]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/tcp_subr.c
xnu-2422.110.17.tar.gz
[apple/xnu.git] / bsd / netinet / tcp_subr.c
1 /*
2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
61 * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.22 2001/08/22 00:59:12 silby Exp $
62 */
63 /*
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
67 * Version 2.0.
68 */
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/callout.h>
73 #include <sys/kernel.h>
74 #include <sys/sysctl.h>
75 #include <sys/malloc.h>
76 #include <sys/mbuf.h>
77 #include <sys/domain.h>
78 #include <sys/proc.h>
79 #include <sys/kauth.h>
80 #include <sys/socket.h>
81 #include <sys/socketvar.h>
82 #include <sys/protosw.h>
83 #include <sys/random.h>
84 #include <sys/syslog.h>
85 #include <sys/mcache.h>
86 #include <kern/locks.h>
87 #include <kern/zalloc.h>
88
89 #include <dev/random/randomdev.h>
90
91 #include <net/route.h>
92 #include <net/if.h>
93
94 #define tcp_minmssoverload fring
95 #define _IP_VHL
96 #include <netinet/in.h>
97 #include <netinet/in_systm.h>
98 #include <netinet/ip.h>
99 #include <netinet/ip_icmp.h>
100 #if INET6
101 #include <netinet/ip6.h>
102 #endif
103 #include <netinet/in_pcb.h>
104 #if INET6
105 #include <netinet6/in6_pcb.h>
106 #endif
107 #include <netinet/in_var.h>
108 #include <netinet/ip_var.h>
109 #include <netinet/icmp_var.h>
110 #if INET6
111 #include <netinet6/ip6_var.h>
112 #endif
113 #include <netinet/tcp.h>
114 #include <netinet/tcp_fsm.h>
115 #include <netinet/tcp_seq.h>
116 #include <netinet/tcp_timer.h>
117 #include <netinet/tcp_var.h>
118 #include <netinet/tcp_cc.h>
119 #include <kern/thread_call.h>
120
121 #if INET6
122 #include <netinet6/tcp6_var.h>
123 #endif
124 #include <netinet/tcpip.h>
125 #if TCPDEBUG
126 #include <netinet/tcp_debug.h>
127 #endif
128 #include <netinet6/ip6protosw.h>
129
130 #if IPSEC
131 #include <netinet6/ipsec.h>
132 #if INET6
133 #include <netinet6/ipsec6.h>
134 #endif
135 #endif /*IPSEC*/
136
137 #undef tcp_minmssoverload
138
139 #if CONFIG_MACF_NET
140 #include <security/mac_framework.h>
141 #endif /* MAC_NET */
142
143 #include <libkern/crypto/md5.h>
144 #include <sys/kdebug.h>
145 #include <mach/sdt.h>
146
147 #include <netinet/lro_ext.h>
148
149 #define DBG_FNC_TCP_CLOSE NETDBG_CODE(DBG_NETTCP, ((5 << 8) | 2))
150
151 extern int tcp_lq_overflow;
152
153 /* temporary: for testing */
154 #if IPSEC
155 extern int ipsec_bypass;
156 #endif
157 extern struct tcptimerlist tcp_timer_list;
158 extern struct tcptailq tcp_tw_tailq;
159
160 int tcp_mssdflt = TCP_MSS;
161 SYSCTL_INT(_net_inet_tcp, TCPCTL_MSSDFLT, mssdflt, CTLFLAG_RW | CTLFLAG_LOCKED,
162 &tcp_mssdflt , 0, "Default TCP Maximum Segment Size");
163
164 #if INET6
165 int tcp_v6mssdflt = TCP6_MSS;
166 SYSCTL_INT(_net_inet_tcp, TCPCTL_V6MSSDFLT, v6mssdflt,
167 CTLFLAG_RW | CTLFLAG_LOCKED, &tcp_v6mssdflt , 0,
168 "Default TCP Maximum Segment Size for IPv6");
169 #endif
170
171 extern int tcp_do_autorcvbuf;
172
173 /*
174 * Minimum MSS we accept and use. This prevents DoS attacks where
175 * we are forced to a ridiculous low MSS like 20 and send hundreds
176 * of packets instead of one. The effect scales with the available
177 * bandwidth and quickly saturates the CPU and network interface
178 * with packet generation and sending. Set to zero to disable MINMSS
179 * checking. This setting prevents us from sending too small packets.
180 */
181 int tcp_minmss = TCP_MINMSS;
182 SYSCTL_INT(_net_inet_tcp, OID_AUTO, minmss, CTLFLAG_RW | CTLFLAG_LOCKED,
183 &tcp_minmss , 0, "Minmum TCP Maximum Segment Size");
184
185 static int tcp_do_rfc1323 = 1;
186 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1323, rfc1323, CTLFLAG_RW | CTLFLAG_LOCKED,
187 &tcp_do_rfc1323 , 0, "Enable rfc1323 (high performance TCP) extensions");
188
189 // Not used
190 static int tcp_do_rfc1644 = 0;
191 SYSCTL_INT(_net_inet_tcp, TCPCTL_DO_RFC1644, rfc1644, CTLFLAG_RW | CTLFLAG_LOCKED,
192 &tcp_do_rfc1644 , 0, "Enable rfc1644 (TTCP) extensions");
193
194 static int do_tcpdrain = 0;
195 SYSCTL_INT(_net_inet_tcp, OID_AUTO, do_tcpdrain, CTLFLAG_RW | CTLFLAG_LOCKED, &do_tcpdrain, 0,
196 "Enable tcp_drain routine for extra help when low on mbufs");
197
198 SYSCTL_INT(_net_inet_tcp, OID_AUTO, pcbcount, CTLFLAG_RD | CTLFLAG_LOCKED,
199 &tcbinfo.ipi_count, 0, "Number of active PCBs");
200
201 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tw_pcbcount,
202 CTLFLAG_RD | CTLFLAG_LOCKED,
203 &tcbinfo.ipi_twcount, 0, "Number of pcbs in time-wait state");
204
205 static int icmp_may_rst = 1;
206 SYSCTL_INT(_net_inet_tcp, OID_AUTO, icmp_may_rst, CTLFLAG_RW | CTLFLAG_LOCKED, &icmp_may_rst, 0,
207 "Certain ICMP unreachable messages may abort connections in SYN_SENT");
208
209 static int tcp_strict_rfc1948 = 0;
210 SYSCTL_INT(_net_inet_tcp, OID_AUTO, strict_rfc1948, CTLFLAG_RW | CTLFLAG_LOCKED,
211 &tcp_strict_rfc1948, 0, "Determines if RFC1948 is followed exactly");
212
213 static int tcp_isn_reseed_interval = 0;
214 SYSCTL_INT(_net_inet_tcp, OID_AUTO, isn_reseed_interval, CTLFLAG_RW | CTLFLAG_LOCKED,
215 &tcp_isn_reseed_interval, 0, "Seconds between reseeding of ISN secret");
216 static int tcp_background_io_enabled = 1;
217 SYSCTL_INT(_net_inet_tcp, OID_AUTO, background_io_enabled, CTLFLAG_RW | CTLFLAG_LOCKED,
218 &tcp_background_io_enabled, 0, "Background IO Enabled");
219
220 int tcp_TCPTV_MIN = 100; /* 100ms minimum RTT */
221 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rtt_min, CTLFLAG_RW | CTLFLAG_LOCKED,
222 &tcp_TCPTV_MIN, 0, "min rtt value allowed");
223
224 int tcp_rexmt_slop = TCPTV_REXMTSLOP;
225 SYSCTL_INT(_net_inet_tcp, OID_AUTO, rexmt_slop, CTLFLAG_RW,
226 &tcp_rexmt_slop, 0, "Slop added to retransmit timeout");
227
228 __private_extern__ int tcp_use_randomport = 0;
229 SYSCTL_INT(_net_inet_tcp, OID_AUTO, randomize_ports, CTLFLAG_RW | CTLFLAG_LOCKED,
230 &tcp_use_randomport, 0, "Randomize TCP port numbers");
231
232 extern struct tcp_cc_algo tcp_cc_newreno;
233 SYSCTL_INT(_net_inet_tcp, OID_AUTO, newreno_sockets, CTLFLAG_RD | CTLFLAG_LOCKED,
234 &tcp_cc_newreno.num_sockets, 0, "Number of sockets using newreno");
235
236 extern struct tcp_cc_algo tcp_cc_ledbat;
237 SYSCTL_INT(_net_inet_tcp, OID_AUTO, background_sockets, CTLFLAG_RD | CTLFLAG_LOCKED,
238 &tcp_cc_ledbat.num_sockets, 0, "Number of sockets using background transport");
239
240 __private_extern__ int tcp_win_scale = 3;
241 SYSCTL_INT(_net_inet_tcp, OID_AUTO, win_scale_factor, CTLFLAG_RW | CTLFLAG_LOCKED,
242 &tcp_win_scale, 0, "Window scaling factor");
243
244 static void tcp_cleartaocache(void);
245 static void tcp_notify(struct inpcb *, int);
246 static void tcp_cc_init(void);
247
248 struct zone *sack_hole_zone;
249 struct zone *tcp_reass_zone;
250 struct zone *tcp_bwmeas_zone;
251 #if 0
252 static unsigned int tcp_mptcp_dsnm_sz;
253 struct zone *tcp_mptcp_dsnm_zone;
254 #endif
255 /* The array containing pointers to currently implemented TCP CC algorithms */
256 struct tcp_cc_algo* tcp_cc_algo_list[TCP_CC_ALGO_COUNT];
257
258 extern int slowlink_wsize; /* window correction for slow links */
259 extern int path_mtu_discovery;
260
261 extern u_int32_t tcp_autorcvbuf_max;
262 extern u_int32_t tcp_autorcvbuf_inc_shift;
263 static void tcp_sbrcv_grow_rwin(struct tcpcb *tp, struct sockbuf *sb);
264
265 #define TCP_BWMEAS_BURST_MINSIZE 6
266 #define TCP_BWMEAS_BURST_MAXSIZE 25
267
268 static uint32_t bwmeas_elm_size;
269
270 /*
271 * Target size of TCP PCB hash tables. Must be a power of two.
272 *
273 * Note that this can be overridden by the kernel environment
274 * variable net.inet.tcp.tcbhashsize
275 */
276 #ifndef TCBHASHSIZE
277 #define TCBHASHSIZE CONFIG_TCBHASHSIZE
278 #endif
279
280 __private_extern__ int tcp_tcbhashsize = TCBHASHSIZE;
281 SYSCTL_INT(_net_inet_tcp, OID_AUTO, tcbhashsize, CTLFLAG_RD | CTLFLAG_LOCKED,
282 &tcp_tcbhashsize, 0, "Size of TCP control-block hashtable");
283
284 /*
285 * This is the actual shape of what we allocate using the zone
286 * allocator. Doing it this way allows us to protect both structures
287 * using the same generation count, and also eliminates the overhead
288 * of allocating tcpcbs separately. By hiding the structure here,
289 * we avoid changing most of the rest of the code (although it needs
290 * to be changed, eventually, for greater efficiency).
291 */
292 #define ALIGNMENT 32
293 struct inp_tp {
294 struct inpcb inp;
295 struct tcpcb tcb __attribute__((aligned(ALIGNMENT)));
296 };
297 #undef ALIGNMENT
298
299 int get_inpcb_str_size(void);
300 int get_tcp_str_size(void);
301
302 static void tcpcb_to_otcpcb(struct tcpcb *, struct otcpcb *);
303
304 static lck_attr_t *tcp_uptime_mtx_attr = NULL; /* mutex attributes */
305 static lck_grp_t *tcp_uptime_mtx_grp = NULL; /* mutex group definition */
306 static lck_grp_attr_t *tcp_uptime_mtx_grp_attr = NULL; /* mutex group attributes */
307 int tcp_notsent_lowat_check(struct socket *so);
308
309
310 int get_inpcb_str_size(void)
311 {
312 return sizeof(struct inpcb);
313 }
314
315
316 int get_tcp_str_size(void)
317 {
318 return sizeof(struct tcpcb);
319 }
320
321 int tcp_freeq(struct tcpcb *tp);
322
323 /*
324 * Initialize TCP congestion control algorithms.
