]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/task.c
xnu-6153.41.3.tar.gz
[apple/xnu.git] / osfmk / kern / task.c
1 /*
2 * Copyright (c) 2000-2019 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_FREE_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 * File: kern/task.c
58 * Author: Avadis Tevanian, Jr., Michael Wayne Young, David Golub,
59 * David Black
60 *
61 * Task management primitives implementation.
62 */
63 /*
64 * Copyright (c) 1993 The University of Utah and
65 * the Computer Systems Laboratory (CSL). All rights reserved.
66 *
67 * Permission to use, copy, modify and distribute this software and its
68 * documentation is hereby granted, provided that both the copyright
69 * notice and this permission notice appear in all copies of the
70 * software, derivative works or modified versions, and any portions
71 * thereof, and that both notices appear in supporting documentation.
72 *
73 * THE UNIVERSITY OF UTAH AND CSL ALLOW FREE USE OF THIS SOFTWARE IN ITS "AS
74 * IS" CONDITION. THE UNIVERSITY OF UTAH AND CSL DISCLAIM ANY LIABILITY OF
75 * ANY KIND FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
76 *
77 * CSL requests users of this software to return to csl-dist@cs.utah.edu any
78 * improvements that they make and grant CSL redistribution rights.
79 *
80 */
81 /*
82 * NOTICE: This file was modified by McAfee Research in 2004 to introduce
83 * support for mandatory and extensible security protections. This notice
84 * is included in support of clause 2.2 (b) of the Apple Public License,
85 * Version 2.0.
86 * Copyright (c) 2005 SPARTA, Inc.
87 */
88
89 #include <mach/mach_types.h>
90 #include <mach/boolean.h>
91 #include <mach/host_priv.h>
92 #include <mach/machine/vm_types.h>
93 #include <mach/vm_param.h>
94 #include <mach/mach_vm.h>
95 #include <mach/semaphore.h>
96 #include <mach/task_info.h>
97 #include <mach/task_inspect.h>
98 #include <mach/task_special_ports.h>
99 #include <mach/sdt.h>
100
101 #include <ipc/ipc_importance.h>
102 #include <ipc/ipc_types.h>
103 #include <ipc/ipc_space.h>
104 #include <ipc/ipc_entry.h>
105 #include <ipc/ipc_hash.h>
106
107 #include <kern/kern_types.h>
108 #include <kern/mach_param.h>
109 #include <kern/misc_protos.h>
110 #include <kern/task.h>
111 #include <kern/thread.h>
112 #include <kern/coalition.h>
113 #include <kern/zalloc.h>
114 #include <kern/kalloc.h>
115 #include <kern/kern_cdata.h>
116 #include <kern/processor.h>
117 #include <kern/sched_prim.h> /* for thread_wakeup */
118 #include <kern/ipc_tt.h>
119 #include <kern/host.h>
120 #include <kern/clock.h>
121 #include <kern/timer.h>
122 #include <kern/assert.h>
123 #include <kern/sync_lock.h>
124 #include <kern/affinity.h>
125 #include <kern/exc_resource.h>
126 #include <kern/machine.h>
127 #include <kern/policy_internal.h>
128 #include <kern/restartable.h>
129
130 #include <corpses/task_corpse.h>
131 #if CONFIG_TELEMETRY
132 #include <kern/telemetry.h>
133 #endif
134
135 #if MONOTONIC
136 #include <kern/monotonic.h>
137 #include <machine/monotonic.h>
138 #endif /* MONOTONIC */
139
140 #include <os/log.h>
141
142 #include <vm/pmap.h>
143 #include <vm/vm_map.h>
144 #include <vm/vm_kern.h> /* for kernel_map, ipc_kernel_map */
145 #include <vm/vm_pageout.h>
146 #include <vm/vm_protos.h>
147 #include <vm/vm_purgeable_internal.h>
148 #include <vm/vm_compressor_pager.h>
149
150 #include <sys/resource.h>
151 #include <sys/signalvar.h> /* for coredump */
152 #include <sys/bsdtask_info.h>
153 /*
154 * Exported interfaces
155 */
156
157 #include <mach/task_server.h>
158 #include <mach/mach_host_server.h>
159 #include <mach/host_security_server.h>
160 #include <mach/mach_port_server.h>
161
162 #include <vm/vm_shared_region.h>
163
164 #include <libkern/OSDebug.h>
165 #include <libkern/OSAtomic.h>
166 #include <libkern/section_keywords.h>
167
168 #include <mach-o/loader.h>
169
170 #if CONFIG_ATM
171 #include <atm/atm_internal.h>
172 #endif
173
174 #include <kern/sfi.h> /* picks up ledger.h */
175
176 #if CONFIG_MACF
177 #include <security/mac_mach_internal.h>
178 #endif
179
180 #if KPERF
181 extern int kpc_force_all_ctrs(task_t, int);
182 #endif
183
184 task_t kernel_task;
185 zone_t task_zone;
186 lck_attr_t task_lck_attr;
187 lck_grp_t task_lck_grp;
188 lck_grp_attr_t task_lck_grp_attr;
189
190 extern int exc_via_corpse_forking;
191 extern int corpse_for_fatal_memkill;
192 extern boolean_t proc_send_synchronous_EXC_RESOURCE(void *p);
193
194 /* Flag set by core audio when audio is playing. Used to stifle EXC_RESOURCE generation when active. */
195 int audio_active = 0;
196
197 zinfo_usage_store_t tasks_tkm_private;
198 zinfo_usage_store_t tasks_tkm_shared;
199
200 /* A container to accumulate statistics for expired tasks */
201 expired_task_statistics_t dead_task_statistics;
202 lck_spin_t dead_task_statistics_lock;
203
204 ledger_template_t task_ledger_template = NULL;
205
206 SECURITY_READ_ONLY_LATE(struct _task_ledger_indices) task_ledgers __attribute__((used)) =
207 {.cpu_time = -1,
208 .tkm_private = -1,
209 .tkm_shared = -1,
210 .phys_mem = -1,
211 .wired_mem = -1,
212 .internal = -1,
213 .iokit_mapped = -1,
214 .alternate_accounting = -1,
215 .alternate_accounting_compressed = -1,
216 .page_table = -1,
217 .phys_footprint = -1,
218 .internal_compressed = -1,
219 .purgeable_volatile = -1,
220 .purgeable_nonvolatile = -1,
221 .purgeable_volatile_compressed = -1,
222 .purgeable_nonvolatile_compressed = -1,
223 .tagged_nofootprint = -1,
224 .tagged_footprint = -1,
225 .tagged_nofootprint_compressed = -1,
226 .tagged_footprint_compressed = -1,
227 .network_volatile = -1,
228 .network_nonvolatile = -1,
229 .network_volatile_compressed = -1,
230 .network_nonvolatile_compressed = -1,
231 .media_nofootprint = -1,
232 .media_footprint = -1,
233 .media_nofootprint_compressed = -1,
234 .media_footprint_compressed = -1,
235 .graphics_nofootprint = -1,
236 .graphics_footprint = -1,
237 .graphics_nofootprint_compressed = -1,
238 .graphics_footprint_compressed = -1,
239 .neural_nofootprint = -1,
240 .neural_footprint = -1,
241 .neural_nofootprint_compressed = -1,
242 .neural_footprint_compressed = -1,
243 .platform_idle_wakeups = -1,
244 .interrupt_wakeups = -1,
245 #if !CONFIG_EMBEDDED
246 .sfi_wait_times = { 0 /* initialized at runtime */},
247 #endif /* !CONFIG_EMBEDDED */
248 .cpu_time_billed_to_me = -1,
249 .cpu_time_billed_to_others = -1,
250 .physical_writes = -1,
251 .logical_writes = -1,
252 .logical_writes_to_external = -1,
253 #if DEBUG || DEVELOPMENT
254 .pages_grabbed = -1,
255 .pages_grabbed_kern = -1,
256 .pages_grabbed_iopl = -1,
257 .pages_grabbed_upl = -1,
258 #endif
259 .energy_billed_to_me = -1,
260 .energy_billed_to_others = -1};
261
262 /* System sleep state */
263 boolean_t tasks_suspend_state;
264
265
266 void init_task_ledgers(void);
267 void task_footprint_exceeded(int warning, __unused const void *param0, __unused const void *param1);
268 void task_wakeups_rate_exceeded(int warning, __unused const void *param0, __unused const void *param1);
269 void task_io_rate_exceeded(int warning, const void *param0, __unused const void *param1);
270 void __attribute__((noinline)) SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MANY_WAKEUPS(void);
271 void __attribute__((noinline)) PROC_CROSSED_HIGH_WATERMARK__SEND_EXC_RESOURCE_AND_SUSPEND(int max_footprint_mb, boolean_t is_fatal);
272 void __attribute__((noinline)) SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MUCH_IO(int flavor);
273
274 kern_return_t task_suspend_internal(task_t);
275 kern_return_t task_resume_internal(task_t);
276 static kern_return_t task_start_halt_locked(task_t task, boolean_t should_mark_corpse);
277
278 extern kern_return_t iokit_task_terminate(task_t task);
279 extern void iokit_task_app_suspended_changed(task_t task);
280
281 extern kern_return_t exception_deliver(thread_t, exception_type_t, mach_exception_data_t, mach_msg_type_number_t, struct exception_action *, lck_mtx_t *);
282 extern void bsd_copythreadname(void *dst_uth, void *src_uth);
283 extern kern_return_t thread_resume(thread_t thread);
284
285 // Warn tasks when they hit 80% of their memory limit.
286 #define PHYS_FOOTPRINT_WARNING_LEVEL 80
287
288 #define TASK_WAKEUPS_MONITOR_DEFAULT_LIMIT 150 /* wakeups per second */
289 #define TASK_WAKEUPS_MONITOR_DEFAULT_INTERVAL 300 /* in seconds. */
290
291 /*
292 * Level (in terms of percentage of the limit) at which the wakeups monitor triggers telemetry.
293 *
294 * (ie when the task's wakeups rate exceeds 70% of the limit, start taking user
295 * stacktraces, aka micro-stackshots)
296 */
297 #define TASK_WAKEUPS_MONITOR_DEFAULT_USTACKSHOTS_TRIGGER 70
298
299 int task_wakeups_monitor_interval; /* In seconds. Time period over which wakeups rate is observed */
300 int task_wakeups_monitor_rate; /* In hz. Maximum allowable wakeups per task before EXC_RESOURCE is sent */
301
302 int task_wakeups_monitor_ustackshots_trigger_pct; /* Percentage. Level at which we start gathering telemetry. */
303
304 int disable_exc_resource; /* Global override to supress EXC_RESOURCE for resource monitor violations. */
305
306 ledger_amount_t max_task_footprint = 0; /* Per-task limit on physical memory consumption in bytes */
307 int max_task_footprint_warning_level = 0; /* Per-task limit warning percentage */
308 int max_task_footprint_mb = 0; /* Per-task limit on physical memory consumption in megabytes */
309
310 /* I/O Monitor Limits */
311 #define IOMON_DEFAULT_LIMIT (20480ull) /* MB of logical/physical I/O */
312 #define IOMON_DEFAULT_INTERVAL (86400ull) /* in seconds */
313
314 uint64_t task_iomon_limit_mb; /* Per-task I/O monitor limit in MBs */
315 uint64_t task_iomon_interval_secs; /* Per-task I/O monitor interval in secs */
316
317 #define IO_TELEMETRY_DEFAULT_LIMIT (10ll * 1024ll * 1024ll)
318 int64_t io_telemetry_limit; /* Threshold to take a microstackshot (0 indicated I/O telemetry is turned off) */
319 int64_t global_logical_writes_count = 0; /* Global count for logical writes */
320 int64_t global_logical_writes_to_external_count = 0; /* Global count for logical writes to external storage*/
321 static boolean_t global_update_logical_writes(int64_t, int64_t*);
322
323 #define TASK_MAX_THREAD_LIMIT 256
324
325 #if MACH_ASSERT
326 int pmap_ledgers_panic = 1;
327 int pmap_ledgers_panic_leeway = 3;
328 #endif /* MACH_ASSERT */
329
330 int task_max = CONFIG_TASK_MAX; /* Max number of tasks */
331
332 #if CONFIG_COREDUMP
333 int hwm_user_cores = 0; /* high watermark violations generate user core files */
334 #endif
335
336 #ifdef MACH_BSD
337 extern uint32_t proc_platform(struct proc *);
338 extern uint32_t proc_sdk(struct proc *);
339 extern void proc_getexecutableuuid(void *, unsigned char *, unsigned long);
340 extern int proc_pid(struct proc *p);
341 extern int proc_selfpid(void);
342 extern struct proc *current_proc(void);
343 extern char *proc_name_address(struct proc *p);
344 extern uint64_t get_dispatchqueue_offset_from_proc(void *);
345 extern int kevent_proc_copy_uptrs(void *proc, uint64_t *buf, int bufsize);
346 extern void workq_proc_suspended(struct proc *p);
347 extern void workq_proc_resumed(struct proc *p);
348
349 #if CONFIG_MEMORYSTATUS
350 extern void proc_memstat_terminated(struct proc* p, boolean_t set);
351 extern void memorystatus_on_ledger_footprint_exceeded(int warning, boolean_t memlimit_is_active, boolean_t memlimit_is_fatal);
352 extern void memorystatus_log_exception(const int max_footprint_mb, boolean_t memlimit_is_active, boolean_t memlimit_is_fatal);
353 extern boolean_t memorystatus_allowed_vm_map_fork(task_t task);
354 extern uint64_t memorystatus_available_memory_internal(proc_t p);
355
356 #if DEVELOPMENT || DEBUG
357 extern void memorystatus_abort_vm_map_fork(task_t);
358 #endif
359
360 #endif /* CONFIG_MEMORYSTATUS */
361
362 #endif /* MACH_BSD */
363
364 #if DEVELOPMENT || DEBUG
365 int exc_resource_threads_enabled;
366 #endif /* DEVELOPMENT || DEBUG */
367
368 #if (DEVELOPMENT || DEBUG)
369 uint32_t task_exc_guard_default = TASK_EXC_GUARD_MP_DELIVER | TASK_EXC_GUARD_MP_ONCE | TASK_EXC_GUARD_MP_CORPSE |
370 TASK_EXC_GUARD_VM_DELIVER | TASK_EXC_GUARD_VM_ONCE | TASK_EXC_GUARD_VM_CORPSE;
371 #else
372 uint32_t task_exc_guard_default = 0;
373 #endif
374
375 /* Forwards */
376
377 static void task_hold_locked(task_t task);
378 static void task_wait_locked(task_t task, boolean_t until_not_runnable);
379 static void task_release_locked(task_t task);
380
381 static void task_synchronizer_destroy_all(task_t task);
382 static os_ref_count_t
383 task_add_turnstile_watchports_locked(
384 task_t task,
385 struct task_watchports *watchports,
386 struct task_watchport_elem **previous_elem_array,
387 ipc_port_t *portwatch_ports,
388 uint32_t portwatch_count);
389
390 static os_ref_count_t
391 task_remove_turnstile_watchports_locked(
392 task_t task,
393 struct task_watchports *watchports,
394 ipc_port_t *port_freelist);
395
396 static struct task_watchports *
397 task_watchports_alloc_init(
398 task_t task,
399 thread_t thread,
400 uint32_t count);
401
402 static void
403 task_watchports_deallocate(
404 struct task_watchports *watchports);
405
406 void
407 task_set_64bit(
408 task_t task,
409 boolean_t is_64bit,
410 boolean_t is_64bit_data)
411 {
412 #if defined(__i386__) || defined(__x86_64__) || defined(__arm64__)
413 thread_t thread;
414 #endif /* defined(__i386__) || defined(__x86_64__) || defined(__arm64__) */
415
416 task_lock(task);
417
418 /*
419 * Switching to/from 64-bit address spaces
420 */
421 if (is_64bit) {
422 if (!task_has_64Bit_addr(task)) {
423 task_set_64Bit_addr(task);
424 }
425 } else {
426 if (task_has_64Bit_addr(task)) {
427 task_clear_64Bit_addr(task);
428 }
429 }
430
431 /*
432 * Switching to/from 64-bit register state.
433 */
434 if (is_64bit_data) {
435 if (task_has_64Bit_data(task)) {
436 goto out;
437 }
438
439 task_set_64Bit_data(task);
440 } else {
441 if (!task_has_64Bit_data(task)) {
442 goto out;
443 }
444
445 task_clear_64Bit_data(task);
446 }
447
448 /* FIXME: On x86, the thread save state flavor can diverge from the
449 * task's 64-bit feature flag due to the 32-bit/64-bit register save
450 * state dichotomy. Since we can be pre-empted in this interval,
451 * certain routines may observe the thread as being in an inconsistent
452 * state with respect to its task's 64-bitness.
453 */
454
455 #if defined(__x86_64__) || defined(__arm64__)
456 queue_iterate(&task->threads, thread, thread_t, task_threads) {
457 thread_mtx_lock(thread);
458 machine_thread_switch_addrmode(thread);
459 thread_mtx_unlock(thread);
460
461 #if defined(__arm64__)
462 /* specifically, if running on H9 */
463 if (thread == current_thread()) {
464 uint64_t arg1, arg2;
465 int urgency;
466 spl_t spl = splsched();
467 /*
468 * This call tell that the current thread changed it's 32bitness.
469 * Other thread were no more on core when 32bitness was changed,
470 * but current_thread() is on core and the previous call to
471 * machine_thread_going_on_core() gave 32bitness which is now wrong.
472 *
473 * This is needed for bring-up, a different callback should be used
474 * in the future.
475 *
476 * TODO: Remove this callout when we no longer support 32-bit code on H9
477 */
478 thread_lock(thread);
479 urgency = thread_get_urgency(thread, &arg1, &arg2);
480 machine_thread_going_on_core(thread, urgency, 0, 0, mach_approximate_time());
481 thread_unlock(thread);
482 splx(spl);
483 }
484 #endif /* defined(__arm64__) */
485 }
486 #endif /* defined(__x86_64__) || defined(__arm64__) */
487
488 out:
489 task_unlock(task);
490 }
491
492 boolean_t
493 task_get_64bit_data(task_t task)
494 {
495 return task_has_64Bit_data(task);
496 }
497
498 void
499 task_set_platform_binary(
500 task_t task,
501 boolean_t is_platform)
502 {
503 task_lock(task);
504 if (is_platform) {
505 task->t_flags |= TF_PLATFORM;
506 /* set exc guard default behavior for first-party code */
507 task->task_exc_guard = (task_exc_guard_default & TASK_EXC_GUARD_ALL);
508 } else {
509 task->t_flags &= ~(TF_PLATFORM);
510 /* set exc guard default behavior for third-party code */
511 task->task_exc_guard = ((task_exc_guard_default >> TASK_EXC_GUARD_THIRD_PARTY_DEFAULT_SHIFT) & TASK_EXC_GUARD_ALL);
512 }
513 task_unlock(task);
514 }
515
516 /*
517 * Set or clear per-task TF_CA_CLIENT_WI flag according to specified argument.
518 * Returns "false" if flag is already set, and "true" in other cases.
519 */
520 bool
521 task_set_ca_client_wi(
522 task_t task,
523 boolean_t set_or_clear)
524 {
525 bool ret = true;
526 task_lock(task);
527 if (set_or_clear) {
528 /* Tasks can have only one CA_CLIENT work interval */
529 if (task->t_flags & TF_CA_CLIENT_WI) {
530 ret = false;
531 } else {
532 task->t_flags |= TF_CA_CLIENT_WI;
533 }
534 } else {
535 task->t_flags &= ~TF_CA_CLIENT_WI;
536 }
537 task_unlock(task);
538 return ret;
539 }
540
541 void
542 task_set_dyld_info(
543 task_t task,
544 mach_vm_address_t addr,
545 mach_vm_size_t size)
546 {
547 task_lock(task);
548 task->all_image_info_addr = addr;
549 task->all_image_info_size = size;
550 task_unlock(task);
551 }
552
553 void
554 task_set_mach_header_address(
555 task_t task,
556 mach_vm_address_t addr)
557 {
558 task_lock(task);
559 task->mach_header_vm_address = addr;
560 task_unlock(task);
561 }
562
563 void
564 task_atm_reset(__unused task_t task)
565 {
566 #if CONFIG_ATM
567 if (task->atm_context != NULL) {
568 atm_task_descriptor_destroy(task->atm_context);
569 task->atm_context = NULL;
570 }
571 #endif
572 }
573
574 void
575 task_bank_reset(__unused task_t task)
576 {
577 if (task->bank_context != NULL) {
578 bank_task_destroy(task);
579 }
580 }
581
582 /*
583 * NOTE: This should only be called when the P_LINTRANSIT
584 * flag is set (the proc_trans lock is held) on the
585 * proc associated with the task.
586 */
587 void
588 task_bank_init(__unused task_t task)
589 {
590 if (task->bank_context != NULL) {
591 panic("Task bank init called with non null bank context for task: %p and bank_context: %p", task, task->bank_context);
592 }
593 bank_task_initialize(task);
594 }
595
596 void
597 task_set_did_exec_flag(task_t task)
598 {
599 task->t_procflags |= TPF_DID_EXEC;
600 }
601
602 void
603 task_clear_exec_copy_flag(task_t task)
604 {
605 task->t_procflags &= ~TPF_EXEC_COPY;
606 }
607
608 event_t
609 task_get_return_wait_event(task_t task)
610 {
611 return (event_t)&task->returnwait_inheritor;
612 }
613
614 void
615 task_clear_return_wait(task_t task, uint32_t flags)
616 {
617 if (flags & TCRW_CLEAR_INITIAL_WAIT) {
618 thread_wakeup(task_get_return_wait_event(task));
619 }
620
621 if (flags & TCRW_CLEAR_FINAL_WAIT) {
622 is_write_lock(task->itk_space);
623
624 task->t_returnwaitflags &= ~TRW_LRETURNWAIT;
625 task->returnwait_inheritor = NULL;
626
627 if (task->t_returnwaitflags & TRW_LRETURNWAITER) {
628 struct turnstile *turnstile = turnstile_prepare((uintptr_t) task_get_return_wait_event(task),
629 NULL, TURNSTILE_NULL, TURNSTILE_ULOCK);
630
631 waitq_wakeup64_all(&turnstile->ts_waitq,
632 CAST_EVENT64_T(task_get_return_wait_event(task)),
633 THREAD_AWAKENED, 0);
634
635 turnstile_update_inheritor(turnstile, NULL,
636 TURNSTILE_IMMEDIATE_UPDATE | TURNSTILE_INHERITOR_THREAD);
637 turnstile_update_inheritor_complete(turnstile, TURNSTILE_INTERLOCK_HELD);
638
639 turnstile_complete((uintptr_t) task_get_return_wait_event(task), NULL, NULL, TURNSTILE_ULOCK);
640 turnstile_cleanup();
641 task->t_returnwaitflags &= ~TRW_LRETURNWAITER;
642 }
643 is_write_unlock(task->itk_space);
644 }
645 }
646
647 void __attribute__((noreturn))
648 task_wait_to_return(void)
649 {
650 task_t task = current_task();
651
652 is_write_lock(task->itk_space);
653
654 if (task->t_returnwaitflags & TRW_LRETURNWAIT) {
655 struct turnstile *turnstile = turnstile_prepare((uintptr_t) task_get_return_wait_event(task),
656 NULL, TURNSTILE_NULL, TURNSTILE_ULOCK);
657
658 do {
659 task->t_returnwaitflags |= TRW_LRETURNWAITER;
660 turnstile_update_inheritor(turnstile, task->returnwait_inheritor,
661 (TURNSTILE_DELAYED_UPDATE | TURNSTILE_INHERITOR_THREAD));
662
663 waitq_assert_wait64(&turnstile->ts_waitq,
664 CAST_EVENT64_T(task_get_return_wait_event(task)),
665 THREAD_UNINT, TIMEOUT_WAIT_FOREVER);
666
667 is_write_unlock(task->itk_space);
668
669 turnstile_update_inheritor_complete(turnstile, TURNSTILE_INTERLOCK_NOT_HELD);
670
671 thread_block(THREAD_CONTINUE_NULL);
672
673 is_write_lock(task->itk_space);
674 } while (task->t_returnwaitflags & TRW_LRETURNWAIT);
675
676 turnstile_complete((uintptr_t) task_get_return_wait_event(task), NULL, NULL, TURNSTILE_ULOCK);
677 }
678
679 is_write_unlock(task->itk_space);
680 turnstile_cleanup();
681
682
683 #if CONFIG_MACF
684 /*
685 * Before jumping to userspace and allowing this process to execute any code,
686 * notify any interested parties.
687 */
688 mac_proc_notify_exec_complete(current_proc());
689 #endif
690
691 thread_bootstrap_return();
692 }
693
694 #ifdef CONFIG_32BIT_TELEMETRY
695 boolean_t
696 task_consume_32bit_log_flag(task_t task)
697 {
698 if ((task->t_procflags & TPF_LOG_32BIT_TELEMETRY) != 0) {
699 task->t_procflags &= ~TPF_LOG_32BIT_TELEMETRY;
700 return TRUE;
701 } else {
702 return FALSE;
703 }
704 }
705
706 void
707 task_set_32bit_log_flag(task_t task)
708 {
709 task->t_procflags |= TPF_LOG_32BIT_TELEMETRY;
710 }
711 #endif /* CONFIG_32BIT_TELEMETRY */
712
713 boolean_t
714 task_is_exec_copy(task_t task)
715 {
716 return task_is_exec_copy_internal(task);
717 }
718
719 boolean_t
720 task_did_exec(task_t task)
721 {
722 return task_did_exec_internal(task);
723 }
724
725 boolean_t
726 task_is_active(task_t task)
727 {
728 return task->active;
729 }
730
731 boolean_t
732 task_is_halting(task_t task)
733 {
734 return task->halting;
735 }
736
737 #if TASK_REFERENCE_LEAK_DEBUG
738 #include <kern/btlog.h>
739
740 static btlog_t *task_ref_btlog;
741 #define TASK_REF_OP_INCR 0x1
742 #define TASK_REF_OP_DECR 0x2
743
744 #define TASK_REF_NUM_RECORDS 100000
745 #define TASK_REF_BTDEPTH 7
746
747 void
748 task_reference_internal(task_t task)
749 {
750 void * bt[TASK_REF_BTDEPTH];
751 int numsaved = 0;
752
753 os_ref_retain(&task->ref_count);
754
755 numsaved = OSBacktrace(bt, TASK_REF_BTDEPTH);
756 btlog_add_entry(task_ref_btlog, task, TASK_REF_OP_INCR,
757 bt, numsaved);
758 }
759
760 os_ref_count_t
761 task_deallocate_internal(task_t task)
762 {
763 void * bt[TASK_REF_BTDEPTH];
764 int numsaved = 0;
765
766 numsaved = OSBacktrace(bt, TASK_REF_BTDEPTH);
767 btlog_add_entry(task_ref_btlog, task, TASK_REF_OP_DECR,
768 bt, numsaved);
769
770 return os_ref_release(&task->ref_count);
771 }
772
773 #endif /* TASK_REFERENCE_LEAK_DEBUG */
774
775 void
776 task_init(void)
777 {
778 lck_grp_attr_setdefault(&task_lck_grp_attr);
779 lck_grp_init(&task_lck_grp, "task", &task_lck_grp_attr);
780 lck_attr_setdefault(&task_lck_attr);
781 lck_mtx_init(&tasks_threads_lock, &task_lck_grp, &task_lck_attr);
782 lck_mtx_init(&tasks_corpse_lock, &task_lck_grp, &task_lck_attr);
783
784 task_zone = zinit(
785 sizeof(struct task),
786 task_max * sizeof(struct task),
787 TASK_CHUNK * sizeof(struct task),
788 "tasks");
789
790 zone_change(task_zone, Z_NOENCRYPT, TRUE);
791
792 #if CONFIG_EMBEDDED
793 task_watch_init();
794 #endif /* CONFIG_EMBEDDED */
795
796 /*
797 * Configure per-task memory limit.
798 * The boot-arg is interpreted as Megabytes,
799 * and takes precedence over the device tree.
800 * Setting the boot-arg to 0 disables task limits.
801 */
802 if (!PE_parse_boot_argn("max_task_pmem", &max_task_footprint_mb,
803 sizeof(max_task_footprint_mb))) {
804 /*
805 * No limit was found in boot-args, so go look in the device tree.
806 */
807 if (!PE_get_default("kern.max_task_pmem", &max_task_footprint_mb,
808 sizeof(max_task_footprint_mb))) {
809 /*
810 * No limit was found in device tree.
811 */
812 max_task_footprint_mb = 0;
813 }
814 }
815
816 if (max_task_footprint_mb != 0) {
817 #if CONFIG_MEMORYSTATUS
818 if (max_task_footprint_mb < 50) {
819 printf("Warning: max_task_pmem %d below minimum.\n",
820 max_task_footprint_mb);
821 max_task_footprint_mb = 50;
822 }
823 printf("Limiting task physical memory footprint to %d MB\n",
824 max_task_footprint_mb);
825
826 max_task_footprint = (ledger_amount_t)max_task_footprint_mb * 1024 * 1024; // Convert MB to bytes
827
828 /*
829 * Configure the per-task memory limit warning level.
830 * This is computed as a percentage.
831 */
832 max_task_footprint_warning_level = 0;
833
834 if (max_mem < 0x40000000) {
835 /*
836 * On devices with < 1GB of memory:
837 * -- set warnings to 50MB below the per-task limit.
838 */
839 if (max_task_footprint_mb > 50) {
840 max_task_footprint_warning_level = ((max_task_footprint_mb - 50) * 100) / max_task_footprint_mb;
841 }
842 } else {
843 /*
844 * On devices with >= 1GB of memory:
845 * -- set warnings to 100MB below the per-task limit.
846 */
847 if (max_task_footprint_mb > 100) {
848 max_task_footprint_warning_level = ((max_task_footprint_mb - 100) * 100) / max_task_footprint_mb;
849 }
850 }
851
852 /*
853 * Never allow warning level to land below the default.
854 */
855 if (max_task_footprint_warning_level < PHYS_FOOTPRINT_WARNING_LEVEL) {
856 max_task_footprint_warning_level = PHYS_FOOTPRINT_WARNING_LEVEL;
857 }
858
859 printf("Limiting task physical memory warning to %d%%\n", max_task_footprint_warning_level);
860
861 #else
862 printf("Warning: max_task_pmem specified, but jetsam not configured; ignoring.\n");
863 #endif /* CONFIG_MEMORYSTATUS */
864 }
865
866 #if DEVELOPMENT || DEBUG
867 if (!PE_parse_boot_argn("exc_resource_threads",
868 &exc_resource_threads_enabled,
869 sizeof(exc_resource_threads_enabled))) {
870 exc_resource_threads_enabled = 1;
871 }
872 PE_parse_boot_argn("task_exc_guard_default",
873 &task_exc_guard_default,
874 sizeof(task_exc_guard_default));
875 #endif /* DEVELOPMENT || DEBUG */
876
877 #if CONFIG_COREDUMP
878 if (!PE_parse_boot_argn("hwm_user_cores", &hwm_user_cores,
879 sizeof(hwm_user_cores))) {
880 hwm_user_cores = 0;
881 }
882 #endif
883
884 proc_init_cpumon_params();
885
886 if (!PE_parse_boot_argn("task_wakeups_monitor_rate", &task_wakeups_monitor_rate, sizeof(task_wakeups_monitor_rate))) {
887 task_wakeups_monitor_rate = TASK_WAKEUPS_MONITOR_DEFAULT_LIMIT;
888 }
889
890 if (!PE_parse_boot_argn("task_wakeups_monitor_interval", &task_wakeups_monitor_interval, sizeof(task_wakeups_monitor_interval))) {
891 task_wakeups_monitor_interval = TASK_WAKEUPS_MONITOR_DEFAULT_INTERVAL;
892 }
893
894 if (!PE_parse_boot_argn("task_wakeups_monitor_ustackshots_trigger_pct", &task_wakeups_monitor_ustackshots_trigger_pct,
895 sizeof(task_wakeups_monitor_ustackshots_trigger_pct))) {
896 task_wakeups_monitor_ustackshots_trigger_pct = TASK_WAKEUPS_MONITOR_DEFAULT_USTACKSHOTS_TRIGGER;
897 }
898
899 if (!PE_parse_boot_argn("disable_exc_resource", &disable_exc_resource,
900 sizeof(disable_exc_resource))) {
901 disable_exc_resource = 0;
902 }
903
904 if (!PE_parse_boot_argn("task_iomon_limit_mb", &task_iomon_limit_mb, sizeof(task_iomon_limit_mb))) {
905 task_iomon_limit_mb = IOMON_DEFAULT_LIMIT;
906 }
907
908 if (!PE_parse_boot_argn("task_iomon_interval_secs", &task_iomon_interval_secs, sizeof(task_iomon_interval_secs))) {
909 task_iomon_interval_secs = IOMON_DEFAULT_INTERVAL;
910 }
911
912 if (!PE_parse_boot_argn("io_telemetry_limit", &io_telemetry_limit, sizeof(io_telemetry_limit))) {
913 io_telemetry_limit = IO_TELEMETRY_DEFAULT_LIMIT;
914 }
915
916 /*
917 * If we have coalitions, coalition_init() will call init_task_ledgers() as it
918 * sets up the ledgers for the default coalition. If we don't have coalitions,
919 * then we have to call it now.
920 */
921 #if CONFIG_COALITIONS
922 assert(task_ledger_template);
923 #else /* CONFIG_COALITIONS */
924 init_task_ledgers();
925 #endif /* CONFIG_COALITIONS */
926
927 #if TASK_REFERENCE_LEAK_DEBUG
928 task_ref_btlog = btlog_create(TASK_REF_NUM_RECORDS, TASK_REF_BTDEPTH, TRUE /* caller_will_remove_entries_for_element? */);
929 assert(task_ref_btlog);
930 #endif
931
932 /*
933 * Create the kernel task as the first task.
