]> git.saurik.com Git - apple/xnu.git/blob - bsd/vfs/vfs_cache.c
xnu-2422.110.17.tar.gz
[apple/xnu.git] / bsd / vfs / vfs_cache.c
1 /*
2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Copyright (c) 1989, 1993, 1995
31 * The Regents of the University of California. All rights reserved.
32 *
33 * This code is derived from software contributed to Berkeley by
34 * Poul-Henning Kamp of the FreeBSD Project.
35 *
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
38 * are met:
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgement:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * 4. Neither the name of the University nor the names of its contributors
49 * may be used to endorse or promote products derived from this software
50 * without specific prior written permission.
51 *
52 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
53 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
54 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
55 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
56 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
57 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
58 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
59 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
60 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
61 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * SUCH DAMAGE.
63 *
64 *
65 * @(#)vfs_cache.c 8.5 (Berkeley) 3/22/95
66 */
67 /*
68 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
69 * support for mandatory and extensible security protections. This notice
70 * is included in support of clause 2.2 (b) of the Apple Public License,
71 * Version 2.0.
72 */
73 #include <sys/param.h>
74 #include <sys/systm.h>
75 #include <sys/time.h>
76 #include <sys/mount_internal.h>
77 #include <sys/vnode_internal.h>
78 #include <miscfs/specfs/specdev.h>
79 #include <sys/namei.h>
80 #include <sys/errno.h>
81 #include <sys/malloc.h>
82 #include <sys/kauth.h>
83 #include <sys/user.h>
84 #include <sys/paths.h>
85
86 #if CONFIG_MACF
87 #include <security/mac_framework.h>
88 #endif
89
90 /*
91 * Name caching works as follows:
92 *
93 * Names found by directory scans are retained in a cache
94 * for future reference. It is managed LRU, so frequently
95 * used names will hang around. Cache is indexed by hash value
96 * obtained from (vp, name) where vp refers to the directory
97 * containing name.
98 *
99 * If it is a "negative" entry, (i.e. for a name that is known NOT to
100 * exist) the vnode pointer will be NULL.
101 *
102 * Upon reaching the last segment of a path, if the reference
103 * is for DELETE, or NOCACHE is set (rewrite), and the
104 * name is located in the cache, it will be dropped.
105 */
106
107 /*
108 * Structures associated with name cacheing.
109 */
110
111 LIST_HEAD(nchashhead, namecache) *nchashtbl; /* Hash Table */
112 u_long nchashmask;
113 u_long nchash; /* size of hash table - 1 */
114 long numcache; /* number of cache entries allocated */
115 int desiredNodes;
116 int desiredNegNodes;
117 int ncs_negtotal;
118 int nc_disabled = 0;
119 TAILQ_HEAD(, namecache) nchead; /* chain of all name cache entries */
120 TAILQ_HEAD(, namecache) neghead; /* chain of only negative cache entries */
121
122
123 #if COLLECT_STATS
124
125 struct nchstats nchstats; /* cache effectiveness statistics */
126
127 #define NCHSTAT(v) { \
128 nchstats.v++; \
129 }
130 #define NAME_CACHE_LOCK() name_cache_lock()
131 #define NAME_CACHE_UNLOCK() name_cache_unlock()
132 #define NAME_CACHE_LOCK_SHARED() name_cache_lock()
133
134 #else
135
136 #define NCHSTAT(v)
137 #define NAME_CACHE_LOCK() name_cache_lock()
138 #define NAME_CACHE_UNLOCK() name_cache_unlock()
139 #define NAME_CACHE_LOCK_SHARED() name_cache_lock_shared()
140
141 #endif
142
143
144 /* vars for name cache list lock */
145 lck_grp_t * namecache_lck_grp;
146 lck_grp_attr_t * namecache_lck_grp_attr;
147 lck_attr_t * namecache_lck_attr;
148
149 lck_grp_t * strcache_lck_grp;
150 lck_grp_attr_t * strcache_lck_grp_attr;
151 lck_attr_t * strcache_lck_attr;
152
153 lck_rw_t * namecache_rw_lock;
154 lck_rw_t * strtable_rw_lock;
155
156 #define NUM_STRCACHE_LOCKS 1024
157
158 lck_mtx_t strcache_mtx_locks[NUM_STRCACHE_LOCKS];
159
160
161 static vnode_t cache_lookup_locked(vnode_t dvp, struct componentname *cnp);
162 static const char *add_name_internal(const char *, uint32_t, u_int, boolean_t, u_int);
163 static void init_string_table(void);
164 static void cache_delete(struct namecache *, int);
165 static void cache_enter_locked(vnode_t dvp, vnode_t vp, struct componentname *cnp, const char *strname);
166
167 #ifdef DUMP_STRING_TABLE
168 /*
169 * Internal dump function used for debugging
170 */
171 void dump_string_table(void);
172 #endif /* DUMP_STRING_TABLE */
173
174 static void init_crc32(void);
175 static unsigned int crc32tab[256];
176
177
178 #define NCHHASH(dvp, hash_val) \
179 (&nchashtbl[(dvp->v_id ^ (hash_val)) & nchashmask])
180
181
182
183 /*
184 * This function builds the path to a filename in "buff". The
185 * length of the buffer *INCLUDING* the trailing zero byte is
186 * returned in outlen. NOTE: the length includes the trailing
187 * zero byte and thus the length is one greater than what strlen
188 * would return. This is important and lots of code elsewhere
189 * in the kernel assumes this behavior.
190 *
191 * This function can call vnop in file system if the parent vnode
192 * does not exist or when called for hardlinks via volfs path.
193 * If BUILDPATH_NO_FS_ENTER is set in flags, it only uses values present
194 * in the name cache and does not enter the file system.
195 *
196 * If BUILDPATH_CHECK_MOVED is set in flags, we return EAGAIN when
197 * we encounter ENOENT during path reconstruction. ENOENT means that
198 * one of the parents moved while we were building the path. The
199 * caller can special handle this case by calling build_path again.
200 *
201 * If BUILDPATH_VOLUME_RELATIVE is set in flags, we return path
202 * that is relative to the nearest mount point, i.e. do not
203 * cross over mount points during building the path.
204 *
205 * passed in vp must have a valid io_count reference
206 */
207 int
208 build_path(vnode_t first_vp, char *buff, int buflen, int *outlen, int flags, vfs_context_t ctx)
209 {
210 vnode_t vp, tvp;
211 vnode_t vp_with_iocount;
212 vnode_t proc_root_dir_vp;
213 char *end;
214 const char *str;
215 int len;
216 int ret = 0;
217 int fixhardlink;
218
219 if (first_vp == NULLVP)
220 return (EINVAL);
221
222 /*
223 * Grab the process fd so we can evaluate fd_rdir.
224 */
225 if (vfs_context_proc(ctx)->p_fd)
226 proc_root_dir_vp = vfs_context_proc(ctx)->p_fd->fd_rdir;
227 else
228 proc_root_dir_vp = NULL;
229
230 vp_with_iocount = NULLVP;
231 again:
232 vp = first_vp;
233
234 end = &buff[buflen-1];
235 *end = '\0';
236
237 /*
238 * holding the NAME_CACHE_LOCK in shared mode is
239 * sufficient to stabilize both the vp->v_parent chain
240 * and the 'vp->v_mount->mnt_vnodecovered' chain
241 *
242 * if we need to drop this lock, we must first grab the v_id
243 * from the vnode we're currently working with... if that
244 * vnode doesn't already have an io_count reference (the vp
245 * passed in comes with one), we must grab a reference
246 * after we drop the NAME_CACHE_LOCK via vnode_getwithvid...
247 * deadlocks may result if you call vnode_get while holding
248 * the NAME_CACHE_LOCK... we lazily release the reference
249 * we pick up the next time we encounter a need to drop
250 * the NAME_CACHE_LOCK or before we return from this routine
251 */
252 NAME_CACHE_LOCK_SHARED();
253
254 /*
255 * Check if this is the root of a file system.
256 */
257 while (vp && vp->v_flag & VROOT) {
258 if (vp->v_mount == NULL) {
259 ret = EINVAL;
260 goto out_unlock;
261 }
262 if ((vp->v_mount->mnt_flag & MNT_ROOTFS) || (vp == proc_root_dir_vp)) {
263 /*
264 * It's the root of the root file system, so it's
265 * just "/".
266 */
267 *--end = '/';
268
269 goto out_unlock;
270 } else {
271 /*
272 * This the root of the volume and the caller does not
273 * want to cross mount points. Therefore just return
274 * '/' as the relative path.
275 */
276 if (flags & BUILDPATH_VOLUME_RELATIVE) {
277 *--end = '/';
278 goto out_unlock;
279 } else {
280 vp = vp->v_mount->mnt_vnodecovered;
281 }
282 }
283 }
284
285 while ((vp != NULLVP) && (vp->v_parent != vp)) {
286 int vid;
287
288 /*
289 * For hardlinks the v_name may be stale, so if its OK
290 * to enter a file system, ask the file system for the
291 * name and parent (below).
292 */
293 fixhardlink = (vp->v_flag & VISHARDLINK) &&
294 (vp->v_mount->mnt_kern_flag & MNTK_PATH_FROM_ID) &&
295 !(flags & BUILDPATH_NO_FS_ENTER);
296
297 if (!fixhardlink) {
298 str = vp->v_name;
299
300 if (str == NULL || *str == '\0') {
301 if (vp->v_parent != NULL)
302 ret = EINVAL;
303 else
304 ret = ENOENT;
305 goto out_unlock;
306 }
307 len = strlen(str);
308 /*
309 * Check that there's enough space (including space for the '/')
310 */
311 if ((end - buff) < (len + 1)) {
312 ret = ENOSPC;
313 goto out_unlock;
314 }
315 /*
316 * Copy the name backwards.
317 */
318 str += len;
319
320 for (; len > 0; len--)
321 *--end = *--str;
322 /*
323 * Add a path separator.
