]> git.saurik.com Git - apple/xnu.git/blob - bsd/net/radix.c
xnu-792.12.6.tar.gz
[apple/xnu.git] / bsd / net / radix.c
1 /*
2 * Copyright (c) 2006 Apple Computer, Inc. All Rights Reserved.
3 *
4 * @APPLE_LICENSE_OSREFERENCE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the
10 * License may not be used to create, or enable the creation or
11 * redistribution of, unlawful or unlicensed copies of an Apple operating
12 * system, or to circumvent, violate, or enable the circumvention or
13 * violation of, any terms of an Apple operating system software license
14 * agreement.
15 *
16 * Please obtain a copy of the License at
17 * http://www.opensource.apple.com/apsl/ and read it before using this
18 * file.
19 *
20 * The Original Code and all software distributed under the License are
21 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
22 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
23 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
25 * Please see the License for the specific language governing rights and
26 * limitations under the License.
27 *
28 * @APPLE_LICENSE_OSREFERENCE_HEADER_END@
29 */
30 /*
31 * Copyright (c) 1988, 1989, 1993
32 * The Regents of the University of California. All rights reserved.
33 *
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
36 * are met:
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 * 3. All advertising materials mentioning features or use of this software
43 * must display the following acknowledgement:
44 * This product includes software developed by the University of
45 * California, Berkeley and its contributors.
46 * 4. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
49 *
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
60 * SUCH DAMAGE.
61 *
62 * @(#)radix.c 8.4 (Berkeley) 11/2/94
63 * $FreeBSD: src/sys/net/radix.c,v 1.20.2.2 2001/03/06 00:56:50 obrien Exp $
64 */
65
66 /*
67 * Routines to build and maintain radix trees for routing lookups.
68 */
69 #ifndef _RADIX_H_
70 #include <sys/param.h>
71 #ifdef KERNEL
72 #include <sys/systm.h>
73 #include <sys/malloc.h>
74 #define M_DONTWAIT M_NOWAIT
75 #include <sys/domain.h>
76 #else
77 #include <stdlib.h>
78 #endif
79 #include <sys/syslog.h>
80 #include <net/radix.h>
81 #include <sys/socket.h>
82 #include <sys/socketvar.h>
83 #include <kern/locks.h>
84 #endif
85
86 static int rn_walktree_from(struct radix_node_head *h, void *a,
87 void *m, walktree_f_t *f, void *w);
88 static int rn_walktree(struct radix_node_head *, walktree_f_t *, void *);
89 static struct radix_node
90 *rn_insert(void *, struct radix_node_head *, int *,
91 struct radix_node [2]),
92 *rn_newpair(void *, int, struct radix_node[2]),
93 *rn_search(void *, struct radix_node *),
94 *rn_search_m(void *, struct radix_node *, void *);
95
96 static int max_keylen;
97 static struct radix_mask *rn_mkfreelist;
98 static struct radix_node_head *mask_rnhead;
99 static char *addmask_key;
100 static char normal_chars[] = {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
101 static char *rn_zeros, *rn_ones;
102
103
104 extern lck_grp_t *domain_proto_mtx_grp;
105 extern lck_attr_t *domain_proto_mtx_attr;
106 lck_mtx_t *rn_mutex;
107
108 #define rn_masktop (mask_rnhead->rnh_treetop)
109 #undef Bcmp
110 #define Bcmp(a, b, l) \
111 (l == 0 ? 0 : bcmp((caddr_t)(a), (caddr_t)(b), (u_long)l))
112
113 static int rn_lexobetter(void *m_arg, void *n_arg);
114 static struct radix_mask *
115 rn_new_radix_mask(struct radix_node *tt,
116 struct radix_mask *next);
117 static int rn_satsifies_leaf(char *trial, struct radix_node *leaf,
118 int skip);
119
120 /*
121 * The data structure for the keys is a radix tree with one way
122 * branching removed. The index rn_bit at an internal node n represents a bit
123 * position to be tested. The tree is arranged so that all descendants
124 * of a node n have keys whose bits all agree up to position rn_bit - 1.
125 * (We say the index of n is rn_bit.)
126 *
127 * There is at least one descendant which has a one bit at position rn_bit,
128 * and at least one with a zero there.
129 *
130 * A route is determined by a pair of key and mask. We require that the
131 * bit-wise logical and of the key and mask to be the key.
132 * We define the index of a route to associated with the mask to be
133 * the first bit number in the mask where 0 occurs (with bit number 0
134 * representing the highest order bit).
135 *
136 * We say a mask is normal if every bit is 0, past the index of the mask.
137 * If a node n has a descendant (k, m) with index(m) == index(n) == rn_bit,
138 * and m is a normal mask, then the route applies to every descendant of n.
139 * If the index(m) < rn_bit, this implies the trailing last few bits of k
140 * before bit b are all 0, (and hence consequently true of every descendant
141 * of n), so the route applies to all descendants of the node as well.
142 *
143 * Similar logic shows that a non-normal mask m such that
144 * index(m) <= index(n) could potentially apply to many children of n.