934 */
935 #ifdef __LP64__
936 if (task_create_internal(TASK_NULL, NULL, FALSE, TRUE, TRUE, TF_NONE, TPF_NONE, TWF_NONE, &kernel_task) != KERN_SUCCESS)
937 #else
938 if (task_create_internal(TASK_NULL, NULL, FALSE, FALSE, FALSE, TF_NONE, TPF_NONE, TWF_NONE, &kernel_task) != KERN_SUCCESS)
939 #endif
940 { panic("task_init\n");}
941
942 #if defined(HAS_APPLE_PAC)
943 kernel_task->rop_pid = KERNEL_ROP_ID;
944 // kernel_task never runs at EL0, but machine_thread_state_convert_from/to_user() relies on
945 // disable_user_jop to be false for kernel threads (e.g. in exception delivery on thread_exception_daemon)
946 ml_task_set_disable_user_jop(kernel_task, FALSE);
947 #endif
948
949 vm_map_deallocate(kernel_task->map);
950 kernel_task->map = kernel_map;
951 lck_spin_init(&dead_task_statistics_lock, &task_lck_grp, &task_lck_attr);
952 }
953
954 /*
955 * Create a task running in the kernel address space. It may
956 * have its own map of size mem_size and may have ipc privileges.
957 */
958 kern_return_t
959 kernel_task_create(
960 __unused task_t parent_task,
961 __unused vm_offset_t map_base,
962 __unused vm_size_t map_size,
963 __unused task_t *child_task)
964 {
965 return KERN_INVALID_ARGUMENT;
966 }
967
968 kern_return_t
969 task_create(
970 task_t parent_task,
971 __unused ledger_port_array_t ledger_ports,
972 __unused mach_msg_type_number_t num_ledger_ports,
973 __unused boolean_t inherit_memory,
974 __unused task_t *child_task) /* OUT */
975 {
976 if (parent_task == TASK_NULL) {
977 return KERN_INVALID_ARGUMENT;
978 }
979
980 /*
981 * No longer supported: too many calls assume that a task has a valid
982 * process attached.
983 */
984 return KERN_FAILURE;
985 }
986
987 kern_return_t
988 host_security_create_task_token(
989 host_security_t host_security,
990 task_t parent_task,
991 __unused security_token_t sec_token,
992 __unused audit_token_t audit_token,
993 __unused host_priv_t host_priv,
994 __unused ledger_port_array_t ledger_ports,
995 __unused mach_msg_type_number_t num_ledger_ports,
996 __unused boolean_t inherit_memory,
997 __unused task_t *child_task) /* OUT */
998 {
999 if (parent_task == TASK_NULL) {
1000 return KERN_INVALID_ARGUMENT;
1001 }
1002
1003 if (host_security == HOST_NULL) {
1004 return KERN_INVALID_SECURITY;
1005 }
1006
1007 /*
1008 * No longer supported.
1009 */
1010 return KERN_FAILURE;
1011 }
1012
1013 /*
1014 * Task ledgers
1015 * ------------
1016 *
1017 * phys_footprint
1018 * Physical footprint: This is the sum of:
1019 * + (internal - alternate_accounting)
1020 * + (internal_compressed - alternate_accounting_compressed)
1021 * + iokit_mapped
1022 * + purgeable_nonvolatile
1023 * + purgeable_nonvolatile_compressed
1024 * + page_table
1025 *
1026 * internal
1027 * The task's anonymous memory, which on iOS is always resident.
1028 *
1029 * internal_compressed
1030 * Amount of this task's internal memory which is held by the compressor.
1031 * Such memory is no longer actually resident for the task [i.e., resident in its pmap],
1032 * and could be either decompressed back into memory, or paged out to storage, depending
1033 * on our implementation.
1034 *
1035 * iokit_mapped
1036 * IOKit mappings: The total size of all IOKit mappings in this task, regardless of
1037 * clean/dirty or internal/external state].
1038 *
1039 * alternate_accounting
1040 * The number of internal dirty pages which are part of IOKit mappings. By definition, these pages
1041 * are counted in both internal *and* iokit_mapped, so we must subtract them from the total to avoid
1042 * double counting.
1043 *
1044 * pages_grabbed
1045 * pages_grabbed counts all page grabs in a task. It is also broken out into three subtypes
1046 * which track UPL, IOPL and Kernel page grabs.
1047 */
1048 void
1049 init_task_ledgers(void)
1050 {
1051 ledger_template_t t;
1052
1053 assert(task_ledger_template == NULL);
1054 assert(kernel_task == TASK_NULL);
1055
1056 #if MACH_ASSERT
1057 PE_parse_boot_argn("pmap_ledgers_panic",
1058 &pmap_ledgers_panic,
1059 sizeof(pmap_ledgers_panic));
1060 PE_parse_boot_argn("pmap_ledgers_panic_leeway",
1061 &pmap_ledgers_panic_leeway,
1062 sizeof(pmap_ledgers_panic_leeway));
1063 #endif /* MACH_ASSERT */
1064
1065 if ((t = ledger_template_create("Per-task ledger")) == NULL) {
1066 panic("couldn't create task ledger template");
1067 }
1068
1069 task_ledgers.cpu_time = ledger_entry_add(t, "cpu_time", "sched", "ns");
1070 task_ledgers.tkm_private = ledger_entry_add(t, "tkm_private",
1071 "physmem", "bytes");
1072 task_ledgers.tkm_shared = ledger_entry_add(t, "tkm_shared", "physmem",
1073 "bytes");
1074 task_ledgers.phys_mem = ledger_entry_add(t, "phys_mem", "physmem",
1075 "bytes");
1076 task_ledgers.wired_mem = ledger_entry_add(t, "wired_mem", "physmem",
1077 "bytes");
1078 task_ledgers.internal = ledger_entry_add(t, "internal", "physmem",
1079 "bytes");
1080 task_ledgers.iokit_mapped = ledger_entry_add(t, "iokit_mapped", "mappings",
1081 "bytes");
1082 task_ledgers.alternate_accounting = ledger_entry_add(t, "alternate_accounting", "physmem",
1083 "bytes");
1084 task_ledgers.alternate_accounting_compressed = ledger_entry_add(t, "alternate_accounting_compressed", "physmem",
1085 "bytes");
1086 task_ledgers.page_table = ledger_entry_add(t, "page_table", "physmem",
1087 "bytes");
1088 task_ledgers.phys_footprint = ledger_entry_add(t, "phys_footprint", "physmem",
1089 "bytes");
1090 task_ledgers.internal_compressed = ledger_entry_add(t, "internal_compressed", "physmem",
1091 "bytes");
1092 task_ledgers.purgeable_volatile = ledger_entry_add(t, "purgeable_volatile", "physmem", "bytes");
1093 task_ledgers.purgeable_nonvolatile = ledger_entry_add(t, "purgeable_nonvolatile", "physmem", "bytes");
1094 task_ledgers.purgeable_volatile_compressed = ledger_entry_add(t, "purgeable_volatile_compress", "physmem", "bytes");
1095 task_ledgers.purgeable_nonvolatile_compressed = ledger_entry_add(t, "purgeable_nonvolatile_compress", "physmem", "bytes");
1096 #if DEBUG || DEVELOPMENT
1097 task_ledgers.pages_grabbed = ledger_entry_add(t, "pages_grabbed", "physmem", "count");
1098 task_ledgers.pages_grabbed_kern = ledger_entry_add(t, "pages_grabbed_kern", "physmem", "count");
1099 task_ledgers.pages_grabbed_iopl = ledger_entry_add(t, "pages_grabbed_iopl", "physmem", "count");
1100 task_ledgers.pages_grabbed_upl = ledger_entry_add(t, "pages_grabbed_upl", "physmem", "count");
1101 #endif
1102 task_ledgers.tagged_nofootprint = ledger_entry_add(t, "tagged_nofootprint", "physmem", "bytes");
1103 task_ledgers.tagged_footprint = ledger_entry_add(t, "tagged_footprint", "physmem", "bytes");
1104 task_ledgers.tagged_nofootprint_compressed = ledger_entry_add(t, "tagged_nofootprint_compressed", "physmem", "bytes");
1105 task_ledgers.tagged_footprint_compressed = ledger_entry_add(t, "tagged_footprint_compressed", "physmem", "bytes");
1106 task_ledgers.network_volatile = ledger_entry_add(t, "network_volatile", "physmem", "bytes");
1107 task_ledgers.network_nonvolatile = ledger_entry_add(t, "network_nonvolatile", "physmem", "bytes");
1108 task_ledgers.network_volatile_compressed = ledger_entry_add(t, "network_volatile_compressed", "physmem", "bytes");
1109 task_ledgers.network_nonvolatile_compressed = ledger_entry_add(t, "network_nonvolatile_compressed", "physmem", "bytes");
1110 task_ledgers.media_nofootprint = ledger_entry_add(t, "media_nofootprint", "physmem", "bytes");
1111 task_ledgers.media_footprint = ledger_entry_add(t, "media_footprint", "physmem", "bytes");
1112 task_ledgers.media_nofootprint_compressed = ledger_entry_add(t, "media_nofootprint_compressed", "physmem", "bytes");
1113 task_ledgers.media_footprint_compressed = ledger_entry_add(t, "media_footprint_compressed", "physmem", "bytes");
1114 task_ledgers.graphics_nofootprint = ledger_entry_add(t, "graphics_nofootprint", "physmem", "bytes");
1115 task_ledgers.graphics_footprint = ledger_entry_add(t, "graphics_footprint", "physmem", "bytes");
1116 task_ledgers.graphics_nofootprint_compressed = ledger_entry_add(t, "graphics_nofootprint_compressed", "physmem", "bytes");
1117 task_ledgers.graphics_footprint_compressed = ledger_entry_add(t, "graphics_footprint_compressed", "physmem", "bytes");
1118 task_ledgers.neural_nofootprint = ledger_entry_add(t, "neural_nofootprint", "physmem", "bytes");
1119 task_ledgers.neural_footprint = ledger_entry_add(t, "neural_footprint", "physmem", "bytes");
1120 task_ledgers.neural_nofootprint_compressed = ledger_entry_add(t, "neural_nofootprint_compressed", "physmem", "bytes");
1121 task_ledgers.neural_footprint_compressed = ledger_entry_add(t, "neural_footprint_compressed", "physmem", "bytes");
1122
1123
1124 task_ledgers.platform_idle_wakeups = ledger_entry_add(t, "platform_idle_wakeups", "power",
1125 "count");
1126 task_ledgers.interrupt_wakeups = ledger_entry_add(t, "interrupt_wakeups", "power",
1127 "count");
1128
1129 #if CONFIG_SCHED_SFI
1130 sfi_class_id_t class_id, ledger_alias;
1131 for (class_id = SFI_CLASS_UNSPECIFIED; class_id < MAX_SFI_CLASS_ID; class_id++) {
1132 task_ledgers.sfi_wait_times[class_id] = -1;
1133 }
1134
1135 /* don't account for UNSPECIFIED */
1136 for (class_id = SFI_CLASS_UNSPECIFIED + 1; class_id < MAX_SFI_CLASS_ID; class_id++) {
1137 ledger_alias = sfi_get_ledger_alias_for_class(class_id);
1138 if (ledger_alias != SFI_CLASS_UNSPECIFIED) {
1139 /* Check to see if alias has been registered yet */
1140 if (task_ledgers.sfi_wait_times[ledger_alias] != -1) {
1141 task_ledgers.sfi_wait_times[class_id] = task_ledgers.sfi_wait_times[ledger_alias];
1142 } else {
1143 /* Otherwise, initialize it first */
1144 task_ledgers.sfi_wait_times[class_id] = task_ledgers.sfi_wait_times[ledger_alias] = sfi_ledger_entry_add(t, ledger_alias);
1145 }
1146 } else {
1147 task_ledgers.sfi_wait_times[class_id] = sfi_ledger_entry_add(t, class_id);
1148 }
1149
1150 if (task_ledgers.sfi_wait_times[class_id] < 0) {
1151 panic("couldn't create entries for task ledger template for SFI class 0x%x", class_id);
1152 }
1153 }
1154
1155 assert(task_ledgers.sfi_wait_times[MAX_SFI_CLASS_ID - 1] != -1);
1156 #endif /* CONFIG_SCHED_SFI */
1157
1158 task_ledgers.cpu_time_billed_to_me = ledger_entry_add(t, "cpu_time_billed_to_me", "sched", "ns");
1159 task_ledgers.cpu_time_billed_to_others = ledger_entry_add(t, "cpu_time_billed_to_others", "sched", "ns");
1160 task_ledgers.physical_writes = ledger_entry_add(t, "physical_writes", "res", "bytes");
1161 task_ledgers.logical_writes = ledger_entry_add(t, "logical_writes", "res", "bytes");
1162 task_ledgers.logical_writes_to_external = ledger_entry_add(t, "logical_writes_to_external", "res", "bytes");
1163 task_ledgers.energy_billed_to_me = ledger_entry_add(t, "energy_billed_to_me", "power", "nj");
1164 task_ledgers.energy_billed_to_others = ledger_entry_add(t, "energy_billed_to_others", "power", "nj");
1165
1166 if ((task_ledgers.cpu_time < 0) ||
1167 (task_ledgers.tkm_private < 0) ||
1168 (task_ledgers.tkm_shared < 0) ||
1169 (task_ledgers.phys_mem < 0) ||
1170 (task_ledgers.wired_mem < 0) ||
1171 (task_ledgers.internal < 0) ||
1172 (task_ledgers.iokit_mapped < 0) ||
1173 (task_ledgers.alternate_accounting < 0) ||
1174 (task_ledgers.alternate_accounting_compressed < 0) ||
1175 (task_ledgers.page_table < 0) ||
1176 (task_ledgers.phys_footprint < 0) ||
1177 (task_ledgers.internal_compressed < 0) ||
1178 (task_ledgers.purgeable_volatile < 0) ||
1179 (task_ledgers.purgeable_nonvolatile < 0) ||
1180 (task_ledgers.purgeable_volatile_compressed < 0) ||
1181 (task_ledgers.purgeable_nonvolatile_compressed < 0) ||
1182 (task_ledgers.tagged_nofootprint < 0) ||
1183 (task_ledgers.tagged_footprint < 0) ||
1184 (task_ledgers.tagged_nofootprint_compressed < 0) ||
1185 (task_ledgers.tagged_footprint_compressed < 0) ||
1186 (task_ledgers.network_volatile < 0) ||
1187 (task_ledgers.network_nonvolatile < 0) ||
1188 (task_ledgers.network_volatile_compressed < 0) ||
1189 (task_ledgers.network_nonvolatile_compressed < 0) ||
1190 (task_ledgers.media_nofootprint < 0) ||
1191 (task_ledgers.media_footprint < 0) ||
1192 (task_ledgers.media_nofootprint_compressed < 0) ||
1193 (task_ledgers.media_footprint_compressed < 0) ||
1194 (task_ledgers.graphics_nofootprint < 0) ||
1195 (task_ledgers.graphics_footprint < 0) ||
1196 (task_ledgers.graphics_nofootprint_compressed < 0) ||
1197 (task_ledgers.graphics_footprint_compressed < 0) ||
1198 (task_ledgers.neural_nofootprint < 0) ||
1199 (task_ledgers.neural_footprint < 0) ||
1200 (task_ledgers.neural_nofootprint_compressed < 0) ||
1201 (task_ledgers.neural_footprint_compressed < 0) ||
1202 (task_ledgers.platform_idle_wakeups < 0) ||
1203 (task_ledgers.interrupt_wakeups < 0) ||
1204 (task_ledgers.cpu_time_billed_to_me < 0) || (task_ledgers.cpu_time_billed_to_others < 0) ||
1205 (task_ledgers.physical_writes < 0) ||
1206 (task_ledgers.logical_writes < 0) ||
1207 (task_ledgers.logical_writes_to_external < 0) ||
1208 (task_ledgers.energy_billed_to_me < 0) ||
1209 (task_ledgers.energy_billed_to_others < 0)
1210 ) {
1211 panic("couldn't create entries for task ledger template");
1212 }
1213
1214 ledger_track_credit_only(t, task_ledgers.phys_footprint);
1215 ledger_track_credit_only(t, task_ledgers.page_table);
1216 ledger_track_credit_only(t, task_ledgers.internal);
1217 ledger_track_credit_only(t, task_ledgers.internal_compressed);
1218 ledger_track_credit_only(t, task_ledgers.iokit_mapped);
1219 ledger_track_credit_only(t, task_ledgers.alternate_accounting);
1220 ledger_track_credit_only(t, task_ledgers.alternate_accounting_compressed);
1221 ledger_track_credit_only(t, task_ledgers.purgeable_volatile);
1222 ledger_track_credit_only(t, task_ledgers.purgeable_nonvolatile);
1223 ledger_track_credit_only(t, task_ledgers.purgeable_volatile_compressed);
1224 ledger_track_credit_only(t, task_ledgers.purgeable_nonvolatile_compressed);
1225 #if DEBUG || DEVELOPMENT
1226 ledger_track_credit_only(t, task_ledgers.pages_grabbed);
1227 ledger_track_credit_only(t, task_ledgers.pages_grabbed_kern);
1228 ledger_track_credit_only(t, task_ledgers.pages_grabbed_iopl);
1229 ledger_track_credit_only(t, task_ledgers.pages_grabbed_upl);
1230 #endif
1231 ledger_track_credit_only(t, task_ledgers.tagged_nofootprint);
1232 ledger_track_credit_only(t, task_ledgers.tagged_footprint);
1233 ledger_track_credit_only(t, task_ledgers.tagged_nofootprint_compressed);
1234 ledger_track_credit_only(t, task_ledgers.tagged_footprint_compressed);
1235 ledger_track_credit_only(t, task_ledgers.network_volatile);
1236 ledger_track_credit_only(t, task_ledgers.network_nonvolatile);
1237 ledger_track_credit_only(t, task_ledgers.network_volatile_compressed);
1238 ledger_track_credit_only(t, task_ledgers.network_nonvolatile_compressed);
1239 ledger_track_credit_only(t, task_ledgers.media_nofootprint);
1240 ledger_track_credit_only(t, task_ledgers.media_footprint);
1241 ledger_track_credit_only(t, task_ledgers.media_nofootprint_compressed);
1242 ledger_track_credit_only(t, task_ledgers.media_footprint_compressed);
1243 ledger_track_credit_only(t, task_ledgers.graphics_nofootprint);
1244 ledger_track_credit_only(t, task_ledgers.graphics_footprint);
1245 ledger_track_credit_only(t, task_ledgers.graphics_nofootprint_compressed);
1246 ledger_track_credit_only(t, task_ledgers.graphics_footprint_compressed);
1247 ledger_track_credit_only(t, task_ledgers.neural_nofootprint);
1248 ledger_track_credit_only(t, task_ledgers.neural_footprint);
1249 ledger_track_credit_only(t, task_ledgers.neural_nofootprint_compressed);
1250 ledger_track_credit_only(t, task_ledgers.neural_footprint_compressed);
1251
1252 ledger_track_maximum(t, task_ledgers.phys_footprint, 60);
1253 #if MACH_ASSERT
1254 if (pmap_ledgers_panic) {
1255 ledger_panic_on_negative(t, task_ledgers.phys_footprint);
1256 ledger_panic_on_negative(t, task_ledgers.page_table);
1257 ledger_panic_on_negative(t, task_ledgers.internal);
1258 ledger_panic_on_negative(t, task_ledgers.internal_compressed);
1259 ledger_panic_on_negative(t, task_ledgers.iokit_mapped);
1260 ledger_panic_on_negative(t, task_ledgers.alternate_accounting);
1261 ledger_panic_on_negative(t, task_ledgers.alternate_accounting_compressed);
1262 ledger_panic_on_negative(t, task_ledgers.purgeable_volatile);
1263 ledger_panic_on_negative(t, task_ledgers.purgeable_nonvolatile);
1264 ledger_panic_on_negative(t, task_ledgers.purgeable_volatile_compressed);
1265 ledger_panic_on_negative(t, task_ledgers.purgeable_nonvolatile_compressed);
1266
1267 ledger_panic_on_negative(t, task_ledgers.tagged_nofootprint);
1268 ledger_panic_on_negative(t, task_ledgers.tagged_footprint);
1269 ledger_panic_on_negative(t, task_ledgers.tagged_nofootprint_compressed);
1270 ledger_panic_on_negative(t, task_ledgers.tagged_footprint_compressed);
1271 ledger_panic_on_negative(t, task_ledgers.network_volatile);
1272 ledger_panic_on_negative(t, task_ledgers.network_nonvolatile);
1273 ledger_panic_on_negative(t, task_ledgers.network_volatile_compressed);
1274 ledger_panic_on_negative(t, task_ledgers.network_nonvolatile_compressed);
1275 ledger_panic_on_negative(t, task_ledgers.media_nofootprint);
1276 ledger_panic_on_negative(t, task_ledgers.media_footprint);
1277 ledger_panic_on_negative(t, task_ledgers.media_nofootprint_compressed);
1278 ledger_panic_on_negative(t, task_ledgers.media_footprint_compressed);
1279 ledger_panic_on_negative(t, task_ledgers.graphics_nofootprint);
1280 ledger_panic_on_negative(t, task_ledgers.graphics_footprint);
1281 ledger_panic_on_negative(t, task_ledgers.graphics_nofootprint_compressed);
1282 ledger_panic_on_negative(t, task_ledgers.graphics_footprint_compressed);
1283 ledger_panic_on_negative(t, task_ledgers.neural_nofootprint);
1284 ledger_panic_on_negative(t, task_ledgers.neural_footprint);
1285 ledger_panic_on_negative(t, task_ledgers.neural_nofootprint_compressed);
1286 ledger_panic_on_negative(t, task_ledgers.neural_footprint_compressed);
1287 }
1288 #endif /* MACH_ASSERT */
1289
1290 #if CONFIG_MEMORYSTATUS
1291 ledger_set_callback(t, task_ledgers.phys_footprint, task_footprint_exceeded, NULL, NULL);
1292 #endif /* CONFIG_MEMORYSTATUS */
1293
1294 ledger_set_callback(t, task_ledgers.interrupt_wakeups,
1295 task_wakeups_rate_exceeded, NULL, NULL);
1296 ledger_set_callback(t, task_ledgers.physical_writes, task_io_rate_exceeded, (void *)FLAVOR_IO_PHYSICAL_WRITES, NULL);
1297
1298 ledger_template_complete(t);
1299 task_ledger_template = t;
1300 }
1301
1302 os_refgrp_decl(static, task_refgrp, "task", NULL);
1303
1304 kern_return_t
1305 task_create_internal(
1306 task_t parent_task,
1307 coalition_t *parent_coalitions __unused,
1308 boolean_t inherit_memory,
1309 __unused boolean_t is_64bit,
1310 boolean_t is_64bit_data,
1311 uint32_t t_flags,
1312 uint32_t t_procflags,
1313 uint8_t t_returnwaitflags,
1314 task_t *child_task) /* OUT */
1315 {
1316 task_t new_task;
1317 vm_shared_region_t shared_region;
1318 ledger_t ledger = NULL;
1319
1320 new_task = (task_t) zalloc(task_zone);
1321
1322 if (new_task == TASK_NULL) {
1323 return KERN_RESOURCE_SHORTAGE;
1324 }
1325
1326 /* one ref for just being alive; one for our caller */
1327 os_ref_init_count(&new_task->ref_count, &task_refgrp, 2);
1328
1329 /* allocate with active entries */
1330 assert(task_ledger_template != NULL);
1331 if ((ledger = ledger_instantiate(task_ledger_template,
1332 LEDGER_CREATE_ACTIVE_ENTRIES)) == NULL) {
1333 zfree(task_zone, new_task);
1334 return KERN_RESOURCE_SHORTAGE;
1335 }
1336
1337 #if defined(HAS_APPLE_PAC)
1338 ml_task_set_rop_pid(new_task, parent_task, inherit_memory);
1339 ml_task_set_disable_user_jop(new_task, inherit_memory ? parent_task->disable_user_jop : FALSE);
1340 #endif
1341
1342 new_task->ledger = ledger;
1343
1344 #if defined(CONFIG_SCHED_MULTIQ)
1345 new_task->sched_group = sched_group_create();
1346 #endif
1347
1348 /* if inherit_memory is true, parent_task MUST not be NULL */
1349 if (!(t_flags & TF_CORPSE_FORK) && inherit_memory) {
1350 new_task->map = vm_map_fork(ledger, parent_task->map, 0);
1351 } else {
1352 unsigned int pmap_flags = is_64bit ? PMAP_CREATE_64BIT : 0;
1353 new_task->map = vm_map_create(pmap_create_options(ledger, 0, pmap_flags),
1354 (vm_map_offset_t)(VM_MIN_ADDRESS),
1355 (vm_map_offset_t)(VM_MAX_ADDRESS), TRUE);
1356 }
1357
1358 /* Inherit memlock limit from parent */
1359 if (parent_task) {
1360 vm_map_set_user_wire_limit(new_task->map, (vm_size_t)parent_task->map->user_wire_limit);
1361 }
1362
1363 lck_mtx_init(&new_task->lock, &task_lck_grp, &task_lck_attr);
1364 queue_init(&new_task->threads);
1365 new_task->suspend_count = 0;
1366 new_task->thread_count = 0;
1367 new_task->active_thread_count = 0;
1368 new_task->user_stop_count = 0;
1369 new_task->legacy_stop_count = 0;
1370 new_task->active = TRUE;
1371 new_task->halting = FALSE;
1372 new_task->priv_flags = 0;
1373 new_task->t_flags = t_flags;
1374 new_task->t_procflags = t_procflags;
1375 new_task->t_returnwaitflags = t_returnwaitflags;
1376 new_task->returnwait_inheritor = current_thread();
1377 new_task->importance = 0;
1378 new_task->crashed_thread_id = 0;
1379 new_task->exec_token = 0;
1380 new_task->watchports = NULL;
1381 new_task->restartable_ranges = NULL;
1382 new_task->task_exc_guard = 0;
1383
1384 #if CONFIG_ATM
1385 new_task->atm_context = NULL;
1386 #endif
1387 new_task->bank_context = NULL;
1388
1389 #ifdef MACH_BSD
1390 new_task->bsd_info = NULL;
1391 new_task->corpse_info = NULL;
1392 #endif /* MACH_BSD */
1393
1394 #if CONFIG_MACF
1395 new_task->crash_label = NULL;
1396 #endif
1397
1398 #if CONFIG_MEMORYSTATUS
1399 if (max_task_footprint != 0) {
1400 ledger_set_limit(ledger, task_ledgers.phys_footprint, max_task_footprint, PHYS_FOOTPRINT_WARNING_LEVEL);
1401 }
1402 #endif /* CONFIG_MEMORYSTATUS */
1403
1404 if (task_wakeups_monitor_rate != 0) {
1405 uint32_t flags = WAKEMON_ENABLE | WAKEMON_SET_DEFAULTS;
1406 int32_t rate; // Ignored because of WAKEMON_SET_DEFAULTS
1407 task_wakeups_monitor_ctl(new_task, &flags, &rate);
1408 }
1409
1410 #if CONFIG_IO_ACCOUNTING
1411 uint32_t flags = IOMON_ENABLE;
1412 task_io_monitor_ctl(new_task, &flags);
1413 #endif /* CONFIG_IO_ACCOUNTING */
1414
1415 machine_task_init(new_task, parent_task, inherit_memory);
1416
1417 new_task->task_debug = NULL;
1418
1419 #if DEVELOPMENT || DEBUG
1420 new_task->task_unnested = FALSE;
1421 new_task->task_disconnected_count = 0;
1422 #endif
1423 queue_init(&new_task->semaphore_list);
1424 new_task->semaphores_owned = 0;
1425
1426 ipc_task_init(new_task, parent_task);
1427
1428 new_task->vtimers = 0;
1429
1430 new_task->shared_region = NULL;
1431
1432 new_task->affinity_space = NULL;
1433
1434 new_task->t_kpc = 0;
1435
1436 new_task->pidsuspended = FALSE;
1437 new_task->frozen = FALSE;
1438 new_task->changing_freeze_state = FALSE;
1439 new_task->rusage_cpu_flags = 0;
1440 new_task->rusage_cpu_percentage = 0;
1441 new_task->rusage_cpu_interval = 0;
1442 new_task->rusage_cpu_deadline = 0;
1443 new_task->rusage_cpu_callt = NULL;
1444 #if MACH_ASSERT
1445 new_task->suspends_outstanding = 0;
1446 #endif
1447
1448 #if HYPERVISOR
1449 new_task->hv_task_target = NULL;
1450 #endif /* HYPERVISOR */
1451
1452 #if CONFIG_EMBEDDED
1453 queue_init(&new_task->task_watchers);
1454 new_task->num_taskwatchers = 0;
1455 new_task->watchapplying = 0;
1456 #endif /* CONFIG_EMBEDDED */
1457
1458 new_task->mem_notify_reserved = 0;
1459 new_task->memlimit_attrs_reserved = 0;
1460
1461 new_task->requested_policy = default_task_requested_policy;
1462 new_task->effective_policy = default_task_effective_policy;
1463
1464 task_importance_init_from_parent(new_task, parent_task);
1465
1466 if (parent_task != TASK_NULL) {
1467 new_task->sec_token = parent_task->sec_token;
1468 new_task->audit_token = parent_task->audit_token;
1469
1470 /* inherit the parent's shared region */
1471 shared_region = vm_shared_region_get(parent_task);
1472 vm_shared_region_set(new_task, shared_region);
1473
1474 if (task_has_64Bit_addr(parent_task)) {
1475 task_set_64Bit_addr(new_task);
1476 }
1477
1478 if (task_has_64Bit_data(parent_task)) {
1479 task_set_64Bit_data(new_task);
1480 }
1481
1482 new_task->all_image_info_addr = parent_task->all_image_info_addr;
1483 new_task->all_image_info_size = parent_task->all_image_info_size;
1484 new_task->mach_header_vm_address = 0;
1485
1486 if (inherit_memory && parent_task->affinity_space) {
1487 task_affinity_create(parent_task, new_task);
1488 }
1489
1490 new_task->pset_hint = parent_task->pset_hint = task_choose_pset(parent_task);
1491
1492 #if DEBUG || DEVELOPMENT
1493 if (parent_task->t_flags & TF_NO_SMT) {
1494 new_task->t_flags |= TF_NO_SMT;
1495 }
1496 #endif
1497
1498 new_task->priority = BASEPRI_DEFAULT;
1499 new_task->max_priority = MAXPRI_USER;
1500
1501 task_policy_create(new_task, parent_task);
1502 } else {
1503 new_task->sec_token = KERNEL_SECURITY_TOKEN;
1504 new_task->audit_token = KERNEL_AUDIT_TOKEN;
1505 #ifdef __LP64__
1506 if (is_64bit) {
1507 task_set_64Bit_addr(new_task);
1508 }
1509 #endif
1510
1511 if (is_64bit_data) {
1512 task_set_64Bit_data(new_task);
1513 }
1514
1515 new_task->all_image_info_addr = (mach_vm_address_t)0;
1516 new_task->all_image_info_size = (mach_vm_size_t)0;
1517
1518 new_task->pset_hint = PROCESSOR_SET_NULL;
1519
1520 if (kernel_task == TASK_NULL) {
1521 new_task->priority = BASEPRI_KERNEL;
1522 new_task->max_priority = MAXPRI_KERNEL;
1523 } else {
1524 new_task->priority = BASEPRI_DEFAULT;
1525 new_task->max_priority = MAXPRI_USER;
1526 }
1527 }
1528
1529 bzero(new_task->coalition, sizeof(new_task->coalition));
1530 for (int i = 0; i < COALITION_NUM_TYPES; i++) {
1531 queue_chain_init(new_task->task_coalition[i]);
1532 }
1533
1534 /* Allocate I/O Statistics */
1535 new_task->task_io_stats = (io_stat_info_t)kalloc(sizeof(struct io_stat_info));
1536 assert(new_task->task_io_stats != NULL);
1537 bzero(new_task->task_io_stats, sizeof(struct io_stat_info));
1538
1539 bzero(&(new_task->cpu_time_eqos_stats), sizeof(new_task->cpu_time_eqos_stats));
1540 bzero(&(new_task->cpu_time_rqos_stats), sizeof(new_task->cpu_time_rqos_stats));
1541
1542 bzero(&new_task->extmod_statistics, sizeof(new_task->extmod_statistics));
1543
1544 /* Copy resource acc. info from Parent for Corpe Forked task. */
1545 if (parent_task != NULL && (t_flags & TF_CORPSE_FORK)) {
1546 task_rollup_accounting_info(new_task, parent_task);
1547 } else {
1548 /* Initialize to zero for standard fork/spawn case */
1549 new_task->total_user_time = 0;
1550 new_task->total_system_time = 0;
1551 new_task->total_ptime = 0;
1552 new_task->total_runnable_time = 0;
1553 new_task->faults = 0;
1554 new_task->pageins = 0;
1555 new_task->cow_faults = 0;
1556 new_task->messages_sent = 0;
1557 new_task->messages_received = 0;
1558 new_task->syscalls_mach = 0;
1559 new_task->syscalls_unix = 0;
1560 new_task->c_switch = 0;
1561 new_task->p_switch = 0;
1562 new_task->ps_switch = 0;
1563 new_task->decompressions = 0;
1564 new_task->low_mem_notified_warn = 0;
1565 new_task->low_mem_notified_critical = 0;
1566 new_task->purged_memory_warn = 0;
1567 new_task->purged_memory_critical = 0;
1568 new_task->low_mem_privileged_listener = 0;
1569 new_task->memlimit_is_active = 0;
1570 new_task->memlimit_is_fatal = 0;
1571 new_task->memlimit_active_exc_resource = 0;
1572 new_task->memlimit_inactive_exc_resource = 0;
1573 new_task->task_timer_wakeups_bin_1 = 0;
1574 new_task->task_timer_wakeups_bin_2 = 0;
1575 new_task->task_gpu_ns = 0;
1576 new_task->task_writes_counters_internal.task_immediate_writes = 0;
1577 new_task->task_writes_counters_internal.task_deferred_writes = 0;
1578 new_task->task_writes_counters_internal.task_invalidated_writes = 0;
1579 new_task->task_writes_counters_internal.task_metadata_writes = 0;
1580 new_task->task_writes_counters_external.task_immediate_writes = 0;
1581 new_task->task_writes_counters_external.task_deferred_writes = 0;
1582 new_task->task_writes_counters_external.task_invalidated_writes = 0;
1583 new_task->task_writes_counters_external.task_metadata_writes = 0;
1584
1585 new_task->task_energy = 0;
1586 #if MONOTONIC
1587 memset(&new_task->task_monotonic, 0, sizeof(new_task->task_monotonic));
1588 #endif /* MONOTONIC */
1589 }
1590
1591
1592 #if CONFIG_COALITIONS
1593 if (!(t_flags & TF_CORPSE_FORK)) {
1594 /* TODO: there is no graceful failure path here... */
1595 if (parent_coalitions && parent_coalitions[COALITION_TYPE_RESOURCE]) {
1596 coalitions_adopt_task(parent_coalitions, new_task);
1597 } else if (parent_task && parent_task->coalition[COALITION_TYPE_RESOURCE]) {
1598 /*
1599 * all tasks at least have a resource coalition, so
1600 * if the parent has one then inherit all coalitions
1601 * the parent is a part of
1602 */
1603 coalitions_adopt_task(parent_task->coalition, new_task);
1604 } else {
1605 /* TODO: assert that new_task will be PID 1 (launchd) */
1606 coalitions_adopt_init_task(new_task);
1607 }
1608 /*
1609 * on exec, we need to transfer the coalition roles from the
1610 * parent task to the exec copy task.
