2 * Copyright (c) 2000-2005 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_OSREFERENCE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the
10 * License may not be used to create, or enable the creation or
11 * redistribution of, unlawful or unlicensed copies of an Apple operating
12 * system, or to circumvent, violate, or enable the circumvention or
13 * violation of, any terms of an Apple operating system software license
16 * Please obtain a copy of the License at
17 * http://www.opensource.apple.com/apsl/ and read it before using this
20 * The Original Code and all software distributed under the License are
21 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
22 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
23 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
25 * Please see the License for the specific language governing rights and
26 * limitations under the License.
28 * @APPLE_LICENSE_OSREFERENCE_HEADER_END@
31 * This file is used to maintain the virtual to real mappings for a PowerPC machine.
32 * The code herein is primarily used to bridge between the pmap layer and the hardware layer.
33 * Currently, some of the function of this module is contained within pmap.c. We may want to move
34 * all of this into it (or most anyway) for the sake of performance. We shall see as we write it.
36 * We also depend upon the structure of the phys_entry control block. We do put some processor
37 * specific stuff in there.
42 #include <mach_kgdb.h>
43 #include <mach_vm_debug.h>
44 #include <db_machine_commands.h>
46 #include <mach/mach_types.h>
47 #include <mach/vm_attributes.h>
48 #include <mach/vm_param.h>
50 #include <kern/kern_types.h>
51 #include <kern/thread.h>
53 #include <kern/misc_protos.h>
55 #include <vm/vm_fault.h>
56 #include <vm/vm_kern.h>
57 #include <vm/vm_map.h>
58 #include <vm/vm_page.h>
61 #include <ppc/exception.h>
62 #include <ppc/misc_protos.h>
63 #include <ppc/proc_reg.h>
66 #include <ppc/new_screen.h>
67 #include <ppc/Firmware.h>
68 #include <ppc/mappings.h>
69 #include <ddb/db_output.h>
71 #include <console/video_console.h> /* (TEST/DEBUG) */
75 vm_map_t mapping_map
= VM_MAP_NULL
;
77 unsigned int incrVSID
= 0; /* VSID increment value */
78 unsigned int mappingdeb0
= 0;
79 unsigned int mappingdeb1
= 0;
80 int ppc_max_adrsp
; /* Maximum address spaces */
82 addr64_t
*mapdebug
; /* (BRINGUP) */
83 extern unsigned int DebugWork
; /* (BRINGUP) */
85 void mapping_verify(void);
86 void mapping_phys_unused(ppnum_t pa
);
89 * ppc_prot translates Mach's representation of protections to that of the PPC hardware.
90 * For Virtual Machines (VMM), we also provide translation entries where the output is
91 * the same as the input, allowing direct specification of PPC protections. Mach's
92 * representations are always in the range 0..7, so they always fall into the first
93 * 8 table entries; direct translations are placed in the range 8..16, so they fall into
94 * the second half of the table.
96 * ***NOTE*** I've commented out the Mach->PPC translations that would set page-level
97 * no-execute, pending updates to the VM layer that will properly enable its
98 * use. Bob Abeles 08.02.04
101 //unsigned char ppc_prot[16] = { 4, 7, 6, 6, 3, 3, 2, 2, /* Mach -> PPC translations */
102 unsigned char ppc_prot
[16] = { 0, 3, 2, 2, 3, 3, 2, 2, /* Mach -> PPC translations */
103 0, 1, 2, 3, 4, 5, 6, 7 }; /* VMM direct translations */
106 * About PPC VSID generation:
108 * This function is called to generate an address space ID. This space ID must be unique within
109 * the system. For the PowerPC, it is used to build the VSID. We build a VSID in the following
110 * way: space ID << 4 | segment. Since a VSID is 24 bits, and out of that, we reserve the last
111 * 4, so, we can have 2^20 (2M) unique IDs. Each pmap has a unique space ID, so we should be able
112 * to have 2M pmaps at a time, which we couldn't, we'd run out of memory way before then. The
113 * problem is that only a certain number of pmaps are kept in a free list and if that is full,
114 * they are release. This causes us to lose track of what space IDs are free to be reused.
115 * We can do 4 things: 1) not worry about it, 2) keep all free pmaps, 3) rebuild all mappings
116 * when the space ID wraps, or 4) scan the list of pmaps and find a free one.
118 * Yet another consideration is the hardware use of the VSID. It is used as part of the hash
119 * calculation for virtual address lookup. An improperly chosen value could potentially cause
120 * too many hashes to hit the same bucket, causing PTEG overflows. The actual hash function
121 * is (page index XOR vsid) mod number of ptegs. For a 32MB machine, using the suggested
122 * hash table size, there are 2^12 (8192) PTEGs. Remember, though, that the bottom 4 bits
123 * are reserved for the segment number, which means that we really have 2^(12-4) 512 space IDs
124 * before we start hashing to the same buckets with the same vaddrs. Also, within a space ID,
125 * every 8192 pages (32MB) within a segment will hash to the same bucket. That's 8 collisions
126 * per segment. So, a scan of every page for 256MB would fill 32 PTEGs completely, but
127 * with no overflow. I don't think that this is a problem.
129 * There may be a problem with the space ID, though. A new space ID is generate (mainly)
130 * whenever there is a fork. There shouldn't really be any problem because (for a 32MB
131 * machine) we can have 512 pmaps and still not have hash collisions for the same address.
132 * The potential problem, though, is if we get long-term pmaps that have space IDs that are
133 * the same modulo 512. We can reduce this problem by having the segment number be bits
134 * 0-3 of the space ID rather than 20-23. Doing this means that, in effect, corresponding
135 * vaddrs in different segments hash to the same PTEG. While this is somewhat of a problem,
136 * I don't think that it is as signifigant as the other, so, I'll make the space ID
137 * with segment first.
139 * The final, and biggest problem is the wrap, which will happen every 2^20 space IDs.
140 * While this is a problem that should only happen in periods counted in weeks, it can and
141 * will happen. This is assuming a monotonically increasing space ID. If we were to search
142 * for an inactive space ID, there could not be a wrap until there was 2^20 concurrent space IDs.
143 * That's pretty unlikely to happen. There couldn't be enough storage to support a million tasks.
145 * So, what we do is to keep all active pmaps in a chain (anchored from kernel_pmap and
146 * locked by free_pmap_lock) that is sorted in VSID sequence order.
148 * Whenever we need a VSID, we walk the list looking for the next in the sequence from
149 * the last that was freed. The we allocate that.
151 * NOTE: We must be called with interruptions off and free_pmap_lock held.
157 * Do anything that needs to be done before the mapping system can be used.
158 * Hash table must be initialized before we call this.
160 * Calculate the SID increment. Currently we use size^(1/2) + size^(1/4) + 1;
163 void mapping_init(void) {
165 unsigned int tmp
, maxeff
, rwidth
;
167 ppc_max_adrsp
= maxAdrSp
; /* Set maximum address spaces */
169 maxeff
= 32; /* Assume 32-bit */
170 if(PerProcTable
[0].ppe_vaddr
->pf
.Available
& pf64Bit
) maxeff
= 64; /* Is this a 64-bit machine? */
172 rwidth
= PerProcTable
[0].ppe_vaddr
->pf
.pfMaxVAddr
- maxAdrSpb
; /* Reduce address width by width of address space ID */
173 if(rwidth
> maxeff
) rwidth
= maxeff
; /* If we still have more virtual than effective, clamp at effective */
175 vm_max_address
= 0xFFFFFFFFFFFFFFFFULL
>> (64 - rwidth
); /* Get maximum effective address supported */
176 vm_max_physical
= 0xFFFFFFFFFFFFFFFFULL
>> (64 - PerProcTable
[0].ppe_vaddr
->pf
.pfMaxPAddr
); /* Get maximum physical address supported */
178 if(PerProcTable
[0].ppe_vaddr
->pf
.Available
& pf64Bit
) { /* Are we 64 bit? */
179 tmp
= 12; /* Size of hash space */
182 __asm__
volatile("cntlzw %0, %1" : "=r" (tmp
) : "r" (hash_table_size
)); /* Get number of leading 0s */
183 tmp
= 32 - tmp
; /* Size of hash space */
186 incrVSID
= 1 << ((tmp
+ 1) >> 1); /* Get ceiling of sqrt of table size */
187 incrVSID
|= 1 << ((tmp
+ 1) >> 2); /* Get ceiling of quadroot of table size */
188 incrVSID
|= 1; /* Set bit and add 1 */
196 * mapping_remove(pmap_t pmap, addr64_t va);
197 * Given a pmap and virtual address, this routine finds the mapping and unmaps it.
198 * The mapping block will be added to
199 * the free list. If the free list threshold is reached, garbage collection will happen.
201 * We also pass back the next higher mapped address. This is done so that the higher level
202 * pmap_remove function can release a range of addresses simply by calling mapping_remove
203 * in a loop until it finishes the range or is returned a vaddr of 0.
