]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/tcp_sack.c
xnu-792.12.6.tar.gz
[apple/xnu.git] / bsd / netinet / tcp_sack.c
1 /*
2 * Copyright (c) 2006 Apple Computer, Inc. All Rights Reserved.
3 *
4 * @APPLE_LICENSE_OSREFERENCE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the
10 * License may not be used to create, or enable the creation or
11 * redistribution of, unlawful or unlicensed copies of an Apple operating
12 * system, or to circumvent, violate, or enable the circumvention or
13 * violation of, any terms of an Apple operating system software license
14 * agreement.
15 *
16 * Please obtain a copy of the License at
17 * http://www.opensource.apple.com/apsl/ and read it before using this
18 * file.
19 *
20 * The Original Code and all software distributed under the License are
21 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
22 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
23 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
25 * Please see the License for the specific language governing rights and
26 * limitations under the License.
27 *
28 * @APPLE_LICENSE_OSREFERENCE_HEADER_END@
29 */
30 /*
31 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
32 * The Regents of the University of California. All rights reserved.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 * 3. All advertising materials mentioning features or use of this software
43 * must display the following acknowledgement:
44 * This product includes software developed by the University of
45 * California, Berkeley and its contributors.
46 * 4. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 */
63
64 #define _IP_VHL
65
66
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/kernel.h>
70 #include <sys/sysctl.h>
71 #include <sys/mbuf.h>
72 #include <sys/domain.h>
73 #include <sys/protosw.h>
74 #include <sys/socket.h>
75 #include <sys/socketvar.h>
76
77 #include <net/route.h>
78
79 #include <netinet/in.h>
80 #include <netinet/in_systm.h>
81 #include <netinet/ip.h>
82 #include <netinet/in_pcb.h>
83 #include <netinet/ip_var.h>
84 #if INET6
85 #include <netinet6/in6_pcb.h>
86 #include <netinet/ip6.h>
87 #include <netinet6/ip6_var.h>
88 #endif
89 #include <netinet/tcp.h>
90 //#define TCPOUTFLAGS
91 #include <netinet/tcp_fsm.h>
92 #include <netinet/tcp_seq.h>
93 #include <netinet/tcp_timer.h>
94 #include <netinet/tcp_var.h>
95 #include <netinet/tcpip.h>
96 #if TCPDEBUG
97 #include <netinet/tcp_debug.h>
98 #endif
99 #include <sys/kdebug.h>
100
101 #if IPSEC
102 #include <netinet6/ipsec.h>
103 #endif /*IPSEC*/
104
105 int tcp_do_sack = 1;
106 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack, CTLFLAG_RW, &tcp_do_sack, 0,
107 "Enable/Disable TCP SACK support");
108 static int tcp_sack_maxholes = 128;
109 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack_maxholes, CTLFLAG_RW,
110 &tcp_sack_maxholes, 0,
111 "Maximum number of TCP SACK holes allowed per connection");
112
113 static int tcp_sack_globalmaxholes = 65536;
114 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack_globalmaxholes, CTLFLAG_RW,
115 &tcp_sack_globalmaxholes, 0,
116 "Global maximum number of TCP SACK holes");
117
118 static int tcp_sack_globalholes = 0;
119 SYSCTL_INT(_net_inet_tcp, OID_AUTO, sack_globalholes, CTLFLAG_RD,
120 &tcp_sack_globalholes, 0,
121 "Global number of TCP SACK holes currently allocated");
122
123 extern struct zone *sack_hole_zone;
124
125 /*
126 * This function is called upon receipt of new valid data (while not in header
127 * prediction mode), and it updates the ordered list of sacks.
128 */
129 void
130 tcp_update_sack_list(struct tcpcb *tp, tcp_seq rcv_start, tcp_seq rcv_end)
131 {
132 /*
133 * First reported block MUST be the most recent one. Subsequent
134 * blocks SHOULD be in the order in which they arrived at the
135 * receiver. These two conditions make the implementation fully
136 * compliant with RFC 2018.