1611 */
1612 if (parent_task && (t_procflags & TPF_EXEC_COPY)) {
1613 int coal_roles[COALITION_NUM_TYPES];
1614 task_coalition_roles(parent_task, coal_roles);
1615 (void)coalitions_set_roles(new_task->coalition, new_task, coal_roles);
1616 }
1617 } else {
1618 coalitions_adopt_corpse_task(new_task);
1619 }
1620
1621 if (new_task->coalition[COALITION_TYPE_RESOURCE] == COALITION_NULL) {
1622 panic("created task is not a member of a resource coalition");
1623 }
1624 #endif /* CONFIG_COALITIONS */
1625
1626 new_task->dispatchqueue_offset = 0;
1627 if (parent_task != NULL) {
1628 new_task->dispatchqueue_offset = parent_task->dispatchqueue_offset;
1629 }
1630
1631 new_task->task_can_transfer_memory_ownership = FALSE;
1632 new_task->task_volatile_objects = 0;
1633 new_task->task_nonvolatile_objects = 0;
1634 new_task->task_objects_disowning = FALSE;
1635 new_task->task_objects_disowned = FALSE;
1636 new_task->task_owned_objects = 0;
1637 queue_init(&new_task->task_objq);
1638 task_objq_lock_init(new_task);
1639
1640 #if __arm64__
1641 new_task->task_legacy_footprint = FALSE;
1642 new_task->task_extra_footprint_limit = FALSE;
1643 new_task->task_ios13extended_footprint_limit = FALSE;
1644 #endif /* __arm64__ */
1645 new_task->task_region_footprint = FALSE;
1646 new_task->task_has_crossed_thread_limit = FALSE;
1647 new_task->task_thread_limit = 0;
1648 #if CONFIG_SECLUDED_MEMORY
1649 new_task->task_can_use_secluded_mem = FALSE;
1650 new_task->task_could_use_secluded_mem = FALSE;
1651 new_task->task_could_also_use_secluded_mem = FALSE;
1652 new_task->task_suppressed_secluded = FALSE;
1653 #endif /* CONFIG_SECLUDED_MEMORY */
1654
1655 /*
1656 * t_flags is set up above. But since we don't
1657 * support darkwake mode being set that way
1658 * currently, we clear it out here explicitly.
1659 */
1660 new_task->t_flags &= ~(TF_DARKWAKE_MODE);
1661
1662 queue_init(&new_task->io_user_clients);
1663 new_task->loadTag = 0;
1664
1665 ipc_task_enable(new_task);
1666
1667 lck_mtx_lock(&tasks_threads_lock);
1668 queue_enter(&tasks, new_task, task_t, tasks);
1669 tasks_count++;
1670 if (tasks_suspend_state) {
1671 task_suspend_internal(new_task);
1672 }
1673 lck_mtx_unlock(&tasks_threads_lock);
1674
1675 *child_task = new_task;
1676 return KERN_SUCCESS;
1677 }
1678
1679 /*
1680 * task_rollup_accounting_info
1681 *
1682 * Roll up accounting stats. Used to rollup stats
1683 * for exec copy task and corpse fork.
1684 */
1685 void
1686 task_rollup_accounting_info(task_t to_task, task_t from_task)
1687 {
1688 assert(from_task != to_task);
1689
1690 to_task->total_user_time = from_task->total_user_time;
1691 to_task->total_system_time = from_task->total_system_time;
1692 to_task->total_ptime = from_task->total_ptime;
1693 to_task->total_runnable_time = from_task->total_runnable_time;
1694 to_task->faults = from_task->faults;
1695 to_task->pageins = from_task->pageins;
1696 to_task->cow_faults = from_task->cow_faults;
1697 to_task->decompressions = from_task->decompressions;
1698 to_task->messages_sent = from_task->messages_sent;
1699 to_task->messages_received = from_task->messages_received;
1700 to_task->syscalls_mach = from_task->syscalls_mach;
1701 to_task->syscalls_unix = from_task->syscalls_unix;
1702 to_task->c_switch = from_task->c_switch;
1703 to_task->p_switch = from_task->p_switch;
1704 to_task->ps_switch = from_task->ps_switch;
1705 to_task->extmod_statistics = from_task->extmod_statistics;
1706 to_task->low_mem_notified_warn = from_task->low_mem_notified_warn;
1707 to_task->low_mem_notified_critical = from_task->low_mem_notified_critical;
1708 to_task->purged_memory_warn = from_task->purged_memory_warn;
1709 to_task->purged_memory_critical = from_task->purged_memory_critical;
1710 to_task->low_mem_privileged_listener = from_task->low_mem_privileged_listener;
1711 *to_task->task_io_stats = *from_task->task_io_stats;
1712 to_task->cpu_time_eqos_stats = from_task->cpu_time_eqos_stats;
1713 to_task->cpu_time_rqos_stats = from_task->cpu_time_rqos_stats;
1714 to_task->task_timer_wakeups_bin_1 = from_task->task_timer_wakeups_bin_1;
1715 to_task->task_timer_wakeups_bin_2 = from_task->task_timer_wakeups_bin_2;
1716 to_task->task_gpu_ns = from_task->task_gpu_ns;
1717 to_task->task_writes_counters_internal.task_immediate_writes = from_task->task_writes_counters_internal.task_immediate_writes;
1718 to_task->task_writes_counters_internal.task_deferred_writes = from_task->task_writes_counters_internal.task_deferred_writes;
1719 to_task->task_writes_counters_internal.task_invalidated_writes = from_task->task_writes_counters_internal.task_invalidated_writes;
1720 to_task->task_writes_counters_internal.task_metadata_writes = from_task->task_writes_counters_internal.task_metadata_writes;
1721 to_task->task_writes_counters_external.task_immediate_writes = from_task->task_writes_counters_external.task_immediate_writes;
1722 to_task->task_writes_counters_external.task_deferred_writes = from_task->task_writes_counters_external.task_deferred_writes;
1723 to_task->task_writes_counters_external.task_invalidated_writes = from_task->task_writes_counters_external.task_invalidated_writes;
1724 to_task->task_writes_counters_external.task_metadata_writes = from_task->task_writes_counters_external.task_metadata_writes;
1725 to_task->task_energy = from_task->task_energy;
1726
1727 /* Skip ledger roll up for memory accounting entries */
1728 ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.cpu_time);
1729 ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.platform_idle_wakeups);
1730 ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.interrupt_wakeups);
1731 #if CONFIG_SCHED_SFI
1732 for (sfi_class_id_t class_id = SFI_CLASS_UNSPECIFIED; class_id < MAX_SFI_CLASS_ID; class_id++) {
1733 ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.sfi_wait_times[class_id]);
1734 }
1735 #endif
1736 ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.cpu_time_billed_to_me);
1737 ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.cpu_time_billed_to_others);
1738 ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.physical_writes);
1739 ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.logical_writes);
1740 ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.energy_billed_to_me);
1741 ledger_rollup_entry(to_task->ledger, from_task->ledger, task_ledgers.energy_billed_to_others);
1742 }
1743
1744 int task_dropped_imp_count = 0;
1745
1746 /*
1747 * task_deallocate:
1748 *
1749 * Drop a reference on a task.
1750 */
1751 void
1752 task_deallocate(
1753 task_t task)
1754 {
1755 ledger_amount_t credit, debit, interrupt_wakeups, platform_idle_wakeups;
1756 os_ref_count_t refs;
1757
1758 if (task == TASK_NULL) {
1759 return;
1760 }
1761
1762 refs = task_deallocate_internal(task);
1763
1764 #if IMPORTANCE_INHERITANCE
1765 if (refs == 1) {
1766 /*
1767 * If last ref potentially comes from the task's importance,
1768 * disconnect it. But more task refs may be added before
1769 * that completes, so wait for the reference to go to zero
1770 * naturally (it may happen on a recursive task_deallocate()
1771 * from the ipc_importance_disconnect_task() call).
1772 */
1773 if (IIT_NULL != task->task_imp_base) {
1774 ipc_importance_disconnect_task(task);
1775 }
1776 return;
1777 }
1778 #endif /* IMPORTANCE_INHERITANCE */
1779
1780 if (refs > 0) {
1781 return;
1782 }
1783
1784 /*
1785 * The task should be dead at this point. Ensure other resources
1786 * like threads, are gone before we trash the world.
1787 */
1788 assert(queue_empty(&task->threads));
1789 assert(task->bsd_info == NULL);
1790 assert(!is_active(task->itk_space));
1791 assert(!task->active);
1792 assert(task->active_thread_count == 0);
1793
1794 lck_mtx_lock(&tasks_threads_lock);
1795 assert(terminated_tasks_count > 0);
1796 queue_remove(&terminated_tasks, task, task_t, tasks);
1797 terminated_tasks_count--;
1798 lck_mtx_unlock(&tasks_threads_lock);
1799
1800 /*
1801 * remove the reference on atm descriptor
1802 */
1803 task_atm_reset(task);
1804
1805 /*
1806 * remove the reference on bank context
1807 */
1808 task_bank_reset(task);
1809
1810 if (task->task_io_stats) {
1811 kfree(task->task_io_stats, sizeof(struct io_stat_info));
1812 }
1813
1814 /*
1815 * Give the machine dependent code a chance
1816 * to perform cleanup before ripping apart
1817 * the task.
1818 */
1819 machine_task_terminate(task);
1820
1821 ipc_task_terminate(task);
1822
1823 /* let iokit know */
1824 iokit_task_terminate(task);
1825
1826 if (task->affinity_space) {
1827 task_affinity_deallocate(task);
1828 }
1829
1830 #if MACH_ASSERT
1831 if (task->ledger != NULL &&
1832 task->map != NULL &&
1833 task->map->pmap != NULL &&
1834 task->map->pmap->ledger != NULL) {
1835 assert(task->ledger == task->map->pmap->ledger);
1836 }
1837 #endif /* MACH_ASSERT */
1838
1839 vm_owned_objects_disown(task);
1840 assert(task->task_objects_disowned);
1841 if (task->task_volatile_objects != 0 ||
1842 task->task_nonvolatile_objects != 0 ||
1843 task->task_owned_objects != 0) {
1844 panic("task_deallocate(%p): "
1845 "volatile_objects=%d nonvolatile_objects=%d owned=%d\n",
1846 task,
1847 task->task_volatile_objects,
1848 task->task_nonvolatile_objects,
1849 task->task_owned_objects);
1850 }
1851
1852 vm_map_deallocate(task->map);
1853 is_release(task->itk_space);
1854 if (task->restartable_ranges) {
1855 restartable_ranges_release(task->restartable_ranges);
1856 }
1857
1858 ledger_get_entries(task->ledger, task_ledgers.interrupt_wakeups,
1859 &interrupt_wakeups, &debit);
1860 ledger_get_entries(task->ledger, task_ledgers.platform_idle_wakeups,
1861 &platform_idle_wakeups, &debit);
1862
1863 #if defined(CONFIG_SCHED_MULTIQ)
1864 sched_group_destroy(task->sched_group);
1865 #endif
1866
1867 /* Accumulate statistics for dead tasks */
1868 lck_spin_lock(&dead_task_statistics_lock);
1869 dead_task_statistics.total_user_time += task->total_user_time;
1870 dead_task_statistics.total_system_time += task->total_system_time;
1871
1872 dead_task_statistics.task_interrupt_wakeups += interrupt_wakeups;
1873 dead_task_statistics.task_platform_idle_wakeups += platform_idle_wakeups;
1874
1875 dead_task_statistics.task_timer_wakeups_bin_1 += task->task_timer_wakeups_bin_1;
1876 dead_task_statistics.task_timer_wakeups_bin_2 += task->task_timer_wakeups_bin_2;
1877 dead_task_statistics.total_ptime += task->total_ptime;
1878 dead_task_statistics.total_pset_switches += task->ps_switch;
1879 dead_task_statistics.task_gpu_ns += task->task_gpu_ns;
1880 dead_task_statistics.task_energy += task->task_energy;
1881
1882 lck_spin_unlock(&dead_task_statistics_lock);
1883 lck_mtx_destroy(&task->lock, &task_lck_grp);
1884
1885 if (!ledger_get_entries(task->ledger, task_ledgers.tkm_private, &credit,
1886 &debit)) {
1887 OSAddAtomic64(credit, (int64_t *)&tasks_tkm_private.alloc);
1888 OSAddAtomic64(debit, (int64_t *)&tasks_tkm_private.free);
1889 }
1890 if (!ledger_get_entries(task->ledger, task_ledgers.tkm_shared, &credit,
1891 &debit)) {
1892 OSAddAtomic64(credit, (int64_t *)&tasks_tkm_shared.alloc);
1893 OSAddAtomic64(debit, (int64_t *)&tasks_tkm_shared.free);
1894 }
1895 ledger_dereference(task->ledger);
1896
1897 #if TASK_REFERENCE_LEAK_DEBUG
1898 btlog_remove_entries_for_element(task_ref_btlog, task);
1899 #endif
1900
1901 #if CONFIG_COALITIONS
1902 task_release_coalitions(task);
1903 #endif /* CONFIG_COALITIONS */
1904
1905 bzero(task->coalition, sizeof(task->coalition));
1906
1907 #if MACH_BSD
1908 /* clean up collected information since last reference to task is gone */
1909 if (task->corpse_info) {
1910 void *corpse_info_kernel = kcdata_memory_get_begin_addr(task->corpse_info);
1911 task_crashinfo_destroy(task->corpse_info);
1912 task->corpse_info = NULL;
1913 if (corpse_info_kernel) {
1914 kfree(corpse_info_kernel, CORPSEINFO_ALLOCATION_SIZE);
1915 }
1916 }
1917 #endif
1918
1919 #if CONFIG_MACF
1920 if (task->crash_label) {
1921 mac_exc_free_label(task->crash_label);
1922 task->crash_label = NULL;
1923 }
1924 #endif
1925
1926 assert(queue_empty(&task->task_objq));
1927
1928 zfree(task_zone, task);
1929 }
1930
1931 /*
1932 * task_name_deallocate:
1933 *
1934 * Drop a reference on a task name.
1935 */
1936 void
1937 task_name_deallocate(
1938 task_name_t task_name)
1939 {
1940 return task_deallocate((task_t)task_name);
1941 }
1942
1943 /*
1944 * task_inspect_deallocate:
1945 *
1946 * Drop a task inspection reference.
1947 */
1948 void
1949 task_inspect_deallocate(
1950 task_inspect_t task_inspect)
1951 {
1952 return task_deallocate((task_t)task_inspect);
1953 }
1954
1955 /*
1956 * task_suspension_token_deallocate:
1957 *
1958 * Drop a reference on a task suspension token.
1959 */
1960 void
1961 task_suspension_token_deallocate(
1962 task_suspension_token_t token)
1963 {
1964 return task_deallocate((task_t)token);
1965 }
1966
1967
1968 /*
1969 * task_collect_crash_info:
1970 *
1971 * collect crash info from bsd and mach based data
1972 */
1973 kern_return_t
1974 task_collect_crash_info(
1975 task_t task,
1976 #ifdef CONFIG_MACF
1977 struct label *crash_label,
1978 #endif
1979 int is_corpse_fork)
1980 {
1981 kern_return_t kr = KERN_SUCCESS;
1982
1983 kcdata_descriptor_t crash_data = NULL;
1984 kcdata_descriptor_t crash_data_release = NULL;
1985 mach_msg_type_number_t size = CORPSEINFO_ALLOCATION_SIZE;
1986 mach_vm_offset_t crash_data_ptr = 0;
1987 void *crash_data_kernel = NULL;
1988 void *crash_data_kernel_release = NULL;
1989 #if CONFIG_MACF
1990 struct label *label, *free_label;
1991 #endif
1992
1993 if (!corpses_enabled()) {
1994 return KERN_NOT_SUPPORTED;
1995 }
1996
1997 #if CONFIG_MACF
1998 free_label = label = mac_exc_create_label();
1999 #endif
2000
2001 task_lock(task);
2002
2003 assert(is_corpse_fork || task->bsd_info != NULL);
2004 if (task->corpse_info == NULL && (is_corpse_fork || task->bsd_info != NULL)) {
2005 #if CONFIG_MACF
2006 /* Set the crash label, used by the exception delivery mac hook */
2007 free_label = task->crash_label; // Most likely NULL.
2008 task->crash_label = label;
2009 mac_exc_update_task_crash_label(task, crash_label);
2010 #endif
2011 task_unlock(task);
2012
2013 crash_data_kernel = (void *) kalloc(CORPSEINFO_ALLOCATION_SIZE);
2014 if (crash_data_kernel == NULL) {
2015 kr = KERN_RESOURCE_SHORTAGE;
2016 goto out_no_lock;
2017 }
2018 bzero(crash_data_kernel, CORPSEINFO_ALLOCATION_SIZE);
2019 crash_data_ptr = (mach_vm_offset_t) crash_data_kernel;
2020
2021 /* Do not get a corpse ref for corpse fork */
2022 crash_data = task_crashinfo_alloc_init((mach_vm_address_t)crash_data_ptr, size,
2023 is_corpse_fork ? 0 : CORPSE_CRASHINFO_HAS_REF,
2024 KCFLAG_USE_MEMCOPY);
2025 if (crash_data) {
2026 task_lock(task);
2027 crash_data_release = task->corpse_info;
2028 crash_data_kernel_release = kcdata_memory_get_begin_addr(crash_data_release);
2029 task->corpse_info = crash_data;
2030
2031 task_unlock(task);
2032 kr = KERN_SUCCESS;
2033 } else {
2034 kfree(crash_data_kernel, CORPSEINFO_ALLOCATION_SIZE);
2035 kr = KERN_FAILURE;
2036 }
2037
2038 if (crash_data_release != NULL) {
2039 task_crashinfo_destroy(crash_data_release);
2040 }
2041 if (crash_data_kernel_release != NULL) {
2042 kfree(crash_data_kernel_release, CORPSEINFO_ALLOCATION_SIZE);
2043 }
2044 } else {
2045 task_unlock(task);
2046 }
2047
2048 out_no_lock:
2049 #if CONFIG_MACF
2050 if (free_label != NULL) {
2051 mac_exc_free_label(free_label);
2052 }
2053 #endif
2054 return kr;
2055 }
2056
2057 /*
2058 * task_deliver_crash_notification:
2059 *
2060 * Makes outcall to registered host port for a corpse.
2061 */
2062 kern_return_t
2063 task_deliver_crash_notification(
2064 task_t task,
2065 thread_t thread,
2066 exception_type_t etype,
2067 mach_exception_subcode_t subcode)
2068 {
2069 kcdata_descriptor_t crash_info = task->corpse_info;
2070 thread_t th_iter = NULL;
2071 kern_return_t kr = KERN_SUCCESS;
2072 wait_interrupt_t wsave;
2073 mach_exception_data_type_t code[EXCEPTION_CODE_MAX];
2074 ipc_port_t task_port, old_notify;
2075
2076 if (crash_info == NULL) {
2077 return KERN_FAILURE;
2078 }
2079
2080 task_lock(task);
2081 if (task_is_a_corpse_fork(task)) {
2082 /* Populate code with EXC_{RESOURCE,GUARD} for corpse fork */
2083 code[0] = etype;
2084 code[1] = subcode;
2085 } else {
2086 /* Populate code with EXC_CRASH for corpses */
2087 code[0] = EXC_CRASH;
2088 code[1] = 0;
2089 /* Update the code[1] if the boot-arg corpse_for_fatal_memkill is set */
2090 if (corpse_for_fatal_memkill) {
2091 code[1] = subcode;
2092 }
2093 }
2094
2095 queue_iterate(&task->threads, th_iter, thread_t, task_threads)
2096 {
2097 if (th_iter->corpse_dup == FALSE) {
2098 ipc_thread_reset(th_iter);
2099 }
2100 }
2101 task_unlock(task);
2102
2103 /* Arm the no-sender notification for taskport */
2104 task_reference(task);
2105 task_port = convert_task_to_port(task);
2106 ip_lock(task_port);
2107 require_ip_active(task_port);
2108 ipc_port_nsrequest(task_port, task_port->ip_mscount, ipc_port_make_sonce_locked(task_port), &old_notify);
2109 /* port unlocked */
2110 assert(IP_NULL == old_notify);
2111
2112 wsave = thread_interrupt_level(THREAD_UNINT);
2113 kr = exception_triage_thread(EXC_CORPSE_NOTIFY, code, EXCEPTION_CODE_MAX, thread);
2114 if (kr != KERN_SUCCESS) {
2115 printf("Failed to send exception EXC_CORPSE_NOTIFY. error code: %d for pid %d\n", kr, task_pid(task));
2116 }
2117
2118 (void)thread_interrupt_level(wsave);
2119
2120 /*
2121 * Drop the send right on task port, will fire the
2122 * no-sender notification if exception deliver failed.
2123 */
2124 ipc_port_release_send(task_port);
2125 return kr;
2126 }
2127
2128 /*
2129 * task_terminate:
2130 *
2131 * Terminate the specified task. See comments on thread_terminate
2132 * (kern/thread.c) about problems with terminating the "current task."
2133 */
2134
2135 kern_return_t
2136 task_terminate(
2137 task_t task)
2138 {
2139 if (task == TASK_NULL) {
2140 return KERN_INVALID_ARGUMENT;
2141 }
2142
2143 if (task->bsd_info) {
2144 return KERN_FAILURE;
2145 }
2146
2147 return task_terminate_internal(task);
2148 }
2149
2150 #if MACH_ASSERT
2151 extern int proc_pid(struct proc *);
2152 extern void proc_name_kdp(task_t t, char *buf, int size);
2153 #endif /* MACH_ASSERT */
2154
2155 #define VM_MAP_PARTIAL_REAP 0x54 /* 0x150 */
2156 static void
2157 __unused task_partial_reap(task_t task, __unused int pid)
2158 {
2159 unsigned int reclaimed_resident = 0;
2160 unsigned int reclaimed_compressed = 0;
2161 uint64_t task_page_count;
2162
2163 task_page_count = (get_task_phys_footprint(task) / PAGE_SIZE_64);
2164
2165 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_MAP_PARTIAL_REAP) | DBG_FUNC_START),
2166 pid, task_page_count, 0, 0, 0);
2167
2168 vm_map_partial_reap(task->map, &reclaimed_resident, &reclaimed_compressed);
2169
2170 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_MAP_PARTIAL_REAP) | DBG_FUNC_END),
2171 pid, reclaimed_resident, reclaimed_compressed, 0, 0);
2172 }
2173
2174 kern_return_t
2175 task_mark_corpse(task_t task)
2176 {
2177 kern_return_t kr = KERN_SUCCESS;
2178 thread_t self_thread;
2179 (void) self_thread;
2180 wait_interrupt_t wsave;
2181 #if CONFIG_MACF
2182 struct label *crash_label = NULL;
2183 #endif
2184
2185 assert(task != kernel_task);
2186 assert(task == current_task());
2187 assert(!task_is_a_corpse(task));
2188
2189 #if CONFIG_MACF
2190 crash_label = mac_exc_create_label_for_proc((struct proc*)task->bsd_info);
2191 #endif
2192
2193 kr = task_collect_crash_info(task,
2194 #if CONFIG_MACF
2195 crash_label,
2196 #endif
2197 FALSE);
2198 if (kr != KERN_SUCCESS) {
2199 goto out;
2200 }
2201
2202 self_thread = current_thread();
2203
2204 wsave = thread_interrupt_level(THREAD_UNINT);
2205 task_lock(task);
2206
2207 task_set_corpse_pending_report(task);
2208 task_set_corpse(task);
2209 task->crashed_thread_id = thread_tid(self_thread);
2210
2211 kr = task_start_halt_locked(task, TRUE);
2212 assert(kr == KERN_SUCCESS);
2213
2214 ipc_task_reset(task);
2215 /* Remove the naked send right for task port, needed to arm no sender notification */
2216 task_set_special_port(task, TASK_KERNEL_PORT, IPC_PORT_NULL);
2217 ipc_task_enable(task);
2218
2219 task_unlock(task);
2220 /* terminate the ipc space */
2221 ipc_space_terminate(task->itk_space);
2222
2223 /* Add it to global corpse task list */
2224 task_add_to_corpse_task_list(task);
2225
2226 task_start_halt(task);
2227 thread_terminate_internal(self_thread);
2228
2229 (void) thread_interrupt_level(wsave);
2230 assert(task->halting == TRUE);
2231
2232 out:
2233 #if CONFIG_MACF
2234 mac_exc_free_label(crash_label);
2235 #endif
2236 return kr;
2237 }
2238
2239 /*
2240 * task_clear_corpse
2241 *
2242 * Clears the corpse pending bit on task.
2243 * Removes inspection bit on the threads.
2244 */
2245 void
2246 task_clear_corpse(task_t task)
2247 {
2248 thread_t th_iter = NULL;
2249
2250 task_lock(task);
2251 queue_iterate(&task->threads, th_iter, thread_t, task_threads)
2252 {
2253 thread_mtx_lock(th_iter);
2254 th_iter->inspection = FALSE;
2255 thread_mtx_unlock(th_iter);
2256 }
2257
2258 thread_terminate_crashed_threads();
2259 /* remove the pending corpse report flag */
2260 task_clear_corpse_pending_report(task);
2261
2262 task_unlock(task);
2263 }
2264
2265 /*
2266 * task_port_notify
2267 *
2268 * Called whenever the Mach port system detects no-senders on
2269 * the task port of a corpse.
2270 * Each notification that comes in should terminate the task (corpse).
2271 */
2272 void
2273 task_port_notify(mach_msg_header_t *msg)
2274 {
2275 mach_no_senders_notification_t *notification = (void *)msg;
2276 ipc_port_t port = notification->not_header.msgh_remote_port;
2277 task_t task;
2278
2279 require_ip_active(port);
2280 assert(IKOT_TASK == ip_kotype(port));
2281 task = (task_t) port->ip_kobject;
2282
2283 assert(task_is_a_corpse(task));
2284
2285 /* Remove the task from global corpse task list */
2286 task_remove_from_corpse_task_list(task);
2287
2288 task_clear_corpse(task);
2289 task_terminate_internal(task);
2290 }
2291
2292 /*
2293 * task_wait_till_threads_terminate_locked
2294 *
2295 * Wait till all the threads in the task are terminated.
2296 * Might release the task lock and re-acquire it.
2297 */
2298 void
2299 task_wait_till_threads_terminate_locked(task_t task)
2300 {
2301 /* wait for all the threads in the task to terminate */
2302 while (task->active_thread_count != 0) {
2303 assert_wait((event_t)&task->active_thread_count, THREAD_UNINT);
2304 task_unlock(task);
2305 thread_block(THREAD_CONTINUE_NULL);
2306
2307 task_lock(task);
2308 }
2309 }
2310
2311 /*
2312 * task_duplicate_map_and_threads
2313 *
2314 * Copy vmmap of source task.
2315 * Copy active threads from source task to destination task.
2316 * Source task would be suspended during the copy.
2317 */
2318 kern_return_t
2319 task_duplicate_map_and_threads(
2320 task_t task,
2321 void *p,
2322 task_t new_task,
2323 thread_t *thread_ret,
2324 uint64_t **udata_buffer,
2325 int *size,
2326 int *num_udata)
2327 {
2328 kern_return_t kr = KERN_SUCCESS;
2329 int active;
2330 thread_t thread, self, thread_return = THREAD_NULL;
2331 thread_t new_thread = THREAD_NULL, first_thread = THREAD_NULL;
2332 thread_t *thread_array;
2333 uint32_t active_thread_count = 0, array_count = 0, i;
2334 vm_map_t oldmap;
2335 uint64_t *buffer = NULL;
2336 int buf_size = 0;
2337 int est_knotes = 0, num_knotes = 0;
2338
2339 self = current_thread();
2340
2341 /*
2342 * Suspend the task to copy thread state, use the internal
2343 * variant so that no user-space process can resume
2344 * the task from under us
2345 */
2346 kr = task_suspend_internal(task);
2347 if (kr != KERN_SUCCESS) {
2348 return kr;
2349 }
2350
2351 if (task->map->disable_vmentry_reuse == TRUE) {
2352 /*
2353 * Quite likely GuardMalloc (or some debugging tool)
2354 * is being used on this task. And it has gone through
2355 * its limit. Making a corpse will likely encounter
2356 * a lot of VM entries that will need COW.
2357 *
2358 * Skip it.
2359 */
2360 #if DEVELOPMENT || DEBUG
2361 memorystatus_abort_vm_map_fork(task);
2362 #endif
2363 task_resume_internal(task);
2364 return KERN_FAILURE;
2365 }
2366
2367 /* Check with VM if vm_map_fork is allowed for this task */
2368 if (memorystatus_allowed_vm_map_fork(task)) {
2369 /* Setup new task's vmmap, switch from parent task's map to it COW map */
2370 oldmap = new_task->map;
2371 new_task->map = vm_map_fork(new_task->ledger,
2372 task->map,
2373 (VM_MAP_FORK_SHARE_IF_INHERIT_NONE |
2374 VM_MAP_FORK_PRESERVE_PURGEABLE |
2375 VM_MAP_FORK_CORPSE_FOOTPRINT));
2376 vm_map_deallocate(oldmap);
2377
2378 /* copy ledgers that impact the memory footprint */
2379 vm_map_copy_footprint_ledgers(task, new_task);
2380
2381 /* Get all the udata pointers from kqueue */
2382 est_knotes = kevent_proc_copy_uptrs(p, NULL, 0);
2383 if (est_knotes > 0) {
2384 buf_size = (est_knotes + 32) * sizeof(uint64_t);
2385 buffer = (uint64_t *) kalloc(buf_size);
2386 num_knotes = kevent_proc_copy_uptrs(p, buffer, buf_size);
2387 if (num_knotes > est_knotes + 32) {
2388 num_knotes = est_knotes + 32;
2389 }
2390 }
2391 }
2392
2393 active_thread_count = task->active_thread_count;
2394 if (active_thread_count == 0) {
2395 if (buffer != NULL) {
2396 kfree(buffer, buf_size);
2397 }
2398 task_resume_internal(task);
2399 return KERN_FAILURE;
2400 }
2401
2402 thread_array = (thread_t *) kalloc(sizeof(thread_t) * active_thread_count);
2403
2404 /* Iterate all the threads and drop the task lock before calling thread_create_with_continuation */
2405 task_lock(task);
2406 queue_iterate(&task->threads, thread, thread_t, task_threads) {
2407 /* Skip inactive threads */
2408 active = thread->active;
2409 if (!active) {
2410 continue;
2411 }
2412
2413 if (array_count >= active_thread_count) {
2414 break;
2415 }
2416
2417 thread_array[array_count++] = thread;
2418 thread_reference(thread);
2419 }
2420 task_unlock(task);
2421
2422 for (i = 0; i < array_count; i++) {
2423 kr = thread_create_with_continuation(new_task, &new_thread, (thread_continue_t)thread_corpse_continue);
2424 if (kr != KERN_SUCCESS) {
2425 break;
2426 }
2427
2428 /* Equivalent of current thread in corpse */
2429 if (thread_array[i] == self) {
2430 thread_return = new_thread;
2431 new_task->crashed_thread_id = thread_tid(new_thread);
2432 } else if (first_thread == NULL) {
2433 first_thread = new_thread;
2434 } else {
2435 /* drop the extra ref returned by thread_create_with_continuation */
2436 thread_deallocate(new_thread);
2437 }
2438
2439 kr = thread_dup2(thread_array[i], new_thread);
2440 if (kr != KERN_SUCCESS) {
2441 thread_mtx_lock(new_thread);
2442 new_thread->corpse_dup = TRUE;
2443 thread_mtx_unlock(new_thread);
2444 continue;
2445 }
2446
2447 /* Copy thread name */
2448 bsd_copythreadname(new_thread->uthread, thread_array[i]->uthread);
2449 new_thread->thread_tag = thread_array[i]->thread_tag;
2450 thread_copy_resource_info(new_thread, thread_array[i]);
2451 }
2452
2453 /* return the first thread if we couldn't find the equivalent of current */
2454 if (thread_return == THREAD_NULL) {
2455 thread_return = first_thread;
2456 } else if (first_thread != THREAD_NULL) {
2457 /* drop the extra ref returned by thread_create_with_continuation */
2458 thread_deallocate(first_thread);
2459 }
2460
2461 task_resume_internal(task);
2462
2463 for (i = 0; i < array_count; i++) {
2464 thread_deallocate(thread_array[i]);
2465 }
2466 kfree(thread_array, sizeof(thread_t) * active_thread_count);
2467
2468 if (kr == KERN_SUCCESS) {
2469 *thread_ret = thread_return;
2470 *udata_buffer = buffer;
2471 *size = buf_size;
2472 *num_udata = num_knotes;
2473 } else {
2474 if (thread_return != THREAD_NULL) {
2475 thread_deallocate(thread_return);
2476 }
2477 if (buffer != NULL) {
2478 kfree(buffer, buf_size);
2479 }
2480 }
2481
2482 return kr;
2483 }
2484
2485 #if CONFIG_SECLUDED_MEMORY
2486 extern void task_set_can_use_secluded_mem_locked(
2487 task_t task,
2488 boolean_t can_use_secluded_mem);
2489 #endif /* CONFIG_SECLUDED_MEMORY */
2490
2491 kern_return_t
2492 task_terminate_internal(
2493 task_t task)
2494 {
2495 thread_t thread, self;
2496 task_t self_task;
2497 boolean_t interrupt_save;
2498 int pid = 0;
2499
2500 assert(task != kernel_task);
2501
2502 self = current_thread();
2503 self_task = self->task;
2504
2505 /*
2506 * Get the task locked and make sure that we are not racing
2507 * with someone else trying to terminate us.
