2 * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University
34 * All Rights Reserved.
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
46 * Carnegie Mellon requests users of this software to return to
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
62 * Non-ipc host functions.
65 #include <mach/mach_types.h>
66 #include <mach/boolean.h>
67 #include <mach/host_info.h>
68 #include <mach/host_special_ports.h>
69 #include <mach/kern_return.h>
70 #include <mach/machine.h>
71 #include <mach/port.h>
72 #include <mach/processor_info.h>
73 #include <mach/vm_param.h>
74 #include <mach/processor.h>
75 #include <mach/mach_host_server.h>
76 #include <mach/host_priv_server.h>
77 #include <mach/vm_map.h>
78 #include <mach/task_info.h>
80 #include <machine/commpage.h>
81 #include <machine/cpu_capabilities.h>
83 #include <kern/kern_types.h>
84 #include <kern/assert.h>
85 #include <kern/kalloc.h>
86 #include <kern/host.h>
87 #include <kern/host_statistics.h>
88 #include <kern/ipc_host.h>
89 #include <kern/misc_protos.h>
90 #include <kern/sched.h>
91 #include <kern/processor.h>
92 #include <kern/mach_node.h> // mach_node_port_changed()
94 #include <vm/vm_map.h>
95 #include <vm/vm_purgeable_internal.h>
96 #include <vm/vm_pageout.h>
98 #include <IOKit/IOBSD.h> // IOTaskHasEntitlement
99 #include <IOKit/IOKitKeys.h> // DriverKit entitlement strings
103 #include <atm/atm_internal.h>
107 #include <security/mac_mach_internal.h>
110 #include <pexpert/pexpert.h>
112 host_data_t realhost
;
114 vm_extmod_statistics_data_t host_extmod_statistics
;
117 host_processors(host_priv_t host_priv
, processor_array_t
* out_array
, mach_msg_type_number_t
* countp
)
119 processor_t processor
, *tp
;
121 unsigned int count
, i
;
123 if (host_priv
== HOST_PRIV_NULL
) {
124 return KERN_INVALID_ARGUMENT
;
127 assert(host_priv
== &realhost
);
129 count
= processor_count
;
132 addr
= kalloc((vm_size_t
)(count
* sizeof(mach_port_t
)));
134 return KERN_RESOURCE_SHORTAGE
;
137 tp
= (processor_t
*)addr
;
138 *tp
++ = processor
= processor_list
;
141 simple_lock(&processor_list_lock
, LCK_GRP_NULL
);
143 for (i
= 1; i
< count
; i
++) {
144 *tp
++ = processor
= processor
->processor_list
;
147 simple_unlock(&processor_list_lock
);
151 *out_array
= (processor_array_t
)addr
;
153 /* do the conversion that Mig should handle */
154 tp
= (processor_t
*)addr
;
155 for (i
= 0; i
< count
; i
++) {
156 ((mach_port_t
*)tp
)[i
] = (mach_port_t
)convert_processor_to_port(tp
[i
]);
163 host_info(host_t host
, host_flavor_t flavor
, host_info_t info
, mach_msg_type_number_t
* count
)
165 if (host
== HOST_NULL
) {
166 return KERN_INVALID_ARGUMENT
;
170 case HOST_BASIC_INFO
: {
171 host_basic_info_t basic_info
;
175 * Basic information about this host.
177 if (*count
< HOST_BASIC_INFO_OLD_COUNT
) {
181 basic_info
= (host_basic_info_t
)info
;
183 basic_info
->memory_size
= machine_info
.memory_size
;
184 basic_info
->max_cpus
= machine_info
.max_cpus
;
185 #if defined(__x86_64__)
186 basic_info
->avail_cpus
= processor_avail_count_user
;
188 basic_info
->avail_cpus
= processor_avail_count
;
190 master_id
= master_processor
->cpu_id
;
191 basic_info
->cpu_type
= slot_type(master_id
);
192 basic_info
->cpu_subtype
= slot_subtype(master_id
);
194 if (*count
>= HOST_BASIC_INFO_COUNT
) {
195 basic_info
->cpu_threadtype
= slot_threadtype(master_id
);
196 basic_info
->physical_cpu
= machine_info
.physical_cpu
;
197 basic_info
->physical_cpu_max
= machine_info
.physical_cpu_max
;
198 #if defined(__x86_64__)
199 basic_info
->logical_cpu
= basic_info
->avail_cpus
;
201 basic_info
->logical_cpu
= machine_info
.logical_cpu
;
203 basic_info
->logical_cpu_max
= machine_info
.logical_cpu_max
;
204 basic_info
->max_mem
= machine_info
.max_mem
;
206 *count
= HOST_BASIC_INFO_COUNT
;
208 *count
= HOST_BASIC_INFO_OLD_COUNT
;
214 case HOST_SCHED_INFO
: {
215 host_sched_info_t sched_info
;
216 uint32_t quantum_time
;
220 * Return scheduler information.
222 if (*count
< HOST_SCHED_INFO_COUNT
) {
226 sched_info
= (host_sched_info_t
)info
;
228 quantum_time
= SCHED(initial_quantum_size
)(THREAD_NULL
);
229 absolutetime_to_nanoseconds(quantum_time
, &quantum_ns
);
231 sched_info
->min_timeout
= sched_info
->min_quantum
= (uint32_t)(quantum_ns
/ 1000 / 1000);
233 *count
= HOST_SCHED_INFO_COUNT
;
238 case HOST_RESOURCE_SIZES
: {
240 * Return sizes of kernel data structures
242 if (*count
< HOST_RESOURCE_SIZES_COUNT
) {
246 /* XXX Fail until ledgers are implemented */
247 return KERN_INVALID_ARGUMENT
;
250 case HOST_PRIORITY_INFO
: {
251 host_priority_info_t priority_info
;
253 if (*count
< HOST_PRIORITY_INFO_COUNT
) {
257 priority_info
= (host_priority_info_t
)info
;
259 priority_info
->kernel_priority
= MINPRI_KERNEL
;
260 priority_info
->system_priority
= MINPRI_KERNEL
;
261 priority_info
->server_priority
= MINPRI_RESERVED
;
262 priority_info
->user_priority
= BASEPRI_DEFAULT
;
263 priority_info
->depress_priority
= DEPRESSPRI
;
264 priority_info
->idle_priority
= IDLEPRI
;
265 priority_info
->minimum_priority
= MINPRI_USER
;
266 priority_info
->maximum_priority
= MAXPRI_RESERVED
;
268 *count
= HOST_PRIORITY_INFO_COUNT
;
274 * Gestalt for various trap facilities.
