]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/sync_sema.c
xnu-792.tar.gz
[apple/xnu.git] / osfmk / kern / sync_sema.c
1 /*
2 * Copyright (c) 2000-2004 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22 /*
23 * @OSF_COPYRIGHT@
24 *
25 */
26 /*
27 * File: kern/sync_sema.c
28 * Author: Joseph CaraDonna
29 *
30 * Contains RT distributed semaphore synchronization services.
31 */
32
33 #include <mach/mach_types.h>
34 #include <mach/mach_traps.h>
35 #include <mach/kern_return.h>
36 #include <mach/semaphore.h>
37 #include <mach/sync_policy.h>
38 #include <mach/task.h>
39
40 #include <kern/misc_protos.h>
41 #include <kern/sync_sema.h>
42 #include <kern/spl.h>
43 #include <kern/ipc_kobject.h>
44 #include <kern/ipc_sync.h>
45 #include <kern/ipc_tt.h>
46 #include <kern/thread.h>
47 #include <kern/clock.h>
48 #include <ipc/ipc_port.h>
49 #include <ipc/ipc_space.h>
50 #include <kern/host.h>
51 #include <kern/wait_queue.h>
52 #include <kern/zalloc.h>
53 #include <kern/mach_param.h>
54
55 static unsigned int semaphore_event;
56 #define SEMAPHORE_EVENT ((event64_t)&semaphore_event)
57
58 zone_t semaphore_zone;
59 unsigned int semaphore_max = SEMAPHORE_MAX;
60
61 /* Forward declarations */
62
63
64 kern_return_t
65 semaphore_wait_trap_internal(
66 mach_port_name_t name,
67 void (*caller_cont)(kern_return_t));
68
69 kern_return_t
70 semaphore_wait_signal_trap_internal(
71 mach_port_name_t wait_name,
72 mach_port_name_t signal_name,
73 void (*caller_cont)(kern_return_t));
74
75 kern_return_t
76 semaphore_timedwait_trap_internal(
77 mach_port_name_t name,
78 unsigned int sec,
79 clock_res_t nsec,
80 void (*caller_cont)(kern_return_t));
81
82 kern_return_t
83 semaphore_timedwait_signal_trap_internal(
84 mach_port_name_t wait_name,
85 mach_port_name_t signal_name,
86 unsigned int sec,
87 clock_res_t nsec,
88 void (*caller_cont)(kern_return_t));
89
90
91 kern_return_t
92 semaphore_signal_internal(
93 semaphore_t semaphore,
94 thread_t thread,
95 int options);
96
97 kern_return_t
98 semaphore_convert_wait_result(
99 int wait_result);
100
101 void
102 semaphore_wait_continue(void);
103
104 kern_return_t
105 semaphore_wait_internal(
106 semaphore_t wait_semaphore,
107 semaphore_t signal_semaphore,
108 mach_timespec_t *wait_timep,
109 void (*caller_cont)(kern_return_t));
110
111 /*
112 * ROUTINE: semaphore_init [private]
113 *
114 * Initialize the semaphore mechanisms.
115 * Right now, we only need to initialize the semaphore zone.
116 */
117 void
118 semaphore_init(void)
119 {
120 semaphore_zone = zinit(sizeof(struct semaphore),
121 semaphore_max * sizeof(struct semaphore),
122 sizeof(struct semaphore),
123 "semaphores");
124 }
125
126 /*
127 * Routine: semaphore_create
128 *
129 * Creates a semaphore.
130 * The port representing the semaphore is returned as a parameter.