145 * Thus, for each non-host route, we attach its mask to a list at an internal
146 * node as high in the tree as we can go.
147 *
148 * The present version of the code makes use of normal routes in short-
149 * circuiting an explict mask and compare operation when testing whether
150 * a key satisfies a normal route, and also in remembering the unique leaf
151 * that governs a subtree.
152 */
153
154 static struct radix_node *
155 rn_search(v_arg, head)
156 void *v_arg;
157 struct radix_node *head;
158 {
159 register struct radix_node *x;
160 register caddr_t v;
161
162 for (x = head, v = v_arg; x->rn_bit >= 0;) {
163 if (x->rn_bmask & v[x->rn_offset])
164 x = x->rn_right;
165 else
166 x = x->rn_left;
167 }
168 return (x);
169 }
170
171 static struct radix_node *
172 rn_search_m(v_arg, head, m_arg)
173 struct radix_node *head;
174 void *v_arg, *m_arg;
175 {
176 register struct radix_node *x;
177 register caddr_t v = v_arg, m = m_arg;
178
179 for (x = head; x->rn_bit >= 0;) {
180 if ((x->rn_bmask & m[x->rn_offset]) &&
181 (x->rn_bmask & v[x->rn_offset]))
182 x = x->rn_right;
183 else
184 x = x->rn_left;
185 }
186 return x;
187 }
188
189 int
190 rn_refines(m_arg, n_arg)
191 void *m_arg, *n_arg;
192 {
193 register caddr_t m = m_arg, n = n_arg;
194 register caddr_t lim, lim2 = lim = n + *(u_char *)n;
195 int longer = (*(u_char *)n++) - (int)(*(u_char *)m++);
196 int masks_are_equal = 1;
197
198 if (longer > 0)
199 lim -= longer;
200 while (n < lim) {
201 if (*n & ~(*m))
202 return 0;
203 if (*n++ != *m++)
204 masks_are_equal = 0;
205 }
206 while (n < lim2)
207 if (*n++)
208 return 0;
209 if (masks_are_equal && (longer < 0))
210 for (lim2 = m - longer; m < lim2; )
211 if (*m++)
212 return 1;
213 return (!masks_are_equal);
214 }
215
216 struct radix_node *
217 rn_lookup(v_arg, m_arg, head)
218 void *v_arg, *m_arg;
219 struct radix_node_head *head;
220 {
221 register struct radix_node *x;
222 caddr_t netmask = 0;
223
224 if (m_arg) {
225 x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_offset);
226 if (x == 0)
227 return (0);
228 netmask = x->rn_key;
229 }
230 x = rn_match(v_arg, head);
231 if (x && netmask) {
232 while (x && x->rn_mask != netmask)
233 x = x->rn_dupedkey;
234 }
235 return x;
236 }
237
238 static int
239 rn_satsifies_leaf(trial, leaf, skip)
240 char *trial;
241 register struct radix_node *leaf;
242 int skip;
243 {
244 register char *cp = trial, *cp2 = leaf->rn_key, *cp3 = leaf->rn_mask;
245 char *cplim;
246 int length = min(*(u_char *)cp, *(u_char *)cp2);
247
248 if (cp3 == 0)
249 cp3 = rn_ones;
250 else
251 length = min(length, *(u_char *)cp3);
252 cplim = cp + length; cp3 += skip; cp2 += skip;
253 for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
254 if ((*cp ^ *cp2) & *cp3)
255 return 0;
256 return 1;
257 }
258
259 struct radix_node *
260 rn_match(v_arg, head)
261 void *v_arg;
262 struct radix_node_head *head;
263 {
264 caddr_t v = v_arg;
265 register struct radix_node *t = head->rnh_treetop, *x;
266 register caddr_t cp = v, cp2;
267 caddr_t cplim;
268 struct radix_node *saved_t, *top = t;
269 int off = t->rn_offset, vlen = *(u_char *)cp, matched_off;
270 register int test, b, rn_bit;
271
272 /*
273 * Open code rn_search(v, top) to avoid overhead of extra
274 * subroutine call.
275 */
276 for (; t->rn_bit >= 0; ) {
277 if (t->rn_bmask & cp[t->rn_offset])
278 t = t->rn_right;
279 else
280 t = t->rn_left;
281 }
282 /*
283 * See if we match exactly as a host destination
284 * or at least learn how many bits match, for normal mask finesse.
285 *
286 * It doesn't hurt us to limit how many bytes to check
287 * to the length of the mask, since if it matches we had a genuine
288 * match and the leaf we have is the most specific one anyway;
289 * if it didn't match with a shorter length it would fail
290 * with a long one. This wins big for class B&C netmasks which
291 * are probably the most common case...
292 */
293 if (t->rn_mask)
294 vlen = *(u_char *)t->rn_mask;
295 cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
296 for (; cp < cplim; cp++, cp2++)
297 if (*cp != *cp2)
298 goto on1;
299 /*
300 * This extra grot is in case we are explicitly asked
301 * to look up the default. Ugh!