325 */
326
327 void
328 tcp_cc_init(void)
329 {
330 bzero(&tcp_cc_algo_list, sizeof(tcp_cc_algo_list));
331 tcp_cc_algo_list[TCP_CC_ALGO_NEWRENO_INDEX] = &tcp_cc_newreno;
332 tcp_cc_algo_list[TCP_CC_ALGO_BACKGROUND_INDEX] = &tcp_cc_ledbat;
333 }
334
335 /*
336 * Tcp initialization
337 */
338 void
339 tcp_init(struct protosw *pp, struct domain *dp)
340 {
341 #pragma unused(dp)
342 static int tcp_initialized = 0;
343 vm_size_t str_size;
344 struct inpcbinfo *pcbinfo;
345
346 VERIFY((pp->pr_flags & (PR_INITIALIZED|PR_ATTACHED)) == PR_ATTACHED);
347
348 if (tcp_initialized)
349 return;
350 tcp_initialized = 1;
351
352 tcp_ccgen = 1;
353 tcp_cleartaocache();
354
355 tcp_keepinit = TCPTV_KEEP_INIT;
356 tcp_keepidle = TCPTV_KEEP_IDLE;
357 tcp_keepintvl = TCPTV_KEEPINTVL;
358 tcp_keepcnt = TCPTV_KEEPCNT;
359 tcp_maxpersistidle = TCPTV_KEEP_IDLE;
360 tcp_msl = TCPTV_MSL;
361
362 microuptime(&tcp_uptime);
363 read_random(&tcp_now, sizeof(tcp_now));
364 tcp_now = tcp_now & 0x3fffffff; /* Starts tcp internal clock at a random value */
365
366 LIST_INIT(&tcb);
367 tcbinfo.ipi_listhead = &tcb;
368
369 pcbinfo = &tcbinfo;
370 /*
371 * allocate lock group attribute and group for tcp pcb mutexes
372 */
373 pcbinfo->ipi_lock_grp_attr = lck_grp_attr_alloc_init();
374 pcbinfo->ipi_lock_grp = lck_grp_alloc_init("tcppcb", pcbinfo->ipi_lock_grp_attr);
375
376 /*
377 * allocate the lock attribute for tcp pcb mutexes
378 */
379 pcbinfo->ipi_lock_attr = lck_attr_alloc_init();
380
381 if ((pcbinfo->ipi_lock = lck_rw_alloc_init(pcbinfo->ipi_lock_grp,
382 pcbinfo->ipi_lock_attr)) == NULL) {
383 panic("%s: unable to allocate PCB lock\n", __func__);
384 /* NOTREACHED */
385 }
386
387 if (!powerof2(tcp_tcbhashsize)) {
388 printf("WARNING: TCB hash size not a power of 2\n");
389 tcp_tcbhashsize = 512; /* safe default */
390 }
391 tcbinfo.ipi_hashbase = hashinit(tcp_tcbhashsize, M_PCB, &tcbinfo.ipi_hashmask);
392 tcbinfo.ipi_porthashbase = hashinit(tcp_tcbhashsize, M_PCB,
393 &tcbinfo.ipi_porthashmask);
394 str_size = P2ROUNDUP(sizeof(struct inp_tp), sizeof(u_int64_t));
395 tcbinfo.ipi_zone = zinit(str_size, 120000*str_size, 8192, "tcpcb");
396 zone_change(tcbinfo.ipi_zone, Z_CALLERACCT, FALSE);
397 zone_change(tcbinfo.ipi_zone, Z_EXPAND, TRUE);
398
399 tcbinfo.ipi_gc = tcp_gc;
400 in_pcbinfo_attach(&tcbinfo);
401
402 str_size = P2ROUNDUP(sizeof(struct sackhole), sizeof(u_int64_t));
403 sack_hole_zone = zinit(str_size, 120000*str_size, 8192, "sack_hole zone");
404 zone_change(sack_hole_zone, Z_CALLERACCT, FALSE);
405 zone_change(sack_hole_zone, Z_EXPAND, TRUE);
406
407 tcp_reass_maxseg = nmbclusters / 16;
408 str_size = P2ROUNDUP(sizeof(struct tseg_qent), sizeof(u_int64_t));
409 tcp_reass_zone = zinit(str_size, (tcp_reass_maxseg + 1) * str_size,
410 0, "tcp_reass_zone");
411 if (tcp_reass_zone == NULL) {
412 panic("%s: failed allocating tcp_reass_zone", __func__);
413 /* NOTREACHED */
414 }
415 zone_change(tcp_reass_zone, Z_CALLERACCT, FALSE);
416 zone_change(tcp_reass_zone, Z_EXPAND, TRUE);
417
418 bwmeas_elm_size = P2ROUNDUP(sizeof(struct bwmeas), sizeof(u_int64_t));
419 tcp_bwmeas_zone = zinit(bwmeas_elm_size, (100 * bwmeas_elm_size), 0, "tcp_bwmeas_zone");
420 if (tcp_bwmeas_zone == NULL) {
421 panic("%s: failed allocating tcp_bwmeas_zone", __func__);
422 /* NOTREACHED */
423 }
424 zone_change(tcp_bwmeas_zone, Z_CALLERACCT, FALSE);
425 zone_change(tcp_bwmeas_zone, Z_EXPAND, TRUE);
426
427 #if INET6
428 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
429 #else /* INET6 */
430 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
431 #endif /* INET6 */
432 if (max_protohdr < TCP_MINPROTOHDR) {
433 _max_protohdr = TCP_MINPROTOHDR;
434 _max_protohdr = max_protohdr; /* round it up */
435 }
436 if (max_linkhdr + max_protohdr > MCLBYTES)
437 panic("tcp_init");
438 #undef TCP_MINPROTOHDR
439
440 /* Initialize time wait and timer lists */
441 TAILQ_INIT(&tcp_tw_tailq);
442
443 bzero(&tcp_timer_list, sizeof(tcp_timer_list));
444 LIST_INIT(&tcp_timer_list.lhead);
445 /*
446 * allocate lock group attribute, group and attribute for the tcp timer list
447 */
448 tcp_timer_list.mtx_grp_attr = lck_grp_attr_alloc_init();
449 tcp_timer_list.mtx_grp = lck_grp_alloc_init("tcptimerlist", tcp_timer_list.mtx_grp_attr);
450 tcp_timer_list.mtx_attr = lck_attr_alloc_init();
451 if ((tcp_timer_list.mtx = lck_mtx_alloc_init(tcp_timer_list.mtx_grp, tcp_timer_list.mtx_attr)) == NULL) {
452 panic("failed to allocate memory for tcp_timer_list.mtx\n");
453 };
454 tcp_timer_list.fast_quantum = TCP_FASTTIMER_QUANTUM;
455 tcp_timer_list.slow_quantum = TCP_SLOWTIMER_QUANTUM;
456 if ((tcp_timer_list.call = thread_call_allocate(tcp_run_timerlist, NULL)) == NULL) {
457 panic("failed to allocate call entry 1 in tcp_init\n");
458 }
459
460 /*
461 * allocate lock group attribute, group and attribute for tcp_uptime_lock
462 */
463 tcp_uptime_mtx_grp_attr = lck_grp_attr_alloc_init();
464 tcp_uptime_mtx_grp = lck_grp_alloc_init("tcpuptime", tcp_uptime_mtx_grp_attr);
465 tcp_uptime_mtx_attr = lck_attr_alloc_init();
466 tcp_uptime_lock = lck_spin_alloc_init(tcp_uptime_mtx_grp, tcp_uptime_mtx_attr);
467
468 /* Initialize TCP congestion control algorithms list */
469 tcp_cc_init();
470
471 /* Initialize TCP LRO data structures */
472 tcp_lro_init();
473 }
474
475 /*
476 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
477 * tcp_template used to store this data in mbufs, but we now recopy it out
478 * of the tcpcb each time to conserve mbufs.
479 */
480 void
481 tcp_fillheaders(tp, ip_ptr, tcp_ptr)
482 struct tcpcb *tp;
483 void *ip_ptr;
484 void *tcp_ptr;
485 {
486 struct inpcb *inp = tp->t_inpcb;
487 struct tcphdr *tcp_hdr = (struct tcphdr *)tcp_ptr;
488
489 #if INET6
490 if ((inp->inp_vflag & INP_IPV6) != 0) {
491 struct ip6_hdr *ip6;
492
493 ip6 = (struct ip6_hdr *)ip_ptr;
494 ip6->ip6_flow = (ip6->ip6_flow & ~IPV6_FLOWINFO_MASK) |
495 (inp->inp_flow & IPV6_FLOWINFO_MASK);
496 ip6->ip6_vfc = (ip6->ip6_vfc & ~IPV6_VERSION_MASK) |
497 (IPV6_VERSION & IPV6_VERSION_MASK);
498 ip6->ip6_nxt = IPPROTO_TCP;
499 ip6->ip6_plen = sizeof(struct tcphdr);
500 ip6->ip6_src = inp->in6p_laddr;
501 ip6->ip6_dst = inp->in6p_faddr;
502 tcp_hdr->th_sum = in6_pseudo(&inp->in6p_laddr, &inp->in6p_faddr,
503 htonl(sizeof (struct tcphdr) + IPPROTO_TCP));
504 } else
505 #endif
506 {
507 struct ip *ip = (struct ip *) ip_ptr;
508
509 ip->ip_vhl = IP_VHL_BORING;
510 ip->ip_tos = 0;
511 ip->ip_len = 0;
512 ip->ip_id = 0;
513 ip->ip_off = 0;
514 ip->ip_ttl = 0;
515 ip->ip_sum = 0;
516 ip->ip_p = IPPROTO_TCP;
517 ip->ip_src = inp->inp_laddr;
518 ip->ip_dst = inp->inp_faddr;
519 tcp_hdr->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
520 htons(sizeof(struct tcphdr) + IPPROTO_TCP));
521 }
522
523 tcp_hdr->th_sport = inp->inp_lport;
524 tcp_hdr->th_dport = inp->inp_fport;
525 tcp_hdr->th_seq = 0;
526 tcp_hdr->th_ack = 0;
527 tcp_hdr->th_x2 = 0;
528 tcp_hdr->th_off = 5;
529 tcp_hdr->th_flags = 0;
530 tcp_hdr->th_win = 0;
531 tcp_hdr->th_urp = 0;
532 }
533
534 /*
535 * Create template to be used to send tcp packets on a connection.
536 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only
537 * use for this function is in keepalives, which use tcp_respond.
538 */
539 struct tcptemp *
540 tcp_maketemplate(tp)
541 struct tcpcb *tp;
542 {
543 struct mbuf *m;
544 struct tcptemp *n;
545
546 m = m_get(M_DONTWAIT, MT_HEADER);
547 if (m == NULL)
548 return (0);
549 m->m_len = sizeof(struct tcptemp);
550 n = mtod(m, struct tcptemp *);
551
552 tcp_fillheaders(tp, (void *)&n->tt_ipgen, (void *)&n->tt_t);
553 return (n);
554 }
555
556 /*
557 * Send a single message to the TCP at address specified by
558 * the given TCP/IP header. If m == 0, then we make a copy
559 * of the tcpiphdr at ti and send directly to the addressed host.
560 * This is used to force keep alive messages out using the TCP
561 * template for a connection. If flags are given then we send
562 * a message back to the TCP which originated the * segment ti,
563 * and discard the mbuf containing it and any other attached mbufs.
564 *
565 * In any case the ack and sequence number of the transmitted
566 * segment are as specified by the parameters.
567 *
568 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
569 */
570 void
571 tcp_respond(
572 struct tcpcb *tp,
573 void *ipgen,
574 register struct tcphdr *th,
575 register struct mbuf *m,
576 tcp_seq ack,
577 tcp_seq seq,
578 int flags,
579 unsigned int ifscope,
580 unsigned int nocell
581 )
582 {
583 register int tlen;
584 int win = 0;
585 struct route *ro = 0;
586 struct route sro;
587 struct ip *ip;
588 struct tcphdr *nth;
589 #if INET6
590 struct route_in6 *ro6 = 0;
591 struct route_in6 sro6;
592 struct ip6_hdr *ip6;
593 int isipv6;
594 #endif /* INET6 */
595 struct ifnet *outif;
596
597 #if INET6
598 isipv6 = IP_VHL_V(((struct ip *)ipgen)->ip_vhl) == 6;
599 ip6 = ipgen;
600 #endif /* INET6 */
601 ip = ipgen;
602
603 if (tp) {
604 if (!(flags & TH_RST)) {
605 win = tcp_sbspace(tp);
606 if (win > (int32_t)TCP_MAXWIN << tp->rcv_scale)
607 win = (int32_t)TCP_MAXWIN << tp->rcv_scale;
608 }
609 #if INET6
610 if (isipv6)
611 ro6 = &tp->t_inpcb->in6p_route;
612 else
613 #endif /* INET6 */
614 ro = &tp->t_inpcb->inp_route;
615 } else {
616 #if INET6
617 if (isipv6) {
618 ro6 = &sro6;
619 bzero(ro6, sizeof *ro6);
620 } else
621 #endif /* INET6 */
622 {
623 ro = &sro;
624 bzero(ro, sizeof *ro);
625 }
626 }
627 if (m == 0) {
628 m = m_gethdr(M_DONTWAIT, MT_HEADER); /* MAC-OK */
629 if (m == NULL)
630 return;
631 tlen = 0;
632 m->m_data += max_linkhdr;
633 #if INET6
634 if (isipv6) {
635 VERIFY((MHLEN - max_linkhdr) >=
636 (sizeof (*ip6) + sizeof (*nth)));
637 bcopy((caddr_t)ip6, mtod(m, caddr_t),
638 sizeof(struct ip6_hdr));
639 ip6 = mtod(m, struct ip6_hdr *);
640 nth = (struct tcphdr *)(void *)(ip6 + 1);
641 } else
642 #endif /* INET6 */
643 {
644 VERIFY((MHLEN - max_linkhdr) >=
645 (sizeof (*ip) + sizeof (*nth)));
646 bcopy((caddr_t)ip, mtod(m, caddr_t), sizeof(struct ip));
647 ip = mtod(m, struct ip *);
648 nth = (struct tcphdr *)(void *)(ip + 1);
649 }
650 bcopy((caddr_t)th, (caddr_t)nth, sizeof(struct tcphdr));
651 #if MPTCP
652 if ((tp) && (tp->t_mpflags & TMPF_RESET))
653 flags = (TH_RST | TH_ACK);
654 else
655 #endif
656 flags = TH_ACK;
657 } else {
658 m_freem(m->m_next);
659 m->m_next = 0;
660 m->m_data = (caddr_t)ipgen;
661 /* m_len is set later */
662 tlen = 0;
663 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
664 #if INET6
665 if (isipv6) {
666 /* Expect 32-bit aligned IP on strict-align platforms */
667 IP6_HDR_STRICT_ALIGNMENT_CHECK(ip6);
668 xchg(ip6->ip6_dst, ip6->ip6_src, struct in6_addr);
669 nth = (struct tcphdr *)(void *)(ip6 + 1);
670 } else
671 #endif /* INET6 */
672 {
673 /* Expect 32-bit aligned IP on strict-align platforms */
674 IP_HDR_STRICT_ALIGNMENT_CHECK(ip);
675 xchg(ip->ip_dst.s_addr, ip->ip_src.s_addr, n_long);
676 nth = (struct tcphdr *)(void *)(ip + 1);
677 }
678 if (th != nth) {
679 /*
680 * this is usually a case when an extension header
681 * exists between the IPv6 header and the
682 * TCP header.