131 */
132 kern_return_t
133 semaphore_create(
134 task_t task,
135 semaphore_t *new_semaphore,
136 int policy,
137 int value)
138 {
139 semaphore_t s = SEMAPHORE_NULL;
140
141
142
143 if (task == TASK_NULL || value < 0 || policy > SYNC_POLICY_MAX) {
144 *new_semaphore = SEMAPHORE_NULL;
145 return KERN_INVALID_ARGUMENT;
146 }
147
148 s = (semaphore_t) zalloc (semaphore_zone);
149
150 if (s == SEMAPHORE_NULL) {
151 *new_semaphore = SEMAPHORE_NULL;
152 return KERN_RESOURCE_SHORTAGE;
153 }
154
155 wait_queue_init(&s->wait_queue, policy); /* also inits lock */
156 s->count = value;
157 s->ref_count = 1;
158
159 /*
160 * Create and initialize the semaphore port
161 */
162 s->port = ipc_port_alloc_kernel();
163 if (s->port == IP_NULL) {
164 /* This will deallocate the semaphore */
165 semaphore_dereference(s);
166 *new_semaphore = SEMAPHORE_NULL;
167 return KERN_RESOURCE_SHORTAGE;
168 }
169
170 ipc_kobject_set (s->port, (ipc_kobject_t) s, IKOT_SEMAPHORE);
171
172 /*
173 * Associate the new semaphore with the task by adding
174 * the new semaphore to the task's semaphore list.
175 *
176 * Associate the task with the new semaphore by having the
177 * semaphores task pointer point to the owning task's structure.
178 */
179 task_lock(task);
180 enqueue_head(&task->semaphore_list, (queue_entry_t) s);
181 task->semaphores_owned++;
182 s->owner = task;
183 s->active = TRUE;
184 task_unlock(task);
185
186 *new_semaphore = s;
187
188 return KERN_SUCCESS;
189 }
190
191 /*
192 * Routine: semaphore_destroy
193 *
194 * Destroys a semaphore. This call will only succeed if the
195 * specified task is the SAME task name specified at the semaphore's
196 * creation.
197 *
198 * All threads currently blocked on the semaphore are awoken. These
199 * threads will return with the KERN_TERMINATED error.
200 */
201 kern_return_t
202 semaphore_destroy(
203 task_t task,
204 semaphore_t semaphore)
205 {
206 int old_count;
207 spl_t spl_level;
208
209
210 if (task == TASK_NULL || semaphore == SEMAPHORE_NULL)
211 return KERN_INVALID_ARGUMENT;
212
213 /*
214 * Disown semaphore
215 */
216 task_lock(task);
217 if (semaphore->owner != task) {
218 task_unlock(task);
219 return KERN_INVALID_ARGUMENT;
220 }
221 remqueue(&task->semaphore_list, (queue_entry_t) semaphore);
222 semaphore->owner = TASK_NULL;
223 task->semaphores_owned--;
224 task_unlock(task);
225
226 spl_level = splsched();
227 semaphore_lock(semaphore);
228
229 /*
230 * Deactivate semaphore
231 */
232 assert(semaphore->active);
233 semaphore->active = FALSE;
234
235 /*
236 * Wakeup blocked threads
237 */
238 old_count = semaphore->count;
239 semaphore->count = 0;
240
241 if (old_count < 0) {
242 wait_queue_wakeup64_all_locked(&semaphore->wait_queue,
243 SEMAPHORE_EVENT,
244 THREAD_RESTART,
245 TRUE); /* unlock? */
246 } else {
247 semaphore_unlock(semaphore);
248 }
249 splx(spl_level);
250
251 /*
252 * Deallocate
253 *
254 * Drop the semaphore reference, which in turn deallocates the
255 * semaphore structure if the reference count goes to zero.
256 */
257 ipc_port_dealloc_kernel(semaphore->port);
258 semaphore_dereference(semaphore);
259 return KERN_SUCCESS;
260 }
261
262 /*
263 * Routine: semaphore_signal_internal
264 *
265 * Signals the semaphore as direct.
266 * Assumptions:
267 * Semaphore is locked.
