]> git.saurik.com Git - apple/xnu.git/blob - bsd/netinet/raw_ip.c
xnu-2422.110.17.tar.gz
[apple/xnu.git] / bsd / netinet / raw_ip.c
1 /*
2 * Copyright (c) 2000-2013 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * Copyright (c) 1982, 1986, 1988, 1993
30 * The Regents of the University of California. All rights reserved.
31 *
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
34 * are met:
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
40 * 3. All advertising materials mentioning features or use of this software
41 * must display the following acknowledgement:
42 * This product includes software developed by the University of
43 * California, Berkeley and its contributors.
44 * 4. Neither the name of the University nor the names of its contributors
45 * may be used to endorse or promote products derived from this software
46 * without specific prior written permission.
47 *
48 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
49 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
50 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
51 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
52 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
53 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
54 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
55 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
56 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
57 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
58 * SUCH DAMAGE.
59 *
60 * @(#)raw_ip.c 8.7 (Berkeley) 5/15/95
61 */
62 /*
63 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
64 * support for mandatory and extensible security protections. This notice
65 * is included in support of clause 2.2 (b) of the Apple Public License,
66 * Version 2.0.
67 */
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/kernel.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/mcache.h>
75 #include <sys/proc.h>
76 #include <sys/domain.h>
77 #include <sys/protosw.h>
78 #include <sys/socket.h>
79 #include <sys/socketvar.h>
80 #include <sys/sysctl.h>
81 #include <libkern/OSAtomic.h>
82 #include <kern/zalloc.h>
83
84 #include <pexpert/pexpert.h>
85
86 #include <net/if.h>
87 #include <net/route.h>
88
89 #define _IP_VHL
90 #include <netinet/in.h>
91 #include <netinet/in_systm.h>
92 #include <netinet/ip.h>
93 #include <netinet/in_pcb.h>
94 #include <netinet/in_var.h>
95 #include <netinet/ip_var.h>
96 #include <netinet/ip_mroute.h>
97
98 #if INET6
99 #include <netinet6/in6_pcb.h>
100 #endif /* INET6 */
101
102 #include <netinet/ip_fw.h>
103
104 #if IPSEC
105 #include <netinet6/ipsec.h>
106 #endif /*IPSEC*/
107
108 #if DUMMYNET
109 #include <netinet/ip_dummynet.h>
110 #endif
111
112 #if CONFIG_MACF_NET
113 #include <security/mac_framework.h>
114 #endif /* MAC_NET */
115
116 int load_ipfw(void);
117 int rip_detach(struct socket *);
118 int rip_abort(struct socket *);
119 int rip_disconnect(struct socket *);
120 int rip_bind(struct socket *, struct sockaddr *, struct proc *);
121 int rip_connect(struct socket *, struct sockaddr *, struct proc *);
122 int rip_shutdown(struct socket *);
123
124 #if IPSEC
125 extern int ipsec_bypass;
126 #endif
127
128 struct inpcbhead ripcb;
129 struct inpcbinfo ripcbinfo;
130
131 /* control hooks for ipfw and dummynet */
132 #if IPFIREWALL
133 ip_fw_ctl_t *ip_fw_ctl_ptr;
134 #endif /* IPFIREWALL */
135 #if DUMMYNET
136 ip_dn_ctl_t *ip_dn_ctl_ptr;
137 #endif /* DUMMYNET */
138
139 /*
140 * Nominal space allocated to a raw ip socket.
141 */
142 #define RIPSNDQ 8192
143 #define RIPRCVQ 8192
144
145 /*
146 * Raw interface to IP protocol.
147 */
148
149 /*
150 * Initialize raw connection block q.
151 */
152 void
153 rip_init(struct protosw *pp, struct domain *dp)
154 {
155 #pragma unused(dp)
156 static int rip_initialized = 0;
157 struct inpcbinfo *pcbinfo;
158
159 VERIFY((pp->pr_flags & (PR_INITIALIZED|PR_ATTACHED)) == PR_ATTACHED);
160
161 if (rip_initialized)
162 return;
163 rip_initialized = 1;
164
165 LIST_INIT(&ripcb);
166 ripcbinfo.ipi_listhead = &ripcb;
167 /*
168 * XXX We don't use the hash list for raw IP, but it's easier
169 * to allocate a one entry hash list than it is to check all
170 * over the place for ipi_hashbase == NULL.
171 */
172 ripcbinfo.ipi_hashbase = hashinit(1, M_PCB, &ripcbinfo.ipi_hashmask);
173 ripcbinfo.ipi_porthashbase = hashinit(1, M_PCB, &ripcbinfo.ipi_porthashmask);
174
175 ripcbinfo.ipi_zone = zinit(sizeof(struct inpcb),
176 (4096 * sizeof(struct inpcb)), 4096, "ripzone");
177
178 pcbinfo = &ripcbinfo;
179 /*
180 * allocate lock group attribute and group for udp pcb mutexes
181 */
182 pcbinfo->ipi_lock_grp_attr = lck_grp_attr_alloc_init();
183 pcbinfo->ipi_lock_grp = lck_grp_alloc_init("ripcb", pcbinfo->ipi_lock_grp_attr);
184
185 /*
186 * allocate the lock attribute for udp pcb mutexes
187 */
188 pcbinfo->ipi_lock_attr = lck_attr_alloc_init();
189 if ((pcbinfo->ipi_lock = lck_rw_alloc_init(pcbinfo->ipi_lock_grp,
190 pcbinfo->ipi_lock_attr)) == NULL) {
191 panic("%s: unable to allocate PCB lock\n", __func__);
192 /* NOTREACHED */
193 }
194
195 in_pcbinfo_attach(&ripcbinfo);
196 }
197
198 static struct sockaddr_in ripsrc = { sizeof(ripsrc), AF_INET , 0, {0}, {0,0,0,0,0,0,0,0,} };
199 /*
200 * Setup generic address and protocol structures
201 * for raw_input routine, then pass them along with
202 * mbuf chain.