683 */
684 nth->th_sport = th->th_sport;
685 nth->th_dport = th->th_dport;
686 }
687 xchg(nth->th_dport, nth->th_sport, n_short);
688 #undef xchg
689 }
690 #if INET6
691 if (isipv6) {
692 ip6->ip6_plen = htons((u_short)(sizeof (struct tcphdr) +
693 tlen));
694 tlen += sizeof (struct ip6_hdr) + sizeof (struct tcphdr);
695 } else
696 #endif
697 {
698 tlen += sizeof (struct tcpiphdr);
699 ip->ip_len = tlen;
700 ip->ip_ttl = ip_defttl;
701 }
702 m->m_len = tlen;
703 m->m_pkthdr.len = tlen;
704 m->m_pkthdr.rcvif = 0;
705 #if CONFIG_MACF_NET
706 if (tp != NULL && tp->t_inpcb != NULL) {
707 /*
708 * Packet is associated with a socket, so allow the
709 * label of the response to reflect the socket label.
710 */
711 mac_mbuf_label_associate_inpcb(tp->t_inpcb, m);
712 } else {
713 /*
714 * Packet is not associated with a socket, so possibly
715 * update the label in place.
716 */
717 mac_netinet_tcp_reply(m);
718 }
719 #endif
720
721 nth->th_seq = htonl(seq);
722 nth->th_ack = htonl(ack);
723 nth->th_x2 = 0;
724 nth->th_off = sizeof (struct tcphdr) >> 2;
725 nth->th_flags = flags;
726 if (tp)
727 nth->th_win = htons((u_short) (win >> tp->rcv_scale));
728 else
729 nth->th_win = htons((u_short)win);
730 nth->th_urp = 0;
731 #if INET6
732 if (isipv6) {
733 nth->th_sum = 0;
734 nth->th_sum = in6_pseudo(&ip6->ip6_src, &ip6->ip6_dst,
735 htonl((tlen - sizeof (struct ip6_hdr)) + IPPROTO_TCP));
736 m->m_pkthdr.csum_flags = CSUM_TCPIPV6;
737 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
738 ip6->ip6_hlim = in6_selecthlim(tp ? tp->t_inpcb : NULL,
739 ro6 && ro6->ro_rt ?
740 ro6->ro_rt->rt_ifp :
741 NULL);
742 } else
743 #endif /* INET6 */
744 {
745 nth->th_sum = in_pseudo(ip->ip_src.s_addr, ip->ip_dst.s_addr,
746 htons((u_short)(tlen - sizeof(struct ip) + ip->ip_p)));
747 m->m_pkthdr.csum_flags = CSUM_TCP;
748 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum);
749 }
750 #if TCPDEBUG
751 if (tp == NULL || (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
752 tcp_trace(TA_OUTPUT, 0, tp, mtod(m, void *), th, 0);
753 #endif
754 #if IPSEC
755 if (ipsec_bypass == 0 && ipsec_setsocket(m, tp ? tp->t_inpcb->inp_socket : NULL) != 0) {
756 m_freem(m);
757 return;
758 }
759 #endif
760
761 if (tp != NULL) {
762 u_int32_t svc_flags = 0;
763 if (isipv6) {
764 svc_flags |= PKT_SCF_IPV6;
765 }
766 set_packet_service_class(m, tp->t_inpcb->inp_socket,
767 MBUF_SC_UNSPEC, svc_flags);
768
769 /* Embed flowhash and flow control flags */
770 m->m_pkthdr.pkt_flowsrc = FLOWSRC_INPCB;
771 m->m_pkthdr.pkt_flowid = tp->t_inpcb->inp_flowhash;
772 m->m_pkthdr.pkt_flags |= PKTF_FLOW_ID | PKTF_FLOW_LOCALSRC;
773 #if MPTCP
774 /* Disable flow advisory when using MPTCP. */
775 if (!(tp->t_mpflags & TMPF_MPTCP_TRUE))
776 #endif /* MPTCP */
777 m->m_pkthdr.pkt_flags |= PKTF_FLOW_ADV;
778 m->m_pkthdr.pkt_proto = IPPROTO_TCP;
779 }
780
781 #if INET6
782 if (isipv6) {
783 struct ip6_out_args ip6oa = { ifscope, { 0 },
784 IP6OAF_SELECT_SRCIF | IP6OAF_BOUND_SRCADDR, 0 };
785
786 if (ifscope != IFSCOPE_NONE)
787 ip6oa.ip6oa_flags |= IP6OAF_BOUND_IF;
788 if (nocell)
789 ip6oa.ip6oa_flags |= IP6OAF_NO_CELLULAR;
790
791 (void) ip6_output(m, NULL, ro6, IPV6_OUTARGS, NULL,
792 NULL, &ip6oa);
793
794 if (tp != NULL && ro6 != NULL && ro6->ro_rt != NULL &&
795 (outif = ro6->ro_rt->rt_ifp) !=
796 tp->t_inpcb->in6p_last_outifp)
797 tp->t_inpcb->in6p_last_outifp = outif;
798
799 if (ro6 == &sro6)
800 ROUTE_RELEASE(ro6);
801 } else
802 #endif /* INET6 */
803 {
804 struct ip_out_args ipoa = { ifscope, { 0 },
805 IPOAF_SELECT_SRCIF | IPOAF_BOUND_SRCADDR, 0 };
806
807 if (ifscope != IFSCOPE_NONE)
808 ipoa.ipoa_flags |= IPOAF_BOUND_IF;
809 if (nocell)
810 ipoa.ipoa_flags |= IPOAF_NO_CELLULAR;
811
812 if (ro != &sro) {
813 /* Copy the cached route and take an extra reference */
814 inp_route_copyout(tp->t_inpcb, &sro);
815 }
816 /*
817 * For consistency, pass a local route copy.
818 */
819 (void) ip_output(m, NULL, &sro, IP_OUTARGS, NULL, &ipoa);
820
821 if (tp != NULL && sro.ro_rt != NULL &&
822 (outif = sro.ro_rt->rt_ifp) !=
823 tp->t_inpcb->inp_last_outifp)
824 tp->t_inpcb->inp_last_outifp = outif;
825
826 if (ro != &sro) {
827 /* Synchronize cached PCB route */
828 inp_route_copyin(tp->t_inpcb, &sro);
829 } else {
830 ROUTE_RELEASE(&sro);
831 }
832 }
833 }
834
835 /*
836 * Create a new TCP control block, making an
837 * empty reassembly queue and hooking it to the argument
838 * protocol control block. The `inp' parameter must have
839 * come from the zone allocator set up in tcp_init().
840 */
841 struct tcpcb *
842 tcp_newtcpcb(inp)
843 struct inpcb *inp;
844 {
845 struct inp_tp *it;
846 register struct tcpcb *tp;
847 register struct socket *so = inp->inp_socket;
848 #if INET6
849 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
850 #endif /* INET6 */
851
852 calculate_tcp_clock();
853
854 if (!so->cached_in_sock_layer) {
855 it = (struct inp_tp *)(void *)inp;
856 tp = &it->tcb;
857 } else {
858 tp = (struct tcpcb *)(void *)inp->inp_saved_ppcb;
859 }
860
861 bzero((char *) tp, sizeof(struct tcpcb));
862 LIST_INIT(&tp->t_segq);
863 tp->t_maxseg = tp->t_maxopd =
864 #if INET6
865 isipv6 ? tcp_v6mssdflt :
866 #endif /* INET6 */
867 tcp_mssdflt;
868
869 if (tcp_do_rfc1323)
870 tp->t_flags = (TF_REQ_SCALE|TF_REQ_TSTMP);
871 if (tcp_do_sack)
872 tp->t_flagsext |= TF_SACK_ENABLE;
873
874 TAILQ_INIT(&tp->snd_holes);
875 tp->t_inpcb = inp; /* XXX */
876 /*
877 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
878 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
879 * reasonable initial retransmit time.
880 */
881 tp->t_srtt = TCPTV_SRTTBASE;
882 tp->t_rttvar = ((TCPTV_RTOBASE - TCPTV_SRTTBASE) << TCP_RTTVAR_SHIFT) / 4;
883 tp->t_rttmin = tcp_TCPTV_MIN;
884 tp->t_rxtcur = TCPTV_RTOBASE;
885
886 /* Initialize congestion control algorithm for this connection
887 * to newreno by default
888 */
889 tp->tcp_cc_index = TCP_CC_ALGO_NEWRENO_INDEX;
890 if (CC_ALGO(tp)->init != NULL) {
891 CC_ALGO(tp)->init(tp);
892 }
893
894 tp->snd_cwnd = TCP_MAXWIN << TCP_MAX_WINSHIFT;
895 tp->snd_ssthresh = TCP_MAXWIN << TCP_MAX_WINSHIFT;
896 tp->snd_ssthresh_prev = TCP_MAXWIN << TCP_MAX_WINSHIFT;
897 tp->t_rcvtime = tcp_now;
898 tp->tentry.timer_start = tcp_now;
899 tp->t_persist_timeout = tcp_max_persist_timeout;
900 tp->t_persist_stop = 0;
901 tp->t_flagsext |= TF_RCVUNACK_WAITSS;
902 tp->t_rexmtthresh = tcprexmtthresh;
903
904 /* Clear time wait tailq entry */
905 tp->t_twentry.tqe_next = NULL;
906 tp->t_twentry.tqe_prev = NULL;
907
908 /*
909 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
910 * because the socket may be bound to an IPv6 wildcard address,
911 * which may match an IPv4-mapped IPv6 address.
912 */
913 inp->inp_ip_ttl = ip_defttl;
914 inp->inp_ppcb = (caddr_t)tp;
915 return (tp); /* XXX */
916 }
917
918 /*
919 * Drop a TCP connection, reporting
920 * the specified error. If connection is synchronized,
921 * then send a RST to peer.
922 */
923 struct tcpcb *
924 tcp_drop(tp, errno)
925 register struct tcpcb *tp;
926 int errno;
927 {
928 struct socket *so = tp->t_inpcb->inp_socket;
929 #if CONFIG_DTRACE
930 struct inpcb *inp = tp->t_inpcb;
931 #endif
932
933 if (TCPS_HAVERCVDSYN(tp->t_state)) {
934 DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
935 struct tcpcb *, tp, int32_t, TCPS_CLOSED);
936 tp->t_state = TCPS_CLOSED;
937 (void) tcp_output(tp);
938 tcpstat.tcps_drops++;
939 } else
940 tcpstat.tcps_conndrops++;
941 if (errno == ETIMEDOUT && tp->t_softerror)
942 errno = tp->t_softerror;
943 so->so_error = errno;
944 return (tcp_close(tp));
945 }
946
947 void
948 tcp_getrt_rtt(struct tcpcb *tp, struct rtentry *rt)
949 {
950 u_int32_t rtt = rt->rt_rmx.rmx_rtt;
951 int isnetlocal = (tp->t_flags & TF_LOCAL);
952
953 if (rtt != 0) {
954 /*
955 * XXX the lock bit for RTT indicates that the value
956 * is also a minimum value; this is subject to time.
957 */
958 if (rt->rt_rmx.rmx_locks & RTV_RTT)
959 tp->t_rttmin = rtt / (RTM_RTTUNIT / TCP_RETRANSHZ);
960 else
961 tp->t_rttmin = isnetlocal ? tcp_TCPTV_MIN : TCPTV_REXMTMIN;
962 tp->t_srtt = rtt / (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTT_SCALE));
963 tcpstat.tcps_usedrtt++;
964 if (rt->rt_rmx.rmx_rttvar) {
965 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
966 (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTTVAR_SCALE));
967 tcpstat.tcps_usedrttvar++;
968 } else {
969 /* default variation is +- 1 rtt */
970 tp->t_rttvar =
971 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
972 }
973 TCPT_RANGESET(tp->t_rxtcur,
974 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
975 tp->t_rttmin, TCPTV_REXMTMAX,
976 TCP_ADD_REXMTSLOP(tp));
977 }
978 }
979
980 /*
981 * Close a TCP control block:
982 * discard all space held by the tcp
983 * discard internet protocol block
984 * wake up any sleepers
985 */
986 struct tcpcb *
987 tcp_close(tp)
988 register struct tcpcb *tp;
989 {
990 struct inpcb *inp = tp->t_inpcb;
991 struct socket *so = inp->inp_socket;
992 #if INET6
993 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
994 #endif /* INET6 */
995 struct route *ro;
996 struct rtentry *rt;
997 int dosavessthresh;
998
999 /* tcp_close was called previously, bail */
1000 if ( inp->inp_ppcb == NULL)
1001 return(NULL);
1002
1003 tcp_canceltimers(tp);
1004 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE | DBG_FUNC_START, tp,0,0,0,0);
1005
1006 /*
1007 * If another thread for this tcp is currently in ip (indicated by
1008 * the TF_SENDINPROG flag), defer the cleanup until after it returns
1009 * back to tcp. This is done to serialize the close until after all
1010 * pending output is finished, in order to avoid having the PCB be
1011 * detached and the cached route cleaned, only for ip to cache the
1012 * route back into the PCB again. Note that we've cleared all the
1013 * timers at this point. Set TF_CLOSING to indicate to tcp_output()
1014 * that is should call us again once it returns from ip; at that
1015 * point both flags should be cleared and we can proceed further
1016 * with the cleanup.
1017 */
1018 if ((tp->t_flags & TF_CLOSING) ||
1019 inp->inp_sndinprog_cnt > 0) {
1020 tp->t_flags |= TF_CLOSING;
1021 return (NULL);
1022 }
1023
1024 DTRACE_TCP4(state__change, void, NULL, struct inpcb *, inp,
1025 struct tcpcb *, tp, int32_t, TCPS_CLOSED);
1026
1027 if (CC_ALGO(tp)->cleanup != NULL) {
1028 CC_ALGO(tp)->cleanup(tp);
1029 }
1030
1031 #if INET6
1032 ro = (isipv6 ? (struct route *)&inp->in6p_route : &inp->inp_route);
1033 #else
1034 ro = &inp->inp_route;
1035 #endif
1036 rt = ro->ro_rt;
1037 if (rt != NULL)
1038 RT_LOCK_SPIN(rt);
1039
1040 /*
1041 * If we got enough samples through the srtt filter,
1042 * save the rtt and rttvar in the routing entry.