268 */
269 kern_return_t
270 semaphore_signal_internal(
271 semaphore_t semaphore,
272 thread_t thread,
273 int options)
274 {
275 kern_return_t kr;
276 spl_t spl_level;
277
278 spl_level = splsched();
279 semaphore_lock(semaphore);
280
281 if (!semaphore->active) {
282 semaphore_unlock(semaphore);
283 splx(spl_level);
284 return KERN_TERMINATED;
285 }
286
287 if (thread != THREAD_NULL) {
288 if (semaphore->count < 0) {
289 kr = wait_queue_wakeup64_thread_locked(
290 &semaphore->wait_queue,
291 SEMAPHORE_EVENT,
292 thread,
293 THREAD_AWAKENED,
294 TRUE); /* unlock? */
295 } else {
296 semaphore_unlock(semaphore);
297 kr = KERN_NOT_WAITING;
298 }
299 splx(spl_level);
300 return kr;
301 }
302
303 if (options & SEMAPHORE_SIGNAL_ALL) {
304 int old_count = semaphore->count;
305
306 if (old_count < 0) {
307 semaphore->count = 0; /* always reset */
308 kr = wait_queue_wakeup64_all_locked(
309 &semaphore->wait_queue,
310 SEMAPHORE_EVENT,
311 THREAD_AWAKENED,
312 TRUE); /* unlock? */
313 } else {
314 if (options & SEMAPHORE_SIGNAL_PREPOST)
315 semaphore->count++;
316 semaphore_unlock(semaphore);
317 kr = KERN_SUCCESS;
318 }
319 splx(spl_level);
320 return kr;
321 }
322
323 if (semaphore->count < 0) {
324 if (wait_queue_wakeup64_one_locked(
325 &semaphore->wait_queue,
326 SEMAPHORE_EVENT,
327 THREAD_AWAKENED,
328 FALSE) == KERN_SUCCESS) {
329 semaphore_unlock(semaphore);
330 splx(spl_level);
331 return KERN_SUCCESS;
332 } else
333 semaphore->count = 0; /* all waiters gone */
334 }
335
336 if (options & SEMAPHORE_SIGNAL_PREPOST) {
337 semaphore->count++;
338 }
339
340 semaphore_unlock(semaphore);
341 splx(spl_level);
342 return KERN_NOT_WAITING;
343 }
344
345 /*
346 * Routine: semaphore_signal_thread
347 *
348 * If the specified thread is blocked on the semaphore, it is
349 * woken up. If a NULL thread was supplied, then any one
350 * thread is woken up. Otherwise the caller gets KERN_NOT_WAITING
351 * and the semaphore is unchanged.
352 */
353 kern_return_t
354 semaphore_signal_thread(
355 semaphore_t semaphore,
356 thread_t thread)
357 {
358 kern_return_t ret;
359
360 if (semaphore == SEMAPHORE_NULL)
361 return KERN_INVALID_ARGUMENT;
362
363 ret = semaphore_signal_internal(semaphore,
364 thread,
365 SEMAPHORE_OPTION_NONE);
366 return ret;
367 }
368
369 /*
370 * Routine: semaphore_signal_thread_trap
371 *
372 * Trap interface to the semaphore_signal_thread function.
373 */
374 kern_return_t
375 semaphore_signal_thread_trap(
376 struct semaphore_signal_thread_trap_args *args)
377 {
378 mach_port_name_t sema_name = args->signal_name;
379 mach_port_name_t thread_name = args->thread_name;
380 semaphore_t semaphore;
381 thread_t thread;
382 kern_return_t kr;
383
384 /*
385 * MACH_PORT_NULL is not an error. It means that we want to
386 * select any one thread that is already waiting, but not to
387 * pre-post the semaphore.
388 */
389 if (thread_name != MACH_PORT_NULL) {
390 thread = port_name_to_thread(thread_name);
391 if (thread == THREAD_NULL)
392 return KERN_INVALID_ARGUMENT;
393 } else
394 thread = THREAD_NULL;
395
396 kr = port_name_to_semaphore(sema_name, &semaphore);
397 if (kr == KERN_SUCCESS) {
398 kr = semaphore_signal_internal(semaphore,
399 thread,
400 SEMAPHORE_OPTION_NONE);
401 semaphore_dereference(semaphore);
402 }
403 if (thread != THREAD_NULL) {
404 thread_deallocate(thread);
405 }
406 return kr;
407 }
408
409
410
411 /*
412 * Routine: semaphore_signal
413 *
414 * Traditional (in-kernel client and MIG interface) semaphore
415 * signal routine. Most users will access the trap version.