302 *
303 * Never return the root node itself, it seems to cause a
304 * lot of confusion.
305 */
306 if (t->rn_flags & RNF_ROOT)
307 t = t->rn_dupedkey;
308 return t;
309 on1:
310 test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
311 for (b = 7; (test >>= 1) > 0;)
312 b--;
313 matched_off = cp - v;
314 b += matched_off << 3;
315 rn_bit = -1 - b;
316 /*
317 * If there is a host route in a duped-key chain, it will be first.
318 */
319 if ((saved_t = t)->rn_mask == 0)
320 t = t->rn_dupedkey;
321 for (; t; t = t->rn_dupedkey)
322 /*
323 * Even if we don't match exactly as a host,
324 * we may match if the leaf we wound up at is
325 * a route to a net.
326 */
327 if (t->rn_flags & RNF_NORMAL) {
328 if (rn_bit <= t->rn_bit)
329 return t;
330 } else if (rn_satsifies_leaf(v, t, matched_off))
331 return t;
332 t = saved_t;
333 /* start searching up the tree */
334 do {
335 register struct radix_mask *m;
336 t = t->rn_parent;
337 m = t->rn_mklist;
338 /*
339 * If non-contiguous masks ever become important
340 * we can restore the masking and open coding of
341 * the search and satisfaction test and put the
342 * calculation of "off" back before the "do".
343 */
344 while (m) {
345 if (m->rm_flags & RNF_NORMAL) {
346 if (rn_bit <= m->rm_bit)
347 return (m->rm_leaf);
348 } else {
349 off = min(t->rn_offset, matched_off);
350 x = rn_search_m(v, t, m->rm_mask);
351 while (x && x->rn_mask != m->rm_mask)
352 x = x->rn_dupedkey;
353 if (x && rn_satsifies_leaf(v, x, off))
354 return x;
355 }
356 m = m->rm_mklist;
357 }
358 } while (t != top);
359 return 0;
360 }
361
362 #ifdef RN_DEBUG
363 int rn_nodenum;
364 struct radix_node *rn_clist;
365 int rn_saveinfo;
366 int rn_debug = 1;
367 #endif
368
369 static struct radix_node *
370 rn_newpair(v, b, nodes)
371 void *v;
372 int b;
373 struct radix_node nodes[2];
374 {
375 register struct radix_node *tt = nodes, *t = tt + 1;
376 t->rn_bit = b;
377 t->rn_bmask = 0x80 >> (b & 7);
378 t->rn_left = tt;
379 t->rn_offset = b >> 3;
380 tt->rn_bit = -1;
381 tt->rn_key = (caddr_t)v;
382 tt->rn_parent = t;
383 tt->rn_flags = t->rn_flags = RNF_ACTIVE;
384 tt->rn_mklist = t->rn_mklist = 0;
385 #ifdef RN_DEBUG
386 tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
387 tt->rn_twin = t;
388 tt->rn_ybro = rn_clist;
389 rn_clist = tt;
390 #endif
391 return t;
392 }
393
394 static struct radix_node *
395 rn_insert(v_arg, head, dupentry, nodes)
396 void *v_arg;
397 struct radix_node_head *head;
398 int *dupentry;
399 struct radix_node nodes[2];
400 {
401 caddr_t v = v_arg;
402 struct radix_node *top = head->rnh_treetop;
403 int head_off = top->rn_offset, vlen = (int)*((u_char *)v);
404 register struct radix_node *t = rn_search(v_arg, top);
405 register caddr_t cp = v + head_off;
406 register int b;
407 struct radix_node *tt;
408 /*
409 * Find first bit at which v and t->rn_key differ
410 */
411 {
412 register caddr_t cp2 = t->rn_key + head_off;
413 register int cmp_res;
414 caddr_t cplim = v + vlen;
415
416 while (cp < cplim)
417 if (*cp2++ != *cp++)
418 goto on1;
419 *dupentry = 1;
420 return t;
421 on1:
422 *dupentry = 0;
423 cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
424 for (b = (cp - v) << 3; cmp_res; b--)
425 cmp_res >>= 1;
426 }
427 {
428 register struct radix_node *p, *x = top;
429 cp = v;
430 do {
431 p = x;
432 if (cp[x->rn_offset] & x->rn_bmask)
433 x = x->rn_right;
434 else
435 x = x->rn_left;
436 } while (b > (unsigned) x->rn_bit);
437 /* x->rn_bit < b && x->rn_bit >= 0 */
438 #ifdef RN_DEBUG
439 if (rn_debug)
440 log(LOG_DEBUG, "rn_insert: Going In:\n"), traverse(p);
441 #endif
442 t = rn_newpair(v_arg, b, nodes);
443 tt = t->rn_left;
444 if ((cp[p->rn_offset] & p->rn_bmask) == 0)
445 p->rn_left = t;
446 else
447 p->rn_right = t;
448 x->rn_parent = t;
449 t->rn_parent = p; /* frees x, p as temp vars below */
450 if ((cp[t->rn_offset] & t->rn_bmask) == 0) {
451 t->rn_right = x;
452 } else {
453 t->rn_right = tt;
454 t->rn_left = x;
455 }
456 #ifdef RN_DEBUG
457 if (rn_debug)
458 log(LOG_DEBUG, "rn_insert: Coming Out:\n"), traverse(p);
459 #endif
460 }
461 return (tt);
462 }
463
464 struct radix_node *
465 rn_addmask(n_arg, search, skip)
466 int search, skip;
467 void *n_arg;
468 {
469 caddr_t netmask = (caddr_t)n_arg;
470 register struct radix_node *x;
471 register caddr_t cp, cplim;
472 register int b = 0, mlen, j;
473 int maskduplicated, m0, isnormal;
474 struct radix_node *saved_x;
475 static int last_zeroed = 0;
476
477 if ((mlen = *(u_char *)netmask) > max_keylen)
478 mlen = max_keylen;
479 if (skip == 0)
480 skip = 1;
481 if (mlen <= skip)
482 return (mask_rnhead->rnh_nodes);
483 if (skip > 1)
484 Bcopy(rn_ones + 1, addmask_key + 1, skip - 1);
485 if ((m0 = mlen) > skip)
486 Bcopy(netmask + skip, addmask_key + skip, mlen - skip);
487 /*
488 * Trim trailing zeroes.