205 * Note that if the mapping is not found, we return the next VA ORed with 1
209 addr64_t
mapping_remove(pmap_t pmap
, addr64_t va
) { /* Remove a single mapping for this VADDR
210 Returns TRUE if a mapping was found to remove */
216 va
&= ~PAGE_MASK
; /* Scrub noise bits */
218 do { /* Keep trying until we truely fail */
219 mp
= hw_rem_map(pmap
, va
, &nextva
); /* Remove a mapping from this pmap */
220 } while (mapRtRemove
== ((unsigned int)mp
& mapRetCode
));
222 switch ((unsigned int)mp
& mapRetCode
) {
224 break; /* Mapping removed */
226 return (nextva
| 1); /* Nothing found to unmap */
228 panic("mapping_remove: hw_rem_map failed - pmap = %08X, va = %016llX, code = %08X\n",
233 pgaddr
= mp
->mpPAddr
; /* Get page number from mapping */
235 mapping_free(mp
); /* Add mapping to the free list */
237 if ((pmap
->pmapFlags
& pmapVMhost
) && pmap
->pmapVmmExt
) {
238 /* If this is an assisted host, scrub any guest mappings */
240 phys_entry_t
*physent
= mapping_phys_lookup(pgaddr
, &idx
);
241 /* Get physent for our physical page */
242 if (!physent
) { /* No physent, could be in I/O area, so exit */
246 do { /* Iterate 'till all guest mappings are gone */
247 mp
= hw_scrub_guest(physent
, pmap
); /* Attempt to scrub a guest mapping */
248 switch ((unsigned int)mp
& mapRetCode
) {
249 case mapRtGuest
: /* Found a guest mapping */
250 case mapRtNotFnd
: /* Mapping was there, but disappeared, must retry */
251 case mapRtEmpty
: /* No guest mappings left to scrub */
254 panic("mapping_remove: hw_scrub_guest failed - physent = %08X, code = %08X\n",
255 physent
, mp
); /* Cry havoc, cry wrack,
256 at least we die with harness on our backs */
259 } while (mapRtEmpty
!= ((unsigned int)mp
& mapRetCode
));
262 return nextva
; /* Tell them we did it */
266 * mapping_make(pmap, va, pa, flags, size, prot) - map a virtual address to a real one
268 * This routine takes the given parameters, builds a mapping block, and queues it into the
271 * pmap (virtual address) is the pmap to map into
272 * va (virtual address) is the 64-bit virtual address that is being mapped
273 * pa (physical page number) is the physical page number (i.e., physcial address >> 12). This is
276 * block if 1, mapping is a block, size parameter is used. Note: we do not keep
277 * reference and change information or allow protection changes of blocks.
278 * any changes must first unmap and then remap the area.
279 * use attribute Use specified attributes for map, not defaults for physical page
280 * perm Mapping is permanent
281 * cache inhibited Cache inhibited (used if use attribute or block set )
282 * guarded Guarded access (used if use attribute or block set )
283 * size size of block in pages - 1 (not used if not block)
284 * prot VM protection bits
285 * attr Cachability/Guardedness
287 * Returns 0 if mapping was successful. Returns vaddr that overlaps/collides.
288 * Returns 1 for any other failure.
290 * Note that we make an assumption that all memory in the range 0f 0x0000000080000000 to 0x00000000FFFFFFFF is reserved
291 * for I/O and default the cache attrubutes appropriately. The caller is free to set whatever they want however.
293 * If there is any physical page that is not found in the physent table, the mapping is forced to be a
294 * block mapping of length 1. This keeps us from trying to update a physent during later mapping use,
295 * e.g., fault handling.
300 addr64_t
mapping_make(pmap_t pmap
, addr64_t va
, ppnum_t pa
, unsigned int flags
, unsigned int size
, vm_prot_t prot
) { /* Make an address mapping */
302 register mapping_t
*mp
;
303 addr64_t colladdr
, psmask
;
304 unsigned int pindex
, mflags
, pattr
, wimg
, rc
;
305 phys_entry_t
*physent
;
310 mflags
= 0x01000000; /* Start building mpFlags field (busy count = 1) */
312 pcf
= (flags
& mmFlgPcfg
) >> 24; /* Get the physical page config index */
313 if(!(pPcfg
[pcf
].pcfFlags
)) { /* Validate requested physical page configuration */
314 panic("mapping_make: invalid physical page configuration request - pmap = %08X, va = %016llX, cfg = %d\n",
318 psmask
= (1ULL << pPcfg
[pcf
].pcfPSize
) - 1; /* Mask to isolate any offset into a page */
319 if(va
& psmask
) { /* Make sure we are page aligned on virtual */
320 panic("mapping_make: attempt to map unaligned vaddr - pmap = %08X, va = %016llX, cfg = %d\n",
323 if(((addr64_t
)pa
<< 12) & psmask
) { /* Make sure we are page aligned on physical */
324 panic("mapping_make: attempt to map unaligned paddr - pmap = %08X, pa = %016llX, cfg = %d\n",
328 mflags
|= (pcf
<< (31-mpPcfgb
)); /* Insert physical page configuration index */
330 if(!(flags
& mmFlgBlock
)) { /* Is this a block map? */
332 size
= 1; /* Set size to 1 page if not block */
334 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
335 if(!physent
) { /* Did we find the physical page? */
336 mflags
|= mpBlock
; /* Force this to a block if no physent */
337 pattr
= 0; /* Assume normal, non-I/O memory */
338 if((pa
& 0xFFF80000) == 0x00080000) pattr
= mmFlgCInhib
| mmFlgGuarded
; /* If this page is in I/O range, set I/O attributes */
340 else pattr
= ((physent
->ppLink
& (ppI
| ppG
)) >> 60); /* Get the default attributes from physent */
342 if(flags
& mmFlgUseAttr
) pattr
= flags
& (mmFlgCInhib
| mmFlgGuarded
); /* Use requested attributes */
344 else { /* This is a block */
346 pattr
= flags
& (mmFlgCInhib
| mmFlgGuarded
); /* Use requested attributes */
347 mflags
|= mpBlock
; /* Show that this is a block */
349 if(size
> pmapSmallBlock
) { /* Is it one? */
350 if(size
& 0x00001FFF) return mapRtBadSz
; /* Fail if bigger than 256MB and not a 32MB multiple */
351 size
= size
>> 13; /* Convert to 32MB chunks */
352 mflags
= mflags
| mpBSu
; /* Show 32MB basic size unit */
356 wimg
= 0x2; /* Set basic PPC wimg to 0b0010 - Coherent */
357 if(pattr
& mmFlgCInhib
) wimg
|= 0x4; /* Add cache inhibited if we need to */
358 if(pattr
& mmFlgGuarded
) wimg
|= 0x1; /* Add guarded if we need to */
360 mflags
= mflags
| (pindex
<< 16); /* Stick in the physical entry table index */
362 if(flags
& mmFlgPerm
) mflags
|= mpPerm
; /* Set permanent mapping */
364 size
= size
- 1; /* Change size to offset */
365 if(size
> 0xFFFF) return mapRtBadSz
; /* Leave if size is too big */
367 nlists
= mapSetLists(pmap
); /* Set number of lists this will be on */
369 mp
= mapping_alloc(nlists
); /* Get a spare mapping block with this many lists */
371 /* the mapping is zero except that the mpLists field is set */
372 mp
->mpFlags
|= mflags
; /* Add in the rest of the flags to mpLists */
373 mp
->mpSpace
= pmap
->space
; /* Set the address space/pmap lookup ID */
374 mp
->u
.mpBSize
= size
; /* Set the size */
375 mp
->mpPte
= 0; /* Set the PTE invalid */
376 mp
->mpPAddr
= pa
; /* Set the physical page number */
377 mp
->mpVAddr
= (va
& ~mpHWFlags
) | (wimg
<< 3) /* Add the protection and attributes to the field */
378 | ((PerProcTable
[0].ppe_vaddr
->pf
.Available
& pf64Bit
)?
379 getProtPPC(prot
) : (getProtPPC(prot
) & 0x3)); /* Mask off no-execute control for 32-bit machines */
381 while(1) { /* Keep trying... */
382 colladdr
= hw_add_map(pmap
, mp
); /* Go add the mapping to the pmap */
383 rc
= colladdr
& mapRetCode
; /* Separate return code */
384 colladdr
&= ~mapRetCode
; /* Clean up collision effective address */
388 return mapRtOK
; /* Mapping added successfully */
390 case mapRtRemove
: /* Remove in progress */
391 (void)mapping_remove(pmap
, colladdr
); /* Lend a helping hand to another CPU doing block removal */
392 continue; /* Retry mapping add */
394 case mapRtMapDup
: /* Identical mapping already present */
395 mapping_free(mp
); /* Free duplicate mapping */
396 return mapRtOK
; /* Return success */
398 case mapRtSmash
: /* Mapping already present but does not match new mapping */
399 mapping_free(mp
); /* Free duplicate mapping */
400 return (colladdr
| mapRtSmash
); /* Return colliding address, with some dirt added to avoid
401 confusion if effective address is 0 */
403 panic("mapping_make: hw_add_map failed - collision addr = %016llX, code = %02X, pmap = %08X, va = %016llX, mapping = %08X\n",
404 colladdr
, rc
, pmap
, va
, mp
); /* Die dead */
409 return 1; /* Unreachable, but pleases compiler */
414 * mapping *mapping_find(pmap, va, *nextva, full) - Finds a mapping
416 * Looks up the vaddr and returns the mapping and the next mapped va
417 * If full is true, it will descend through all nested pmaps to find actual mapping
419 * Must be called with interruptions disabled or we can hang trying to remove found mapping.
421 * Returns 0 if not found and the virtual address of the mapping if it is
422 * Note that the mappings busy count is bumped. It is the responsibility of the caller
423 * to drop the count. If this is not done, any attempt to remove the mapping will hang.
425 * NOTE: The nextva field is not valid when full is TRUE.