416 *
417 * This interface in not defined to return info about whether
418 * this call found a thread waiting or not. The internal
419 * routines (and future external routines) do. We have to
420 * convert those into plain KERN_SUCCESS returns.
421 */
422 kern_return_t
423 semaphore_signal(
424 semaphore_t semaphore)
425 {
426 kern_return_t kr;
427
428 if (semaphore == SEMAPHORE_NULL)
429 return KERN_INVALID_ARGUMENT;
430
431 kr = semaphore_signal_internal(semaphore,
432 THREAD_NULL,
433 SEMAPHORE_SIGNAL_PREPOST);
434 if (kr == KERN_NOT_WAITING)
435 return KERN_SUCCESS;
436 return kr;
437 }
438
439 /*
440 * Routine: semaphore_signal_trap
441 *
442 * Trap interface to the semaphore_signal function.
443 */
444 kern_return_t
445 semaphore_signal_trap(
446 struct semaphore_signal_trap_args *args)
447 {
448 mach_port_name_t sema_name = args->signal_name;
449 semaphore_t semaphore;
450 kern_return_t kr;
451
452 kr = port_name_to_semaphore(sema_name, &semaphore);
453 if (kr == KERN_SUCCESS) {
454 kr = semaphore_signal_internal(semaphore,
455 THREAD_NULL,
456 SEMAPHORE_SIGNAL_PREPOST);
457 semaphore_dereference(semaphore);
458 if (kr == KERN_NOT_WAITING)
459 kr = KERN_SUCCESS;
460 }
461 return kr;
462 }
463
464 /*
465 * Routine: semaphore_signal_all
466 *
467 * Awakens ALL threads currently blocked on the semaphore.
468 * The semaphore count returns to zero.
469 */
470 kern_return_t
471 semaphore_signal_all(
472 semaphore_t semaphore)
473 {
474 kern_return_t kr;
475
476 if (semaphore == SEMAPHORE_NULL)
477 return KERN_INVALID_ARGUMENT;
478
479 kr = semaphore_signal_internal(semaphore,
480 THREAD_NULL,
481 SEMAPHORE_SIGNAL_ALL);
482 if (kr == KERN_NOT_WAITING)
483 return KERN_SUCCESS;
484 return kr;
485 }
486
487 /*
488 * Routine: semaphore_signal_all_trap
489 *
490 * Trap interface to the semaphore_signal_all function.
491 */
492 kern_return_t
493 semaphore_signal_all_trap(
494 struct semaphore_signal_all_trap_args *args)
495 {
496 mach_port_name_t sema_name = args->signal_name;
497 semaphore_t semaphore;
498 kern_return_t kr;
499
500 kr = port_name_to_semaphore(sema_name, &semaphore);
501 if (kr == KERN_SUCCESS) {
502 kr = semaphore_signal_internal(semaphore,
503 THREAD_NULL,
504 SEMAPHORE_SIGNAL_ALL);
505 semaphore_dereference(semaphore);
506 if (kr == KERN_NOT_WAITING)
507 kr = KERN_SUCCESS;
508 }
509 return kr;
510 }
511
512 /*
513 * Routine: semaphore_convert_wait_result
514 *
515 * Generate the return code after a semaphore wait/block. It
516 * takes the wait result as an input and coverts that to an
517 * appropriate result.
518 */
519 kern_return_t
520 semaphore_convert_wait_result(int wait_result)
521 {
522 switch (wait_result) {
523 case THREAD_AWAKENED:
524 return KERN_SUCCESS;
525
526 case THREAD_TIMED_OUT:
527 return KERN_OPERATION_TIMED_OUT;
528
529 case THREAD_INTERRUPTED:
530 return KERN_ABORTED;
531
532 case THREAD_RESTART:
533 return KERN_TERMINATED;
534
535 default:
536 panic("semaphore_block\n");
537 return KERN_FAILURE;
538 }
539 }
540
541 /*
542 * Routine: semaphore_wait_continue
543 *
544 * Common continuation routine after waiting on a semphore.