203 */
204 void
205 rip_input(m, iphlen)
206 struct mbuf *m;
207 int iphlen;
208 {
209 struct ip *ip = mtod(m, struct ip *);
210 struct inpcb *inp;
211 struct inpcb *last = 0;
212 struct mbuf *opts = 0;
213 int skipit = 0, ret = 0;
214 struct ifnet *ifp = m->m_pkthdr.rcvif;
215
216 /* Expect 32-bit aligned data pointer on strict-align platforms */
217 MBUF_STRICT_DATA_ALIGNMENT_CHECK_32(m);
218
219 ripsrc.sin_addr = ip->ip_src;
220 lck_rw_lock_shared(ripcbinfo.ipi_lock);
221 LIST_FOREACH(inp, &ripcb, inp_list) {
222 #if INET6
223 if ((inp->inp_vflag & INP_IPV4) == 0)
224 continue;
225 #endif
226 if (inp->inp_ip_p && (inp->inp_ip_p != ip->ip_p))
227 continue;
228 if (inp->inp_laddr.s_addr &&
229 inp->inp_laddr.s_addr != ip->ip_dst.s_addr)
230 continue;
231 if (inp->inp_faddr.s_addr &&
232 inp->inp_faddr.s_addr != ip->ip_src.s_addr)
233 continue;
234
235 if (inp_restricted(inp, ifp))
236 continue;
237
238 if (ifp != NULL && IFNET_IS_CELLULAR(ifp) &&
239 (inp->inp_flags & INP_NO_IFT_CELLULAR))
240 continue;
241
242 if (last) {
243 struct mbuf *n = m_copy(m, 0, (int)M_COPYALL);
244
245 skipit = 0;
246 #if IPSEC
247 /* check AH/ESP integrity. */
248 if (ipsec_bypass == 0 && n) {
249 if (ipsec4_in_reject_so(n, last->inp_socket)) {
250 m_freem(n);
251 IPSEC_STAT_INCREMENT(ipsecstat.in_polvio);
252 /* do not inject data to pcb */
253 skipit = 1;
254 }
255 }
256 #endif /*IPSEC*/
257 #if CONFIG_MACF_NET
258 if (n && skipit == 0) {
259 if (mac_inpcb_check_deliver(last, n, AF_INET,
260 SOCK_RAW) != 0) {
261 m_freem(n);
262 skipit = 1;
263 }
264 }
265 #endif
266 if (n && skipit == 0) {
267 int error = 0;
268 if ((last->inp_flags & INP_CONTROLOPTS) != 0 ||
269 (last->inp_socket->so_options & SO_TIMESTAMP) != 0 ||
270 (last->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0) {
271 ret = ip_savecontrol(last, &opts, ip, n);
272 if (ret != 0) {
273 m_freem(n);
274 m_freem(opts);
275 last = inp;
276 continue;
277 }
278 }
279 if (last->inp_flags & INP_STRIPHDR) {
280 n->m_len -= iphlen;
281 n->m_pkthdr.len -= iphlen;
282 n->m_data += iphlen;
283 }
284 so_recv_data_stat(last->inp_socket, m, 0);
285 if (sbappendaddr(&last->inp_socket->so_rcv,
286 (struct sockaddr *)&ripsrc, n,
287 opts, &error) != 0) {
288 sorwakeup(last->inp_socket);
289 } else {
290 if (error) {
291 /* should notify about lost packet */
292 kprintf("rip_input can't append to socket\n");
293 }
294 }
295 opts = 0;
296 }
297 }
298 last = inp;
299 }
300
301 skipit = 0;
302 #if IPSEC
303 /* check AH/ESP integrity. */
304 if (ipsec_bypass == 0 && last) {
305 if (ipsec4_in_reject_so(m, last->inp_socket)) {
306 m_freem(m);
307 IPSEC_STAT_INCREMENT(ipsecstat.in_polvio);
308 OSAddAtomic(1, &ipstat.ips_delivered);
309 /* do not inject data to pcb */
310 skipit = 1;
311 }
312 }
313 #endif /*IPSEC*/
314 #if CONFIG_MACF_NET
315 if (last && skipit == 0) {
316 if (mac_inpcb_check_deliver(last, m, AF_INET, SOCK_RAW) != 0) {
317 skipit = 1;
318 m_freem(m);
319 }
320 }
321 #endif
322 if (skipit == 0) {
323 if (last) {
324 if ((last->inp_flags & INP_CONTROLOPTS) != 0 ||
325 (last->inp_socket->so_options & SO_TIMESTAMP) != 0 ||
326 (last->inp_socket->so_options & SO_TIMESTAMP_MONOTONIC) != 0) {
327 ret = ip_savecontrol(last, &opts, ip, m);
328 if (ret != 0) {
329 m_freem(m);
330 m_freem(opts);
331 goto unlock;
332 }
333 }
334 if (last->inp_flags & INP_STRIPHDR) {
335 m->m_len -= iphlen;
336 m->m_pkthdr.len -= iphlen;
337 m->m_data += iphlen;
338 }
339 so_recv_data_stat(last->inp_socket, m, 0);
340 if (sbappendaddr(&last->inp_socket->so_rcv,
341 (struct sockaddr *)&ripsrc, m, opts, NULL) != 0) {
342 sorwakeup(last->inp_socket);
343 } else {
344 kprintf("rip_input(2) can't append to socket\n");
345 }
346 } else {
347 m_freem(m);
348 OSAddAtomic(1, &ipstat.ips_noproto);
349 OSAddAtomic(-1, &ipstat.ips_delivered);
350 }
351 }
352 unlock:
353 /*
354 * Keep the list locked because socket filter may force the socket lock
355 * to be released when calling sbappendaddr() -- see rdar://7627704
356 */
357 lck_rw_done(ripcbinfo.ipi_lock);
358 }
359
360 /*
361 * Generate IP header and pass packet to ip_output.