324 */
325 *--end = '/';
326 }
327
328 /*
329 * Walk up the parent chain.
330 */
331 if (((vp->v_parent != NULLVP) && !fixhardlink) ||
332 (flags & BUILDPATH_NO_FS_ENTER)) {
333
334 /*
335 * In this if () block we are not allowed to enter the filesystem
336 * to conclusively get the most accurate parent identifier.
337 * As a result, if 'vp' does not identify '/' and it
338 * does not have a valid v_parent, then error out
339 * and disallow further path construction
340 */
341 if ((vp->v_parent == NULLVP) && (rootvnode != vp)) {
342 /* Only '/' is allowed to have a NULL parent pointer */
343 ret = EINVAL;
344
345 /* The code below will exit early if 'tvp = vp' == NULL */
346 }
347 vp = vp->v_parent;
348
349 /*
350 * if the vnode we have in hand isn't a directory and it
351 * has a v_parent, then we started with the resource fork
352 * so skip up to avoid getting a duplicate copy of the
353 * file name in the path.
354 */
355 if (vp && !vnode_isdir(vp) && vp->v_parent) {
356 vp = vp->v_parent;
357 }
358 } else {
359 /*
360 * No parent, go get it if supported.
361 */
362 struct vnode_attr va;
363 vnode_t dvp;
364
365 /*
366 * Make sure file system supports obtaining a path from id.
367 */
368 if (!(vp->v_mount->mnt_kern_flag & MNTK_PATH_FROM_ID)) {
369 ret = ENOENT;
370 goto out_unlock;
371 }
372 vid = vp->v_id;
373
374 NAME_CACHE_UNLOCK();
375
376 if (vp != first_vp && vp != vp_with_iocount) {
377 if (vp_with_iocount) {
378 vnode_put(vp_with_iocount);
379 vp_with_iocount = NULLVP;
380 }
381 if (vnode_getwithvid(vp, vid))
382 goto again;
383 vp_with_iocount = vp;
384 }
385 VATTR_INIT(&va);
386 VATTR_WANTED(&va, va_parentid);
387
388 if (fixhardlink) {
389 VATTR_WANTED(&va, va_name);
390 MALLOC_ZONE(va.va_name, caddr_t, MAXPATHLEN, M_NAMEI, M_WAITOK);
391 } else {
392 va.va_name = NULL;
393 }
394 /*
395 * Ask the file system for its parent id and for its name (optional).
396 */
397 ret = vnode_getattr(vp, &va, ctx);
398
399 if (fixhardlink) {
400 if ((ret == 0) && (VATTR_IS_SUPPORTED(&va, va_name))) {
401 str = va.va_name;
402 vnode_update_identity(vp, NULL, str, strlen(str), 0, VNODE_UPDATE_NAME);
403 } else if (vp->v_name) {
404 str = vp->v_name;
405 ret = 0;
406 } else {
407 ret = ENOENT;
408 goto bad_news;
409 }
410 len = strlen(str);
411
412 /*
413 * Check that there's enough space.
414 */
415 if ((end - buff) < (len + 1)) {
416 ret = ENOSPC;
417 } else {
418 /* Copy the name backwards. */
419 str += len;
420
421 for (; len > 0; len--) {
422 *--end = *--str;
423 }
424 /*
425 * Add a path separator.
426 */
427 *--end = '/';
428 }
429 bad_news:
430 FREE_ZONE(va.va_name, MAXPATHLEN, M_NAMEI);
431 }
432 if (ret || !VATTR_IS_SUPPORTED(&va, va_parentid)) {
433 ret = ENOENT;
434 goto out;
435 }
436 /*
437 * Ask the file system for the parent vnode.
438 */
439 if ((ret = VFS_VGET(vp->v_mount, (ino64_t)va.va_parentid, &dvp, ctx)))
440 goto out;
441
442 if (!fixhardlink && (vp->v_parent != dvp))
443 vnode_update_identity(vp, dvp, NULL, 0, 0, VNODE_UPDATE_PARENT);
444
445 if (vp_with_iocount)
446 vnode_put(vp_with_iocount);
447 vp = dvp;
448 vp_with_iocount = vp;
449
450 NAME_CACHE_LOCK_SHARED();
451
452 /*
453 * if the vnode we have in hand isn't a directory and it
454 * has a v_parent, then we started with the resource fork
455 * so skip up to avoid getting a duplicate copy of the
456 * file name in the path.
457 */
458 if (vp && !vnode_isdir(vp) && vp->v_parent)
459 vp = vp->v_parent;
460 }
461
462 /*
463 * When a mount point is crossed switch the vp.
464 * Continue until we find the root or we find
465 * a vnode that's not the root of a mounted
466 * file system.
467 */
468 tvp = vp;
469
470 while (tvp) {
471 if (tvp == proc_root_dir_vp)
472 goto out_unlock; /* encountered the root */
473
474 if (!(tvp->v_flag & VROOT) || !tvp->v_mount)
475 break; /* not the root of a mounted FS */
476
477 if (flags & BUILDPATH_VOLUME_RELATIVE) {
478 /* Do not cross over mount points */
479 tvp = NULL;
480 } else {
481 tvp = tvp->v_mount->mnt_vnodecovered;
482 }
483 }
484 if (tvp == NULLVP)
485 goto out_unlock;
486 vp = tvp;
487
488 if (vp && (flags & BUILDPATH_CHECKACCESS)) {
489 vid = vp->v_id;
490
491 NAME_CACHE_UNLOCK();
492
493 if (vp != first_vp && vp != vp_with_iocount) {
494 if (vp_with_iocount) {
495 vnode_put(vp_with_iocount);
496 vp_with_iocount = NULLVP;
497 }
498 if (vnode_getwithvid(vp, vid))
499 goto again;
500 vp_with_iocount = vp;
501 }
502 if ((ret = vnode_authorize(vp, NULL, KAUTH_VNODE_SEARCH, ctx)))
503 goto out; /* no peeking */
504
505 NAME_CACHE_LOCK_SHARED();
506 }
507 }
508 out_unlock:
509 NAME_CACHE_UNLOCK();
510 out:
511 if (vp_with_iocount)
512 vnode_put(vp_with_iocount);
513 /*
514 * Slide the name down to the beginning of the buffer.
515 */
516 memmove(buff, end, &buff[buflen] - end);
517
518 /*
519 * length includes the trailing zero byte
520 */
521 *outlen = &buff[buflen] - end;
522
523 /* One of the parents was moved during path reconstruction.
524 * The caller is interested in knowing whether any of the
525 * parents moved via BUILDPATH_CHECK_MOVED, so return EAGAIN.
526 */
527 if ((ret == ENOENT) && (flags & BUILDPATH_CHECK_MOVED)) {
528 ret = EAGAIN;
529 }
530
531 return (ret);
532 }
533
534
535 /*
536 * return NULLVP if vp's parent doesn't
537 * exist, or we can't get a valid iocount
538 * else return the parent of vp
539 */
540 vnode_t
541 vnode_getparent(vnode_t vp)
542 {
543 vnode_t pvp = NULLVP;
544 int pvid;
545
546 NAME_CACHE_LOCK_SHARED();
547 /*
548 * v_parent is stable behind the name_cache lock
549 * however, the only thing we can really guarantee
550 * is that we've grabbed a valid iocount on the
551 * parent of 'vp' at the time we took the name_cache lock...
552 * once we drop the lock, vp could get re-parented
553 */
554 if ( (pvp = vp->v_parent) != NULLVP ) {
555 pvid = pvp->v_id;
556
557 NAME_CACHE_UNLOCK();
558
559 if (vnode_getwithvid(pvp, pvid) != 0)
560 pvp = NULL;
561 } else
562 NAME_CACHE_UNLOCK();
563 return (pvp);
564 }
565
566 const char *
567 vnode_getname(vnode_t vp)
568 {
569 const char *name = NULL;
570
571 NAME_CACHE_LOCK_SHARED();
572
573 if (vp->v_name)
574 name = vfs_addname(vp->v_name, strlen(vp->v_name), 0, 0);
575 NAME_CACHE_UNLOCK();
576
577 return (name);
578 }
579
580 void
581 vnode_putname(const char *name)
582 {
583 vfs_removename(name);
584 }
585
586 static const char unknown_vnodename[] = "(unknown vnode name)";
587
588 const char *
589 vnode_getname_printable(vnode_t vp)
590 {
591 const char *name = vnode_getname(vp);
592 if (name != NULL)
593 return name;
594
595 switch (vp->v_type) {
596 case VCHR:
597 case VBLK:
598 {
599 /*
600 * Create an artificial dev name from
601 * major and minor device number
602 */
603 char dev_name[64];
604 (void) snprintf(dev_name, sizeof(dev_name),
605 "%c(%u, %u)", VCHR == vp->v_type ? 'c':'b',
606 major(vp->v_rdev), minor(vp->v_rdev));
607 /*
608 * Add the newly created dev name to the name
609 * cache to allow easier cleanup. Also,
610 * vfs_addname allocates memory for the new name
611 * and returns it.
612 */
613 NAME_CACHE_LOCK_SHARED();
614 name = vfs_addname(dev_name, strlen(dev_name), 0, 0);
615 NAME_CACHE_UNLOCK();
616 return name;
617 }
618 default:
619 return unknown_vnodename;
620 }
621 }
622
623 void
624 vnode_putname_printable(const char *name)
625 {
626 if (name == unknown_vnodename)
627 return;
628 vnode_putname(name);
629 }
630
631
632 /*
633 * if VNODE_UPDATE_PARENT, and we can take
634 * a reference on dvp, then update vp with
635 * it's new parent... if vp already has a parent,
636 * then drop the reference vp held on it
637 *
638 * if VNODE_UPDATE_NAME,
639 * then drop string ref on v_name if it exists, and if name is non-NULL
640 * then pick up a string reference on name and record it in v_name...
