2 * Copyright (c) 2000-2005 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_OSREFERENCE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the
10 * License may not be used to create, or enable the creation or
11 * redistribution of, unlawful or unlicensed copies of an Apple operating
12 * system, or to circumvent, violate, or enable the circumvention or
13 * violation of, any terms of an Apple operating system software license
16 * Please obtain a copy of the License at
17 * http://www.opensource.apple.com/apsl/ and read it before using this
20 * The Original Code and all software distributed under the License are
21 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
22 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
23 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
25 * Please see the License for the specific language governing rights and
26 * limitations under the License.
28 * @APPLE_LICENSE_OSREFERENCE_HEADER_END@
34 * Mach Operating System
35 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
36 * All Rights Reserved.
38 * Permission to use, copy, modify and distribute this software and its
39 * documentation is hereby granted, provided that both the copyright
40 * notice and this permission notice appear in all copies of the
41 * software, derivative works or modified versions, and any portions
42 * thereof, and that both notices appear in supporting documentation.
44 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
45 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
46 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
48 * Carnegie Mellon requests users of this software to return to
50 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
51 * School of Computer Science
52 * Carnegie Mellon University
53 * Pittsburgh PA 15213-3890
55 * any improvements or extensions that they make and grant Carnegie Mellon
56 * the rights to redistribute these changes.
62 * Author: Avadis Tevanian, Jr., Michael Wayne Young
65 * Kernel memory management.
68 #include <mach/kern_return.h>
69 #include <mach/vm_param.h>
70 #include <kern/assert.h>
71 #include <kern/lock.h>
72 #include <kern/thread.h>
73 #include <vm/vm_kern.h>
74 #include <vm/vm_map.h>
75 #include <vm/vm_object.h>
76 #include <vm/vm_page.h>
77 #include <vm/vm_pageout.h>
78 #include <kern/misc_protos.h>
83 * Variables exported by this module.
87 vm_map_t kernel_pageable_map
;
90 * Forward declarations for internal functions.
92 extern kern_return_t
kmem_alloc_pages(
93 register vm_object_t object
,
94 register vm_object_offset_t offset
,
95 register vm_object_size_t size
);
97 extern void kmem_remap_pages(
98 register vm_object_t object
,
99 register vm_object_offset_t offset
,
100 register vm_offset_t start
,
101 register vm_offset_t end
,
102 vm_prot_t protection
);
113 vm_object_offset_t offset
;
114 vm_map_offset_t map_addr
;
115 vm_map_offset_t map_mask
;
116 vm_map_size_t map_size
, i
;
117 vm_map_entry_t entry
;
121 if (map
== VM_MAP_NULL
|| (flags
&& (flags
^ KMA_KOBJECT
)))
122 return KERN_INVALID_ARGUMENT
;
126 return KERN_INVALID_ARGUMENT
;
129 map_size
= vm_map_round_page(size
);
130 map_mask
= (vm_map_offset_t
)mask
;
133 * Allocate a new object (if necessary) and the reference we
134 * will be donating to the map entry. We must do this before
135 * locking the map, or risk deadlock with the default pager.
137 if ((flags
& KMA_KOBJECT
) != 0) {
138 object
= kernel_object
;
139 vm_object_reference(object
);
141 object
= vm_object_allocate(map_size
);
144 kr
= vm_map_find_space(map
, &map_addr
, map_size
, map_mask
, &entry
);
145 if (KERN_SUCCESS
!= kr
) {
146 vm_object_deallocate(object
);
150 entry
->object
.vm_object
= object
;
151 entry
->offset
= offset
= (object
== kernel_object
) ?