362 * Tack on options user may have setup with control call.
363 */
364 int
365 rip_output(
366 struct mbuf *m,
367 struct socket *so,
368 u_int32_t dst,
369 struct mbuf *control)
370 {
371 struct ip *ip;
372 struct inpcb *inp = sotoinpcb(so);
373 int flags = (so->so_options & SO_DONTROUTE) | IP_ALLOWBROADCAST;
374 struct ip_out_args ipoa =
375 { IFSCOPE_NONE, { 0 }, IPOAF_SELECT_SRCIF, 0 };
376 struct ip_moptions *imo;
377 int error = 0;
378 mbuf_svc_class_t msc = MBUF_SC_UNSPEC;
379
380 if (control != NULL) {
381 msc = mbuf_service_class_from_control(control);
382
383 m_freem(control);
384 control = NULL;
385 }
386
387 if (inp == NULL || (inp->inp_flags2 & INP2_WANT_FLOW_DIVERT)) {
388 if (m != NULL)
389 m_freem(m);
390 VERIFY(control == NULL);
391 return (inp == NULL ? EINVAL : EPROTOTYPE);
392 }
393
394 flags |= IP_OUTARGS;
395 /* If socket was bound to an ifindex, tell ip_output about it */
396 if (inp->inp_flags & INP_BOUND_IF) {
397 ipoa.ipoa_boundif = inp->inp_boundifp->if_index;
398 ipoa.ipoa_flags |= IPOAF_BOUND_IF;
399 }
400 if (inp->inp_flags & INP_NO_IFT_CELLULAR)
401 ipoa.ipoa_flags |= IPOAF_NO_CELLULAR;
402
403 if (inp->inp_flowhash == 0)
404 inp->inp_flowhash = inp_calc_flowhash(inp);
405
406 /*
407 * If the user handed us a complete IP packet, use it.
408 * Otherwise, allocate an mbuf for a header and fill it in.
409 */
410 if ((inp->inp_flags & INP_HDRINCL) == 0) {
411 if (m->m_pkthdr.len + sizeof(struct ip) > IP_MAXPACKET) {
412 m_freem(m);
413 return(EMSGSIZE);
414 }
415 M_PREPEND(m, sizeof(struct ip), M_WAIT);
416 if (m == NULL)
417 return ENOBUFS;
418 ip = mtod(m, struct ip *);
419 ip->ip_tos = inp->inp_ip_tos;
420 ip->ip_off = 0;
421 ip->ip_p = inp->inp_ip_p;
422 ip->ip_len = m->m_pkthdr.len;
423 ip->ip_src = inp->inp_laddr;
424 ip->ip_dst.s_addr = dst;
425 ip->ip_ttl = inp->inp_ip_ttl;
426 } else {
427 if (m->m_pkthdr.len > IP_MAXPACKET) {
428 m_freem(m);
429 return(EMSGSIZE);
430 }
431 ip = mtod(m, struct ip *);
432 /* don't allow both user specified and setsockopt options,
433 and don't allow packet length sizes that will crash */
434 if (((IP_VHL_HL(ip->ip_vhl) != (sizeof (*ip) >> 2))
435 && inp->inp_options)
436 || (ip->ip_len > m->m_pkthdr.len)
437 || (ip->ip_len < (IP_VHL_HL(ip->ip_vhl) << 2))) {
438 m_freem(m);
439 return EINVAL;
440 }
441 if (ip->ip_id == 0)
442 ip->ip_id = ip_randomid();
443 /* XXX prevent ip_output from overwriting header fields */
444 flags |= IP_RAWOUTPUT;
445 OSAddAtomic(1, &ipstat.ips_rawout);
446 }
447
448 if (inp->inp_laddr.s_addr != INADDR_ANY)
449 ipoa.ipoa_flags |= IPOAF_BOUND_SRCADDR;
450
451 #if IPSEC
452 if (ipsec_bypass == 0 && ipsec_setsocket(m, so) != 0) {
453 m_freem(m);
454 return ENOBUFS;
455 }
456 #endif /*IPSEC*/
457
458 if (ROUTE_UNUSABLE(&inp->inp_route))
459 ROUTE_RELEASE(&inp->inp_route);
460
461 set_packet_service_class(m, so, msc, 0);
462 m->m_pkthdr.pkt_flowsrc = FLOWSRC_INPCB;
463 m->m_pkthdr.pkt_flowid = inp->inp_flowhash;
464 m->m_pkthdr.pkt_flags |= (PKTF_FLOW_ID | PKTF_FLOW_LOCALSRC |
465 PKTF_FLOW_RAWSOCK);
466 m->m_pkthdr.pkt_proto = inp->inp_ip_p;
467
468 #if CONFIG_MACF_NET
469 mac_mbuf_label_associate_inpcb(inp, m);
470 #endif
471
472 imo = inp->inp_moptions;
473 if (imo != NULL)
474 IMO_ADDREF(imo);
475 /*
476 * The domain lock is held across ip_output, so it is okay
477 * to pass the PCB cached route pointer directly to IP and
478 * the modules beneath it.
479 */
480 error = ip_output(m, inp->inp_options, &inp->inp_route, flags,
481 imo, &ipoa);
482
483 if (imo != NULL)
484 IMO_REMREF(imo);
485
486 if (inp->inp_route.ro_rt != NULL) {
487 struct rtentry *rt = inp->inp_route.ro_rt;
488 struct ifnet *outif;
489
490 if ((rt->rt_flags & (RTF_MULTICAST|RTF_BROADCAST)) ||
491 inp->inp_socket == NULL ||
492 !(inp->inp_socket->so_state & SS_ISCONNECTED)) {
493 rt = NULL; /* unusable */
494 }
495 /*
496 * Always discard the cached route for unconnected
497 * socket or if it is a multicast route.