489 */
490 for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
491 cp--;
492 mlen = cp - addmask_key;
493 if (mlen <= skip) {
494 if (m0 >= last_zeroed)
495 last_zeroed = mlen;
496 return (mask_rnhead->rnh_nodes);
497 }
498 if (m0 < last_zeroed)
499 Bzero(addmask_key + m0, last_zeroed - m0);
500 *addmask_key = last_zeroed = mlen;
501 x = rn_search(addmask_key, rn_masktop);
502 if (Bcmp(addmask_key, x->rn_key, mlen) != 0)
503 x = 0;
504 if (x || search)
505 return (x);
506 R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
507 if ((saved_x = x) == 0)
508 return (0);
509 Bzero(x, max_keylen + 2 * sizeof (*x));
510 netmask = cp = (caddr_t)(x + 2);
511 Bcopy(addmask_key, cp, mlen);
512 x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
513 if (maskduplicated) {
514 log(LOG_ERR, "rn_addmask: mask impossibly already in tree");
515 R_Free(saved_x);
516 return (x);
517 }
518 /*
519 * Calculate index of mask, and check for normalcy.
520 */
521 cplim = netmask + mlen; isnormal = 1;
522 for (cp = netmask + skip; (cp < cplim) && *(u_char *)cp == 0xff;)
523 cp++;
524 if (cp != cplim) {
525 for (j = 0x80; (j & *cp) != 0; j >>= 1)
526 b++;
527 if (*cp != normal_chars[b] || cp != (cplim - 1))
528 isnormal = 0;
529 }
530 b += (cp - netmask) << 3;
531 x->rn_bit = -1 - b;
532 if (isnormal)
533 x->rn_flags |= RNF_NORMAL;
534 return (x);
535 }
536
537 static int /* XXX: arbitrary ordering for non-contiguous masks */
538 rn_lexobetter(m_arg, n_arg)
539 void *m_arg, *n_arg;
540 {
541 register u_char *mp = m_arg, *np = n_arg, *lim;
542
543 if (*mp > *np)
544 return 1; /* not really, but need to check longer one first */
545 if (*mp == *np)
546 for (lim = mp + *mp; mp < lim;)
547 if (*mp++ > *np++)
548 return 1;
549 return 0;
550 }
551
552 static struct radix_mask *
553 rn_new_radix_mask(tt, next)
554 register struct radix_node *tt;
555 register struct radix_mask *next;
556 {
557 register struct radix_mask *m;
558
559 MKGet(m);
560 if (m == 0) {
561 log(LOG_ERR, "Mask for route not entered\n");
562 return (0);
563 }
564 Bzero(m, sizeof *m);
565 m->rm_bit = tt->rn_bit;
566 m->rm_flags = tt->rn_flags;
567 if (tt->rn_flags & RNF_NORMAL)
568 m->rm_leaf = tt;
569 else
570 m->rm_mask = tt->rn_mask;
571 m->rm_mklist = next;
572 tt->rn_mklist = m;
573 return m;
574 }
575
576 struct radix_node *
577 rn_addroute(v_arg, n_arg, head, treenodes)
578 void *v_arg, *n_arg;
579 struct radix_node_head *head;
580 struct radix_node treenodes[2];
581 {
582 caddr_t v = (caddr_t)v_arg, netmask = (caddr_t)n_arg;
583 register struct radix_node *t, *x = 0, *tt;
584 struct radix_node *saved_tt, *top = head->rnh_treetop;
585 short b = 0, b_leaf = 0;
586 int keyduplicated;
587 caddr_t mmask;
588 struct radix_mask *m, **mp;
589
590 /*
591 * In dealing with non-contiguous masks, there may be
592 * many different routes which have the same mask.