276 case HOST_MACH_MSG_TRAP
:
277 case HOST_SEMAPHORE_TRAPS
: {
282 case HOST_CAN_HAS_DEBUGGER
: {
283 host_can_has_debugger_info_t can_has_debugger_info
;
285 if (*count
< HOST_CAN_HAS_DEBUGGER_COUNT
) {
289 can_has_debugger_info
= (host_can_has_debugger_info_t
)info
;
290 can_has_debugger_info
->can_has_debugger
= PE_i_can_has_debugger(NULL
);
291 *count
= HOST_CAN_HAS_DEBUGGER_COUNT
;
296 case HOST_VM_PURGABLE
: {
297 if (*count
< HOST_VM_PURGABLE_COUNT
) {
301 vm_purgeable_stats((vm_purgeable_info_t
)info
, NULL
);
303 *count
= HOST_VM_PURGABLE_COUNT
;
307 case HOST_DEBUG_INFO_INTERNAL
: {
308 #if DEVELOPMENT || DEBUG
309 if (*count
< HOST_DEBUG_INFO_INTERNAL_COUNT
) {
313 host_debug_info_internal_t debug_info
= (host_debug_info_internal_t
)info
;
314 bzero(debug_info
, sizeof(host_debug_info_internal_data_t
));
315 *count
= HOST_DEBUG_INFO_INTERNAL_COUNT
;
317 #if CONFIG_COALITIONS
318 debug_info
->config_coalitions
= 1;
320 debug_info
->config_bank
= 1;
322 debug_info
->config_atm
= 1;
325 debug_info
->config_csr
= 1;
328 #else /* DEVELOPMENT || DEBUG */
329 return KERN_NOT_SUPPORTED
;
333 case HOST_PREFERRED_USER_ARCH
: {
334 host_preferred_user_arch_t user_arch_info
;
337 * Basic information about this host.
339 if (*count
< HOST_PREFERRED_USER_ARCH_COUNT
) {
343 user_arch_info
= (host_preferred_user_arch_t
)info
;
345 #if defined(PREFERRED_USER_CPU_TYPE) && defined(PREFERRED_USER_CPU_SUBTYPE)
346 cpu_type_t preferred_cpu_type
;
347 cpu_subtype_t preferred_cpu_subtype
;
348 if (!PE_get_default("kern.preferred_cpu_type", &preferred_cpu_type
, sizeof(cpu_type_t
))) {
349 preferred_cpu_type
= PREFERRED_USER_CPU_TYPE
;
351 if (!PE_get_default("kern.preferred_cpu_subtype", &preferred_cpu_subtype
, sizeof(cpu_subtype_t
))) {
352 preferred_cpu_subtype
= PREFERRED_USER_CPU_SUBTYPE
;
354 user_arch_info
->cpu_type
= preferred_cpu_type
;
355 user_arch_info
->cpu_subtype
= preferred_cpu_subtype
;
357 int master_id
= master_processor
->cpu_id
;
358 user_arch_info
->cpu_type
= slot_type(master_id
);
359 user_arch_info
->cpu_subtype
= slot_subtype(master_id
);
362 *count
= HOST_PREFERRED_USER_ARCH_COUNT
;
367 default: return KERN_INVALID_ARGUMENT
;
371 kern_return_t
host_statistics(host_t host
, host_flavor_t flavor
, host_info_t info
, mach_msg_type_number_t
* count
);
374 host_statistics(host_t host
, host_flavor_t flavor
, host_info_t info
, mach_msg_type_number_t
* count
)
378 if (host
== HOST_NULL
) {
379 return KERN_INVALID_HOST
;
383 case HOST_LOAD_INFO
: {
384 host_load_info_t load_info
;
386 if (*count
< HOST_LOAD_INFO_COUNT
) {
390 load_info
= (host_load_info_t
)info
;
392 bcopy((char *)avenrun
, (char *)load_info
->avenrun
, sizeof avenrun
);
393 bcopy((char *)mach_factor
, (char *)load_info
->mach_factor
, sizeof mach_factor
);
395 *count
= HOST_LOAD_INFO_COUNT
;
400 processor_t processor
;
401 vm_statistics64_t stat
;
402 vm_statistics64_data_t host_vm_stat
;
403 vm_statistics_t stat32
;
404 mach_msg_type_number_t original_count
;
406 if (*count
< HOST_VM_INFO_REV0_COUNT
) {
410 processor
= processor_list
;
411 stat
= &PROCESSOR_DATA(processor
, vm_stat
);
412 host_vm_stat
= *stat
;
414 if (processor_count
> 1) {
415 simple_lock(&processor_list_lock
, LCK_GRP_NULL
);
417 while ((processor
= processor
->processor_list
) != NULL
) {
418 stat
= &PROCESSOR_DATA(processor
, vm_stat
);
420 host_vm_stat
.zero_fill_count
+= stat
->zero_fill_count
;
421 host_vm_stat
.reactivations
+= stat
->reactivations
;
422 host_vm_stat
.pageins
+= stat
->pageins
;
423 host_vm_stat
.pageouts
+= stat
->pageouts
;
424 host_vm_stat
.faults
+= stat
->faults
;
425 host_vm_stat
.cow_faults
+= stat
->cow_faults
;
426 host_vm_stat
.lookups
+= stat
->lookups
;
427 host_vm_stat
.hits
+= stat
->hits
;
430 simple_unlock(&processor_list_lock
);
433 stat32
= (vm_statistics_t
)info
;
435 stat32
->free_count
= VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_free_count
+ vm_page_speculative_count
);
436 stat32
->active_count
= VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_active_count
);
438 if (vm_page_local_q
) {
439 for (i
= 0; i
< vm_page_local_q_count
; i
++) {
442 lq
= &vm_page_local_q
[i
].vpl_un
.vpl
;
444 stat32
->active_count
+= VM_STATISTICS_TRUNCATE_TO_32_BIT(lq
->vpl_count
);
447 stat32
->inactive_count
= VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_inactive_count
);
449 stat32
->wire_count
= VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_wire_count
);
451 stat32
->wire_count
= VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_wire_count
+ vm_page_throttled_count
+ vm_lopage_free_count
);
453 stat32
->zero_fill_count
= VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat
.zero_fill_count
);
454 stat32
->reactivations
= VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat
.reactivations
);
455 stat32
->pageins
= VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat
.pageins
);
456 stat32
->pageouts
= VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat
.pageouts
);
457 stat32
->faults
= VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat
.faults
);
458 stat32
->cow_faults
= VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat
.cow_faults
);
459 stat32
->lookups
= VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat
.lookups
);
460 stat32
->hits
= VM_STATISTICS_TRUNCATE_TO_32_BIT(host_vm_stat
.hits
);
463 * Fill in extra info added in later revisions of the
464 * vm_statistics data structure. Fill in only what can fit
465 * in the data structure the caller gave us !