498 */
499 if (rt == NULL)
500 ROUTE_RELEASE(&inp->inp_route);
501
502 /*
503 * If this is a connected socket and the destination
504 * route is unicast, update outif with that of the
505 * route interface used by IP.
506 */
507 if (rt != NULL && (outif = rt->rt_ifp) != inp->inp_last_outifp)
508 inp->inp_last_outifp = outif;
509 } else {
510 ROUTE_RELEASE(&inp->inp_route);
511 }
512
513 /*
514 * If output interface was cellular, and this socket is denied
515 * access to it, generate an event.
516 */
517 if (error != 0 && (ipoa.ipoa_retflags & IPOARF_IFDENIED) &&
518 (inp->inp_flags & INP_NO_IFT_CELLULAR))
519 soevent(so, (SO_FILT_HINT_LOCKED|SO_FILT_HINT_IFDENIED));
520
521 return (error);
522 }
523
524 #if IPFIREWALL
525 int
526 load_ipfw(void)
527 {
528 kern_return_t err;
529
530 ipfw_init();
531
532 #if DUMMYNET
533 if (!DUMMYNET_LOADED)
534 ip_dn_init();
535 #endif /* DUMMYNET */
536 err = 0;
537
538 return err == 0 && ip_fw_ctl_ptr == NULL ? -1 : err;
539 }
540 #endif /* IPFIREWALL */
541
542 /*
543 * Raw IP socket option processing.
544 */
545 int
546 rip_ctloutput(so, sopt)
547 struct socket *so;
548 struct sockopt *sopt;
549 {
550 struct inpcb *inp = sotoinpcb(so);
551 int error, optval;
552
553 /* Allow <SOL_SOCKET,SO_FLUSH> at this level */
554 if (sopt->sopt_level != IPPROTO_IP &&
555 !(sopt->sopt_level == SOL_SOCKET && sopt->sopt_name == SO_FLUSH))
556 return (EINVAL);
557
558 error = 0;
559
560 switch (sopt->sopt_dir) {
561 case SOPT_GET:
562 switch (sopt->sopt_name) {
563 case IP_HDRINCL:
564 optval = inp->inp_flags & INP_HDRINCL;
565 error = sooptcopyout(sopt, &optval, sizeof optval);
566 break;
567
568 case IP_STRIPHDR:
569 optval = inp->inp_flags & INP_STRIPHDR;
570 error = sooptcopyout(sopt, &optval, sizeof optval);
571 break;
572
573 #if IPFIREWALL
574 case IP_FW_ADD:
575 case IP_FW_GET:
576 case IP_OLD_FW_ADD:
577 case IP_OLD_FW_GET:
578 if (ip_fw_ctl_ptr == 0)
579 error = load_ipfw();
580 if (ip_fw_ctl_ptr && error == 0)
581 error = ip_fw_ctl_ptr(sopt);
582 else
583 error = ENOPROTOOPT;
584 break;
585 #endif /* IPFIREWALL */
586
587 #if DUMMYNET
588 case IP_DUMMYNET_GET:
589 if (!DUMMYNET_LOADED)
590 ip_dn_init();
591 if (DUMMYNET_LOADED)
592 error = ip_dn_ctl_ptr(sopt);
593 else
594 error = ENOPROTOOPT;
595 break ;
596 #endif /* DUMMYNET */
597
598 #if MROUTING
599 case MRT_INIT:
600 case MRT_DONE:
601 case MRT_ADD_VIF:
602 case MRT_DEL_VIF:
603 case MRT_ADD_MFC:
604 case MRT_DEL_MFC:
605 case MRT_VERSION:
606 case MRT_ASSERT:
607 error = ip_mrouter_get(so, sopt);
608 break;
609 #endif /* MROUTING */
610
611 default:
612 error = ip_ctloutput(so, sopt);
613 break;
614 }
615 break;
616
617 case SOPT_SET:
618 switch (sopt->sopt_name) {
619 case IP_HDRINCL:
620 error = sooptcopyin(sopt, &optval, sizeof optval,
621 sizeof optval);
622 if (error)
623 break;
624 if (optval)
625 inp->inp_flags |= INP_HDRINCL;
626 else
627 inp->inp_flags &= ~INP_HDRINCL;
628 break;
629
630 case IP_STRIPHDR:
631 error = sooptcopyin(sopt, &optval, sizeof optval,
632 sizeof optval);
633 if (error)
634 break;
635 if (optval)
636 inp->inp_flags |= INP_STRIPHDR;
637 else
638 inp->inp_flags &= ~INP_STRIPHDR;
639 break;
640
641 #if IPFIREWALL
642 case IP_FW_ADD:
643 case IP_FW_DEL:
644 case IP_FW_FLUSH:
645 case IP_FW_ZERO:
646 case IP_FW_RESETLOG:
647 case IP_OLD_FW_ADD:
648 case IP_OLD_FW_DEL:
649 case IP_OLD_FW_FLUSH:
650 case IP_OLD_FW_ZERO:
651 case IP_OLD_FW_RESETLOG:
652 if (ip_fw_ctl_ptr == 0)
653 error = load_ipfw();
654 if (ip_fw_ctl_ptr && error == 0)
655 error = ip_fw_ctl_ptr(sopt);
656 else
657 error = ENOPROTOOPT;
658 break;
659 #endif /* IPFIREWALL */
660
661 #if DUMMYNET
662 case IP_DUMMYNET_CONFIGURE:
663 case IP_DUMMYNET_DEL:
664 case IP_DUMMYNET_FLUSH:
665 if (!DUMMYNET_LOADED)
666 ip_dn_init();
667 if (DUMMYNET_LOADED)
668 error = ip_dn_ctl_ptr(sopt);
669 else
670 error = ENOPROTOOPT ;
671 break ;
672 #endif
673
674 #if MROUTING
