]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/machine_routines_asm.s
xnu-1228.7.58.tar.gz
[apple/xnu.git] / osfmk / i386 / machine_routines_asm.s
1 /*
2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <i386/asm.h>
30 #include <i386/proc_reg.h>
31 #include <i386/eflags.h>
32
33 #include <i386/postcode.h>
34 #include <i386/apic.h>
35 #include <assym.s>
36
37 /*
38 ** ml_get_timebase()
39 **
40 ** Entry - %esp contains pointer to 64 bit structure.
41 **
42 ** Exit - 64 bit structure filled in.
43 **
44 */
45 ENTRY(ml_get_timebase)
46
47 movl S_ARG0, %ecx
48
49 rdtsc
50
51 movl %edx, 0(%ecx)
52 movl %eax, 4(%ecx)
53
54 ret
55
56 /*
57 * Convert between various timer units
58 *
59 * uint64_t tmrCvt(uint64_t time, uint64_t *conversion)
60 *
61 * This code converts 64-bit time units to other units.
62 * For example, the TSC is converted to HPET units.
63 *
64 * Time is a 64-bit integer that is some number of ticks.
65 * Conversion is 64-bit fixed point number which is composed
66 * of a 32 bit integer and a 32 bit fraction.
67 *
68 * The time ticks are multiplied by the conversion factor. The
69 * calculations are done as a 128-bit value but both the high
70 * and low words are dropped. The high word is overflow and the
71 * low word is the fraction part of the result.
72 *
73 * We return a 64-bit value.
74 *
75 * Note that we can use this function to multiply 2 conversion factors.
76 * We do this in order to calculate the multiplier used to convert
77 * directly between any two units.
78 *
79 */
80
81 .globl EXT(tmrCvt)
82 .align FALIGN
83
84 LEXT(tmrCvt)
85
86 pushl %ebp // Save a volatile
87 movl %esp,%ebp // Get the parameters - 8
88 pushl %ebx // Save a volatile
89 pushl %esi // Save a volatile
90 pushl %edi // Save a volatile
91
92 // %ebp + 8 - low-order ts
93 // %ebp + 12 - high-order ts
94 // %ebp + 16 - low-order cvt
95 // %ebp + 20 - high-order cvt
96
97 movl 8(%ebp),%eax // Get low-order ts
98 mull 16(%ebp) // Multiply by low-order conversion
99 movl %edx,%edi // Need to save only the high order part
100
101 movl 12(%ebp),%eax // Get the high-order ts
102 mull 16(%ebp) // Multiply by low-order conversion
103 addl %eax,%edi // Add in the overflow from the low x low calculation
104 adcl $0,%edx // Add in any overflow to high high part
105 movl %edx,%esi // Save high high part
106
107 // We now have the upper 64 bits of the 96 bit multiply of ts and the low half of cvt
108 // in %esi:%edi
109
110 movl 8(%ebp),%eax // Get low-order ts
111 mull 20(%ebp) // Multiply by high-order conversion
112 movl %eax,%ebx // Need to save the low order part
113 movl %edx,%ecx // Need to save the high order part
114
115 movl 12(%ebp),%eax // Get the high-order ts
116 mull 20(%ebp) // Multiply by high-order conversion
117
118 // Now have %ecx:%ebx as low part of high low and %edx:%eax as high part of high high
119 // We don't care about the highest word since it is overflow
120
121 addl %edi,%ebx // Add the low words
122 adcl %ecx,%esi // Add in the high plus carry from low
123 addl %eax,%esi // Add in the rest of the high
124
125 movl %ebx,%eax // Pass back low word
126 movl %esi,%edx // and the high word
127
128 popl %edi // Restore a volatile
129 popl %esi // Restore a volatile
130 popl %ebx // Restore a volatile
131 popl %ebp // Restore a volatile
132
133 ret // Leave...
134
135 .globl EXT(_rtc_nanotime_store)
136 .align FALIGN
137
138 LEXT(_rtc_nanotime_store)
139 push %ebp
140 movl %esp,%ebp
141 push %esi
142
143 mov 32(%ebp),%edx /* get ptr to rtc_nanotime_info */
144
145 movl RNT_GENERATION(%edx),%esi /* get current generation */
146 movl $0,RNT_GENERATION(%edx) /* flag data as being updated */
147
148 mov 8(%ebp),%eax
149 mov %eax,RNT_TSC_BASE(%edx)
150 mov 12(%ebp),%eax
151 mov %eax,RNT_TSC_BASE+4(%edx)
152
153 mov 24(%ebp),%eax
154 mov %eax,RNT_SCALE(%edx)
155
156 mov 28(%ebp),%eax
157 mov %eax,RNT_SHIFT(%edx)
158
159 mov 16(%ebp),%eax
160 mov %eax,RNT_NS_BASE(%edx)
161 mov 20(%ebp),%eax
162 mov %eax,RNT_NS_BASE+4(%edx)
163
164 incl %esi /* next generation */
165 jnz 1f
166 incl %esi /* skip 0, which is a flag */
167 1: movl %esi,RNT_GENERATION(%edx) /* update generation and make usable */
168
169 pop %esi
170 pop %ebp
171 ret
172
173
174 /* unint64_t _rtc_nanotime_read( rtc_nanotime_t *rntp, int slow );
175 *
176 * This is the same as the commpage nanotime routine, except that it uses the
177 * kernel internal "rtc_nanotime_info" data instead of the commpage data. The two copies
178 * of data (one in the kernel and one in user space) are kept in sync by rtc_clock_napped().
