]> git.saurik.com Git - apple/xnu.git/blob - osfmk/i386/cpu.c
xnu-1228.7.58.tar.gz
[apple/xnu.git] / osfmk / i386 / cpu.c
1 /*
2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * File: i386/cpu.c
30 *
31 * cpu specific routines
32 */
33
34 #include <kern/kalloc.h>
35 #include <kern/misc_protos.h>
36 #include <kern/machine.h>
37 #include <mach/processor_info.h>
38 #include <i386/machine_cpu.h>
39 #include <i386/machine_routines.h>
40 #include <i386/pmap.h>
41 #include <i386/misc_protos.h>
42 #include <i386/cpu_threads.h>
43 #include <i386/rtclock.h>
44 #include <vm/vm_kern.h>
45 #include "cpuid.h"
46
47 struct processor processor_master;
48
49 /*ARGSUSED*/
50 kern_return_t
51 cpu_control(
52 int slot_num,
53 processor_info_t info,
54 unsigned int count)
55 {
56 printf("cpu_control(%d,%p,%d) not implemented\n",
57 slot_num, info, count);
58 return (KERN_FAILURE);
59 }
60
61 /*ARGSUSED*/
62 kern_return_t
63 cpu_info_count(
64 __unused processor_flavor_t flavor,
65 unsigned int *count)
66 {
67 *count = 0;
68 return (KERN_FAILURE);
69 }
70
71 /*ARGSUSED*/
72 kern_return_t
73 cpu_info(
74 processor_flavor_t flavor,
75 int slot_num,
76 processor_info_t info,
77 unsigned int *count)
78 {
79 printf("cpu_info(%d,%d,%p,%p) not implemented\n",
80 flavor, slot_num, info, count);
81 return (KERN_FAILURE);
82 }
83
84 void
85 cpu_sleep(void)
86 {
87 cpu_data_t *cdp = current_cpu_datap();
88
89 i386_deactivate_cpu();
90
91 PE_cpu_machine_quiesce(cdp->cpu_id);
92
93 cpu_thread_halt();
94 }
95
96 void
97 cpu_init(void)
98 {
99 cpu_data_t *cdp = current_cpu_datap();
100
101 cdp->cpu_type = cpuid_cputype();
102 cdp->cpu_subtype = cpuid_cpusubtype();
103
104 i386_activate_cpu();
105 }
106
107 kern_return_t
108 cpu_start(
109 int cpu)
110 {
111 kern_return_t ret;
112
113 if (cpu == cpu_number()) {
114 cpu_machine_init();
115 return KERN_SUCCESS;
116 } else {
117 /*
118 * Should call out through PE.
119 * But take the shortcut here.
120 */
121 ret = intel_startCPU(cpu);
122 return(ret);
123 }
124 }
125
126 void
127 cpu_exit_wait(
128 int cpu)
129 {
130 cpu_data_t *cdp = cpu_datap(cpu);
131
132 simple_lock(&x86_topo_lock);
133 while (!cdp->lcpu.halted) {
134 simple_unlock(&x86_topo_lock);
135 cpu_pause();
136 simple_lock(&x86_topo_lock);
137 }
138 simple_unlock(&x86_topo_lock);
139 }
140
141 void
142 cpu_machine_init(
143 void)
144 {
145 cpu_data_t *cdp = current_cpu_datap();
146
147 PE_cpu_machine_init(cdp->cpu_id, !cdp->cpu_boot_complete);
148 cdp->cpu_boot_complete = TRUE;
149 cdp->cpu_running = TRUE;
150 #if 0
151 if (cpu_datap(cpu)->hibernate)
152 {
153 cpu_datap(cpu)->hibernate = 0;
154 hibernate_machine_init();
155 }
156 #endif
157 ml_init_interrupt();
158
159 /* for every CPU, get the VT specs */
160 vmx_get_specs();
161 }
162
163 processor_t
164 cpu_processor_alloc(boolean_t is_boot_cpu)
165 {
166 int ret;
167 processor_t proc;
168
169 if (is_boot_cpu)
170 return &processor_master;
171
172 ret = kmem_alloc(kernel_map, (vm_offset_t *) &proc, sizeof(*proc));
173 if (ret != KERN_SUCCESS)
174 return NULL;
175
176 bzero((void *) proc, sizeof(*proc));
177 return proc;
178 }
179
180 void
181 cpu_processor_free(processor_t proc)
182 {
183 if (proc != NULL && proc != &processor_master)
184 kfree((void *) proc, sizeof(*proc));
185 }
186
187 processor_t
188 current_processor(void)
189 {
190 return current_cpu_datap()->cpu_processor;
191 }
192
193 processor_t
194 cpu_to_processor(
195 int cpu)
196 {
197 return cpu_datap(cpu)->cpu_processor;
198 }
199
200 ast_t *
201 ast_pending(void)
202 {
203 return (&current_cpu_datap()->cpu_pending_ast);
204 }
205
206 cpu_type_t
207 slot_type(
208 int slot_num)
209 {
210 return (cpu_datap(slot_num)->cpu_type);
211 }
212
213 cpu_subtype_t
214 slot_subtype(
215 int slot_num)
216 {
217 return (cpu_datap(slot_num)->cpu_subtype);
218 }
219
220 cpu_threadtype_t
221 slot_threadtype(
222 int slot_num)
223 {
224 return (cpu_datap(slot_num)->cpu_threadtype);
225 }
226
227 cpu_type_t
228 cpu_type(void)
229 {
230 return (current_cpu_datap()->cpu_type);
231 }
232
233 cpu_subtype_t
234 cpu_subtype(void)
235 {
236 return (current_cpu_datap()->cpu_subtype);
237 }
238
239 cpu_threadtype_t
240 cpu_threadtype(void)
241 {
242 return (current_cpu_datap()->cpu_threadtype);
243 }