430 mapping_t
*mapping_find(pmap_t pmap
, addr64_t va
, addr64_t
*nextva
, int full
) { /* Make an address mapping */
432 register mapping_t
*mp
;
437 curpmap
= pmap
; /* Remember entry */
438 nestdepth
= 0; /* Set nest depth */
439 curva
= (addr64_t
)va
; /* Set current va */
443 mp
= hw_find_map(curpmap
, curva
, nextva
); /* Find the mapping for this address */
444 if((unsigned int)mp
== mapRtBadLk
) { /* Did we lock up ok? */
445 panic("mapping_find: pmap lock failure - rc = %08X, pmap = %08X\n", mp
, curpmap
); /* Die... */
448 if(!mp
|| ((mp
->mpFlags
& mpType
) < mpMinSpecial
) || !full
) break; /* Are we done looking? */
450 if((mp
->mpFlags
& mpType
) != mpNest
) { /* Don't chain through anything other than a nested pmap */
451 mapping_drop_busy(mp
); /* We have everything we need from the mapping */
452 mp
= 0; /* Set not found */
456 if(nestdepth
++ > 64) { /* Have we nested too far down? */
457 panic("mapping_find: too many nested pmaps - va = %016llX, curva = %016llX, pmap = %08X, curpmap = %08X\n",
458 va
, curva
, pmap
, curpmap
);
461 curva
= curva
+ mp
->mpNestReloc
; /* Relocate va to new pmap */
462 curpmap
= (pmap_t
) pmapTrans
[mp
->mpSpace
].pmapVAddr
; /* Get the address of the nested pmap */
463 mapping_drop_busy(mp
); /* We have everything we need from the mapping */
467 return mp
; /* Return the mapping if we found one */
471 * void mapping_protect(pmap_t pmap, addt_t va, vm_prot_t prot, addr64_t *nextva) - change the protection of a virtual page
473 * This routine takes a pmap and virtual address and changes
474 * the protection. If there are PTEs associated with the mappings, they will be invalidated before
475 * the protection is changed.
477 * We return success if we change the protection or if there is no page mapped at va. We return failure if
478 * the va corresponds to a block mapped area or the mapping is permanant.
484 mapping_protect(pmap_t pmap
, addr64_t va
, vm_prot_t prot
, addr64_t
*nextva
) { /* Change protection of a virtual page */
488 ret
= hw_protect(pmap
, va
, getProtPPC(prot
), nextva
); /* Try to change the protect here */
490 switch (ret
) { /* Decode return code */
492 case mapRtOK
: /* Changed */
493 case mapRtNotFnd
: /* Didn't find it */
494 case mapRtBlock
: /* Block map, just ignore request */
495 case mapRtNest
: /* Nested pmap, just ignore request */
499 panic("mapping_protect: hw_protect failed - rc = %d, pmap = %08X, va = %016llX\n", ret
, pmap
, va
);
506 * void mapping_protect_phys(ppnum_t pa, vm_prot_t prot) - change the protection of a physical page
508 * This routine takes a physical entry and runs through all mappings attached to it and changes
509 * the protection. If there are PTEs associated with the mappings, they will be invalidated before
510 * the protection is changed. There is no limitation on changes, e.g.,
511 * higher to lower, lower to higher.
513 * Any mapping that is marked permanent is not changed
515 * Phys_entry is unlocked.
518 void mapping_protect_phys(ppnum_t pa
, vm_prot_t prot
) { /* Change protection of all mappings to page */
521 phys_entry_t
*physent
;
523 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
524 if(!physent
) { /* Did we find the physical page? */
525 panic("mapping_protect_phys: invalid physical page %08X\n", pa
);
528 hw_walk_phys(physent
, hwpNoop
, hwpSPrtMap
, hwpNoop
,
529 getProtPPC(prot
), hwpPurgePTE
); /* Set the new protection for page and mappings */
531 return; /* Leave... */
536 * void mapping_clr_mod(ppnum_t pa) - clears the change bit of a physical page
538 * This routine takes a physical entry and runs through all mappings attached to it and turns
539 * off the change bit.
542 void mapping_clr_mod(ppnum_t pa
) { /* Clears the change bit of a physical page */
545 phys_entry_t
*physent
;
547 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
548 if(!physent
) { /* Did we find the physical page? */
549 panic("mapping_clr_mod: invalid physical page %08X\n", pa
);
552 hw_walk_phys(physent
, hwpNoop
, hwpCCngMap
, hwpCCngPhy
,
553 0, hwpPurgePTE
); /* Clear change for page and mappings */
554 return; /* Leave... */
559 * void mapping_set_mod(ppnum_t pa) - set the change bit of a physical page
561 * This routine takes a physical entry and runs through all mappings attached to it and turns
565 void mapping_set_mod(ppnum_t pa
) { /* Sets the change bit of a physical page */
568 phys_entry_t
*physent
;
570 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
571 if(!physent
) { /* Did we find the physical page? */
572 panic("mapping_set_mod: invalid physical page %08X\n", pa
);
575 hw_walk_phys(physent
, hwpNoop
, hwpSCngMap
, hwpSCngPhy
,
576 0, hwpNoopPTE
); /* Set change for page and mappings */
577 return; /* Leave... */
582 * void mapping_clr_ref(ppnum_t pa) - clears the reference bit of a physical page
584 * This routine takes a physical entry and runs through all mappings attached to it and turns
585 * off the reference bit.
588 void mapping_clr_ref(ppnum_t pa
) { /* Clears the reference bit of a physical page */
591 phys_entry_t
*physent
;
593 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
594 if(!physent
) { /* Did we find the physical page? */
595 panic("mapping_clr_ref: invalid physical page %08X\n", pa
);
598 hw_walk_phys(physent
, hwpNoop
, hwpCRefMap
, hwpCRefPhy
,
599 0, hwpPurgePTE
); /* Clear reference for page and mappings */
600 return; /* Leave... */
605 * void mapping_set_ref(ppnum_t pa) - set the reference bit of a physical page
607 * This routine takes a physical entry and runs through all mappings attached to it and turns
608 * on the reference bit.
611 void mapping_set_ref(ppnum_t pa
) { /* Sets the reference bit of a physical page */
614 phys_entry_t
*physent
;
616 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
617 if(!physent
) { /* Did we find the physical page? */
618 panic("mapping_set_ref: invalid physical page %08X\n", pa
);
621 hw_walk_phys(physent
, hwpNoop
, hwpSRefMap
, hwpSRefPhy
,
622 0, hwpNoopPTE
); /* Set reference for page and mappings */
623 return; /* Leave... */
628 * boolean_t mapping_tst_mod(ppnum_t pa) - test the change bit of a physical page
630 * This routine takes a physical entry and runs through all mappings attached to it and tests
634 boolean_t
mapping_tst_mod(ppnum_t pa
) { /* Tests the change bit of a physical page */
636 unsigned int pindex
, rc
;
637 phys_entry_t
*physent
;
639 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
640 if(!physent
) { /* Did we find the physical page? */
641 panic("mapping_tst_mod: invalid physical page %08X\n", pa
);
644 rc
= hw_walk_phys(physent
, hwpTCngPhy
, hwpTCngMap
, hwpNoop
,
645 0, hwpMergePTE
); /* Set change for page and mappings */
646 return ((rc
& (unsigned long)ppC
) != 0); /* Leave with change bit */
651 * boolean_t mapping_tst_ref(ppnum_t pa) - tests the reference bit of a physical page
653 * This routine takes a physical entry and runs through all mappings attached to it and tests
657 boolean_t
mapping_tst_ref(ppnum_t pa
) { /* Tests the reference bit of a physical page */
659 unsigned int pindex
, rc
;
660 phys_entry_t
*physent
;
662 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
663 if(!physent
) { /* Did we find the physical page? */
664 panic("mapping_tst_ref: invalid physical page %08X\n", pa
);
667 rc
= hw_walk_phys(physent
, hwpTRefPhy
, hwpTRefMap
, hwpNoop
,
668 0, hwpMergePTE
); /* Test reference for page and mappings */
669 return ((rc
& (unsigned long)ppR
) != 0); /* Leave with reference bit */
674 * unsigned int mapping_tst_refmod(ppnum_t pa) - tests the reference and change bits of a physical page
676 * This routine takes a physical entry and runs through all mappings attached to it and tests
677 * their reference and changed bits.
680 unsigned int mapping_tst_refmod(ppnum_t pa
) { /* Tests the reference and change bits of a physical page */
682 unsigned int pindex
, rc
;
683 phys_entry_t
*physent
;
685 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
686 if (!physent
) { /* Did we find the physical page? */
687 panic("mapping_tst_refmod: invalid physical page %08X\n", pa
);
690 rc
= hw_walk_phys(physent
, hwpTRefCngPhy
, hwpTRefCngMap
, hwpNoop
,
691 0, hwpMergePTE
); /* Test reference and change bits in page and mappings */
692 return (((rc
& ppC
)? VM_MEM_MODIFIED
: 0) | ((rc
& ppR
)? VM_MEM_REFERENCED
: 0));
693 /* Convert bits to generic format and return */
699 * void mapping_clr_refmod(ppnum_t pa, unsigned int mask) - clears the reference and change bits specified
700 * by mask of a physical page
702 * This routine takes a physical entry and runs through all mappings attached to it and turns
703 * off all the reference and change bits.