179 *
180 * Warning! There is another copy of this code in osfmk/i386/locore.s. The
181 * two versions must be kept in sync with each other!
182 *
183 * There are actually two versions of the algorithm, one each for "slow" and "fast"
184 * processors. The more common "fast" algorithm is:
185 *
186 * nanoseconds = (((rdtsc - rnt_tsc_base) * rnt_tsc_scale) / 2**32) - rnt_ns_base;
187 *
188 * Of course, the divide by 2**32 is a nop. rnt_tsc_scale is a constant computed during initialization:
189 *
190 * rnt_tsc_scale = (10e9 * 2**32) / tscFreq;
191 *
192 * The "slow" algorithm uses long division:
193 *
194 * nanoseconds = (((rdtsc - rnt_tsc_base) * 10e9) / tscFreq) - rnt_ns_base;
195 *
196 * Since this routine is not synchronized and can be called in any context,
197 * we use a generation count to guard against seeing partially updated data. In addition,
198 * the _rtc_nanotime_store() routine -- just above -- zeroes the generation before
199 * updating the data, and stores the nonzero generation only after all other data has been
200 * stored. Because IA32 guarantees that stores by one processor must be seen in order
201 * by another, we can avoid using a lock. We spin while the generation is zero.
202 *
203 * In accordance with the ABI, we return the 64-bit nanotime in %edx:%eax.
204 */
205
206 .globl EXT(_rtc_nanotime_read)
207 .align FALIGN
208 LEXT(_rtc_nanotime_read)
209 pushl %ebp
210 movl %esp,%ebp
211 pushl %esi
212 pushl %edi
213 pushl %ebx
214 movl 8(%ebp),%edi /* get ptr to rtc_nanotime_info */
215 movl 12(%ebp),%eax /* get "slow" flag */
216 testl %eax,%eax
217 jnz Lslow
218
219 /* Processor whose TSC frequency is faster than SLOW_TSC_THRESHOLD */
220 0:
221 movl RNT_GENERATION(%edi),%esi /* get generation (0 if being changed) */
222 testl %esi,%esi /* if being changed, loop until stable */
223 jz 0b
224
225 rdtsc /* get TSC in %edx:%eax */
226 subl RNT_TSC_BASE(%edi),%eax
227 sbbl RNT_TSC_BASE+4(%edi),%edx
228
229 movl RNT_SCALE(%edi),%ecx
230
231 movl %edx,%ebx
232 mull %ecx
233 movl %ebx,%eax
234 movl %edx,%ebx
235 mull %ecx
236 addl %ebx,%eax
237 adcl $0,%edx
238
239 addl RNT_NS_BASE(%edi),%eax
240 adcl RNT_NS_BASE+4(%edi),%edx
241
242 cmpl RNT_GENERATION(%edi),%esi /* have the parameters changed? */
243 jne 0b /* yes, loop until stable */
244
245 popl %ebx
246 popl %edi
247 popl %esi
248 popl %ebp
249 ret
250
251 /* Processor whose TSC frequency is slower than or equal to SLOW_TSC_THRESHOLD */
252 Lslow:
253 movl RNT_GENERATION(%edi),%esi /* get generation (0 if being changed) */
254 testl %esi,%esi /* if being changed, loop until stable */
255 jz Lslow
256 pushl %esi /* save generation */
257 pushl RNT_SHIFT(%edi) /* save low 32 bits of tscFreq */
258
259 rdtsc /* get TSC in %edx:%eax */
260 subl RNT_TSC_BASE(%edi),%eax
261 sbbl RNT_TSC_BASE+4(%edi),%edx
262
263 /*
264 * Do the math to convert tsc ticks to nanoseconds. We first
265 * do long multiply of 1 billion times the tsc. Then we do
266 * long division by the tsc frequency
267 */
268 mov $1000000000, %ecx /* number of nanoseconds in a second */
269 mov %edx, %ebx
270 mul %ecx
271 mov %edx, %edi
272 mov %eax, %esi
273 mov %ebx, %eax
274 mul %ecx
275 add %edi, %eax
276 adc $0, %edx /* result in edx:eax:esi */
277 mov %eax, %edi
278 popl %ecx /* get low 32 tscFreq */
279 xor %eax, %eax
280 xchg %edx, %eax
281 div %ecx
282 xor %eax, %eax
283 mov %edi, %eax
284 div %ecx
285 mov %eax, %ebx
286 mov %esi, %eax
287 div %ecx
288 mov %ebx, %edx /* result in edx:eax */
289
290 movl 8(%ebp),%edi /* recover ptr to rtc_nanotime_info */
291 popl %esi /* recover generation */
292
293 addl RNT_NS_BASE(%edi),%eax
294 adcl RNT_NS_BASE+4(%edi),%edx
295
296 cmpl RNT_GENERATION(%edi),%esi /* have the parameters changed? */
297 jne Lslow /* yes, loop until stable */
298
299 pop %ebx
300 pop %edi
301 pop %esi
302 pop %ebp
303 ret /* result in edx:eax */
304