545 * It returns directly to user space.
546 */
547 void
548 semaphore_wait_continue(void)
549 {
550 thread_t self = current_thread();
551 int wait_result = self->wait_result;
552 void (*caller_cont)(kern_return_t) = self->sth_continuation;
553
554 assert(self->sth_waitsemaphore != SEMAPHORE_NULL);
555 semaphore_dereference(self->sth_waitsemaphore);
556 if (self->sth_signalsemaphore != SEMAPHORE_NULL)
557 semaphore_dereference(self->sth_signalsemaphore);
558
559 assert(caller_cont != (void (*)(kern_return_t))0);
560 (*caller_cont)(semaphore_convert_wait_result(wait_result));
561 }
562
563 /*
564 * Routine: semaphore_wait_internal
565 *
566 * Decrements the semaphore count by one. If the count is
567 * negative after the decrement, the calling thread blocks
568 * (possibly at a continuation and/or with a timeout).
569 *
570 * Assumptions:
571 * The reference
572 * A reference is held on the signal semaphore.
573 */
574 kern_return_t
575 semaphore_wait_internal(
576 semaphore_t wait_semaphore,
577 semaphore_t signal_semaphore,
578 mach_timespec_t *wait_timep,
579 void (*caller_cont)(kern_return_t))
580 {
581 boolean_t nonblocking;
582 int wait_result;
583 spl_t spl_level;
584 kern_return_t kr = KERN_ALREADY_WAITING;
585
586 spl_level = splsched();
587 semaphore_lock(wait_semaphore);
588
589 /*
590 * Decide if we really have to wait.
591 */
592 nonblocking = (wait_timep != (mach_timespec_t *)0) ?
593 (wait_timep->tv_sec == 0 && wait_timep->tv_nsec == 0) :
594 FALSE;
595
596 if (!wait_semaphore->active) {
597 kr = KERN_TERMINATED;
598 } else if (wait_semaphore->count > 0) {
599 wait_semaphore->count--;
600 kr = KERN_SUCCESS;
601 } else if (nonblocking) {
602 kr = KERN_OPERATION_TIMED_OUT;
603 } else {
604 uint64_t abstime;
605 thread_t self = current_thread();
606
607 wait_semaphore->count = -1; /* we don't keep an actual count */
608 thread_lock(self);
609
610 /*
611 * If it is a timed wait, calculate the wake up deadline.
612 */
613 if (wait_timep != (mach_timespec_t *)0) {
614 nanoseconds_to_absolutetime((uint64_t)wait_timep->tv_sec *
615 NSEC_PER_SEC + wait_timep->tv_nsec, &abstime);
616 clock_absolutetime_interval_to_deadline(abstime, &abstime);
617 }
618 else
619 abstime = 0;
620
621 (void)wait_queue_assert_wait64_locked(
622 &wait_semaphore->wait_queue,
623 SEMAPHORE_EVENT,
624 THREAD_ABORTSAFE, abstime,
625 self);
626 thread_unlock(self);
627 }
628 semaphore_unlock(wait_semaphore);
629 splx(spl_level);
630
631 /*
632 * wait_semaphore is unlocked so we are free to go ahead and
633 * signal the signal_semaphore (if one was provided).
634 */
635 if (signal_semaphore != SEMAPHORE_NULL) {
636 kern_return_t signal_kr;
637
638 /*
639 * lock the signal semaphore reference we got and signal it.
640 * This will NOT block (we cannot block after having asserted
641 * our intention to wait above).