2508 */
2509 if (task == self_task) {
2510 task_lock(task);
2511 } else if (task < self_task) {
2512 task_lock(task);
2513 task_lock(self_task);
2514 } else {
2515 task_lock(self_task);
2516 task_lock(task);
2517 }
2518
2519 #if CONFIG_SECLUDED_MEMORY
2520 if (task->task_can_use_secluded_mem) {
2521 task_set_can_use_secluded_mem_locked(task, FALSE);
2522 }
2523 task->task_could_use_secluded_mem = FALSE;
2524 task->task_could_also_use_secluded_mem = FALSE;
2525
2526 if (task->task_suppressed_secluded) {
2527 stop_secluded_suppression(task);
2528 }
2529 #endif /* CONFIG_SECLUDED_MEMORY */
2530
2531 if (!task->active) {
2532 /*
2533 * Task is already being terminated.
2534 * Just return an error. If we are dying, this will
2535 * just get us to our AST special handler and that
2536 * will get us to finalize the termination of ourselves.
2537 */
2538 task_unlock(task);
2539 if (self_task != task) {
2540 task_unlock(self_task);
2541 }
2542
2543 return KERN_FAILURE;
2544 }
2545
2546 if (task_corpse_pending_report(task)) {
2547 /*
2548 * Task is marked for reporting as corpse.
2549 * Just return an error. This will
2550 * just get us to our AST special handler and that
2551 * will get us to finish the path to death
2552 */
2553 task_unlock(task);
2554 if (self_task != task) {
2555 task_unlock(self_task);
2556 }
2557
2558 return KERN_FAILURE;
2559 }
2560
2561 if (self_task != task) {
2562 task_unlock(self_task);
2563 }
2564
2565 /*
2566 * Make sure the current thread does not get aborted out of
2567 * the waits inside these operations.
2568 */
2569 interrupt_save = thread_interrupt_level(THREAD_UNINT);
2570
2571 /*
2572 * Indicate that we want all the threads to stop executing
2573 * at user space by holding the task (we would have held
2574 * each thread independently in thread_terminate_internal -
2575 * but this way we may be more likely to already find it
2576 * held there). Mark the task inactive, and prevent
2577 * further task operations via the task port.
2578 */
2579 task_hold_locked(task);
2580 task->active = FALSE;
2581 ipc_task_disable(task);
2582
2583 #if CONFIG_TELEMETRY
2584 /*
2585 * Notify telemetry that this task is going away.
2586 */
2587 telemetry_task_ctl_locked(task, TF_TELEMETRY, 0);
2588 #endif
2589
2590 /*
2591 * Terminate each thread in the task.
2592 */
2593 queue_iterate(&task->threads, thread, thread_t, task_threads) {
2594 thread_terminate_internal(thread);
2595 }
2596
2597 #ifdef MACH_BSD
2598 if (task->bsd_info != NULL && !task_is_exec_copy(task)) {
2599 pid = proc_pid(task->bsd_info);
2600 }
2601 #endif /* MACH_BSD */
2602
2603 task_unlock(task);
2604
2605 proc_set_task_policy(task, TASK_POLICY_ATTRIBUTE,
2606 TASK_POLICY_TERMINATED, TASK_POLICY_ENABLE);
2607
2608 /* Early object reap phase */
2609
2610 // PR-17045188: Revisit implementation
2611 // task_partial_reap(task, pid);
2612
2613 #if CONFIG_EMBEDDED
2614 /*
2615 * remove all task watchers
2616 */
2617 task_removewatchers(task);
2618
2619 #endif /* CONFIG_EMBEDDED */
2620
2621 /*
2622 * Destroy all synchronizers owned by the task.
2623 */
2624 task_synchronizer_destroy_all(task);
2625
2626 /*
2627 * Clear the watchport boost on the task.
2628 */
2629 task_remove_turnstile_watchports(task);
2630
2631 /*
2632 * Destroy the IPC space, leaving just a reference for it.
2633 */
2634 ipc_space_terminate(task->itk_space);
2635
2636 #if 00
2637 /* if some ledgers go negative on tear-down again... */
2638 ledger_disable_panic_on_negative(task->map->pmap->ledger,
2639 task_ledgers.phys_footprint);
2640 ledger_disable_panic_on_negative(task->map->pmap->ledger,
2641 task_ledgers.internal);
2642 ledger_disable_panic_on_negative(task->map->pmap->ledger,
2643 task_ledgers.internal_compressed);
2644 ledger_disable_panic_on_negative(task->map->pmap->ledger,
2645 task_ledgers.iokit_mapped);
2646 ledger_disable_panic_on_negative(task->map->pmap->ledger,
2647 task_ledgers.alternate_accounting);
2648 ledger_disable_panic_on_negative(task->map->pmap->ledger,
2649 task_ledgers.alternate_accounting_compressed);
2650 #endif
2651
2652 /*
2653 * If the current thread is a member of the task
2654 * being terminated, then the last reference to
2655 * the task will not be dropped until the thread
2656 * is finally reaped. To avoid incurring the
2657 * expense of removing the address space regions
2658 * at reap time, we do it explictly here.
2659 */
2660
2661 vm_map_lock(task->map);
2662 vm_map_disable_hole_optimization(task->map);
2663 vm_map_unlock(task->map);
2664
2665 #if MACH_ASSERT
2666 /*
2667 * Identify the pmap's process, in case the pmap ledgers drift
2668 * and we have to report it.
2669 */
2670 char procname[17];
2671 if (task->bsd_info && !task_is_exec_copy(task)) {
2672 pid = proc_pid(task->bsd_info);
2673 proc_name_kdp(task, procname, sizeof(procname));
2674 } else {
2675 pid = 0;
2676 strlcpy(procname, "<unknown>", sizeof(procname));
2677 }
2678 pmap_set_process(task->map->pmap, pid, procname);
2679 #endif /* MACH_ASSERT */
2680
2681 vm_map_remove(task->map,
2682 task->map->min_offset,
2683 task->map->max_offset,
2684 /*
2685 * Final cleanup:
2686 * + no unnesting
2687 * + remove immutable mappings
2688 * + allow gaps in range
2689 */
2690 (VM_MAP_REMOVE_NO_UNNESTING |
2691 VM_MAP_REMOVE_IMMUTABLE |
2692 VM_MAP_REMOVE_GAPS_OK));
2693
2694 /* release our shared region */
2695 vm_shared_region_set(task, NULL);
2696
2697
2698 lck_mtx_lock(&tasks_threads_lock);
2699 queue_remove(&tasks, task, task_t, tasks);
2700 queue_enter(&terminated_tasks, task, task_t, tasks);
2701 tasks_count--;
2702 terminated_tasks_count++;
2703 lck_mtx_unlock(&tasks_threads_lock);
2704
2705 /*
2706 * We no longer need to guard against being aborted, so restore
2707 * the previous interruptible state.
2708 */
2709 thread_interrupt_level(interrupt_save);
2710
2711 #if KPC
2712 /* force the task to release all ctrs */
2713 if (task->t_kpc & TASK_KPC_FORCED_ALL_CTRS) {
2714 kpc_force_all_ctrs(task, 0);
2715 }
2716 #endif /* KPC */
2717
2718 #if CONFIG_COALITIONS
2719 /*
2720 * Leave our coalitions. (drop activation but not reference)
2721 */
2722 coalitions_remove_task(task);
2723 #endif
2724
2725 /*
2726 * Get rid of the task active reference on itself.
2727 */
2728 task_deallocate(task);
2729
2730 return KERN_SUCCESS;
2731 }
2732
2733 void
2734 tasks_system_suspend(boolean_t suspend)
2735 {
2736 task_t task;
2737
2738 lck_mtx_lock(&tasks_threads_lock);
2739 assert(tasks_suspend_state != suspend);
2740 tasks_suspend_state = suspend;
2741 queue_iterate(&tasks, task, task_t, tasks) {
2742 if (task == kernel_task) {
2743 continue;
2744 }
2745 suspend ? task_suspend_internal(task) : task_resume_internal(task);
2746 }
2747 lck_mtx_unlock(&tasks_threads_lock);
2748 }
2749
2750 /*
2751 * task_start_halt:
2752 *
2753 * Shut the current task down (except for the current thread) in
2754 * preparation for dramatic changes to the task (probably exec).
2755 * We hold the task and mark all other threads in the task for
2756 * termination.
2757 */
2758 kern_return_t
2759 task_start_halt(task_t task)
2760 {
2761 kern_return_t kr = KERN_SUCCESS;
2762 task_lock(task);
2763 kr = task_start_halt_locked(task, FALSE);
2764 task_unlock(task);
2765 return kr;
2766 }
2767
2768 static kern_return_t
2769 task_start_halt_locked(task_t task, boolean_t should_mark_corpse)
2770 {
2771 thread_t thread, self;
2772 uint64_t dispatchqueue_offset;
2773
2774 assert(task != kernel_task);
2775
2776 self = current_thread();
2777
2778 if (task != self->task && !task_is_a_corpse_fork(task)) {
2779 return KERN_INVALID_ARGUMENT;
2780 }
2781
2782 if (task->halting || !task->active || !self->active) {
2783 /*
2784 * Task or current thread is already being terminated.
2785 * Hurry up and return out of the current kernel context
2786 * so that we run our AST special handler to terminate
2787 * ourselves.
2788 */
2789 return KERN_FAILURE;
2790 }
2791
2792 task->halting = TRUE;
2793
2794 /*
2795 * Mark all the threads to keep them from starting any more
2796 * user-level execution. The thread_terminate_internal code
2797 * would do this on a thread by thread basis anyway, but this
2798 * gives us a better chance of not having to wait there.
2799 */
2800 task_hold_locked(task);
2801 dispatchqueue_offset = get_dispatchqueue_offset_from_proc(task->bsd_info);
2802
2803 /*
2804 * Terminate all the other threads in the task.
2805 */
2806 queue_iterate(&task->threads, thread, thread_t, task_threads)
2807 {
2808 if (should_mark_corpse) {
2809 thread_mtx_lock(thread);
2810 thread->inspection = TRUE;
2811 thread_mtx_unlock(thread);
2812 }
2813 if (thread != self) {
2814 thread_terminate_internal(thread);
2815 }
2816 }
2817 task->dispatchqueue_offset = dispatchqueue_offset;
2818
2819 task_release_locked(task);
2820
2821 return KERN_SUCCESS;
2822 }
2823
2824
2825 /*
2826 * task_complete_halt:
2827 *
2828 * Complete task halt by waiting for threads to terminate, then clean
2829 * up task resources (VM, port namespace, etc...) and then let the
2830 * current thread go in the (practically empty) task context.
2831 *
2832 * Note: task->halting flag is not cleared in order to avoid creation
2833 * of new thread in old exec'ed task.
2834 */
2835 void
2836 task_complete_halt(task_t task)
2837 {
2838 task_lock(task);
2839 assert(task->halting);
2840 assert(task == current_task());
2841
2842 /*
2843 * Wait for the other threads to get shut down.
2844 * When the last other thread is reaped, we'll be
2845 * woken up.
2846 */
2847 if (task->thread_count > 1) {
2848 assert_wait((event_t)&task->halting, THREAD_UNINT);
2849 task_unlock(task);
2850 thread_block(THREAD_CONTINUE_NULL);
2851 } else {
2852 task_unlock(task);
2853 }
2854
2855 /*
2856 * Give the machine dependent code a chance
2857 * to perform cleanup of task-level resources
2858 * associated with the current thread before
2859 * ripping apart the task.
2860 */
2861 machine_task_terminate(task);
2862
2863 /*
2864 * Destroy all synchronizers owned by the task.
2865 */
2866 task_synchronizer_destroy_all(task);
2867
2868 /*
2869 * Destroy the contents of the IPC space, leaving just
2870 * a reference for it.
2871 */
2872 ipc_space_clean(task->itk_space);
2873
2874 /*
2875 * Clean out the address space, as we are going to be
2876 * getting a new one.
2877 */
2878 vm_map_remove(task->map, task->map->min_offset,
2879 task->map->max_offset,
2880 /*
2881 * Final cleanup:
2882 * + no unnesting
2883 * + remove immutable mappings
2884 * + allow gaps in the range
2885 */
2886 (VM_MAP_REMOVE_NO_UNNESTING |
2887 VM_MAP_REMOVE_IMMUTABLE |
2888 VM_MAP_REMOVE_GAPS_OK));
2889
2890 /*
2891 * Kick out any IOKitUser handles to the task. At best they're stale,
2892 * at worst someone is racing a SUID exec.
2893 */
2894 iokit_task_terminate(task);
2895 }
2896
2897 /*
2898 * task_hold_locked:
2899 *
2900 * Suspend execution of the specified task.
2901 * This is a recursive-style suspension of the task, a count of
2902 * suspends is maintained.
2903 *
2904 * CONDITIONS: the task is locked and active.
2905 */
2906 void
2907 task_hold_locked(
2908 task_t task)
2909 {
2910 thread_t thread;
2911
2912 assert(task->active);
2913
2914 if (task->suspend_count++ > 0) {
2915 return;
2916 }
2917
2918 if (task->bsd_info) {
2919 workq_proc_suspended(task->bsd_info);
2920 }
2921
2922 /*
2923 * Iterate through all the threads and hold them.
2924 */
2925 queue_iterate(&task->threads, thread, thread_t, task_threads) {
2926 thread_mtx_lock(thread);
2927 thread_hold(thread);
2928 thread_mtx_unlock(thread);
2929 }
2930 }
2931
2932 /*
2933 * task_hold:
2934 *
2935 * Same as the internal routine above, except that is must lock
2936 * and verify that the task is active. This differs from task_suspend
2937 * in that it places a kernel hold on the task rather than just a
2938 * user-level hold. This keeps users from over resuming and setting
2939 * it running out from under the kernel.
2940 *
2941 * CONDITIONS: the caller holds a reference on the task
2942 */
2943 kern_return_t
2944 task_hold(
2945 task_t task)
2946 {
2947 if (task == TASK_NULL) {
2948 return KERN_INVALID_ARGUMENT;
2949 }
2950
2951 task_lock(task);
2952
2953 if (!task->active) {
2954 task_unlock(task);
2955
2956 return KERN_FAILURE;
2957 }
2958
2959 task_hold_locked(task);
2960 task_unlock(task);
2961
2962 return KERN_SUCCESS;
2963 }
2964
2965 kern_return_t
2966 task_wait(
2967 task_t task,
2968 boolean_t until_not_runnable)
2969 {
2970 if (task == TASK_NULL) {
2971 return KERN_INVALID_ARGUMENT;
2972 }
2973
2974 task_lock(task);
2975
2976 if (!task->active) {
2977 task_unlock(task);
2978
2979 return KERN_FAILURE;
2980 }
2981
2982 task_wait_locked(task, until_not_runnable);
2983 task_unlock(task);
2984
2985 return KERN_SUCCESS;
2986 }
2987
2988 /*
2989 * task_wait_locked:
2990 *
2991 * Wait for all threads in task to stop.
2992 *
2993 * Conditions:
2994 * Called with task locked, active, and held.
2995 */
2996 void
2997 task_wait_locked(
2998 task_t task,
2999 boolean_t until_not_runnable)
3000 {
3001 thread_t thread, self;
3002
3003 assert(task->active);
3004 assert(task->suspend_count > 0);
3005
3006 self = current_thread();
3007
3008 /*
3009 * Iterate through all the threads and wait for them to
3010 * stop. Do not wait for the current thread if it is within
3011 * the task.
3012 */
3013 queue_iterate(&task->threads, thread, thread_t, task_threads) {
3014 if (thread != self) {
3015 thread_wait(thread, until_not_runnable);
3016 }
3017 }
3018 }
3019
3020 boolean_t
3021 task_is_app_suspended(task_t task)
3022 {
3023 return task->pidsuspended;
3024 }
3025
3026 /*
3027 * task_release_locked:
3028 *
3029 * Release a kernel hold on a task.
3030 *
3031 * CONDITIONS: the task is locked and active
3032 */
3033 void
3034 task_release_locked(
3035 task_t task)
3036 {
3037 thread_t thread;
3038
3039 assert(task->active);
3040 assert(task->suspend_count > 0);
3041
3042 if (--task->suspend_count > 0) {
3043 return;
3044 }
3045
3046 if (task->bsd_info) {
3047 workq_proc_resumed(task->bsd_info);
3048 }
3049
3050 queue_iterate(&task->threads, thread, thread_t, task_threads) {
3051 thread_mtx_lock(thread);
3052 thread_release(thread);
3053 thread_mtx_unlock(thread);
3054 }
3055 }
3056
3057 /*
3058 * task_release:
3059 *
3060 * Same as the internal routine above, except that it must lock
3061 * and verify that the task is active.
3062 *
3063 * CONDITIONS: The caller holds a reference to the task
3064 */
3065 kern_return_t
3066 task_release(
3067 task_t task)
3068 {
3069 if (task == TASK_NULL) {
3070 return KERN_INVALID_ARGUMENT;
3071 }
3072
3073 task_lock(task);
3074
3075 if (!task->active) {
3076 task_unlock(task);
3077
3078 return KERN_FAILURE;
3079 }
3080
3081 task_release_locked(task);
3082 task_unlock(task);
3083
3084 return KERN_SUCCESS;
3085 }
3086
3087 kern_return_t
3088 task_threads(
3089 task_t task,
3090 thread_act_array_t *threads_out,
3091 mach_msg_type_number_t *count)
3092 {
3093 mach_msg_type_number_t actual;
3094 thread_t *thread_list;
3095 thread_t thread;
3096 vm_size_t size, size_needed;
3097 void *addr;
3098 unsigned int i, j;
3099
3100 if (task == TASK_NULL) {
3101 return KERN_INVALID_ARGUMENT;
3102 }
3103
3104 size = 0; addr = NULL;
3105
3106 for (;;) {
3107 task_lock(task);
3108 if (!task->active) {
3109 task_unlock(task);
3110
3111 if (size != 0) {
3112 kfree(addr, size);
3113 }
3114
3115 return KERN_FAILURE;
3116 }
3117
3118 actual = task->thread_count;
3119
3120 /* do we have the memory we need? */
3121 size_needed = actual * sizeof(mach_port_t);
3122 if (size_needed <= size) {
3123 break;
3124 }
3125
3126 /* unlock the task and allocate more memory */
3127 task_unlock(task);
3128
3129 if (size != 0) {
3130 kfree(addr, size);
3131 }
3132
3133 assert(size_needed > 0);
3134 size = size_needed;
3135
3136 addr = kalloc(size);
3137 if (addr == 0) {
3138 return KERN_RESOURCE_SHORTAGE;
3139 }
3140 }
3141
3142 /* OK, have memory and the task is locked & active */
3143 thread_list = (thread_t *)addr;
3144
3145 i = j = 0;
3146
3147 for (thread = (thread_t)queue_first(&task->threads); i < actual;
3148 ++i, thread = (thread_t)queue_next(&thread->task_threads)) {
3149 thread_reference_internal(thread);
3150 thread_list[j++] = thread;
3151 }
3152
3153 assert(queue_end(&task->threads, (queue_entry_t)thread));
3154
3155 actual = j;
3156 size_needed = actual * sizeof(mach_port_t);
3157
3158 /* can unlock task now that we've got the thread refs */
3159 task_unlock(task);
3160
3161 if (actual == 0) {
3162 /* no threads, so return null pointer and deallocate memory */
3163
3164 *threads_out = NULL;
3165 *count = 0;
3166
3167 if (size != 0) {
3168 kfree(addr, size);
3169 }
3170 } else {
3171 /* if we allocated too much, must copy */
3172
3173 if (size_needed < size) {
3174 void *newaddr;
3175
3176 newaddr = kalloc(size_needed);
3177 if (newaddr == 0) {
3178 for (i = 0; i < actual; ++i) {
3179 thread_deallocate(thread_list[i]);
3180 }
3181 kfree(addr, size);
3182 return KERN_RESOURCE_SHORTAGE;
3183 }
3184
3185 bcopy(addr, newaddr, size_needed);
3186 kfree(addr, size);
3187 thread_list = (thread_t *)newaddr;
3188 }
3189
3190 *threads_out = thread_list;
3191 *count = actual;
3192
3193 /* do the conversion that Mig should handle */
3194
3195 for (i = 0; i < actual; ++i) {
3196 ((ipc_port_t *) thread_list)[i] = convert_thread_to_port(thread_list[i]);
3197 }
3198 }
3199
3200 return KERN_SUCCESS;
3201 }
3202
3203 #define TASK_HOLD_NORMAL 0
3204 #define TASK_HOLD_PIDSUSPEND 1
3205 #define TASK_HOLD_LEGACY 2
3206 #define TASK_HOLD_LEGACY_ALL 3
3207
3208 static kern_return_t
3209 place_task_hold(
3210 task_t task,
3211 int mode)
3212 {
3213 if (!task->active && !task_is_a_corpse(task)) {
3214 return KERN_FAILURE;
3215 }
3216
3217 /* Return success for corpse task */
3218 if (task_is_a_corpse(task)) {
3219 return KERN_SUCCESS;
3220 }
3221
3222 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
3223 MACHDBG_CODE(DBG_MACH_IPC, MACH_TASK_SUSPEND) | DBG_FUNC_NONE,
3224 task_pid(task), ((thread_t)queue_first(&task->threads))->thread_id,
3225 task->user_stop_count, task->user_stop_count + 1, 0);
3226
3227 #if MACH_ASSERT
3228 current_task()->suspends_outstanding++;
3229 #endif
3230
3231 if (mode == TASK_HOLD_LEGACY) {
3232 task->legacy_stop_count++;
3233 }
3234
3235 if (task->user_stop_count++ > 0) {
3236 /*
3237 * If the stop count was positive, the task is
3238 * already stopped and we can exit.
3239 */
3240 return KERN_SUCCESS;
3241 }
3242
3243 /*
3244 * Put a kernel-level hold on the threads in the task (all
3245 * user-level task suspensions added together represent a
3246 * single kernel-level hold). We then wait for the threads
3247 * to stop executing user code.
3248 */
3249 task_hold_locked(task);
3250 task_wait_locked(task, FALSE);
3251
3252 return KERN_SUCCESS;
3253 }
3254
3255 static kern_return_t
3256 release_task_hold(
3257 task_t task,
3258 int mode)
3259 {
3260 boolean_t release = FALSE;
3261
3262 if (!task->active && !task_is_a_corpse(task)) {
3263 return KERN_FAILURE;
3264 }
3265
3266 /* Return success for corpse task */
3267 if (task_is_a_corpse(task)) {
3268 return KERN_SUCCESS;
3269 }
3270
3271 if (mode == TASK_HOLD_PIDSUSPEND) {
3272 if (task->pidsuspended == FALSE) {
3273 return KERN_FAILURE;
3274 }
3275 task->pidsuspended = FALSE;
3276 }
3277
3278 if (task->user_stop_count > (task->pidsuspended ? 1 : 0)) {
3279 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
3280 MACHDBG_CODE(DBG_MACH_IPC, MACH_TASK_RESUME) | DBG_FUNC_NONE,
3281 task_pid(task), ((thread_t)queue_first(&task->threads))->thread_id,
3282 task->user_stop_count, mode, task->legacy_stop_count);
3283
3284 #if MACH_ASSERT
3285 /*
3286 * This is obviously not robust; if we suspend one task and then resume a different one,
3287 * we'll fly under the radar. This is only meant to catch the common case of a crashed
3288 * or buggy suspender.
3289 */
3290 current_task()->suspends_outstanding--;
3291 #endif
3292
3293 if (mode == TASK_HOLD_LEGACY_ALL) {
3294 if (task->legacy_stop_count >= task->user_stop_count) {
3295 task->user_stop_count = 0;
3296 release = TRUE;
3297 } else {
3298 task->user_stop_count -= task->legacy_stop_count;
3299 }
3300 task->legacy_stop_count = 0;
3301 } else {
3302 if (mode == TASK_HOLD_LEGACY && task->legacy_stop_count > 0) {
3303 task->legacy_stop_count--;
3304 }
3305 if (--task->user_stop_count == 0) {
3306 release = TRUE;
3307 }
3308 }
3309 } else {
3310 return KERN_FAILURE;
3311 }
3312
3313 /*
3314 * Release the task if necessary.
3315 */
3316 if (release) {
3317 task_release_locked(task);
3318 }
3319
3320 return KERN_SUCCESS;
3321 }
3322
3323 boolean_t
3324 get_task_suspended(task_t task)
3325 {
3326 return 0 != task->user_stop_count;
3327 }
3328
3329 /*
3330 * task_suspend:
3331 *
3332 * Implement an (old-fashioned) user-level suspension on a task.
3333 *
3334 * Because the user isn't expecting to have to manage a suspension
3335 * token, we'll track it for him in the kernel in the form of a naked
3336 * send right to the task's resume port. All such send rights
3337 * account for a single suspension against the task (unlike task_suspend2()
3338 * where each caller gets a unique suspension count represented by a
3339 * unique send-once right).
3340 *
3341 * Conditions:
3342 * The caller holds a reference to the task
3343 */
3344 kern_return_t
3345 task_suspend(
3346 task_t task)
3347 {
3348 kern_return_t kr;
3349 mach_port_t port;
3350 mach_port_name_t name;
3351
3352 if (task == TASK_NULL || task == kernel_task) {
3353 return KERN_INVALID_ARGUMENT;
3354 }
3355
3356 task_lock(task);
3357
3358 /*
3359 * place a legacy hold on the task.
3360 */
3361 kr = place_task_hold(task, TASK_HOLD_LEGACY);
3362 if (kr != KERN_SUCCESS) {
3363 task_unlock(task);
3364 return kr;
3365 }
3366
3367 /*
3368 * Claim a send right on the task resume port, and request a no-senders
3369 * notification on that port (if none outstanding).
3370 */
3371 (void)ipc_kobject_make_send_lazy_alloc_port(&task->itk_resume,
3372 (ipc_kobject_t)task, IKOT_TASK_RESUME);
3373 port = task->itk_resume;
3374
3375 task_unlock(task);
3376
3377 /*
3378 * Copyout the send right into the calling task's IPC space. It won't know it is there,
3379 * but we'll look it up when calling a traditional resume. Any IPC operations that
3380 * deallocate the send right will auto-release the suspension.
3381 */
3382 if ((kr = ipc_kmsg_copyout_object(current_task()->itk_space, ip_to_object(port),
3383 MACH_MSG_TYPE_MOVE_SEND, NULL, NULL, &name)) != KERN_SUCCESS) {
3384 printf("warning: %s(%d) failed to copyout suspension token for pid %d with error: %d\n",
3385 proc_name_address(current_task()->bsd_info), proc_pid(current_task()->bsd_info),
3386 task_pid(task), kr);
3387 return kr;
3388 }
3389
3390 return kr;
3391 }
3392
3393 /*
3394 * task_resume:
3395 * Release a user hold on a task.
3396 *
3397 * Conditions:
3398 * The caller holds a reference to the task
3399 */
3400 kern_return_t
3401 task_resume(
3402 task_t task)
3403 {
3404 kern_return_t kr;
3405 mach_port_name_t resume_port_name;
3406 ipc_entry_t resume_port_entry;
3407 ipc_space_t space = current_task()->itk_space;
3408
3409 if (task == TASK_NULL || task == kernel_task) {
3410 return KERN_INVALID_ARGUMENT;
3411 }
3412
3413 /* release a legacy task hold */
3414 task_lock(task);
3415 kr = release_task_hold(task, TASK_HOLD_LEGACY);
3416 task_unlock(task);
3417
3418 is_write_lock(space);
3419 if (is_active(space) && IP_VALID(task->itk_resume) &&
3420 ipc_hash_lookup(space, ip_to_object(task->itk_resume), &resume_port_name, &resume_port_entry) == TRUE) {
3421 /*
3422 * We found a suspension token in the caller's IPC space. Release a send right to indicate that
3423 * we are holding one less legacy hold on the task from this caller. If the release failed,
3424 * go ahead and drop all the rights, as someone either already released our holds or the task
3425 * is gone.
3426 */
3427 if (kr == KERN_SUCCESS) {
3428 ipc_right_dealloc(space, resume_port_name, resume_port_entry);
3429 } else {
3430 ipc_right_destroy(space, resume_port_name, resume_port_entry, FALSE, 0);
3431 }
3432 /* space unlocked */
3433 } else {
3434 is_write_unlock(space);
3435 if (kr == KERN_SUCCESS) {
3436 printf("warning: %s(%d) performed out-of-band resume on pid %d\n",
3437 proc_name_address(current_task()->bsd_info), proc_pid(current_task()->bsd_info),
3438 task_pid(task));
3439 }
3440 }
3441
3442 return kr;
3443 }
3444
3445 /*
3446 * Suspend the target task.
3447 * Making/holding a token/reference/port is the callers responsibility.
3448 */
3449 kern_return_t
3450 task_suspend_internal(task_t task)
3451 {
3452 kern_return_t kr;
3453
3454 if (task == TASK_NULL || task == kernel_task) {
3455 return KERN_INVALID_ARGUMENT;
3456 }
3457
3458 task_lock(task);
3459 kr = place_task_hold(task, TASK_HOLD_NORMAL);
3460 task_unlock(task);
3461 return kr;
3462 }
3463
3464 /*
3465 * Suspend the target task, and return a suspension token. The token
3466 * represents a reference on the suspended task.
3467 */
3468 kern_return_t
3469 task_suspend2(
3470 task_t task,
3471 task_suspension_token_t *suspend_token)
3472 {
3473 kern_return_t kr;
3474
3475 kr = task_suspend_internal(task);
3476 if (kr != KERN_SUCCESS) {
3477 *suspend_token = TASK_NULL;
3478 return kr;
3479 }
3480
3481 /*
3482 * Take a reference on the target task and return that to the caller
3483 * as a "suspension token," which can be converted into an SO right to
3484 * the now-suspended task's resume port.
3485 */
3486 task_reference_internal(task);
3487 *suspend_token = task;
3488
3489 return KERN_SUCCESS;
3490 }
3491
3492 /*
3493 * Resume the task
3494 * (reference/token/port management is caller's responsibility).
3495 */
3496 kern_return_t
3497 task_resume_internal(
3498 task_suspension_token_t task)
3499 {
3500 kern_return_t kr;
3501
3502 if (task == TASK_NULL || task == kernel_task) {
3503 return KERN_INVALID_ARGUMENT;
3504 }
3505
3506 task_lock(task);
3507 kr = release_task_hold(task, TASK_HOLD_NORMAL);
3508 task_unlock(task);
3509 return kr;
3510 }
3511
3512 /*
3513 * Resume the task using a suspension token. Consumes the token's ref.
3514 */
3515 kern_return_t
3516 task_resume2(
3517 task_suspension_token_t task)
3518 {
3519 kern_return_t kr;
3520
3521 kr = task_resume_internal(task);
3522 task_suspension_token_deallocate(task);
3523
3524 return kr;
3525 }
3526
3527 boolean_t
3528 task_suspension_notify(mach_msg_header_t *request_header)
3529 {
3530 ipc_port_t port = request_header->msgh_remote_port;
3531 task_t task = convert_port_to_task_suspension_token(port);
3532 mach_msg_type_number_t not_count;
3533
3534 if (task == TASK_NULL || task == kernel_task) {
3535 return TRUE; /* nothing to do */
3536 }
3537 switch (request_header->msgh_id) {
3538 case MACH_NOTIFY_SEND_ONCE:
3539 /* release the hold held by this specific send-once right */
3540 task_lock(task);
3541 release_task_hold(task, TASK_HOLD_NORMAL);
3542 task_unlock(task);
3543 break;
3544
3545 case MACH_NOTIFY_NO_SENDERS:
3546 not_count = ((mach_no_senders_notification_t *)request_header)->not_count;
3547
3548 task_lock(task);
3549 ip_lock(port);
3550 if (port->ip_mscount == not_count) {
3551 /* release all the [remaining] outstanding legacy holds */
3552 assert(port->ip_nsrequest == IP_NULL);
3553 ip_unlock(port);
3554 release_task_hold(task, TASK_HOLD_LEGACY_ALL);
3555 task_unlock(task);
3556 } else if (port->ip_nsrequest == IP_NULL) {
3557 ipc_port_t old_notify;
3558
3559 task_unlock(task);
3560 /* new send rights, re-arm notification at current make-send count */
3561 ipc_port_nsrequest(port, port->ip_mscount, ipc_port_make_sonce_locked(port), &old_notify);
3562 assert(old_notify == IP_NULL);
3563 /* port unlocked */
3564 } else {
3565 ip_unlock(port);
3566 task_unlock(task);
3567 }
3568 break;
3569
3570 default:
3571 break;
3572 }
3573
3574 task_suspension_token_deallocate(task); /* drop token reference */
3575 return TRUE;
3576 }
3577
3578 static kern_return_t
3579 task_pidsuspend_locked(task_t task)
3580 {
3581 kern_return_t kr;
3582
3583 if (task->pidsuspended) {
3584 kr = KERN_FAILURE;
3585 goto out;
3586 }
3587
3588 task->pidsuspended = TRUE;
3589
3590 kr = place_task_hold(task, TASK_HOLD_PIDSUSPEND);
3591 if (kr != KERN_SUCCESS) {
3592 task->pidsuspended = FALSE;
3593 }
3594 out:
3595 return kr;
3596 }
3597
3598
3599 /*
3600 * task_pidsuspend:
3601 *
3602 * Suspends a task by placing a hold on its threads.
3603 *
3604 * Conditions:
3605 * The caller holds a reference to the task
3606 */
3607 kern_return_t
3608 task_pidsuspend(
3609 task_t task)
3610 {
3611 kern_return_t kr;
3612
3613 if (task == TASK_NULL || task == kernel_task) {
3614 return KERN_INVALID_ARGUMENT;
3615 }
3616
3617 task_lock(task);
3618
3619 kr = task_pidsuspend_locked(task);
3620
3621 task_unlock(task);
3622
3623 if ((KERN_SUCCESS == kr) && task->message_app_suspended) {
3624 iokit_task_app_suspended_changed(task);
3625 }
3626
3627 return kr;
3628 }
3629
3630 /*
3631 * task_pidresume:
3632 * Resumes a previously suspended task.