641 * optionally pass in the length and hashval of name if known
642 *
643 * if VNODE_UPDATE_CACHE, flush the name cache entries associated with vp
644 */
645 void
646 vnode_update_identity(vnode_t vp, vnode_t dvp, const char *name, int name_len, uint32_t name_hashval, int flags)
647 {
648 struct namecache *ncp;
649 vnode_t old_parentvp = NULLVP;
650 #if NAMEDSTREAMS
651 int isstream = (vp->v_flag & VISNAMEDSTREAM);
652 int kusecountbumped = 0;
653 #endif
654 kauth_cred_t tcred = NULL;
655 const char *vname = NULL;
656 const char *tname = NULL;
657
658 if (flags & VNODE_UPDATE_PARENT) {
659 if (dvp && vnode_ref(dvp) != 0) {
660 dvp = NULLVP;
661 }
662 #if NAMEDSTREAMS
663 /* Don't count a stream's parent ref during unmounts */
664 if (isstream && dvp && (dvp != vp) && (dvp != vp->v_parent) && (dvp->v_type == VREG)) {
665 vnode_lock_spin(dvp);
666 ++dvp->v_kusecount;
667 kusecountbumped = 1;
668 vnode_unlock(dvp);
669 }
670 #endif
671 } else {
672 dvp = NULLVP;
673 }
674 if ( (flags & VNODE_UPDATE_NAME) ) {
675 if (name != vp->v_name) {
676 if (name && *name) {
677 if (name_len == 0)
678 name_len = strlen(name);
679 tname = vfs_addname(name, name_len, name_hashval, 0);
680 }
681 } else
682 flags &= ~VNODE_UPDATE_NAME;
683 }
684 if ( (flags & (VNODE_UPDATE_PURGE | VNODE_UPDATE_PARENT | VNODE_UPDATE_CACHE | VNODE_UPDATE_NAME)) ) {
685
686 NAME_CACHE_LOCK();
687
688 if ( (flags & VNODE_UPDATE_PURGE) ) {
689
690 if (vp->v_parent)
691 vp->v_parent->v_nc_generation++;
692
693 while ( (ncp = LIST_FIRST(&vp->v_nclinks)) )
694 cache_delete(ncp, 1);
695
696 while ( (ncp = LIST_FIRST(&vp->v_ncchildren)) )
697 cache_delete(ncp, 1);
698
699 /*
700 * Use a temp variable to avoid kauth_cred_unref() while NAME_CACHE_LOCK is held
701 */
702 tcred = vp->v_cred;
703 vp->v_cred = NOCRED;
704 vp->v_authorized_actions = 0;
705 }
706 if ( (flags & VNODE_UPDATE_NAME) ) {
707 vname = vp->v_name;
708 vp->v_name = tname;
709 }
710 if (flags & VNODE_UPDATE_PARENT) {
711 if (dvp != vp && dvp != vp->v_parent) {
712 old_parentvp = vp->v_parent;
713 vp->v_parent = dvp;
714 dvp = NULLVP;
715
716 if (old_parentvp)
717 flags |= VNODE_UPDATE_CACHE;
718 }
719 }
720 if (flags & VNODE_UPDATE_CACHE) {
721 while ( (ncp = LIST_FIRST(&vp->v_nclinks)) )
722 cache_delete(ncp, 1);
723 }
724 NAME_CACHE_UNLOCK();
725
726 if (vname != NULL)
727 vfs_removename(vname);
728
729 if (IS_VALID_CRED(tcred))
730 kauth_cred_unref(&tcred);
731 }
732 if (dvp != NULLVP) {
733 #if NAMEDSTREAMS
734 /* Back-out the ref we took if we lost a race for vp->v_parent. */
735 if (kusecountbumped) {
736 vnode_lock_spin(dvp);
737 if (dvp->v_kusecount > 0)
738 --dvp->v_kusecount;
739 vnode_unlock(dvp);
740 }
741 #endif
742 vnode_rele(dvp);
743 }
744 if (old_parentvp) {
745 struct uthread *ut;
746
747 #if NAMEDSTREAMS
748 if (isstream) {
749 vnode_lock_spin(old_parentvp);
750 if ((old_parentvp->v_type != VDIR) && (old_parentvp->v_kusecount > 0))
751 --old_parentvp->v_kusecount;
752 vnode_unlock(old_parentvp);
753 }
754 #endif
755 ut = get_bsdthread_info(current_thread());
756
757 /*
758 * indicated to vnode_rele that it shouldn't do a
759 * vnode_reclaim at this time... instead it will
760 * chain the vnode to the uu_vreclaims list...
761 * we'll be responsible for calling vnode_reclaim
762 * on each of the vnodes in this list...
763 */
764 ut->uu_defer_reclaims = 1;
765 ut->uu_vreclaims = NULLVP;
766
767 while ( (vp = old_parentvp) != NULLVP ) {
768
769 vnode_lock_spin(vp);
770 vnode_rele_internal(vp, 0, 0, 1);
771
772 /*
773 * check to see if the vnode is now in the state
774 * that would have triggered a vnode_reclaim in vnode_rele
775 * if it is, we save it's parent pointer and then NULL
776 * out the v_parent field... we'll drop the reference
777 * that was held on the next iteration of this loop...
778 * this short circuits a potential deep recursion if we
779 * have a long chain of parents in this state...
780 * we'll sit in this loop until we run into
781 * a parent in this chain that is not in this state
782 *
783 * make our check and the vnode_rele atomic
784 * with respect to the current vnode we're working on
785 * by holding the vnode lock
786 * if vnode_rele deferred the vnode_reclaim and has put
787 * this vnode on the list to be reaped by us, than
788 * it has left this vnode with an iocount == 1
789 */
790 if ( (vp->v_iocount == 1) && (vp->v_usecount == 0) &&
791 ((vp->v_lflag & (VL_MARKTERM | VL_TERMINATE | VL_DEAD)) == VL_MARKTERM)) {
792 /*
793 * vnode_rele wanted to do a vnode_reclaim on this vnode
794 * it should be sitting on the head of the uu_vreclaims chain
795 * pull the parent pointer now so that when we do the
796 * vnode_reclaim for each of the vnodes in the uu_vreclaims
797 * list, we won't recurse back through here
798 *
799 * need to do a convert here in case vnode_rele_internal
800 * returns with the lock held in the spin mode... it
801 * can drop and retake the lock under certain circumstances
802 */
803 vnode_lock_convert(vp);
804
805 NAME_CACHE_LOCK();
806 old_parentvp = vp->v_parent;
807 vp->v_parent = NULLVP;
808 NAME_CACHE_UNLOCK();
809 } else {
810 /*
811 * we're done... we ran into a vnode that isn't
812 * being terminated
813 */
814 old_parentvp = NULLVP;
815 }
816 vnode_unlock(vp);
817 }
818 ut->uu_defer_reclaims = 0;
819
820 while ( (vp = ut->uu_vreclaims) != NULLVP) {
821 ut->uu_vreclaims = vp->v_defer_reclaimlist;
822
823 /*
824 * vnode_put will drive the vnode_reclaim if
825 * we are still the only reference on this vnode
826 */
827 vnode_put(vp);
828 }
829 }
830 }
831
832
833 /*
834 * Mark a vnode as having multiple hard links. HFS makes use of this
835 * because it keeps track of each link separately, and wants to know
836 * which link was actually used.
837 *
838 * This will cause the name cache to force a VNOP_LOOKUP on the vnode
839 * so that HFS can post-process the lookup. Also, volfs will call
840 * VNOP_GETATTR2 to determine the parent, instead of using v_parent.
841 */
842 void vnode_setmultipath(vnode_t vp)
843 {
844 vnode_lock_spin(vp);
845
846 /*
847 * In theory, we're changing the vnode's identity as far as the
848 * name cache is concerned, so we ought to grab the name cache lock
849 * here. However, there is already a race, and grabbing the name
850 * cache lock only makes the race window slightly smaller.
851 *
852 * The race happens because the vnode already exists in the name
853 * cache, and could be found by one thread before another thread
854 * can set the hard link flag.
855 */
856
857 vp->v_flag |= VISHARDLINK;
858
859 vnode_unlock(vp);
860 }
861
862
863
864 /*
865 * backwards compatibility
866 */
867 void vnode_uncache_credentials(vnode_t vp)
868 {
869 vnode_uncache_authorized_action(vp, KAUTH_INVALIDATE_CACHED_RIGHTS);
870 }
871
872
873 /*
874 * use the exclusive form of NAME_CACHE_LOCK to protect the update of the
875 * following fields in the vnode: v_cred_timestamp, v_cred, v_authorized_actions
876 * we use this lock so that we can look at the v_cred and v_authorized_actions
877 * atomically while behind the NAME_CACHE_LOCK in shared mode in 'cache_lookup_path',
878 * which is the super-hot path... if we are updating the authorized actions for this
879 * vnode, we are already in the super-slow and far less frequented path so its not
880 * that bad that we take the lock exclusive for this case... of course we strive
881 * to hold it for the minimum amount of time possible
882 */
883
884 void vnode_uncache_authorized_action(vnode_t vp, kauth_action_t action)
885 {
886 kauth_cred_t tcred = NOCRED;
887
888 NAME_CACHE_LOCK();
889
890 vp->v_authorized_actions &= ~action;
891
892 if (action == KAUTH_INVALIDATE_CACHED_RIGHTS &&
893 IS_VALID_CRED(vp->v_cred)) {
894 /*
895 * Use a temp variable to avoid kauth_cred_unref() while NAME_CACHE_LOCK is held
896 */
897 tcred = vp->v_cred;
898 vp->v_cred = NOCRED;
899 }
900 NAME_CACHE_UNLOCK();
901
902 if (tcred != NOCRED)
903 kauth_cred_unref(&tcred);
904 }
905
906
907 extern int bootarg_vnode_cache_defeat; /* default = 0, from bsd_init.c */
908
909 boolean_t
910 vnode_cache_is_authorized(vnode_t vp, vfs_context_t ctx, kauth_action_t action)
911 {
912 kauth_cred_t ucred;
913 boolean_t retval = FALSE;
914
915 /* Boot argument to defeat rights caching */
916 if (bootarg_vnode_cache_defeat)
917 return FALSE;
918
919 if ( (vp->v_mount->mnt_kern_flag & (MNTK_AUTH_OPAQUE | MNTK_AUTH_CACHE_TTL)) ) {
920 /*
921 * a TTL is enabled on the rights cache... handle it here
922 * a TTL of 0 indicates that no rights should be cached
923 */
924 if (vp->v_mount->mnt_authcache_ttl) {
925 if ( !(vp->v_mount->mnt_kern_flag & MNTK_AUTH_CACHE_TTL) ) {
926 /*
927 * For filesystems marked only MNTK_AUTH_OPAQUE (generally network ones),
928 * we will only allow a SEARCH right on a directory to be cached...