137 */
138 struct sackblk head_blk, saved_blks[MAX_SACK_BLKS];
139 int num_head, num_saved, i;
140
141 /* SACK block for the received segment. */
142 head_blk.start = rcv_start;
143 head_blk.end = rcv_end;
144
145 /*
146 * Merge updated SACK blocks into head_blk, and
147 * save unchanged SACK blocks into saved_blks[].
148 * num_saved will have the number of the saved SACK blocks.
149 */
150 num_saved = 0;
151 for (i = 0; i < tp->rcv_numsacks; i++) {
152 tcp_seq start = tp->sackblks[i].start;
153 tcp_seq end = tp->sackblks[i].end;
154 if (SEQ_GEQ(start, end) || SEQ_LEQ(start, tp->rcv_nxt)) {
155 /*
156 * Discard this SACK block.
157 */
158 } else if (SEQ_LEQ(head_blk.start, end) &&
159 SEQ_GEQ(head_blk.end, start)) {
160 /*
161 * Merge this SACK block into head_blk.
162 * This SACK block itself will be discarded.
163 */
164 if (SEQ_GT(head_blk.start, start))
165 head_blk.start = start;
166 if (SEQ_LT(head_blk.end, end))
167 head_blk.end = end;
168 } else {
169 /*
170 * Save this SACK block.
171 */
172 saved_blks[num_saved].start = start;
173 saved_blks[num_saved].end = end;
174 num_saved++;
175 }
176 }
177
178 /*
179 * Update SACK list in tp->sackblks[].
180 */
181 num_head = 0;
182 if (SEQ_GT(head_blk.start, tp->rcv_nxt)) {
183 /*
184 * The received data segment is an out-of-order segment.
185 * Put head_blk at the top of SACK list.
186 */
187 tp->sackblks[0] = head_blk;
188 num_head = 1;
189 /*
190 * If the number of saved SACK blocks exceeds its limit,
191 * discard the last SACK block.
192 */
193 if (num_saved >= MAX_SACK_BLKS)
194 num_saved--;
195 }
196 if (num_saved > 0) {
197 /*
198 * Copy the saved SACK blocks back.
199 */
200 bcopy(saved_blks, &tp->sackblks[num_head],
201 sizeof(struct sackblk) * num_saved);
202 }
203
204 /* Save the number of SACK blocks. */
205 tp->rcv_numsacks = num_head + num_saved;
206 }
207
208 /*
209 * Delete all receiver-side SACK information.
210 */
211 void
212 tcp_clean_sackreport( struct tcpcb *tp)
213 {
214 /*
215 int i;
216
217 tp->rcv_numsacks = 0;
218 for (i = 0; i < MAX_SACK_BLKS; i++)
219 tp->sackblks[i].start = tp->sackblks[i].end=0;
220 */
221 bzero(&tp->sackblks[0], sizeof (struct sackblk) * MAX_SACK_BLKS);
222 }
223
224 /*
225 * Allocate struct sackhole.
226 */
227 static struct sackhole *
228 tcp_sackhole_alloc(struct tcpcb *tp, tcp_seq start, tcp_seq end)
229 {
230 struct sackhole *hole;
231
232 if (tp->snd_numholes >= tcp_sack_maxholes ||
233 tcp_sack_globalholes >= tcp_sack_globalmaxholes) {
234 tcpstat.tcps_sack_sboverflow++;
235 return NULL;
236 }
237
238 hole = (struct sackhole *)zalloc_noblock(sack_hole_zone);
239 if (hole == NULL)
240 return NULL;
241
242 hole->start = start;
243 hole->end = end;
244 hole->rxmit = start;
245
246 tp->snd_numholes++;
247 tcp_sack_globalholes++;
248
249 return hole;
250 }
251
252 /*
253 * Free struct sackhole.