593 * We will find it useful to have a unique pointer to
594 * the mask to speed avoiding duplicate references at
595 * nodes and possibly save time in calculating indices.
596 */
597 if (netmask) {
598 if ((x = rn_addmask(netmask, 0, top->rn_offset)) == 0)
599 return (0);
600 b_leaf = x->rn_bit;
601 b = -1 - x->rn_bit;
602 netmask = x->rn_key;
603 }
604 /*
605 * Deal with duplicated keys: attach node to previous instance
606 */
607 saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
608 if (keyduplicated) {
609 for (t = tt; tt; t = tt, tt = tt->rn_dupedkey) {
610 if (tt->rn_mask == netmask)
611 return (0);
612 if (netmask == 0 ||
613 (tt->rn_mask &&
614 ((b_leaf < tt->rn_bit) /* index(netmask) > node */
615 || rn_refines(netmask, tt->rn_mask)
616 || rn_lexobetter(netmask, tt->rn_mask))))
617 break;
618 }
619 /*
620 * If the mask is not duplicated, we wouldn't
621 * find it among possible duplicate key entries
622 * anyway, so the above test doesn't hurt.
623 *
624 * We sort the masks for a duplicated key the same way as
625 * in a masklist -- most specific to least specific.
626 * This may require the unfortunate nuisance of relocating
627 * the head of the list.
628 */
629 if (tt == saved_tt) {
630 struct radix_node *xx = x;
631 /* link in at head of list */
632 (tt = treenodes)->rn_dupedkey = t;
633 tt->rn_flags = t->rn_flags;
634 tt->rn_parent = x = t->rn_parent;
635 t->rn_parent = tt; /* parent */
636 if (x->rn_left == t)
637 x->rn_left = tt;
638 else
639 x->rn_right = tt;
640 saved_tt = tt; x = xx;
641 } else {
642 (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
643 t->rn_dupedkey = tt;
644 tt->rn_parent = t; /* parent */
645 if (tt->rn_dupedkey) /* parent */
646 tt->rn_dupedkey->rn_parent = tt; /* parent */
647 }
648 #ifdef RN_DEBUG
649 t=tt+1; tt->rn_info = rn_nodenum++; t->rn_info = rn_nodenum++;
650 tt->rn_twin = t; tt->rn_ybro = rn_clist; rn_clist = tt;
651 #endif
652 tt->rn_key = (caddr_t) v;
653 tt->rn_bit = -1;
654 tt->rn_flags = RNF_ACTIVE;
655 }
656 /*
657 * Put mask in tree.
658 */
659 if (netmask) {
660 tt->rn_mask = netmask;
661 tt->rn_bit = x->rn_bit;
662 tt->rn_flags |= x->rn_flags & RNF_NORMAL;
663 }
664 t = saved_tt->rn_parent;
665 if (keyduplicated)
666 goto on2;
667 b_leaf = -1 - t->rn_bit;
668 if (t->rn_right == saved_tt)
669 x = t->rn_left;
670 else
671 x = t->rn_right;
672 /* Promote general routes from below */
673 if (x->rn_bit < 0) {
674 for (mp = &t->rn_mklist; x; x = x->rn_dupedkey)
675 if (x->rn_mask && (x->rn_bit >= b_leaf) && x->rn_mklist == 0) {
676 *mp = m = rn_new_radix_mask(x, 0);
677 if (m)
678 mp = &m->rm_mklist;
679 }
680 } else if (x->rn_mklist) {
681 /*
682 * Skip over masks whose index is > that of new node
683 */
684 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
685 if (m->rm_bit >= b_leaf)
686 break;
687 t->rn_mklist = m; *mp = 0;
688 }
689 on2:
690 /* Add new route to highest possible ancestor's list */
691 if ((netmask == 0) || (b > t->rn_bit ))
692 return tt; /* can't lift at all */
693 b_leaf = tt->rn_bit;
694 do {
695 x = t;
696 t = t->rn_parent;
697 } while (b <= t->rn_bit && x != top);
698 /*
699 * Search through routes associated with node to
700 * insert new route according to index.
701 * Need same criteria as when sorting dupedkeys to avoid
702 * double loop on deletion.