929 * that cached right always has a default TTL associated with it
930 */
931 if (action != KAUTH_VNODE_SEARCH || vp->v_type != VDIR)
932 vp = NULLVP;
933 }
934 if (vp != NULLVP && vnode_cache_is_stale(vp) == TRUE) {
935 vnode_uncache_authorized_action(vp, vp->v_authorized_actions);
936 vp = NULLVP;
937 }
938 } else
939 vp = NULLVP;
940 }
941 if (vp != NULLVP) {
942 ucred = vfs_context_ucred(ctx);
943
944 NAME_CACHE_LOCK_SHARED();
945
946 if (vp->v_cred == ucred && (vp->v_authorized_actions & action) == action)
947 retval = TRUE;
948
949 NAME_CACHE_UNLOCK();
950 }
951 return retval;
952 }
953
954
955 void vnode_cache_authorized_action(vnode_t vp, vfs_context_t ctx, kauth_action_t action)
956 {
957 kauth_cred_t tcred = NOCRED;
958 kauth_cred_t ucred;
959 struct timeval tv;
960 boolean_t ttl_active = FALSE;
961
962 ucred = vfs_context_ucred(ctx);
963
964 if (!IS_VALID_CRED(ucred) || action == 0)
965 return;
966
967 if ( (vp->v_mount->mnt_kern_flag & (MNTK_AUTH_OPAQUE | MNTK_AUTH_CACHE_TTL)) ) {
968 /*
969 * a TTL is enabled on the rights cache... handle it here
970 * a TTL of 0 indicates that no rights should be cached
971 */
972 if (vp->v_mount->mnt_authcache_ttl == 0)
973 return;
974
975 if ( !(vp->v_mount->mnt_kern_flag & MNTK_AUTH_CACHE_TTL) ) {
976 /*
977 * only cache SEARCH action for filesystems marked
978 * MNTK_AUTH_OPAQUE on VDIRs...
979 * the lookup_path code will time these out
980 */
981 if ( (action & ~KAUTH_VNODE_SEARCH) || vp->v_type != VDIR )
982 return;
983 }
984 ttl_active = TRUE;
985
986 microuptime(&tv);
987 }
988 NAME_CACHE_LOCK();
989
990 if (vp->v_cred != ucred) {
991 kauth_cred_ref(ucred);
992 /*
993 * Use a temp variable to avoid kauth_cred_unref() while NAME_CACHE_LOCK is held
994 */
995 tcred = vp->v_cred;
996 vp->v_cred = ucred;
997 vp->v_authorized_actions = 0;
998 }
999 if (ttl_active == TRUE && vp->v_authorized_actions == 0) {
1000 /*
1001 * only reset the timestamnp on the
1002 * first authorization cached after the previous
1003 * timer has expired or we're switching creds...
1004 * 'vnode_cache_is_authorized' will clear the
1005 * authorized actions if the TTL is active and
1006 * it has expired
1007 */
1008 vp->v_cred_timestamp = tv.tv_sec;
1009 }
1010 vp->v_authorized_actions |= action;
1011
1012 NAME_CACHE_UNLOCK();
1013
1014 if (IS_VALID_CRED(tcred))
1015 kauth_cred_unref(&tcred);
1016 }
1017
1018
1019 boolean_t vnode_cache_is_stale(vnode_t vp)
1020 {
1021 struct timeval tv;
1022 boolean_t retval;
1023
1024 microuptime(&tv);
1025
1026 if ((tv.tv_sec - vp->v_cred_timestamp) > vp->v_mount->mnt_authcache_ttl)
1027 retval = TRUE;
1028 else
1029 retval = FALSE;
1030
1031 return retval;
1032 }
1033
1034
1035
1036 /*
1037 * Returns: 0 Success
1038 * ERECYCLE vnode was recycled from underneath us. Force lookup to be re-driven from namei.
1039 * This errno value should not be seen by anyone outside of the kernel.
1040 */
1041 int
1042 cache_lookup_path(struct nameidata *ndp, struct componentname *cnp, vnode_t dp,
1043 vfs_context_t ctx, int *dp_authorized, vnode_t last_dp)
1044 {
1045 char *cp; /* pointer into pathname argument */
1046 int vid;
1047 int vvid = 0; /* protected by vp != NULLVP */
1048 vnode_t vp = NULLVP;
1049 vnode_t tdp = NULLVP;
1050 kauth_cred_t ucred;
1051 boolean_t ttl_enabled = FALSE;
1052 struct timeval tv;
1053 mount_t mp;
1054 unsigned int hash;
1055 int error = 0;
1056
1057 #if CONFIG_TRIGGERS
1058 vnode_t trigger_vp;
1059 #endif /* CONFIG_TRIGGERS */
1060
1061 ucred = vfs_context_ucred(ctx);
1062 ndp->ni_flag &= ~(NAMEI_TRAILINGSLASH);
1063
1064 NAME_CACHE_LOCK_SHARED();
1065
1066 if ( dp->v_mount && (dp->v_mount->mnt_kern_flag & (MNTK_AUTH_OPAQUE | MNTK_AUTH_CACHE_TTL)) ) {
1067 ttl_enabled = TRUE;
1068 microuptime(&tv);
1069 }
1070 for (;;) {
1071 /*
1072 * Search a directory.
1073 *
1074 * The cn_hash value is for use by cache_lookup
1075 * The last component of the filename is left accessible via
1076 * cnp->cn_nameptr for callers that need the name.
1077 */
1078 hash = 0;
1079 cp = cnp->cn_nameptr;
1080
1081 while (*cp && (*cp != '/')) {
1082 hash = crc32tab[((hash >> 24) ^ (unsigned char)*cp++)] ^ hash << 8;
1083 }
1084 /*
1085 * the crc generator can legitimately generate
1086 * a 0... however, 0 for us means that we
1087 * haven't computed a hash, so use 1 instead
1088 */
1089 if (hash == 0)
1090 hash = 1;
1091 cnp->cn_hash = hash;
1092 cnp->cn_namelen = cp - cnp->cn_nameptr;
1093
1094 ndp->ni_pathlen -= cnp->cn_namelen;
1095 ndp->ni_next = cp;
1096
1097 /*
1098 * Replace multiple slashes by a single slash and trailing slashes
1099 * by a null. This must be done before VNOP_LOOKUP() because some
1100 * fs's don't know about trailing slashes. Remember if there were
1101 * trailing slashes to handle symlinks, existing non-directories
1102 * and non-existing files that won't be directories specially later.
1103 */
1104 while (*cp == '/' && (cp[1] == '/' || cp[1] == '\0')) {
1105 cp++;
1106 ndp->ni_pathlen--;
1107
1108 if (*cp == '\0') {
1109 ndp->ni_flag |= NAMEI_TRAILINGSLASH;
1110 *ndp->ni_next = '\0';
1111 }
1112 }
1113 ndp->ni_next = cp;
1114
1115 cnp->cn_flags &= ~(MAKEENTRY | ISLASTCN | ISDOTDOT);
1116
1117 if (*cp == '\0')
1118 cnp->cn_flags |= ISLASTCN;
1119
1120 if (cnp->cn_namelen == 2 && cnp->cn_nameptr[1] == '.' && cnp->cn_nameptr[0] == '.')
1121 cnp->cn_flags |= ISDOTDOT;
1122
1123 *dp_authorized = 0;
1124 #if NAMEDRSRCFORK
1125 /*
1126 * Process a request for a file's resource fork.
1127 *
1128 * Consume the _PATH_RSRCFORKSPEC suffix and tag the path.
1129 */
1130 if ((ndp->ni_pathlen == sizeof(_PATH_RSRCFORKSPEC)) &&
1131 (cp[1] == '.' && cp[2] == '.') &&
1132 bcmp(cp, _PATH_RSRCFORKSPEC, sizeof(_PATH_RSRCFORKSPEC)) == 0) {
1133 /* Skip volfs file systems that don't support native streams. */
1134 if ((dp->v_mount != NULL) &&
1135 (dp->v_mount->mnt_flag & MNT_DOVOLFS) &&
1136 (dp->v_mount->mnt_kern_flag & MNTK_NAMED_STREAMS) == 0) {
1137 goto skiprsrcfork;
1138 }
1139 cnp->cn_flags |= CN_WANTSRSRCFORK;
1140 cnp->cn_flags |= ISLASTCN;
1141 ndp->ni_next[0] = '\0';
1142 ndp->ni_pathlen = 1;
1143 }
1144 skiprsrcfork:
1145 #endif
1146
1147 #if CONFIG_MACF
1148
1149 /*
1150 * Name cache provides authorization caching (see below)
1151 * that will short circuit MAC checks in lookup().
1152 * We must perform MAC check here. On denial
1153 * dp_authorized will remain 0 and second check will
1154 * be perfomed in lookup().