642 */
643 signal_kr = semaphore_signal_internal(signal_semaphore,
644 THREAD_NULL,
645 SEMAPHORE_SIGNAL_PREPOST);
646
647 if (signal_kr == KERN_NOT_WAITING)
648 signal_kr = KERN_SUCCESS;
649 else if (signal_kr == KERN_TERMINATED) {
650 /*
651 * Uh!Oh! The semaphore we were to signal died.
652 * We have to get ourselves out of the wait in
653 * case we get stuck here forever (it is assumed
654 * that the semaphore we were posting is gating
655 * the decision by someone else to post the
656 * semaphore we are waiting on). People will
657 * discover the other dead semaphore soon enough.
658 * If we got out of the wait cleanly (someone
659 * already posted a wakeup to us) then return that
660 * (most important) result. Otherwise,
661 * return the KERN_TERMINATED status.
662 */
663 thread_t self = current_thread();
664
665 clear_wait(self, THREAD_INTERRUPTED);
666 kr = semaphore_convert_wait_result(self->wait_result);
667 if (kr == KERN_ABORTED)
668 kr = KERN_TERMINATED;
669 }
670 }
671
672 /*
673 * If we had an error, or we didn't really need to wait we can
674 * return now that we have signalled the signal semaphore.
675 */
676 if (kr != KERN_ALREADY_WAITING)
677 return kr;
678
679 /*
680 * Now, we can block. If the caller supplied a continuation
681 * pointer of his own for after the block, block with the
682 * appropriate semaphore continuation. Thiswill gather the
683 * semaphore results, release references on the semaphore(s),
684 * and then call the caller's continuation.
685 */
686 if (caller_cont) {
687 thread_t self = current_thread();
688
689 self->sth_continuation = caller_cont;
690 self->sth_waitsemaphore = wait_semaphore;
691 self->sth_signalsemaphore = signal_semaphore;
692 wait_result = thread_block((thread_continue_t)semaphore_wait_continue);
693 }
694 else {
695 wait_result = thread_block(THREAD_CONTINUE_NULL);
696 }
697
698 return (semaphore_convert_wait_result(wait_result));
699 }
700
701
702 /*
703 * Routine: semaphore_wait
704 *
705 * Traditional (non-continuation) interface presented to
706 * in-kernel clients to wait on a semaphore.
707 */
708 kern_return_t
709 semaphore_wait(
710 semaphore_t semaphore)
711 {
712
713 if (semaphore == SEMAPHORE_NULL)
714 return KERN_INVALID_ARGUMENT;
715
716 return(semaphore_wait_internal(semaphore,
717 SEMAPHORE_NULL,
718 (mach_timespec_t *)0,
719 (void (*)(kern_return_t))0));
720 }
721
722 /*
723 * Trap: semaphore_wait_trap
724 *
725 * Trap version of semaphore wait. Called on behalf of user-level
726 * clients.
727 */
728
729 kern_return_t
730 semaphore_wait_trap(
731 struct semaphore_wait_trap_args *args)
732 {
733 return(semaphore_wait_trap_internal(args->wait_name, thread_syscall_return));
734 }
735
736
737
738 kern_return_t
739 semaphore_wait_trap_internal(
740 mach_port_name_t name,
741 void (*caller_cont)(kern_return_t))
742 {
743 semaphore_t semaphore;
744 kern_return_t kr;
745
746 kr = port_name_to_semaphore(name, &semaphore);
747 if (kr == KERN_SUCCESS) {
748 kr = semaphore_wait_internal(semaphore,
749 SEMAPHORE_NULL,
750 (mach_timespec_t *)0,
751 caller_cont);
752 semaphore_dereference(semaphore);
753 }
754 return kr;
755 }
756
757 /*
758 * Routine: semaphore_timedwait
759 *
760 * Traditional (non-continuation) interface presented to
761 * in-kernel clients to wait on a semaphore with a timeout.
762 *
763 * A timeout of {0,0} is considered non-blocking.