254 */
255 static void
256 tcp_sackhole_free(struct tcpcb *tp, struct sackhole *hole)
257 {
258 zfree(sack_hole_zone, hole);
259
260 tp->snd_numholes--;
261 tcp_sack_globalholes--;
262 }
263
264 /*
265 * Insert new SACK hole into scoreboard.
266 */
267 static struct sackhole *
268 tcp_sackhole_insert(struct tcpcb *tp, tcp_seq start, tcp_seq end,
269 struct sackhole *after)
270 {
271 struct sackhole *hole;
272
273 /* Allocate a new SACK hole. */
274 hole = tcp_sackhole_alloc(tp, start, end);
275 if (hole == NULL)
276 return NULL;
277
278 /* Insert the new SACK hole into scoreboard */
279 if (after != NULL)
280 TAILQ_INSERT_AFTER(&tp->snd_holes, after, hole, scblink);
281 else
282 TAILQ_INSERT_TAIL(&tp->snd_holes, hole, scblink);
283
284 /* Update SACK hint. */
285 if (tp->sackhint.nexthole == NULL)
286 tp->sackhint.nexthole = hole;
287
288 return hole;
289 }
290
291 /*
292 * Remove SACK hole from scoreboard.
293 */
294 static void
295 tcp_sackhole_remove(struct tcpcb *tp, struct sackhole *hole)
296 {
297 /* Update SACK hint. */
298 if (tp->sackhint.nexthole == hole)
299 tp->sackhint.nexthole = TAILQ_NEXT(hole, scblink);
300
301 /* Remove this SACK hole. */
302 TAILQ_REMOVE(&tp->snd_holes, hole, scblink);
303
304 /* Free this SACK hole. */
305 tcp_sackhole_free(tp, hole);
306 }
307
308 /*
309 * Process cumulative ACK and the TCP SACK option to update the scoreboard.
310 * tp->snd_holes is an ordered list of holes (oldest to newest, in terms of
311 * the sequence space).
312 */
313 void
314 tcp_sack_doack(struct tcpcb *tp, struct tcpopt *to, tcp_seq th_ack)
315 {
316 struct sackhole *cur, *temp;
317 struct sackblk sack, sack_blocks[TCP_MAX_SACK + 1], *sblkp;
318 int i, j, num_sack_blks;
319
320 num_sack_blks = 0;
321 /*
322 * If SND.UNA will be advanced by SEG.ACK, and if SACK holes exist,
323 * treat [SND.UNA, SEG.ACK) as if it is a SACK block.
324 */
325 if (SEQ_LT(tp->snd_una, th_ack) && !TAILQ_EMPTY(&tp->snd_holes)) {
326 sack_blocks[num_sack_blks].start = tp->snd_una;
327 sack_blocks[num_sack_blks++].end = th_ack;
328 }
329 /*
330 * Append received valid SACK blocks to sack_blocks[].
331 */
332 for (i = 0; i < to->to_nsacks; i++) {
333 bcopy((to->to_sacks + i * TCPOLEN_SACK), &sack, sizeof(sack));
334 sack.start = ntohl(sack.start);
335 sack.end = ntohl(sack.end);
336 if (SEQ_GT(sack.end, sack.start) &&
337 SEQ_GT(sack.start, tp->snd_una) &&
338 SEQ_GT(sack.start, th_ack) &&
339 SEQ_LEQ(sack.end, tp->snd_max))
340 sack_blocks[num_sack_blks++] = sack;
341 }
342
343 /*
344 * Return if SND.UNA is not advanced and no valid SACK block
345 * is received.
346 */
347 if (num_sack_blks == 0)
348 return;
349
350 /*
351 * Sort the SACK blocks so we can update the scoreboard
352 * with just one pass. The overhead of sorting upto 4+1 elements
353 * is less than making upto 4+1 passes over the scoreboard.