467 original_count
= *count
;
468 *count
= HOST_VM_INFO_REV0_COUNT
; /* rev0 already filled in */
469 if (original_count
>= HOST_VM_INFO_REV1_COUNT
) {
470 /* rev1 added "purgeable" info */
471 stat32
->purgeable_count
= VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_purgeable_count
);
472 stat32
->purges
= VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_purged_count
);
473 *count
= HOST_VM_INFO_REV1_COUNT
;
476 if (original_count
>= HOST_VM_INFO_REV2_COUNT
) {
477 /* rev2 added "speculative" info */
478 stat32
->speculative_count
= VM_STATISTICS_TRUNCATE_TO_32_BIT(vm_page_speculative_count
);
479 *count
= HOST_VM_INFO_REV2_COUNT
;
482 /* rev3 changed some of the fields to be 64-bit*/
487 case HOST_CPU_LOAD_INFO
: {
488 processor_t processor
;
489 host_cpu_load_info_t cpu_load_info
;
491 if (*count
< HOST_CPU_LOAD_INFO_COUNT
) {
495 #define GET_TICKS_VALUE(state, ticks) \
496 MACRO_BEGIN cpu_load_info->cpu_ticks[(state)] += (uint32_t)(ticks / hz_tick_interval); \
498 #define GET_TICKS_VALUE_FROM_TIMER(processor, state, timer) \
499 MACRO_BEGIN GET_TICKS_VALUE(state, timer_grab(&PROCESSOR_DATA(processor, timer))); \
502 cpu_load_info
= (host_cpu_load_info_t
)info
;
503 cpu_load_info
->cpu_ticks
[CPU_STATE_USER
] = 0;
504 cpu_load_info
->cpu_ticks
[CPU_STATE_SYSTEM
] = 0;
505 cpu_load_info
->cpu_ticks
[CPU_STATE_IDLE
] = 0;
506 cpu_load_info
->cpu_ticks
[CPU_STATE_NICE
] = 0;
508 simple_lock(&processor_list_lock
, LCK_GRP_NULL
);
510 for (processor
= processor_list
; processor
!= NULL
; processor
= processor
->processor_list
) {
512 uint64_t idle_time_snapshot1
, idle_time_snapshot2
;
513 uint64_t idle_time_tstamp1
, idle_time_tstamp2
;
515 /* See discussion in processor_info(PROCESSOR_CPU_LOAD_INFO) */
517 GET_TICKS_VALUE_FROM_TIMER(processor
, CPU_STATE_USER
, user_state
);
518 if (precise_user_kernel_time
) {
519 GET_TICKS_VALUE_FROM_TIMER(processor
, CPU_STATE_SYSTEM
, system_state
);
521 /* system_state may represent either sys or user */
522 GET_TICKS_VALUE_FROM_TIMER(processor
, CPU_STATE_USER
, system_state
);
525 idle_state
= &PROCESSOR_DATA(processor
, idle_state
);
526 idle_time_snapshot1
= timer_grab(idle_state
);
527 idle_time_tstamp1
= idle_state
->tstamp
;
529 if (PROCESSOR_DATA(processor
, current_state
) != idle_state
) {
530 /* Processor is non-idle, so idle timer should be accurate */
531 GET_TICKS_VALUE_FROM_TIMER(processor
, CPU_STATE_IDLE
, idle_state
);
532 } else if ((idle_time_snapshot1
!= (idle_time_snapshot2
= timer_grab(idle_state
))) ||
533 (idle_time_tstamp1
!= (idle_time_tstamp2
= idle_state
->tstamp
))) {
534 /* Idle timer is being updated concurrently, second stamp is good enough */
535 GET_TICKS_VALUE(CPU_STATE_IDLE
, idle_time_snapshot2
);
538 * Idle timer may be very stale. Fortunately we have established
539 * that idle_time_snapshot1 and idle_time_tstamp1 are unchanging
541 idle_time_snapshot1
+= mach_absolute_time() - idle_time_tstamp1
;
543 GET_TICKS_VALUE(CPU_STATE_IDLE
, idle_time_snapshot1
);
546 simple_unlock(&processor_list_lock
);
548 *count
= HOST_CPU_LOAD_INFO_COUNT
;
553 case HOST_EXPIRED_TASK_INFO
: {
554 if (*count
< TASK_POWER_INFO_COUNT
) {
558 task_power_info_t tinfo1
= (task_power_info_t
)info
;
559 task_power_info_v2_t tinfo2
= (task_power_info_v2_t
)info
;
561 tinfo1
->task_interrupt_wakeups
= dead_task_statistics
.task_interrupt_wakeups
;
562 tinfo1
->task_platform_idle_wakeups
= dead_task_statistics
.task_platform_idle_wakeups
;
564 tinfo1
->task_timer_wakeups_bin_1
= dead_task_statistics
.task_timer_wakeups_bin_1
;
566 tinfo1
->task_timer_wakeups_bin_2
= dead_task_statistics
.task_timer_wakeups_bin_2
;
568 tinfo1
->total_user
= dead_task_statistics
.total_user_time
;
569 tinfo1
->total_system
= dead_task_statistics
.total_system_time
;
570 if (*count
< TASK_POWER_INFO_V2_COUNT
) {
571 *count
= TASK_POWER_INFO_COUNT
;
572 } else if (*count
>= TASK_POWER_INFO_V2_COUNT
) {
573 tinfo2
->gpu_energy
.task_gpu_utilisation
= dead_task_statistics
.task_gpu_ns
;
574 #if defined(__arm__) || defined(__arm64__)
575 tinfo2
->task_energy
= dead_task_statistics
.task_energy
;
576 tinfo2
->task_ptime
= dead_task_statistics
.total_ptime
;
577 tinfo2
->task_pset_switches
= dead_task_statistics