706 void mapping_clr_refmod(ppnum_t pa
, unsigned int mask
) { /* Clears the reference and change bits of a physical page */
709 phys_entry_t
*physent
;
710 unsigned int ppcMask
;
712 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
713 if(!physent
) { /* Did we find the physical page? */
714 panic("mapping_clr_refmod: invalid physical page %08X\n", pa
);
717 ppcMask
= (((mask
& VM_MEM_MODIFIED
)? ppC
: 0) | ((mask
& VM_MEM_REFERENCED
)? ppR
: 0));
718 /* Convert mask bits to PPC-specific format */
719 hw_walk_phys(physent
, hwpNoop
, hwpCRefCngMap
, hwpCRefCngPhy
,
720 ppcMask
, hwpPurgePTE
); /* Clear reference and change bits for page and mappings */
721 return; /* Leave... */
727 * phys_ent *mapping_phys_lookup(ppnum_t pp, unsigned int *pindex) - tests the reference bit of a physical page
729 * This routine takes a physical page number and returns the phys_entry associated with it. It also
730 * calculates the bank address associated with the entry
734 phys_entry_t
*mapping_phys_lookup(ppnum_t pp
, unsigned int *pindex
) { /* Finds the physical entry for the page */
738 for(i
= 0; i
< pmap_mem_regions_count
; i
++) { /* Walk through the list */
739 if(!(unsigned int)pmap_mem_regions
[i
].mrPhysTab
) continue; /* Skip any empty lists */
740 if((pp
< pmap_mem_regions
[i
].mrStart
) || (pp
> pmap_mem_regions
[i
].mrEnd
)) continue; /* This isn't ours */
742 *pindex
= (i
* sizeof(mem_region_t
)) / 4; /* Make the word index to this list */
744 return &pmap_mem_regions
[i
].mrPhysTab
[pp
- pmap_mem_regions
[i
].mrStart
]; /* Return the physent pointer */
747 return (phys_entry_t
*)0; /* Shucks, can't find it... */
755 * mapping_adjust(void) - Releases free mapping blocks and/or allocates new ones
757 * This routine frees any mapping blocks queued to mapCtl.mapcrel. It also checks
758 * the number of free mappings remaining, and if below a threshold, replenishes them.
759 * The list will be replenshed from mapCtl.mapcrel if there are enough. Otherwise,
760 * a new one is allocated.
762 * This routine allocates and/or frees memory and must be called from a safe place.
763 * Currently, vm_pageout_scan is the safest place.
766 thread_call_t mapping_adjust_call
;
767 static thread_call_data_t mapping_adjust_call_data
;
769 void mapping_adjust(void) { /* Adjust free mappings */
771 kern_return_t retr
= KERN_SUCCESS
;
772 mappingblok_t
*mb
, *mbn
;
776 if(mapCtl
.mapcmin
<= MAPPERBLOK
) {
777 mapCtl
.mapcmin
= (sane_size
/ PAGE_SIZE
) / 16;
780 kprintf("mapping_adjust: minimum entries rqrd = %08X\n", mapCtl
.mapcmin
);
781 kprintf("mapping_adjust: free = %08X; in use = %08X; release = %08X\n",
782 mapCtl
.mapcfree
, mapCtl
.mapcinuse
, mapCtl
.mapcreln
);
786 s
= splhigh(); /* Don't bother from now on */
787 if(!hw_lock_to((hw_lock_t
)&mapCtl
.mapclock
, LockTimeOut
)) { /* Lock the control header */
788 panic("mapping_adjust - timeout getting control lock (1)\n"); /* Tell all and die */
791 if (mapping_adjust_call
== NULL
) {
792 thread_call_setup(&mapping_adjust_call_data
,
793 (thread_call_func_t
)mapping_adjust
,
794 (thread_call_param_t
)NULL
);
795 mapping_adjust_call
= &mapping_adjust_call_data
;
798 while(1) { /* Keep going until we've got enough */
800 allocsize
= mapCtl
.mapcmin
- mapCtl
.mapcfree
; /* Figure out how much we need */
801 if(allocsize
< 1) break; /* Leave if we have all we need */
803 if((unsigned int)(mbn
= mapCtl
.mapcrel
)) { /* Can we rescue a free one? */
804 mapCtl
.mapcrel
= mbn
->nextblok
; /* Dequeue it */
805 mapCtl
.mapcreln
--; /* Back off the count */
806 allocsize
= MAPPERBLOK
; /* Show we allocated one block */
808 else { /* No free ones, try to get it */
810 allocsize
= (allocsize
+ MAPPERBLOK
- 1) / MAPPERBLOK
; /* Get the number of pages we need */
812 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
); /* Unlock our stuff */
813 splx(s
); /* Restore 'rupts */
815 for(; allocsize
> 0; allocsize
>>= 1) { /* Try allocating in descending halves */
816 retr
= kmem_alloc_wired(mapping_map
, (vm_offset_t
*)&mbn
, PAGE_SIZE
* allocsize
); /* Find a virtual address to use */
817 if((retr
!= KERN_SUCCESS
) && (allocsize
== 1)) { /* Did we find any memory at all? */
820 if(retr
== KERN_SUCCESS
) break; /* We got some memory, bail out... */
823 allocsize
= allocsize
* MAPPERBLOK
; /* Convert pages to number of maps allocated */
824 s
= splhigh(); /* Don't bother from now on */
825 if(!hw_lock_to((hw_lock_t
)&mapCtl
.mapclock
, LockTimeOut
)) { /* Lock the control header */
826 panic("mapping_adjust - timeout getting control lock (2)\n"); /* Tell all and die */
830 if (retr
!= KERN_SUCCESS
)
831 break; /* Fail to alocate, bail out... */
832 for(; allocsize
> 0; allocsize
-= MAPPERBLOK
) { /* Release one block at a time */
833 mapping_free_init((vm_offset_t
)mbn
, 0, 1); /* Initialize a non-permanent block */
834 mbn
= (mappingblok_t
*)((unsigned int)mbn
+ PAGE_SIZE
); /* Point to the next slot */
837 if ((mapCtl
.mapcinuse
+ mapCtl
.mapcfree
+ (mapCtl
.mapcreln
* (MAPPERBLOK
+ 1))) > mapCtl
.mapcmaxalloc
)
838 mapCtl
.mapcmaxalloc
= mapCtl
.mapcinuse
+ mapCtl
.mapcfree
+ (mapCtl
.mapcreln
* (MAPPERBLOK
+ 1));
841 if(mapCtl
.mapcholdoff
) { /* Should we hold off this release? */
842 mapCtl
.mapcrecurse
= 0; /* We are done now */
843 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
); /* Unlock our stuff */
844 splx(s
); /* Restore 'rupts */
845 return; /* Return... */
848 mbn
= mapCtl
.mapcrel
; /* Get first pending release block */
849 mapCtl
.mapcrel
= 0; /* Dequeue them */
850 mapCtl
.mapcreln
= 0; /* Set count to 0 */
852 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
); /* Unlock our stuff */
853 splx(s
); /* Restore 'rupts */
855 while((unsigned int)mbn
) { /* Toss 'em all */
856 mb
= mbn
->nextblok
; /* Get the next */
858 kmem_free(mapping_map
, (vm_offset_t
) mbn
, PAGE_SIZE
); /* Release this mapping block */
860 mbn
= mb
; /* Chain to the next */
863 __asm__
volatile("eieio"); /* Make sure all is well */
864 mapCtl
.mapcrecurse
= 0; /* We are done now */
869 * mapping_free(mapping *mp) - release a mapping to the free list
871 * This routine takes a mapping and adds it to the free list.
872 * If this mapping make the block non-empty, we queue it to the free block list.
873 * NOTE: we might want to queue it to the end to keep quelch the pathalogical
874 * case when we get a mapping and free it repeatedly causing the block to chain and unchain.