1155 */
1156 if (!(cnp->cn_flags & DONOTAUTH)) {
1157 error = mac_vnode_check_lookup(ctx, dp, cnp);
1158 if (error) {
1159 NAME_CACHE_UNLOCK();
1160 goto errorout;
1161 }
1162 }
1163 #endif /* MAC */
1164 if (ttl_enabled && ((tv.tv_sec - dp->v_cred_timestamp) > dp->v_mount->mnt_authcache_ttl))
1165 break;
1166
1167 /*
1168 * NAME_CACHE_LOCK holds these fields stable
1169 */
1170 if ((dp->v_cred != ucred || !(dp->v_authorized_actions & KAUTH_VNODE_SEARCH)) &&
1171 !(dp->v_authorized_actions & KAUTH_VNODE_SEARCHBYANYONE))
1172 break;
1173
1174 /*
1175 * indicate that we're allowed to traverse this directory...
1176 * even if we fail the cache lookup or decide to bail for
1177 * some other reason, this information is valid and is used
1178 * to avoid doing a vnode_authorize before the call to VNOP_LOOKUP
1179 */
1180 *dp_authorized = 1;
1181
1182 if ( (cnp->cn_flags & (ISLASTCN | ISDOTDOT)) ) {
1183 if (cnp->cn_nameiop != LOOKUP)
1184 break;
1185 if (cnp->cn_flags & LOCKPARENT)
1186 break;
1187 if (cnp->cn_flags & NOCACHE)
1188 break;
1189 if (cnp->cn_flags & ISDOTDOT) {
1190 /*
1191 * Force directory hardlinks to go to
1192 * file system for ".." requests.
1193 */
1194 if (dp && (dp->v_flag & VISHARDLINK)) {
1195 break;
1196 }
1197 /*
1198 * Quit here only if we can't use
1199 * the parent directory pointer or
1200 * don't have one. Otherwise, we'll
1201 * use it below.
1202 */
1203 if ((dp->v_flag & VROOT) ||
1204 dp == ndp->ni_rootdir ||
1205 dp->v_parent == NULLVP)
1206 break;
1207 }
1208 }
1209
1210 if ((cnp->cn_flags & CN_SKIPNAMECACHE)) {
1211 /*
1212 * Force lookup to go to the filesystem with
1213 * all cnp fields set up.
1214 */
1215 break;
1216 }
1217
1218 /*
1219 * "." and ".." aren't supposed to be cached, so check
1220 * for them before checking the cache.
1221 */
1222 if (cnp->cn_namelen == 1 && cnp->cn_nameptr[0] == '.')
1223 vp = dp;
1224 else if ( (cnp->cn_flags & ISDOTDOT) )
1225 vp = dp->v_parent;
1226 else {
1227 if ( (vp = cache_lookup_locked(dp, cnp)) == NULLVP)
1228 break;
1229
1230 if ( (vp->v_flag & VISHARDLINK) ) {
1231 /*
1232 * The file system wants a VNOP_LOOKUP on this vnode
1233 */
1234 vp = NULL;
1235 break;
1236 }
1237 }
1238 if ( (cnp->cn_flags & ISLASTCN) )
1239 break;
1240
1241 if (vp->v_type != VDIR) {
1242 if (vp->v_type != VLNK)
1243 vp = NULL;
1244 break;
1245 }
1246
1247 if ( (mp = vp->v_mountedhere) && ((cnp->cn_flags & NOCROSSMOUNT) == 0)) {
1248
1249 if (mp->mnt_realrootvp == NULLVP || mp->mnt_generation != mount_generation ||
1250 mp->mnt_realrootvp_vid != mp->mnt_realrootvp->v_id)
1251 break;
1252 vp = mp->mnt_realrootvp;
1253 }
1254
1255 #if CONFIG_TRIGGERS
1256 /*
1257 * After traversing all mountpoints stacked here, if we have a
1258 * trigger in hand, resolve it. Note that we don't need to
1259 * leave the fast path if the mount has already happened.
1260 */
1261 if ((vp->v_resolve != NULL) &&
1262 (vp->v_resolve->vr_resolve_func != NULL)) {
1263 break;
1264 }
1265 #endif /* CONFIG_TRIGGERS */
1266
1267
1268 dp = vp;
1269 vp = NULLVP;
1270
1271 cnp->cn_nameptr = ndp->ni_next + 1;
1272 ndp->ni_pathlen--;
1273 while (*cnp->cn_nameptr == '/') {
1274 cnp->cn_nameptr++;
1275 ndp->ni_pathlen--;
1276 }
1277 }
1278 if (vp != NULLVP)
1279 vvid = vp->v_id;
1280 vid = dp->v_id;
1281
1282 NAME_CACHE_UNLOCK();
1283
1284 if ((vp != NULLVP) && (vp->v_type != VLNK) &&
1285 ((cnp->cn_flags & (ISLASTCN | LOCKPARENT | WANTPARENT | SAVESTART)) == ISLASTCN)) {
1286 /*
1287 * if we've got a child and it's the last component, and
1288 * the lookup doesn't need to return the parent then we
1289 * can skip grabbing an iocount on the parent, since all
1290 * we're going to do with it is a vnode_put just before
1291 * we return from 'lookup'. If it's a symbolic link,
1292 * we need the parent in case the link happens to be
1293 * a relative pathname.
1294 */
1295 tdp = dp;
1296 dp = NULLVP;
1297 } else {
1298 need_dp:
1299 /*
1300 * return the last directory we looked at
1301 * with an io reference held. If it was the one passed
1302 * in as a result of the last iteration of VNOP_LOOKUP,
1303 * it should already hold an io ref. No need to increase ref.
1304 */
1305 if (last_dp != dp){
1306
1307 if (dp == ndp->ni_usedvp) {
1308 /*
1309 * if this vnode matches the one passed in via USEDVP
1310 * than this context already holds an io_count... just
1311 * use vnode_get to get an extra ref for lookup to play
1312 * with... can't use the getwithvid variant here because
1313 * it will block behind a vnode_drain which would result
1314 * in a deadlock (since we already own an io_count that the
1315 * vnode_drain is waiting on)... vnode_get grabs the io_count
1316 * immediately w/o waiting... it always succeeds
1317 */
1318 vnode_get(dp);
1319 } else if ((error = vnode_getwithvid_drainok(dp, vid))) {
1320 /*
1321 * failure indicates the vnode
1322 * changed identity or is being
1323 * TERMINATED... in either case
1324 * punt this lookup.
1325 *
1326 * don't necessarily return ENOENT, though, because
1327 * we really want to go back to disk and make sure it's
1328 * there or not if someone else is changing this
1329 * vnode. That being said, the one case where we do want
1330 * to return ENOENT is when the vnode's mount point is
1331 * in the process of unmounting and we might cause a deadlock
1332 * in our attempt to take an iocount. An ENODEV error return
1333 * is from vnode_get* is an indication this but we change that
1334 * ENOENT for upper layers.
1335 */
1336 if (error == ENODEV) {
1337 error = ENOENT;
1338 } else {
1339 error = ERECYCLE;
1340 }
1341 goto errorout;
1342 }
1343 }
1344 }
1345 if (vp != NULLVP) {
1346 if ( (vnode_getwithvid_drainok(vp, vvid)) ) {
1347 vp = NULLVP;
1348
1349 /*
1350 * can't get reference on the vp we'd like
1351 * to return... if we didn't grab a reference
1352 * on the directory (due to fast path bypass),
1353 * then we need to do it now... we can't return
1354 * with both ni_dvp and ni_vp NULL, and no
1355 * error condition
1356 */
1357 if (dp == NULLVP) {
1358 dp = tdp;
1359 goto need_dp;
1360 }
1361 }
1362 }
1363
1364 ndp->ni_dvp = dp;
1365 ndp->ni_vp = vp;
1366
1367 #if CONFIG_TRIGGERS
1368 trigger_vp = vp ? vp : dp;
1369 if ((error == 0) && (trigger_vp != NULLVP) && vnode_isdir(trigger_vp)) {
1370 error = vnode_trigger_resolve(trigger_vp, ndp, ctx);
1371 if (error) {
1372 if (vp)
1373 vnode_put(vp);
1374 if (dp)
1375 vnode_put(dp);
1376 goto errorout;
1377 }
1378 }
1379 #endif /* CONFIG_TRIGGERS */
1380
1381 errorout:
1382 /*
1383 * If we came into cache_lookup_path after an iteration of the lookup loop that
1384 * resulted in a call to VNOP_LOOKUP, then VNOP_LOOKUP returned a vnode with a io ref
1385 * on it. It is now the job of cache_lookup_path to drop the ref on this vnode
1386 * when it is no longer needed. If we get to this point, and last_dp is not NULL
1387 * and it is ALSO not the dvp we want to return to caller of this function, it MUST be
1388 * the case that we got to a subsequent path component and this previous vnode is
1389 * no longer needed. We can then drop the io ref on it.
1390 */
1391 if ((last_dp != NULLVP) && (last_dp != ndp->ni_dvp)){
1392 vnode_put(last_dp);
1393 }
1394
1395 //initialized to 0, should be the same if no error cases occurred.
1396 return error;
1397 }
1398
1399
1400 static vnode_t
1401 cache_lookup_locked(vnode_t dvp, struct componentname *cnp)
1402 {
1403 struct namecache *ncp;
1404 struct nchashhead *ncpp;
1405 long namelen = cnp->cn_namelen;
1406 unsigned int hashval = (cnp->cn_hash & NCHASHMASK);
1407
1408 if (nc_disabled) {
1409 return NULL;
1410 }
1411
1412 ncpp = NCHHASH(dvp, cnp->cn_hash);
1413 LIST_FOREACH(ncp, ncpp, nc_hash) {
1414 if ((ncp->nc_dvp == dvp) && (ncp->nc_hashval == hashval)) {
1415 if (memcmp(ncp->nc_name, cnp->cn_nameptr, namelen) == 0 && ncp->nc_name[namelen] == 0)
1416 break;
1417 }
1418 }
1419 if (ncp == 0) {
1420 /*
1421 * We failed to find an entry
1422 */
1423 NCHSTAT(ncs_miss);
1424 return (NULL);
1425 }
1426 NCHSTAT(ncs_goodhits);
1427
1428 return (ncp->nc_vp);
1429 }
1430
1431
1432 unsigned int hash_string(const char *cp, int len);
1433 //
1434 // Have to take a len argument because we may only need to
1435 // hash part of a componentname.