764 */
765 kern_return_t
766 semaphore_timedwait(
767 semaphore_t semaphore,
768 mach_timespec_t wait_time)
769 {
770 if (semaphore == SEMAPHORE_NULL)
771 return KERN_INVALID_ARGUMENT;
772
773 if(BAD_MACH_TIMESPEC(&wait_time))
774 return KERN_INVALID_VALUE;
775
776 return (semaphore_wait_internal(semaphore,
777 SEMAPHORE_NULL,
778 &wait_time,
779 (void(*)(kern_return_t))0));
780
781 }
782
783 /*
784 * Trap: semaphore_timedwait_trap
785 *
786 * Trap version of a semaphore_timedwait. The timeout parameter
787 * is passed in two distinct parts and re-assembled on this side
788 * of the trap interface (to accomodate calling conventions that
789 * pass structures as pointers instead of inline in registers without
790 * having to add a copyin).
791 *
792 * A timeout of {0,0} is considered non-blocking.
793 */
794 kern_return_t
795 semaphore_timedwait_trap(
796 struct semaphore_timedwait_trap_args *args)
797 {
798
799 return(semaphore_timedwait_trap_internal(args->wait_name, args->sec, args->nsec, thread_syscall_return));
800 }
801
802
803 kern_return_t
804 semaphore_timedwait_trap_internal(
805 mach_port_name_t name,
806 unsigned int sec,
807 clock_res_t nsec,
808 void (*caller_cont)(kern_return_t))
809 {
810
811 semaphore_t semaphore;
812 mach_timespec_t wait_time;
813 kern_return_t kr;
814
815 wait_time.tv_sec = sec;
816 wait_time.tv_nsec = nsec;
817 if(BAD_MACH_TIMESPEC(&wait_time))
818 return KERN_INVALID_VALUE;
819
820 kr = port_name_to_semaphore(name, &semaphore);
821 if (kr == KERN_SUCCESS) {
822 kr = semaphore_wait_internal(semaphore,
823 SEMAPHORE_NULL,
824 &wait_time,
825 caller_cont);
826 semaphore_dereference(semaphore);
827 }
828 return kr;
829 }
830
831 /*
832 * Routine: semaphore_wait_signal
833 *
834 * Atomically register a wait on a semaphore and THEN signal
835 * another. This is the in-kernel entry point that does not
836 * block at a continuation and does not free a signal_semaphore
837 * reference.
838 */
839 kern_return_t
840 semaphore_wait_signal(
841 semaphore_t wait_semaphore,
842 semaphore_t signal_semaphore)
843 {
844 if (wait_semaphore == SEMAPHORE_NULL)
845 return KERN_INVALID_ARGUMENT;
846
847 return(semaphore_wait_internal(wait_semaphore,
848 signal_semaphore,
849 (mach_timespec_t *)0,
850 (void(*)(kern_return_t))0));
851 }
852
853 /*
854 * Trap: semaphore_wait_signal_trap
855 *
856 * Atomically register a wait on a semaphore and THEN signal
857 * another. This is the trap version from user space.
858 */
859 kern_return_t
860 semaphore_wait_signal_trap(
861 struct semaphore_wait_signal_trap_args *args)
862 {
863 return(semaphore_wait_signal_trap_internal(args->wait_name, args->signal_name, thread_syscall_return));
864 }
865
866 kern_return_t
867 semaphore_wait_signal_trap_internal(
868 mach_port_name_t wait_name,
869 mach_port_name_t signal_name,
870 void (*caller_cont)(kern_return_t))
871 {
872 semaphore_t wait_semaphore;
873 semaphore_t signal_semaphore;
874 kern_return_t kr;
875
876 kr = port_name_to_semaphore(signal_name, &signal_semaphore);
877 if (kr == KERN_SUCCESS) {
878 kr = port_name_to_semaphore(wait_name, &wait_semaphore);
879 if (kr == KERN_SUCCESS) {
880 kr = semaphore_wait_internal(wait_semaphore,
881 signal_semaphore,
882 (mach_timespec_t *)0,
883 caller_cont);
884 semaphore_dereference(wait_semaphore);
885 }
886 semaphore_dereference(signal_semaphore);
887 }
888 return kr;
889 }
890
891
892 /*
893 * Routine: semaphore_timedwait_signal
894 *
895 * Atomically register a wait on a semaphore and THEN signal
896 * another. This is the in-kernel entry point that does not
897 * block at a continuation.
