPFUNC
)hfs_readonly_op
}, /* link ( READONLLY) */
5871 { &vnop_rename_desc
, (VOPFUNC
)hfs_readonly_op
}, /* rename (READONLY)*/
5872 { &vnop_mkdir_desc
, (VOPFUNC
)hfs_readonly_op
}, /* mkdir (READONLY) */
5873 { &vnop_rmdir_desc
, (VOPFUNC
)hfs_readonly_op
}, /* rmdir (READONLY) */
5874 { &vnop_symlink_desc
, (VOPFUNC
)hfs_readonly_op
}, /* symlink (READONLY) */
5875 { &vnop_readdir_desc
, (VOPFUNC
)hfs_vnop_readdir
}, /* readdir */
5876 { &vnop_readdirattr_desc
, (VOPFUNC
)hfs_vnop_readdirattr
}, /* readdirattr */
5877 { &vnop_readlink_desc
, (VOPFUNC
)hfs_vnop_readlink
}, /* readlink */
5878 { &vnop_inactive_desc
, (VOPFUNC
)hfs_vnop_inactive
}, /* inactive */
5879 { &vnop_reclaim_desc
, (VOPFUNC
)hfs_vnop_reclaim
}, /* reclaim */
5880 { &vnop_strategy_desc
, (VOPFUNC
)hfs_vnop_strategy
}, /* strategy */
5881 { &vnop_pathconf_desc
, (VOPFUNC
)hfs_vnop_pathconf
}, /* pathconf */
5882 { &vnop_advlock_desc
, (VOPFUNC
)err_advlock
}, /* advlock */
5883 { &vnop_allocate_desc
, (VOPFUNC
)hfs_readonly_op
}, /* allocate (READONLY) */
5885 { &vnop_searchfs_desc
, (VOPFUNC
)hfs_vnop_search
}, /* search fs */
5887 { &vnop_searchfs_desc
, (VOPFUNC
)err_searchfs
}, /* search fs */
5889 { &vnop_bwrite_desc
, (VOPFUNC
)hfs_readonly_op
}, /* bwrite (READONLY) */
5890 { &vnop_pagein_desc
, (VOPFUNC
)hfs_vnop_pagein
}, /* pagein */
5891 { &vnop_pageout_desc
,(VOPFUNC
) hfs_readonly_op
}, /* pageout (READONLY) */
5892 { &vnop_copyfile_desc
, (VOPFUNC
)hfs_readonly_op
}, /* copyfile (READONLY)*/
5893 { &vnop_blktooff_desc
, (VOPFUNC
)hfs_vnop_blktooff
}, /* blktooff */
5894 { &vnop_offtoblk_desc
, (VOPFUNC
)hfs_vnop_offtoblk
}, /* offtoblk */
5895 { &vnop_blockmap_desc
, (VOPFUNC
)hfs_vnop_blockmap
}, /* blockmap */
5896 { &vnop_getxattr_desc
, (VOPFUNC
)hfs_vnop_getxattr
},
5897 { &vnop_setxattr_desc
, (VOPFUNC
)hfs_readonly_op
}, /* set xattr (READONLY) */
5898 { &vnop_removexattr_desc
, (VOPFUNC
)hfs_readonly_op
}, /* remove xattr (READONLY) */
5899 { &vnop_listxattr_desc
, (VOPFUNC
)hfs_vnop_listxattr
},
5900 { &vnop_whiteout_desc
, (VOPFUNC
)hfs_readonly_op
}, /* whiteout (READONLY) */
5902 { &vnop_getnamedstream_desc
, (VOPFUNC
)hfs_vnop_getnamedstream
},
5903 { &vnop_makenamedstream_desc
, (VOPFUNC
)hfs_readonly_op
},
5904 { &vnop_removenamedstream_desc
, (VOPFUNC
)hfs_readonly_op
},
5906 { NULL
, (VOPFUNC
)NULL
}
5909 struct vnodeopv_desc hfs_std_vnodeop_opv_desc
=
5910 { &hfs_std_vnodeop_p
, hfs_standard_vnodeop_entries
};
5913 /* VNOP table for HFS+ */
5914 struct vnodeopv_entry_desc hfs_vnodeop_entries
[] = {
5915 { &vnop_default_desc
, (VOPFUNC
)vn_default_error
},
5916 { &vnop_lookup_desc
, (VOPFUNC
)hfs_vnop_lookup
}, /* lookup */
5917 { &vnop_create_desc
, (VOPFUNC
)hfs_vnop_create
}, /* create */
5918 { &vnop_mknod_desc
, (VOPFUNC