875 * If this release fills a block and we are above the threshold, we release the block
878 void mapping_free(struct mapping
*mp
) { /* Release a mapping */
880 mappingblok_t
*mb
, *mbn
;
882 unsigned int full
, mindx
, lists
;
884 mindx
= ((unsigned int)mp
& (PAGE_SIZE
- 1)) >> 6; /* Get index to mapping */
885 mb
= (mappingblok_t
*)((unsigned int)mp
& -PAGE_SIZE
); /* Point to the mapping block */
886 lists
= (mp
->mpFlags
& mpLists
); /* get #lists */
887 if ((lists
== 0) || (lists
> kSkipListMaxLists
)) /* panic if out of range */
888 panic("mapping_free: mpLists invalid\n");
891 mp
->mpFlags
= 0x99999999; /* (BRINGUP) */
892 mp
->mpSpace
= 0x9999; /* (BRINGUP) */
893 mp
->u
.mpBSize
= 0x9999; /* (BRINGUP) */
894 mp
->mpPte
= 0x99999998; /* (BRINGUP) */
895 mp
->mpPAddr
= 0x99999999; /* (BRINGUP) */
896 mp
->mpVAddr
= 0x9999999999999999ULL
; /* (BRINGUP) */
897 mp
->mpAlias
= 0x9999999999999999ULL
; /* (BRINGUP) */
898 mp
->mpList0
= 0x9999999999999999ULL
; /* (BRINGUP) */
899 mp
->mpList
[0] = 0x9999999999999999ULL
; /* (BRINGUP) */
900 mp
->mpList
[1] = 0x9999999999999999ULL
; /* (BRINGUP) */
901 mp
->mpList
[2] = 0x9999999999999999ULL
; /* (BRINGUP) */
903 if(lists
> mpBasicLists
) { /* (BRINGUP) */
904 mp
->mpList
[3] = 0x9999999999999999ULL
; /* (BRINGUP) */
905 mp
->mpList
[4] = 0x9999999999999999ULL
; /* (BRINGUP) */
906 mp
->mpList
[5] = 0x9999999999999999ULL
; /* (BRINGUP) */
907 mp
->mpList
[6] = 0x9999999999999999ULL
; /* (BRINGUP) */
908 mp
->mpList
[7] = 0x9999999999999999ULL
; /* (BRINGUP) */
909 mp
->mpList
[8] = 0x9999999999999999ULL
; /* (BRINGUP) */
910 mp
->mpList
[9] = 0x9999999999999999ULL
; /* (BRINGUP) */
911 mp
->mpList
[10] = 0x9999999999999999ULL
; /* (BRINGUP) */
916 s
= splhigh(); /* Don't bother from now on */
917 if(!hw_lock_to((hw_lock_t
)&mapCtl
.mapclock
, LockTimeOut
)) { /* Lock the control header */
918 panic("mapping_free - timeout getting control lock\n"); /* Tell all and die */
921 full
= !(mb
->mapblokfree
[0] | mb
->mapblokfree
[1]); /* See if full now */
922 mb
->mapblokfree
[mindx
>> 5] |= (0x80000000 >> (mindx
& 31)); /* Flip on the free bit */
923 if ( lists
> mpBasicLists
) { /* if big block, lite the 2nd bit too */
925 mb
->mapblokfree
[mindx
>> 5] |= (0x80000000 >> (mindx
& 31));
930 if(full
) { /* If it was full before this: */
931 mb
->nextblok
= mapCtl
.mapcnext
; /* Move head of list to us */
932 mapCtl
.mapcnext
= mb
; /* Chain us to the head of the list */
933 if(!((unsigned int)mapCtl
.mapclast
))
934 mapCtl
.mapclast
= mb
;
937 mapCtl
.mapcfree
++; /* Bump free count */
938 mapCtl
.mapcinuse
--; /* Decriment in use count */
940 mapCtl
.mapcfreec
++; /* Count total calls */
942 if(mapCtl
.mapcfree
> mapCtl
.mapcmin
) { /* Should we consider releasing this? */
943 if(((mb
->mapblokfree
[0] | 0x80000000) & mb
->mapblokfree
[1]) == 0xFFFFFFFF) { /* See if empty now */
945 if(mapCtl
.mapcnext
== mb
) { /* Are we first on the list? */
946 mapCtl
.mapcnext
= mb
->nextblok
; /* Unchain us */
947 if(!((unsigned int)mapCtl
.mapcnext
)) mapCtl
.mapclast
= 0; /* If last, remove last */
949 else { /* We're not first */
950 for(mbn
= mapCtl
.mapcnext
; mbn
!= 0; mbn
= mbn
->nextblok
) { /* Search for our block */
951 if(mbn
->nextblok
== mb
) break; /* Is the next one our's? */
953 if(!mbn
) panic("mapping_free: attempt to release mapping block (%08X) not on list\n", mp
);
954 mbn
->nextblok
= mb
->nextblok
; /* Dequeue us */
955 if(mapCtl
.mapclast
== mb
) mapCtl
.mapclast
= mbn
; /* If last, make our predecessor last */
958 if(mb
->mapblokflags
& mbPerm
) { /* Is this permanently assigned? */
959 mb
->nextblok
= mapCtl
.mapcnext
; /* Move chain head to us */
960 mapCtl
.mapcnext
= mb
; /* Chain us to the head */
961 if(!((unsigned int)mb
->nextblok
)) mapCtl
.mapclast
= mb
; /* If last, make us so */
964 mapCtl
.mapcfree
-= MAPPERBLOK
; /* Remove the block from the free count */
965 mapCtl
.mapcreln
++; /* Count on release list */
966 mb
->nextblok
= mapCtl
.mapcrel
; /* Move pointer */
967 mapCtl
.mapcrel
= mb
; /* Chain us in front */
972 if(mapCtl
.mapcreln
> MAPFRTHRSH
) { /* Do we have way too many releasable mappings? */
973 if(hw_compare_and_store(0, 1, &mapCtl
.mapcrecurse
)) { /* Make sure we aren't recursing */
974 thread_call_enter(mapping_adjust_call
); /* Go toss some */
977 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
); /* Unlock our stuff */
978 splx(s
); /* Restore 'rupts */
980 return; /* Bye, dude... */
985 * mapping_alloc(lists) - obtain a mapping from the free list
987 * This routine takes a mapping off of the free list and returns its address.
988 * The mapping is zeroed, and its mpLists count is set. The caller passes in
989 * the number of skiplists it would prefer; if this number is greater than
990 * mpBasicLists (ie, 4) then we need to allocate a 128-byte mapping, which is
991 * just two consequtive free entries coallesced into one. If we cannot find
992 * two consequtive free entries, we clamp the list count down to mpBasicLists
993 * and return a basic 64-byte node. Our caller never knows the difference.
995 * If this allocation empties a block, we remove it from the free list.
996 * If this allocation drops the total number of free entries below a threshold,
997 * we allocate a new block.
1000 decl_simple_lock_data(extern,free_pmap_lock
)
1003 mapping_alloc(int lists
) { /* Obtain a mapping */
1005 register mapping_t
*mp
;
1006 mappingblok_t
*mb
, *mbn
;
1009 int big
= (lists
> mpBasicLists
); /* set flag if big block req'd */
1010 pmap_t refpmap
, ckpmap
;
1011 unsigned int space
, i
;
1012 addr64_t va
, nextva
;
1013 boolean_t found_mapping
;
1014 boolean_t do_rescan
;
1016 s
= splhigh(); /* Don't bother from now on */
1017 if(!hw_lock_to((hw_lock_t
)&mapCtl
.mapclock
, LockTimeOut
)) { /* Lock the control header */
1018 panic("mapping_alloc - timeout getting control lock\n"); /* Tell all and die */
1021 if(!((unsigned int)mapCtl
.mapcnext
)) { /* Are there any free mappings? */
1024 * No free mappings. First, there may be some mapping blocks on the "to be released"
1025 * list. If so, rescue one. Otherwise, try to steal a couple blocks worth.
1028 if((mbn
= mapCtl
.mapcrel
) != 0) { /* Try to rescue a block from impending doom */
1029 mapCtl
.mapcrel
= mbn
->nextblok
; /* Pop the queue */
1030 mapCtl
.mapcreln
--; /* Back off the count */
1031 mapping_free_init((vm_offset_t
)mbn
, 0, 1); /* Initialize a non-permanent block */
1035 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
);
1037 simple_lock(&free_pmap_lock
);
1039 if(!hw_lock_to((hw_lock_t
)&mapCtl
.mapclock
, LockTimeOut
)) { /* Lock the control header */
1040 panic("mapping_alloc - timeout getting control lock\n"); /* Tell all and die */
1043 if (!((unsigned int)mapCtl
.mapcnext
)) {
1045 refpmap
= (pmap_t
)cursor_pmap
->pmap_link
.next
;
1046 space
= mapCtl
.mapcflush
.spacenum
;
1047 while (refpmap
!= cursor_pmap
) {
1048 if(((pmap_t
)(refpmap
->pmap_link
.next
))->spaceNum
> space
) break;
1049 refpmap
= (pmap_t
)refpmap
->pmap_link
.next
;
1053 va
= mapCtl
.mapcflush
.addr
;
1054 found_mapping
= FALSE
;
1056 while (mapCtl
.mapcfree
<= (MAPPERBLOK
*2)) {
1058 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
);
1060 ckpmap
= (pmap_t
)ckpmap
->pmap_link
.next
;
1062 /* We don't steal mappings from the kernel pmap, a VMM host pmap, or a VMM guest pmap with guest
1063 shadow assist active.