3633 *
3634 * Conditions:
3635 * The caller holds a reference to the task
3636 */
3637 kern_return_t
3638 task_pidresume(
3639 task_t task)
3640 {
3641 kern_return_t kr;
3642
3643 if (task == TASK_NULL || task == kernel_task) {
3644 return KERN_INVALID_ARGUMENT;
3645 }
3646
3647 task_lock(task);
3648
3649 #if CONFIG_FREEZE
3650
3651 while (task->changing_freeze_state) {
3652 assert_wait((event_t)&task->changing_freeze_state, THREAD_UNINT);
3653 task_unlock(task);
3654 thread_block(THREAD_CONTINUE_NULL);
3655
3656 task_lock(task);
3657 }
3658 task->changing_freeze_state = TRUE;
3659 #endif
3660
3661 kr = release_task_hold(task, TASK_HOLD_PIDSUSPEND);
3662
3663 task_unlock(task);
3664
3665 if ((KERN_SUCCESS == kr) && task->message_app_suspended) {
3666 iokit_task_app_suspended_changed(task);
3667 }
3668
3669 #if CONFIG_FREEZE
3670
3671 task_lock(task);
3672
3673 if (kr == KERN_SUCCESS) {
3674 task->frozen = FALSE;
3675 }
3676 task->changing_freeze_state = FALSE;
3677 thread_wakeup(&task->changing_freeze_state);
3678
3679 task_unlock(task);
3680 #endif
3681
3682 return kr;
3683 }
3684
3685 os_refgrp_decl(static, task_watchports_refgrp, "task_watchports", NULL);
3686
3687 /*
3688 * task_add_turnstile_watchports:
3689 * Setup watchports to boost the main thread of the task.
3690 *
3691 * Arguments:
3692 * task: task being spawned
3693 * thread: main thread of task
3694 * portwatch_ports: array of watchports
3695 * portwatch_count: number of watchports
3696 *
3697 * Conditions:
3698 * Nothing locked.
3699 */
3700 void
3701 task_add_turnstile_watchports(
3702 task_t task,
3703 thread_t thread,
3704 ipc_port_t *portwatch_ports,
3705 uint32_t portwatch_count)
3706 {
3707 struct task_watchports *watchports = NULL;
3708 struct task_watchport_elem *previous_elem_array[TASK_MAX_WATCHPORT_COUNT] = {};
3709 os_ref_count_t refs;
3710
3711 /* Check if the task has terminated */
3712 if (!task->active) {
3713 return;
3714 }
3715
3716 assert(portwatch_count <= TASK_MAX_WATCHPORT_COUNT);
3717
3718 watchports = task_watchports_alloc_init(task, thread, portwatch_count);
3719
3720 /* Lock the ipc space */
3721 is_write_lock(task->itk_space);
3722
3723 /* Setup watchports to boost the main thread */
3724 refs = task_add_turnstile_watchports_locked(task,
3725 watchports, previous_elem_array, portwatch_ports,
3726 portwatch_count);
3727
3728 /* Drop the space lock */
3729 is_write_unlock(task->itk_space);
3730
3731 if (refs == 0) {
3732 task_watchports_deallocate(watchports);
3733 }
3734
3735 /* Drop the ref on previous_elem_array */
3736 for (uint32_t i = 0; i < portwatch_count && previous_elem_array[i] != NULL; i++) {
3737 task_watchport_elem_deallocate(previous_elem_array[i]);
3738 }
3739 }
3740
3741 /*
3742 * task_remove_turnstile_watchports:
3743 * Clear all turnstile boost on the task from watchports.
3744 *
3745 * Arguments:
3746 * task: task being terminated
3747 *
3748 * Conditions:
3749 * Nothing locked.
3750 */
3751 void
3752 task_remove_turnstile_watchports(
3753 task_t task)
3754 {
3755 os_ref_count_t refs = TASK_MAX_WATCHPORT_COUNT;
3756 struct task_watchports *watchports = NULL;
3757 ipc_port_t port_freelist[TASK_MAX_WATCHPORT_COUNT] = {};
3758 uint32_t portwatch_count;
3759
3760 /* Lock the ipc space */
3761 is_write_lock(task->itk_space);
3762
3763 /* Check if watchport boost exist */
3764 if (task->watchports == NULL) {
3765 is_write_unlock(task->itk_space);
3766 return;
3767 }
3768 watchports = task->watchports;
3769 portwatch_count = watchports->tw_elem_array_count;
3770
3771 refs = task_remove_turnstile_watchports_locked(task, watchports,
3772 port_freelist);
3773
3774 is_write_unlock(task->itk_space);
3775
3776 /* Drop all the port references */
3777 for (uint32_t i = 0; i < portwatch_count && port_freelist[i] != NULL; i++) {
3778 ip_release(port_freelist[i]);
3779 }
3780
3781 /* Clear the task and thread references for task_watchport */
3782 if (refs == 0) {
3783 task_watchports_deallocate(watchports);
3784 }
3785 }
3786
3787 /*
3788 * task_transfer_turnstile_watchports:
3789 * Transfer all watchport turnstile boost from old task to new task.
3790 *
3791 * Arguments:
3792 * old_task: task calling exec
3793 * new_task: new exec'ed task
3794 * thread: main thread of new task
3795 *
3796 * Conditions:
3797 * Nothing locked.
3798 */
3799 void
3800 task_transfer_turnstile_watchports(
3801 task_t old_task,
3802 task_t new_task,
3803 thread_t new_thread)
3804 {
3805 struct task_watchports *old_watchports = NULL;
3806 struct task_watchports *new_watchports = NULL;
3807 os_ref_count_t old_refs = TASK_MAX_WATCHPORT_COUNT;
3808 os_ref_count_t new_refs = TASK_MAX_WATCHPORT_COUNT;
3809 uint32_t portwatch_count;
3810
3811 if (old_task->watchports == NULL || !new_task->active) {
3812 return;
3813 }
3814
3815 /* Get the watch port count from the old task */
3816 is_write_lock(old_task->itk_space);
3817 if (old_task->watchports == NULL) {
3818 is_write_unlock(old_task->itk_space);
3819 return;
3820 }
3821
3822 portwatch_count = old_task->watchports->tw_elem_array_count;
3823 is_write_unlock(old_task->itk_space);
3824
3825 new_watchports = task_watchports_alloc_init(new_task, new_thread, portwatch_count);
3826
3827 /* Lock the ipc space for old task */
3828 is_write_lock(old_task->itk_space);
3829
3830 /* Lock the ipc space for new task */
3831 is_write_lock(new_task->itk_space);
3832
3833 /* Check if watchport boost exist */
3834 if (old_task->watchports == NULL || !new_task->active) {
3835 is_write_unlock(new_task->itk_space);
3836 is_write_unlock(old_task->itk_space);
3837 (void)task_watchports_release(new_watchports);
3838 task_watchports_deallocate(new_watchports);
3839 return;
3840 }
3841
3842 old_watchports = old_task->watchports;
3843 assert(portwatch_count == old_task->watchports->tw_elem_array_count);
3844
3845 /* Setup new task watchports */
3846 new_task->watchports = new_watchports;
3847
3848 for (uint32_t i = 0; i < portwatch_count; i++) {
3849 ipc_port_t port = old_watchports->tw_elem[i].twe_port;
3850
3851 if (port == NULL) {
3852 task_watchport_elem_clear(&new_watchports->tw_elem[i]);
3853 continue;
3854 }
3855
3856 /* Lock the port and check if it has the entry */
3857 ip_lock(port);
3858 imq_lock(&port->ip_messages);
3859
3860 task_watchport_elem_init(&new_watchports->tw_elem[i], new_task, port);
3861
3862 if (ipc_port_replace_watchport_elem_conditional_locked(port,
3863 &old_watchports->tw_elem[i], &new_watchports->tw_elem[i]) == KERN_SUCCESS) {
3864 task_watchport_elem_clear(&old_watchports->tw_elem[i]);
3865
3866 task_watchports_retain(new_watchports);
3867 old_refs = task_watchports_release(old_watchports);
3868
3869 /* Check if all ports are cleaned */
3870 if (old_refs == 0) {
3871 old_task->watchports = NULL;
3872 }
3873 } else {
3874 task_watchport_elem_clear(&new_watchports->tw_elem[i]);
3875 }
3876 /* mqueue and port unlocked by ipc_port_replace_watchport_elem_conditional_locked */
3877 }
3878
3879 /* Drop the reference on new task_watchports struct returned by task_watchports_alloc_init */
3880 new_refs = task_watchports_release(new_watchports);
3881 if (new_refs == 0) {
3882 new_task->watchports = NULL;
3883 }
3884
3885 is_write_unlock(new_task->itk_space);
3886 is_write_unlock(old_task->itk_space);
3887
3888 /* Clear the task and thread references for old_watchport */
3889 if (old_refs == 0) {
3890 task_watchports_deallocate(old_watchports);
3891 }
3892
3893 /* Clear the task and thread references for new_watchport */
3894 if (new_refs == 0) {
3895 task_watchports_deallocate(new_watchports);
3896 }
3897 }
3898
3899 /*
3900 * task_add_turnstile_watchports_locked:
3901 * Setup watchports to boost the main thread of the task.
3902 *
3903 * Arguments:
3904 * task: task to boost
3905 * watchports: watchport structure to be attached to the task
3906 * previous_elem_array: an array of old watchport_elem to be returned to caller
3907 * portwatch_ports: array of watchports
3908 * portwatch_count: number of watchports
3909 *
3910 * Conditions:
3911 * ipc space of the task locked.
3912 * returns array of old watchport_elem in previous_elem_array
3913 */
3914 static os_ref_count_t
3915 task_add_turnstile_watchports_locked(
3916 task_t task,
3917 struct task_watchports *watchports,
3918 struct task_watchport_elem **previous_elem_array,
3919 ipc_port_t *portwatch_ports,
3920 uint32_t portwatch_count)
3921 {
3922 os_ref_count_t refs = TASK_MAX_WATCHPORT_COUNT;
3923
3924 /* Check if the task is still active */
3925 if (!task->active) {
3926 refs = task_watchports_release(watchports);
3927 return refs;
3928 }
3929
3930 assert(task->watchports == NULL);
3931 task->watchports = watchports;
3932
3933 for (uint32_t i = 0, j = 0; i < portwatch_count; i++) {
3934 ipc_port_t port = portwatch_ports[i];
3935
3936 task_watchport_elem_init(&watchports->tw_elem[i], task, port);
3937 if (port == NULL) {
3938 task_watchport_elem_clear(&watchports->tw_elem[i]);
3939 continue;
3940 }
3941
3942 ip_lock(port);
3943 imq_lock(&port->ip_messages);
3944
3945 /* Check if port is in valid state to be setup as watchport */
3946 if (ipc_port_add_watchport_elem_locked(port, &watchports->tw_elem[i],
3947 &previous_elem_array[j]) != KERN_SUCCESS) {
3948 task_watchport_elem_clear(&watchports->tw_elem[i]);
3949 continue;
3950 }
3951 /* port and mqueue unlocked on return */
3952
3953 ip_reference(port);
3954 task_watchports_retain(watchports);
3955 if (previous_elem_array[j] != NULL) {
3956 j++;
3957 }
3958 }
3959
3960 /* Drop the reference on task_watchport struct returned by os_ref_init */
3961 refs = task_watchports_release(watchports);
3962 if (refs == 0) {
3963 task->watchports = NULL;
3964 }
3965
3966 return refs;
3967 }
3968
3969 /*
3970 * task_remove_turnstile_watchports_locked:
3971 * Clear all turnstile boost on the task from watchports.
3972 *
3973 * Arguments:
3974 * task: task to remove watchports from
3975 * watchports: watchports structure for the task
3976 * port_freelist: array of ports returned with ref to caller
3977 *
3978 *
3979 * Conditions:
3980 * ipc space of the task locked.
3981 * array of ports with refs are returned in port_freelist
3982 */
3983 static os_ref_count_t
3984 task_remove_turnstile_watchports_locked(
3985 task_t task,
3986 struct task_watchports *watchports,
3987 ipc_port_t *port_freelist)
3988 {
3989 os_ref_count_t refs = TASK_MAX_WATCHPORT_COUNT;
3990
3991 for (uint32_t i = 0, j = 0; i < watchports->tw_elem_array_count; i++) {
3992 ipc_port_t port = watchports->tw_elem[i].twe_port;
3993 if (port == NULL) {
3994 continue;
3995 }
3996
3997 /* Lock the port and check if it has the entry */
3998 ip_lock(port);
3999 imq_lock(&port->ip_messages);
4000 if (ipc_port_clear_watchport_elem_internal_conditional_locked(port,
4001 &watchports->tw_elem[i]) == KERN_SUCCESS) {
4002 task_watchport_elem_clear(&watchports->tw_elem[i]);
4003 port_freelist[j++] = port;
4004 refs = task_watchports_release(watchports);
4005
4006 /* Check if all ports are cleaned */
4007 if (refs == 0) {
4008 task->watchports = NULL;
4009 break;
4010 }
4011 }
4012 /* mqueue and port unlocked by ipc_port_clear_watchport_elem_internal_conditional_locked */
4013 }
4014 return refs;
4015 }
4016
4017 /*
4018 * task_watchports_alloc_init:
4019 * Allocate and initialize task watchport struct.
4020 *
4021 * Conditions:
4022 * Nothing locked.
4023 */
4024 static struct task_watchports *
4025 task_watchports_alloc_init(
4026 task_t task,
4027 thread_t thread,
4028 uint32_t count)
4029 {
4030 struct task_watchports *watchports = kalloc(sizeof(struct task_watchports) +
4031 count * sizeof(struct task_watchport_elem));
4032
4033 task_reference(task);
4034 thread_reference(thread);
4035 watchports->tw_task = task;
4036 watchports->tw_thread = thread;
4037 watchports->tw_elem_array_count = count;
4038 os_ref_init(&watchports->tw_refcount, &task_watchports_refgrp);
4039
4040 return watchports;
4041 }
4042
4043 /*
4044 * task_watchports_deallocate:
4045 * Deallocate task watchport struct.
4046 *
4047 * Conditions:
4048 * Nothing locked.
4049 */
4050 static void
4051 task_watchports_deallocate(
4052 struct task_watchports *watchports)
4053 {
4054 uint32_t portwatch_count = watchports->tw_elem_array_count;
4055
4056 task_deallocate(watchports->tw_task);
4057 thread_deallocate(watchports->tw_thread);
4058 kfree(watchports, sizeof(struct task_watchports) + portwatch_count * sizeof(struct task_watchport_elem));
4059 }
4060
4061 /*
4062 * task_watchport_elem_deallocate:
4063 * Deallocate task watchport element and release its ref on task_watchport.
4064 *
4065 * Conditions:
4066 * Nothing locked.
4067 */
4068 void
4069 task_watchport_elem_deallocate(
4070 struct task_watchport_elem *watchport_elem)
4071 {
4072 os_ref_count_t refs = TASK_MAX_WATCHPORT_COUNT;
4073 task_t task = watchport_elem->twe_task;
4074 struct task_watchports *watchports = NULL;
4075 ipc_port_t port = NULL;
4076
4077 assert(task != NULL);
4078
4079 /* Take the space lock to modify the elememt */
4080 is_write_lock(task->itk_space);
4081
4082 watchports = task->watchports;
4083 assert(watchports != NULL);
4084
4085 port = watchport_elem->twe_port;
4086 assert(port != NULL);
4087
4088 task_watchport_elem_clear(watchport_elem);
4089 refs = task_watchports_release(watchports);
4090
4091 if (refs == 0) {
4092 task->watchports = NULL;
4093 }
4094
4095 is_write_unlock(task->itk_space);
4096
4097 ip_release(port);
4098 if (refs == 0) {
4099 task_watchports_deallocate(watchports);
4100 }
4101 }
4102
4103 /*
4104 * task_has_watchports:
4105 * Return TRUE if task has watchport boosts.
4106 *
4107 * Conditions:
4108 * Nothing locked.
4109 */
4110 boolean_t
4111 task_has_watchports(task_t task)
4112 {
4113 return task->watchports != NULL;
4114 }
4115
4116 #if DEVELOPMENT || DEBUG
4117
4118 extern void IOSleep(int);
4119
4120 kern_return_t
4121 task_disconnect_page_mappings(task_t task)
4122 {
4123 int n;
4124
4125 if (task == TASK_NULL || task == kernel_task) {
4126 return KERN_INVALID_ARGUMENT;
4127 }
4128
4129 /*
4130 * this function is used to strip all of the mappings from
4131 * the pmap for the specified task to force the task to
4132 * re-fault all of the pages it is actively using... this
4133 * allows us to approximate the true working set of the
4134 * specified task. We only engage if at least 1 of the
4135 * threads in the task is runnable, but we want to continuously
4136 * sweep (at least for a while - I've arbitrarily set the limit at
4137 * 100 sweeps to be re-looked at as we gain experience) to get a better
4138 * view into what areas within a page are being visited (as opposed to only
4139 * seeing the first fault of a page after the task becomes
4140 * runnable)... in the future I may
4141 * try to block until awakened by a thread in this task
4142 * being made runnable, but for now we'll periodically poll from the
4143 * user level debug tool driving the sysctl
4144 */
4145 for (n = 0; n < 100; n++) {
4146 thread_t thread;
4147 boolean_t runnable;
4148 boolean_t do_unnest;
4149 int page_count;
4150
4151 runnable = FALSE;
4152 do_unnest = FALSE;
4153
4154 task_lock(task);
4155
4156 queue_iterate(&task->threads, thread, thread_t, task_threads) {
4157 if (thread->state & TH_RUN) {
4158 runnable = TRUE;
4159 break;
4160 }
4161 }
4162 if (n == 0) {
4163 task->task_disconnected_count++;
4164 }
4165
4166 if (task->task_unnested == FALSE) {
4167 if (runnable == TRUE) {
4168 task->task_unnested = TRUE;
4169 do_unnest = TRUE;
4170 }
4171 }
4172 task_unlock(task);
4173
4174 if (runnable == FALSE) {
4175 break;
4176 }
4177
4178 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_DISCONNECT_TASK_PAGE_MAPPINGS)) | DBG_FUNC_START,
4179 task, do_unnest, task->task_disconnected_count, 0, 0);
4180
4181 page_count = vm_map_disconnect_page_mappings(task->map, do_unnest);
4182
4183 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE, (MACHDBG_CODE(DBG_MACH_WORKINGSET, VM_DISCONNECT_TASK_PAGE_MAPPINGS)) | DBG_FUNC_END,
4184 task, page_count, 0, 0, 0);
4185
4186 if ((n % 5) == 4) {
4187 IOSleep(1);
4188 }
4189 }
4190 return KERN_SUCCESS;
4191 }
4192
4193 #endif
4194
4195
4196 #if CONFIG_FREEZE
4197
4198 /*
4199 * task_freeze:
4200 *
4201 * Freeze a task.
4202 *
4203 * Conditions:
4204 * The caller holds a reference to the task
4205 */
4206 extern void vm_wake_compactor_swapper(void);
4207 extern queue_head_t c_swapout_list_head;
4208
4209 kern_return_t
4210 task_freeze(
4211 task_t task,
4212 uint32_t *purgeable_count,
4213 uint32_t *wired_count,
4214 uint32_t *clean_count,
4215 uint32_t *dirty_count,
4216 uint32_t dirty_budget,
4217 uint32_t *shared_count,
4218 int *freezer_error_code,
4219 boolean_t eval_only)
4220 {
4221 kern_return_t kr = KERN_SUCCESS;
4222
4223 if (task == TASK_NULL || task == kernel_task) {
4224 return KERN_INVALID_ARGUMENT;
4225 }
4226
4227 task_lock(task);
4228
4229 while (task->changing_freeze_state) {
4230 assert_wait((event_t)&task->changing_freeze_state, THREAD_UNINT);
4231 task_unlock(task);
4232 thread_block(THREAD_CONTINUE_NULL);
4233
4234 task_lock(task);
4235 }
4236 if (task->frozen) {
4237 task_unlock(task);
4238 return KERN_FAILURE;
4239 }
4240 task->changing_freeze_state = TRUE;
4241
4242 task_unlock(task);
4243
4244 kr = vm_map_freeze(task,
4245 purgeable_count,
4246 wired_count,
4247 clean_count,
4248 dirty_count,
4249 dirty_budget,
4250 shared_count,
4251 freezer_error_code,
4252 eval_only);
4253
4254 task_lock(task);
4255
4256 if ((kr == KERN_SUCCESS) && (eval_only == FALSE)) {
4257 task->frozen = TRUE;
4258 }
4259
4260 task->changing_freeze_state = FALSE;
4261 thread_wakeup(&task->changing_freeze_state);
4262
4263 task_unlock(task);
4264
4265 if (VM_CONFIG_COMPRESSOR_IS_PRESENT &&
4266 (eval_only == FALSE)) {
4267 vm_wake_compactor_swapper();
4268 /*
4269 * We do an explicit wakeup of the swapout thread here
4270 * because the compact_and_swap routines don't have
4271 * knowledge about these kind of "per-task packed c_segs"
4272 * and so will not be evaluating whether we need to do
4273 * a wakeup there.
4274 */
4275 thread_wakeup((event_t)&c_swapout_list_head);
4276 }
4277
4278 return kr;
4279 }
4280
4281 /*
4282 * task_thaw:
4283 *
4284 * Thaw a currently frozen task.
4285 *
4286 * Conditions:
4287 * The caller holds a reference to the task
4288 */
4289 kern_return_t
4290 task_thaw(
4291 task_t task)
4292 {
4293 if (task == TASK_NULL || task == kernel_task) {
4294 return KERN_INVALID_ARGUMENT;
4295 }
4296
4297 task_lock(task);
4298
4299 while (task->changing_freeze_state) {
4300 assert_wait((event_t)&task->changing_freeze_state, THREAD_UNINT);
4301 task_unlock(task);
4302 thread_block(THREAD_CONTINUE_NULL);
4303
4304 task_lock(task);
4305 }
4306 if (!task->frozen) {
4307 task_unlock(task);
4308 return KERN_FAILURE;
4309 }
4310 task->frozen = FALSE;
4311
4312 task_unlock(task);
4313
4314 return KERN_SUCCESS;
4315 }
4316
4317 #endif /* CONFIG_FREEZE */
4318
4319 kern_return_t
4320 host_security_set_task_token(
4321 host_security_t host_security,
4322 task_t task,
4323 security_token_t sec_token,
4324 audit_token_t audit_token,
4325 host_priv_t host_priv)
4326 {
4327 ipc_port_t host_port;
4328 kern_return_t kr;
4329
4330 if (task == TASK_NULL) {
4331 return KERN_INVALID_ARGUMENT;
4332 }
4333
4334 if (host_security == HOST_NULL) {
4335 return KERN_INVALID_SECURITY;
4336 }
4337
4338 task_lock(task);
4339 task->sec_token = sec_token;
4340 task->audit_token = audit_token;
4341
4342 task_unlock(task);
4343
4344 if (host_priv != HOST_PRIV_NULL) {
4345 kr = host_get_host_priv_port(host_priv, &host_port);
4346 } else {
4347 kr = host_get_host_port(host_priv_self(), &host_port);
4348 }
4349 assert(kr == KERN_SUCCESS);
4350 kr = task_set_special_port(task, TASK_HOST_PORT, host_port);
4351 return kr;
4352 }
4353
4354 kern_return_t
4355 task_send_trace_memory(
4356 __unused task_t target_task,
4357 __unused uint32_t pid,
4358 __unused uint64_t uniqueid)
4359 {
4360 return KERN_INVALID_ARGUMENT;
4361 }
4362
4363 /*
4364 * This routine was added, pretty much exclusively, for registering the
4365 * RPC glue vector for in-kernel short circuited tasks. Rather than
4366 * removing it completely, I have only disabled that feature (which was
4367 * the only feature at the time). It just appears that we are going to
4368 * want to add some user data to tasks in the future (i.e. bsd info,
4369 * task names, etc...), so I left it in the formal task interface.
4370 */
4371 kern_return_t
4372 task_set_info(
4373 task_t task,
4374 task_flavor_t flavor,
4375 __unused task_info_t task_info_in, /* pointer to IN array */
4376 __unused mach_msg_type_number_t task_info_count)
4377 {
4378 if (task == TASK_NULL) {
4379 return KERN_INVALID_ARGUMENT;
4380 }
4381
4382 switch (flavor) {
4383 #if CONFIG_ATM
4384 case TASK_TRACE_MEMORY_INFO:
4385 {
4386 if (task_info_count != TASK_TRACE_MEMORY_INFO_COUNT) {
4387 return KERN_INVALID_ARGUMENT;
4388 }
4389
4390 assert(task_info_in != NULL);
4391 task_trace_memory_info_t mem_info;
4392 mem_info = (task_trace_memory_info_t) task_info_in;
4393 kern_return_t kr = atm_register_trace_memory(task,
4394 mem_info->user_memory_address,
4395 mem_info->buffer_size);
4396 return kr;
4397 }
4398
4399 #endif
4400 default:
4401 return KERN_INVALID_ARGUMENT;
4402 }
4403 return KERN_SUCCESS;
4404 }
4405
4406 int radar_20146450 = 1;
4407 kern_return_t
4408 task_info(
4409 task_t task,
4410 task_flavor_t flavor,
4411 task_info_t task_info_out,
4412 mach_msg_type_number_t *task_info_count)
4413 {
4414 kern_return_t error = KERN_SUCCESS;
4415 mach_msg_type_number_t original_task_info_count;
4416
4417 if (task == TASK_NULL) {
4418 return KERN_INVALID_ARGUMENT;
4419 }
4420
4421 original_task_info_count = *task_info_count;
4422 task_lock(task);
4423
4424 if ((task != current_task()) && (!task->active)) {
4425 task_unlock(task);
4426 return KERN_INVALID_ARGUMENT;
4427 }
4428
4429 switch (flavor) {
4430 case TASK_BASIC_INFO_32:
4431 case TASK_BASIC2_INFO_32:
4432 #if defined(__arm__) || defined(__arm64__)
4433 case TASK_BASIC_INFO_64:
4434 #endif
4435 {
4436 task_basic_info_32_t basic_info;
4437 vm_map_t map;
4438 clock_sec_t secs;
4439 clock_usec_t usecs;
4440
4441 if (*task_info_count < TASK_BASIC_INFO_32_COUNT) {
4442 error = KERN_INVALID_ARGUMENT;
4443 break;
4444 }
4445
4446 basic_info = (task_basic_info_32_t)task_info_out;
4447
4448 map = (task == kernel_task)? kernel_map: task->map;
4449 basic_info->virtual_size = (typeof(basic_info->virtual_size))map->size;
4450 if (flavor == TASK_BASIC2_INFO_32) {
4451 /*
4452 * The "BASIC2" flavor gets the maximum resident
4453 * size instead of the current resident size...
4454 */
4455 basic_info->resident_size = pmap_resident_max(map->pmap);
4456 } else {
4457 basic_info->resident_size = pmap_resident_count(map->pmap);
4458 }
4459 basic_info->resident_size *= PAGE_SIZE;
4460
4461 basic_info->policy = ((task != kernel_task)?
4462 POLICY_TIMESHARE: POLICY_RR);
4463 basic_info->suspend_count = task->user_stop_count;
4464
4465 absolutetime_to_microtime(task->total_user_time, &secs, &usecs);
4466 basic_info->user_time.seconds =
4467 (typeof(basic_info->user_time.seconds))secs;
4468 basic_info->user_time.microseconds = usecs;
4469
4470 absolutetime_to_microtime(task->total_system_time, &secs, &usecs);
4471 basic_info->system_time.seconds =
4472 (typeof(basic_info->system_time.seconds))secs;
4473 basic_info->system_time.microseconds = usecs;
4474
4475 *task_info_count = TASK_BASIC_INFO_32_COUNT;
4476 break;
4477 }
4478
4479 #if defined(__arm__) || defined(__arm64__)
4480 case TASK_BASIC_INFO_64_2:
4481 {
4482 task_basic_info_64_2_t basic_info;
4483 vm_map_t map;
4484 clock_sec_t secs;
4485 clock_usec_t usecs;
4486
4487 if (*task_info_count < TASK_BASIC_INFO_64_2_COUNT) {
4488 error = KERN_INVALID_ARGUMENT;
4489 break;
4490 }
4491
4492 basic_info = (task_basic_info_64_2_t)task_info_out;
4493
4494 map = (task == kernel_task)? kernel_map: task->map;
4495 basic_info->virtual_size = map->size;
4496 basic_info->resident_size =
4497 (mach_vm_size_t)(pmap_resident_count(map->pmap))
4498 * PAGE_SIZE_64;
4499
4500 basic_info->policy = ((task != kernel_task)?
4501 POLICY_TIMESHARE: POLICY_RR);
4502 basic_info->suspend_count = task->user_stop_count;
4503
4504 absolutetime_to_microtime(task->total_user_time, &secs, &usecs);
4505 basic_info->user_time.seconds =
4506 (typeof(basic_info->user_time.seconds))secs;
4507 basic_info->user_time.microseconds = usecs;
4508
4509 absolutetime_to_microtime(task->total_system_time, &secs, &usecs);
4510 basic_info->system_time.seconds =
4511 (typeof(basic_info->system_time.seconds))secs;
4512 basic_info->system_time.microseconds = usecs;
4513
4514 *task_info_count = TASK_BASIC_INFO_64_2_COUNT;
4515 break;
4516 }
4517
4518 #else /* defined(__arm__) || defined(__arm64__) */
4519 case TASK_BASIC_INFO_64:
4520 {
4521 task_basic_info_64_t basic_info;
4522 vm_map_t map;
4523 clock_sec_t secs;
4524 clock_usec_t usecs;
4525
4526 if (*task_info_count < TASK_BASIC_INFO_64_COUNT) {
4527 error = KERN_INVALID_ARGUMENT;
4528 break;
4529 }
4530
4531 basic_info = (task_basic_info_64_t)task_info_out;
4532
4533 map = (task == kernel_task)? kernel_map: task->map;
4534 basic_info->virtual_size = map->size;
4535 basic_info->resident_size =
4536 (mach_vm_size_t)(pmap_resident_count(map->pmap))
4537 * PAGE_SIZE_64;
4538
4539 basic_info->policy = ((task != kernel_task)?
4540 POLICY_TIMESHARE: POLICY_RR);
4541 basic_info->suspend_count = task->user_stop_count;
4542
4543 absolutetime_to_microtime(task->total_user_time, &secs, &usecs);
4544 basic_info->user_time.seconds =
4545 (typeof(basic_info->user_time.seconds))secs;
4546 basic_info->user_time.microseconds = usecs;
4547
4548 absolutetime_to_microtime(task->total_system_time, &secs, &usecs);
4549 basic_info->system_time.seconds =
4550 (typeof(basic_info->system_time.seconds))secs;
4551 basic_info->system_time.microseconds = usecs;
4552
4553 *task_info_count = TASK_BASIC_INFO_64_COUNT;
4554 break;
4555 }
4556 #endif /* defined(__arm__) || defined(__arm64__) */
4557
4558 case MACH_TASK_BASIC_INFO:
4559 {
4560 mach_task_basic_info_t basic_info;
4561 vm_map_t map;
4562 clock_sec_t secs;
4563 clock_usec_t usecs;
4564
4565 if (*task_info_count < MACH_TASK_BASIC_INFO_COUNT) {
4566 error = KERN_INVALID_ARGUMENT;
4567 break;
4568 }
4569
4570 basic_info = (mach_task_basic_info_t)task_info_out;
4571
4572 map = (task == kernel_task) ? kernel_map : task->map;
4573
4574 basic_info->virtual_size = map->size;
4575
4576 basic_info->resident_size =
4577 (mach_vm_size_t)(pmap_resident_count(map->pmap));
4578 basic_info->resident_size *= PAGE_SIZE_64;
4579
4580 basic_info->resident_size_max =
4581 (mach_vm_size_t)(pmap_resident_max(map->pmap));
4582 basic_info->resident_size_max *= PAGE_SIZE_64;
4583
4584 basic_info->policy = ((task != kernel_task) ?
4585 POLICY_TIMESHARE : POLICY_RR);
4586
4587 basic_info->suspend_count = task->user_stop_count;
4588
4589 absolutetime_to_microtime(task->total_user_time, &secs, &usecs);
4590 basic_info->user_time.seconds =
4591 (typeof(basic_info->user_time.seconds))secs;
4592 basic_info->user_time.microseconds = usecs;
4593
4594 absolutetime_to_microtime(task->total_system_time, &secs, &usecs);
4595 basic_info->system_time.seconds =
4596 (typeof(basic_info->system_time.seconds))secs;
4597 basic_info->system_time.microseconds = usecs;
4598
4599 *task_info_count = MACH_TASK_BASIC_INFO_COUNT;
4600 break;
4601 }
4602
4603 case TASK_THREAD_TIMES_INFO:
4604 {
4605 task_thread_times_info_t times_info;
4606 thread_t thread;
4607
4608 if (*task_info_count < TASK_THREAD_TIMES_INFO_COUNT) {
4609 error = KERN_INVALID_ARGUMENT;
4610 break;
4611 }
4612
4613 times_info = (task_thread_times_info_t) task_info_out;
4614 times_info->user_time.seconds = 0;
4615 times_info->user_time.microseconds = 0;
4616 times_info->system_time.seconds = 0;
4617 times_info->system_time.microseconds = 0;
4618
4619
4620 queue_iterate(&task->threads, thread, thread_t, task_threads) {
4621 time_value_t user_time, system_time;
4622
4623 if (thread->options & TH_OPT_IDLE_THREAD) {
4624 continue;
4625 }
4626
4627 thread_read_times(thread, &user_time, &system_time, NULL);
4628
4629 time_value_add(&times_info->user_time, &user_time);
4630 time_value_add(&times_info->system_time, &system_time);
4631 }
4632
4633 *task_info_count = TASK_THREAD_TIMES_INFO_COUNT;
4634 break;
4635 }
4636
4637 case TASK_ABSOLUTETIME_INFO:
4638 {
4639 task_absolutetime_info_t info;
4640 thread_t thread;
4641
4642 if (*task_info_count < TASK_ABSOLUTETIME_INFO_COUNT) {
4643 error = KERN_INVALID_ARGUMENT;
4644 break;
4645 }
4646
4647 info = (task_absolutetime_info_t)task_info_out;
4648 info->threads_user = info->threads_system = 0;
4649
4650
4651 info->total_user = task->total_user_time;
4652 info->total_system = task->total_system_time;
4653
4654 queue_iterate(&task->threads, thread, thread_t, task_threads) {
4655 uint64_t tval;
4656 spl_t x;
4657
4658 if (thread->options & TH_OPT_IDLE_THREAD) {
4659 continue;
4660 }
4661
4662 x = splsched();
4663 thread_lock(thread);
4664
4665 tval = timer_grab(&thread->user_timer);
4666 info->threads_user += tval;
4667 info->total_user += tval;
4668
4669 tval = timer_grab(&thread->system_timer);
4670 if (thread->precise_user_kernel_time) {
4671 info->threads_system += tval;
4672 info->total_system += tval;
4673 } else {
4674 /* system_timer may represent either sys or user */
4675 info->threads_user += tval;
4676 info->total_user += tval;
4677 }
4678
4679 thread_unlock(thread);
4680 splx(x);
4681 }
4682
4683
4684 *task_info_count = TASK_ABSOLUTETIME_INFO_COUNT;
4685 break;
4686 }
4687
4688 case TASK_DYLD_INFO:
4689 {
4690 task_dyld_info_t info;
4691
4692 /*
4693 * We added the format field to TASK_DYLD_INFO output. For
4694 * temporary backward compatibility, accept the fact that
4695 * clients may ask for the old version - distinquished by the
4696 * size of the expected result structure.