675 case IP_RSVP_ON:
676 error = ip_rsvp_init(so);
677 break;
678
679 case IP_RSVP_OFF:
680 error = ip_rsvp_done();
681 break;
682
683 /* XXX - should be combined */
684 case IP_RSVP_VIF_ON:
685 error = ip_rsvp_vif_init(so, sopt);
686 break;
687
688 case IP_RSVP_VIF_OFF:
689 error = ip_rsvp_vif_done(so, sopt);
690 break;
691
692 case MRT_INIT:
693 case MRT_DONE:
694 case MRT_ADD_VIF:
695 case MRT_DEL_VIF:
696 case MRT_ADD_MFC:
697 case MRT_DEL_MFC:
698 case MRT_VERSION:
699 case MRT_ASSERT:
700 error = ip_mrouter_set(so, sopt);
701 break;
702 #endif /* MROUTING */
703
704 case SO_FLUSH:
705 if ((error = sooptcopyin(sopt, &optval, sizeof (optval),
706 sizeof (optval))) != 0)
707 break;
708
709 error = inp_flush(inp, optval);
710 break;
711
712 default:
713 error = ip_ctloutput(so, sopt);
714 break;
715 }
716 break;
717 }
718
719 return (error);
720 }
721
722 /*
723 * This function exists solely to receive the PRC_IFDOWN messages which
724 * are sent by if_down(). It looks for an ifaddr whose ifa_addr is sa,
725 * and calls in_ifadown() to remove all routes corresponding to that address.
726 * It also receives the PRC_IFUP messages from if_up() and reinstalls the
727 * interface routes.
728 */
729 void
730 rip_ctlinput(
731 int cmd,
732 struct sockaddr *sa,
733 __unused void *vip)
734 {
735 struct in_ifaddr *ia;
736 struct ifnet *ifp;
737 int err;
738 int flags, done = 0;
739
740 switch (cmd) {
741 case PRC_IFDOWN:
742 lck_rw_lock_shared(in_ifaddr_rwlock);
743 for (ia = in_ifaddrhead.tqh_first; ia;
744 ia = ia->ia_link.tqe_next) {
745 IFA_LOCK(&ia->ia_ifa);
746 if (ia->ia_ifa.ifa_addr == sa &&
747 (ia->ia_flags & IFA_ROUTE)) {
748 done = 1;
749 IFA_ADDREF_LOCKED(&ia->ia_ifa);
750 IFA_UNLOCK(&ia->ia_ifa);
751 lck_rw_done(in_ifaddr_rwlock);
752 lck_mtx_lock(rnh_lock);
753 /*
754 * in_ifscrub kills the interface route.
755 */
756 in_ifscrub(ia->ia_ifp, ia, 1);
757 /*
758 * in_ifadown gets rid of all the rest of
759 * the routes. This is not quite the right
760 * thing to do, but at least if we are running
761 * a routing process they will come back.
762 */
763 in_ifadown(&ia->ia_ifa, 1);
764 lck_mtx_unlock(rnh_lock);
765 IFA_REMREF(&ia->ia_ifa);
766 break;
767 }
768 IFA_UNLOCK(&ia->ia_ifa);
769 }
770 if (!done)
771 lck_rw_done(in_ifaddr_rwlock);
772 break;
773
774 case PRC_IFUP:
775 lck_rw_lock_shared(in_ifaddr_rwlock);
776 for (ia = in_ifaddrhead.tqh_first; ia;
777 ia = ia->ia_link.tqe_next) {
778 IFA_LOCK(&ia->ia_ifa);
779 if (ia->ia_ifa.ifa_addr == sa) {
780 /* keep it locked */
781 break;
782 }
783 IFA_UNLOCK(&ia->ia_ifa);
784 }
785 if (ia == NULL || (ia->ia_flags & IFA_ROUTE) ||
786 (ia->ia_ifa.ifa_debug & IFD_NOTREADY)) {
787 if (ia != NULL)
788 IFA_UNLOCK(&ia->ia_ifa);
789 lck_rw_done(in_ifaddr_rwlock);
790 return;
791 }
792 IFA_ADDREF_LOCKED(&ia->ia_ifa);
793 IFA_UNLOCK(&ia->ia_ifa);
794 lck_rw_done(in_ifaddr_rwlock);
795
796 flags = RTF_UP;
797 ifp = ia->ia_ifa.ifa_ifp;
798
799 if ((ifp->if_flags & IFF_LOOPBACK)
800 || (ifp->if_flags & IFF_POINTOPOINT))
801 flags |= RTF_HOST;
802
803 err = rtinit(&ia->ia_ifa, RTM_ADD, flags);
804 if (err == 0) {
805 IFA_LOCK_SPIN(&ia->ia_ifa);
806 ia->ia_flags |= IFA_ROUTE;
807 IFA_UNLOCK(&ia->ia_ifa);
808 }
809 IFA_REMREF(&ia->ia_ifa);
810 break;
811 }
812 }
813
814 u_int32_t rip_sendspace = RIPSNDQ;
815 u_int32_t rip_recvspace = RIPRCVQ;
816
817 SYSCTL_INT(_net_inet_raw, OID_AUTO, maxdgram, CTLFLAG_RW | CTLFLAG_LOCKED,
818 &rip_sendspace, 0, "Maximum outgoing raw IP datagram size");
819 SYSCTL_INT(_net_inet_raw, OID_AUTO, recvspace, CTLFLAG_RW | CTLFLAG_LOCKED,
820 &rip_recvspace, 0, "Maximum incoming raw IP datagram size");
821 SYSCTL_UINT(_net_inet_raw, OID_AUTO, pcbcount, CTLFLAG_RD | CTLFLAG_LOCKED,
822 &ripcbinfo.ipi_count, 0, "Number of active PCBs");
823
824 static int
825 rip_attach(struct socket *so, int proto, struct proc *p)
826 {
827 struct inpcb *inp;
828 int error;
829
830 inp = sotoinpcb(so);