1436 //
1437 unsigned int
1438 hash_string(const char *cp, int len)
1439 {
1440 unsigned hash = 0;
1441
1442 if (len) {
1443 while (len--) {
1444 hash = crc32tab[((hash >> 24) ^ (unsigned char)*cp++)] ^ hash << 8;
1445 }
1446 } else {
1447 while (*cp != '\0') {
1448 hash = crc32tab[((hash >> 24) ^ (unsigned char)*cp++)] ^ hash << 8;
1449 }
1450 }
1451 /*
1452 * the crc generator can legitimately generate
1453 * a 0... however, 0 for us means that we
1454 * haven't computed a hash, so use 1 instead
1455 */
1456 if (hash == 0)
1457 hash = 1;
1458 return hash;
1459 }
1460
1461
1462 /*
1463 * Lookup an entry in the cache
1464 *
1465 * We don't do this if the segment name is long, simply so the cache
1466 * can avoid holding long names (which would either waste space, or
1467 * add greatly to the complexity).
1468 *
1469 * Lookup is called with dvp pointing to the directory to search,
1470 * cnp pointing to the name of the entry being sought. If the lookup
1471 * succeeds, the vnode is returned in *vpp, and a status of -1 is
1472 * returned. If the lookup determines that the name does not exist
1473 * (negative cacheing), a status of ENOENT is returned. If the lookup
1474 * fails, a status of zero is returned.
1475 */
1476
1477 int
1478 cache_lookup(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp)
1479 {
1480 struct namecache *ncp;
1481 struct nchashhead *ncpp;
1482 long namelen = cnp->cn_namelen;
1483 unsigned int hashval;
1484 boolean_t have_exclusive = FALSE;
1485 uint32_t vid;
1486 vnode_t vp;
1487
1488 if (cnp->cn_hash == 0)
1489 cnp->cn_hash = hash_string(cnp->cn_nameptr, cnp->cn_namelen);
1490 hashval = (cnp->cn_hash & NCHASHMASK);
1491
1492 if (nc_disabled) {
1493 return 0;
1494 }
1495
1496 NAME_CACHE_LOCK_SHARED();
1497
1498 relook:
1499 ncpp = NCHHASH(dvp, cnp->cn_hash);
1500 LIST_FOREACH(ncp, ncpp, nc_hash) {
1501 if ((ncp->nc_dvp == dvp) && (ncp->nc_hashval == hashval)) {
1502 if (memcmp(ncp->nc_name, cnp->cn_nameptr, namelen) == 0 && ncp->nc_name[namelen] == 0)
1503 break;
1504 }
1505 }
1506 /* We failed to find an entry */
1507 if (ncp == 0) {
1508 NCHSTAT(ncs_miss);
1509 NAME_CACHE_UNLOCK();
1510 return (0);
1511 }
1512
1513 /* We don't want to have an entry, so dump it */
1514 if ((cnp->cn_flags & MAKEENTRY) == 0) {
1515 if (have_exclusive == TRUE) {
1516 NCHSTAT(ncs_badhits);
1517 cache_delete(ncp, 1);
1518 NAME_CACHE_UNLOCK();
1519 return (0);
1520 }
1521 NAME_CACHE_UNLOCK();
1522 NAME_CACHE_LOCK();
1523 have_exclusive = TRUE;
1524 goto relook;
1525 }
1526 vp = ncp->nc_vp;
1527
1528 /* We found a "positive" match, return the vnode */
1529 if (vp) {
1530 NCHSTAT(ncs_goodhits);
1531
1532 vid = vp->v_id;
1533 NAME_CACHE_UNLOCK();
1534
1535 if (vnode_getwithvid(vp, vid)) {
1536 #if COLLECT_STATS
1537 NAME_CACHE_LOCK();
1538 NCHSTAT(ncs_badvid);
1539 NAME_CACHE_UNLOCK();
1540 #endif
1541 return (0);
1542 }
1543 *vpp = vp;
1544 return (-1);
1545 }
1546
1547 /* We found a negative match, and want to create it, so purge */
1548 if (cnp->cn_nameiop == CREATE || cnp->cn_nameiop == RENAME) {
1549 if (have_exclusive == TRUE) {
1550 NCHSTAT(ncs_badhits);
1551 cache_delete(ncp, 1);
1552 NAME_CACHE_UNLOCK();
1553 return (0);
1554 }
1555 NAME_CACHE_UNLOCK();
1556 NAME_CACHE_LOCK();
1557 have_exclusive = TRUE;
1558 goto relook;
1559 }
1560
1561 /*
1562 * We found a "negative" match, ENOENT notifies client of this match.
1563 * The nc_whiteout field records whether this is a whiteout.
1564 */
1565 NCHSTAT(ncs_neghits);
1566
1567 if (ncp->nc_whiteout)
1568 cnp->cn_flags |= ISWHITEOUT;
1569 NAME_CACHE_UNLOCK();
1570 return (ENOENT);
1571 }
1572
1573 const char *
1574 cache_enter_create(vnode_t dvp, vnode_t vp, struct componentname *cnp)
1575 {
1576 const char *strname;
1577
1578 if (cnp->cn_hash == 0)
1579 cnp->cn_hash = hash_string(cnp->cn_nameptr, cnp->cn_namelen);
1580
1581 /*
1582 * grab 2 references on the string entered
1583 * one for the cache_enter_locked to consume
1584 * and the second to be consumed by v_name (vnode_create call point)
1585 */
1586 strname = add_name_internal(cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash, TRUE, 0);
1587
1588 NAME_CACHE_LOCK();
1589
1590 cache_enter_locked(dvp, vp, cnp, strname);
1591
1592 NAME_CACHE_UNLOCK();
1593
1594 return (strname);
1595 }
1596
1597
1598 /*
1599 * Add an entry to the cache...
1600 * but first check to see if the directory
1601 * that this entry is to be associated with has
1602 * had any cache_purges applied since we took
1603 * our identity snapshot... this check needs to
1604 * be done behind the name cache lock
1605 */
1606 void
1607 cache_enter_with_gen(struct vnode *dvp, struct vnode *vp, struct componentname *cnp, int gen)
1608 {
1609
1610 if (cnp->cn_hash == 0)
1611 cnp->cn_hash = hash_string(cnp->cn_nameptr, cnp->cn_namelen);
1612
1613 NAME_CACHE_LOCK();
1614
1615 if (dvp->v_nc_generation == gen)
1616 (void)cache_enter_locked(dvp, vp, cnp, NULL);
1617
1618 NAME_CACHE_UNLOCK();
1619 }
1620
1621
1622 /*
1623 * Add an entry to the cache.
1624 */
1625 void
1626 cache_enter(struct vnode *dvp, struct vnode *vp, struct componentname *cnp)
1627 {
1628 const char *strname;
1629
1630 if (cnp->cn_hash == 0)
1631 cnp->cn_hash = hash_string(cnp->cn_nameptr, cnp->cn_namelen);
1632
1633 /*
1634 * grab 1 reference on the string entered
1635 * for the cache_enter_locked to consume
1636 */
1637 strname = add_name_internal(cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash, FALSE, 0);
1638
1639 NAME_CACHE_LOCK();
1640
1641 cache_enter_locked(dvp, vp, cnp, strname);
1642
1643 NAME_CACHE_UNLOCK();
1644 }
1645
1646
1647 static void
1648 cache_enter_locked(struct vnode *dvp, struct vnode *vp, struct componentname *cnp, const char *strname)
1649 {
1650 struct namecache *ncp, *negp;
1651 struct nchashhead *ncpp;
1652
1653 if (nc_disabled)
1654 return;
1655
1656 /*
1657 * if the entry is for -ve caching vp is null
1658 */
1659 if ((vp != NULLVP) && (LIST_FIRST(&vp->v_nclinks))) {
1660 /*
1661 * someone beat us to the punch..
1662 * this vnode is already in the cache
1663 */
1664 if (strname != NULL)
1665 vfs_removename(strname);
1666 return;
1667 }
1668 /*
1669 * We allocate a new entry if we are less than the maximum
1670 * allowed and the one at the front of the list is in use.
1671 * Otherwise we use the one at the front of the list.
1672 */
1673 if (numcache < desiredNodes &&
1674 ((ncp = nchead.tqh_first) == NULL ||
1675 ncp->nc_hash.le_prev != 0)) {
1676 /*
1677 * Allocate one more entry
1678 */
1679 ncp = (struct namecache *)_MALLOC_ZONE(sizeof(*ncp), M_CACHE, M_WAITOK);
1680 numcache++;
1681 } else {
1682 /*
1683 * reuse an old entry
1684 */
1685 ncp = TAILQ_FIRST(&nchead);
1686 TAILQ_REMOVE(&nchead, ncp, nc_entry);
1687
1688 if (ncp->nc_hash.le_prev != 0) {
1689 /*
1690 * still in use... we need to
1691 * delete it before re-using it
1692 */
1693 NCHSTAT(ncs_stolen);
1694 cache_delete(ncp, 0);
1695 }
1696 }
1697 NCHSTAT(ncs_enters);
1698
1699 /*
1700 * Fill in cache info, if vp is NULL this is a "negative" cache entry.