1043 * 'Enough' is arbitrarily defined as the 16 samples.
1044 * 16 samples is enough for the srtt filter to converge
1045 * to within 5% of the correct value; fewer samples and
1046 * we could save a very bogus rtt.
1047 *
1048 * Don't update the default route's characteristics and don't
1049 * update anything that the user "locked".
1050 */
1051 if (tp->t_rttupdated >= 16) {
1052 register u_int32_t i = 0;
1053
1054 #if INET6
1055 if (isipv6) {
1056 struct sockaddr_in6 *sin6;
1057
1058 if (rt == NULL)
1059 goto no_valid_rt;
1060 sin6 = (struct sockaddr_in6 *)(void *)rt_key(rt);
1061 if (IN6_IS_ADDR_UNSPECIFIED(&sin6->sin6_addr))
1062 goto no_valid_rt;
1063 }
1064 else
1065 #endif /* INET6 */
1066 if (ROUTE_UNUSABLE(ro) ||
1067 SIN(rt_key(rt))->sin_addr.s_addr == INADDR_ANY) {
1068 if (tp->t_state >= TCPS_CLOSE_WAIT) {
1069 DTRACE_TCP4(state__change,
1070 void, NULL, struct inpcb *, inp,
1071 struct tcpcb *, tp, int32_t,
1072 TCPS_CLOSING);
1073 tp->t_state = TCPS_CLOSING;
1074 }
1075 goto no_valid_rt;
1076 }
1077
1078 RT_LOCK_ASSERT_HELD(rt);
1079 if ((rt->rt_rmx.rmx_locks & RTV_RTT) == 0) {
1080 i = tp->t_srtt *
1081 (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTT_SCALE));
1082 if (rt->rt_rmx.rmx_rtt && i)
1083 /*
1084 * filter this update to half the old & half
1085 * the new values, converting scale.
1086 * See route.h and tcp_var.h for a
1087 * description of the scaling constants.
1088 */
1089 rt->rt_rmx.rmx_rtt =
1090 (rt->rt_rmx.rmx_rtt + i) / 2;
1091 else
1092 rt->rt_rmx.rmx_rtt = i;
1093 tcpstat.tcps_cachedrtt++;
1094 }
1095 if ((rt->rt_rmx.rmx_locks & RTV_RTTVAR) == 0) {
1096 i = tp->t_rttvar *
1097 (RTM_RTTUNIT / (TCP_RETRANSHZ * TCP_RTTVAR_SCALE));
1098 if (rt->rt_rmx.rmx_rttvar && i)
1099 rt->rt_rmx.rmx_rttvar =
1100 (rt->rt_rmx.rmx_rttvar + i) / 2;
1101 else
1102 rt->rt_rmx.rmx_rttvar = i;
1103 tcpstat.tcps_cachedrttvar++;
1104 }
1105 /*
1106 * The old comment here said:
1107 * update the pipelimit (ssthresh) if it has been updated
1108 * already or if a pipesize was specified & the threshhold
1109 * got below half the pipesize. I.e., wait for bad news
1110 * before we start updating, then update on both good
1111 * and bad news.
1112 *
1113 * But we want to save the ssthresh even if no pipesize is
1114 * specified explicitly in the route, because such
1115 * connections still have an implicit pipesize specified
1116 * by the global tcp_sendspace. In the absence of a reliable
1117 * way to calculate the pipesize, it will have to do.
1118 */
1119 i = tp->snd_ssthresh;
1120 if (rt->rt_rmx.rmx_sendpipe != 0)
1121 dosavessthresh = (i < rt->rt_rmx.rmx_sendpipe / 2);
1122 else
1123 dosavessthresh = (i < so->so_snd.sb_hiwat / 2);
1124 if (((rt->rt_rmx.rmx_locks & RTV_SSTHRESH) == 0 &&
1125 i != 0 && rt->rt_rmx.rmx_ssthresh != 0)
1126 || dosavessthresh) {
1127 /*
1128 * convert the limit from user data bytes to
1129 * packets then to packet data bytes.
1130 */
1131 i = (i + tp->t_maxseg / 2) / tp->t_maxseg;
1132 if (i < 2)
1133 i = 2;
1134 i *= (u_int32_t)(tp->t_maxseg +
1135 #if INET6
1136 (isipv6 ? sizeof (struct ip6_hdr) +
1137 sizeof (struct tcphdr) :
1138 #endif
1139 sizeof (struct tcpiphdr)
1140 #if INET6
1141 )
1142 #endif
1143 );
1144 if (rt->rt_rmx.rmx_ssthresh)
1145 rt->rt_rmx.rmx_ssthresh =
1146 (rt->rt_rmx.rmx_ssthresh + i) / 2;
1147 else
1148 rt->rt_rmx.rmx_ssthresh = i;
1149 tcpstat.tcps_cachedssthresh++;
1150 }
1151 }
1152
1153 /*
1154 * Mark route for deletion if no information is cached.
1155 */
1156 if (rt != NULL && (so->so_flags & SOF_OVERFLOW) && tcp_lq_overflow) {
1157 if (!(rt->rt_rmx.rmx_locks & RTV_RTT) &&
1158 rt->rt_rmx.rmx_rtt == 0) {
1159 rt->rt_flags |= RTF_DELCLONE;
1160 }
1161 }
1162
1163 no_valid_rt:
1164 if (rt != NULL)
1165 RT_UNLOCK(rt);
1166
1167 /* free the reassembly queue, if any */
1168 (void) tcp_freeq(tp);
1169
1170 tcp_free_sackholes(tp);
1171 if (tp->t_bwmeas != NULL) {
1172 tcp_bwmeas_free(tp);
1173 }
1174
1175 /* Free the packet list */
1176 if (tp->t_pktlist_head != NULL)
1177 m_freem_list(tp->t_pktlist_head);
1178 TCP_PKTLIST_CLEAR(tp);
1179
1180 #if MPTCP
1181 /* Clear MPTCP state */
1182 tp->t_mpflags = 0;
1183 #endif /* MPTCP */
1184
1185 if (so->cached_in_sock_layer)
1186 inp->inp_saved_ppcb = (caddr_t) tp;
1187
1188 /* Issue a wakeup before detach so that we don't miss
1189 * a wakeup
1190 */
1191 sodisconnectwakeup(so);
1192
1193 /*
1194 * Clean up any LRO state
1195 */
1196 if (tp->t_flagsext & TF_LRO_OFFLOADED) {
1197 tcp_lro_remove_state(inp->inp_laddr, inp->inp_faddr,
1198 inp->inp_lport,
1199 inp->inp_fport);
1200 tp->t_flagsext &= ~TF_LRO_OFFLOADED;
1201 }
1202 tp->t_state = TCPS_CLOSED;
1203 #if INET6
1204 if (SOCK_CHECK_DOM(so, PF_INET6))
1205 in6_pcbdetach(inp);
1206 else
1207 #endif /* INET6 */
1208 in_pcbdetach(inp);
1209
1210 /* Call soisdisconnected after detach because it might unlock the socket */
1211 soisdisconnected(so);
1212 tcpstat.tcps_closed++;
1213 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE | DBG_FUNC_END, tcpstat.tcps_closed,0,0,0,0);
1214 return(NULL);
1215 }
1216
1217 int
1218 tcp_freeq(tp)
1219 struct tcpcb *tp;
1220 {
1221
1222 register struct tseg_qent *q;
1223 int rv = 0;
1224
1225 while((q = LIST_FIRST(&tp->t_segq)) != NULL) {
1226 LIST_REMOVE(q, tqe_q);
1227 m_freem(q->tqe_m);
1228 zfree(tcp_reass_zone, q);
1229 tcp_reass_qsize--;
1230 rv = 1;
1231 }
1232 return (rv);
1233 }
1234
1235 void
1236 tcp_drain()
1237 {
1238 if (do_tcpdrain)
1239 {
1240 struct inpcb *inp;
1241 struct tcpcb *tp;
1242 /*
1243 * Walk the tcpbs, if existing, and flush the reassembly queue,
1244 * if there is one...
1245 * Do it next time if the pcbinfo lock is in use
1246 */
1247 if (!lck_rw_try_lock_exclusive(tcbinfo.ipi_lock))
1248 return;
1249
1250 LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) {
1251 if (in_pcb_checkstate(inp, WNT_ACQUIRE, 0) !=
1252 WNT_STOPUSING) {
1253 tcp_lock(inp->inp_socket, 1, 0);
1254 if (in_pcb_checkstate(inp, WNT_RELEASE, 1)
1255 == WNT_STOPUSING) {
1256 /* lost a race, try the next one */
1257 tcp_unlock(inp->inp_socket, 1, 0);
1258 continue;
1259 }
1260 tp = intotcpcb(inp);
1261 tcp_freeq(tp);
1262 tcp_unlock(inp->inp_socket, 1, 0);
1263 }
1264 }
1265 lck_rw_done(tcbinfo.ipi_lock);
1266
1267 }
1268 }
1269
1270 /*
1271 * Notify a tcp user of an asynchronous error;
1272 * store error as soft error, but wake up user
1273 * (for now, won't do anything until can select for soft error).
1274 *
1275 * Do not wake up user since there currently is no mechanism for
1276 * reporting soft errors (yet - a kqueue filter may be added).
1277 */
1278 static void
1279 tcp_notify(inp, error)
1280 struct inpcb *inp;
1281 int error;
1282 {
1283 struct tcpcb *tp;
1284
1285 if (inp == NULL || (inp->inp_state == INPCB_STATE_DEAD))
1286 return; /* pcb is gone already */
1287
1288 tp = (struct tcpcb *)inp->inp_ppcb;
1289
1290 /*
1291 * Ignore some errors if we are hooked up.
1292 * If connection hasn't completed, has retransmitted several times,
1293 * and receives a second error, give up now. This is better
1294 * than waiting a long time to establish a connection that
1295 * can never complete.
1296 */
1297 if (tp->t_state == TCPS_ESTABLISHED &&
1298 (error == EHOSTUNREACH || error == ENETUNREACH ||
1299 error == EHOSTDOWN)) {
1300 return;
1301 } else if (tp->t_state < TCPS_ESTABLISHED && tp->t_rxtshift > 3 &&
1302 tp->t_softerror)
1303 tcp_drop(tp, error);
1304 else
1305 tp->t_softerror = error;
1306 #if 0
1307 wakeup((caddr_t) &so->so_timeo);
1308 sorwakeup(so);
1309 sowwakeup(so);
1310 #endif
1311 }
1312
1313 struct bwmeas*
1314 tcp_bwmeas_alloc(struct tcpcb *tp)
1315 {
1316 struct bwmeas *elm;
1317 elm = zalloc(tcp_bwmeas_zone);
1318 if (elm == NULL)
1319 return(elm);
1320
1321 bzero(elm, bwmeas_elm_size);
1322 elm->bw_minsizepkts = TCP_BWMEAS_BURST_MINSIZE;
1323 elm->bw_maxsizepkts = TCP_BWMEAS_BURST_MAXSIZE;
1324 elm->bw_minsize = elm->bw_minsizepkts * tp->t_maxseg;
1325 elm->bw_maxsize = elm->bw_maxsizepkts * tp->t_maxseg;
1326 return(elm);
1327 }
1328
1329 void
1330 tcp_bwmeas_free(struct tcpcb* tp)
1331 {
1332 zfree(tcp_bwmeas_zone, tp->t_bwmeas);
1333 tp->t_bwmeas = NULL;
1334 tp->t_flagsext &= ~(TF_MEASURESNDBW);
1335 }
1336
1337 /*
1338 * tcpcb_to_otcpcb copies specific bits of a tcpcb to a otcpcb format.
1339 * The otcpcb data structure is passed to user space and must not change.
1340 */
1341 static void
1342 tcpcb_to_otcpcb(struct tcpcb *tp, struct otcpcb *otp)
1343 {
1344 int i;
1345
1346 otp->t_segq = (u_int32_t)(uintptr_t)tp->t_segq.lh_first;
1347 otp->t_dupacks = tp->t_dupacks;
1348 for (i = 0; i < TCPT_NTIMERS_EXT; i++)
1349 otp->t_timer[i] = tp->t_timer[i];
1350 otp->t_inpcb = (_TCPCB_PTR(struct inpcb *))(uintptr_t)tp->t_inpcb;
1351 otp->t_state = tp->t_state;
1352 otp->t_flags = tp->t_flags;
1353 otp->t_force = tp->t_force;
1354 otp->snd_una = tp->snd_una;
1355 otp->snd_max = tp->snd_max;
1356 otp->snd_nxt = tp->snd_nxt;
1357 otp->snd_up = tp->snd_up;
1358 otp->snd_wl1 = tp->snd_wl1;
1359 otp->snd_wl2 = tp->snd_wl2;
1360 otp->iss = tp->iss;
1361 otp->irs = tp->irs;
1362 otp->rcv_nxt = tp->rcv_nxt;
1363 otp->rcv_adv = tp->rcv_adv;
1364 otp->rcv_wnd = tp->rcv_wnd;
1365 otp->rcv_up = tp->rcv_up;
1366 otp->snd_wnd = tp->snd_wnd;
1367 otp->snd_cwnd = tp->snd_cwnd;
1368 otp->snd_ssthresh = tp->snd_ssthresh;
1369 otp->t_maxopd = tp->t_maxopd;
1370 otp->t_rcvtime = tp->t_rcvtime;
1371 otp->t_starttime = tp->t_starttime;
1372 otp->t_rtttime = tp->t_rtttime;
1373 otp->t_rtseq = tp->t_rtseq;
1374 otp->t_rxtcur = tp->t_rxtcur;
1375 otp->t_maxseg = tp->t_maxseg;
1376 otp->t_srtt = tp->t_srtt;
1377 otp->t_rttvar = tp->t_rttvar;
1378 otp->t_rxtshift = tp->t_rxtshift;
1379 otp->t_rttmin = tp->t_rttmin;
1380 otp->t_rttupdated = tp->t_rttupdated;
1381 otp->max_sndwnd = tp->max_sndwnd;
1382 otp->t_softerror = tp->t_softerror;
1383 otp->t_oobflags = tp->t_oobflags;
1384 otp->t_iobc = tp->t_iobc;
1385 otp->snd_scale = tp->snd_scale;
1386 otp->rcv_scale = tp->rcv_scale;
1387 otp->request_r_scale = tp->request_r_scale;
1388 otp->requested_s_scale = tp->requested_s_scale;
1389 otp->ts_recent = tp->ts_recent;
1390 otp->ts_recent_age = tp->ts_recent_age;
1391 otp->last_ack_sent = tp->last_ack_sent;
1392 otp->cc_send = tp->cc_send;
1393 otp->cc_recv = tp->cc_recv;
1394 otp->snd_recover = tp->snd_recover;
1395 otp->snd_cwnd_prev = tp->snd_cwnd_prev;
1396 otp->snd_ssthresh_prev = tp->snd_ssthresh_prev;
1397 otp->t_badrxtwin = 0;
1398 }
1399
1400 static int
1401 tcp_pcblist SYSCTL_HANDLER_ARGS
1402 {
1403 #pragma unused(oidp, arg1, arg2)
1404 int error, i = 0, n;
1405 struct inpcb *inp, **inp_list;
1406 struct tcpcb *tp;
1407 inp_gen_t gencnt;
1408 struct xinpgen xig;
1409
1410 /*
1411 * The process of preparing the TCB list is too time-consuming and
1412 * resource-intensive to repeat twice on every request.