.total_pset_switches
;
579 *count
= TASK_POWER_INFO_V2_COUNT
;
584 default: return KERN_INVALID_ARGUMENT
;
588 extern uint32_t c_segment_pages_compressed
;
590 #define HOST_STATISTICS_TIME_WINDOW 1 /* seconds */
591 #define HOST_STATISTICS_MAX_REQUESTS 10 /* maximum number of requests per window */
592 #define HOST_STATISTICS_MIN_REQUESTS 2 /* minimum number of requests per window */
594 uint64_t host_statistics_time_window
;
596 static lck_mtx_t host_statistics_lck
;
597 static lck_grp_t
* host_statistics_lck_grp
;
599 #define HOST_VM_INFO64_REV0 0
600 #define HOST_VM_INFO64_REV1 1
601 #define HOST_EXTMOD_INFO64_REV0 2
602 #define HOST_LOAD_INFO_REV0 3
603 #define HOST_VM_INFO_REV0 4
604 #define HOST_VM_INFO_REV1 5
605 #define HOST_VM_INFO_REV2 6
606 #define HOST_CPU_LOAD_INFO_REV0 7
607 #define HOST_EXPIRED_TASK_INFO_REV0 8
608 #define HOST_EXPIRED_TASK_INFO_REV1 9
609 #define NUM_HOST_INFO_DATA_TYPES 10
611 static vm_statistics64_data_t host_vm_info64_rev0
= {};
612 static vm_statistics64_data_t host_vm_info64_rev1
= {};
613 static vm_extmod_statistics_data_t host_extmod_info64
= {};
614 static host_load_info_data_t host_load_info
= {};
615 static vm_statistics_data_t host_vm_info_rev0
= {};
616 static vm_statistics_data_t host_vm_info_rev1
= {};
617 static vm_statistics_data_t host_vm_info_rev2
= {};
618 static host_cpu_load_info_data_t host_cpu_load_info
= {};
619 static task_power_info_data_t host_expired_task_info
= {};
620 static task_power_info_v2_data_t host_expired_task_info2
= {};
622 struct host_stats_cache
{
623 uint64_t last_access
;
624 uint64_t current_requests
;
625 uint64_t max_requests
;
627 mach_msg_type_number_t count
; //NOTE count is in sizeof(integer_t)
630 static struct host_stats_cache g_host_stats_cache
[NUM_HOST_INFO_DATA_TYPES
] = {
631 [HOST_VM_INFO64_REV0
] = { .last_access
= 0, .current_requests
= 0, .max_requests
= 0, .data
= (uintptr_t)&host_vm_info64_rev0
, .count
= HOST_VM_INFO64_REV0_COUNT
},
632 [HOST_VM_INFO64_REV1
] = { .last_access
= 0, .current_requests
= 0, .max_requests
= 0, .data
= (uintptr_t)&host_vm_info64_rev1
, .count
= HOST_VM_INFO64_REV1_COUNT
},
633 [HOST_EXTMOD_INFO64_REV0
] = { .last_access
= 0, .current_requests
= 0, .max_requests
= 0, .data
= (uintptr_t)&host_extmod_info64
, .count
= HOST_EXTMOD_INFO64_COUNT
},
634 [HOST_LOAD_INFO_REV0
] = { .last_access
= 0, .current_requests
= 0, .max_requests
= 0, .data
= (uintptr_t)&host_load_info
, .count
= HOST_LOAD_INFO_COUNT
},
635 [HOST_VM_INFO_REV0
] = { .last_access
= 0, .current_requests
= 0, .max_requests
= 0, .data
= (uintptr_t)&host_vm_info_rev0
, .count
= HOST_VM_INFO_REV0_COUNT
},
636 [HOST_VM_INFO_REV1
] = { .last_access
= 0, .current_requests
= 0, .max_requests
= 0, .data
= (uintptr_t)&host_vm_info_rev1
, .count
= HOST_VM_INFO_REV1_COUNT
},
637 [HOST_VM_INFO_REV2
] = { .last_access
= 0, .current_requests
= 0, .max_requests
= 0, .data
= (uintptr_t)&host_vm_info_rev2
, .count
= HOST_VM_INFO_REV2_COUNT
},
638 [HOST_CPU_LOAD_INFO_REV0
] = { .last_access
= 0, .current_requests
= 0, .max_requests
= 0, .data
= (uintptr_t)&host_cpu_load_info
, .count
= HOST_CPU_LOAD_INFO_COUNT
},
639 [HOST_EXPIRED_TASK_INFO_REV0
] = { .last_access
= 0, .current_requests
= 0, .max_requests
= 0, .data
= (uintptr_t)&host_expired_task_info
, .count
= TASK_POWER_INFO_COUNT
},
640 [HOST_EXPIRED_TASK_INFO_REV1
] = { .last_access
= 0, .current_requests
= 0, .max_requests
= 0, .data
= (uintptr_t)&host_expired_task_info2
, .count
= TASK_POWER_INFO_V2_COUNT
},
645 host_statistics_init(void)
647 host_statistics_lck_grp
= lck_grp_alloc_init("host_statistics", LCK_GRP_ATTR_NULL
);
648 lck_mtx_init(&host_statistics_lck
, host_statistics_lck_grp
, LCK_ATTR_NULL
);
649 nanoseconds_to_absolutetime((HOST_STATISTICS_TIME_WINDOW
* NSEC_PER_SEC
), &host_statistics_time_window
);
653 cache_host_statistics(int index
, host_info64_t info
)
655 if (index
< 0 || index
>= NUM_HOST_INFO_DATA_TYPES
) {
659 task_t task
= current_task();
660 if (task
->t_flags
& TF_PLATFORM
) {
664 memcpy((void *)g_host_stats_cache
[index
].data
, info
, g_host_stats_cache
[index
].count
* sizeof(integer_t
));
669 get_cached_info(int index
, host_info64_t info
, mach_msg_type_number_t
* count
)
671 if (index
< 0 || index