152 map_addr
- VM_MIN_KERNEL_ADDRESS
: 0;
154 /* Take an extra object ref in case the map entry gets deleted */
155 vm_object_reference(object
);
158 kr
= cpm_allocate(CAST_DOWN(vm_size_t
, map_size
), &pages
, FALSE
);
160 if (kr
!= KERN_SUCCESS
) {
161 vm_map_remove(map
, vm_map_trunc_page(map_addr
),
162 vm_map_round_page(map_addr
+ map_size
), 0);
163 vm_object_deallocate(object
);
168 vm_object_lock(object
);
169 for (i
= 0; i
< map_size
; i
+= PAGE_SIZE
) {
171 pages
= NEXT_PAGE(m
);
173 vm_page_insert(m
, object
, offset
+ i
);
175 vm_object_unlock(object
);
177 if ((kr
= vm_map_wire(map
, vm_map_trunc_page(map_addr
),
178 vm_map_round_page(map_addr
+ map_size
), VM_PROT_DEFAULT
, FALSE
))
180 if (object
== kernel_object
) {
181 vm_object_lock(object
);
182 vm_object_page_remove(object
, offset
, offset
+ map_size
);
183 vm_object_unlock(object
);
185 vm_map_remove(map
, vm_map_trunc_page(map_addr
),
186 vm_map_round_page(map_addr
+ map_size
), 0);
187 vm_object_deallocate(object
);
190 vm_object_deallocate(object
);
192 if (object
== kernel_object
)
193 vm_map_simplify(map
, map_addr
);
200 * Master entry point for allocating kernel memory.
201 * NOTE: this routine is _never_ interrupt safe.
203 * map : map to allocate into
204 * addrp : pointer to start address of new memory
205 * size : size of memory requested
207 * KMA_HERE *addrp is base address, else "anywhere"
208 * KMA_NOPAGEWAIT don't wait for pages if unavailable
209 * KMA_KOBJECT use kernel_object
213 kernel_memory_allocate(
214 register vm_map_t map
,
215 register vm_offset_t
*addrp
,
216 register vm_size_t size
,
217 register vm_offset_t mask
,
221 vm_object_offset_t offset
;
222 vm_map_entry_t entry
;
223 vm_map_offset_t map_addr
;
224 vm_map_offset_t map_mask
;
225 vm_map_size_t map_size
;
231 return KERN_INVALID_ARGUMENT
;
234 map_size
= vm_map_round_page(size
);
235 map_mask
= (vm_map_offset_t
) mask
;
238 * Allocate a new object (if necessary). We must do this before
239 * locking the map, or risk deadlock with the default pager.
241 if ((flags
& KMA_KOBJECT
) != 0) {
242 object
= kernel_object
;
243 vm_object_reference(object
);
245 object
= vm_object_allocate(map_size
);
248 kr
= vm_map_find_space(map
, &map_addr
, map_size
, map_mask
, &entry
);
249 if (KERN_SUCCESS
!= kr
) {
250 vm_object_deallocate(object
);
254 entry
->object
.vm_object
= object
;
255 entry
->offset
= offset
= (object
== kernel_object
) ?
256 map_addr
- VM_MIN_KERNEL_ADDRESS
: 0;
258 vm_object_reference(object
);
261 vm_object_lock(object
);
262 for (i
= 0; i
< map_size
; i
+= PAGE_SIZE
) {
265 while (VM_PAGE_NULL
==
266 (mem
= vm_page_alloc(object
, offset
+ i
))) {
267 if (flags
& KMA_NOPAGEWAIT
) {
268 if (object
== kernel_object
)
269 vm_object_page_remove(object
, offset
, offset
+ i
);
270 vm_object_unlock(object
);
271 vm_map_remove(map
, map_addr
, map_addr
+ map_size
, 0);
272 vm_object_deallocate(object
);
273 return KERN_RESOURCE_SHORTAGE
;
275 vm_object_unlock(object
);
277 vm_object_lock(object
);
281 vm_object_unlock(object
);
283 if ((kr
= vm_map_wire(map
, map_addr
, map_addr
+ map_size
, VM_PROT_DEFAULT
, FALSE
))
285 if (object
== kernel_object
) {
286 vm_object_lock(object
);
287 vm_object_page_remove(object
, offset
, offset
+ map_size
);
288 vm_object_unlock(object
);
290 vm_map_remove(map
, map_addr
, map_addr
+ map_size
, 0);
291 vm_object_deallocate(object
);
294 /* now that the page is wired, we no longer have to fear coalesce */
295 vm_object_deallocate(object
);
296 if (object
== kernel_object
)
297 vm_map_simplify(map
, map_addr
);
300 * Return the memory, not zeroed.