831 if (inp)
832 panic("rip_attach");
833 if ((so->so_state & SS_PRIV) == 0)
834 return (EPERM);
835
836 error = soreserve(so, rip_sendspace, rip_recvspace);
837 if (error)
838 return error;
839 error = in_pcballoc(so, &ripcbinfo, p);
840 if (error)
841 return error;
842 inp = (struct inpcb *)so->so_pcb;
843 inp->inp_vflag |= INP_IPV4;
844 inp->inp_ip_p = proto;
845 inp->inp_ip_ttl = ip_defttl;
846 return 0;
847 }
848
849 __private_extern__ int
850 rip_detach(struct socket *so)
851 {
852 struct inpcb *inp;
853
854 inp = sotoinpcb(so);
855 if (inp == 0)
856 panic("rip_detach");
857 #if MROUTING
858 if (so == ip_mrouter)
859 ip_mrouter_done();
860 ip_rsvp_force_done(so);
861 if (so == ip_rsvpd)
862 ip_rsvp_done();
863 #endif /* MROUTING */
864 in_pcbdetach(inp);
865 return 0;
866 }
867
868 __private_extern__ int
869 rip_abort(struct socket *so)
870 {
871 soisdisconnected(so);
872 return rip_detach(so);
873 }
874
875 __private_extern__ int
876 rip_disconnect(struct socket *so)
877 {
878 if ((so->so_state & SS_ISCONNECTED) == 0)
879 return ENOTCONN;
880 return rip_abort(so);
881 }
882
883 __private_extern__ int
884 rip_bind(struct socket *so, struct sockaddr *nam, struct proc *p)
885 {
886 #pragma unused(p)
887 struct inpcb *inp = sotoinpcb(so);
888 struct sockaddr_in sin;
889 struct ifaddr *ifa = NULL;
890 struct ifnet *outif = NULL;
891
892 if (inp == NULL || (inp->inp_flags2 & INP2_WANT_FLOW_DIVERT))
893 return (inp == NULL ? EINVAL : EPROTOTYPE);
894
895 if (nam->sa_len != sizeof (struct sockaddr_in))
896 return (EINVAL);
897
898 /* Sanitized local copy for interface address searches */
899 bzero(&sin, sizeof (sin));
900 sin.sin_family = AF_INET;
901 sin.sin_len = sizeof (struct sockaddr_in);
902 sin.sin_addr.s_addr = SIN(nam)->sin_addr.s_addr;
903
904 if (TAILQ_EMPTY(&ifnet_head) ||
905 (sin.sin_family != AF_INET && sin.sin_family != AF_IMPLINK) ||
906 (sin.sin_addr.s_addr && (ifa = ifa_ifwithaddr(SA(&sin))) == 0)) {
907 return (EADDRNOTAVAIL);
908 } else if (ifa) {
909 /*
910 * Opportunistically determine the outbound
911 * interface that may be used; this may not
912 * hold true if we end up using a route
913 * going over a different interface, e.g.
914 * when sending to a local address. This
915 * will get updated again after sending.
916 */
917 IFA_LOCK(ifa);
918 outif = ifa->ifa_ifp;
919 IFA_UNLOCK(ifa);
920 IFA_REMREF(ifa);
921 }
922 inp->inp_laddr = sin.sin_addr;
923 inp->inp_last_outifp = outif;
924 return (0);
925 }
926
927 __private_extern__ int
928 rip_connect(struct socket *so, struct sockaddr *nam, __unused struct proc *p)
929 {
930 struct inpcb *inp = sotoinpcb(so);
931 struct sockaddr_in *addr = (struct sockaddr_in *)(void *)nam;
932
933 if (inp == NULL || (inp->inp_flags2 & INP2_WANT_FLOW_DIVERT))
934 return (inp == NULL ? EINVAL : EPROTOTYPE);
935 if (nam->sa_len != sizeof(*addr))
936 return EINVAL;
937 if (TAILQ_EMPTY(&ifnet_head))
938 return EADDRNOTAVAIL;
939 if ((addr->sin_family != AF_INET) &&
940 (addr->sin_family != AF_IMPLINK))
941 return EAFNOSUPPORT;
942 inp->inp_faddr = addr->sin_addr;
943 soisconnected(so);
944
945 return 0;
946 }
947
948 __private_extern__ int
949 rip_shutdown(struct socket *so)
950 {
951 socantsendmore(so);
952 return 0;
953 }
954
955 __private_extern__ int
956 rip_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *nam,
957 struct mbuf *control, struct proc *p)
958 {
959 #pragma unused(flags, p)
960 struct inpcb *inp = sotoinpcb(so);
961 u_int32_t dst;
962 int error = 0;
963
964 if (inp == NULL || (inp->inp_flags2 & INP2_WANT_FLOW_DIVERT)) {
965 error = (inp == NULL ? EINVAL : EPROTOTYPE);
966 goto bad;
967 }
968
969 if (so->so_state & SS_ISCONNECTED) {
970 if (nam != NULL) {
971 error = EISCONN;
972 goto bad;
973 }
974 dst = inp->inp_faddr.s_addr;
975 } else {
976 if (nam == NULL) {
977 error = ENOTCONN;
978 goto bad;
979 }
980 dst = ((struct sockaddr_in *)(void *)nam)->sin_addr.s_addr;