)hfs_vnop_mknod
}, /* mknod */
5919 { &vnop_open_desc
, (VOPFUNC
)hfs_vnop_open
}, /* open */
5920 { &vnop_close_desc
, (VOPFUNC
)hfs_vnop_close
}, /* close */
5921 { &vnop_getattr_desc
, (VOPFUNC
)hfs_vnop_getattr
}, /* getattr */
5922 { &vnop_setattr_desc
, (VOPFUNC
)hfs_vnop_setattr
}, /* setattr */
5923 { &vnop_read_desc
, (VOPFUNC
)hfs_vnop_read
}, /* read */
5924 { &vnop_write_desc
, (VOPFUNC
)hfs_vnop_write
}, /* write */
5925 { &vnop_ioctl_desc
, (VOPFUNC
)hfs_vnop_ioctl
}, /* ioctl */
5926 { &vnop_select_desc
, (VOPFUNC
)hfs_vnop_select
}, /* select */
5927 { &vnop_revoke_desc
, (VOPFUNC
)nop_revoke
}, /* revoke */
5928 { &vnop_exchange_desc
, (VOPFUNC
)hfs_vnop_exchange
}, /* exchange */
5929 { &vnop_mmap_desc
, (VOPFUNC
)hfs_vnop_mmap
}, /* mmap */
5930 { &vnop_fsync_desc
, (VOPFUNC
)hfs_vnop_fsync
}, /* fsync */
5931 { &vnop_remove_desc
, (VOPFUNC
)hfs_vnop_remove
}, /* remove */
5932 { &vnop_link_desc
, (VOPFUNC
)hfs_vnop_link
}, /* link */
5933 { &vnop_rename_desc
, (VOPFUNC
)hfs_vnop_rename
}, /* rename */
5934 { &vnop_mkdir_desc
, (VOPFUNC
)hfs_vnop_mkdir
}, /* mkdir */
5935 { &vnop_rmdir_desc
, (VOPFUNC
)hfs_vnop_rmdir
}, /* rmdir */
5936 { &vnop_symlink_desc
, (VOPFUNC
)hfs_vnop_symlink
}, /* symlink */
5937 { &vnop_readdir_desc
, (VOPFUNC
)hfs_vnop_readdir
}, /* readdir */
5938 { &vnop_readdirattr_desc
, (VOPFUNC
)hfs_vnop_readdirattr
}, /* readdirattr */
5939 { &vnop_readlink_desc
, (VOPFUNC
)hfs_vnop_readlink
}, /* readlink */
5940 { &vnop_inactive_desc
, (VOPFUNC
)hfs_vnop_inactive
}, /* inactive */
5941 { &vnop_reclaim_desc
, (VOPFUNC
)hfs_vnop_reclaim
}, /* reclaim */
5942 { &vnop_strategy_desc
, (VOPFUNC
)hfs_vnop_strategy
}, /* strategy */
5943 { &vnop_pathconf_desc
, (VOPFUNC
)hfs_vnop_pathconf
}, /* pathconf */
5944 { &vnop_advlock_desc
, (VOPFUNC
)err_advlock
}, /* advlock */
5945 { &vnop_allocate_desc
, (VOPFUNC
)hfs_vnop_allocate
}, /* allocate */
5947 { &vnop_searchfs_desc
, (VOPFUNC
)hfs_vnop_search
}, /* search fs */
5949 { &vnop_searchfs_desc
, (VOPFUNC
)err_searchfs
}, /* search fs */
5951 { &vnop_bwrite_desc
, (VOPFUNC
)hfs_vnop_bwrite
}, /* bwrite */
5952 { &vnop_pagein_desc
, (VOPFUNC
)hfs_vnop_pagein
}, /* pagein */
5953 { &vnop_pageout_desc
,(VOPFUNC
) hfs_vnop_pageout
}, /* pageout */
5954 { &vnop_copyfile_desc
, (VOPFUNC
)err_copyfile
}, /* copyfile */
5955 { &vnop_blktooff_desc
, (VOPFUNC
)hfs_vnop_blktooff
}, /* blktooff */
5956 { &vnop_offtoblk_desc
, (VOPFUNC
)hfs_vnop_offtoblk
}, /* offtoblk */
5957 { &vnop_blockmap_desc
, (VOPFUNC
)hfs_vnop_blockmap
}, /* blockmap */
5958 { &vnop_getxattr_desc
, (VOPFUNC
)hfs_vnop_getxattr
},
5959 { &vnop_setxattr_desc
, (VOPFUNC
)hfs_vnop_setxattr
},
5960 { &vnop_removexattr_desc
, (VOPFUNC
)hfs_vnop_removexattr
},
5961 { &vnop_listxattr_desc
, (VOPFUNC