1413 */
1414 lck_rw_lock_shared(tcbinfo.ipi_lock);
1415 if (req->oldptr == USER_ADDR_NULL) {
1416 n = tcbinfo.ipi_count;
1417 req->oldidx = 2 * (sizeof xig)
1418 + (n + n/8) * sizeof(struct xtcpcb);
1419 lck_rw_done(tcbinfo.ipi_lock);
1420 return 0;
1421 }
1422
1423 if (req->newptr != USER_ADDR_NULL) {
1424 lck_rw_done(tcbinfo.ipi_lock);
1425 return EPERM;
1426 }
1427
1428 /*
1429 * OK, now we're committed to doing something.
1430 */
1431 gencnt = tcbinfo.ipi_gencnt;
1432 n = tcbinfo.ipi_count;
1433
1434 bzero(&xig, sizeof(xig));
1435 xig.xig_len = sizeof xig;
1436 xig.xig_count = n;
1437 xig.xig_gen = gencnt;
1438 xig.xig_sogen = so_gencnt;
1439 error = SYSCTL_OUT(req, &xig, sizeof xig);
1440 if (error) {
1441 lck_rw_done(tcbinfo.ipi_lock);
1442 return error;
1443 }
1444 /*
1445 * We are done if there is no pcb
1446 */
1447 if (n == 0) {
1448 lck_rw_done(tcbinfo.ipi_lock);
1449 return 0;
1450 }
1451
1452 inp_list = _MALLOC(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1453 if (inp_list == 0) {
1454 lck_rw_done(tcbinfo.ipi_lock);
1455 return ENOMEM;
1456 }
1457
1458 LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) {
1459 if (inp->inp_gencnt <= gencnt &&
1460 inp->inp_state != INPCB_STATE_DEAD)
1461 inp_list[i++] = inp;
1462 if (i >= n) break;
1463 }
1464
1465 TAILQ_FOREACH(tp, &tcp_tw_tailq, t_twentry) {
1466 inp = tp->t_inpcb;
1467 if (inp->inp_gencnt <= gencnt &&
1468 inp->inp_state != INPCB_STATE_DEAD)
1469 inp_list[i++] = inp;
1470 if (i >= n) break;
1471 }
1472
1473 n = i;
1474
1475 error = 0;
1476 for (i = 0; i < n; i++) {
1477 inp = inp_list[i];
1478 if (inp->inp_gencnt <= gencnt &&
1479 inp->inp_state != INPCB_STATE_DEAD) {
1480 struct xtcpcb xt;
1481 caddr_t inp_ppcb;
1482
1483 bzero(&xt, sizeof(xt));
1484 xt.xt_len = sizeof xt;
1485 /* XXX should avoid extra copy */
1486 inpcb_to_compat(inp, &xt.xt_inp);
1487 inp_ppcb = inp->inp_ppcb;
1488 if (inp_ppcb != NULL) {
1489 tcpcb_to_otcpcb(
1490 (struct tcpcb *)(void *)inp_ppcb,
1491 &xt.xt_tp);
1492 } else {
1493 bzero((char *) &xt.xt_tp, sizeof xt.xt_tp);
1494 }
1495 if (inp->inp_socket)
1496 sotoxsocket(inp->inp_socket, &xt.xt_socket);
1497 error = SYSCTL_OUT(req, &xt, sizeof xt);
1498 }
1499 }
1500 if (!error) {
1501 /*
1502 * Give the user an updated idea of our state.
1503 * If the generation differs from what we told
1504 * her before, she knows that something happened
1505 * while we were processing this request, and it
1506 * might be necessary to retry.
1507 */
1508 bzero(&xig, sizeof(xig));
1509 xig.xig_len = sizeof xig;
1510 xig.xig_gen = tcbinfo.ipi_gencnt;
1511 xig.xig_sogen = so_gencnt;
1512 xig.xig_count = tcbinfo.ipi_count;
1513 error = SYSCTL_OUT(req, &xig, sizeof xig);
1514 }
1515 FREE(inp_list, M_TEMP);
1516 lck_rw_done(tcbinfo.ipi_lock);
1517 return error;
1518 }
1519
1520 SYSCTL_PROC(_net_inet_tcp, TCPCTL_PCBLIST, pcblist, CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
1521 tcp_pcblist, "S,xtcpcb", "List of active TCP connections");
1522
1523
1524 static void
1525 tcpcb_to_xtcpcb64(struct tcpcb *tp, struct xtcpcb64 *otp)
1526 {
1527 int i;
1528
1529 otp->t_segq = (u_int32_t)(uintptr_t)tp->t_segq.lh_first;
1530 otp->t_dupacks = tp->t_dupacks;
1531 for (i = 0; i < TCPT_NTIMERS_EXT; i++)
1532 otp->t_timer[i] = tp->t_timer[i];
1533 otp->t_state = tp->t_state;
1534 otp->t_flags = tp->t_flags;
1535 otp->t_force = tp->t_force;
1536 otp->snd_una = tp->snd_una;
1537 otp->snd_max = tp->snd_max;
1538 otp->snd_nxt = tp->snd_nxt;
1539 otp->snd_up = tp->snd_up;
1540 otp->snd_wl1 = tp->snd_wl1;
1541 otp->snd_wl2 = tp->snd_wl2;
1542 otp->iss = tp->iss;
1543 otp->irs = tp->irs;
1544 otp->rcv_nxt = tp->rcv_nxt;
1545 otp->rcv_adv = tp->rcv_adv;
1546 otp->rcv_wnd = tp->rcv_wnd;
1547 otp->rcv_up = tp->rcv_up;
1548 otp->snd_wnd = tp->snd_wnd;
1549 otp->snd_cwnd = tp->snd_cwnd;
1550 otp->snd_ssthresh = tp->snd_ssthresh;
1551 otp->t_maxopd = tp->t_maxopd;
1552 otp->t_rcvtime = tp->t_rcvtime;
1553 otp->t_starttime = tp->t_starttime;
1554 otp->t_rtttime = tp->t_rtttime;
1555 otp->t_rtseq = tp->t_rtseq;
1556 otp->t_rxtcur = tp->t_rxtcur;
1557 otp->t_maxseg = tp->t_maxseg;
1558 otp->t_srtt = tp->t_srtt;
1559 otp->t_rttvar = tp->t_rttvar;
1560 otp->t_rxtshift = tp->t_rxtshift;
1561 otp->t_rttmin = tp->t_rttmin;
1562 otp->t_rttupdated = tp->t_rttupdated;
1563 otp->max_sndwnd = tp->max_sndwnd;
1564 otp->t_softerror = tp->t_softerror;
1565 otp->t_oobflags = tp->t_oobflags;
1566 otp->t_iobc = tp->t_iobc;
1567 otp->snd_scale = tp->snd_scale;
1568 otp->rcv_scale = tp->rcv_scale;
1569 otp->request_r_scale = tp->request_r_scale;
1570 otp->requested_s_scale = tp->requested_s_scale;
1571 otp->ts_recent = tp->ts_recent;
1572 otp->ts_recent_age = tp->ts_recent_age;
1573 otp->last_ack_sent = tp->last_ack_sent;
1574 otp->cc_send = tp->cc_send;
1575 otp->cc_recv = tp->cc_recv;
1576 otp->snd_recover = tp->snd_recover;
1577 otp->snd_cwnd_prev = tp->snd_cwnd_prev;
1578 otp->snd_ssthresh_prev = tp->snd_ssthresh_prev;
1579 otp->t_badrxtwin = 0;
1580 }
1581
1582
1583 static int
1584 tcp_pcblist64 SYSCTL_HANDLER_ARGS
1585 {
1586 #pragma unused(oidp, arg1, arg2)
1587 int error, i = 0, n;
1588 struct inpcb *inp, **inp_list;
1589 struct tcpcb *tp;
1590 inp_gen_t gencnt;
1591 struct xinpgen xig;
1592
1593 /*
1594 * The process of preparing the TCB list is too time-consuming and
1595 * resource-intensive to repeat twice on every request.
1596 */
1597 lck_rw_lock_shared(tcbinfo.ipi_lock);
1598 if (req->oldptr == USER_ADDR_NULL) {
1599 n = tcbinfo.ipi_count;
1600 req->oldidx = 2 * (sizeof xig)
1601 + (n + n/8) * sizeof(struct xtcpcb64);
1602 lck_rw_done(tcbinfo.ipi_lock);
1603 return 0;
1604 }
1605
1606 if (req->newptr != USER_ADDR_NULL) {
1607 lck_rw_done(tcbinfo.ipi_lock);
1608 return EPERM;
1609 }
1610
1611 /*
1612 * OK, now we're committed to doing something.
1613 */
1614 gencnt = tcbinfo.ipi_gencnt;
1615 n = tcbinfo.ipi_count;
1616
1617 bzero(&xig, sizeof(xig));
1618 xig.xig_len = sizeof xig;
1619 xig.xig_count = n;
1620 xig.xig_gen = gencnt;
1621 xig.xig_sogen = so_gencnt;
1622 error = SYSCTL_OUT(req, &xig, sizeof xig);
1623 if (error) {
1624 lck_rw_done(tcbinfo.ipi_lock);
1625 return error;
1626 }
1627 /*
1628 * We are done if there is no pcb
1629 */
1630 if (n == 0) {
1631 lck_rw_done(tcbinfo.ipi_lock);
1632 return 0;
1633 }
1634
1635 inp_list = _MALLOC(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1636 if (inp_list == 0) {
1637 lck_rw_done(tcbinfo.ipi_lock);
1638 return ENOMEM;
1639 }
1640
1641 LIST_FOREACH(inp, tcbinfo.ipi_listhead, inp_list) {
1642 if (inp->inp_gencnt <= gencnt &&
1643 inp->inp_state != INPCB_STATE_DEAD)
1644 inp_list[i++] = inp;
1645 if (i >= n) break;
1646 }
1647
1648 TAILQ_FOREACH(tp, &tcp_tw_tailq, t_twentry) {
1649 inp = tp->t_inpcb;
1650 if (inp->inp_gencnt <= gencnt &&
1651 inp->inp_state != INPCB_STATE_DEAD)
1652 inp_list[i++] = inp;
1653 if (i >= n) break;
1654 }
1655
1656 n = i;
1657
1658 error = 0;
1659 for (i = 0; i < n; i++) {
1660 inp = inp_list[i];
1661 if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) {
1662 struct xtcpcb64 xt;
1663
1664 bzero(&xt, sizeof(xt));
1665 xt.xt_len = sizeof xt;
1666 inpcb_to_xinpcb64(inp, &xt.xt_inpcb);
1667 xt.xt_inpcb.inp_ppcb = (u_int64_t)(uintptr_t)inp->inp_ppcb;
1668 if (inp->inp_ppcb != NULL)
1669 tcpcb_to_xtcpcb64((struct tcpcb *)inp->inp_ppcb, &xt);
1670 if (inp->inp_socket)
1671 sotoxsocket64(inp->inp_socket, &xt.xt_inpcb.xi_socket);
1672 error = SYSCTL_OUT(req, &xt, sizeof xt);
1673 }
1674 }
1675 if (!error) {
1676 /*
1677 * Give the user an updated idea of our state.
1678 * If the generation differs from what we told
1679 * her before, she knows that something happened
1680 * while we were processing this request, and it
1681 * might be necessary to retry.