981 }
982 return (rip_output(m, so, dst, control));
983
984 bad:
985 VERIFY(error != 0);
986
987 if (m != NULL)
988 m_freem(m);
989 if (control != NULL)
990 m_freem(control);
991
992 return (error);
993 }
994
995 /* note: rip_unlock is called from different protos instead of the generic socket_unlock,
996 * it will handle the socket dealloc on last reference
997 * */
998 int
999 rip_unlock(struct socket *so, int refcount, void *debug)
1000 {
1001 void *lr_saved;
1002 struct inpcb *inp = sotoinpcb(so);
1003
1004 if (debug == NULL)
1005 lr_saved = __builtin_return_address(0);
1006 else
1007 lr_saved = debug;
1008
1009 if (refcount) {
1010 if (so->so_usecount <= 0) {
1011 panic("rip_unlock: bad refoucnt so=%p val=%x lrh= %s\n",
1012 so, so->so_usecount, solockhistory_nr(so));
1013 /* NOTREACHED */
1014 }
1015 so->so_usecount--;
1016 if (so->so_usecount == 0 && (inp->inp_wantcnt == WNT_STOPUSING)) {
1017 /* cleanup after last reference */
1018 lck_mtx_unlock(so->so_proto->pr_domain->dom_mtx);
1019 lck_rw_lock_exclusive(ripcbinfo.ipi_lock);
1020 if (inp->inp_state != INPCB_STATE_DEAD) {
1021 #if INET6
1022 if (SOCK_CHECK_DOM(so, PF_INET6))
1023 in6_pcbdetach(inp);
1024 else
1025 #endif /* INET6 */
1026 in_pcbdetach(inp);
1027 }
1028 in_pcbdispose(inp);
1029 lck_rw_done(ripcbinfo.ipi_lock);
1030 return(0);
1031 }
1032 }
1033 so->unlock_lr[so->next_unlock_lr] = lr_saved;
1034 so->next_unlock_lr = (so->next_unlock_lr+1) % SO_LCKDBG_MAX;
1035 lck_mtx_unlock(so->so_proto->pr_domain->dom_mtx);
1036 return(0);
1037 }
1038
1039 static int
1040 rip_pcblist SYSCTL_HANDLER_ARGS
1041 {
1042 #pragma unused(oidp, arg1, arg2)
1043 int error, i, n;
1044 struct inpcb *inp, **inp_list;
1045 inp_gen_t gencnt;
1046 struct xinpgen xig;
1047
1048 /*
1049 * The process of preparing the TCB list is too time-consuming and
1050 * resource-intensive to repeat twice on every request.
1051 */
1052 lck_rw_lock_exclusive(ripcbinfo.ipi_lock);
1053 if (req->oldptr == USER_ADDR_NULL) {
1054 n = ripcbinfo.ipi_count;
1055 req->oldidx = 2 * (sizeof xig)
1056 + (n + n/8) * sizeof(struct xinpcb);
1057 lck_rw_done(ripcbinfo.ipi_lock);
1058 return 0;
1059 }
1060
1061 if (req->newptr != USER_ADDR_NULL) {
1062 lck_rw_done(ripcbinfo.ipi_lock);
1063 return EPERM;
1064 }
1065
1066 /*
1067 * OK, now we're committed to doing something.
1068 */
1069 gencnt = ripcbinfo.ipi_gencnt;
1070 n = ripcbinfo.ipi_count;
1071
1072 bzero(&xig, sizeof(xig));
1073 xig.xig_len = sizeof xig;
1074 xig.xig_count = n;
1075 xig.xig_gen = gencnt;
1076 xig.xig_sogen = so_gencnt;
1077 error = SYSCTL_OUT(req, &xig, sizeof xig);
1078 if (error) {
1079 lck_rw_done(ripcbinfo.ipi_lock);
1080 return error;
1081 }
1082 /*
1083 * We are done if there is no pcb
1084 */
1085 if (n == 0) {
1086 lck_rw_done(ripcbinfo.ipi_lock);
1087 return 0;
1088 }
1089
1090 inp_list = _MALLOC(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1091 if (inp_list == 0) {
1092 lck_rw_done(ripcbinfo.ipi_lock);
1093 return ENOMEM;
1094 }
1095
1096 for (inp = ripcbinfo.ipi_listhead->lh_first, i = 0; inp && i < n;
1097 inp = inp->inp_list.le_next) {
1098 if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD)
1099 inp_list[i++] = inp;
1100 }
1101 n = i;
1102
1103 error = 0;
1104 for (i = 0; i < n; i++) {
1105 inp = inp_list[i];
1106 if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) {
1107 struct xinpcb xi;
1108
1109 bzero(&xi, sizeof(xi));
1110 xi.xi_len = sizeof xi;
1111 /* XXX should avoid extra copy */
1112 inpcb_to_compat(inp, &xi.xi_inp);
1113 if (inp->inp_socket)
1114 sotoxsocket(inp->inp_socket, &xi.xi_socket);
1115 error = SYSCTL_OUT(req, &xi, sizeof xi);
1116 }
1117 }
1118 if (!error) {
1119 /*
1120 * Give the user an updated idea of our state.
1121 * If the generation differs from what we told
1122 * her before, she knows that something happened
1123 * while we were processing this request, and it
1124 * might be necessary to retry.