)hfs_vnop_listxattr
},
5962 { &vnop_whiteout_desc
, (VOPFUNC
)hfs_vnop_whiteout
},
5964 { &vnop_getnamedstream_desc
, (VOPFUNC
)hfs_vnop_getnamedstream
},
5965 { &vnop_makenamedstream_desc
, (VOPFUNC
)hfs_vnop_makenamedstream
},
5966 { &vnop_removenamedstream_desc
, (VOPFUNC
)hfs_vnop_removenamedstream
},
5968 { NULL
, (VOPFUNC
)NULL
}
5971 struct vnodeopv_desc hfs_vnodeop_opv_desc
=
5972 { &hfs_vnodeop_p
, hfs_vnodeop_entries
};
5975 /* Spec Op vnop table for HFS+ */
5976 int (**hfs_specop_p
)(void *);
5977 struct vnodeopv_entry_desc hfs_specop_entries
[] = {
5978 { &vnop_default_desc
, (VOPFUNC
)vn_default_error
},
5979 { &vnop_lookup_desc
, (VOPFUNC
)spec_lookup
}, /* lookup */
5980 { &vnop_create_desc
, (VOPFUNC
)spec_create
}, /* create */
5981 { &vnop_mknod_desc
, (VOPFUNC
)spec_mknod
}, /* mknod */
5982 { &vnop_open_desc
, (VOPFUNC
)spec_open
}, /* open */
5983 { &vnop_close_desc
, (VOPFUNC
)hfsspec_close
}, /* close */
5984 { &vnop_getattr_desc
, (VOPFUNC
)hfs_vnop_getattr
}, /* getattr */
5985 { &vnop_setattr_desc
, (VOPFUNC
)hfs_vnop_setattr
}, /* setattr */
5986 { &vnop_read_desc
, (VOPFUNC
)hfsspec_read
}, /* read */
5987 { &vnop_write_desc
, (VOPFUNC
)hfsspec_write
}, /* write */
5988 { &vnop_ioctl_desc
, (VOPFUNC
)spec_ioctl
}, /* ioctl */
5989 { &vnop_select_desc
, (VOPFUNC
)spec_select
}, /* select */
5990 { &vnop_revoke_desc
, (VOPFUNC
)spec_revoke
}, /* revoke */
5991 { &vnop_mmap_desc
, (VOPFUNC
)spec_mmap
}, /* mmap */
5992 { &vnop_fsync_desc
, (VOPFUNC
)hfs_vnop_fsync
}, /* fsync */
5993 { &vnop_remove_desc
, (VOPFUNC
)spec_remove
}, /* remove */
5994 { &vnop_link_desc
, (VOPFUNC
)spec_link
}, /* link */
5995 { &vnop_rename_desc
, (VOPFUNC
)spec_rename
}, /* rename */
5996 { &vnop_mkdir_desc
, (VOPFUNC
)spec_mkdir
}, /* mkdir */
5997 { &vnop_rmdir_desc
, (VOPFUNC
)spec_rmdir
}, /* rmdir */
5998 { &vnop_symlink_desc
, (VOPFUNC
)spec_symlink
}, /* symlink */
5999 { &vnop_readdir_desc
, (VOPFUNC
)spec_readdir
}, /* readdir */
6000 { &vnop_readlink_desc
, (VOPFUNC
)spec_readlink
}, /* readlink */
6001 { &vnop_inactive_desc
, (VOPFUNC
)hfs_vnop_inactive
}, /* inactive */
6002 { &vnop_reclaim_desc
, (VOPFUNC
)hfs_vnop_reclaim
}, /* reclaim */
6003 { &vnop_strategy_desc
, (VOPFUNC
)spec_strategy
}, /* strategy */
6004 { &vnop_pathconf_desc
, (VOPFUNC
)spec_pathconf
}, /* pathconf */
6005 { &vnop_advlock_desc
, (VOPFUNC
)err_advlock
}, /* advlock */
6006 { &vnop_bwrite_desc
, (VOPFUNC
)hfs_vnop_bwrite
},
6007 { &vnop_pagein_desc
, (VOPFUNC
)hfs_vnop_pagein
}, /* Pagein */
6008 { &vnop_pageout_desc
, (VOPFUNC
)hfs_vnop_pageout
}, /* Pageout */
6009 { &vnop_copyfile_desc
, (VOPFUNC
)err_copyfile
}, /* copyfile */
6010 { &vnop_blktooff_desc
, (VOPFUNC
)hfs_vnop_blktooff
}, /* blktooff */
6011 { &vnop_offtoblk_desc
, (VOPFUNC