1682 */
1683 bzero(&xig, sizeof(xig));
1684 xig.xig_len = sizeof xig;
1685 xig.xig_gen = tcbinfo.ipi_gencnt;
1686 xig.xig_sogen = so_gencnt;
1687 xig.xig_count = tcbinfo.ipi_count;
1688 error = SYSCTL_OUT(req, &xig, sizeof xig);
1689 }
1690 FREE(inp_list, M_TEMP);
1691 lck_rw_done(tcbinfo.ipi_lock);
1692 return error;
1693 }
1694
1695 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, pcblist64, CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
1696 tcp_pcblist64, "S,xtcpcb64", "List of active TCP connections");
1697
1698
1699 static int
1700 tcp_pcblist_n SYSCTL_HANDLER_ARGS
1701 {
1702 #pragma unused(oidp, arg1, arg2)
1703 int error = 0;
1704
1705 error = get_pcblist_n(IPPROTO_TCP, req, &tcbinfo);
1706
1707 return error;
1708 }
1709
1710
1711 SYSCTL_PROC(_net_inet_tcp, OID_AUTO, pcblist_n, CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
1712 tcp_pcblist_n, "S,xtcpcb_n", "List of active TCP connections");
1713
1714
1715 __private_extern__ void
1716 tcp_get_ports_used(uint32_t ifindex, int protocol, uint32_t wildcardok,
1717 bitstr_t *bitfield)
1718 {
1719 inpcb_get_ports_used(ifindex, protocol, wildcardok, bitfield, &tcbinfo);
1720 }
1721
1722 __private_extern__ uint32_t
1723 tcp_count_opportunistic(unsigned int ifindex, u_int32_t flags)
1724 {
1725 return inpcb_count_opportunistic(ifindex, &tcbinfo, flags);
1726 }
1727
1728 __private_extern__ uint32_t
1729 tcp_find_anypcb_byaddr(struct ifaddr *ifa)
1730 {
1731 return inpcb_find_anypcb_byaddr(ifa, &tcbinfo);
1732 }
1733
1734 void
1735 tcp_ctlinput(cmd, sa, vip)
1736 int cmd;
1737 struct sockaddr *sa;
1738 void *vip;
1739 {
1740 tcp_seq icmp_tcp_seq;
1741 struct ip *ip = vip;
1742 struct in_addr faddr;
1743 struct inpcb *inp;
1744 struct tcpcb *tp;
1745
1746 void (*notify)(struct inpcb *, int) = tcp_notify;
1747
1748 faddr = ((struct sockaddr_in *)(void *)sa)->sin_addr;
1749 if (sa->sa_family != AF_INET || faddr.s_addr == INADDR_ANY)
1750 return;
1751
1752 if (cmd == PRC_MSGSIZE)
1753 notify = tcp_mtudisc;
1754 else if (icmp_may_rst && (cmd == PRC_UNREACH_ADMIN_PROHIB ||
1755 cmd == PRC_UNREACH_PORT) && ip)
1756 notify = tcp_drop_syn_sent;
1757 else if (PRC_IS_REDIRECT(cmd)) {
1758 ip = 0;
1759 notify = in_rtchange;
1760 } else if (cmd == PRC_HOSTDEAD)
1761 ip = 0;
1762 /* Source quench is deprecated */
1763 else if (cmd == PRC_QUENCH)
1764 return;
1765 else if ((unsigned)cmd > PRC_NCMDS || inetctlerrmap[cmd] == 0)
1766 return;
1767 if (ip) {
1768 struct tcphdr th;
1769 struct icmp *icp;
1770
1771 icp = (struct icmp *)(void *)
1772 ((caddr_t)ip - offsetof(struct icmp, icmp_ip));
1773 bcopy(((caddr_t)ip + (IP_VHL_HL(ip->ip_vhl) << 2)),
1774 &th, sizeof (th));
1775 inp = in_pcblookup_hash(&tcbinfo, faddr, th.th_dport,
1776 ip->ip_src, th.th_sport, 0, NULL);
1777 if (inp != NULL && inp->inp_socket != NULL) {
1778 tcp_lock(inp->inp_socket, 1, 0);
1779 if (in_pcb_checkstate(inp, WNT_RELEASE, 1) == WNT_STOPUSING) {
1780 tcp_unlock(inp->inp_socket, 1, 0);
1781 return;
1782 }
1783 icmp_tcp_seq = htonl(th.th_seq);
1784 tp = intotcpcb(inp);
1785 if (SEQ_GEQ(icmp_tcp_seq, tp->snd_una) &&
1786 SEQ_LT(icmp_tcp_seq, tp->snd_max)) {
1787 if (cmd == PRC_MSGSIZE) {
1788
1789 /*
1790 * MTU discovery:
1791 * If we got a needfrag and there is a host route to the
1792 * original destination, and the MTU is not locked, then
1793 * set the MTU in the route to the suggested new value
1794 * (if given) and then notify as usual. The ULPs will
1795 * notice that the MTU has changed and adapt accordingly.
1796 * If no new MTU was suggested, then we guess a new one
1797 * less than the current value. If the new MTU is
1798 * unreasonably small (defined by sysctl tcp_minmss), then
1799 * we reset the MTU to the interface value and enable the
1800 * lock bit, indicating that we are no longer doing MTU
1801 * discovery.
1802 */
1803 struct rtentry *rt;
1804 int mtu;
1805 struct sockaddr_in icmpsrc = { sizeof (struct sockaddr_in), AF_INET,
1806 0 , { 0 }, { 0,0,0,0,0,0,0,0 } };
1807 icmpsrc.sin_addr = icp->icmp_ip.ip_dst;
1808
1809 rt = rtalloc1((struct sockaddr *)&icmpsrc, 0,
1810 RTF_CLONING | RTF_PRCLONING);
1811 if (rt != NULL) {
1812 RT_LOCK(rt);
1813 if ((rt->rt_flags & RTF_HOST) &&
1814 !(rt->rt_rmx.rmx_locks & RTV_MTU)) {
1815 mtu = ntohs(icp->icmp_nextmtu);
1816 if (!mtu)
1817 mtu = ip_next_mtu(rt->rt_rmx.
1818 rmx_mtu, 1);
1819 #if DEBUG_MTUDISC
1820 printf("MTU for %s reduced to %d\n",
1821 inet_ntop(AF_INET,
1822 &icmpsrc.sin_addr, ipv4str,
1823 sizeof (ipv4str)), mtu);
1824 #endif
1825 if (mtu < max(296, (tcp_minmss +
1826 sizeof (struct tcpiphdr)))) {
1827 /* rt->rt_rmx.rmx_mtu =
1828 rt->rt_ifp->if_mtu; */
1829 rt->rt_rmx.rmx_locks |= RTV_MTU;
1830 } else if (rt->rt_rmx.rmx_mtu > mtu) {
1831 rt->rt_rmx.rmx_mtu = mtu;
1832 }
1833 }
1834 RT_UNLOCK(rt);
1835 rtfree(rt);
1836 }
1837 }
1838
1839 (*notify)(inp, inetctlerrmap[cmd]);
1840 }
1841 tcp_unlock(inp->inp_socket, 1, 0);
1842 }
1843 } else
1844 in_pcbnotifyall(&tcbinfo, faddr, inetctlerrmap[cmd], notify);
1845 }
1846
1847 #if INET6
1848 void
1849 tcp6_ctlinput(cmd, sa, d)
1850 int cmd;
1851 struct sockaddr *sa;
1852 void *d;
1853 {
1854 struct tcphdr th;
1855 void (*notify)(struct inpcb *, int) = tcp_notify;
1856 struct ip6_hdr *ip6;
1857 struct mbuf *m;
1858 struct ip6ctlparam *ip6cp = NULL;
1859 const struct sockaddr_in6 *sa6_src = NULL;
1860 int off;
1861 struct tcp_portonly {
1862 u_int16_t th_sport;
1863 u_int16_t th_dport;
1864 } *thp;
1865
1866 if (sa->sa_family != AF_INET6 ||
1867 sa->sa_len != sizeof(struct sockaddr_in6))
1868 return;
1869
1870 if (cmd == PRC_MSGSIZE)
1871 notify = tcp_mtudisc;
1872 else if (!PRC_IS_REDIRECT(cmd) &&
1873 ((unsigned)cmd > PRC_NCMDS || inet6ctlerrmap[cmd] == 0))
1874 return;
1875 /* Source quench is deprecated */
1876 else if (cmd == PRC_QUENCH)
1877 return;
1878
1879 /* if the parameter is from icmp6, decode it. */
1880 if (d != NULL) {
1881 ip6cp = (struct ip6ctlparam *)d;
1882 m = ip6cp->ip6c_m;
1883 ip6 = ip6cp->ip6c_ip6;
1884 off = ip6cp->ip6c_off;
1885 sa6_src = ip6cp->ip6c_src;
1886 } else {
1887 m = NULL;
1888 ip6 = NULL;
1889 off = 0; /* fool gcc */
1890 sa6_src = &sa6_any;
1891 }
1892
1893 if (ip6) {
1894 /*
1895 * XXX: We assume that when IPV6 is non NULL,
1896 * M and OFF are valid.
1897 */
1898
1899 /* check if we can safely examine src and dst ports */
1900 if (m->m_pkthdr.len < off + sizeof(*thp))
1901 return;
1902
1903 bzero(&th, sizeof(th));
1904 m_copydata(m, off, sizeof(*thp), (caddr_t)&th);
1905
1906 in6_pcbnotify(&tcbinfo, sa, th.th_dport,
1907 (struct sockaddr *)ip6cp->ip6c_src,
1908 th.th_sport, cmd, NULL, notify);
1909 } else {
1910 in6_pcbnotify(&tcbinfo, sa, 0,
1911 (struct sockaddr *)(size_t)sa6_src, 0, cmd, NULL, notify);
1912 }
1913 }
1914 #endif /* INET6 */
1915
1916
1917 /*
1918 * Following is where TCP initial sequence number generation occurs.
1919 *
1920 * There are two places where we must use initial sequence numbers:
1921 * 1. In SYN-ACK packets.
1922 * 2. In SYN packets.
1923 *
1924 * The ISNs in SYN-ACK packets have no monotonicity requirement,
1925 * and should be as unpredictable as possible to avoid the possibility
1926 * of spoofing and/or connection hijacking. To satisfy this
1927 * requirement, SYN-ACK ISNs are generated via the arc4random()
1928 * function. If exact RFC 1948 compliance is requested via sysctl,
1929 * these ISNs will be generated just like those in SYN packets.
1930 *
1931 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1932 * depends on this property. In addition, these ISNs should be
1933 * unguessable so as to prevent connection hijacking. To satisfy
1934 * the requirements of this situation, the algorithm outlined in
1935 * RFC 1948 is used to generate sequence numbers.
1936 *
1937 * For more information on the theory of operation, please see
1938 * RFC 1948.
1939 *
1940 * Implementation details:
1941 *
1942 * Time is based off the system timer, and is corrected so that it
1943 * increases by one megabyte per second. This allows for proper
1944 * recycling on high speed LANs while still leaving over an hour
1945 * before rollover.
1946 *
1947 * Two sysctls control the generation of ISNs:
1948 *
1949 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1950 * between seeding of isn_secret. This is normally set to zero,
1951 * as reseeding should not be necessary.
1952 *
1953 * net.inet.tcp.strict_rfc1948 controls whether RFC 1948 is followed
1954 * strictly. When strict compliance is requested, reseeding is
1955 * disabled and SYN-ACKs will be generated in the same manner as
1956 * SYNs. Strict mode is disabled by default.
1957 *
1958 */
1959
1960 #define ISN_BYTES_PER_SECOND 1048576
1961
1962 tcp_seq
1963 tcp_new_isn(tp)
1964 struct tcpcb *tp;
1965 {
1966 u_int32_t md5_buffer[4];
1967 tcp_seq new_isn;
1968 struct timeval timenow;
1969 u_char isn_secret[32];
1970 int isn_last_reseed = 0;
1971 MD5_CTX isn_ctx;
1972
1973 /* Use arc4random for SYN-ACKs when not in exact RFC1948 mode. */
1974 if (((tp->t_state == TCPS_LISTEN) || (tp->t_state == TCPS_TIME_WAIT))
1975 && tcp_strict_rfc1948 == 0)
1976 #ifdef __APPLE__
1977 return RandomULong();
1978 #else
1979 return arc4random();
1980 #endif
1981 getmicrotime(&timenow);
1982
1983 /* Seed if this is the first use, reseed if requested. */
1984 if ((isn_last_reseed == 0) ||
1985 ((tcp_strict_rfc1948 == 0) && (tcp_isn_reseed_interval > 0) &&
1986 (((u_int)isn_last_reseed + (u_int)tcp_isn_reseed_interval*hz)
1987 < (u_int)timenow.tv_sec))) {
1988 #ifdef __APPLE__
1989 read_random(&isn_secret, sizeof(isn_secret));
1990 #else
1991 read_random_unlimited(&isn_secret, sizeof(isn_secret));
1992 #endif
1993 isn_last_reseed = timenow.tv_sec;
1994 }
1995
1996 /* Compute the md5 hash and return the ISN. */
1997 MD5Init(&isn_ctx);
1998 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_fport, sizeof(u_short));
1999 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_lport, sizeof(u_short));
2000 #if INET6
2001 if ((tp->t_inpcb->inp_vflag & INP_IPV6) != 0) {
2002 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_faddr,
2003 sizeof(struct in6_addr));
2004 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->in6p_laddr,
2005 sizeof(struct in6_addr));
2006 } else
2007 #endif
2008 {
2009 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_faddr,
2010 sizeof(struct in_addr));
2011 MD5Update(&isn_ctx, (u_char *) &tp->t_inpcb->inp_laddr,
2012 sizeof(struct in_addr));
2013 }
2014 MD5Update(&isn_ctx, (u_char *) &isn_secret, sizeof(isn_secret));
2015 MD5Final((u_char *) &md5_buffer, &isn_ctx);
2016 new_isn = (tcp_seq) md5_buffer[0];
2017 new_isn += timenow.tv_sec * (ISN_BYTES_PER_SECOND / hz);
2018 return new_isn;
2019 }
2020
2021
2022 /*
2023 * When a specific ICMP unreachable message is received and the
2024 * connection state is SYN-SENT, drop the connection. This behavior
2025 * is controlled by the icmp_may_rst sysctl.
2026 */
2027 void
2028 tcp_drop_syn_sent(inp, errno)
2029 struct inpcb *inp;
2030 int errno;
2031 {
2032 struct tcpcb *tp = intotcpcb(inp);
2033
2034 if (tp && tp->t_state == TCPS_SYN_SENT)
2035 tcp_drop(tp, errno);
2036 }
2037
2038 /*
2039 * When `need fragmentation' ICMP is received, update our idea of the MSS
2040 * based on the new value in the route. Also nudge TCP to send something,
2041 * since we know the packet we just sent was dropped.