>= NUM_HOST_INFO_DATA_TYPES
) {
676 *count
= g_host_stats_cache
[index
].count
;
677 memcpy(info
, (void *)g_host_stats_cache
[index
].data
, g_host_stats_cache
[index
].count
* sizeof(integer_t
));
681 get_host_info_data_index(bool is_stat64
, host_flavor_t flavor
, mach_msg_type_number_t
* count
, kern_return_t
* ret
)
686 *ret
= KERN_INVALID_ARGUMENT
;
689 if (*count
< HOST_VM_INFO64_REV0_COUNT
) {
693 if (*count
>= HOST_VM_INFO64_REV1_COUNT
) {
694 return HOST_VM_INFO64_REV1
;
696 return HOST_VM_INFO64_REV0
;
698 case HOST_EXTMOD_INFO64
:
700 *ret
= KERN_INVALID_ARGUMENT
;
703 if (*count
< HOST_EXTMOD_INFO64_COUNT
) {
707 return HOST_EXTMOD_INFO64_REV0
;
710 if (*count
< HOST_LOAD_INFO_COUNT
) {
714 return HOST_LOAD_INFO_REV0
;
717 if (*count
< HOST_VM_INFO_REV0_COUNT
) {
721 if (*count
>= HOST_VM_INFO_REV2_COUNT
) {
722 return HOST_VM_INFO_REV2
;
724 if (*count
>= HOST_VM_INFO_REV1_COUNT
) {
725 return HOST_VM_INFO_REV1
;
727 return HOST_VM_INFO_REV0
;
729 case HOST_CPU_LOAD_INFO
:
730 if (*count
< HOST_CPU_LOAD_INFO_COUNT
) {
734 return HOST_CPU_LOAD_INFO_REV0
;
736 case HOST_EXPIRED_TASK_INFO
:
737 if (*count
< TASK_POWER_INFO_COUNT
) {
741 if (*count
>= TASK_POWER_INFO_V2_COUNT
) {
742 return HOST_EXPIRED_TASK_INFO_REV1
;
744 return HOST_EXPIRED_TASK_INFO_REV0
;
747 *ret
= KERN_INVALID_ARGUMENT
;
753 rate_limit_host_statistics(bool is_stat64
, host_flavor_t flavor
, host_info64_t info
, mach_msg_type_number_t
* count
, kern_return_t
* ret
, int *pindex
)
755 task_t task
= current_task();
757 assert(task
!= kernel_task
);
761 /* Access control only for third party applications */
762 if (task
->t_flags
& TF_PLATFORM
) {
766 /* Rate limit to HOST_STATISTICS_MAX_REQUESTS queries for each HOST_STATISTICS_TIME_WINDOW window of time */
767 bool rate_limited
= FALSE
;
768 bool set_last_access
= TRUE
;
770 /* there is a cache for every flavor */
771 int index
= get_host_info_data_index(is_stat64
, flavor
, count
, ret
);
777 lck_mtx_lock(&host_statistics_lck
);
778 if (g_host_stats_cache
[index
].last_access
> mach_continuous_time() - host_statistics_time_window
) {
779 set_last_access
= FALSE
;
780 if (g_host_stats_cache
[index
].current_requests
++ >= g_host_stats_cache
[index
].max_requests
) {
782 get_cached_info(index
, info
, count
);
785 if (set_last_access
) {
786 g_host_stats_cache
[index
].current_requests
= 1;
788 * select a random number of requests (included between HOST_STATISTICS_MIN_REQUESTS and HOST_STATISTICS_MAX_REQUESTS)
789 * to let query host_statistics.
790 * In this way it is not possible to infer looking at when the a cached copy changes if host_statistics was called on
791 * the provious window.
793 g_host_stats_cache
[index
].max_requests
= (mach_absolute_time() % (HOST_STATISTICS_MAX_REQUESTS
- HOST_STATISTICS_MIN_REQUESTS
+ 1)) + HOST_STATISTICS_MIN_REQUESTS
;
794 g_host_stats_cache
[index
].last_access
= mach_continuous_time();
796 lck_mtx_unlock(&host_statistics_lck
);
801 kern_return_t
host_statistics64(host_t host
, host_flavor_t flavor
, host_info_t info
, mach_msg_type_number_t
* count
);
804 host_statistics64(host_t host
, host_flavor_t flavor
, host_info64_t info
, mach_msg_type_number_t
* count
)
808 if (host
== HOST_NULL
) {
809 return KERN_INVALID_HOST
;
813 case HOST_VM_INFO64
: /* We were asked to get vm_statistics64 */
815 processor_t processor
;
816 vm_statistics64_t stat
;
817 vm_statistics64_data_t host_vm_stat
;
818 mach_msg_type_number_t original_count
;
819 unsigned int local_q_internal_count
;
820 unsigned int local_q_external_count
;
822 if (*count
< HOST_VM_INFO64_REV0_COUNT
) {
826 processor
= processor_list
;
827 stat
= &PROCESSOR_DATA(processor
, vm_stat
);
828 host_vm_stat
= *stat
;
830 if (processor_count
> 1) {
831 simple_lock(&processor_list_lock
, LCK_GRP_NULL
);
833 while ((processor
= processor
->processor_list
) != NULL
) {
834 stat
= &PROCESSOR_DATA(processor
, vm_stat
);
836 host_vm_stat
.zero_fill_count
+= stat
->zero_fill_count
;
837 host_vm_stat
.reactivations
+= stat
->reactivations
;
838 host_vm_stat
.pageins
+= stat
->pageins
;
839 host_vm_stat
.pageouts
+= stat
->pageouts
;
840 host_vm_stat
.faults
+= stat
->faults
;
841 host_vm_stat
.cow_faults
+= stat
->cow_faults
;
842 host_vm_stat
.lookups