354 */
355 for (i = 0; i < num_sack_blks; i++) {
356 for (j = i + 1; j < num_sack_blks; j++) {
357 if (SEQ_GT(sack_blocks[i].end, sack_blocks[j].end)) {
358 sack = sack_blocks[i];
359 sack_blocks[i] = sack_blocks[j];
360 sack_blocks[j] = sack;
361 }
362 }
363 }
364 if (TAILQ_EMPTY(&tp->snd_holes))
365 /*
366 * Empty scoreboard. Need to initialize snd_fack (it may be
367 * uninitialized or have a bogus value). Scoreboard holes
368 * (from the sack blocks received) are created later below (in
369 * the logic that adds holes to the tail of the scoreboard).
370 */
371 tp->snd_fack = SEQ_MAX(tp->snd_una, th_ack);
372 /*
373 * In the while-loop below, incoming SACK blocks (sack_blocks[])
374 * and SACK holes (snd_holes) are traversed from their tails with
375 * just one pass in order to reduce the number of compares especially
376 * when the bandwidth-delay product is large.
377 * Note: Typically, in the first RTT of SACK recovery, the highest
378 * three or four SACK blocks with the same ack number are received.
379 * In the second RTT, if retransmitted data segments are not lost,
380 * the highest three or four SACK blocks with ack number advancing
381 * are received.
382 */
383 sblkp = &sack_blocks[num_sack_blks - 1]; /* Last SACK block */
384 if (SEQ_LT(tp->snd_fack, sblkp->start)) {
385 /*
386 * The highest SACK block is beyond fack.
387 * Append new SACK hole at the tail.
388 * If the second or later highest SACK blocks are also
389 * beyond the current fack, they will be inserted by
390 * way of hole splitting in the while-loop below.
391 */
392 temp = tcp_sackhole_insert(tp, tp->snd_fack,sblkp->start,NULL);
393 if (temp != NULL) {
394 tp->snd_fack = sblkp->end;
395 /* Go to the previous sack block. */
396 sblkp--;
397 } else {
398 /*
399 * We failed to add a new hole based on the current
400 * sack block. Skip over all the sack blocks that
401 * fall completely to the right of snd_fack and proceed
402 * to trim the scoreboard based on the remaining sack
403 * blocks. This also trims the scoreboard for th_ack
404 * (which is sack_blocks[0]).
405 */
406 while (sblkp >= sack_blocks &&
407 SEQ_LT(tp->snd_fack, sblkp->start))
408 sblkp--;
409 if (sblkp >= sack_blocks &&
410 SEQ_LT(tp->snd_fack, sblkp->end))
411 tp->snd_fack = sblkp->end;
412 }
413 } else if (SEQ_LT(tp->snd_fack, sblkp->end))
414 /* fack is advanced. */
415 tp->snd_fack = sblkp->end;
416 /* We must have at least one SACK hole in scoreboard */
417 cur = TAILQ_LAST(&tp->snd_holes, sackhole_head); /* Last SACK hole */
418 /*
419 * Since the incoming sack blocks are sorted, we can process them
420 * making one sweep of the scoreboard.
421 */
422 while (sblkp >= sack_blocks && cur != NULL) {
423 if (SEQ_GEQ(sblkp->start, cur->end)) {
424 /*
425 * SACKs data beyond the current hole.
426 * Go to the previous sack block.
427 */
428 sblkp--;
429 continue;
430 }
431 if (SEQ_LEQ(sblkp->end, cur->start)) {
432 /*
433 * SACKs data before the current hole.
434 * Go to the previous hole.
435 */
436 cur = TAILQ_PREV(cur, sackhole_head, scblink);
437 continue;
438 }
439 tp->sackhint.sack_bytes_rexmit -= (cur->rxmit - cur->start);
440 if (SEQ_LEQ(sblkp->start, cur->start)) {
441 /* Data acks at least the beginning of hole */
442 if (SEQ_GEQ(sblkp->end, cur->end)) {
443 /* Acks entire hole, so delete hole */
444 temp = cur;
445 cur = TAILQ_PREV(cur, sackhole_head, scblink);
446 tcp_sackhole_remove(tp, temp);
447 /*
448 * The sack block may ack all or part of the next
449 * hole too, so continue onto the next hole.