2042 * This duplicates some code in the tcp_mss() function in tcp_input.c.
2043 */
2044 void
2045 tcp_mtudisc(
2046 struct inpcb *inp,
2047 __unused int errno
2048 )
2049 {
2050 struct tcpcb *tp = intotcpcb(inp);
2051 struct rtentry *rt;
2052 struct rmxp_tao *taop;
2053 struct socket *so = inp->inp_socket;
2054 int offered;
2055 int mss;
2056 #if INET6
2057 int isipv6 = (tp->t_inpcb->inp_vflag & INP_IPV6) != 0;
2058 #endif /* INET6 */
2059
2060 if (tp) {
2061 #if INET6
2062 if (isipv6)
2063 rt = tcp_rtlookup6(inp, IFSCOPE_NONE);
2064 else
2065 #endif /* INET6 */
2066 rt = tcp_rtlookup(inp, IFSCOPE_NONE);
2067 if (!rt || !rt->rt_rmx.rmx_mtu) {
2068 tp->t_maxopd = tp->t_maxseg =
2069 #if INET6
2070 isipv6 ? tcp_v6mssdflt :
2071 #endif /* INET6 */
2072 tcp_mssdflt;
2073
2074 /* Route locked during lookup above */
2075 if (rt != NULL)
2076 RT_UNLOCK(rt);
2077 return;
2078 }
2079 taop = rmx_taop(rt->rt_rmx);
2080 offered = taop->tao_mssopt;
2081 mss = rt->rt_rmx.rmx_mtu -
2082 #if INET6
2083 (isipv6 ?
2084 sizeof(struct ip6_hdr) + sizeof(struct tcphdr) :
2085 #endif /* INET6 */
2086 sizeof(struct tcpiphdr)
2087 #if INET6
2088 )
2089 #endif /* INET6 */
2090 ;
2091
2092 /* Route locked during lookup above */
2093 RT_UNLOCK(rt);
2094
2095 if (offered)
2096 mss = min(mss, offered);
2097 /*
2098 * XXX - The above conditional probably violates the TCP
2099 * spec. The problem is that, since we don't know the
2100 * other end's MSS, we are supposed to use a conservative
2101 * default. But, if we do that, then MTU discovery will
2102 * never actually take place, because the conservative
2103 * default is much less than the MTUs typically seen
2104 * on the Internet today. For the moment, we'll sweep
2105 * this under the carpet.
2106 *
2107 * The conservative default might not actually be a problem
2108 * if the only case this occurs is when sending an initial
2109 * SYN with options and data to a host we've never talked
2110 * to before. Then, they will reply with an MSS value which
2111 * will get recorded and the new parameters should get
2112 * recomputed. For Further Study.
2113 */
2114 if (tp->t_maxopd <= mss)
2115 return;
2116 tp->t_maxopd = mss;
2117
2118 if ((tp->t_flags & (TF_REQ_TSTMP|TF_NOOPT)) == TF_REQ_TSTMP &&
2119 (tp->t_flags & TF_RCVD_TSTMP) == TF_RCVD_TSTMP)
2120 mss -= TCPOLEN_TSTAMP_APPA;
2121
2122 #if MPTCP
2123 mss -= mptcp_adj_mss(tp, TRUE);
2124 #endif
2125 if (so->so_snd.sb_hiwat < mss)
2126 mss = so->so_snd.sb_hiwat;
2127
2128 tp->t_maxseg = mss;
2129
2130 /*
2131 * Reset the slow-start flight size as it may depends on the new MSS
2132 */
2133 if (CC_ALGO(tp)->cwnd_init != NULL)
2134 CC_ALGO(tp)->cwnd_init(tp);
2135 tcpstat.tcps_mturesent++;
2136 tp->t_rtttime = 0;
2137 tp->snd_nxt = tp->snd_una;
2138 tcp_output(tp);
2139 }
2140 }
2141
2142 /*
2143 * Look-up the routing entry to the peer of this inpcb. If no route
2144 * is found and it cannot be allocated the return NULL. This routine
2145 * is called by TCP routines that access the rmx structure and by tcp_mss
2146 * to get the interface MTU. If a route is found, this routine will
2147 * hold the rtentry lock; the caller is responsible for unlocking.
2148 */
2149 struct rtentry *
2150 tcp_rtlookup(inp, input_ifscope)
2151 struct inpcb *inp;
2152 unsigned int input_ifscope;
2153 {
2154 struct route *ro;
2155 struct rtentry *rt;
2156 struct tcpcb *tp;
2157
2158 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
2159
2160 ro = &inp->inp_route;
2161 if ((rt = ro->ro_rt) != NULL)
2162 RT_LOCK(rt);
2163
2164 if (ROUTE_UNUSABLE(ro)) {
2165 if (rt != NULL) {
2166 RT_UNLOCK(rt);
2167 rt = NULL;
2168 }
2169 ROUTE_RELEASE(ro);
2170 /* No route yet, so try to acquire one */
2171 if (inp->inp_faddr.s_addr != INADDR_ANY) {
2172 unsigned int ifscope;
2173
2174 ro->ro_dst.sa_family = AF_INET;
2175 ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
2176 ((struct sockaddr_in *)(void *)&ro->ro_dst)->sin_addr =
2177 inp->inp_faddr;
2178
2179 /*
2180 * If the socket was bound to an interface, then
2181 * the bound-to-interface takes precedence over
2182 * the inbound interface passed in by the caller
2183 * (if we get here as part of the output path then
2184 * input_ifscope is IFSCOPE_NONE).
2185 */
2186 ifscope = (inp->inp_flags & INP_BOUND_IF) ?
2187 inp->inp_boundifp->if_index : input_ifscope;
2188
2189 rtalloc_scoped(ro, ifscope);
2190 if ((rt = ro->ro_rt) != NULL)
2191 RT_LOCK(rt);
2192 }
2193 }
2194 if (rt != NULL)
2195 RT_LOCK_ASSERT_HELD(rt);
2196
2197 /*
2198 * Update MTU discovery determination. Don't do it if:
2199 * 1) it is disabled via the sysctl
2200 * 2) the route isn't up
2201 * 3) the MTU is locked (if it is, then discovery has been
2202 * disabled)
2203 */
2204
2205 tp = intotcpcb(inp);
2206
2207 if (!path_mtu_discovery || ((rt != NULL) &&
2208 (!(rt->rt_flags & RTF_UP) || (rt->rt_rmx.rmx_locks & RTV_MTU))))
2209 tp->t_flags &= ~TF_PMTUD;
2210 else
2211 tp->t_flags |= TF_PMTUD;
2212
2213 #if CONFIG_IFEF_NOWINDOWSCALE
2214 if (tcp_obey_ifef_nowindowscale &&
2215 tp->t_state == TCPS_SYN_SENT && rt != NULL && rt->rt_ifp != NULL &&
2216 (rt->rt_ifp->if_eflags & IFEF_NOWINDOWSCALE)) {
2217 /* Window scaling is enabled on this interface */
2218 tp->t_flags &= ~TF_REQ_SCALE;
2219 }
2220 #endif
2221
2222 if (rt != NULL && rt->rt_ifp != NULL) {
2223 somultipages(inp->inp_socket,
2224 (rt->rt_ifp->if_hwassist & IFNET_MULTIPAGES));
2225 tcp_set_tso(tp, rt->rt_ifp);
2226 }
2227
2228 /* Note if the peer is local */
2229 if (rt != NULL &&
2230 (rt->rt_gateway->sa_family == AF_LINK ||
2231 rt->rt_ifp->if_flags & IFF_LOOPBACK ||
2232 in_localaddr(inp->inp_faddr))) {
2233 tp->t_flags |= TF_LOCAL;
2234 }
2235
2236 /*
2237 * Caller needs to call RT_UNLOCK(rt).
2238 */
2239 return rt;
2240 }
2241
2242 #if INET6
2243 struct rtentry *
2244 tcp_rtlookup6(inp, input_ifscope)
2245 struct inpcb *inp;
2246 unsigned int input_ifscope;
2247 {
2248 struct route_in6 *ro6;
2249 struct rtentry *rt;
2250 struct tcpcb *tp;
2251
2252 lck_mtx_assert(rnh_lock, LCK_MTX_ASSERT_NOTOWNED);
2253
2254 ro6 = &inp->in6p_route;
2255 if ((rt = ro6->ro_rt) != NULL)
2256 RT_LOCK(rt);
2257
2258 if (ROUTE_UNUSABLE(ro6)) {
2259 if (rt != NULL) {
2260 RT_UNLOCK(rt);
2261 rt = NULL;
2262 }
2263 ROUTE_RELEASE(ro6);
2264 /* No route yet, so try to acquire one */
2265 if (!IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_faddr)) {
2266 struct sockaddr_in6 *dst6;
2267 unsigned int ifscope;
2268
2269 dst6 = (struct sockaddr_in6 *)&ro6->ro_dst;
2270 dst6->sin6_family = AF_INET6;
2271 dst6->sin6_len = sizeof(*dst6);
2272 dst6->sin6_addr = inp->in6p_faddr;
2273
2274 /*
2275 * If the socket was bound to an interface, then
2276 * the bound-to-interface takes precedence over
2277 * the inbound interface passed in by the caller
2278 * (if we get here as part of the output path then
2279 * input_ifscope is IFSCOPE_NONE).
2280 */
2281 ifscope = (inp->inp_flags & INP_BOUND_IF) ?
2282 inp->inp_boundifp->if_index : input_ifscope;
2283
2284 rtalloc_scoped((struct route *)ro6, ifscope);
2285 if ((rt = ro6->ro_rt) != NULL)
2286 RT_LOCK(rt);
2287 }
2288 }
2289 if (rt != NULL)
2290 RT_LOCK_ASSERT_HELD(rt);
2291
2292 /*
2293 * Update path MTU Discovery determination
2294 * while looking up the route:
2295 * 1) we have a valid route to the destination
2296 * 2) the MTU is not locked (if it is, then discovery has been
2297 * disabled)
2298 */
2299
2300
2301 tp = intotcpcb(inp);
2302
2303 /*
2304 * Update MTU discovery determination. Don't do it if:
2305 * 1) it is disabled via the sysctl
2306 * 2) the route isn't up
2307 * 3) the MTU is locked (if it is, then discovery has been
2308 * disabled)
2309 */
2310
2311 if (!path_mtu_discovery || ((rt != NULL) &&
2312 (!(rt->rt_flags & RTF_UP) || (rt->rt_rmx.rmx_locks & RTV_MTU))))
2313 tp->t_flags &= ~TF_PMTUD;
2314 else
2315 tp->t_flags |= TF_PMTUD;
2316
2317 #if CONFIG_IFEF_NOWINDOWSCALE
2318 if (tcp_obey_ifef_nowindowscale &&
2319 tp->t_state == TCPS_SYN_SENT && rt != NULL && rt->rt_ifp != NULL &&
2320 (rt->rt_ifp->if_eflags & IFEF_NOWINDOWSCALE)) {
2321 /* Window scaling is not enabled on this interface */
2322 tp->t_flags &= ~TF_REQ_SCALE;
2323 }
2324 #endif
2325
2326 if (rt != NULL && rt->rt_ifp != NULL) {
2327 somultipages(inp->inp_socket,
2328 (rt->rt_ifp->if_hwassist & IFNET_MULTIPAGES));
2329 tcp_set_tso(tp, rt->rt_ifp);
2330 }
2331
2332 /* Note if the peer is local */
2333 if (rt != NULL &&
2334 (IN6_IS_ADDR_LOOPBACK(&inp->in6p_faddr) ||
2335 IN6_IS_ADDR_LINKLOCAL(&inp->in6p_faddr) ||
2336 rt->rt_gateway->sa_family == AF_LINK ||
2337 in6_localaddr(&inp->in6p_faddr))) {
2338 tp->t_flags |= TF_LOCAL;
2339 }
2340
2341 /*
2342 * Caller needs to call RT_UNLOCK(rt).
2343 */
2344 return rt;
2345 }
2346 #endif /* INET6 */
2347
2348 #if IPSEC
2349 /* compute ESP/AH header size for TCP, including outer IP header. */
2350 size_t
2351 ipsec_hdrsiz_tcp(tp)
2352 struct tcpcb *tp;
2353 {
2354 struct inpcb *inp;
2355 struct mbuf *m;
2356 size_t hdrsiz;
2357 struct ip *ip;
2358 #if INET6
2359 struct ip6_hdr *ip6 = NULL;
2360 #endif /* INET6 */
2361 struct tcphdr *th;
2362
2363 if ((tp == NULL) || ((inp = tp->t_inpcb) == NULL))
2364 return 0;
2365 MGETHDR(m, M_DONTWAIT, MT_DATA); /* MAC-OK */
2366 if (!m)
2367 return 0;
2368
2369 #if INET6
2370 if ((inp->inp_vflag & INP_IPV6) != 0) {
2371 ip6 = mtod(m, struct ip6_hdr *);
2372 th = (struct tcphdr *)(void *)(ip6 + 1);
2373 m->m_pkthdr.len = m->m_len =
2374 sizeof(struct ip6_hdr) + sizeof(struct tcphdr);
2375 tcp_fillheaders(tp, ip6, th);
2376 hdrsiz = ipsec6_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2377 } else
2378 #endif /* INET6 */
2379 {
2380 ip = mtod(m, struct ip *);
2381 th = (struct tcphdr *)(ip + 1);
2382 m->m_pkthdr.len = m->m_len = sizeof(struct tcpiphdr);
2383 tcp_fillheaders(tp, ip, th);
2384 hdrsiz = ipsec4_hdrsiz(m, IPSEC_DIR_OUTBOUND, inp);
2385 }
2386 m_free(m);
2387 return hdrsiz;
2388 }
2389 #endif /*IPSEC*/
2390
2391 /*
2392 * Return a pointer to the cached information about the remote host.
2393 * The cached information is stored in the protocol specific part of
2394 * the route metrics.