4697 */
4698 #define TASK_LEGACY_DYLD_INFO_COUNT \
4699 offsetof(struct task_dyld_info, all_image_info_format)/sizeof(natural_t)
4700
4701 if (*task_info_count < TASK_LEGACY_DYLD_INFO_COUNT) {
4702 error = KERN_INVALID_ARGUMENT;
4703 break;
4704 }
4705
4706 info = (task_dyld_info_t)task_info_out;
4707 info->all_image_info_addr = task->all_image_info_addr;
4708 info->all_image_info_size = task->all_image_info_size;
4709
4710 /* only set format on output for those expecting it */
4711 if (*task_info_count >= TASK_DYLD_INFO_COUNT) {
4712 info->all_image_info_format = task_has_64Bit_addr(task) ?
4713 TASK_DYLD_ALL_IMAGE_INFO_64 :
4714 TASK_DYLD_ALL_IMAGE_INFO_32;
4715 *task_info_count = TASK_DYLD_INFO_COUNT;
4716 } else {
4717 *task_info_count = TASK_LEGACY_DYLD_INFO_COUNT;
4718 }
4719 break;
4720 }
4721
4722 case TASK_EXTMOD_INFO:
4723 {
4724 task_extmod_info_t info;
4725 void *p;
4726
4727 if (*task_info_count < TASK_EXTMOD_INFO_COUNT) {
4728 error = KERN_INVALID_ARGUMENT;
4729 break;
4730 }
4731
4732 info = (task_extmod_info_t)task_info_out;
4733
4734 p = get_bsdtask_info(task);
4735 if (p) {
4736 proc_getexecutableuuid(p, info->task_uuid, sizeof(info->task_uuid));
4737 } else {
4738 bzero(info->task_uuid, sizeof(info->task_uuid));
4739 }
4740 info->extmod_statistics = task->extmod_statistics;
4741 *task_info_count = TASK_EXTMOD_INFO_COUNT;
4742
4743 break;
4744 }
4745
4746 case TASK_KERNELMEMORY_INFO:
4747 {
4748 task_kernelmemory_info_t tkm_info;
4749 ledger_amount_t credit, debit;
4750
4751 if (*task_info_count < TASK_KERNELMEMORY_INFO_COUNT) {
4752 error = KERN_INVALID_ARGUMENT;
4753 break;
4754 }
4755
4756 tkm_info = (task_kernelmemory_info_t) task_info_out;
4757 tkm_info->total_palloc = 0;
4758 tkm_info->total_pfree = 0;
4759 tkm_info->total_salloc = 0;
4760 tkm_info->total_sfree = 0;
4761
4762 if (task == kernel_task) {
4763 /*
4764 * All shared allocs/frees from other tasks count against
4765 * the kernel private memory usage. If we are looking up
4766 * info for the kernel task, gather from everywhere.
4767 */
4768 task_unlock(task);
4769
4770 /* start by accounting for all the terminated tasks against the kernel */
4771 tkm_info->total_palloc = tasks_tkm_private.alloc + tasks_tkm_shared.alloc;
4772 tkm_info->total_pfree = tasks_tkm_private.free + tasks_tkm_shared.free;
4773
4774 /* count all other task/thread shared alloc/free against the kernel */
4775 lck_mtx_lock(&tasks_threads_lock);
4776
4777 /* XXX this really shouldn't be using the function parameter 'task' as a local var! */
4778 queue_iterate(&tasks, task, task_t, tasks) {
4779 if (task == kernel_task) {
4780 if (ledger_get_entries(task->ledger,
4781 task_ledgers.tkm_private, &credit,
4782 &debit) == KERN_SUCCESS) {
4783 tkm_info->total_palloc += credit;
4784 tkm_info->total_pfree += debit;
4785 }
4786 }
4787 if (!ledger_get_entries(task->ledger,
4788 task_ledgers.tkm_shared, &credit, &debit)) {
4789 tkm_info->total_palloc += credit;
4790 tkm_info->total_pfree += debit;
4791 }
4792 }
4793 lck_mtx_unlock(&tasks_threads_lock);
4794 } else {
4795 if (!ledger_get_entries(task->ledger,
4796 task_ledgers.tkm_private, &credit, &debit)) {
4797 tkm_info->total_palloc = credit;
4798 tkm_info->total_pfree = debit;
4799 }
4800 if (!ledger_get_entries(task->ledger,
4801 task_ledgers.tkm_shared, &credit, &debit)) {
4802 tkm_info->total_salloc = credit;
4803 tkm_info->total_sfree = debit;
4804 }
4805 task_unlock(task);
4806 }
4807
4808 *task_info_count = TASK_KERNELMEMORY_INFO_COUNT;
4809 return KERN_SUCCESS;
4810 }
4811
4812 /* OBSOLETE */
4813 case TASK_SCHED_FIFO_INFO:
4814 {
4815 if (*task_info_count < POLICY_FIFO_BASE_COUNT) {
4816 error = KERN_INVALID_ARGUMENT;
4817 break;
4818 }
4819
4820 error = KERN_INVALID_POLICY;
4821 break;
4822 }
4823
4824 /* OBSOLETE */
4825 case TASK_SCHED_RR_INFO:
4826 {
4827 policy_rr_base_t rr_base;
4828 uint32_t quantum_time;
4829 uint64_t quantum_ns;
4830
4831 if (*task_info_count < POLICY_RR_BASE_COUNT) {
4832 error = KERN_INVALID_ARGUMENT;
4833 break;
4834 }
4835
4836 rr_base = (policy_rr_base_t) task_info_out;
4837
4838 if (task != kernel_task) {
4839 error = KERN_INVALID_POLICY;
4840 break;
4841 }
4842
4843 rr_base->base_priority = task->priority;
4844
4845 quantum_time = SCHED(initial_quantum_size)(THREAD_NULL);
4846 absolutetime_to_nanoseconds(quantum_time, &quantum_ns);
4847
4848 rr_base->quantum = (uint32_t)(quantum_ns / 1000 / 1000);
4849
4850 *task_info_count = POLICY_RR_BASE_COUNT;
4851 break;
4852 }
4853
4854 /* OBSOLETE */
4855 case TASK_SCHED_TIMESHARE_INFO:
4856 {
4857 policy_timeshare_base_t ts_base;
4858
4859 if (*task_info_count < POLICY_TIMESHARE_BASE_COUNT) {
4860 error = KERN_INVALID_ARGUMENT;
4861 break;
4862 }
4863
4864 ts_base = (policy_timeshare_base_t) task_info_out;
4865
4866 if (task == kernel_task) {
4867 error = KERN_INVALID_POLICY;
4868 break;
4869 }
4870
4871 ts_base->base_priority = task->priority;
4872
4873 *task_info_count = POLICY_TIMESHARE_BASE_COUNT;
4874 break;
4875 }
4876
4877 case TASK_SECURITY_TOKEN:
4878 {
4879 security_token_t *sec_token_p;
4880
4881 if (*task_info_count < TASK_SECURITY_TOKEN_COUNT) {
4882 error = KERN_INVALID_ARGUMENT;
4883 break;
4884 }
4885
4886 sec_token_p = (security_token_t *) task_info_out;
4887
4888 *sec_token_p = task->sec_token;
4889
4890 *task_info_count = TASK_SECURITY_TOKEN_COUNT;
4891 break;
4892 }
4893
4894 case TASK_AUDIT_TOKEN:
4895 {
4896 audit_token_t *audit_token_p;
4897
4898 if (*task_info_count < TASK_AUDIT_TOKEN_COUNT) {
4899 error = KERN_INVALID_ARGUMENT;
4900 break;
4901 }
4902
4903 audit_token_p = (audit_token_t *) task_info_out;
4904
4905 *audit_token_p = task->audit_token;
4906
4907 *task_info_count = TASK_AUDIT_TOKEN_COUNT;
4908 break;
4909 }
4910
4911 case TASK_SCHED_INFO:
4912 error = KERN_INVALID_ARGUMENT;
4913 break;
4914
4915 case TASK_EVENTS_INFO:
4916 {
4917 task_events_info_t events_info;
4918 thread_t thread;
4919
4920 if (*task_info_count < TASK_EVENTS_INFO_COUNT) {
4921 error = KERN_INVALID_ARGUMENT;
4922 break;
4923 }
4924
4925 events_info = (task_events_info_t) task_info_out;
4926
4927
4928 events_info->faults = task->faults;
4929 events_info->pageins = task->pageins;
4930 events_info->cow_faults = task->cow_faults;
4931 events_info->messages_sent = task->messages_sent;
4932 events_info->messages_received = task->messages_received;
4933 events_info->syscalls_mach = task->syscalls_mach;
4934 events_info->syscalls_unix = task->syscalls_unix;
4935
4936 events_info->csw = task->c_switch;
4937
4938 queue_iterate(&task->threads, thread, thread_t, task_threads) {
4939 events_info->csw += thread->c_switch;
4940 events_info->syscalls_mach += thread->syscalls_mach;
4941 events_info->syscalls_unix += thread->syscalls_unix;
4942 }
4943
4944
4945 *task_info_count = TASK_EVENTS_INFO_COUNT;
4946 break;
4947 }
4948 case TASK_AFFINITY_TAG_INFO:
4949 {
4950 if (*task_info_count < TASK_AFFINITY_TAG_INFO_COUNT) {
4951 error = KERN_INVALID_ARGUMENT;
4952 break;
4953 }
4954
4955 error = task_affinity_info(task, task_info_out, task_info_count);
4956 break;
4957 }
4958 case TASK_POWER_INFO:
4959 {
4960 if (*task_info_count < TASK_POWER_INFO_COUNT) {
4961 error = KERN_INVALID_ARGUMENT;
4962 break;
4963 }
4964
4965 task_power_info_locked(task, (task_power_info_t)task_info_out, NULL, NULL, NULL);
4966 break;
4967 }
4968
4969 case TASK_POWER_INFO_V2:
4970 {
4971 if (*task_info_count < TASK_POWER_INFO_V2_COUNT_OLD) {
4972 error = KERN_INVALID_ARGUMENT;
4973 break;
4974 }
4975 task_power_info_v2_t tpiv2 = (task_power_info_v2_t) task_info_out;
4976 task_power_info_locked(task, &tpiv2->cpu_energy, &tpiv2->gpu_energy, tpiv2, NULL);
4977 break;
4978 }
4979
4980 case TASK_VM_INFO:
4981 case TASK_VM_INFO_PURGEABLE:
4982 {
4983 task_vm_info_t vm_info;
4984 vm_map_t map;
4985
4986 #if __arm64__
4987 struct proc *p;
4988 uint32_t platform, sdk;
4989 p = current_proc();
4990 platform = proc_platform(p);
4991 sdk = proc_sdk(p);
4992 if (original_task_info_count > TASK_VM_INFO_REV2_COUNT &&
4993 platform == PLATFORM_IOS &&
4994 sdk != 0 &&
4995 (sdk >> 16) <= 12) {
4996 /*
4997 * Some iOS apps pass an incorrect value for
4998 * task_info_count, expressed in number of bytes
4999 * instead of number of "natural_t" elements.
5000 * For the sake of backwards binary compatibility
5001 * for apps built with an iOS12 or older SDK and using
5002 * the "rev2" data structure, let's fix task_info_count
5003 * for them, to avoid stomping past the actual end
5004 * of their buffer.
5005 */
5006 #if DEVELOPMENT || DEBUG
5007 printf("%s:%d %d[%s] rdar://49484582 task_info_count %d -> %d platform %d sdk %d.%d.%d\n", __FUNCTION__, __LINE__, proc_pid(p), proc_name_address(p), original_task_info_count, TASK_VM_INFO_REV2_COUNT, platform, (sdk >> 16), ((sdk >> 8) & 0xff), (sdk & 0xff));
5008 #endif /* DEVELOPMENT || DEBUG */
5009 DTRACE_VM4(workaround_task_vm_info_count,
5010 mach_msg_type_number_t, original_task_info_count,
5011 mach_msg_type_number_t, TASK_VM_INFO_REV2_COUNT,
5012 uint32_t, platform,
5013 uint32_t, sdk);
5014 original_task_info_count = TASK_VM_INFO_REV2_COUNT;
5015 *task_info_count = original_task_info_count;
5016 }
5017 #endif /* __arm64__ */
5018
5019 if (*task_info_count < TASK_VM_INFO_REV0_COUNT) {
5020 error = KERN_INVALID_ARGUMENT;
5021 break;
5022 }
5023
5024 vm_info = (task_vm_info_t)task_info_out;
5025
5026 if (task == kernel_task) {
5027 map = kernel_map;
5028 /* no lock */
5029 } else {
5030 map = task->map;
5031 vm_map_lock_read(map);
5032 }
5033
5034 vm_info->virtual_size = (typeof(vm_info->virtual_size))map->size;
5035 vm_info->region_count = map->hdr.nentries;
5036 vm_info->page_size = vm_map_page_size(map);
5037
5038 vm_info->resident_size = pmap_resident_count(map->pmap);
5039 vm_info->resident_size *= PAGE_SIZE;
5040 vm_info->resident_size_peak = pmap_resident_max(map->pmap);
5041 vm_info->resident_size_peak *= PAGE_SIZE;
5042
5043 #define _VM_INFO(_name) \
5044 vm_info->_name = ((mach_vm_size_t) map->pmap->stats._name) * PAGE_SIZE
5045
5046 _VM_INFO(device);
5047 _VM_INFO(device_peak);
5048 _VM_INFO(external);
5049 _VM_INFO(external_peak);
5050 _VM_INFO(internal);
5051 _VM_INFO(internal_peak);
5052 _VM_INFO(reusable);
5053 _VM_INFO(reusable_peak);
5054 _VM_INFO(compressed);
5055 _VM_INFO(compressed_peak);
5056 _VM_INFO(compressed_lifetime);
5057
5058 vm_info->purgeable_volatile_pmap = 0;
5059 vm_info->purgeable_volatile_resident = 0;
5060 vm_info->purgeable_volatile_virtual = 0;
5061 if (task == kernel_task) {
5062 /*
5063 * We do not maintain the detailed stats for the
5064 * kernel_pmap, so just count everything as
5065 * "internal"...
5066 */
5067 vm_info->internal = vm_info->resident_size;
5068 /*
5069 * ... but since the memory held by the VM compressor
5070 * in the kernel address space ought to be attributed
5071 * to user-space tasks, we subtract it from "internal"
5072 * to give memory reporting tools a more accurate idea
5073 * of what the kernel itself is actually using, instead
5074 * of making it look like the kernel is leaking memory
5075 * when the system is under memory pressure.
5076 */
5077 vm_info->internal -= (VM_PAGE_COMPRESSOR_COUNT *
5078 PAGE_SIZE);
5079 } else {
5080 mach_vm_size_t volatile_virtual_size;
5081 mach_vm_size_t volatile_resident_size;
5082 mach_vm_size_t volatile_compressed_size;
5083 mach_vm_size_t volatile_pmap_size;
5084 mach_vm_size_t volatile_compressed_pmap_size;
5085 kern_return_t kr;
5086
5087 if (flavor == TASK_VM_INFO_PURGEABLE) {
5088 kr = vm_map_query_volatile(
5089 map,
5090 &volatile_virtual_size,
5091 &volatile_resident_size,
5092 &volatile_compressed_size,
5093 &volatile_pmap_size,
5094 &volatile_compressed_pmap_size);
5095 if (kr == KERN_SUCCESS) {
5096 vm_info->purgeable_volatile_pmap =
5097 volatile_pmap_size;
5098 if (radar_20146450) {
5099 vm_info->compressed -=
5100 volatile_compressed_pmap_size;
5101 }
5102 vm_info->purgeable_volatile_resident =
5103 volatile_resident_size;
5104 vm_info->purgeable_volatile_virtual =
5105 volatile_virtual_size;
5106 }
5107 }
5108 }
5109 *task_info_count = TASK_VM_INFO_REV0_COUNT;
5110
5111 if (original_task_info_count >= TASK_VM_INFO_REV1_COUNT) {
5112 vm_info->phys_footprint =
5113 (mach_vm_size_t) get_task_phys_footprint(task);
5114 *task_info_count = TASK_VM_INFO_REV1_COUNT;
5115 }
5116 if (original_task_info_count >= TASK_VM_INFO_REV2_COUNT) {
5117 vm_info->min_address = map->min_offset;
5118 vm_info->max_address = map->max_offset;
5119 *task_info_count = TASK_VM_INFO_REV2_COUNT;
5120 }
5121 if (original_task_info_count >= TASK_VM_INFO_REV3_COUNT) {
5122 ledger_get_lifetime_max(task->ledger,
5123 task_ledgers.phys_footprint,
5124 &vm_info->ledger_phys_footprint_peak);
5125 ledger_get_balance(task->ledger,
5126 task_ledgers.purgeable_nonvolatile,
5127 &vm_info->ledger_purgeable_nonvolatile);
5128 ledger_get_balance(task->ledger,
5129 task_ledgers.purgeable_nonvolatile_compressed,
5130 &vm_info->ledger_purgeable_novolatile_compressed);
5131 ledger_get_balance(task->ledger,
5132 task_ledgers.purgeable_volatile,
5133 &vm_info->ledger_purgeable_volatile);
5134 ledger_get_balance(task->ledger,
5135 task_ledgers.purgeable_volatile_compressed,
5136 &vm_info->ledger_purgeable_volatile_compressed);
5137 ledger_get_balance(task->ledger,
5138 task_ledgers.network_nonvolatile,
5139 &vm_info->ledger_tag_network_nonvolatile);
5140 ledger_get_balance(task->ledger,
5141 task_ledgers.network_nonvolatile_compressed,
5142 &vm_info->ledger_tag_network_nonvolatile_compressed);
5143 ledger_get_balance(task->ledger,
5144 task_ledgers.network_volatile,
5145 &vm_info->ledger_tag_network_volatile);
5146 ledger_get_balance(task->ledger,
5147 task_ledgers.network_volatile_compressed,
5148 &vm_info->ledger_tag_network_volatile_compressed);
5149 ledger_get_balance(task->ledger,
5150 task_ledgers.media_footprint,
5151 &vm_info->ledger_tag_media_footprint);
5152 ledger_get_balance(task->ledger,
5153 task_ledgers.media_footprint_compressed,
5154 &vm_info->ledger_tag_media_footprint_compressed);
5155 ledger_get_balance(task->ledger,
5156 task_ledgers.media_nofootprint,
5157 &vm_info->ledger_tag_media_nofootprint);
5158 ledger_get_balance(task->ledger,
5159 task_ledgers.media_nofootprint_compressed,
5160 &vm_info->ledger_tag_media_nofootprint_compressed);
5161 ledger_get_balance(task->ledger,
5162 task_ledgers.graphics_footprint,
5163 &vm_info->ledger_tag_graphics_footprint);
5164 ledger_get_balance(task->ledger,
5165 task_ledgers.graphics_footprint_compressed,
5166 &vm_info->ledger_tag_graphics_footprint_compressed);
5167 ledger_get_balance(task->ledger,
5168 task_ledgers.graphics_nofootprint,
5169 &vm_info->ledger_tag_graphics_nofootprint);
5170 ledger_get_balance(task->ledger,
5171 task_ledgers.graphics_nofootprint_compressed,
5172 &vm_info->ledger_tag_graphics_nofootprint_compressed);
5173 ledger_get_balance(task->ledger,
5174 task_ledgers.neural_footprint,
5175 &vm_info->ledger_tag_neural_footprint);
5176 ledger_get_balance(task->ledger,
5177 task_ledgers.neural_footprint_compressed,
5178 &vm_info->ledger_tag_neural_footprint_compressed);
5179 ledger_get_balance(task->ledger,
5180 task_ledgers.neural_nofootprint,
5181 &vm_info->ledger_tag_neural_nofootprint);
5182 ledger_get_balance(task->ledger,
5183 task_ledgers.neural_nofootprint_compressed,
5184 &vm_info->ledger_tag_neural_nofootprint_compressed);
5185 *task_info_count = TASK_VM_INFO_REV3_COUNT;
5186 }
5187 if (original_task_info_count >= TASK_VM_INFO_REV4_COUNT) {
5188 if (task->bsd_info) {
5189 vm_info->limit_bytes_remaining =
5190 memorystatus_available_memory_internal(task->bsd_info);
5191 } else {
5192 vm_info->limit_bytes_remaining = 0;
5193 }
5194 *task_info_count = TASK_VM_INFO_REV4_COUNT;
5195 }
5196 if (original_task_info_count >= TASK_VM_INFO_REV5_COUNT) {
5197 thread_t thread;
5198 integer_t total = task->decompressions;
5199 queue_iterate(&task->threads, thread, thread_t, task_threads) {
5200 total += thread->decompressions;
5201 }
5202 vm_info->decompressions = total;
5203 *task_info_count = TASK_VM_INFO_REV5_COUNT;
5204 }
5205
5206 if (task != kernel_task) {
5207 vm_map_unlock_read(map);
5208 }
5209
5210 break;
5211 }
5212
5213 case TASK_WAIT_STATE_INFO:
5214 {
5215 /*
5216 * Deprecated flavor. Currently allowing some results until all users
5217 * stop calling it. The results may not be accurate.
5218 */
5219 task_wait_state_info_t wait_state_info;
5220 uint64_t total_sfi_ledger_val = 0;
5221
5222 if (*task_info_count < TASK_WAIT_STATE_INFO_COUNT) {
5223 error = KERN_INVALID_ARGUMENT;
5224 break;
5225 }
5226
5227 wait_state_info = (task_wait_state_info_t) task_info_out;
5228
5229 wait_state_info->total_wait_state_time = 0;
5230 bzero(wait_state_info->_reserved, sizeof(wait_state_info->_reserved));
5231
5232 #if CONFIG_SCHED_SFI
5233 int i, prev_lentry = -1;
5234 int64_t val_credit, val_debit;
5235
5236 for (i = 0; i < MAX_SFI_CLASS_ID; i++) {
5237 val_credit = 0;
5238 /*
5239 * checking with prev_lentry != entry ensures adjacent classes
5240 * which share the same ledger do not add wait times twice.
5241 * Note: Use ledger() call to get data for each individual sfi class.
5242 */
5243 if (prev_lentry != task_ledgers.sfi_wait_times[i] &&
5244 KERN_SUCCESS == ledger_get_entries(task->ledger,
5245 task_ledgers.sfi_wait_times[i], &val_credit, &val_debit)) {
5246 total_sfi_ledger_val += val_credit;
5247 }
5248 prev_lentry = task_ledgers.sfi_wait_times[i];
5249 }
5250
5251 #endif /* CONFIG_SCHED_SFI */
5252 wait_state_info->total_wait_sfi_state_time = total_sfi_ledger_val;
5253 *task_info_count = TASK_WAIT_STATE_INFO_COUNT;
5254
5255 break;
5256 }
5257 case TASK_VM_INFO_PURGEABLE_ACCOUNT:
5258 {
5259 #if DEVELOPMENT || DEBUG
5260 pvm_account_info_t acnt_info;
5261
5262 if (*task_info_count < PVM_ACCOUNT_INFO_COUNT) {
5263 error = KERN_INVALID_ARGUMENT;
5264 break;
5265 }
5266
5267 if (task_info_out == NULL) {
5268 error = KERN_INVALID_ARGUMENT;
5269 break;
5270 }
5271
5272 acnt_info = (pvm_account_info_t) task_info_out;
5273
5274 error = vm_purgeable_account(task, acnt_info);
5275
5276 *task_info_count = PVM_ACCOUNT_INFO_COUNT;
5277
5278 break;
5279 #else /* DEVELOPMENT || DEBUG */
5280 error = KERN_NOT_SUPPORTED;
5281 break;
5282 #endif /* DEVELOPMENT || DEBUG */
5283 }
5284 case TASK_FLAGS_INFO:
5285 {
5286 task_flags_info_t flags_info;
5287
5288 if (*task_info_count < TASK_FLAGS_INFO_COUNT) {
5289 error = KERN_INVALID_ARGUMENT;
5290 break;
5291 }
5292
5293 flags_info = (task_flags_info_t)task_info_out;
5294
5295 /* only publish the 64-bit flag of the task */
5296 flags_info->flags = task->t_flags & (TF_64B_ADDR | TF_64B_DATA);
5297
5298 *task_info_count = TASK_FLAGS_INFO_COUNT;
5299 break;
5300 }
5301
5302 case TASK_DEBUG_INFO_INTERNAL:
5303 {
5304 #if DEVELOPMENT || DEBUG
5305 task_debug_info_internal_t dbg_info;
5306 ipc_space_t space = task->itk_space;
5307 if (*task_info_count < TASK_DEBUG_INFO_INTERNAL_COUNT) {
5308 error = KERN_NOT_SUPPORTED;
5309 break;
5310 }
5311
5312 if (task_info_out == NULL) {
5313 error = KERN_INVALID_ARGUMENT;
5314 break;
5315 }
5316 dbg_info = (task_debug_info_internal_t) task_info_out;
5317 dbg_info->ipc_space_size = 0;
5318
5319 if (space) {
5320 is_read_lock(space);
5321 dbg_info->ipc_space_size = space->is_table_size;
5322 is_read_unlock(space);
5323 }
5324
5325 dbg_info->suspend_count = task->suspend_count;
5326
5327 error = KERN_SUCCESS;
5328 *task_info_count = TASK_DEBUG_INFO_INTERNAL_COUNT;
5329 break;
5330 #else /* DEVELOPMENT || DEBUG */
5331 error = KERN_NOT_SUPPORTED;
5332 break;
5333 #endif /* DEVELOPMENT || DEBUG */
5334 }
5335 default:
5336 error = KERN_INVALID_ARGUMENT;
5337 }
5338
5339 task_unlock(task);
5340 return error;
5341 }
5342
5343 /*
5344 * task_info_from_user
5345 *
5346 * When calling task_info from user space,
5347 * this function will be executed as mig server side
5348 * instead of calling directly into task_info.
5349 * This gives the possibility to perform more security
5350 * checks on task_port.
5351 *
5352 * In the case of TASK_DYLD_INFO, we require the more
5353 * privileged task_port not the less-privileged task_name_port.
5354 *
5355 */
5356 kern_return_t
5357 task_info_from_user(
5358 mach_port_t task_port,
5359 task_flavor_t flavor,
5360 task_info_t task_info_out,
5361 mach_msg_type_number_t *task_info_count)
5362 {
5363 task_t task;
5364 kern_return_t ret;
5365
5366 if (flavor == TASK_DYLD_INFO) {
5367 task = convert_port_to_task(task_port);
5368 } else {
5369 task = convert_port_to_task_name(task_port);
5370 }
5371
5372 ret = task_info(task, flavor, task_info_out, task_info_count);
5373
5374 task_deallocate(task);
5375
5376 return ret;
5377 }
5378
5379 /*
5380 * task_power_info
5381 *
5382 * Returns power stats for the task.
5383 * Note: Called with task locked.
5384 */
5385 void
5386 task_power_info_locked(
5387 task_t task,
5388 task_power_info_t info,
5389 gpu_energy_data_t ginfo,
5390 task_power_info_v2_t infov2,
5391 uint64_t *runnable_time)
5392 {
5393 thread_t thread;
5394 ledger_amount_t tmp;
5395
5396 uint64_t runnable_time_sum = 0;
5397
5398 task_lock_assert_owned(task);
5399
5400 ledger_get_entries(task->ledger, task_ledgers.interrupt_wakeups,
5401 (ledger_amount_t *)&info->task_interrupt_wakeups, &tmp);
5402 ledger_get_entries(task->ledger, task_ledgers.platform_idle_wakeups,
5403 (ledger_amount_t *)&info->task_platform_idle_wakeups, &tmp);
5404
5405 info->task_timer_wakeups_bin_1 = task->task_timer_wakeups_bin_1;
5406 info->task_timer_wakeups_bin_2 = task->task_timer_wakeups_bin_2;
5407
5408 info->total_user = task->total_user_time;
5409 info->total_system = task->total_system_time;
5410 runnable_time_sum = task->total_runnable_time;
5411
5412 #if CONFIG_EMBEDDED
5413 if (infov2) {
5414 infov2->task_energy = task->task_energy;
5415 }
5416 #endif
5417
5418 if (ginfo) {
5419 ginfo->task_gpu_utilisation = task->task_gpu_ns;
5420 }
5421
5422 if (infov2) {
5423 infov2->task_ptime = task->total_ptime;
5424 infov2->task_pset_switches = task->ps_switch;
5425 }
5426
5427 queue_iterate(&task->threads, thread, thread_t, task_threads) {
5428 uint64_t tval;
5429 spl_t x;
5430
5431 if (thread->options & TH_OPT_IDLE_THREAD) {
5432 continue;
5433 }
5434
5435 x = splsched();
5436 thread_lock(thread);
5437
5438 info->task_timer_wakeups_bin_1 += thread->thread_timer_wakeups_bin_1;
5439 info->task_timer_wakeups_bin_2 += thread->thread_timer_wakeups_bin_2;
5440
5441 #if CONFIG_EMBEDDED
5442 if (infov2) {
5443 infov2->task_energy += ml_energy_stat(thread);
5444 }
5445 #endif
5446
5447 tval = timer_grab(&thread->user_timer);
5448 info->total_user += tval;
5449
5450 if (infov2) {
5451 tval = timer_grab(&thread->ptime);
5452 infov2->task_ptime += tval;
5453 infov2->task_pset_switches += thread->ps_switch;
5454 }
5455
5456 tval = timer_grab(&thread->system_timer);
5457 if (thread->precise_user_kernel_time) {
5458 info->total_system += tval;
5459 } else {
5460 /* system_timer may represent either sys or user */
5461 info->total_user += tval;
5462 }
5463
5464 tval = timer_grab(&thread->runnable_timer);
5465
5466 runnable_time_sum += tval;
5467
5468 if (ginfo) {
5469 ginfo->task_gpu_utilisation += ml_gpu_stat(thread);
5470 }
5471 thread_unlock(thread);
5472 splx(x);
5473 }
5474
5475 if (runnable_time) {
5476 *runnable_time = runnable_time_sum;
5477 }
5478 }
5479
5480 /*
5481 * task_gpu_utilisation
5482 *
5483 * Returns the total gpu time used by the all the threads of the task
5484 * (both dead and alive)
5485 */
5486 uint64_t
5487 task_gpu_utilisation(
5488 task_t task)
5489 {
5490 uint64_t gpu_time = 0;
5491 #if !CONFIG_EMBEDDED
5492 thread_t thread;
5493
5494 task_lock(task);
5495 gpu_time += task->task_gpu_ns;
5496
5497 queue_iterate(&task->threads, thread, thread_t, task_threads) {
5498 spl_t x;
5499 x = splsched();
5500 thread_lock(thread);
5501 gpu_time += ml_gpu_stat(thread);
5502 thread_unlock(thread);
5503 splx(x);
5504 }
5505
5506 task_unlock(task);
5507 #else /* CONFIG_EMBEDDED */
5508 /* silence compiler warning */
5509 (void)task;
5510 #endif /* !CONFIG_EMBEDDED */
5511 return gpu_time;
5512 }
5513
5514 /*
5515 * task_energy
5516 *
5517 * Returns the total energy used by the all the threads of the task
5518 * (both dead and alive)
5519 */
5520 uint64_t
5521 task_energy(
5522 task_t task)
5523 {
5524 uint64_t energy = 0;
5525 thread_t thread;
5526
5527 task_lock(task);
5528 energy += task->task_energy;
5529
5530 queue_iterate(&task->threads, thread, thread_t, task_threads) {
5531 spl_t x;
5532 x = splsched();
5533 thread_lock(thread);
5534 energy += ml_energy_stat(thread);
5535 thread_unlock(thread);
5536 splx(x);
5537 }
5538
5539 task_unlock(task);
5540 return energy;
5541 }
5542
5543
5544 uint64_t
5545 task_cpu_ptime(
5546 __unused task_t task)
5547 {
5548 return 0;
5549 }
5550
5551
5552 /* This function updates the cpu time in the arrays for each
5553 * effective and requested QoS class
5554 */
5555 void
5556 task_update_cpu_time_qos_stats(
5557 task_t task,
5558 uint64_t *eqos_stats,
5559 uint64_t *rqos_stats)
5560 {
5561 if (!eqos_stats && !rqos_stats) {
5562 return;
5563 }
5564
5565 task_lock(task);
5566 thread_t thread;
5567 queue_iterate(&task->threads, thread, thread_t, task_threads) {
5568 if (thread->options & TH_OPT_IDLE_THREAD) {
5569 continue;
5570 }
5571
5572 thread_update_qos_cpu_time(thread);
5573 }
5574
5575 if (eqos_stats) {
5576 eqos_stats[THREAD_QOS_DEFAULT] += task->cpu_time_eqos_stats.cpu_time_qos_default;
5577 eqos_stats[THREAD_QOS_MAINTENANCE] += task->cpu_time_eqos_stats.cpu_time_qos_maintenance;
5578 eqos_stats[THREAD_QOS_BACKGROUND] += task->cpu_time_eqos_stats.cpu_time_qos_background;
5579 eqos_stats[THREAD_QOS_UTILITY] += task->cpu_time_eqos_stats.cpu_time_qos_utility;
5580 eqos_stats[THREAD_QOS_LEGACY] += task->cpu_time_eqos_stats.cpu_time_qos_legacy;
5581 eqos_stats[THREAD_QOS_USER_INITIATED] += task->cpu_time_eqos_stats.cpu_time_qos_user_initiated;
5582 eqos_stats[THREAD_QOS_USER_INTERACTIVE] += task->cpu_time_eqos_stats.cpu_time_qos_user_interactive;
5583 }
5584
5585 if (rqos_stats) {
5586 rqos_stats[THREAD_QOS_DEFAULT] += task->cpu_time_rqos_stats.cpu_time_qos_default;
5587 rqos_stats[THREAD_QOS_MAINTENANCE] += task->cpu_time_rqos_stats.cpu_time_qos_maintenance;
5588 rqos_stats[THREAD_QOS_BACKGROUND] += task->cpu_time_rqos_stats.cpu_time_qos_background;
5589 rqos_stats[THREAD_QOS_UTILITY] += task->cpu_time_rqos_stats.cpu_time_qos_utility;
5590 rqos_stats[THREAD_QOS_LEGACY] += task->cpu_time_rqos_stats.cpu_time_qos_legacy;
5591 rqos_stats[THREAD_QOS_USER_INITIATED] += task->cpu_time_rqos_stats.cpu_time_qos_user_initiated;
5592 rqos_stats[THREAD_QOS_USER_INTERACTIVE] += task->cpu_time_rqos_stats.cpu_time_qos_user_interactive;
5593 }
5594
5595 task_unlock(task);
5596 }
5597
5598 kern_return_t
5599 task_purgable_info(
5600 task_t task,
5601 task_purgable_info_t *stats)
5602 {
5603 if (task == TASK_NULL || stats == NULL) {
5604 return KERN_INVALID_ARGUMENT;
5605 }
5606 /* Take task reference */
5607 task_reference(task);
5608 vm_purgeable_stats((vm_purgeable_info_t)stats, task);
5609 /* Drop task reference */
5610 task_deallocate(task);
5611 return KERN_SUCCESS;
5612 }
5613
5614 void
5615 task_vtimer_set(
5616 task_t task,
5617 integer_t which)
5618 {
5619 thread_t thread;
5620 spl_t x;
5621
5622 task_lock(task);
5623
5624 task->vtimers |= which;
5625
5626 switch (which) {
5627 case TASK_VTIMER_USER:
5628 queue_iterate(&task->threads, thread, thread_t, task_threads) {
5629 x = splsched();
5630 thread_lock(thread);
5631 if (thread->precise_user_kernel_time) {
5632 thread->vtimer_user_save = timer_grab(&thread->user_timer);
5633 } else {
5634 thread->vtimer_user_save = timer_grab(&thread->system_timer);
5635 }
5636 thread_unlock(thread);
5637 splx(x);
5638 }
5639 break;
5640
5641 case TASK_VTIMER_PROF:
5642 queue_iterate(&task->threads, thread, thread_t, task_threads) {
5643 x = splsched();
5644 thread_lock(thread);
5645 thread->vtimer_prof_save = timer_grab(&thread->user_timer);
5646 thread->vtimer_prof_save += timer_grab(&thread->system_timer);
5647 thread_unlock(thread);
5648 splx(x);
5649 }
5650 break;
5651
5652 case TASK_VTIMER_RLIM:
5653 queue_iterate(&task->threads, thread, thread_t, task_threads) {
5654 x = splsched();
5655 thread_lock(thread);
5656 thread->vtimer_rlim_save = timer_grab(&thread->user_timer);
5657 thread->vtimer_rlim_save += timer_grab(&thread->system_timer);
5658 thread_unlock(thread);
5659 splx(x);
5660 }
5661 break;
5662 }
5663
5664 task_unlock(task);
5665 }
5666
5667 void
5668 task_vtimer_clear(
5669 task_t task,
5670 integer_t which)
5671 {
5672 assert(task == current_task());
5673
5674 task_lock(task);
5675
5676 task->vtimers &= ~which;
5677
5678 task_unlock(task);
5679 }
5680
5681 void
5682 task_vtimer_update(
5683 __unused
5684 task_t task,
5685 integer_t which,
5686 uint32_t *microsecs)
5687 {
5688 thread_t thread = current_thread();
5689 uint32_t tdelt = 0;
5690 clock_sec_t secs = 0;
5691 uint64_t tsum;
5692
5693 assert(task == current_task());
5694
5695 spl_t s = splsched();
5696 thread_lock(thread);
5697
5698 if ((task->vtimers & which) != (uint32_t)which) {
5699 thread_unlock(thread);
5700 splx(s);
5701 return;
5702 }
5703
5704 switch (which) {
5705 case TASK_VTIMER_USER:
5706 if (thread->precise_user_kernel_time) {
5707 tdelt = (uint32_t)timer_delta(&thread->user_timer,
5708 &thread->vtimer_user_save);
5709 } else {
5710 tdelt = (uint32_t)timer_delta(&thread->system_timer,
5711 &thread->vtimer_user_save);
5712 }
5713 absolutetime_to_microtime(tdelt, &secs, microsecs);
5714 break;
5715
5716 case TASK_VTIMER_PROF:
5717 tsum = timer_grab(&thread->user_timer);
5718 tsum += timer_grab(&thread->system_timer);
5719 tdelt = (uint32_t)(tsum - thread->vtimer_prof_save);
5720 absolutetime_to_microtime(tdelt, &secs, microsecs);
5721 /* if the time delta is smaller than a usec, ignore */
5722 if (*microsecs != 0) {
5723 thread->vtimer_prof_save = tsum;
5724 }
5725 break;
5726
5727 case TASK_VTIMER_RLIM:
5728 tsum = timer_grab(&thread->user_timer);
5729 tsum += timer_grab(&thread->system_timer);
5730 tdelt = (uint32_t)(tsum - thread->vtimer_rlim_save);
5731 thread->vtimer_rlim_save = tsum;
5732 absolutetime_to_microtime(tdelt, &secs, microsecs);
5733 break;
5734 }
5735
5736 thread_unlock(thread);
5737 splx(s);
5738 }
5739
5740 /*
5741 * task_assign:
5742 *
5743 * Change the assigned processor set for the task
5744 */
5745 kern_return_t
5746 task_assign(
5747 __unused task_t task,
5748 __unused processor_set_t new_pset,
5749 __unused boolean_t assign_threads)
5750 {
5751 return KERN_FAILURE;
5752 }
5753
5754 /*
5755 * task_assign_default:
5756 *
5757 * Version of task_assign to assign to default processor set.