1701 */
1702 ncp->nc_vp = vp;
1703 ncp->nc_dvp = dvp;
1704 ncp->nc_hashval = cnp->cn_hash;
1705 ncp->nc_whiteout = FALSE;
1706
1707 if (strname == NULL)
1708 ncp->nc_name = add_name_internal(cnp->cn_nameptr, cnp->cn_namelen, cnp->cn_hash, FALSE, 0);
1709 else
1710 ncp->nc_name = strname;
1711 /*
1712 * make us the newest entry in the cache
1713 * i.e. we'll be the last to be stolen
1714 */
1715 TAILQ_INSERT_TAIL(&nchead, ncp, nc_entry);
1716
1717 ncpp = NCHHASH(dvp, cnp->cn_hash);
1718 #if DIAGNOSTIC
1719 {
1720 struct namecache *p;
1721
1722 for (p = ncpp->lh_first; p != 0; p = p->nc_hash.le_next)
1723 if (p == ncp)
1724 panic("cache_enter: duplicate");
1725 }
1726 #endif
1727 /*
1728 * make us available to be found via lookup
1729 */
1730 LIST_INSERT_HEAD(ncpp, ncp, nc_hash);
1731
1732 if (vp) {
1733 /*
1734 * add to the list of name cache entries
1735 * that point at vp
1736 */
1737 LIST_INSERT_HEAD(&vp->v_nclinks, ncp, nc_un.nc_link);
1738 } else {
1739 /*
1740 * this is a negative cache entry (vp == NULL)
1741 * stick it on the negative cache list
1742 * and record the whiteout state
1743 */
1744 TAILQ_INSERT_TAIL(&neghead, ncp, nc_un.nc_negentry);
1745
1746 if (cnp->cn_flags & ISWHITEOUT)
1747 ncp->nc_whiteout = TRUE;
1748 ncs_negtotal++;
1749
1750 if (ncs_negtotal > desiredNegNodes) {
1751 /*
1752 * if we've reached our desired limit
1753 * of negative cache entries, delete
1754 * the oldest
1755 */
1756 negp = TAILQ_FIRST(&neghead);
1757 cache_delete(negp, 1);
1758 }
1759 }
1760 /*
1761 * add us to the list of name cache entries that
1762 * are children of dvp
1763 */
1764 LIST_INSERT_HEAD(&dvp->v_ncchildren, ncp, nc_child);
1765 }
1766
1767
1768 /*
1769 * Initialize CRC-32 remainder table.
1770 */
1771 static void init_crc32(void)
1772 {
1773 /*
1774 * the CRC-32 generator polynomial is:
1775 * x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^10
1776 * + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1
1777 */
1778 unsigned int crc32_polynomial = 0x04c11db7;
1779 unsigned int i,j;
1780
1781 /*
1782 * pre-calculate the CRC-32 remainder for each possible octet encoding
1783 */
1784 for (i = 0; i < 256; i++) {
1785 unsigned int crc_rem = i << 24;
1786
1787 for (j = 0; j < 8; j++) {
1788 if (crc_rem & 0x80000000)
1789 crc_rem = (crc_rem << 1) ^ crc32_polynomial;
1790 else
1791 crc_rem = (crc_rem << 1);
1792 }
1793 crc32tab[i] = crc_rem;
1794 }
1795 }
1796
1797
1798 /*
1799 * Name cache initialization, from vfs_init() when we are booting
1800 */
1801 void
1802 nchinit(void)
1803 {
1804 int i;
1805
1806 desiredNegNodes = (desiredvnodes / 10);
1807 desiredNodes = desiredvnodes + desiredNegNodes;
1808
1809 TAILQ_INIT(&nchead);
1810 TAILQ_INIT(&neghead);
1811
1812 init_crc32();
1813
1814 nchashtbl = hashinit(MAX(CONFIG_NC_HASH, (2 *desiredNodes)), M_CACHE, &nchash);
1815 nchashmask = nchash;
1816 nchash++;
1817
1818 init_string_table();
1819
1820 /* Allocate name cache lock group attribute and group */
1821 namecache_lck_grp_attr= lck_grp_attr_alloc_init();
1822
1823 namecache_lck_grp = lck_grp_alloc_init("Name Cache", namecache_lck_grp_attr);
1824
1825 /* Allocate name cache lock attribute */
1826 namecache_lck_attr = lck_attr_alloc_init();
1827
1828 /* Allocate name cache lock */
1829 namecache_rw_lock = lck_rw_alloc_init(namecache_lck_grp, namecache_lck_attr);
1830
1831
1832 /* Allocate string cache lock group attribute and group */
1833 strcache_lck_grp_attr= lck_grp_attr_alloc_init();
1834
1835 strcache_lck_grp = lck_grp_alloc_init("String Cache", strcache_lck_grp_attr);
1836
1837 /* Allocate string cache lock attribute */
1838 strcache_lck_attr = lck_attr_alloc_init();
1839
1840 /* Allocate string cache lock */
1841 strtable_rw_lock = lck_rw_alloc_init(strcache_lck_grp, strcache_lck_attr);
1842
1843 for (i = 0; i < NUM_STRCACHE_LOCKS; i++)
1844 lck_mtx_init(&strcache_mtx_locks[i], strcache_lck_grp, strcache_lck_attr);
1845 }
1846
1847 void
1848 name_cache_lock_shared(void)
1849 {
1850 lck_rw_lock_shared(namecache_rw_lock);
1851 }
1852
1853 void
1854 name_cache_lock(void)
1855 {
1856 lck_rw_lock_exclusive(namecache_rw_lock);
1857 }
1858
1859 void
1860 name_cache_unlock(void)
1861 {
1862 lck_rw_done(namecache_rw_lock);
1863 }
1864
1865
1866 int
1867 resize_namecache(u_int newsize)
1868 {
1869 struct nchashhead *new_table;
1870 struct nchashhead *old_table;
1871 struct nchashhead *old_head, *head;
1872 struct namecache *entry, *next;
1873 uint32_t i, hashval;
1874 int dNodes, dNegNodes;
1875 u_long new_size, old_size;
1876
1877 dNegNodes = (newsize / 10);
1878 dNodes = newsize + dNegNodes;
1879
1880 // we don't support shrinking yet
1881 if (dNodes <= desiredNodes) {
1882 return 0;
1883 }
1884 new_table = hashinit(2 * dNodes, M_CACHE, &nchashmask);
1885 new_size = nchashmask + 1;
1886
1887 if (new_table == NULL) {
1888 return ENOMEM;
1889 }
1890
1891 NAME_CACHE_LOCK();
1892 // do the switch!
1893 old_table = nchashtbl;
1894 nchashtbl = new_table;
1895 old_size = nchash;
1896 nchash = new_size;
1897
1898 // walk the old table and insert all the entries into
1899 // the new table
1900 //
1901 for(i=0; i < old_size; i++) {
1902 old_head = &old_table[i];
1903 for (entry=old_head->lh_first; entry != NULL; entry=next) {
1904 //
1905 // XXXdbg - Beware: this assumes that hash_string() does
1906 // the same thing as what happens in
1907 // lookup() over in vfs_lookup.c
1908 hashval = hash_string(entry->nc_name, 0);
1909 entry->nc_hashval = hashval;
1910 head = NCHHASH(entry->nc_dvp, hashval);
1911
1912 next = entry->nc_hash.le_next;
1913 LIST_INSERT_HEAD(head, entry, nc_hash);
1914 }
1915 }
1916 desiredNodes = dNodes;
1917 desiredNegNodes = dNegNodes;
1918
1919 NAME_CACHE_UNLOCK();
1920 FREE(old_table, M_CACHE);
1921
1922 return 0;
1923 }
1924
1925 static void
1926 cache_delete(struct namecache *ncp, int age_entry)
1927 {
1928 NCHSTAT(ncs_deletes);
1929
1930 if (ncp->nc_vp) {
1931 LIST_REMOVE(ncp, nc_un.nc_link);
1932 } else {
1933 TAILQ_REMOVE(&neghead, ncp, nc_un.nc_negentry);
1934 ncs_negtotal--;
1935 }
1936 LIST_REMOVE(ncp, nc_child);
1937
1938 LIST_REMOVE(ncp, nc_hash);
1939 /*
1940 * this field is used to indicate
1941 * that the entry is in use and
1942 * must be deleted before it can
1943 * be reused...
1944 */
1945 ncp->nc_hash.le_prev = NULL;
1946
1947 if (age_entry) {
1948 /*
1949 * make it the next one available
1950 * for cache_enter's use
1951 */
1952 TAILQ_REMOVE(&nchead, ncp, nc_entry);
1953 TAILQ_INSERT_HEAD(&nchead, ncp, nc_entry);
1954 }
1955 vfs_removename(ncp->nc_name);
1956 ncp->nc_name = NULL;
1957 }
1958
1959
1960 /*
1961 * purge the entry associated with the
1962 * specified vnode from the name cache
1963 */
1964 void
1965 cache_purge(vnode_t vp)
1966 {
1967 struct namecache *ncp;
1968 kauth_cred_t tcred = NULL;
1969
1970 if ((LIST_FIRST(&vp->v_nclinks) == NULL) &&
1971 (LIST_FIRST(&vp->v_ncchildren) == NULL) &&
1972 (vp->v_cred == NOCRED) &&
1973 (vp->v_parent == NULLVP))
1974 return;
1975
1976 NAME_CACHE_LOCK();
1977
1978 if (vp->v_parent)
1979 vp->v_parent->v_nc_generation++;
1980
1981 while ( (ncp = LIST_FIRST(&vp->v_nclinks)) )
1982 cache_delete(ncp, 1);
1983
1984 while ( (ncp = LIST_FIRST(&vp->v_ncchildren)) )
1985 cache_delete(ncp, 1);
1986
1987 /*
1988 * Use a temp variable to avoid kauth_cred_unref() while NAME_CACHE_LOCK is held
1989 */
1990 tcred = vp->v_cred;
1991 vp->v_cred = NOCRED;
1992 vp->v_authorized_actions = 0;
1993
1994 NAME_CACHE_UNLOCK();
1995
1996 if (IS_VALID_CRED(tcred))
1997 kauth_cred_unref(&tcred);
1998 }
1999
2000 /*
2001 * Purge all negative cache entries that are children of the
2002 * given vnode. A case-insensitive file system (or any file
2003 * system that has multiple equivalent names for the same
2004 * directory entry) can use this when creating or renaming
2005 * to remove negative entries that may no longer apply.