302 *addrp
= CAST_DOWN(vm_offset_t
, map_addr
);
309 * Allocate wired-down memory in the kernel's address map
310 * or a submap. The memory is not zero-filled.
319 return kernel_memory_allocate(map
, addrp
, size
, 0, 0);
325 * Reallocate wired-down memory in the kernel's address map
326 * or a submap. Newly allocated pages are not zeroed.
327 * This can only be used on regions allocated with kmem_alloc.
329 * If successful, the pages in the old region are mapped twice.
330 * The old region is unchanged. Use kmem_free to get rid of it.
337 vm_offset_t
*newaddrp
,
341 vm_object_offset_t offset
;
342 vm_map_offset_t oldmapmin
;
343 vm_map_offset_t oldmapmax
;
344 vm_map_offset_t newmapaddr
;
345 vm_map_size_t oldmapsize
;
346 vm_map_size_t newmapsize
;
347 vm_map_entry_t oldentry
;
348 vm_map_entry_t newentry
;
352 oldmapmin
= vm_map_trunc_page(oldaddr
);
353 oldmapmax
= vm_map_round_page(oldaddr
+ oldsize
);
354 oldmapsize
= oldmapmax
- oldmapmin
;
355 newmapsize
= vm_map_round_page(newsize
);
359 * Find the VM object backing the old region.
364 if (!vm_map_lookup_entry(map
, oldmapmin
, &oldentry
))
365 panic("kmem_realloc");
366 object
= oldentry
->object
.vm_object
;
369 * Increase the size of the object and
370 * fill in the new region.
373 vm_object_reference(object
);
374 /* by grabbing the object lock before unlocking the map */
375 /* we guarantee that we will panic if more than one */
376 /* attempt is made to realloc a kmem_alloc'd area */
377 vm_object_lock(object
);
379 if (object
->size
!= oldmapsize
)
380 panic("kmem_realloc");
381 object
->size
= newmapsize
;
382 vm_object_unlock(object
);
384 /* allocate the new pages while expanded portion of the */
385 /* object is still not mapped */
386 kmem_alloc_pages(object
, vm_object_round_page(oldmapsize
),
387 vm_object_round_page(newmapsize
-oldmapsize
));
390 * Find space for the new region.
393 kr
= vm_map_find_space(map
, &newmapaddr
, newmapsize
,
394 (vm_map_offset_t
) 0, &newentry
);
395 if (kr
!= KERN_SUCCESS
) {
396 vm_object_lock(object
);
397 for(offset
= oldmapsize
;
398 offset
< newmapsize
; offset
+= PAGE_SIZE
) {
399 if ((mem
= vm_page_lookup(object
, offset
)) != VM_PAGE_NULL
) {
400 vm_page_lock_queues();
402 vm_page_unlock_queues();
405 object
->size
= oldmapsize
;
406 vm_object_unlock(object
);
407 vm_object_deallocate(object
);
410 newentry
->object
.vm_object
= object
;
411 newentry
->offset
= 0;
412 assert (newentry
->wired_count
== 0);
415 /* add an extra reference in case we have someone doing an */
416 /* unexpected deallocate */
417 vm_object_reference(object
);
420 kr
= vm_map_wire(map
, newmapaddr
, newmapaddr
+ newmapsize
, VM_PROT_DEFAULT
, FALSE
);
421 if (KERN_SUCCESS
!= kr
) {
422 vm_map_remove(map
, newmapaddr
, newmapaddr
+ newmapsize
, 0);
423 vm_object_lock(object
);
424 for(offset
= oldsize
; offset
< newmapsize
; offset
+= PAGE_SIZE
) {
425 if ((mem
= vm_page_lookup(object
, offset
)) != VM_PAGE_NULL
) {
426 vm_page_lock_queues();
428 vm_page_unlock_queues();
431 object
->size
= oldmapsize
;
432 vm_object_unlock(object
);
433 vm_object_deallocate(object
);
436 vm_object_deallocate(object
);
438 *newaddrp
= CAST_DOWN(vm_offset_t
, newmapaddr
);
445 * Allocate wired-down memory in the kernel's address map
446 * or a submap. The memory is not zero-filled.