2395 */
2396 struct rmxp_tao *
2397 tcp_gettaocache(inp)
2398 struct inpcb *inp;
2399 {
2400 struct rtentry *rt;
2401 struct rmxp_tao *taop;
2402
2403 #if INET6
2404 if ((inp->inp_vflag & INP_IPV6) != 0)
2405 rt = tcp_rtlookup6(inp, IFSCOPE_NONE);
2406 else
2407 #endif /* INET6 */
2408 rt = tcp_rtlookup(inp, IFSCOPE_NONE);
2409
2410 /* Make sure this is a host route and is up. */
2411 if (rt == NULL ||
2412 (rt->rt_flags & (RTF_UP|RTF_HOST)) != (RTF_UP|RTF_HOST)) {
2413 /* Route locked during lookup above */
2414 if (rt != NULL)
2415 RT_UNLOCK(rt);
2416 return NULL;
2417 }
2418
2419 taop = rmx_taop(rt->rt_rmx);
2420 /* Route locked during lookup above */
2421 RT_UNLOCK(rt);
2422 return (taop);
2423 }
2424
2425 /*
2426 * Clear all the TAO cache entries, called from tcp_init.
2427 *
2428 * XXX
2429 * This routine is just an empty one, because we assume that the routing
2430 * routing tables are initialized at the same time when TCP, so there is
2431 * nothing in the cache left over.
2432 */
2433 static void
2434 tcp_cleartaocache()
2435 {
2436 }
2437
2438 int
2439 tcp_lock(struct socket *so, int refcount, void *lr)
2440 {
2441 void *lr_saved;
2442
2443 if (lr == NULL)
2444 lr_saved = __builtin_return_address(0);
2445 else
2446 lr_saved = lr;
2447
2448 if (so->so_pcb != NULL) {
2449 lck_mtx_lock(&((struct inpcb *)so->so_pcb)->inpcb_mtx);
2450 } else {
2451 panic("tcp_lock: so=%p NO PCB! lr=%p lrh= %s\n",
2452 so, lr_saved, solockhistory_nr(so));
2453 /* NOTREACHED */
2454 }
2455
2456 if (so->so_usecount < 0) {
2457 panic("tcp_lock: so=%p so_pcb=%p lr=%p ref=%x lrh= %s\n",
2458 so, so->so_pcb, lr_saved, so->so_usecount, solockhistory_nr(so));
2459 /* NOTREACHED */
2460 }
2461 if (refcount)
2462 so->so_usecount++;
2463 so->lock_lr[so->next_lock_lr] = lr_saved;
2464 so->next_lock_lr = (so->next_lock_lr+1) % SO_LCKDBG_MAX;
2465 return (0);
2466 }
2467
2468 int
2469 tcp_unlock(struct socket *so, int refcount, void *lr)
2470 {
2471 void *lr_saved;
2472
2473 if (lr == NULL)
2474 lr_saved = __builtin_return_address(0);
2475 else
2476 lr_saved = lr;
2477
2478 #ifdef MORE_TCPLOCK_DEBUG
2479 printf("tcp_unlock: so=0x%llx sopcb=0x%llx lock=0x%llx ref=%x "
2480 "lr=0x%llx\n", (uint64_t)VM_KERNEL_ADDRPERM(so),
2481 (uint64_t)VM_KERNEL_ADDRPERM(so->so_pcb),
2482 (uint64_t)VM_KERNEL_ADDRPERM(&(sotoinpcb(so)->inpcb_mtx)),
2483 so->so_usecount, (uint64_t)VM_KERNEL_ADDRPERM(lr_saved));
2484 #endif
2485 if (refcount)
2486 so->so_usecount--;
2487
2488 if (so->so_usecount < 0) {
2489 panic("tcp_unlock: so=%p usecount=%x lrh= %s\n",
2490 so, so->so_usecount, solockhistory_nr(so));
2491 /* NOTREACHED */
2492 }
2493 if (so->so_pcb == NULL) {
2494 panic("tcp_unlock: so=%p NO PCB usecount=%x lr=%p lrh= %s\n",
2495 so, so->so_usecount, lr_saved, solockhistory_nr(so));
2496 /* NOTREACHED */
2497 } else {
2498 lck_mtx_assert(&((struct inpcb *)so->so_pcb)->inpcb_mtx,
2499 LCK_MTX_ASSERT_OWNED);
2500 so->unlock_lr[so->next_unlock_lr] = lr_saved;
2501 so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX;
2502 lck_mtx_unlock(&((struct inpcb *)so->so_pcb)->inpcb_mtx);
2503 }
2504 return (0);
2505 }
2506
2507 lck_mtx_t *
2508 tcp_getlock(
2509 struct socket *so,
2510 __unused int locktype)
2511 {
2512 struct inpcb *inp = sotoinpcb(so);
2513
2514 if (so->so_pcb) {
2515 if (so->so_usecount < 0)
2516 panic("tcp_getlock: so=%p usecount=%x lrh= %s\n",
2517 so, so->so_usecount, solockhistory_nr(so));
2518 return(&inp->inpcb_mtx);
2519 }
2520 else {
2521 panic("tcp_getlock: so=%p NULL so_pcb %s\n",
2522 so, solockhistory_nr(so));
2523 return (so->so_proto->pr_domain->dom_mtx);
2524 }
2525 }
2526
2527 /* Determine if we can grow the recieve socket buffer to avoid sending
2528 * a zero window update to the peer. We allow even socket buffers that
2529 * have fixed size (set by the application) to grow if the resource
2530 * constraints are met. They will also be trimmed after the application
2531 * reads data.
2532 */
2533 static void
2534 tcp_sbrcv_grow_rwin(struct tcpcb *tp, struct sockbuf *sb) {
2535 u_int32_t rcvbufinc = tp->t_maxseg << tcp_autorcvbuf_inc_shift;
2536 u_int32_t rcvbuf = sb->sb_hiwat;
2537 struct socket *so = tp->t_inpcb->inp_socket;
2538
2539 /*
2540 * If message delivery is enabled, do not count
2541 * unordered bytes in receive buffer towards hiwat
2542 */
2543 if (so->so_flags & SOF_ENABLE_MSGS)
2544 rcvbuf = rcvbuf - so->so_msg_state->msg_uno_bytes;
2545
2546 if (tcp_do_autorcvbuf == 1 &&
2547 tcp_cansbgrow(sb) &&
2548 (tp->t_flags & TF_SLOWLINK) == 0 &&
2549 (rcvbuf - sb->sb_cc) < rcvbufinc &&
2550 (rcvbuf < tcp_autorcvbuf_max)) {
2551 sbreserve(sb, (sb->sb_hiwat + rcvbufinc));
2552 }
2553 }
2554
2555 int32_t
2556 tcp_sbspace(struct tcpcb *tp)
2557 {
2558 struct sockbuf *sb = &tp->t_inpcb->inp_socket->so_rcv;
2559 u_int32_t rcvbuf = sb->sb_hiwat;
2560 int32_t space;
2561 struct socket *so = tp->t_inpcb->inp_socket;
2562
2563 /*
2564 * If message delivery is enabled, do not count
2565 * unordered bytes in receive buffer towards hiwat mark.
2566 * This value is used to return correct rwnd that does
2567 * not reflect the extra unordered bytes added to the
2568 * receive socket buffer.
2569 */
2570 if (so->so_flags & SOF_ENABLE_MSGS)
2571 rcvbuf = rcvbuf - so->so_msg_state->msg_uno_bytes;
2572
2573 tcp_sbrcv_grow_rwin(tp, sb);
2574
2575 space = ((int32_t) imin((rcvbuf - sb->sb_cc),
2576 (sb->sb_mbmax - sb->sb_mbcnt)));
2577 if (space < 0)
2578 space = 0;
2579
2580 /* Avoid increasing window size if the current window
2581 * is already very low, we could be in "persist" mode and
2582 * we could break some apps (see rdar://5409343)
2583 */
2584
2585 if (space < tp->t_maxseg)
2586 return space;
2587
2588 /* Clip window size for slower link */
2589
2590 if (((tp->t_flags & TF_SLOWLINK) != 0) && slowlink_wsize > 0 )
2591 return imin(space, slowlink_wsize);
2592
2593 return space;
2594 }
2595 /*
2596 * Checks TCP Segment Offloading capability for a given connection and interface pair.
2597 */
2598 void
2599 tcp_set_tso(struct tcpcb *tp, struct ifnet *ifp)
2600 {
2601 #if MPTCP
2602 /*
2603 * We can't use TSO if this tcpcb belongs to an MPTCP session.
2604 */
2605 if (tp->t_mpflags & TMPF_MPTCP_TRUE) {
2606 tp->t_flags &= ~TF_TSO;
2607 return;
2608 }
2609 #endif
2610 #if INET6
2611 struct inpcb *inp = tp->t_inpcb;
2612 int isipv6 = (inp->inp_vflag & INP_IPV6) != 0;
2613
2614 if (isipv6) {
2615 if (ifp && (ifp->if_hwassist & IFNET_TSO_IPV6)) {
2616 tp->t_flags |= TF_TSO;
2617 if (ifp->if_tso_v6_mtu != 0)
2618 tp->tso_max_segment_size = ifp->if_tso_v6_mtu;
2619 else
2620 tp->tso_max_segment_size = TCP_MAXWIN;
2621 } else
2622 tp->t_flags &= ~TF_TSO;
2623
2624 } else
2625 #endif /* INET6 */
2626
2627 {
2628 if (ifp && (ifp->if_hwassist & IFNET_TSO_IPV4)) {
2629 tp->t_flags |= TF_TSO;
2630 if (ifp->if_tso_v4_mtu != 0)
2631 tp->tso_max_segment_size = ifp->if_tso_v4_mtu;
2632 else
2633 tp->tso_max_segment_size = TCP_MAXWIN;
2634 } else
2635 tp->t_flags &= ~TF_TSO;
2636 }
2637 }
2638
2639 #define TIMEVAL_TO_TCPHZ(_tv_) ((_tv_).tv_sec * TCP_RETRANSHZ + (_tv_).tv_usec / TCP_RETRANSHZ_TO_USEC)
2640
2641 /* Function to calculate the tcp clock. The tcp clock will get updated
2642 * at the boundaries of the tcp layer. This is done at 3 places:
2643 * 1. Right before processing an input tcp packet
2644 * 2. Whenever a connection wants to access the network using tcp_usrreqs
2645 * 3. When a tcp timer fires or before tcp slow timeout
2646 *
2647 */
2648
2649 void
2650 calculate_tcp_clock()
2651 {
2652 struct timeval tv = tcp_uptime;
2653 struct timeval interval = {0, TCP_RETRANSHZ_TO_USEC};
2654 struct timeval now, hold_now;
2655 uint32_t incr = 0;
2656
2657 microuptime(&now);
2658
2659 /*
2660 * Update coarse-grained networking timestamp (in sec.); the idea
2661 * is to update the counter returnable via net_uptime() when
2662 * we read time.
2663 */
2664 net_update_uptime_secs(now.tv_sec);
2665
2666 timevaladd(&tv, &interval);
2667 if (timevalcmp(&now, &tv, >)) {
2668 /* time to update the clock */
2669 lck_spin_lock(tcp_uptime_lock);
2670 if (timevalcmp(&tcp_uptime, &now, >=)) {
2671 /* clock got updated while we were waiting for the lock */
2672 lck_spin_unlock(tcp_uptime_lock);
2673 return;
2674 }
2675
2676 microuptime(&now);
2677 hold_now = now;
2678 tv = tcp_uptime;
2679 timevalsub(&now, &tv);
2680
2681 incr = TIMEVAL_TO_TCPHZ(now);
2682 if (incr > 0) {
2683 tcp_uptime = hold_now;
2684 tcp_now += incr;
2685 }
2686
2687 lck_spin_unlock(tcp_uptime_lock);
2688 }
2689 return;
2690 }
2691
2692 /* Compute receive window scaling that we are going to request
2693 * for this connection based on sb_hiwat. Try to leave some
2694 * room to potentially increase the window size upto a maximum
2695 * defined by the constant tcp_autorcvbuf_max.
2696 */
2697 void
2698 tcp_set_max_rwinscale(struct tcpcb *tp, struct socket *so) {
2699 u_int32_t maxsockbufsize;
2700
2701 tp->request_r_scale = max(tcp_win_scale, tp->request_r_scale);
2702 maxsockbufsize = ((so->so_rcv.sb_flags & SB_USRSIZE) != 0) ?
2703 so->so_rcv.sb_hiwat : tcp_autorcvbuf_max;
2704
2705 while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
2706 (TCP_MAXWIN << tp->request_r_scale) < maxsockbufsize)
2707 tp->request_r_scale++;
2708 tp->request_r_scale = min(tp->request_r_scale, TCP_MAX_WINSHIFT);
2709
2710 }
2711
2712 int
2713 tcp_notsent_lowat_check(struct socket *so) {
2714 struct inpcb *inp = sotoinpcb(so);
2715 struct tcpcb *tp = NULL;
2716 int notsent = 0;
2717 if (inp != NULL) {
2718 tp = intotcpcb(inp);
2719 }
2720
2721 notsent = so->so_snd.sb_cc -
2722 (tp->snd_nxt - tp->snd_una);
2723
2724 /* When we send a FIN or SYN, not_sent can be negative.
2725 * In that case also we need to send a write event to the
2726 * process if it is waiting. In the FIN case, it will
2727 * get an error from send because cantsendmore will be set.
2728 */
2729 if (notsent <= tp->t_notsent_lowat) {
2730 return(1);
2731 }
2732
2733 /* When Nagle's algorithm is not disabled, it is better
2734 * to wakeup the client until there is atleast one
2735 * maxseg of data to write.
2736 */
2737 if ((tp->t_flags & TF_NODELAY) == 0 &&
2738 notsent > 0 && notsent < tp->t_maxseg) {
2739 return(1);
2740 }
2741 return(0);
2742 }
2743
2744
2745 /* DSEP Review Done pl-20051213-v02 @3253,@3391,@3400 */