1065 if ((ckpmap
->stats
.resident_count
!= 0) && (ckpmap
!= kernel_pmap
)
1066 && !(ckpmap
->pmapFlags
& (pmapVMgsaa
|pmapVMhost
))) {
1069 mp
= hw_purge_map(ckpmap
, va
, &nextva
);
1071 switch ((unsigned int)mp
& mapRetCode
) {
1074 found_mapping
= TRUE
;
1079 panic("mapping_alloc: hw_purge_map failed - pmap = %08X, va = %16llX, code = %08X\n", ckpmap
, va
, mp
);
1083 if (mapRtNotFnd
== ((unsigned int)mp
& mapRetCode
))
1093 if (ckpmap
== refpmap
) {
1094 if (found_mapping
== FALSE
)
1095 panic("no valid pmap to purge mappings\n");
1097 found_mapping
= FALSE
;
1100 if(!hw_lock_to((hw_lock_t
)&mapCtl
.mapclock
, LockTimeOut
)) { /* Lock the control header */
1101 panic("mapping_alloc - timeout getting control lock\n"); /* Tell all and die */
1106 mapCtl
.mapcflush
.spacenum
= ckpmap
->spaceNum
;
1107 mapCtl
.mapcflush
.addr
= nextva
;
1110 simple_unlock(&free_pmap_lock
);
1115 mb
= mapCtl
.mapcnext
;
1117 if ( big
) { /* if we need a big (128-byte) mapping */
1118 mapCtl
.mapcbig
++; /* count attempts to allocate a big mapping */
1119 mbn
= NULL
; /* this will be prev ptr */
1121 while( mb
) { /* loop over mapping blocks with free entries */
1122 mindx
= mapalc2(mb
); /* try for 2 consequtive free bits in this block */
1124 if ( mindx
) break; /* exit loop if we found them */
1125 mbn
= mb
; /* remember previous block */
1126 mb
= mb
->nextblok
; /* move on to next block */
1128 if ( mindx
== 0 ) { /* if we couldn't find 2 consequtive bits... */
1129 mapCtl
.mapcbigfails
++; /* count failures */
1130 big
= 0; /* forget that we needed a big mapping */
1131 lists
= mpBasicLists
; /* clamp list count down to the max in a 64-byte mapping */
1132 mb
= mapCtl
.mapcnext
; /* back to the first block with a free entry */
1134 else { /* if we did find a big mapping */
1135 mapCtl
.mapcfree
--; /* Decrement free count twice */
1136 mapCtl
.mapcinuse
++; /* Bump in use count twice */
1137 if ( mindx
< 0 ) { /* if we just used the last 2 free bits in this block */
1138 if (mbn
) { /* if this wasn't the first block */
1139 mindx
= -mindx
; /* make positive */
1140 mbn
->nextblok
= mb
->nextblok
; /* unlink this one from the middle of block list */
1141 if (mb
== mapCtl
.mapclast
) { /* if we emptied last block */
1142 mapCtl
.mapclast
= mbn
; /* then prev block is now last */
1149 if ( !big
) { /* if we need a small (64-byte) mapping */
1150 if(!(mindx
= mapalc1(mb
))) /* Allocate a 1-bit slot */
1151 panic("mapping_alloc - empty mapping block detected at %08X\n", mb
);
1154 if(mindx
< 0) { /* Did we just take the last one */
1155 mindx
= -mindx
; /* Make positive */
1156 mapCtl
.mapcnext
= mb
->nextblok
; /* Remove us from the list */
1157 if(!((unsigned int)mapCtl
.mapcnext
)) mapCtl
.mapclast
= 0; /* Removed the last one */
1160 mapCtl
.mapcfree
--; /* Decrement free count */
1161 mapCtl
.mapcinuse
++; /* Bump in use count */
1163 mapCtl
.mapcallocc
++; /* Count total calls */
1166 * Note: in the following code, we will attempt to rescue blocks only one at a time.
1167 * Eventually, after a few more mapping_alloc calls, we will catch up. If there are none
1168 * rescueable, we will kick the misc scan who will allocate some for us. We only do this
1169 * if we haven't already done it.
1170 * For early boot, we are set up to only rescue one block at a time. This is because we prime
1171 * the release list with as much as we need until threads start.
1174 if(mapCtl
.mapcfree
< mapCtl
.mapcmin
) { /* See if we need to replenish */
1175 if((mbn
= mapCtl
.mapcrel
) != 0) { /* Try to rescue a block from impending doom */
1176 mapCtl
.mapcrel
= mbn
->nextblok
; /* Pop the queue */
1177 mapCtl
.mapcreln
--; /* Back off the count */
1178 mapping_free_init((vm_offset_t
)mbn
, 0, 1); /* Initialize a non-permanent block */
1180 else { /* We need to replenish */
1181 if (mapCtl
.mapcfree
< (mapCtl
.mapcmin
/ 4)) {
1182 if(hw_compare_and_store(0, 1, &mapCtl
.mapcrecurse
)) { /* Make sure we aren't recursing */
1183 thread_call_enter(mapping_adjust_call
); /* Go allocate some more */
1189 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
); /* Unlock our stuff */
1190 splx(s
); /* Restore 'rupts */
1192 mp
= &((mapping_t
*)mb
)[mindx
]; /* Point to the allocated mapping */
1193 mp
->mpFlags
= lists
; /* set the list count */
1196 return mp
; /* Send it back... */
1201 consider_mapping_adjust(void)
1205 s
= splhigh(); /* Don't bother from now on */
1206 if(!hw_lock_to((hw_lock_t
)&mapCtl
.mapclock
, LockTimeOut
)) { /* Lock the control header */
1207 panic("consider_mapping_adjust -- lock timeout\n");
1210 if (mapCtl
.mapcfree
< (mapCtl
.mapcmin
/ 4)) {
1211 if(hw_compare_and_store(0, 1, &mapCtl
.mapcrecurse
)) { /* Make sure we aren't recursing */
1212 thread_call_enter(mapping_adjust_call
); /* Go allocate some more */
1216 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
); /* Unlock our stuff */
1217 splx(s
); /* Restore 'rupts */
1224 * void mapping_free_init(mb, perm) - Adds a block of storage to the free mapping list
1226 * The mapping block is a page size area on a page boundary. It contains 1 header and 63
1227 * mappings. This call adds and initializes a block for use. Mappings come in two sizes,
1228 * 64 and 128 bytes (the only difference is the number of skip-lists.) When we allocate a
1229 * 128-byte mapping we just look for two consequtive free 64-byte mappings, so most of the
1230 * code only deals with "basic" 64-byte mappings. This works for two reasons:
1231 * - Only one in 256 mappings is big, so they are rare.
1232 * - If we cannot find two consequtive free mappings, we just return a small one.
1233 * There is no problem with doing this, except a minor performance degredation.
1234 * Therefore, all counts etc in the mapping control structure are in units of small blocks.
1236 * The header contains a chain link, bit maps, a virtual to real translation mask, and
1237 * some statistics. Bit maps map each slot on the page (bit 0 is not used because it
1238 * corresponds to the header). The translation mask is the XOR of the virtual and real
1239 * addresses (needless to say, the block must be wired).
1241 * We handle these mappings the same way as saveareas: the block is only on the chain so
1242 * long as there are free entries in it.
1244 * Empty blocks are garbage collected when there are at least mapCtl.mapcmin pages worth of free
1245 * mappings. Blocks marked PERM won't ever be released.
1247 * If perm is negative, the mapping is initialized, but immediately queued to the mapCtl.mapcrel
1248 * list. We do this only at start up time. This is done because we only allocate blocks
1249 * in the pageout scan and it doesn't start up until after we run out of the initial mappings.
1250 * Therefore, we need to preallocate a bunch, but we don't want them to be permanent. If we put
1251 * them on the release queue, the allocate routine will rescue them. Then when the
1252 * pageout scan starts, all extra ones will be released.
1257 void mapping_free_init(vm_offset_t mbl
, int perm
, boolean_t locked
) {
1258 /* Set's start and end of a block of mappings
1259 perm indicates if the block can be released
1260 or goes straight to the release queue .
1261 locked indicates if the lock is held already */
1268 mb
= (mappingblok_t
*)mbl
; /* Start of area */
1270 if(perm
>= 0) { /* See if we need to initialize the block */
1272 raddr
= (addr64_t
)((unsigned int)mbl
); /* Perm means V=R */
1273 mb
->mapblokflags
= mbPerm
; /* Set perm */
1274 // mb->mapblokflags |= (unsigned int)mb; /* (BRINGUP) */
1277 pp
= pmap_find_phys(kernel_pmap
, (addr64_t
)mbl
); /* Get the physical page */
1278 if(!pp
) { /* What gives? Where's the page? */
1279 panic("mapping_free_init: could not find translation for vaddr %016llX\n", (addr64_t
)mbl
);
1282 raddr
= (addr64_t
)pp
<< 12; /* Convert physical page to physical address */
1283 mb
->mapblokflags
= 0; /* Set not perm */
1284 // mb->mapblokflags |= (unsigned int)mb; /* (BRINGUP) */
1287 mb
->mapblokvrswap
= raddr
^ (addr64_t
)((unsigned int)mbl
); /* Form translation mask */
1289 mb
->mapblokfree
[0] = 0x7FFFFFFF; /* Set first 32 (minus 1) free */
1290 mb
->mapblokfree
[1] = 0xFFFFFFFF; /* Set next 32 free */
1293 s
= splhigh(); /* Don't bother from now on */
1294 if(!locked
) { /* Do we need the lock? */
1295 if(!hw_lock_to((hw_lock_t
)&mapCtl
.mapclock
, LockTimeOut
)) { /* Lock the control header */
1296 panic("mapping_free_init: timeout getting control lock\n"); /* Tell all and die */
1300 if(perm
< 0) { /* Direct to release queue? */
1301 mb
->nextblok
= mapCtl
.mapcrel
; /* Move forward pointer */
1302 mapCtl
.mapcrel
= mb
; /* Queue us on in */
1303 mapCtl
.mapcreln
++; /* Count the free block */
1305 else { /* Add to the free list */
1307 mb
->nextblok
= 0; /* We always add to the end */
1308 mapCtl
.mapcfree
+= MAPPERBLOK
; /* Bump count */
1310 if(!((unsigned int)mapCtl
.mapcnext
)) { /* First entry on list? */
1311 mapCtl
.mapcnext
= mapCtl
.mapclast
= mb
; /* Chain to us */
1313 else { /* We are not the first */
1314 mapCtl
.mapclast
->nextblok
= mb
; /* Point the last to us */
1315 mapCtl
.mapclast
= mb
; /* We are now last */
1319 if(!locked
) { /* Do we need to unlock? */
1320 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
); /* Unlock our stuff */
1323 splx(s
); /* Restore 'rupts */
1324 return; /* All done, leave... */
1329 * void mapping_prealloc(unsigned int) - Preallocates mapppings for large request
1331 * No locks can be held, because we allocate memory here.
1332 * This routine needs a corresponding mapping_relpre call to remove the
1333 * hold off flag so that the adjust routine will free the extra mapping
1334 * blocks on the release list. I don't like this, but I don't know
1335 * how else to do this for now...