898 *
899 * A timeout of {0,0} is considered non-blocking.
900 */
901 kern_return_t
902 semaphore_timedwait_signal(
903 semaphore_t wait_semaphore,
904 semaphore_t signal_semaphore,
905 mach_timespec_t wait_time)
906 {
907 if (wait_semaphore == SEMAPHORE_NULL)
908 return KERN_INVALID_ARGUMENT;
909
910 if(BAD_MACH_TIMESPEC(&wait_time))
911 return KERN_INVALID_VALUE;
912
913 return(semaphore_wait_internal(wait_semaphore,
914 signal_semaphore,
915 &wait_time,
916 (void(*)(kern_return_t))0));
917 }
918
919 /*
920 * Trap: semaphore_timedwait_signal_trap
921 *
922 * Atomically register a timed wait on a semaphore and THEN signal
923 * another. This is the trap version from user space.
924 */
925 kern_return_t
926 semaphore_timedwait_signal_trap(
927 struct semaphore_timedwait_signal_trap_args *args)
928 {
929 return(semaphore_timedwait_signal_trap_internal(args->wait_name, args->signal_name, args->sec, args->nsec, thread_syscall_return));
930 }
931
932 kern_return_t
933 semaphore_timedwait_signal_trap_internal(
934 mach_port_name_t wait_name,
935 mach_port_name_t signal_name,
936 unsigned int sec,
937 clock_res_t nsec,
938 void (*caller_cont)(kern_return_t))
939 {
940 semaphore_t wait_semaphore;
941 semaphore_t signal_semaphore;
942 mach_timespec_t wait_time;
943 kern_return_t kr;
944
945 wait_time.tv_sec = sec;
946 wait_time.tv_nsec = nsec;
947 if(BAD_MACH_TIMESPEC(&wait_time))
948 return KERN_INVALID_VALUE;
949
950 kr = port_name_to_semaphore(signal_name, &signal_semaphore);
951 if (kr == KERN_SUCCESS) {
952 kr = port_name_to_semaphore(wait_name, &wait_semaphore);
953 if (kr == KERN_SUCCESS) {
954 kr = semaphore_wait_internal(wait_semaphore,
955 signal_semaphore,
956 &wait_time,
957 caller_cont);
958 semaphore_dereference(wait_semaphore);
959 }
960 semaphore_dereference(signal_semaphore);
961 }
962 return kr;
963 }
964
965
966 /*
967 * Routine: semaphore_reference
968 *
969 * Take out a reference on a semaphore. This keeps the data structure
970 * in existence (but the semaphore may be deactivated).
971 */
972 void
973 semaphore_reference(
974 semaphore_t semaphore)
975 {
976 spl_t spl_level;
977
978 spl_level = splsched();
979 semaphore_lock(semaphore);
980
981 semaphore->ref_count++;
982
983 semaphore_unlock(semaphore);
984 splx(spl_level);
985 }
986
987 /*
988 * Routine: semaphore_dereference
989 *
990 * Release a reference on a semaphore. If this is the last reference,
991 * the semaphore data structure is deallocated.
992 */
993 void
994 semaphore_dereference(
995 semaphore_t semaphore)
996 {
997 int ref_count;
998 spl_t spl_level;
999
1000 if (semaphore != NULL) {
1001 spl_level = splsched();
1002 semaphore_lock(semaphore);
1003
1004 ref_count = --(semaphore->ref_count);
1005
1006 semaphore_unlock(semaphore);
1007 splx(spl_level);
1008
1009 if (ref_count == 0) {
1010 assert(wait_queue_empty(&semaphore->wait_queue));
1011 zfree(semaphore_zone, semaphore);
1012 }
1013 }
1014 }