450 */
451 continue;
452 } else {
453 /* Move start of hole forward */
454 cur->start = sblkp->end;
455 cur->rxmit = SEQ_MAX(cur->rxmit, cur->start);
456 }
457 } else {
458 /* Data acks at least the end of hole */
459 if (SEQ_GEQ(sblkp->end, cur->end)) {
460 /* Move end of hole backward */
461 cur->end = sblkp->start;
462 cur->rxmit = SEQ_MIN(cur->rxmit, cur->end);
463 } else {
464 /*
465 * ACKs some data in middle of a hole; need to
466 * split current hole
467 */
468 temp = tcp_sackhole_insert(tp, sblkp->end,
469 cur->end, cur);
470 if (temp != NULL) {
471 if (SEQ_GT(cur->rxmit, temp->rxmit)) {
472 temp->rxmit = cur->rxmit;
473 tp->sackhint.sack_bytes_rexmit
474 += (temp->rxmit
475 - temp->start);
476 }
477 cur->end = sblkp->start;
478 cur->rxmit = SEQ_MIN(cur->rxmit,
479 cur->end);
480 }
481 }
482 }
483 tp->sackhint.sack_bytes_rexmit += (cur->rxmit - cur->start);
484 /*
485 * Testing sblkp->start against cur->start tells us whether
486 * we're done with the sack block or the sack hole.
487 * Accordingly, we advance one or the other.
488 */
489 if (SEQ_LEQ(sblkp->start, cur->start))
490 cur = TAILQ_PREV(cur, sackhole_head, scblink);
491 else
492 sblkp--;
493 }
494 }
495
496 /*
497 * Free all SACK holes to clear the scoreboard.
498 */
499 void
500 tcp_free_sackholes(struct tcpcb *tp)
501 {
502 struct sackhole *q;
503
504 while ((q = TAILQ_FIRST(&tp->snd_holes)) != NULL)
505 tcp_sackhole_remove(tp, q);
506 tp->sackhint.sack_bytes_rexmit = 0;
507
508 }
509
510 /*
511 * Partial ack handling within a sack recovery episode.
512 * Keeping this very simple for now. When a partial ack
513 * is received, force snd_cwnd to a value that will allow
514 * the sender to transmit no more than 2 segments.
515 * If necessary, a better scheme can be adopted at a
516 * later point, but for now, the goal is to prevent the
517 * sender from bursting a large amount of data in the midst
518 * of sack recovery.
519 */
520 void
521 tcp_sack_partialack(tp, th)
522 struct tcpcb *tp;
523 struct tcphdr *th;
524 {
525 int num_segs = 1;
526
527 tp->t_timer[TCPT_REXMT] = 0;
528 tp->t_rtttime = 0;
529 /* send one or 2 segments based on how much new data was acked */
530 if (((th->th_ack - tp->snd_una) / tp->t_maxseg) > 2)
531 num_segs = 2;
532 tp->snd_cwnd = (tp->sackhint.sack_bytes_rexmit +
533 (tp->snd_nxt - tp->sack_newdata) +
534 num_segs * tp->t_maxseg);
535 if (tp->snd_cwnd > tp->snd_ssthresh)
536 tp->snd_cwnd = tp->snd_ssthresh;
537 tp->t_flags |= TF_ACKNOW;
538 (void) tcp_output(tp);
539 }
540
541 /*
542 * Debug version of tcp_sack_output() that walks the scoreboard. Used for
543 * now to sanity check the hint.