+= stat
->lookups
;
843 host_vm_stat
.hits
+= stat
->hits
;
844 host_vm_stat
.compressions
+= stat
->compressions
;
845 host_vm_stat
.decompressions
+= stat
->decompressions
;
846 host_vm_stat
.swapins
+= stat
->swapins
;
847 host_vm_stat
.swapouts
+= stat
->swapouts
;
850 simple_unlock(&processor_list_lock
);
853 stat
= (vm_statistics64_t
)info
;
855 stat
->free_count
= vm_page_free_count
+ vm_page_speculative_count
;
856 stat
->active_count
= vm_page_active_count
;
858 local_q_internal_count
= 0;
859 local_q_external_count
= 0;
860 if (vm_page_local_q
) {
861 for (i
= 0; i
< vm_page_local_q_count
; i
++) {
864 lq
= &vm_page_local_q
[i
].vpl_un
.vpl
;
866 stat
->active_count
+= lq
->vpl_count
;
867 local_q_internal_count
+= lq
->vpl_internal_count
;
868 local_q_external_count
+= lq
->vpl_external_count
;
871 stat
->inactive_count
= vm_page_inactive_count
;
873 stat
->wire_count
= vm_page_wire_count
;
875 stat
->wire_count
= vm_page_wire_count
+ vm_page_throttled_count
+ vm_lopage_free_count
;
877 stat
->zero_fill_count
= host_vm_stat
.zero_fill_count
;
878 stat
->reactivations
= host_vm_stat
.reactivations
;
879 stat
->pageins
= host_vm_stat
.pageins
;
880 stat
->pageouts
= host_vm_stat
.pageouts
;
881 stat
->faults
= host_vm_stat
.faults
;
882 stat
->cow_faults
= host_vm_stat
.cow_faults
;
883 stat
->lookups
= host_vm_stat
.lookups
;
884 stat
->hits
= host_vm_stat
.hits
;
886 stat
->purgeable_count
= vm_page_purgeable_count
;
887 stat
->purges
= vm_page_purged_count
;
889 stat
->speculative_count
= vm_page_speculative_count
;
892 * Fill in extra info added in later revisions of the
893 * vm_statistics data structure. Fill in only what can fit
894 * in the data structure the caller gave us !
896 original_count
= *count
;
897 *count
= HOST_VM_INFO64_REV0_COUNT
; /* rev0 already filled in */
898 if (original_count
>= HOST_VM_INFO64_REV1_COUNT
) {
899 /* rev1 added "throttled count" */
900 stat
->throttled_count
= vm_page_throttled_count
;
901 /* rev1 added "compression" info */
902 stat
->compressor_page_count
= VM_PAGE_COMPRESSOR_COUNT
;
903 stat
->compressions
= host_vm_stat
.compressions
;
904 stat
->decompressions
= host_vm_stat
.decompressions
;
905 stat
->swapins
= host_vm_stat
.swapins
;
906 stat
->swapouts
= host_vm_stat
.swapouts
;
908 * "external page count"
909 * "anonymous page count"
910 * "total # of pages (uncompressed) held in the compressor"
912 stat
->external_page_count
= (vm_page_pageable_external_count
+ local_q_external_count
);
913 stat
->internal_page_count
= (vm_page_pageable_internal_count
+ local_q_internal_count
);
914 stat
->total_uncompressed_pages_in_compressor
= c_segment_pages_compressed
;
915 *count
= HOST_VM_INFO64_REV1_COUNT
;
921 case HOST_EXTMOD_INFO64
: /* We were asked to get vm_statistics64 */
923 vm_extmod_statistics_t out_extmod_statistics
;
925 if (*count
< HOST_EXTMOD_INFO64_COUNT
) {
929 out_extmod_statistics
= (vm_extmod_statistics_t
)info
;
930 *out_extmod_statistics
= host_extmod_statistics
;
932 *count
= HOST_EXTMOD_INFO64_COUNT
;
937 default: /* If we didn't recognize the flavor, send to host_statistics */
938 return host_statistics(host
, flavor
, (host_info_t
)info
, count
);
943 host_statistics64_from_user(host_t host
, host_flavor_t flavor
, host_info64_t info
, mach_msg_type_number_t
* count
)
945 kern_return_t ret
= KERN_SUCCESS
;
948 if (host
== HOST_NULL
) {
949 return KERN_INVALID_HOST
;
952 if (rate_limit_host_statistics(TRUE
, flavor
, info
, count
, &ret
, &index
)) {
956 if (ret
!= KERN_SUCCESS
) {
960 ret
= host_statistics64(host
, flavor
, info
, count
);
962 if (ret
== KERN_SUCCESS
) {
963 cache_host_statistics(index
, info
);
970 host_statistics_from_user(host_t host
, host_flavor_t flavor
, host_info64_t info
, mach_msg_type_number_t
* count
)
972 kern_return_t ret
= KERN_SUCCESS
;
975 if (host
== HOST_NULL
) {
976 return KERN_INVALID_HOST
;
979 if (rate_limit_host_statistics(FALSE
, flavor
, info
, count
, &ret
, &index
)) {
983 if (ret
!= KERN_SUCCESS
) {
987 ret
= host_statistics(host
, flavor
, info
, count
);
989 if (ret
== KERN_SUCCESS
) {
990 cache_host_statistics(index
, info
);
997 * Get host statistics that require privilege.
998 * None for now, just call the un-privileged version.