448 * The memory is allocated in the kernel_object.
449 * It may not be copied with vm_map_copy, and
450 * it may not be reallocated with kmem_realloc.
459 return kernel_memory_allocate(map
, addrp
, size
, 0, KMA_KOBJECT
);
463 * kmem_alloc_aligned:
465 * Like kmem_alloc_wired, except that the memory is aligned.
466 * The size should be a power-of-2.
475 if ((size
& (size
- 1)) != 0)
476 panic("kmem_alloc_aligned: size not aligned");
477 return kernel_memory_allocate(map
, addrp
, size
, size
- 1, KMA_KOBJECT
);
481 * kmem_alloc_pageable:
483 * Allocate pageable memory in the kernel's address map.
492 vm_map_offset_t map_addr
;
493 vm_map_size_t map_size
;
497 map_addr
= (vm_map_min(map
)) + 0x1000;
499 map_addr
= vm_map_min(map
);
501 map_size
= vm_map_round_page(size
);
503 kr
= vm_map_enter(map
, &map_addr
, map_size
,
504 (vm_map_offset_t
) 0, VM_FLAGS_ANYWHERE
,
505 VM_OBJECT_NULL
, (vm_object_offset_t
) 0, FALSE
,
506 VM_PROT_DEFAULT
, VM_PROT_ALL
, VM_INHERIT_DEFAULT
);
508 if (kr
!= KERN_SUCCESS
)
511 *addrp
= CAST_DOWN(vm_offset_t
, map_addr
);
518 * Release a region of kernel virtual memory allocated
519 * with kmem_alloc, kmem_alloc_wired, or kmem_alloc_pageable,
520 * and return the physical pages associated with that region.
531 kr
= vm_map_remove(map
, vm_map_trunc_page(addr
),
532 vm_map_round_page(addr
+ size
),
533 VM_MAP_REMOVE_KUNWIRE
);
534 if (kr
!= KERN_SUCCESS
)
539 * Allocate new pages in an object.
544 register vm_object_t object
,
545 register vm_object_offset_t offset
,
546 register vm_object_size_t size
)
548 vm_object_size_t alloc_size
;
550 alloc_size
= vm_object_round_page(size
);
551 vm_object_lock(object
);
553 register vm_page_t mem
;
559 while (VM_PAGE_NULL
==
560 (mem
= vm_page_alloc(object
, offset
))) {
561 vm_object_unlock(object
);
563 vm_object_lock(object
);
567 alloc_size
-= PAGE_SIZE
;
570 vm_object_unlock(object
);
575 * Remap wired pages in an object into a new region.
576 * The object is assumed to be mapped into the kernel map or
581 register vm_object_t object
,
582 register vm_object_offset_t offset
,
583 register vm_offset_t start
,
584 register vm_offset_t end
,
585 vm_prot_t protection
)
588 vm_map_offset_t map_start
;
589 vm_map_offset_t map_end
;
592 * Mark the pmap region as not pageable.
594 map_start
= vm_map_trunc_page(start
);
595 map_end
= vm_map_round_page(end
);
597 pmap_pageable(kernel_pmap
, map_start
, map_end
, FALSE
);
599 while (map_start
< map_end
) {
600 register vm_page_t mem
;
602 vm_object_lock(object
);
607 if ((mem
= vm_page_lookup(object
, offset
)) == VM_PAGE_NULL
)
608 panic("kmem_remap_pages");
611 * Wire it down (again)
613 vm_page_lock_queues();
615 vm_page_unlock_queues();
616 vm_object_unlock(object
);
620 * The page is supposed to be wired now, so it
621 * shouldn't be encrypted at this point. It can
622 * safely be entered in the page table.
624 ASSERT_PAGE_DECRYPTED(mem
);
627 * Enter it in the kernel pmap. The page isn't busy,
628 * but this shouldn't be a problem because it is wired.