703 */
704 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist) {
705 if (m->rm_bit < b_leaf)
706 continue;
707 if (m->rm_bit > b_leaf)
708 break;
709 if (m->rm_flags & RNF_NORMAL) {
710 mmask = m->rm_leaf->rn_mask;
711 if (tt->rn_flags & RNF_NORMAL) {
712 log(LOG_ERR,
713 "Non-unique normal route, mask not entered");
714 return tt;
715 }
716 } else
717 mmask = m->rm_mask;
718 if (mmask == netmask) {
719 m->rm_refs++;
720 tt->rn_mklist = m;
721 return tt;
722 }
723 if (rn_refines(netmask, mmask)
724 || rn_lexobetter(netmask, mmask))
725 break;
726 }
727 *mp = rn_new_radix_mask(tt, *mp);
728 return tt;
729 }
730
731 struct radix_node *
732 rn_delete(v_arg, netmask_arg, head)
733 void *v_arg, *netmask_arg;
734 struct radix_node_head *head;
735 {
736 register struct radix_node *t, *p, *x, *tt;
737 struct radix_mask *m, *saved_m, **mp;
738 struct radix_node *dupedkey, *saved_tt, *top;
739 caddr_t v, netmask;
740 int b, head_off, vlen;
741
742 v = v_arg;
743 netmask = netmask_arg;
744 x = head->rnh_treetop;
745 tt = rn_search(v, x);
746 head_off = x->rn_offset;
747 vlen = *(u_char *)v;
748 saved_tt = tt;
749 top = x;
750 if (tt == 0 ||
751 Bcmp(v + head_off, tt->rn_key + head_off, vlen - head_off))
752 return (0);
753 /*
754 * Delete our route from mask lists.
755 */
756 if (netmask) {
757 if ((x = rn_addmask(netmask, 1, head_off)) == 0)
758 return (0);
759 netmask = x->rn_key;
760 while (tt->rn_mask != netmask)
761 if ((tt = tt->rn_dupedkey) == 0)
762 return (0);
763 }
764 if (tt->rn_mask == 0 || (saved_m = m = tt->rn_mklist) == 0)
765 goto on1;
766 if (tt->rn_flags & RNF_NORMAL) {
767 if (m->rm_leaf != tt || m->rm_refs > 0) {
768 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
769 return 0; /* dangling ref could cause disaster */
770 }
771 } else {
772 if (m->rm_mask != tt->rn_mask) {
773 log(LOG_ERR, "rn_delete: inconsistent annotation\n");
774 goto on1;
775 }
776 if (--m->rm_refs >= 0)
777 goto on1;
778 }
779 b = -1 - tt->rn_bit;
780 t = saved_tt->rn_parent;
781 if (b > t->rn_bit)
782 goto on1; /* Wasn't lifted at all */
783 do {
784 x = t;
785 t = t->rn_parent;
786 } while (b <= t->rn_bit && x != top);
787 for (mp = &x->rn_mklist; (m = *mp); mp = &m->rm_mklist)
788 if (m == saved_m) {
789 *mp = m->rm_mklist;
790 MKFree(m);
791 break;
792 }
793 if (m == 0) {
794 log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
795 if (tt->rn_flags & RNF_NORMAL)
796 return (0); /* Dangling ref to us */
797 }
798 on1:
799 /*
800 * Eliminate us from tree
801 */
802 if (tt->rn_flags & RNF_ROOT)
803 return (0);
804 #ifdef RN_DEBUG
805 /* Get us out of the creation list */
806 for (t = rn_clist; t && t->rn_ybro != tt; t = t->rn_ybro) {}
807 if (t) t->rn_ybro = tt->rn_ybro;
808 #endif
809 t = tt->rn_parent;
810 dupedkey = saved_tt->rn_dupedkey;
811 if (dupedkey) {
812 /*
813 * at this point, tt is the deletion target and saved_tt
814 * is the head of the dupekey chain
815 */
816 if (tt == saved_tt) {
817 /* remove from head of chain */
818 x = dupedkey; x->rn_parent = t;
819 if (t->rn_left == tt)
820 t->rn_left = x;
821 else
822 t->rn_right = x;
823 } else {
824 /* find node in front of tt on the chain */
825 for (x = p = saved_tt; p && p->rn_dupedkey != tt;)
826 p = p->rn_dupedkey;
827 if (p) {
828 p->rn_dupedkey = tt->rn_dupedkey;
829 if (tt->rn_dupedkey) /* parent */
830 tt->rn_dupedkey->rn_parent = p;
831 /* parent */
832 } else log(LOG_ERR, "rn_delete: couldn't find us\n");
833 }
834 t = tt + 1;
835 if (t->rn_flags & RNF_ACTIVE) {
836 #ifndef RN_DEBUG
837 *++x = *t;
838 p = t->rn_parent;
839 #else
840 b = t->rn_info;
841 *++x = *t;
842 t->rn_info = b;
843 p = t->rn_parent;
844 #endif
845 if (p->rn_left == t)
846 p->rn_left = x;
847 else
848 p->rn_right = x;
849 x->rn_left->rn_parent = x;
850 x->rn_right->rn_parent = x;
851 }
852 goto out;
853 }
854 if (t->rn_left == tt)
855 x = t->rn_right;
856 else
857 x = t->rn_left;
858 p = t->rn_parent;
859 if (p->rn_right == t)
860 p->rn_right = x;
861 else
862 p->rn_left = x;
863 x->rn_parent = p;
864 /*
865 * Demote routes attached to us.