5758 */
5759 kern_return_t
5760 task_assign_default(
5761 task_t task,
5762 boolean_t assign_threads)
5763 {
5764 return task_assign(task, &pset0, assign_threads);
5765 }
5766
5767 /*
5768 * task_get_assignment
5769 *
5770 * Return name of processor set that task is assigned to.
5771 */
5772 kern_return_t
5773 task_get_assignment(
5774 task_t task,
5775 processor_set_t *pset)
5776 {
5777 if (!task || !task->active) {
5778 return KERN_FAILURE;
5779 }
5780
5781 *pset = &pset0;
5782
5783 return KERN_SUCCESS;
5784 }
5785
5786 uint64_t
5787 get_task_dispatchqueue_offset(
5788 task_t task)
5789 {
5790 return task->dispatchqueue_offset;
5791 }
5792
5793 /*
5794 * task_policy
5795 *
5796 * Set scheduling policy and parameters, both base and limit, for
5797 * the given task. Policy must be a policy which is enabled for the
5798 * processor set. Change contained threads if requested.
5799 */
5800 kern_return_t
5801 task_policy(
5802 __unused task_t task,
5803 __unused policy_t policy_id,
5804 __unused policy_base_t base,
5805 __unused mach_msg_type_number_t count,
5806 __unused boolean_t set_limit,
5807 __unused boolean_t change)
5808 {
5809 return KERN_FAILURE;
5810 }
5811
5812 /*
5813 * task_set_policy
5814 *
5815 * Set scheduling policy and parameters, both base and limit, for
5816 * the given task. Policy can be any policy implemented by the
5817 * processor set, whether enabled or not. Change contained threads
5818 * if requested.
5819 */
5820 kern_return_t
5821 task_set_policy(
5822 __unused task_t task,
5823 __unused processor_set_t pset,
5824 __unused policy_t policy_id,
5825 __unused policy_base_t base,
5826 __unused mach_msg_type_number_t base_count,
5827 __unused policy_limit_t limit,
5828 __unused mach_msg_type_number_t limit_count,
5829 __unused boolean_t change)
5830 {
5831 return KERN_FAILURE;
5832 }
5833
5834 kern_return_t
5835 task_set_ras_pc(
5836 __unused task_t task,
5837 __unused vm_offset_t pc,
5838 __unused vm_offset_t endpc)
5839 {
5840 return KERN_FAILURE;
5841 }
5842
5843 void
5844 task_synchronizer_destroy_all(task_t task)
5845 {
5846 /*
5847 * Destroy owned semaphores
5848 */
5849 semaphore_destroy_all(task);
5850 }
5851
5852 /*
5853 * Install default (machine-dependent) initial thread state
5854 * on the task. Subsequent thread creation will have this initial
5855 * state set on the thread by machine_thread_inherit_taskwide().
5856 * Flavors and structures are exactly the same as those to thread_set_state()
5857 */
5858 kern_return_t
5859 task_set_state(
5860 task_t task,
5861 int flavor,
5862 thread_state_t state,
5863 mach_msg_type_number_t state_count)
5864 {
5865 kern_return_t ret;
5866
5867 if (task == TASK_NULL) {
5868 return KERN_INVALID_ARGUMENT;
5869 }
5870
5871 task_lock(task);
5872
5873 if (!task->active) {
5874 task_unlock(task);
5875 return KERN_FAILURE;
5876 }
5877
5878 ret = machine_task_set_state(task, flavor, state, state_count);
5879
5880 task_unlock(task);
5881 return ret;
5882 }
5883
5884 /*
5885 * Examine the default (machine-dependent) initial thread state
5886 * on the task, as set by task_set_state(). Flavors and structures
5887 * are exactly the same as those passed to thread_get_state().
5888 */
5889 kern_return_t
5890 task_get_state(
5891 task_t task,
5892 int flavor,
5893 thread_state_t state,
5894 mach_msg_type_number_t *state_count)
5895 {
5896 kern_return_t ret;
5897
5898 if (task == TASK_NULL) {
5899 return KERN_INVALID_ARGUMENT;
5900 }
5901
5902 task_lock(task);
5903
5904 if (!task->active) {
5905 task_unlock(task);
5906 return KERN_FAILURE;
5907 }
5908
5909 ret = machine_task_get_state(task, flavor, state, state_count);
5910
5911 task_unlock(task);
5912 return ret;
5913 }
5914
5915
5916 static kern_return_t __attribute__((noinline, not_tail_called))
5917 PROC_VIOLATED_GUARD__SEND_EXC_GUARD_AND_SUSPEND(
5918 mach_exception_code_t code,
5919 mach_exception_subcode_t subcode,
5920 void *reason)
5921 {
5922 #ifdef MACH_BSD
5923 if (1 == proc_selfpid()) {
5924 return KERN_NOT_SUPPORTED; // initproc is immune
5925 }
5926 #endif
5927 mach_exception_data_type_t codes[EXCEPTION_CODE_MAX] = {
5928 [0] = code,
5929 [1] = subcode,
5930 };
5931 task_t task = current_task();
5932 kern_return_t kr;
5933
5934 /* (See jetsam-related comments below) */
5935
5936 proc_memstat_terminated(task->bsd_info, TRUE);
5937 kr = task_enqueue_exception_with_corpse(task, EXC_GUARD, codes, 2, reason);
5938 proc_memstat_terminated(task->bsd_info, FALSE);
5939 return kr;
5940 }
5941
5942 kern_return_t
5943 task_violated_guard(
5944 mach_exception_code_t code,
5945 mach_exception_subcode_t subcode,
5946 void *reason)
5947 {
5948 return PROC_VIOLATED_GUARD__SEND_EXC_GUARD_AND_SUSPEND(code, subcode, reason);
5949 }
5950
5951
5952 #if CONFIG_MEMORYSTATUS
5953
5954 boolean_t
5955 task_get_memlimit_is_active(task_t task)
5956 {
5957 assert(task != NULL);
5958
5959 if (task->memlimit_is_active == 1) {
5960 return TRUE;
5961 } else {
5962 return FALSE;
5963 }
5964 }
5965
5966 void
5967 task_set_memlimit_is_active(task_t task, boolean_t memlimit_is_active)
5968 {
5969 assert(task != NULL);
5970
5971 if (memlimit_is_active) {
5972 task->memlimit_is_active = 1;
5973 } else {
5974 task->memlimit_is_active = 0;
5975 }
5976 }
5977
5978 boolean_t
5979 task_get_memlimit_is_fatal(task_t task)
5980 {
5981 assert(task != NULL);
5982
5983 if (task->memlimit_is_fatal == 1) {
5984 return TRUE;
5985 } else {
5986 return FALSE;
5987 }
5988 }
5989
5990 void
5991 task_set_memlimit_is_fatal(task_t task, boolean_t memlimit_is_fatal)
5992 {
5993 assert(task != NULL);
5994
5995 if (memlimit_is_fatal) {
5996 task->memlimit_is_fatal = 1;
5997 } else {
5998 task->memlimit_is_fatal = 0;
5999 }
6000 }
6001
6002 boolean_t
6003 task_has_triggered_exc_resource(task_t task, boolean_t memlimit_is_active)
6004 {
6005 boolean_t triggered = FALSE;
6006
6007 assert(task == current_task());
6008
6009 /*
6010 * Returns true, if task has already triggered an exc_resource exception.
6011 */
6012
6013 if (memlimit_is_active) {
6014 triggered = (task->memlimit_active_exc_resource ? TRUE : FALSE);
6015 } else {
6016 triggered = (task->memlimit_inactive_exc_resource ? TRUE : FALSE);
6017 }
6018
6019 return triggered;
6020 }
6021
6022 void
6023 task_mark_has_triggered_exc_resource(task_t task, boolean_t memlimit_is_active)
6024 {
6025 assert(task == current_task());
6026
6027 /*
6028 * We allow one exc_resource per process per active/inactive limit.
6029 * The limit's fatal attribute does not come into play.
6030 */
6031
6032 if (memlimit_is_active) {
6033 task->memlimit_active_exc_resource = 1;
6034 } else {
6035 task->memlimit_inactive_exc_resource = 1;
6036 }
6037 }
6038
6039 #define HWM_USERCORE_MINSPACE 250 // free space (in MB) required *after* core file creation
6040
6041 void __attribute__((noinline))
6042 PROC_CROSSED_HIGH_WATERMARK__SEND_EXC_RESOURCE_AND_SUSPEND(int max_footprint_mb, boolean_t is_fatal)
6043 {
6044 task_t task = current_task();
6045 int pid = 0;
6046 const char *procname = "unknown";
6047 mach_exception_data_type_t code[EXCEPTION_CODE_MAX];
6048 boolean_t send_sync_exc_resource = FALSE;
6049
6050 #ifdef MACH_BSD
6051 pid = proc_selfpid();
6052
6053 if (pid == 1) {
6054 /*
6055 * Cannot have ReportCrash analyzing
6056 * a suspended initproc.
6057 */
6058 return;
6059 }
6060
6061 if (task->bsd_info != NULL) {
6062 procname = proc_name_address(current_task()->bsd_info);
6063 send_sync_exc_resource = proc_send_synchronous_EXC_RESOURCE(current_task()->bsd_info);
6064 }
6065 #endif
6066 #if CONFIG_COREDUMP
6067 if (hwm_user_cores) {
6068 int error;
6069 uint64_t starttime, end;
6070 clock_sec_t secs = 0;
6071 uint32_t microsecs = 0;
6072
6073 starttime = mach_absolute_time();
6074 /*
6075 * Trigger a coredump of this process. Don't proceed unless we know we won't
6076 * be filling up the disk; and ignore the core size resource limit for this
6077 * core file.
6078 */
6079 if ((error = coredump(current_task()->bsd_info, HWM_USERCORE_MINSPACE, COREDUMP_IGNORE_ULIMIT)) != 0) {
6080 printf("couldn't take coredump of %s[%d]: %d\n", procname, pid, error);
6081 }
6082 /*
6083 * coredump() leaves the task suspended.
6084 */
6085 task_resume_internal(current_task());
6086
6087 end = mach_absolute_time();
6088 absolutetime_to_microtime(end - starttime, &secs, &microsecs);
6089 printf("coredump of %s[%d] taken in %d secs %d microsecs\n",
6090 proc_name_address(current_task()->bsd_info), pid, (int)secs, microsecs);
6091 }
6092 #endif /* CONFIG_COREDUMP */
6093
6094 if (disable_exc_resource) {
6095 printf("process %s[%d] crossed memory high watermark (%d MB); EXC_RESOURCE "
6096 "supressed by a boot-arg.\n", procname, pid, max_footprint_mb);
6097 return;
6098 }
6099
6100 /*
6101 * A task that has triggered an EXC_RESOURCE, should not be
6102 * jetsammed when the device is under memory pressure. Here
6103 * we set the P_MEMSTAT_TERMINATED flag so that the process
6104 * will be skipped if the memorystatus_thread wakes up.
6105 */
6106 proc_memstat_terminated(current_task()->bsd_info, TRUE);
6107
6108 code[0] = code[1] = 0;
6109 EXC_RESOURCE_ENCODE_TYPE(code[0], RESOURCE_TYPE_MEMORY);
6110 EXC_RESOURCE_ENCODE_FLAVOR(code[0], FLAVOR_HIGH_WATERMARK);
6111 EXC_RESOURCE_HWM_ENCODE_LIMIT(code[0], max_footprint_mb);
6112
6113 /*
6114 * Do not generate a corpse fork if the violation is a fatal one
6115 * or the process wants synchronous EXC_RESOURCE exceptions.
6116 */
6117 if (is_fatal || send_sync_exc_resource || exc_via_corpse_forking == 0) {
6118 /* Do not send a EXC_RESOURCE if corpse_for_fatal_memkill is set */
6119 if (send_sync_exc_resource || corpse_for_fatal_memkill == 0) {
6120 /*
6121 * Use the _internal_ variant so that no user-space
6122 * process can resume our task from under us.
6123 */
6124 task_suspend_internal(task);
6125 exception_triage(EXC_RESOURCE, code, EXCEPTION_CODE_MAX);
6126 task_resume_internal(task);
6127 }
6128 } else {
6129 if (audio_active) {
6130 printf("process %s[%d] crossed memory high watermark (%d MB); EXC_RESOURCE "
6131 "supressed due to audio playback.\n", procname, pid, max_footprint_mb);
6132 } else {
6133 task_enqueue_exception_with_corpse(task, EXC_RESOURCE,
6134 code, EXCEPTION_CODE_MAX, NULL);
6135 }
6136 }
6137
6138 /*
6139 * After the EXC_RESOURCE has been handled, we must clear the
6140 * P_MEMSTAT_TERMINATED flag so that the process can again be
6141 * considered for jetsam if the memorystatus_thread wakes up.
6142 */
6143 proc_memstat_terminated(current_task()->bsd_info, FALSE); /* clear the flag */
6144 }
6145
6146 /*
6147 * Callback invoked when a task exceeds its physical footprint limit.
6148 */
6149 void
6150 task_footprint_exceeded(int warning, __unused const void *param0, __unused const void *param1)
6151 {
6152 ledger_amount_t max_footprint, max_footprint_mb;
6153 task_t task;
6154 boolean_t is_warning;
6155 boolean_t memlimit_is_active;
6156 boolean_t memlimit_is_fatal;
6157
6158 if (warning == LEDGER_WARNING_DIPPED_BELOW) {
6159 /*
6160 * Task memory limits only provide a warning on the way up.
6161 */
6162 return;
6163 } else if (warning == LEDGER_WARNING_ROSE_ABOVE) {
6164 /*
6165 * This task is in danger of violating a memory limit,
6166 * It has exceeded a percentage level of the limit.
6167 */
6168 is_warning = TRUE;
6169 } else {
6170 /*
6171 * The task has exceeded the physical footprint limit.
6172 * This is not a warning but a true limit violation.
6173 */
6174 is_warning = FALSE;
6175 }
6176
6177 task = current_task();
6178
6179 ledger_get_limit(task->ledger, task_ledgers.phys_footprint, &max_footprint);
6180 max_footprint_mb = max_footprint >> 20;
6181
6182 memlimit_is_active = task_get_memlimit_is_active(task);
6183 memlimit_is_fatal = task_get_memlimit_is_fatal(task);
6184
6185 /*
6186 * If this is an actual violation (not a warning), then generate EXC_RESOURCE exception.
6187 * We only generate the exception once per process per memlimit (active/inactive limit).
6188 * To enforce this, we monitor state based on the memlimit's active/inactive attribute
6189 * and we disable it by marking that memlimit as exception triggered.
6190 */
6191 if ((is_warning == FALSE) && (!task_has_triggered_exc_resource(task, memlimit_is_active))) {
6192 PROC_CROSSED_HIGH_WATERMARK__SEND_EXC_RESOURCE_AND_SUSPEND((int)max_footprint_mb, memlimit_is_fatal);
6193 memorystatus_log_exception((int)max_footprint_mb, memlimit_is_active, memlimit_is_fatal);
6194 task_mark_has_triggered_exc_resource(task, memlimit_is_active);
6195 }
6196
6197 memorystatus_on_ledger_footprint_exceeded(is_warning, memlimit_is_active, memlimit_is_fatal);
6198 }
6199
6200 extern int proc_check_footprint_priv(void);
6201
6202 kern_return_t
6203 task_set_phys_footprint_limit(
6204 task_t task,
6205 int new_limit_mb,
6206 int *old_limit_mb)
6207 {
6208 kern_return_t error;
6209
6210 boolean_t memlimit_is_active;
6211 boolean_t memlimit_is_fatal;
6212
6213 if ((error = proc_check_footprint_priv())) {
6214 return KERN_NO_ACCESS;
6215 }
6216
6217 /*
6218 * This call should probably be obsoleted.
6219 * But for now, we default to current state.
6220 */
6221 memlimit_is_active = task_get_memlimit_is_active(task);
6222 memlimit_is_fatal = task_get_memlimit_is_fatal(task);
6223
6224 return task_set_phys_footprint_limit_internal(task, new_limit_mb, old_limit_mb, memlimit_is_active, memlimit_is_fatal);
6225 }
6226
6227 kern_return_t
6228 task_convert_phys_footprint_limit(
6229 int limit_mb,
6230 int *converted_limit_mb)
6231 {
6232 if (limit_mb == -1) {
6233 /*
6234 * No limit
6235 */
6236 if (max_task_footprint != 0) {
6237 *converted_limit_mb = (int)(max_task_footprint / 1024 / 1024); /* bytes to MB */
6238 } else {
6239 *converted_limit_mb = (int)(LEDGER_LIMIT_INFINITY >> 20);
6240 }
6241 } else {
6242 /* nothing to convert */
6243 *converted_limit_mb = limit_mb;
6244 }
6245 return KERN_SUCCESS;
6246 }
6247
6248
6249 kern_return_t
6250 task_set_phys_footprint_limit_internal(
6251 task_t task,
6252 int new_limit_mb,
6253 int *old_limit_mb,
6254 boolean_t memlimit_is_active,
6255 boolean_t memlimit_is_fatal)
6256 {
6257 ledger_amount_t old;
6258 kern_return_t ret;
6259
6260 ret = ledger_get_limit(task->ledger, task_ledgers.phys_footprint, &old);
6261
6262 if (ret != KERN_SUCCESS) {
6263 return ret;
6264 }
6265
6266 /*
6267 * Check that limit >> 20 will not give an "unexpected" 32-bit
6268 * result. There are, however, implicit assumptions that -1 mb limit
6269 * equates to LEDGER_LIMIT_INFINITY.
6270 */
6271 assert(((old & 0xFFF0000000000000LL) == 0) || (old == LEDGER_LIMIT_INFINITY));
6272
6273 if (old_limit_mb) {
6274 *old_limit_mb = (int)(old >> 20);
6275 }
6276
6277 if (new_limit_mb == -1) {
6278 /*
6279 * Caller wishes to remove the limit.
6280 */
6281 ledger_set_limit(task->ledger, task_ledgers.phys_footprint,
6282 max_task_footprint ? max_task_footprint : LEDGER_LIMIT_INFINITY,
6283 max_task_footprint ? max_task_footprint_warning_level : 0);
6284
6285 task_lock(task);
6286 task_set_memlimit_is_active(task, memlimit_is_active);
6287 task_set_memlimit_is_fatal(task, memlimit_is_fatal);
6288 task_unlock(task);
6289
6290 return KERN_SUCCESS;
6291 }
6292
6293 #ifdef CONFIG_NOMONITORS
6294 return KERN_SUCCESS;
6295 #endif /* CONFIG_NOMONITORS */
6296
6297 task_lock(task);
6298
6299 if ((memlimit_is_active == task_get_memlimit_is_active(task)) &&
6300 (memlimit_is_fatal == task_get_memlimit_is_fatal(task)) &&
6301 (((ledger_amount_t)new_limit_mb << 20) == old)) {
6302 /*
6303 * memlimit state is not changing
6304 */
6305 task_unlock(task);
6306 return KERN_SUCCESS;
6307 }
6308
6309 task_set_memlimit_is_active(task, memlimit_is_active);
6310 task_set_memlimit_is_fatal(task, memlimit_is_fatal);
6311
6312 ledger_set_limit(task->ledger, task_ledgers.phys_footprint,
6313 (ledger_amount_t)new_limit_mb << 20, PHYS_FOOTPRINT_WARNING_LEVEL);
6314
6315 if (task == current_task()) {
6316 ledger_check_new_balance(current_thread(), task->ledger,
6317 task_ledgers.phys_footprint);
6318 }
6319
6320 task_unlock(task);
6321
6322 return KERN_SUCCESS;
6323 }
6324
6325 kern_return_t
6326 task_get_phys_footprint_limit(
6327 task_t task,
6328 int *limit_mb)
6329 {
6330 ledger_amount_t limit;
6331 kern_return_t ret;
6332
6333 ret = ledger_get_limit(task->ledger, task_ledgers.phys_footprint, &limit);
6334 if (ret != KERN_SUCCESS) {
6335 return ret;
6336 }
6337
6338 /*
6339 * Check that limit >> 20 will not give an "unexpected" signed, 32-bit
6340 * result. There are, however, implicit assumptions that -1 mb limit
6341 * equates to LEDGER_LIMIT_INFINITY.
6342 */
6343 assert(((limit & 0xFFF0000000000000LL) == 0) || (limit == LEDGER_LIMIT_INFINITY));
6344 *limit_mb = (int)(limit >> 20);
6345
6346 return KERN_SUCCESS;
6347 }
6348 #else /* CONFIG_MEMORYSTATUS */
6349 kern_return_t
6350 task_set_phys_footprint_limit(
6351 __unused task_t task,
6352 __unused int new_limit_mb,
6353 __unused int *old_limit_mb)
6354 {
6355 return KERN_FAILURE;
6356 }
6357
6358 kern_return_t
6359 task_get_phys_footprint_limit(
6360 __unused task_t task,
6361 __unused int *limit_mb)
6362 {
6363 return KERN_FAILURE;
6364 }
6365 #endif /* CONFIG_MEMORYSTATUS */
6366
6367 void
6368 task_set_thread_limit(task_t task, uint16_t thread_limit)
6369 {
6370 assert(task != kernel_task);
6371 if (thread_limit <= TASK_MAX_THREAD_LIMIT) {
6372 task_lock(task);
6373 task->task_thread_limit = thread_limit;
6374 task_unlock(task);
6375 }
6376 }
6377
6378 /*
6379 * We need to export some functions to other components that
6380 * are currently implemented in macros within the osfmk
6381 * component. Just export them as functions of the same name.
6382 */
6383 boolean_t
6384 is_kerneltask(task_t t)
6385 {
6386 if (t == kernel_task) {
6387 return TRUE;
6388 }
6389
6390 return FALSE;
6391 }
6392
6393 boolean_t
6394 is_corpsetask(task_t t)
6395 {
6396 return task_is_a_corpse(t);
6397 }
6398
6399 #undef current_task
6400 task_t current_task(void);
6401 task_t
6402 current_task(void)
6403 {
6404 return current_task_fast();
6405 }
6406
6407 #undef task_reference
6408 void task_reference(task_t task);
6409 void
6410 task_reference(
6411 task_t task)
6412 {
6413 if (task != TASK_NULL) {
6414 task_reference_internal(task);
6415 }
6416 }
6417
6418 /* defined in bsd/kern/kern_prot.c */
6419 extern int get_audit_token_pid(audit_token_t *audit_token);
6420
6421 int
6422 task_pid(task_t task)
6423 {
6424 if (task) {
6425 return get_audit_token_pid(&task->audit_token);
6426 }
6427 return -1;
6428 }
6429
6430
6431 /*
6432 * This routine finds a thread in a task by its unique id
6433 * Returns a referenced thread or THREAD_NULL if the thread was not found
6434 *
6435 * TODO: This is super inefficient - it's an O(threads in task) list walk!
6436 * We should make a tid hash, or transition all tid clients to thread ports
6437 *
6438 * Precondition: No locks held (will take task lock)
6439 */
6440 thread_t
6441 task_findtid(task_t task, uint64_t tid)
6442 {
6443 thread_t self = current_thread();
6444 thread_t found_thread = THREAD_NULL;
6445 thread_t iter_thread = THREAD_NULL;
6446
6447 /* Short-circuit the lookup if we're looking up ourselves */
6448 if (tid == self->thread_id || tid == TID_NULL) {
6449 assert(self->task == task);
6450
6451 thread_reference(self);
6452
6453 return self;
6454 }
6455
6456 task_lock(task);
6457
6458 queue_iterate(&task->threads, iter_thread, thread_t, task_threads) {
6459 if (iter_thread->thread_id == tid) {
6460 found_thread = iter_thread;
6461 thread_reference(found_thread);
6462 break;
6463 }
6464 }
6465
6466 task_unlock(task);
6467
6468 return found_thread;
6469 }
6470
6471 int
6472 pid_from_task(task_t task)
6473 {
6474 int pid = -1;
6475
6476 if (task->bsd_info) {
6477 pid = proc_pid(task->bsd_info);
6478 } else {
6479 pid = task_pid(task);
6480 }
6481
6482 return pid;
6483 }
6484
6485 /*
6486 * Control the CPU usage monitor for a task.
6487 */
6488 kern_return_t
6489 task_cpu_usage_monitor_ctl(task_t task, uint32_t *flags)
6490 {
6491 int error = KERN_SUCCESS;
6492
6493 if (*flags & CPUMON_MAKE_FATAL) {
6494 task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_FATAL_CPUMON;
6495 } else {
6496 error = KERN_INVALID_ARGUMENT;
6497 }
6498
6499 return error;
6500 }
6501
6502 /*
6503 * Control the wakeups monitor for a task.
6504 */
6505 kern_return_t
6506 task_wakeups_monitor_ctl(task_t task, uint32_t *flags, int32_t *rate_hz)
6507 {
6508 ledger_t ledger = task->ledger;
6509
6510 task_lock(task);
6511 if (*flags & WAKEMON_GET_PARAMS) {
6512 ledger_amount_t limit;
6513 uint64_t period;
6514
6515 ledger_get_limit(ledger, task_ledgers.interrupt_wakeups, &limit);
6516 ledger_get_period(ledger, task_ledgers.interrupt_wakeups, &period);
6517
6518 if (limit != LEDGER_LIMIT_INFINITY) {
6519 /*
6520 * An active limit means the wakeups monitor is enabled.
6521 */
6522 *rate_hz = (int32_t)(limit / (int64_t)(period / NSEC_PER_SEC));
6523 *flags = WAKEMON_ENABLE;
6524 if (task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_FATAL_WAKEUPSMON) {
6525 *flags |= WAKEMON_MAKE_FATAL;
6526 }
6527 } else {
6528 *flags = WAKEMON_DISABLE;
6529 *rate_hz = -1;
6530 }
6531
6532 /*
6533 * If WAKEMON_GET_PARAMS is present in flags, all other flags are ignored.
6534 */
6535 task_unlock(task);
6536 return KERN_SUCCESS;
6537 }
6538
6539 if (*flags & WAKEMON_ENABLE) {
6540 if (*flags & WAKEMON_SET_DEFAULTS) {
6541 *rate_hz = task_wakeups_monitor_rate;
6542 }
6543
6544 #ifndef CONFIG_NOMONITORS
6545 if (*flags & WAKEMON_MAKE_FATAL) {
6546 task->rusage_cpu_flags |= TASK_RUSECPU_FLAGS_FATAL_WAKEUPSMON;
6547 }
6548 #endif /* CONFIG_NOMONITORS */
6549
6550 if (*rate_hz <= 0) {
6551 task_unlock(task);
6552 return KERN_INVALID_ARGUMENT;
6553 }
6554
6555 #ifndef CONFIG_NOMONITORS
6556 ledger_set_limit(ledger, task_ledgers.interrupt_wakeups, *rate_hz * task_wakeups_monitor_interval,
6557 task_wakeups_monitor_ustackshots_trigger_pct);
6558 ledger_set_period(ledger, task_ledgers.interrupt_wakeups, task_wakeups_monitor_interval * NSEC_PER_SEC);
6559 ledger_enable_callback(ledger, task_ledgers.interrupt_wakeups);
6560 #endif /* CONFIG_NOMONITORS */
6561 } else if (*flags & WAKEMON_DISABLE) {
6562 /*
6563 * Caller wishes to disable wakeups monitor on the task.
6564 *
6565 * Disable telemetry if it was triggered by the wakeups monitor, and
6566 * remove the limit & callback on the wakeups ledger entry.
6567 */
6568 #if CONFIG_TELEMETRY
6569 telemetry_task_ctl_locked(task, TF_WAKEMON_WARNING, 0);
6570 #endif
6571 ledger_disable_refill(ledger, task_ledgers.interrupt_wakeups);
6572 ledger_disable_callback(ledger, task_ledgers.interrupt_wakeups);
6573 }
6574
6575 task_unlock(task);
6576 return KERN_SUCCESS;
6577 }
6578
6579 void
6580 task_wakeups_rate_exceeded(int warning, __unused const void *param0, __unused const void *param1)
6581 {
6582 if (warning == LEDGER_WARNING_ROSE_ABOVE) {
6583 #if CONFIG_TELEMETRY
6584 /*
6585 * This task is in danger of violating the wakeups monitor. Enable telemetry on this task
6586 * so there are micro-stackshots available if and when EXC_RESOURCE is triggered.