630 PMAP_ENTER(kernel_pmap
, map_start
, mem
, protection
,
631 ((unsigned int)(mem
->object
->wimg_bits
))
635 map_start
+= PAGE_SIZE
;
643 * Allocates a map to manage a subrange
644 * of the kernel virtual address space.
646 * Arguments are as follows:
648 * parent Map to take range from
649 * addr Address of start of range (IN/OUT)
650 * size Size of range to find
651 * pageable Can region be paged
652 * anywhere Can region be located anywhere in map
653 * new_map Pointer to new submap
665 vm_map_offset_t map_addr
;
666 vm_map_size_t map_size
;
669 map_size
= vm_map_round_page(size
);
672 * Need reference on submap object because it is internal
673 * to the vm_system. vm_object_enter will never be called
674 * on it (usual source of reference for vm_map_enter).
676 vm_object_reference(vm_submap_object
);
678 map_addr
= (flags
& VM_FLAGS_ANYWHERE
) ?
679 vm_map_min(parent
) : vm_map_trunc_page(*addr
);
681 kr
= vm_map_enter(parent
, &map_addr
, map_size
,
682 (vm_map_offset_t
) 0, flags
,
683 vm_submap_object
, (vm_object_offset_t
) 0, FALSE
,
684 VM_PROT_DEFAULT
, VM_PROT_ALL
, VM_INHERIT_DEFAULT
);
685 if (kr
!= KERN_SUCCESS
) {
686 vm_object_deallocate(vm_submap_object
);
690 pmap_reference(vm_map_pmap(parent
));
691 map
= vm_map_create(vm_map_pmap(parent
), map_addr
, map_addr
+ map_size
, pageable
);
692 if (map
== VM_MAP_NULL
)
693 panic("kmem_suballoc: vm_map_create failed"); /* "can't happen" */
695 kr
= vm_map_submap(parent
, map_addr
, map_addr
+ map_size
, map
, map_addr
, FALSE
);
696 if (kr
!= KERN_SUCCESS
) {
698 * See comment preceding vm_map_submap().
700 vm_map_remove(parent
, map_addr
, map_addr
+ map_size
, VM_MAP_NO_FLAGS
);
701 vm_map_deallocate(map
); /* also removes ref to pmap */
702 vm_object_deallocate(vm_submap_object
);
705 *addr
= CAST_DOWN(vm_offset_t
, map_addr
);
707 return (KERN_SUCCESS
);
713 * Initialize the kernel's virtual memory map, taking
714 * into account all memory allocated up to this time.
721 vm_map_offset_t map_start
;
722 vm_map_offset_t map_end
;
724 map_start
= vm_map_trunc_page(start
);
725 map_end
= vm_map_round_page(end
);
727 kernel_map
= vm_map_create(pmap_kernel(),VM_MIN_KERNEL_ADDRESS
,
731 * Reserve virtual memory allocated up to this time.
734 if (start
!= VM_MIN_KERNEL_ADDRESS
) {
735 vm_map_offset_t map_addr
;
737 map_addr
= VM_MIN_KERNEL_ADDRESS
;
738 (void) vm_map_enter(kernel_map
,
740 (vm_map_size_t
)(map_start
- VM_MIN_KERNEL_ADDRESS
),
742 VM_FLAGS_ANYWHERE
| VM_FLAGS_NO_PMAP_CHECK
,
744 (vm_object_offset_t
) 0, FALSE
,
745 VM_PROT_DEFAULT
, VM_PROT_ALL
,
750 * Account for kernel memory (text, data, bss, vm shenanigans).
751 * This may include inaccessible "holes" as determined by what
752 * the machine-dependent init code includes in max_mem.
754 vm_page_wire_count
= (atop_64(max_mem
) - (vm_page_free_count
755 + vm_page_active_count
756 + vm_page_inactive_count
));
763 * Like copyin, except that fromaddr is an address
764 * in the specified VM map. This implementation
765 * is incomplete; it handles the current user map
766 * and the kernel map/submaps.