1001 host_priv_statistics(host_priv_t host_priv
, host_flavor_t flavor
, host_info_t info
, mach_msg_type_number_t
* count
)
1003 return host_statistics((host_t
)host_priv
, flavor
, info
, count
);
1007 set_sched_stats_active(boolean_t active
)
1009 sched_stats_active
= active
;
1010 return KERN_SUCCESS
;
1015 get_pages_grabbed_count(void)
1017 processor_t processor
;
1018 uint64_t pages_grabbed_count
= 0;
1020 simple_lock(&processor_list_lock
, LCK_GRP_NULL
);
1022 processor
= processor_list
;
1025 pages_grabbed_count
+= PROCESSOR_DATA(processor
, page_grab_count
);
1026 processor
= processor
->processor_list
;
1028 simple_unlock(&processor_list_lock
);
1030 return pages_grabbed_count
;
1035 get_sched_statistics(struct _processor_statistics_np
* out
, uint32_t * count
)
1037 processor_t processor
;
1039 if (!sched_stats_active
) {
1040 return KERN_FAILURE
;
1043 simple_lock(&processor_list_lock
, LCK_GRP_NULL
);
1045 if (*count
< (processor_count
+ 1) * sizeof(struct _processor_statistics_np
)) { /* One for RT */
1046 simple_unlock(&processor_list_lock
);
1047 return KERN_FAILURE
;
1050 processor
= processor_list
;
1052 struct processor_sched_statistics
* stats
= &processor
->processor_data
.sched_stats
;
1054 out
->ps_cpuid
= processor
->cpu_id
;
1055 out
->ps_csw_count
= stats
->csw_count
;
1056 out
->ps_preempt_count
= stats
->preempt_count
;
1057 out
->ps_preempted_rt_count
= stats
->preempted_rt_count
;
1058 out
->ps_preempted_by_rt_count
= stats
->preempted_by_rt_count
;
1059 out
->ps_rt_sched_count
= stats
->rt_sched_count
;
1060 out
->ps_interrupt_count
= stats
->interrupt_count
;
1061 out
->ps_ipi_count
= stats
->ipi_count
;
1062 out
->ps_timer_pop_count
= stats
->timer_pop_count
;
1063 out
->ps_runq_count_sum
= SCHED(processor_runq_stats_count_sum
)(processor
);
1064 out
->ps_idle_transitions
= stats
->idle_transitions
;
1065 out
->ps_quantum_timer_expirations
= stats
->quantum_timer_expirations
;
1068 processor
= processor
->processor_list
;
1071 *count
= (uint32_t)(processor_count
* sizeof(struct _processor_statistics_np
));
1073 simple_unlock(&processor_list_lock
);
1075 /* And include RT Queue information */
1076 bzero(out
, sizeof(*out
));
1077 out
->ps_cpuid
= (-1);
1078 out
->ps_runq_count_sum
= SCHED(rt_runq_count_sum
)();
1080 *count
+= (uint32_t)sizeof(struct _processor_statistics_np
);
1082 return KERN_SUCCESS
;
1086 host_page_size(host_t host
, vm_size_t
* out_page_size
)
1088 if (host
== HOST_NULL
) {
1089 return KERN_INVALID_ARGUMENT
;
1092 *out_page_size
= PAGE_SIZE
;
1094 return KERN_SUCCESS
;
1098 * Return kernel version string (more than you ever
1099 * wanted to know about what version of the kernel this is).
1101 extern char version
[];
1104 host_kernel_version(host_t host
, kernel_version_t out_version
)
1106 if (host
== HOST_NULL
) {
1107 return KERN_INVALID_ARGUMENT
;
1110 (void)strncpy(out_version
, version
, sizeof(kernel_version_t
));
1112 return KERN_SUCCESS
;
1116 * host_processor_sets:
1118 * List all processor sets on the host.
1121 host_processor_sets(host_priv_t host_priv
, processor_set_name_array_t
* pset_list
, mach_msg_type_number_t
* count
)
1125 if (host_priv
== HOST_PRIV_NULL
) {
1126 return KERN_INVALID_ARGUMENT
;
1130 * Allocate memory. Can be pageable because it won't be
1131 * touched while holding a lock.
1134 addr
= kalloc((vm_size_t
)sizeof(mach_port_t
));
1136 return KERN_RESOURCE_SHORTAGE
;
1139 /* do the conversion that Mig should handle */
1140 *((ipc_port_t
*)addr
) = convert_pset_name_to_port(&pset0
);
1142 *pset_list
= (processor_set_array_t
)addr
;
1145 return KERN_SUCCESS
;
1149 * host_processor_set_priv:
1151 * Return control port for given processor set.
1154 host_processor_set_priv(host_priv_t host_priv
, processor_set_t pset_name
, processor_set_t
* pset
)
1156 if (host_priv
== HOST_PRIV_NULL
|| pset_name
== PROCESSOR_SET_NULL
) {
1157 *pset
= PROCESSOR_SET_NULL
;
1159 return KERN_INVALID_ARGUMENT
;
1164 return KERN_SUCCESS
;
1168 * host_processor_info
1170 * Return info about the processors on this host. It will return
1171 * the number of processors, and the specific type of info requested
1175 host_processor_info(host_t host
,
1176 processor_flavor_t flavor
,
1177 natural_t
* out_pcount
,
1178 processor_info_array_t
* out_array
,
1179 mach_msg_type_number_t
* out_array_count
)
1181 kern_return_t result
;
1182 processor_t processor
;
1184 processor_info_t info
;
1185 unsigned int icount
, tcount
;
1186 unsigned int pcount
, i
;
1188 vm_size_t size
, needed
;
1191 if (host
== HOST_NULL
) {
1192 return KERN_INVALID_ARGUMENT
;
1195 result
= processor_info_count(flavor
, &icount
);
1196 if (result
!= KERN_SUCCESS
) {
1200 pcount
= processor_count
;
1201 assert(pcount
!= 0);
1203 needed
= pcount
* icount
* sizeof(natural_t
);
1204 size
= vm_map_round_page(needed
, VM_MAP_PAGE_MASK(ipc_kernel_map
));
1205 result
= kmem_alloc(ipc_kernel_map
, &addr
, size
, VM_KERN_MEMORY_IPC
);
1206 if (result
!= KERN_SUCCESS
) {
1207 return KERN_RESOURCE_SHORTAGE
;
1210 info
= (processor_info_t
)addr
;
1211 processor
= processor_list
;
1214 result
= processor_info(processor
, flavor
, &thost
, info
, &tcount
);
1215 if (result
!= KERN_SUCCESS
) {
1216 kmem_free(ipc_kernel_map
, addr
, size
);
1221 for (i
= 1; i
< pcount
; i
++) {
1222 simple_lock(&processor_list_lock
, LCK_GRP_NULL
);
1223 processor
= processor
->processor_list
;
1224 simple_unlock(&processor_list_lock
);
1228 result
= processor_info(processor
, flavor
, &thost
, info
, &tcount
);
1229 if (result
!= KERN_SUCCESS
) {
1230 kmem_free(ipc_kernel_map
, addr
, size
);
1236 if (size
!= needed
) {
1237 bzero((char *)addr
+ needed
, size
- needed
);
1240 result
= vm_map_unwire(ipc_kernel_map
, vm_map_trunc_page(addr
, VM_MAP_PAGE_MASK(ipc_kernel_map
)),
1241 vm_map_round_page(addr
+ size
, VM_MAP_PAGE_MASK(ipc_kernel_map
)), FALSE
);
1242 assert(result
== KERN_SUCCESS
);
1243 result
= vm_map_copyin(ipc_kernel_map
, (vm_map_address_t
)addr
, (vm_map_size_t
)needed
, TRUE
, ©
);
1244 assert(result
== KERN_SUCCESS
);
1246 *out_pcount
= pcount
;
1247 *out_array
= (processor_info_array_t
)copy
;
1248 *out_array_count
= pcount
* icount
;
1250 return KERN_SUCCESS
;
1254 is_valid_host_special_port(int id
)
1256 return (id
<= HOST_MAX_SPECIAL_PORT
) &&
1257 (id
>= HOST_MIN_SPECIAL_PORT
) &&
1258 ((id
<= HOST_LAST_SPECIAL_KERNEL_PORT
) || (id
> HOST_MAX_SPECIAL_KERNEL_PORT
));
1262 * Kernel interface for setting a special port.