1339 void mapping_prealloc(unsigned int size
) { /* Preallocates mapppings for large request */
1346 s
= splhigh(); /* Don't bother from now on */
1347 if(!hw_lock_to((hw_lock_t
)&mapCtl
.mapclock
, LockTimeOut
)) { /* Lock the control header */
1348 panic("mapping_prealloc - timeout getting control lock\n"); /* Tell all and die */
1351 nmapb
= (size
>> 12) + mapCtl
.mapcmin
; /* Get number of entries needed for this and the minimum */
1353 mapCtl
.mapcholdoff
++; /* Bump the hold off count */
1355 if((nmapb
= (nmapb
- mapCtl
.mapcfree
)) <= 0) { /* Do we already have enough? */
1356 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
); /* Unlock our stuff */
1357 splx(s
); /* Restore 'rupts */
1360 if (!hw_compare_and_store(0, 1, &mapCtl
.mapcrecurse
)) { /* Make sure we aren't recursing */
1361 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
); /* Unlock our stuff */
1362 splx(s
); /* Restore 'rupts */
1365 nmapb
= (nmapb
+ MAPPERBLOK
- 1) / MAPPERBLOK
; /* Get number of blocks to get */
1367 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
); /* Unlock our stuff */
1368 splx(s
); /* Restore 'rupts */
1370 for(i
= 0; i
< nmapb
; i
++) { /* Allocate 'em all */
1371 retr
= kmem_alloc_wired(mapping_map
, (vm_offset_t
*)&mbn
, PAGE_SIZE
); /* Find a virtual address to use */
1372 if(retr
!= KERN_SUCCESS
) /* Did we get some memory? */
1374 mapping_free_init((vm_offset_t
)mbn
, -1, 0); /* Initialize on to the release queue */
1376 if ((mapCtl
.mapcinuse
+ mapCtl
.mapcfree
+ (mapCtl
.mapcreln
* (MAPPERBLOK
+ 1))) > mapCtl
.mapcmaxalloc
)
1377 mapCtl
.mapcmaxalloc
= mapCtl
.mapcinuse
+ mapCtl
.mapcfree
+ (mapCtl
.mapcreln
* (MAPPERBLOK
+ 1));
1379 mapCtl
.mapcrecurse
= 0; /* We are done now */
1383 * void mapping_relpre(void) - Releases preallocation release hold off
1385 * This routine removes the
1386 * hold off flag so that the adjust routine will free the extra mapping
1387 * blocks on the release list. I don't like this, but I don't know
1388 * how else to do this for now...
1392 void mapping_relpre(void) { /* Releases release hold off */
1396 s
= splhigh(); /* Don't bother from now on */
1397 if(!hw_lock_to((hw_lock_t
)&mapCtl
.mapclock
, LockTimeOut
)) { /* Lock the control header */
1398 panic("mapping_relpre - timeout getting control lock\n"); /* Tell all and die */
1400 if(--mapCtl
.mapcholdoff
< 0) { /* Back down the hold off count */
1401 panic("mapping_relpre: hold-off count went negative\n");
1404 hw_lock_unlock((hw_lock_t
)&mapCtl
.mapclock
); /* Unlock our stuff */
1405 splx(s
); /* Restore 'rupts */
1409 * void mapping_free_prime(void) - Primes the mapping block release list
1411 * See mapping_free_init.
1412 * No locks can be held, because we allocate memory here.
1413 * One processor running only.
1417 void mapping_free_prime(void) { /* Primes the mapping block release list */
1422 vm_offset_t mapping_min
;
1424 retr
= kmem_suballoc(kernel_map
, &mapping_min
, sane_size
/ 16,
1425 FALSE
, VM_FLAGS_ANYWHERE
, &mapping_map
);
1427 if (retr
!= KERN_SUCCESS
)
1428 panic("mapping_free_prime: kmem_suballoc failed");
1431 nmapb
= (mapCtl
.mapcfree
+ mapCtl
.mapcinuse
+ MAPPERBLOK
- 1) / MAPPERBLOK
; /* Get permanent allocation */
1432 nmapb
= nmapb
* 4; /* Get 4 times our initial allocation */
1435 kprintf("mapping_free_prime: free = %08X; in use = %08X; priming = %08X\n",
1436 mapCtl
.mapcfree
, mapCtl
.mapcinuse
, nmapb
);
1439 for(i
= 0; i
< nmapb
; i
++) { /* Allocate 'em all */
1440 retr
= kmem_alloc_wired(mapping_map
, (vm_offset_t
*)&mbn
, PAGE_SIZE
); /* Find a virtual address to use */
1441 if(retr
!= KERN_SUCCESS
) { /* Did we get some memory? */
1442 panic("Whoops... Not a bit of wired memory left for anyone\n");
1444 mapping_free_init((vm_offset_t
)mbn
, -1, 0); /* Initialize onto release queue */
1446 if ((mapCtl
.mapcinuse
+ mapCtl
.mapcfree
+ (mapCtl
.mapcreln
* (MAPPERBLOK
+ 1))) > mapCtl
.mapcmaxalloc
)
1447 mapCtl
.mapcmaxalloc
= mapCtl
.mapcinuse
+ mapCtl
.mapcfree
+ (mapCtl
.mapcreln
* (MAPPERBLOK
+ 1));
1452 mapping_fake_zone_info(int *count
, vm_size_t
*cur_size
, vm_size_t
*max_size
, vm_size_t
*elem_size
,
1453 vm_size_t
*alloc_size
, int *collectable
, int *exhaustable
)
1455 *count
= mapCtl
.mapcinuse
;
1456 *cur_size
= ((PAGE_SIZE
/ (MAPPERBLOK
+ 1)) * (mapCtl
.mapcinuse
+ mapCtl
.mapcfree
)) + (PAGE_SIZE
* mapCtl
.mapcreln
);
1457 *max_size
= (PAGE_SIZE
/ (MAPPERBLOK
+ 1)) * mapCtl
.mapcmaxalloc
;
1458 *elem_size
= (PAGE_SIZE
/ (MAPPERBLOK
+ 1));
1459 *alloc_size
= PAGE_SIZE
;
1467 * addr64_t mapping_p2v(pmap_t pmap, ppnum_t pa) - Finds first virtual mapping of a physical page in a space
1469 * First looks up the physical entry associated witht the physical page. Then searches the alias
1470 * list for a matching pmap. It grabs the virtual address from the mapping, drops busy, and returns
1475 addr64_t
mapping_p2v(pmap_t pmap
, ppnum_t pa
) { /* Finds first virtual mapping of a physical page in a space */
1479 unsigned int pindex
;
1480 phys_entry_t
*physent
;
1483 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
1484 if(!physent
) { /* Did we find the physical page? */
1485 panic("mapping_p2v: invalid physical page %08X\n", pa
);
1488 s
= splhigh(); /* Make sure interruptions are disabled */
1490 mp
= hw_find_space(physent
, pmap
->space
); /* Go find the first mapping to the page from the requested pmap */
1492 if(mp
) { /* Did we find one? */
1493 va
= mp
->mpVAddr
& -4096; /* If so, get the cleaned up vaddr */
1494 mapping_drop_busy(mp
); /* Go ahead and relase the mapping now */
1496 else va
= 0; /* Return failure */
1498 splx(s
); /* Restore 'rupts */
1500 return va
; /* Bye, bye... */
1507 * Convert a physical address to a kernel virtual address if
1508 * there is a mapping, otherwise return NULL
1511 vm_offset_t
phystokv(vm_offset_t pa
) {
1516 pp
= pa
>> 12; /* Convert to a page number */
1518 if(!(va
= mapping_p2v(kernel_pmap
, pp
))) {
1519 return 0; /* Can't find it, return 0... */
1522 return (va
| (pa
& (PAGE_SIZE
- 1))); /* Build and return VADDR... */
1529 * Convert a kernel virtual address to a physical address
1531 vm_offset_t
kvtophys(vm_offset_t va
) {
1533 return pmap_extract(kernel_pmap
, va
); /* Find mapping and lock the physical entry for this mapping */
1540 * Convert a kernel virtual address to a 64-bit physical address
1542 vm_map_offset_t
kvtophys64(vm_map_offset_t va
) {
1543 ppnum_t pa
= pmap_find_phys(kernel_pmap
, (addr64_t
)va
);
1546 return (vm_map_offset_t
)0;
1547 return (((vm_map_offset_t
)pa
) << 12) | (va
& 0xfff);
1551 * void ignore_zero_fault(boolean_t) - Sets up to ignore or honor any fault on
1552 * page 0 access for the current thread.
1554 * If parameter is TRUE, faults are ignored
1555 * If parameter is FALSE, faults are honored
1559 void ignore_zero_fault(boolean_t type
) { /* Sets up to ignore or honor any fault on page 0 access for the current thread */
1561 if(type
) current_thread()->machine
.specFlags
|= ignoreZeroFault
; /* Ignore faults on page 0 */
1562 else current_thread()->machine
.specFlags
&= ~ignoreZeroFault
; /* Honor faults on page 0 */
1564 return; /* Return the result or 0... */
1569 * Copies data between a physical page and a virtual page, or 2 physical. This is used to
1570 * move data from the kernel to user state. Note that the "which" parm
1571 * says which of the parameters is physical and if we need to flush sink/source.
1572 * Note that both addresses may be physical, but only one may be virtual.