1125 */
1126 bzero(&xig, sizeof(xig));
1127 xig.xig_len = sizeof xig;
1128 xig.xig_gen = ripcbinfo.ipi_gencnt;
1129 xig.xig_sogen = so_gencnt;
1130 xig.xig_count = ripcbinfo.ipi_count;
1131 error = SYSCTL_OUT(req, &xig, sizeof xig);
1132 }
1133 FREE(inp_list, M_TEMP);
1134 lck_rw_done(ripcbinfo.ipi_lock);
1135 return error;
1136 }
1137
1138 SYSCTL_PROC(_net_inet_raw, OID_AUTO/*XXX*/, pcblist, CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
1139 rip_pcblist, "S,xinpcb", "List of active raw IP sockets");
1140
1141
1142 static int
1143 rip_pcblist64 SYSCTL_HANDLER_ARGS
1144 {
1145 #pragma unused(oidp, arg1, arg2)
1146 int error, i, n;
1147 struct inpcb *inp, **inp_list;
1148 inp_gen_t gencnt;
1149 struct xinpgen xig;
1150
1151 /*
1152 * The process of preparing the TCB list is too time-consuming and
1153 * resource-intensive to repeat twice on every request.
1154 */
1155 lck_rw_lock_exclusive(ripcbinfo.ipi_lock);
1156 if (req->oldptr == USER_ADDR_NULL) {
1157 n = ripcbinfo.ipi_count;
1158 req->oldidx = 2 * (sizeof xig)
1159 + (n + n/8) * sizeof(struct xinpcb64);
1160 lck_rw_done(ripcbinfo.ipi_lock);
1161 return 0;
1162 }
1163
1164 if (req->newptr != USER_ADDR_NULL) {
1165 lck_rw_done(ripcbinfo.ipi_lock);
1166 return EPERM;
1167 }
1168
1169 /*
1170 * OK, now we're committed to doing something.
1171 */
1172 gencnt = ripcbinfo.ipi_gencnt;
1173 n = ripcbinfo.ipi_count;
1174
1175 bzero(&xig, sizeof(xig));
1176 xig.xig_len = sizeof xig;
1177 xig.xig_count = n;
1178 xig.xig_gen = gencnt;
1179 xig.xig_sogen = so_gencnt;
1180 error = SYSCTL_OUT(req, &xig, sizeof xig);
1181 if (error) {
1182 lck_rw_done(ripcbinfo.ipi_lock);
1183 return error;
1184 }
1185 /*
1186 * We are done if there is no pcb
1187 */
1188 if (n == 0) {
1189 lck_rw_done(ripcbinfo.ipi_lock);
1190 return 0;
1191 }
1192
1193 inp_list = _MALLOC(n * sizeof *inp_list, M_TEMP, M_WAITOK);
1194 if (inp_list == 0) {
1195 lck_rw_done(ripcbinfo.ipi_lock);
1196 return ENOMEM;
1197 }
1198
1199 for (inp = ripcbinfo.ipi_listhead->lh_first, i = 0; inp && i < n;
1200 inp = inp->inp_list.le_next) {
1201 if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD)
1202 inp_list[i++] = inp;
1203 }
1204 n = i;
1205
1206 error = 0;
1207 for (i = 0; i < n; i++) {
1208 inp = inp_list[i];
1209 if (inp->inp_gencnt <= gencnt && inp->inp_state != INPCB_STATE_DEAD) {
1210 struct xinpcb64 xi;
1211
1212 bzero(&xi, sizeof(xi));
1213 xi.xi_len = sizeof xi;
1214 inpcb_to_xinpcb64(inp, &xi);
1215 if (inp->inp_socket)
1216 sotoxsocket64(inp->inp_socket, &xi.xi_socket);
1217 error = SYSCTL_OUT(req, &xi, sizeof xi);
1218 }
1219 }
1220 if (!error) {
1221 /*
1222 * Give the user an updated idea of our state.
1223 * If the generation differs from what we told
1224 * her before, she knows that something happened
1225 * while we were processing this request, and it
1226 * might be necessary to retry.
1227 */
1228 bzero(&xig, sizeof(xig));
1229 xig.xig_len = sizeof xig;
1230 xig.xig_gen = ripcbinfo.ipi_gencnt;
1231 xig.xig_sogen = so_gencnt;
1232 xig.xig_count = ripcbinfo.ipi_count;
1233 error = SYSCTL_OUT(req, &xig, sizeof xig);
1234 }
1235 FREE(inp_list, M_TEMP);
1236 lck_rw_done(ripcbinfo.ipi_lock);
1237 return error;
1238 }
1239
1240 SYSCTL_PROC(_net_inet_raw, OID_AUTO, pcblist64, CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
1241 rip_pcblist64, "S,xinpcb64", "List of active raw IP sockets");
1242
1243
1244
1245 static int
1246 rip_pcblist_n SYSCTL_HANDLER_ARGS
1247 {
1248 #pragma unused(oidp, arg1, arg2)
1249 int error = 0;
1250
1251 error = get_pcblist_n(IPPROTO_IP, req, &ripcbinfo);
1252
1253 return error;
1254 }
1255
1256 SYSCTL_PROC(_net_inet_raw, OID_AUTO, pcblist_n, CTLFLAG_RD | CTLFLAG_LOCKED, 0, 0,
1257 rip_pcblist_n, "S,xinpcb_n", "List of active raw IP sockets");
1258
1259 struct pr_usrreqs rip_usrreqs = {
1260 .pru_abort = rip_abort,
1261 .pru_attach = rip_attach,
1262 .pru_bind = rip_bind,
1263 .pru_connect = rip_connect,
1264 .pru_control = in_control,
1265 .pru_detach = rip_detach,
1266 .pru_disconnect = rip_disconnect,
1267 .pru_peeraddr = in_getpeeraddr,
1268 .pru_send = rip_send,
1269 .pru_shutdown = rip_shutdown,
1270 .pru_sockaddr = in_getsockaddr,
1271 .pru_sosend = sosend,
1272 .pru_soreceive = soreceive,
1273 };
1274 /* DSEP Review Done pl-20051213-v02 @3253 */