1265 kernel_set_special_port(host_priv_t host_priv
, int id
, ipc_port_t port
)
1267 ipc_port_t old_port
;
1269 if (!is_valid_host_special_port(id
)) {
1270 panic("attempted to set invalid special port %d", id
);
1274 if (id
== HOST_NODE_PORT
) {
1275 return KERN_NOT_SUPPORTED
;
1279 host_lock(host_priv
);
1280 old_port
= host_priv
->special
[id
];
1281 if ((id
== HOST_AMFID_PORT
) && (task_pid(current_task()) != 1)) {
1282 host_unlock(host_priv
);
1283 return KERN_NO_ACCESS
;
1285 host_priv
->special
[id
] = port
;
1286 host_unlock(host_priv
);
1289 if (id
== HOST_NODE_PORT
) {
1290 mach_node_port_changed();
1294 if (IP_VALID(old_port
)) {
1295 ipc_port_release_send(old_port
);
1297 return KERN_SUCCESS
;
1301 * Kernel interface for retrieving a special port.
1304 kernel_get_special_port(host_priv_t host_priv
, int id
, ipc_port_t
* portp
)
1306 if (!is_valid_host_special_port(id
)) {
1307 panic("attempted to get invalid special port %d", id
);
1310 host_lock(host_priv
);
1311 *portp
= host_priv
->special
[id
];
1312 host_unlock(host_priv
);
1313 return KERN_SUCCESS
;
1317 * User interface for setting a special port.
1319 * Only permits the user to set a user-owned special port
1320 * ID, rejecting a kernel-owned special port ID.
1322 * A special kernel port cannot be set up using this
1323 * routine; use kernel_set_special_port() instead.
1326 host_set_special_port(host_priv_t host_priv
, int id
, ipc_port_t port
)
1328 if (host_priv
== HOST_PRIV_NULL
|| id
<= HOST_MAX_SPECIAL_KERNEL_PORT
|| id
> HOST_MAX_SPECIAL_PORT
) {
1329 return KERN_INVALID_ARGUMENT
;
1332 if (task_is_driver(current_task())) {
1333 return KERN_NO_ACCESS
;
1337 if (mac_task_check_set_host_special_port(current_task(), id
, port
) != 0) {
1338 return KERN_NO_ACCESS
;
1342 return kernel_set_special_port(host_priv
, id
, port
);
1346 * User interface for retrieving a special port.
1348 * Note that there is nothing to prevent a user special
1349 * port from disappearing after it has been discovered by
1350 * the caller; thus, using a special port can always result
1351 * in a "port not valid" error.
1355 host_get_special_port(host_priv_t host_priv
, __unused
int node
, int id
, ipc_port_t
* portp
)
1359 if (host_priv
== HOST_PRIV_NULL
|| id
== HOST_SECURITY_PORT
|| id
> HOST_MAX_SPECIAL_PORT
|| id
< HOST_MIN_SPECIAL_PORT
) {
1360 return KERN_INVALID_ARGUMENT
;
1363 task_t task
= current_task();
1364 if (task
&& task_is_driver(task
) && id
> HOST_MAX_SPECIAL_KERNEL_PORT
) {
1365 /* allow HID drivers to get the sysdiagnose port for keychord handling */
1366 if (IOTaskHasEntitlement(task
, kIODriverKitHIDFamilyEventServiceEntitlementKey
) &&
1367 id
== HOST_SYSDIAGNOSE_PORT
) {
1368 goto get_special_port
;
1370 return KERN_NO_ACCESS
;
1374 host_lock(host_priv
);
1375 port
= realhost
.special
[id
];
1376 *portp
= ipc_port_copy_send(port
);
1377 host_unlock(host_priv
);
1379 return KERN_SUCCESS
;
1383 * host_get_io_master
1385 * Return the IO master access port for this host.
1388 host_get_io_master(host_t host
, io_master_t
* io_masterp
)
1390 if (host
== HOST_NULL
) {
1391 return KERN_INVALID_ARGUMENT
;
1394 return host_get_io_master_port(host_priv_self(), io_masterp
);
1404 host_priv_self(void)
1410 host_security_self(void)
1416 host_set_atm_diagnostic_flag(host_priv_t host_priv
, uint32_t diagnostic_flag
)
1418 if (host_priv
== HOST_PRIV_NULL
) {
1419 return KERN_INVALID_ARGUMENT
;
1422 assert(host_priv
== &realhost
);
1425 return atm_set_diagnostic_config(diagnostic_flag
);
1427 (void)diagnostic_flag
;
1428 return KERN_NOT_SUPPORTED
;
1433 host_set_multiuser_config_flags(host_priv_t host_priv
, uint32_t multiuser_config
)
1436 if (host_priv
== HOST_PRIV_NULL
) {
1437 return KERN_INVALID_ARGUMENT
;
1440 assert(host_priv
== &realhost
);
1443 * Always enforce that the multiuser bit is set
1444 * if a value is written to the commpage word.
1446 commpage_update_multiuser_config(multiuser_config
| kIsMultiUserDevice
);
1447 return KERN_SUCCESS
;
1450 (void)multiuser_config
;
1451 return KERN_NOT_SUPPORTED
;