1574 * The rules are that the size can be anything. Either address can be on any boundary
1575 * and span pages. The physical data must be contiguous as must the virtual.
1577 * We can block when we try to resolve the virtual address at each page boundary.
1578 * We don't check protection on the physical page.
1580 * Note that we will not check the entire range and if a page translation fails,
1581 * we will stop with partial contents copied.
1585 kern_return_t
hw_copypv_32(addr64_t source
, addr64_t sink
, unsigned int size
, int which
) {
1589 addr64_t nextva
, vaddr
, paddr
;
1590 register mapping_t
*mp
;
1592 unsigned int lop
, csize
;
1593 int needtran
, bothphys
;
1594 unsigned int pindex
;
1595 phys_entry_t
*physent
;
1601 map
= (which
& cppvKmap
) ? kernel_map
: current_map_fast();
1603 if((which
& (cppvPsrc
| cppvPsnk
)) == 0 ) { /* Make sure that only one is virtual */
1604 panic("copypv: no more than 1 parameter may be virtual\n"); /* Not allowed */
1607 bothphys
= 1; /* Assume both are physical */
1609 if(!(which
& cppvPsnk
)) { /* Is sink page virtual? */
1610 vaddr
= sink
; /* Sink side is virtual */
1611 bothphys
= 0; /* Show both aren't physical */
1612 prot
= VM_PROT_READ
| VM_PROT_WRITE
; /* Sink always must be read/write */
1613 } else if (!(which
& cppvPsrc
)) { /* Is source page virtual? */
1614 vaddr
= source
; /* Source side is virtual */
1615 bothphys
= 0; /* Show both aren't physical */
1616 prot
= VM_PROT_READ
; /* Virtual source is always read only */
1619 needtran
= 1; /* Show we need to map the virtual the first time */
1620 s
= splhigh(); /* Don't bother me */
1624 if(!bothphys
&& (needtran
|| !(vaddr
& 4095LL))) { /* If first time or we stepped onto a new page, we need to translate */
1625 if(!needtran
) { /* If this is not the first translation, we need to drop the old busy */
1626 mapping_drop_busy(mp
); /* Release the old mapping now */
1631 mp
= mapping_find(map
->pmap
, vaddr
, &nextva
, 1); /* Find and busy the mapping */
1632 if(!mp
) { /* Was it there? */
1633 if(getPerProc()->istackptr
== 0)
1634 panic("copypv: No vaild mapping on memory %s %x", "RD", vaddr
);
1636 splx(s
); /* Restore the interrupt level */
1637 ret
= vm_fault(map
, vm_map_trunc_page(vaddr
), prot
, FALSE
, THREAD_UNINT
, NULL
, 0); /* Didn't find it, try to fault it in... */
1639 if(ret
!= KERN_SUCCESS
)return KERN_FAILURE
; /* Didn't find any, return no good... */
1641 s
= splhigh(); /* Don't bother me */
1642 continue; /* Go try for the map again... */
1645 if (mp
->mpVAddr
& mpI
) { /* cache inhibited, so force the appropriate page to be flushed before */
1646 if (which
& cppvPsrc
) /* and after the copy to avoid cache paradoxes */
1653 /* Note that we have to have the destination writable. So, if we already have it, or we are mapping the source,
1656 if((which
& cppvPsnk
) || !(mp
->mpVAddr
& 1)) break; /* We got it mapped R/W or the source is not virtual, leave... */
1658 mapping_drop_busy(mp
); /* Go ahead and release the mapping for now */
1659 if(getPerProc()->istackptr
== 0)
1660 panic("copypv: No vaild mapping on memory %s %x", "RDWR", vaddr
);
1661 splx(s
); /* Restore the interrupt level */
1663 ret
= vm_fault(map
, vm_map_trunc_page(vaddr
), VM_PROT_READ
| VM_PROT_WRITE
, FALSE
, THREAD_UNINT
, NULL
, 0); /* check for a COW area */
1664 if (ret
!= KERN_SUCCESS
) return KERN_FAILURE
; /* We couldn't get it R/W, leave in disgrace... */
1665 s
= splhigh(); /* Don't bother me */
1667 paddr
= ((addr64_t
)mp
->mpPAddr
<< 12) + (vaddr
- (mp
->mpVAddr
& -4096LL)); /* construct the physical address... this calculation works */
1668 /* properly on both single page and block mappings */
1669 if(which
& cppvPsrc
) sink
= paddr
; /* If source is physical, then the sink is virtual */
1670 else source
= paddr
; /* Otherwise the source is */
1673 lop
= (unsigned int)(4096LL - (sink
& 4095LL)); /* Assume sink smallest */
1674 if(lop
> (unsigned int)(4096LL - (source
& 4095LL))) lop
= (unsigned int)(4096LL - (source
& 4095LL)); /* No, source is smaller */
1676 csize
= size
; /* Assume we can copy it all */
1677 if(lop
< size
) csize
= lop
; /* Nope, we can't do it all */
1679 if(which
& cppvFsrc
) flush_dcache64(source
, csize
, 1); /* If requested, flush source before move */
1680 if(which
& cppvFsnk
) flush_dcache64(sink
, csize
, 1); /* If requested, flush sink before move */
1682 bcopy_physvir_32(source
, sink
, csize
); /* Do a physical copy, virtually */
1684 if(which
& cppvFsrc
) flush_dcache64(source
, csize
, 1); /* If requested, flush source after move */
1685 if(which
& cppvFsnk
) flush_dcache64(sink
, csize
, 1); /* If requested, flush sink after move */
1688 * Note that for certain ram disk flavors, we may be copying outside of known memory.
1689 * Therefore, before we try to mark it modifed, we check if it exists.
1692 if( !(which
& cppvNoModSnk
)) {
1693 physent
= mapping_phys_lookup(sink
>> 12, &pindex
); /* Get physical entry for sink */
1694 if(physent
) mapping_set_mod((ppnum_t
)(sink
>> 12)); /* Make sure we know that it is modified */
1696 if( !(which
& cppvNoRefSrc
)) {
1697 physent
= mapping_phys_lookup(source
>> 12, &pindex
); /* Get physical entry for source */
1698 if(physent
) mapping_set_ref((ppnum_t
)(source
>> 12)); /* Make sure we know that it is modified */
1700 size
= size
- csize
; /* Calculate what is left */
1701 vaddr
= vaddr
+ csize
; /* Move to next sink address */
1702 source
= source
+ csize
; /* Bump source to next physical address */
1703 sink
= sink
+ csize
; /* Bump sink to next physical address */
1706 if(!bothphys
) mapping_drop_busy(mp
); /* Go ahead and release the mapping of the virtual page if any */
1707 splx(s
); /* Open up for interrupts */
1709 return KERN_SUCCESS
;
1717 void mapping_verify(void) {
1720 mappingblok_t
*mb
, *mbn
;
1721 unsigned int relncnt
;
1722 unsigned int dumbodude
;
1726 s
= splhigh(); /* Don't bother from now on */
1728 mbn
= 0; /* Start with none */
1729 for(mb
= mapCtl
.mapcnext
; mb
; mb
= mb
->nextblok
) { /* Walk the free chain */
1730 if((mappingblok_t
*)(mb
->mapblokflags
& 0x7FFFFFFF) != mb
) { /* Is tag ok? */
1731 panic("mapping_verify: flags tag bad, free chain; mb = %08X, tag = %08X\n", mb
, mb
->mapblokflags
);
1733 mbn
= mb
; /* Remember the last one */
1736 if(mapCtl
.mapcnext
&& (mapCtl
.mapclast
!= mbn
)) { /* Do we point to the last one? */
1737 panic("mapping_verify: last pointer bad; mb = %08X, mapclast = %08X\n", mb
, mapCtl
.mapclast
);
1740 relncnt
= 0; /* Clear count */
1741 for(mb
= mapCtl
.mapcrel
; mb
; mb
= mb
->nextblok
) { /* Walk the release chain */
1742 dumbodude
|= mb
->mapblokflags
; /* Just touch it to make sure it is mapped */
1743 relncnt
++; /* Count this one */
1746 if(mapCtl
.mapcreln
!= relncnt
) { /* Is the count on release queue ok? */
1747 panic("mapping_verify: bad release queue count; mapcreln = %d, cnt = %d, ignore this = %08X\n", mapCtl
.mapcreln
, relncnt
, dumbodude
);
1750 splx(s
); /* Restore 'rupts */
1755 void mapping_phys_unused(ppnum_t pa
) {
1757 unsigned int pindex
;
1758 phys_entry_t
*physent
;
1760 physent
= mapping_phys_lookup(pa
, &pindex
); /* Get physical entry */
1761 if(!physent
) return; /* Did we find the physical page? */
1763 if(!(physent
->ppLink
& ~(ppLock
| ppFlags
))) return; /* No one else is here */
1765 panic("mapping_phys_unused: physical page (%08X) in use, physent = %08X\n", pa
, physent
);
1769 void mapping_hibernate_flush(void)
1773 struct phys_entry
* entry
;
1775 for (bank
= 0; bank
< pmap_mem_regions_count
; bank
++)
1777 entry
= (struct phys_entry
*) pmap_mem_regions
[bank
].mrPhysTab
;
1778 for (page
= pmap_mem_regions
[bank
].mrStart
; page
<= pmap_mem_regions
[bank
].mrEnd
; page
++)
1780 hw_walk_phys(entry
, hwpNoop
, hwpNoop
, hwpNoop
, 0, hwpPurgePTE
);