6587 */
6588 telemetry_task_ctl(current_task(), TF_WAKEMON_WARNING, 1);
6589 #endif
6590 return;
6591 }
6592
6593 #if CONFIG_TELEMETRY
6594 /*
6595 * If the balance has dipped below the warning level (LEDGER_WARNING_DIPPED_BELOW) or
6596 * exceeded the limit, turn telemetry off for the task.
6597 */
6598 telemetry_task_ctl(current_task(), TF_WAKEMON_WARNING, 0);
6599 #endif
6600
6601 if (warning == 0) {
6602 SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MANY_WAKEUPS();
6603 }
6604 }
6605
6606 void __attribute__((noinline))
6607 SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MANY_WAKEUPS(void)
6608 {
6609 task_t task = current_task();
6610 int pid = 0;
6611 const char *procname = "unknown";
6612 boolean_t fatal;
6613 kern_return_t kr;
6614 #ifdef EXC_RESOURCE_MONITORS
6615 mach_exception_data_type_t code[EXCEPTION_CODE_MAX];
6616 #endif /* EXC_RESOURCE_MONITORS */
6617 struct ledger_entry_info lei;
6618
6619 #ifdef MACH_BSD
6620 pid = proc_selfpid();
6621 if (task->bsd_info != NULL) {
6622 procname = proc_name_address(current_task()->bsd_info);
6623 }
6624 #endif
6625
6626 ledger_get_entry_info(task->ledger, task_ledgers.interrupt_wakeups, &lei);
6627
6628 /*
6629 * Disable the exception notification so we don't overwhelm
6630 * the listener with an endless stream of redundant exceptions.
6631 * TODO: detect whether another thread is already reporting the violation.
6632 */
6633 uint32_t flags = WAKEMON_DISABLE;
6634 task_wakeups_monitor_ctl(task, &flags, NULL);
6635
6636 fatal = task->rusage_cpu_flags & TASK_RUSECPU_FLAGS_FATAL_WAKEUPSMON;
6637 trace_resource_violation(RMON_CPUWAKES_VIOLATED, &lei);
6638 os_log(OS_LOG_DEFAULT, "process %s[%d] caught waking the CPU %llu times "
6639 "over ~%llu seconds, averaging %llu wakes / second and "
6640 "violating a %slimit of %llu wakes over %llu seconds.\n",
6641 procname, pid,
6642 lei.lei_balance, lei.lei_last_refill / NSEC_PER_SEC,
6643 lei.lei_last_refill == 0 ? 0 :
6644 (NSEC_PER_SEC * lei.lei_balance / lei.lei_last_refill),
6645 fatal ? "FATAL " : "",
6646 lei.lei_limit, lei.lei_refill_period / NSEC_PER_SEC);
6647
6648 kr = send_resource_violation(send_cpu_wakes_violation, task, &lei,
6649 fatal ? kRNFatalLimitFlag : 0);
6650 if (kr) {
6651 printf("send_resource_violation(CPU wakes, ...): error %#x\n", kr);
6652 }
6653
6654 #ifdef EXC_RESOURCE_MONITORS
6655 if (disable_exc_resource) {
6656 printf("process %s[%d] caught causing excessive wakeups. EXC_RESOURCE "
6657 "supressed by a boot-arg\n", procname, pid);
6658 return;
6659 }
6660 if (audio_active) {
6661 os_log(OS_LOG_DEFAULT, "process %s[%d] caught causing excessive wakeups. EXC_RESOURCE "
6662 "supressed due to audio playback\n", procname, pid);
6663 return;
6664 }
6665 if (lei.lei_last_refill == 0) {
6666 os_log(OS_LOG_DEFAULT, "process %s[%d] caught causing excessive wakeups. EXC_RESOURCE "
6667 "supressed due to lei.lei_last_refill = 0 \n", procname, pid);
6668 }
6669
6670 code[0] = code[1] = 0;
6671 EXC_RESOURCE_ENCODE_TYPE(code[0], RESOURCE_TYPE_WAKEUPS);
6672 EXC_RESOURCE_ENCODE_FLAVOR(code[0], FLAVOR_WAKEUPS_MONITOR);
6673 EXC_RESOURCE_CPUMONITOR_ENCODE_WAKEUPS_PERMITTED(code[0],
6674 NSEC_PER_SEC * lei.lei_limit / lei.lei_refill_period);
6675 EXC_RESOURCE_CPUMONITOR_ENCODE_OBSERVATION_INTERVAL(code[0],
6676 lei.lei_last_refill);
6677 EXC_RESOURCE_CPUMONITOR_ENCODE_WAKEUPS_OBSERVED(code[1],
6678 NSEC_PER_SEC * lei.lei_balance / lei.lei_last_refill);
6679 exception_triage(EXC_RESOURCE, code, EXCEPTION_CODE_MAX);
6680 #endif /* EXC_RESOURCE_MONITORS */
6681
6682 if (fatal) {
6683 task_terminate_internal(task);
6684 }
6685 }
6686
6687 static boolean_t
6688 global_update_logical_writes(int64_t io_delta, int64_t *global_write_count)
6689 {
6690 int64_t old_count, new_count;
6691 boolean_t needs_telemetry;
6692
6693 do {
6694 new_count = old_count = *global_write_count;
6695 new_count += io_delta;
6696 if (new_count >= io_telemetry_limit) {
6697 new_count = 0;
6698 needs_telemetry = TRUE;
6699 } else {
6700 needs_telemetry = FALSE;
6701 }
6702 } while (!OSCompareAndSwap64(old_count, new_count, global_write_count));
6703 return needs_telemetry;
6704 }
6705
6706 void
6707 task_update_logical_writes(task_t task, uint32_t io_size, int flags, void *vp)
6708 {
6709 int64_t io_delta = 0;
6710 int64_t * global_counter_to_update;
6711 boolean_t needs_telemetry = FALSE;
6712 int ledger_to_update = 0;
6713 struct task_writes_counters * writes_counters_to_update;
6714
6715 if ((!task) || (!io_size) || (!vp)) {
6716 return;
6717 }
6718
6719 KERNEL_DEBUG_CONSTANT((MACHDBG_CODE(DBG_MACH_VM, VM_DATA_WRITE)) | DBG_FUNC_NONE,
6720 task_pid(task), io_size, flags, (uintptr_t)VM_KERNEL_ADDRPERM(vp), 0);
6721 DTRACE_IO4(logical_writes, struct task *, task, uint32_t, io_size, int, flags, vnode *, vp);
6722
6723 // Is the drive backing this vnode internal or external to the system?
6724 if (vnode_isonexternalstorage(vp) == false) {
6725 global_counter_to_update = &global_logical_writes_count;
6726 ledger_to_update = task_ledgers.logical_writes;
6727 writes_counters_to_update = &task->task_writes_counters_internal;
6728 } else {
6729 global_counter_to_update = &global_logical_writes_to_external_count;
6730 ledger_to_update = task_ledgers.logical_writes_to_external;
6731 writes_counters_to_update = &task->task_writes_counters_external;
6732 }
6733
6734 switch (flags) {
6735 case TASK_WRITE_IMMEDIATE:
6736 OSAddAtomic64(io_size, (SInt64 *)&(writes_counters_to_update->task_immediate_writes));
6737 ledger_credit(task->ledger, ledger_to_update, io_size);
6738 coalition_io_ledger_update(task, FLAVOR_IO_LOGICAL_WRITES, TRUE, io_size);
6739 break;
6740 case TASK_WRITE_DEFERRED:
6741 OSAddAtomic64(io_size, (SInt64 *)&(writes_counters_to_update->task_deferred_writes));
6742 ledger_credit(task->ledger, ledger_to_update, io_size);
6743 coalition_io_ledger_update(task, FLAVOR_IO_LOGICAL_WRITES, TRUE, io_size);
6744 break;
6745 case TASK_WRITE_INVALIDATED:
6746 OSAddAtomic64(io_size, (SInt64 *)&(writes_counters_to_update->task_invalidated_writes));
6747 ledger_debit(task->ledger, ledger_to_update, io_size);
6748 coalition_io_ledger_update(task, FLAVOR_IO_LOGICAL_WRITES, FALSE, io_size);
6749 break;
6750 case TASK_WRITE_METADATA:
6751 OSAddAtomic64(io_size, (SInt64 *)&(writes_counters_to_update->task_metadata_writes));
6752 ledger_credit(task->ledger, ledger_to_update, io_size);
6753 coalition_io_ledger_update(task, FLAVOR_IO_LOGICAL_WRITES, TRUE, io_size);
6754 break;
6755 }
6756
6757 io_delta = (flags == TASK_WRITE_INVALIDATED) ? ((int64_t)io_size * -1ll) : ((int64_t)io_size);
6758 if (io_telemetry_limit != 0) {
6759 /* If io_telemetry_limit is 0, disable global updates and I/O telemetry */
6760 needs_telemetry = global_update_logical_writes(io_delta, global_counter_to_update);
6761 if (needs_telemetry) {
6762 act_set_io_telemetry_ast(current_thread());
6763 }
6764 }
6765 }
6766
6767 /*
6768 * Control the I/O monitor for a task.
6769 */
6770 kern_return_t
6771 task_io_monitor_ctl(task_t task, uint32_t *flags)
6772 {
6773 ledger_t ledger = task->ledger;
6774
6775 task_lock(task);
6776 if (*flags & IOMON_ENABLE) {
6777 /* Configure the physical I/O ledger */
6778 ledger_set_limit(ledger, task_ledgers.physical_writes, (task_iomon_limit_mb * 1024 * 1024), 0);
6779 ledger_set_period(ledger, task_ledgers.physical_writes, (task_iomon_interval_secs * NSEC_PER_SEC));
6780 } else if (*flags & IOMON_DISABLE) {
6781 /*
6782 * Caller wishes to disable I/O monitor on the task.
6783 */
6784 ledger_disable_refill(ledger, task_ledgers.physical_writes);
6785 ledger_disable_callback(ledger, task_ledgers.physical_writes);
6786 }
6787
6788 task_unlock(task);
6789 return KERN_SUCCESS;
6790 }
6791
6792 void
6793 task_io_rate_exceeded(int warning, const void *param0, __unused const void *param1)
6794 {
6795 if (warning == 0) {
6796 SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MUCH_IO((int)param0);
6797 }
6798 }
6799
6800 void __attribute__((noinline))
6801 SENDING_NOTIFICATION__THIS_PROCESS_IS_CAUSING_TOO_MUCH_IO(int flavor)
6802 {
6803 int pid = 0;
6804 task_t task = current_task();
6805 #ifdef EXC_RESOURCE_MONITORS
6806 mach_exception_data_type_t code[EXCEPTION_CODE_MAX];
6807 #endif /* EXC_RESOURCE_MONITORS */
6808 struct ledger_entry_info lei;
6809 kern_return_t kr;
6810
6811 #ifdef MACH_BSD
6812 pid = proc_selfpid();
6813 #endif
6814 /*
6815 * Get the ledger entry info. We need to do this before disabling the exception
6816 * to get correct values for all fields.
6817 */
6818 switch (flavor) {
6819 case FLAVOR_IO_PHYSICAL_WRITES:
6820 ledger_get_entry_info(task->ledger, task_ledgers.physical_writes, &lei);
6821 break;
6822 }
6823
6824
6825 /*
6826 * Disable the exception notification so we don't overwhelm
6827 * the listener with an endless stream of redundant exceptions.
6828 * TODO: detect whether another thread is already reporting the violation.
6829 */
6830 uint32_t flags = IOMON_DISABLE;
6831 task_io_monitor_ctl(task, &flags);
6832
6833 if (flavor == FLAVOR_IO_LOGICAL_WRITES) {
6834 trace_resource_violation(RMON_LOGWRITES_VIOLATED, &lei);
6835 }
6836 os_log(OS_LOG_DEFAULT, "process [%d] caught causing excessive I/O (flavor: %d). Task I/O: %lld MB. [Limit : %lld MB per %lld secs]\n",
6837 pid, flavor, (lei.lei_balance / (1024 * 1024)), (lei.lei_limit / (1024 * 1024)), (lei.lei_refill_period / NSEC_PER_SEC));
6838
6839 kr = send_resource_violation(send_disk_writes_violation, task, &lei, kRNFlagsNone);
6840 if (kr) {
6841 printf("send_resource_violation(disk_writes, ...): error %#x\n", kr);
6842 }
6843
6844 #ifdef EXC_RESOURCE_MONITORS
6845 code[0] = code[1] = 0;
6846 EXC_RESOURCE_ENCODE_TYPE(code[0], RESOURCE_TYPE_IO);
6847 EXC_RESOURCE_ENCODE_FLAVOR(code[0], flavor);
6848 EXC_RESOURCE_IO_ENCODE_INTERVAL(code[0], (lei.lei_refill_period / NSEC_PER_SEC));
6849 EXC_RESOURCE_IO_ENCODE_LIMIT(code[0], (lei.lei_limit / (1024 * 1024)));
6850 EXC_RESOURCE_IO_ENCODE_OBSERVED(code[1], (lei.lei_balance / (1024 * 1024)));
6851 exception_triage(EXC_RESOURCE, code, EXCEPTION_CODE_MAX);
6852 #endif /* EXC_RESOURCE_MONITORS */
6853 }
6854
6855 /* Placeholders for the task set/get voucher interfaces */
6856 kern_return_t
6857 task_get_mach_voucher(
6858 task_t task,
6859 mach_voucher_selector_t __unused which,
6860 ipc_voucher_t *voucher)
6861 {
6862 if (TASK_NULL == task) {
6863 return KERN_INVALID_TASK;
6864 }
6865
6866 *voucher = NULL;
6867 return KERN_SUCCESS;
6868 }
6869
6870 kern_return_t
6871 task_set_mach_voucher(
6872 task_t task,
6873 ipc_voucher_t __unused voucher)
6874 {
6875 if (TASK_NULL == task) {
6876 return KERN_INVALID_TASK;
6877 }
6878
6879 return KERN_SUCCESS;
6880 }
6881
6882 kern_return_t
6883 task_swap_mach_voucher(
6884 __unused task_t task,
6885 __unused ipc_voucher_t new_voucher,
6886 ipc_voucher_t *in_out_old_voucher)
6887 {
6888 /*
6889 * Currently this function is only called from a MIG generated
6890 * routine which doesn't release the reference on the voucher
6891 * addressed by in_out_old_voucher. To avoid leaking this reference,
6892 * a call to release it has been added here.
6893 */
6894 ipc_voucher_release(*in_out_old_voucher);
6895 return KERN_NOT_SUPPORTED;
6896 }
6897
6898 void
6899 task_set_gpu_denied(task_t task, boolean_t denied)
6900 {
6901 task_lock(task);
6902
6903 if (denied) {
6904 task->t_flags |= TF_GPU_DENIED;
6905 } else {
6906 task->t_flags &= ~TF_GPU_DENIED;
6907 }
6908
6909 task_unlock(task);
6910 }
6911
6912 boolean_t
6913 task_is_gpu_denied(task_t task)
6914 {
6915 /* We don't need the lock to read this flag */
6916 return (task->t_flags & TF_GPU_DENIED) ? TRUE : FALSE;
6917 }
6918
6919
6920 uint64_t
6921 get_task_memory_region_count(task_t task)
6922 {
6923 vm_map_t map;
6924 map = (task == kernel_task) ? kernel_map: task->map;
6925 return (uint64_t)get_map_nentries(map);
6926 }
6927
6928 static void
6929 kdebug_trace_dyld_internal(uint32_t base_code,
6930 struct dyld_kernel_image_info *info)
6931 {
6932 static_assert(sizeof(info->uuid) >= 16);
6933
6934 #if defined(__LP64__)
6935 uint64_t *uuid = (uint64_t *)&(info->uuid);
6936
6937 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
6938 KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code), uuid[0],
6939 uuid[1], info->load_addr,
6940 (uint64_t)info->fsid.val[0] | ((uint64_t)info->fsid.val[1] << 32),
6941 0);
6942 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
6943 KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code + 1),
6944 (uint64_t)info->fsobjid.fid_objno |
6945 ((uint64_t)info->fsobjid.fid_generation << 32),
6946 0, 0, 0, 0);
6947 #else /* defined(__LP64__) */
6948 uint32_t *uuid = (uint32_t *)&(info->uuid);
6949
6950 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
6951 KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code + 2), uuid[0],
6952 uuid[1], uuid[2], uuid[3], 0);
6953 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
6954 KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code + 3),
6955 (uint32_t)info->load_addr, info->fsid.val[0], info->fsid.val[1],
6956 info->fsobjid.fid_objno, 0);
6957 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
6958 KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, base_code + 4),
6959 info->fsobjid.fid_generation, 0, 0, 0, 0);
6960 #endif /* !defined(__LP64__) */
6961 }
6962
6963 static kern_return_t
6964 kdebug_trace_dyld(task_t task, uint32_t base_code,
6965 vm_map_copy_t infos_copy, mach_msg_type_number_t infos_len)
6966 {
6967 kern_return_t kr;
6968 dyld_kernel_image_info_array_t infos;
6969 vm_map_offset_t map_data;
6970 vm_offset_t data;
6971
6972 if (!infos_copy) {
6973 return KERN_INVALID_ADDRESS;
6974 }
6975
6976 if (!kdebug_enable ||
6977 !kdebug_debugid_enabled(KDBG_EVENTID(DBG_DYLD, DBG_DYLD_UUID, 0))) {
6978 vm_map_copy_discard(infos_copy);
6979 return KERN_SUCCESS;
6980 }
6981
6982 if (task == NULL || task != current_task()) {
6983 return KERN_INVALID_TASK;
6984 }
6985
6986 kr = vm_map_copyout(ipc_kernel_map, &map_data, (vm_map_copy_t)infos_copy);
6987 if (kr != KERN_SUCCESS) {
6988 return kr;
6989 }
6990
6991 infos = CAST_DOWN(dyld_kernel_image_info_array_t, map_data);
6992
6993 for (mach_msg_type_number_t i = 0; i < infos_len; i++) {
6994 kdebug_trace_dyld_internal(base_code, &(infos[i]));
6995 }
6996
6997 data = CAST_DOWN(vm_offset_t, map_data);
6998 mach_vm_deallocate(ipc_kernel_map, data, infos_len * sizeof(infos[0]));
6999 return KERN_SUCCESS;
7000 }
7001
7002 kern_return_t
7003 task_register_dyld_image_infos(task_t task,
7004 dyld_kernel_image_info_array_t infos_copy,
7005 mach_msg_type_number_t infos_len)
7006 {
7007 return kdebug_trace_dyld(task, DBG_DYLD_UUID_MAP_A,
7008 (vm_map_copy_t)infos_copy, infos_len);
7009 }
7010
7011 kern_return_t
7012 task_unregister_dyld_image_infos(task_t task,
7013 dyld_kernel_image_info_array_t infos_copy,
7014 mach_msg_type_number_t infos_len)
7015 {
7016 return kdebug_trace_dyld(task, DBG_DYLD_UUID_UNMAP_A,
7017 (vm_map_copy_t)infos_copy, infos_len);
7018 }
7019
7020 kern_return_t
7021 task_get_dyld_image_infos(__unused task_t task,
7022 __unused dyld_kernel_image_info_array_t * dyld_images,
7023 __unused mach_msg_type_number_t * dyld_imagesCnt)
7024 {
7025 return KERN_NOT_SUPPORTED;
7026 }
7027
7028 kern_return_t
7029 task_register_dyld_shared_cache_image_info(task_t task,
7030 dyld_kernel_image_info_t cache_img,
7031 __unused boolean_t no_cache,
7032 __unused boolean_t private_cache)
7033 {
7034 if (task == NULL || task != current_task()) {
7035 return KERN_INVALID_TASK;
7036 }
7037
7038 kdebug_trace_dyld_internal(DBG_DYLD_UUID_SHARED_CACHE_A, &cache_img);
7039 return KERN_SUCCESS;
7040 }
7041
7042 kern_return_t
7043 task_register_dyld_set_dyld_state(__unused task_t task,
7044 __unused uint8_t dyld_state)
7045 {
7046 return KERN_NOT_SUPPORTED;
7047 }
7048
7049 kern_return_t
7050 task_register_dyld_get_process_state(__unused task_t task,
7051 __unused dyld_kernel_process_info_t * dyld_process_state)
7052 {
7053 return KERN_NOT_SUPPORTED;
7054 }
7055
7056 kern_return_t
7057 task_inspect(task_inspect_t task_insp, task_inspect_flavor_t flavor,
7058 task_inspect_info_t info_out, mach_msg_type_number_t *size_in_out)
7059 {
7060 #if MONOTONIC
7061 task_t task = (task_t)task_insp;
7062 kern_return_t kr = KERN_SUCCESS;
7063 mach_msg_type_number_t size;
7064
7065 if (task == TASK_NULL) {
7066 return KERN_INVALID_ARGUMENT;
7067 }
7068
7069 size = *size_in_out;
7070
7071 switch (flavor) {
7072 case TASK_INSPECT_BASIC_COUNTS: {
7073 struct task_inspect_basic_counts *bc;
7074 uint64_t task_counts[MT_CORE_NFIXED] = { 0 };
7075
7076 if (size < TASK_INSPECT_BASIC_COUNTS_COUNT) {
7077 kr = KERN_INVALID_ARGUMENT;
7078 break;
7079 }
7080
7081 mt_fixed_task_counts(task, task_counts);
7082 bc = (struct task_inspect_basic_counts *)info_out;
7083 #ifdef MT_CORE_INSTRS
7084 bc->instructions = task_counts[MT_CORE_INSTRS];
7085 #else /* defined(MT_CORE_INSTRS) */
7086 bc->instructions = 0;
7087 #endif /* !defined(MT_CORE_INSTRS) */
7088 bc->cycles = task_counts[MT_CORE_CYCLES];
7089 size = TASK_INSPECT_BASIC_COUNTS_COUNT;
7090 break;
7091 }
7092 default:
7093 kr = KERN_INVALID_ARGUMENT;
7094 break;
7095 }
7096
7097 if (kr == KERN_SUCCESS) {
7098 *size_in_out = size;
7099 }
7100 return kr;
7101 #else /* MONOTONIC */
7102 #pragma unused(task_insp, flavor, info_out, size_in_out)
7103 return KERN_NOT_SUPPORTED;
7104 #endif /* !MONOTONIC */
7105 }
7106
7107 #if CONFIG_SECLUDED_MEMORY
7108 int num_tasks_can_use_secluded_mem = 0;
7109
7110 void
7111 task_set_can_use_secluded_mem(
7112 task_t task,
7113 boolean_t can_use_secluded_mem)
7114 {
7115 if (!task->task_could_use_secluded_mem) {
7116 return;
7117 }
7118 task_lock(task);
7119 task_set_can_use_secluded_mem_locked(task, can_use_secluded_mem);
7120 task_unlock(task);
7121 }
7122
7123 void
7124 task_set_can_use_secluded_mem_locked(
7125 task_t task,
7126 boolean_t can_use_secluded_mem)
7127 {
7128 assert(task->task_could_use_secluded_mem);
7129 if (can_use_secluded_mem &&
7130 secluded_for_apps && /* global boot-arg */
7131 !task->task_can_use_secluded_mem) {
7132 assert(num_tasks_can_use_secluded_mem >= 0);
7133 OSAddAtomic(+1,
7134 (volatile SInt32 *)&num_tasks_can_use_secluded_mem);
7135 task->task_can_use_secluded_mem = TRUE;
7136 } else if (!can_use_secluded_mem &&
7137 task->task_can_use_secluded_mem) {
7138 assert(num_tasks_can_use_secluded_mem > 0);
7139 OSAddAtomic(-1,
7140 (volatile SInt32 *)&num_tasks_can_use_secluded_mem);
7141 task->task_can_use_secluded_mem = FALSE;
7142 }
7143 }
7144
7145 void
7146 task_set_could_use_secluded_mem(
7147 task_t task,
7148 boolean_t could_use_secluded_mem)
7149 {
7150 task->task_could_use_secluded_mem = could_use_secluded_mem;
7151 }
7152
7153 void
7154 task_set_could_also_use_secluded_mem(
7155 task_t task,
7156 boolean_t could_also_use_secluded_mem)
7157 {
7158 task->task_could_also_use_secluded_mem = could_also_use_secluded_mem;
7159 }
7160
7161 boolean_t
7162 task_can_use_secluded_mem(
7163 task_t task,
7164 boolean_t is_alloc)
7165 {
7166 if (task->task_can_use_secluded_mem) {
7167 assert(task->task_could_use_secluded_mem);
7168 assert(num_tasks_can_use_secluded_mem > 0);
7169 return TRUE;
7170 }
7171 if (task->task_could_also_use_secluded_mem &&
7172 num_tasks_can_use_secluded_mem > 0) {
7173 assert(num_tasks_can_use_secluded_mem > 0);
7174 return TRUE;
7175 }
7176
7177 /*
7178 * If a single task is using more than some amount of
7179 * memory, allow it to dip into secluded and also begin
7180 * suppression of secluded memory until the tasks exits.
7181 */
7182 if (is_alloc && secluded_shutoff_trigger != 0) {
7183 uint64_t phys_used = get_task_phys_footprint(task);
7184 if (phys_used > secluded_shutoff_trigger) {
7185 start_secluded_suppression(task);
7186 return TRUE;
7187 }
7188 }
7189
7190 return FALSE;
7191 }
7192
7193 boolean_t
7194 task_could_use_secluded_mem(
7195 task_t task)
7196 {
7197 return task->task_could_use_secluded_mem;
7198 }
7199
7200 boolean_t
7201 task_could_also_use_secluded_mem(
7202 task_t task)
7203 {
7204 return task->task_could_also_use_secluded_mem;
7205 }
7206 #endif /* CONFIG_SECLUDED_MEMORY */
7207
7208 queue_head_t *
7209 task_io_user_clients(task_t task)
7210 {
7211 return &task->io_user_clients;
7212 }
7213
7214 void
7215 task_set_message_app_suspended(task_t task, boolean_t enable)
7216 {
7217 task->message_app_suspended = enable;
7218 }
7219
7220 void
7221 task_copy_fields_for_exec(task_t dst_task, task_t src_task)
7222 {
7223 dst_task->vtimers = src_task->vtimers;
7224 }
7225
7226 #if DEVELOPMENT || DEBUG
7227 int vm_region_footprint = 0;
7228 #endif /* DEVELOPMENT || DEBUG */
7229
7230 boolean_t
7231 task_self_region_footprint(void)
7232 {
7233 #if DEVELOPMENT || DEBUG
7234 if (vm_region_footprint) {
7235 /* system-wide override */
7236 return TRUE;
7237 }
7238 #endif /* DEVELOPMENT || DEBUG */
7239 return current_task()->task_region_footprint;
7240 }
7241
7242 void
7243 task_self_region_footprint_set(
7244 boolean_t newval)
7245 {
7246 task_t curtask;
7247
7248 curtask = current_task();
7249 task_lock(curtask);
7250 if (newval) {
7251 curtask->task_region_footprint = TRUE;
7252 } else {
7253 curtask->task_region_footprint = FALSE;
7254 }
7255 task_unlock(curtask);
7256 }
7257
7258 void
7259 task_set_darkwake_mode(task_t task, boolean_t set_mode)
7260 {
7261 assert(task);
7262
7263 task_lock(task);
7264
7265 if (set_mode) {
7266 task->t_flags |= TF_DARKWAKE_MODE;
7267 } else {
7268 task->t_flags &= ~(TF_DARKWAKE_MODE);
7269 }
7270
7271 task_unlock(task);
7272 }
7273
7274 boolean_t
7275 task_get_darkwake_mode(task_t task)
7276 {
7277 assert(task);
7278 return (task->t_flags & TF_DARKWAKE_MODE) != 0;
7279 }
7280
7281 kern_return_t
7282 task_get_exc_guard_behavior(
7283 task_t task,
7284 task_exc_guard_behavior_t *behaviorp)
7285 {
7286 if (task == TASK_NULL) {
7287 return KERN_INVALID_TASK;
7288 }
7289 *behaviorp = task->task_exc_guard;
7290 return KERN_SUCCESS;
7291 }
7292
7293 #ifndef TASK_EXC_GUARD_ALL
7294 /* Temporary define until two branches are merged */
7295 #define TASK_EXC_GUARD_ALL (TASK_EXC_GUARD_VM_ALL | 0xf0)
7296 #endif
7297
7298 kern_return_t
7299 task_set_exc_guard_behavior(
7300 task_t task,
7301 task_exc_guard_behavior_t behavior)
7302 {
7303 if (task == TASK_NULL) {
7304 return KERN_INVALID_TASK;
7305 }
7306 if (behavior & ~TASK_EXC_GUARD_ALL) {
7307 return KERN_INVALID_VALUE;
7308 }
7309 task->task_exc_guard = behavior;
7310 return KERN_SUCCESS;
7311 }
7312
7313 #if __arm64__
7314 extern int legacy_footprint_entitlement_mode;
7315 extern void memorystatus_act_on_legacy_footprint_entitlement(proc_t, boolean_t);
7316 extern void memorystatus_act_on_ios13extended_footprint_entitlement(proc_t);
7317
7318 void
7319 task_set_legacy_footprint(
7320 task_t task)
7321 {
7322 task_lock(task);
7323 task->task_legacy_footprint = TRUE;
7324 task_unlock(task);
7325 }
7326
7327 void
7328 task_set_extra_footprint_limit(
7329 task_t task)
7330 {
7331 if (task->task_extra_footprint_limit) {
7332 return;
7333 }
7334 task_lock(task);
7335 if (task->task_extra_footprint_limit) {
7336 task_unlock(task);
7337 return;
7338 }
7339 task->task_extra_footprint_limit = TRUE;
7340 task_unlock(task);
7341 memorystatus_act_on_legacy_footprint_entitlement(task->bsd_info, TRUE);
7342 }
7343
7344 void
7345 task_set_ios13extended_footprint_limit(
7346 task_t task)
7347 {
7348 if (task->task_ios13extended_footprint_limit) {
7349 return;
7350 }
7351 task_lock(task);
7352 if (task->task_ios13extended_footprint_limit) {
7353 task_unlock(task);
7354 return;
7355 }
7356 task->task_ios13extended_footprint_limit = TRUE;
7357 task_unlock(task);
7358 memorystatus_act_on_ios13extended_footprint_entitlement(task->bsd_info);
7359 }
7360 #endif /* __arm64__ */
7361
7362 static inline ledger_amount_t
7363 task_ledger_get_balance(
7364 ledger_t ledger,
7365 int ledger_idx)
7366 {
7367 ledger_amount_t amount;
7368 amount = 0;
7369 ledger_get_balance(ledger, ledger_idx, &amount);
7370 return amount;
7371 }
7372
7373 /*
7374 * Gather the amount of memory counted in a task's footprint due to
7375 * being in a specific set of ledgers.
7376 */
7377 void
7378 task_ledgers_footprint(
7379 ledger_t ledger,
7380 ledger_amount_t *ledger_resident,
7381 ledger_amount_t *ledger_compressed)
7382 {
7383 *ledger_resident = 0;
7384 *ledger_compressed = 0;
7385
7386 /* purgeable non-volatile memory */
7387 *ledger_resident += task_ledger_get_balance(ledger, task_ledgers.purgeable_nonvolatile);
7388 *ledger_compressed += task_ledger_get_balance(ledger, task_ledgers.purgeable_nonvolatile_compressed);
7389
7390 /* "default" tagged memory */
7391 *ledger_resident += task_ledger_get_balance(ledger, task_ledgers.tagged_footprint);
7392 *ledger_compressed += task_ledger_get_balance(ledger, task_ledgers.tagged_footprint_compressed);
7393
7394 /* "network" currently never counts in the footprint... */
7395
7396 /* "media" tagged memory */
7397 *ledger_resident += task_ledger_get_balance(ledger, task_ledgers.media_footprint);
7398 *ledger_compressed += task_ledger_get_balance(ledger, task_ledgers.media_footprint_compressed);
7399
7400 /* "graphics" tagged memory */
7401 *ledger_resident += task_ledger_get_balance(ledger, task_ledgers.graphics_footprint);
7402 *ledger_compressed += task_ledger_get_balance(ledger, task_ledgers.graphics_footprint_compressed);
7403
7404 /* "neural" tagged memory */
7405 *ledger_resident += task_ledger_get_balance(ledger, task_ledgers.neural_footprint);
7406 *ledger_compressed += task_ledger_get_balance(ledger, task_ledgers.neural_footprint_compressed);
7407 }
7408
7409 void
7410 task_set_memory_ownership_transfer(
7411 task_t task,
7412 boolean_t value)
7413 {
7414 task_lock(task);
7415 task->task_can_transfer_memory_ownership = value;
7416 task_unlock(task);
7417 }
7418
7419 void
7420 task_copy_vmobjects(task_t task, vm_object_query_t query, int len, int64_t* num)
7421 {
7422 vm_object_t find_vmo;
7423 int64_t size = 0;
7424
7425 task_objq_lock(task);
7426 if (query != NULL) {
7427 queue_iterate(&task->task_objq, find_vmo, vm_object_t, task_objq)
7428 {
7429 int byte_size;
7430 vm_object_query_t p = &query[size++];
7431
7432 p->object_id = (vm_object_id_t) VM_KERNEL_ADDRPERM(find_vmo);
7433 p->virtual_size = find_vmo->internal ? find_vmo->vo_size : 0;
7434 p->resident_size = find_vmo->resident_page_count * PAGE_SIZE;
7435 p->wired_size = find_vmo->wired_page_count * PAGE_SIZE;
7436 p->reusable_size = find_vmo->reusable_page_count * PAGE_SIZE;
7437 p->vo_no_footprint = find_vmo->vo_no_footprint;
7438 p->vo_ledger_tag = find_vmo->vo_ledger_tag;
7439 p->purgable = find_vmo->purgable;
7440
7441 if (find_vmo->internal && find_vmo->pager_created && find_vmo->pager != NULL) {
7442 p->compressed_size = vm_compressor_pager_get_count(find_vmo->pager) * PAGE_SIZE;
7443 } else {
7444 p->compressed_size = 0;
7445 }
7446
7447 /* make sure to not overrun */
7448 byte_size = (int) size * sizeof(vm_object_query_data_t);
7449 if ((int)(byte_size + sizeof(vm_object_query_data_t)) > len) {
7450 break;
7451 }
7452 }
7453 } else {
7454 size = task->task_owned_objects;
7455 }
7456 task_objq_unlock(task);
7457
7458 *num = size;
7459 }