)hfs_vnop_offtoblk
}, /* offtoblk */
6012 { (struct vnodeop_desc
*)NULL
, (VOPFUNC
)NULL
}
6014 struct vnodeopv_desc hfs_specop_opv_desc
=
6015 { &hfs_specop_p
, hfs_specop_entries
};
6018 /* HFS+ FIFO VNOP table */
6019 int (**hfs_fifoop_p
)(void *);
6020 struct vnodeopv_entry_desc hfs_fifoop_entries
[] = {
6021 { &vnop_default_desc
, (VOPFUNC
)vn_default_error
},
6022 { &vnop_lookup_desc
, (VOPFUNC
)fifo_lookup
}, /* lookup */
6023 { &vnop_create_desc
, (VOPFUNC
)fifo_create
}, /* create */
6024 { &vnop_mknod_desc
, (VOPFUNC
)fifo_mknod
}, /* mknod */
6025 { &vnop_open_desc
, (VOPFUNC
)fifo_open
}, /* open */
6026 { &vnop_close_desc
, (VOPFUNC
)hfsfifo_close
}, /* close */
6027 { &vnop_getattr_desc
, (VOPFUNC
)hfs_vnop_getattr
}, /* getattr */
6028 { &vnop_setattr_desc
, (VOPFUNC
)hfs_vnop_setattr
}, /* setattr */
6029 { &vnop_read_desc
, (VOPFUNC
)hfsfifo_read
}, /* read */
6030 { &vnop_write_desc
, (VOPFUNC
)hfsfifo_write
}, /* write */
6031 { &vnop_ioctl_desc
, (VOPFUNC
)fifo_ioctl
}, /* ioctl */
6032 { &vnop_select_desc
, (VOPFUNC
)fifo_select
}, /* select */
6033 { &vnop_revoke_desc
, (VOPFUNC
)fifo_revoke
}, /* revoke */
6034 { &vnop_mmap_desc
, (VOPFUNC
)fifo_mmap
}, /* mmap */
6035 { &vnop_fsync_desc
, (VOPFUNC
)hfs_vnop_fsync
}, /* fsync */
6036 { &vnop_remove_desc
, (VOPFUNC
)fifo_remove
}, /* remove */
6037 { &vnop_link_desc
, (VOPFUNC
)fifo_link
}, /* link */
6038 { &vnop_rename_desc
, (VOPFUNC
)fifo_rename
}, /* rename */
6039 { &vnop_mkdir_desc
, (VOPFUNC
)fifo_mkdir
}, /* mkdir */
6040 { &vnop_rmdir_desc
, (VOPFUNC
)fifo_rmdir
}, /* rmdir */
6041 { &vnop_symlink_desc
, (VOPFUNC
)fifo_symlink
}, /* symlink */
6042 { &vnop_readdir_desc
, (VOPFUNC
)fifo_readdir
}, /* readdir */
6043 { &vnop_readlink_desc
, (VOPFUNC
)fifo_readlink
}, /* readlink */
6044 { &vnop_inactive_desc
, (VOPFUNC
)hfs_vnop_inactive
}, /* inactive */
6045 { &vnop_reclaim_desc
, (VOPFUNC
)hfs_vnop_reclaim
}, /* reclaim */
6046 { &vnop_strategy_desc
, (VOPFUNC
)fifo_strategy
}, /* strategy */
6047 { &vnop_pathconf_desc
, (VOPFUNC
)fifo_pathconf
}, /* pathconf */
6048 { &vnop_advlock_desc
, (VOPFUNC
)err_advlock
}, /* advlock */
6049 { &vnop_bwrite_desc
, (VOPFUNC
)hfs_vnop_bwrite
},
6050 { &vnop_pagein_desc
, (VOPFUNC
)hfs_vnop_pagein
}, /* Pagein */
6051 { &vnop_pageout_desc
, (VOPFUNC
)hfs_vnop_pageout
}, /* Pageout */
6052 { &vnop_copyfile_desc
, (VOPFUNC
)err_copyfile
}, /* copyfile */
6053 { &vnop_blktooff_desc
, (VOPFUNC
)hfs_vnop_blktooff
}, /* blktooff */
6054 { &vnop_offtoblk_desc
, (VOPFUNC
)hfs_vnop_offtoblk
}, /* offtoblk */
6055 { &vnop_blockmap_desc
, (VOPFUNC
)hfs_vnop_blockmap
}, /* blockmap */
6056 { (struct vnodeop_desc
*)NULL
, (VOPFUNC
)NULL
}
6058 struct vnodeopv_desc hfs_fifoop_opv_desc
=
6059 { &hfs_fifoop_p
, hfs_fifoop_entries
};