866 */
867 if (t->rn_mklist) {
868 if (x->rn_bit >= 0) {
869 for (mp = &x->rn_mklist; (m = *mp);)
870 mp = &m->rm_mklist;
871 *mp = t->rn_mklist;
872 } else {
873 /* If there are any key,mask pairs in a sibling
874 duped-key chain, some subset will appear sorted
875 in the same order attached to our mklist */
876 for (m = t->rn_mklist; m && x; x = x->rn_dupedkey)
877 if (m == x->rn_mklist) {
878 struct radix_mask *mm = m->rm_mklist;
879 x->rn_mklist = 0;
880 if (--(m->rm_refs) < 0)
881 MKFree(m);
882 m = mm;
883 }
884 if (m)
885 log(LOG_ERR,
886 "rn_delete: Orphaned Mask %p at %p\n",
887 (void *)m, (void *)x);
888 }
889 }
890 /*
891 * We may be holding an active internal node in the tree.
892 */
893 x = tt + 1;
894 if (t != x) {
895 #ifndef RN_DEBUG
896 *t = *x;
897 #else
898 b = t->rn_info;
899 *t = *x;
900 t->rn_info = b;
901 #endif
902 t->rn_left->rn_parent = t;
903 t->rn_right->rn_parent = t;
904 p = x->rn_parent;
905 if (p->rn_left == x)
906 p->rn_left = t;
907 else
908 p->rn_right = t;
909 }
910 out:
911 tt->rn_flags &= ~RNF_ACTIVE;
912 tt[1].rn_flags &= ~RNF_ACTIVE;
913 return (tt);
914 }
915
916 /*
917 * This is the same as rn_walktree() except for the parameters and the
918 * exit.
919 */
920 static int
921 rn_walktree_from(h, a, m, f, w)
922 struct radix_node_head *h;
923 void *a, *m;
924 walktree_f_t *f;
925 void *w;
926 {
927 int error;
928 struct radix_node *base, *next;
929 u_char *xa = (u_char *)a;
930 u_char *xm = (u_char *)m;
931 register struct radix_node *rn, *last = 0 /* shut up gcc */;
932 int stopping = 0;
933 int lastb;
934
935 /*
936 * rn_search_m is sort-of-open-coded here.
937 */
938 /* printf("about to search\n"); */
939 for (rn = h->rnh_treetop; rn->rn_bit >= 0; ) {
940 last = rn;
941 /* printf("rn_bit %d, rn_bmask %x, xm[rn_offset] %x\n",
942 rn->rn_bit, rn->rn_bmask, xm[rn->rn_offset]); */
943 if (!(rn->rn_bmask & xm[rn->rn_offset])) {
944 break;
945 }
946 if (rn->rn_bmask & xa[rn->rn_offset]) {
947 rn = rn->rn_right;
948 } else {
949 rn = rn->rn_left;
950 }
951 }
952 /* printf("done searching\n"); */
953
954 /*
955 * Two cases: either we stepped off the end of our mask,
956 * in which case last == rn, or we reached a leaf, in which
957 * case we want to start from the last node we looked at.
958 * Either way, last is the node we want to start from.
959 */
960 rn = last;
961 lastb = rn->rn_bit;
962
963 /* printf("rn %p, lastb %d\n", rn, lastb);*/
964
965 /*
966 * This gets complicated because we may delete the node
967 * while applying the function f to it, so we need to calculate
968 * the successor node in advance.
969 */
970 while (rn->rn_bit >= 0)
971 rn = rn->rn_left;
972
973 while (!stopping) {
974 /* printf("node %p (%d)\n", rn, rn->rn_bit); */
975 base = rn;
976 /* If at right child go back up, otherwise, go right */
977 while (rn->rn_parent->rn_right == rn
978 && !(rn->rn_flags & RNF_ROOT)) {
979 rn = rn->rn_parent;
980
981 /* if went up beyond last, stop */
982 if (rn->rn_bit < lastb) {
983 stopping = 1;
984 /* printf("up too far\n"); */
985 }
986 }
987
988 /* Find the next *leaf* since next node might vanish, too */
989 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;)
990 rn = rn->rn_left;
991 next = rn;
992 /* Process leaves */
993 while ((rn = base) != 0) {
994 base = rn->rn_dupedkey;
995 /* printf("leaf %p\n", rn); */
996 if (!(rn->rn_flags & RNF_ROOT)
997 && (error = (*f)(rn, w)))
998 return (error);
999 }
1000 rn = next;
1001
1002 if (rn->rn_flags & RNF_ROOT) {
1003 /* printf("root, stopping"); */
1004 stopping = 1;
1005 }
1006
1007 }
1008 return 0;
1009 }
1010
1011 static int
1012 rn_walktree(h, f, w)
1013 struct radix_node_head *h;
1014 walktree_f_t *f;
1015 void *w;
1016 {
1017 int error;
1018 struct radix_node *base, *next;
1019 register struct radix_node *rn = h->rnh_treetop;
1020 /*
1021 * This gets complicated because we may delete the node
1022 * while applying the function f to it, so we need to calculate
1023 * the successor node in advance.