771 vm_map_offset_t fromaddr
,
775 kern_return_t kr
= KERN_SUCCESS
;
778 if (vm_map_pmap(map
) == pmap_kernel())
780 /* assume a correct copy */
781 memcpy(todata
, CAST_DOWN(void *, fromaddr
), length
);
783 else if (current_map() == map
)
785 if (copyin(fromaddr
, todata
, length
) != 0)
786 kr
= KERN_INVALID_ADDRESS
;
790 vm_map_reference(map
);
791 oldmap
= vm_map_switch(map
);
792 if (copyin(fromaddr
, todata
, length
) != 0)
793 kr
= KERN_INVALID_ADDRESS
;
794 vm_map_switch(oldmap
);
795 vm_map_deallocate(map
);
801 * Routine: copyoutmap
803 * Like copyout, except that toaddr is an address
804 * in the specified VM map. This implementation
805 * is incomplete; it handles the current user map
806 * and the kernel map/submaps.
812 vm_map_address_t toaddr
,
815 if (vm_map_pmap(map
) == pmap_kernel()) {
816 /* assume a correct copy */
817 memcpy(CAST_DOWN(void *, toaddr
), fromdata
, length
);
821 if (current_map() != map
)
822 return KERN_NOT_SUPPORTED
;
824 if (copyout(fromdata
, toaddr
, length
) != 0)
825 return KERN_INVALID_ADDRESS
;
836 memory_object_t pager
,
837 vm_object_offset_t file_off
)
839 vm_map_entry_t entry
;
841 vm_object_offset_t obj_off
;
843 vm_map_offset_t base_offset
;
844 vm_map_offset_t original_offset
;
846 vm_map_size_t local_len
;
850 original_offset
= off
;
853 while(vm_map_lookup_entry(map
, off
, &entry
)) {
856 if (entry
->object
.vm_object
== VM_OBJECT_NULL
) {
860 if (entry
->is_sub_map
) {
864 vm_map_lock(entry
->object
.sub_map
);
865 map
= entry
->object
.sub_map
;
866 off
= entry
->offset
+ (off
- entry
->vme_start
);
867 vm_map_unlock(old_map
);
870 obj
= entry
->object
.vm_object
;
871 obj_off
= (off
- entry
->vme_start
) + entry
->offset
;
873 obj_off
+= obj
->shadow_offset
;
876 if((obj
->pager_created
) && (obj
->pager
== pager
)) {
877 if(((obj
->paging_offset
) + obj_off
) == file_off
) {
878 if(off
!= base_offset
) {
882 kr
= KERN_ALREADY_WAITING
;
884 vm_object_offset_t obj_off_aligned
;
885 vm_object_offset_t file_off_aligned
;
887 obj_off_aligned
= obj_off
& ~PAGE_MASK
;
888 file_off_aligned
= file_off
& ~PAGE_MASK
;
890 if (file_off_aligned
== (obj
->paging_offset
+ obj_off_aligned
)) {
892 * the target map and the file offset start in the same page
893 * but are not identical...
898 if ((file_off
< (obj
->paging_offset
+ obj_off_aligned
)) &&
899 ((file_off
+ len
) > (obj
->paging_offset
+ obj_off_aligned
))) {
901 * some portion of the tail of the I/O will fall
902 * within the encompass of the target map
907 if ((file_off_aligned
> (obj
->paging_offset
+ obj_off
)) &&
908 (file_off_aligned
< (obj
->paging_offset
+ obj_off
) + len
)) {
910 * the beginning page of the file offset falls within
911 * the target map's encompass
917 } else if(kr
!= KERN_SUCCESS
) {
922 if(len
<= ((entry
->vme_end
- entry
->vme_start
) -
923 (off
- entry
->vme_start
))) {
927 len
-= (entry
->vme_end
- entry
->vme_start
) -
928 (off
- entry
->vme_start
);
930 base_offset
= base_offset
+ (local_len
- len
);
931 file_off
= file_off
+ (local_len
- len
);
933 if(map
!= base_map
) {
935 vm_map_lock(base_map
);