2006 */
2007 void
2008 cache_purge_negatives(vnode_t vp)
2009 {
2010 struct namecache *ncp, *next_ncp;
2011
2012 NAME_CACHE_LOCK();
2013
2014 LIST_FOREACH_SAFE(ncp, &vp->v_ncchildren, nc_child, next_ncp)
2015 if (ncp->nc_vp == NULL)
2016 cache_delete(ncp , 1);
2017
2018 NAME_CACHE_UNLOCK();
2019 }
2020
2021 /*
2022 * Flush all entries referencing a particular filesystem.
2023 *
2024 * Since we need to check it anyway, we will flush all the invalid
2025 * entries at the same time.
2026 */
2027 void
2028 cache_purgevfs(struct mount *mp)
2029 {
2030 struct nchashhead *ncpp;
2031 struct namecache *ncp;
2032
2033 NAME_CACHE_LOCK();
2034 /* Scan hash tables for applicable entries */
2035 for (ncpp = &nchashtbl[nchash - 1]; ncpp >= nchashtbl; ncpp--) {
2036 restart:
2037 for (ncp = ncpp->lh_first; ncp != 0; ncp = ncp->nc_hash.le_next) {
2038 if (ncp->nc_dvp->v_mount == mp) {
2039 cache_delete(ncp, 0);
2040 goto restart;
2041 }
2042 }
2043 }
2044 NAME_CACHE_UNLOCK();
2045 }
2046
2047
2048
2049 //
2050 // String ref routines
2051 //
2052 static LIST_HEAD(stringhead, string_t) *string_ref_table;
2053 static u_long string_table_mask;
2054 static uint32_t filled_buckets=0;
2055
2056
2057 typedef struct string_t {
2058 LIST_ENTRY(string_t) hash_chain;
2059 const char *str;
2060 uint32_t refcount;
2061 } string_t;
2062
2063
2064 static void
2065 resize_string_ref_table(void)
2066 {
2067 struct stringhead *new_table;
2068 struct stringhead *old_table;
2069 struct stringhead *old_head, *head;
2070 string_t *entry, *next;
2071 uint32_t i, hashval;
2072 u_long new_mask, old_mask;
2073
2074 /*
2075 * need to hold the table lock exclusively
2076 * in order to grow the table... need to recheck
2077 * the need to resize again after we've taken
2078 * the lock exclusively in case some other thread
2079 * beat us to the punch
2080 */
2081 lck_rw_lock_exclusive(strtable_rw_lock);
2082
2083 if (4 * filled_buckets < ((string_table_mask + 1) * 3)) {
2084 lck_rw_done(strtable_rw_lock);
2085 return;
2086 }
2087 new_table = hashinit((string_table_mask + 1) * 2, M_CACHE, &new_mask);
2088
2089 if (new_table == NULL) {
2090 printf("failed to resize the hash table.\n");
2091 lck_rw_done(strtable_rw_lock);
2092 return;
2093 }
2094
2095 // do the switch!
2096 old_table = string_ref_table;
2097 string_ref_table = new_table;
2098 old_mask = string_table_mask;
2099 string_table_mask = new_mask;
2100 filled_buckets = 0;
2101
2102 // walk the old table and insert all the entries into
2103 // the new table
2104 //
2105 for (i = 0; i <= old_mask; i++) {
2106 old_head = &old_table[i];
2107 for (entry = old_head->lh_first; entry != NULL; entry = next) {
2108 hashval = hash_string((const char *)entry->str, 0);
2109 head = &string_ref_table[hashval & string_table_mask];
2110 if (head->lh_first == NULL) {
2111 filled_buckets++;
2112 }
2113 next = entry->hash_chain.le_next;
2114 LIST_INSERT_HEAD(head, entry, hash_chain);
2115 }
2116 }
2117 lck_rw_done(strtable_rw_lock);
2118
2119 FREE(old_table, M_CACHE);
2120 }
2121
2122
2123 static void
2124 init_string_table(void)
2125 {
2126 string_ref_table = hashinit(CONFIG_VFS_NAMES, M_CACHE, &string_table_mask);
2127 }
2128
2129
2130 const char *
2131 vfs_addname(const char *name, uint32_t len, u_int hashval, u_int flags)
2132 {
2133 return (add_name_internal(name, len, hashval, FALSE, flags));
2134 }
2135
2136
2137 static const char *
2138 add_name_internal(const char *name, uint32_t len, u_int hashval, boolean_t need_extra_ref, __unused u_int flags)
2139 {
2140 struct stringhead *head;
2141 string_t *entry;
2142 uint32_t chain_len = 0;
2143 uint32_t hash_index;
2144 uint32_t lock_index;
2145 char *ptr;
2146
2147 /*
2148 * if the length already accounts for the null-byte, then
2149 * subtract one so later on we don't index past the end
2150 * of the string.
2151 */
2152 if (len > 0 && name[len-1] == '\0') {
2153 len--;
2154 }
2155 if (hashval == 0) {
2156 hashval = hash_string(name, len);
2157 }
2158
2159 /*
2160 * take this lock 'shared' to keep the hash stable
2161 * if someone else decides to grow the pool they
2162 * will take this lock exclusively
2163 */
2164 lck_rw_lock_shared(strtable_rw_lock);
2165
2166 /*
2167 * If the table gets more than 3/4 full, resize it
2168 */
2169 if (4 * filled_buckets >= ((string_table_mask + 1) * 3)) {
2170 lck_rw_done(strtable_rw_lock);
2171
2172 resize_string_ref_table();
2173
2174 lck_rw_lock_shared(strtable_rw_lock);
2175 }
2176 hash_index = hashval & string_table_mask;
2177 lock_index = hash_index % NUM_STRCACHE_LOCKS;
2178
2179 head = &string_ref_table[hash_index];
2180
2181 lck_mtx_lock_spin(&strcache_mtx_locks[lock_index]);
2182
2183 for (entry = head->lh_first; entry != NULL; chain_len++, entry = entry->hash_chain.le_next) {
2184 if (memcmp(entry->str, name, len) == 0 && entry->str[len] == 0) {
2185 entry->refcount++;
2186 break;
2187 }
2188 }
2189 if (entry == NULL) {
2190 lck_mtx_convert_spin(&strcache_mtx_locks[lock_index]);
2191 /*
2192 * it wasn't already there so add it.
2193 */
2194 MALLOC(entry, string_t *, sizeof(string_t) + len + 1, M_TEMP, M_WAITOK);
2195
2196 if (head->lh_first == NULL) {
2197 OSAddAtomic(1, &filled_buckets);
2198 }
2199 ptr = (char *)((char *)entry + sizeof(string_t));
2200 strncpy(ptr, name, len);
2201 ptr[len] = '\0';
2202 entry->str = ptr;
2203 entry->refcount = 1;
2204 LIST_INSERT_HEAD(head, entry, hash_chain);
2205 }
2206 if (need_extra_ref == TRUE)
2207 entry->refcount++;
2208
2209 lck_mtx_unlock(&strcache_mtx_locks[lock_index]);
2210 lck_rw_done(strtable_rw_lock);
2211
2212 return (const char *)entry->str;
2213 }
2214
2215
2216 int
2217 vfs_removename(const char *nameref)
2218 {
2219 struct stringhead *head;
2220 string_t *entry;
2221 uint32_t hashval;
2222 uint32_t hash_index;
2223 uint32_t lock_index;
2224 int retval = ENOENT;
2225
2226 hashval = hash_string(nameref, 0);
2227
2228 /*
2229 * take this lock 'shared' to keep the hash stable
2230 * if someone else decides to grow the pool they
2231 * will take this lock exclusively
2232 */
2233 lck_rw_lock_shared(strtable_rw_lock);
2234 /*
2235 * must compute the head behind the table lock
2236 * since the size and location of the table
2237 * can change on the fly
2238 */
2239 hash_index = hashval & string_table_mask;
2240 lock_index = hash_index % NUM_STRCACHE_LOCKS;
2241
2242 head = &string_ref_table[hash_index];
2243
2244 lck_mtx_lock_spin(&strcache_mtx_locks[lock_index]);
2245
2246 for (entry = head->lh_first; entry != NULL; entry = entry->hash_chain.le_next) {
2247 if (entry->str == nameref) {
2248 entry->refcount--;
2249
2250 if (entry->refcount == 0) {
2251 LIST_REMOVE(entry, hash_chain);
2252
2253 if (head->lh_first == NULL) {
2254 OSAddAtomic(-1, &filled_buckets);
2255 }
2256 } else {
2257 entry = NULL;
2258 }
2259 retval = 0;
2260 break;
2261 }
2262 }
2263 lck_mtx_unlock(&strcache_mtx_locks[lock_index]);
2264 lck_rw_done(strtable_rw_lock);
2265
2266 if (entry != NULL)
2267 FREE(entry, M_TEMP);
2268
2269 return retval;
2270 }
2271
2272
2273 #ifdef DUMP_STRING_TABLE
2274 void
2275 dump_string_table(void)
2276 {
2277 struct stringhead *head;
2278 string_t *entry;
2279 u_long i;
2280
2281 lck_rw_lock_shared(strtable_rw_lock);
2282
2283 for (i = 0; i <= string_table_mask; i++) {
2284 head = &string_ref_table[i];
2285 for (entry=head->lh_first; entry != NULL; entry=entry->hash_chain.le_next) {
2286 printf("%6d - %s\n", entry->refcount, entry->str);
2287 }
2288 }
2289 lck_rw_done(strtable_rw_lock);
2290 }
2291 #endif /* DUMP_STRING_TABLE */