1024 */
1025 /* First time through node, go left */
1026 while (rn->rn_bit >= 0)
1027 if (rn)
1028 rn = rn->rn_left;
1029 else return(0);
1030 for (;;) {
1031 base = rn;
1032 /* If at right child go back up, otherwise, go right */
1033 while (rn != NULL && rn->rn_parent != NULL && rn->rn_parent->rn_right == rn
1034 && (rn->rn_flags & RNF_ROOT) == 0)
1035 rn = rn->rn_parent;
1036 /* Find the next *leaf* since next node might vanish, too */
1037 if (rn == NULL || rn->rn_parent == NULL || rn->rn_parent->rn_right == NULL)
1038 return (0);
1039 for (rn = rn->rn_parent->rn_right; rn->rn_bit >= 0;) {
1040 if (rn == NULL || rn->rn_parent == NULL || rn->rn_parent->rn_right == NULL || rn->rn_left == NULL)
1041 return(0);
1042 rn = rn->rn_left;
1043 }
1044 next = rn;
1045 /* Process leaves */
1046 while ((rn = base)) {
1047 if (rn == NULL)
1048 return(0);
1049 base = rn->rn_dupedkey;
1050 if (!(rn->rn_flags & RNF_ROOT)
1051 && (error = (*f)(rn, w)))
1052 return (error);
1053 }
1054 rn = next;
1055 if (rn == NULL)
1056 return (0);
1057 if (rn->rn_flags & RNF_ROOT)
1058 return (0);
1059 }
1060 /* NOTREACHED */
1061 }
1062
1063 int
1064 rn_inithead(head, off)
1065 void **head;
1066 int off;
1067 {
1068 register struct radix_node_head *rnh;
1069 register struct radix_node *t, *tt, *ttt;
1070 if (*head)
1071 return (1);
1072 R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
1073 if (rnh == 0)
1074 return (0);
1075 Bzero(rnh, sizeof (*rnh));
1076 *head = rnh;
1077 t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1078 ttt = rnh->rnh_nodes + 2;
1079 t->rn_right = ttt;
1080 t->rn_parent = t;
1081 tt = t->rn_left;
1082 tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1083 tt->rn_bit = -1 - off;
1084 *ttt = *tt;
1085 ttt->rn_key = rn_ones;
1086 rnh->rnh_addaddr = rn_addroute;
1087 rnh->rnh_deladdr = rn_delete;
1088 rnh->rnh_matchaddr = rn_match;
1089 rnh->rnh_lookup = rn_lookup;
1090 rnh->rnh_walktree = rn_walktree;
1091 rnh->rnh_walktree_from = rn_walktree_from;
1092 rnh->rnh_treetop = t;
1093 return (1);
1094 }
1095
1096 void
1097 rn_init()
1098 {
1099 char *cp, *cplim;
1100 #ifdef KERNEL
1101 struct domain *dom;
1102
1103 /* lock already held when rn_init is called */
1104 for (dom = domains; dom; dom = dom->dom_next)
1105 if (dom->dom_maxrtkey > max_keylen)
1106 max_keylen = dom->dom_maxrtkey;
1107 #endif
1108 if (max_keylen == 0) {
1109 log(LOG_ERR,
1110 "rn_init: radix functions require max_keylen be set\n");
1111 return;
1112 }
1113 R_Malloc(rn_zeros, char *, 3 * max_keylen);
1114 if (rn_zeros == NULL)
1115 panic("rn_init");
1116 Bzero(rn_zeros, 3 * max_keylen);
1117 rn_ones = cp = rn_zeros + max_keylen;
1118 addmask_key = cplim = rn_ones + max_keylen;
1119 while (cp < cplim)
1120 *cp++ = -1;
1121 if (rn_inithead((void **)&mask_rnhead, 0) == 0)
1122 panic("rn_init 2");
1123
1124 rn_mutex = lck_mtx_alloc_init(domain_proto_mtx_grp, domain_proto_mtx_attr);
1125 }
1126 int
1127 rn_lock(so, refcount, lr)
1128 struct socket *so;
1129 int refcount;
1130 int lr;
1131 {
1132 // printf("rn_lock: (global) so=%x ref=%d lr=%x\n", so, so->so_usecount, lr);
1133 lck_mtx_assert(rn_mutex, LCK_MTX_ASSERT_NOTOWNED);
1134 lck_mtx_lock(rn_mutex);
1135 if (refcount)
1136 so->so_usecount++;
1137 return (0);
1138 }
1139
1140 int
1141 rn_unlock(so, refcount, lr)
1142 struct socket *so;
1143 int refcount;
1144 int lr;
1145 {
1146 // printf("rn_unlock: (global) so=%x ref=%d lr=%x\n", so, so->so_usecount, lr);
1147 if (refcount)
1148 so->so_usecount--;
1149 lck_mtx_assert(rn_mutex, LCK_MTX_ASSERT_OWNED);
1150 lck_mtx_unlock(rn_mutex);
1151 return (0);
1152 }
1153 lck_mtx_t *
1154 rn_getlock(so, locktype)
1155 struct socket *so;
1156 int locktype;
1157 {
1158 // printf("rn_getlock: (global) so=%x\n", so);
1159 return (rn_mutex);
1160 }