544 */
545 static struct sackhole *
546 tcp_sack_output_debug(struct tcpcb *tp, int *sack_bytes_rexmt)
547 {
548 struct sackhole *p;
549
550 *sack_bytes_rexmt = 0;
551 TAILQ_FOREACH(p, &tp->snd_holes, scblink) {
552 if (SEQ_LT(p->rxmit, p->end)) {
553 if (SEQ_LT(p->rxmit, tp->snd_una)) {/* old SACK hole */
554 continue;
555 }
556 *sack_bytes_rexmt += (p->rxmit - p->start);
557 break;
558 }
559 *sack_bytes_rexmt += (p->rxmit - p->start);
560 }
561 return (p);
562 }
563
564 /*
565 * Returns the next hole to retransmit and the number of retransmitted bytes
566 * from the scoreboard. We store both the next hole and the number of
567 * retransmitted bytes as hints (and recompute these on the fly upon SACK/ACK
568 * reception). This avoids scoreboard traversals completely.
569 *
570 * The loop here will traverse *at most* one link. Here's the argument.
571 * For the loop to traverse more than 1 link before finding the next hole to
572 * retransmit, we would need to have at least 1 node following the current hint
573 * with (rxmit == end). But, for all holes following the current hint,
574 * (start == rxmit), since we have not yet retransmitted from them. Therefore,
575 * in order to traverse more 1 link in the loop below, we need to have at least
576 * one node following the current hint with (start == rxmit == end).
577 * But that can't happen, (start == end) means that all the data in that hole
578 * has been sacked, in which case, the hole would have been removed from the
579 * scoreboard.
580 */
581 struct sackhole *
582 tcp_sack_output(struct tcpcb *tp, int *sack_bytes_rexmt)
583 {
584 struct sackhole *hole = NULL, *dbg_hole = NULL;
585 int dbg_bytes_rexmt;
586
587 dbg_hole = tcp_sack_output_debug(tp, &dbg_bytes_rexmt);
588 *sack_bytes_rexmt = tp->sackhint.sack_bytes_rexmit;
589 hole = tp->sackhint.nexthole;
590 if (hole == NULL || SEQ_LT(hole->rxmit, hole->end))
591 goto out;
592 while ((hole = TAILQ_NEXT(hole, scblink)) != NULL) {
593 if (SEQ_LT(hole->rxmit, hole->end)) {
594 tp->sackhint.nexthole = hole;
595 break;
596 }
597 }
598 out:
599 if (dbg_hole != hole) {
600 printf("%s: Computed sack hole not the same as cached value\n", __func__);
601 hole = dbg_hole;
602 }
603 if (*sack_bytes_rexmt != dbg_bytes_rexmt) {
604 printf("%s: Computed sack_bytes_retransmitted (%d) not "
605 "the same as cached value (%d)\n",
606 __func__, dbg_bytes_rexmt, *sack_bytes_rexmt);
607 *sack_bytes_rexmt = dbg_bytes_rexmt;
608 }
609 return (hole);
610 }
611
612 /*
613 * After a timeout, the SACK list may be rebuilt. This SACK information
614 * should be used to avoid retransmitting SACKed data. This function
615 * traverses the SACK list to see if snd_nxt should be moved forward.
616 */
617 void
618 tcp_sack_adjust(struct tcpcb *tp)
619 {
620 struct sackhole *p, *cur = TAILQ_FIRST(&tp->snd_holes);
621
622 if (cur == NULL)
623 return; /* No holes */
624 if (SEQ_GEQ(tp->snd_nxt, tp->snd_fack))
625 return; /* We're already beyond any SACKed blocks */
626 /*
627 * Two cases for which we want to advance snd_nxt:
628 * i) snd_nxt lies between end of one hole and beginning of another
629 * ii) snd_nxt lies between end of last hole and snd_fack
630 */
631 while ((p = TAILQ_NEXT(cur, scblink)) != NULL) {
632 if (SEQ_LT(tp->snd_nxt, cur->end))
633 return;
634 if (SEQ_GEQ(tp->snd_nxt, p->start))
635 cur = p;
636 else {
637 tp->snd_nxt = p->start;
638 return;
639 }
640 }
641 if (SEQ_LT(tp->snd_nxt, cur->end))
642 return;
643 tp->snd_nxt = tp->snd_fack;
644 return;
645 }