]> git.saurik.com Git - apple/xnu.git/blob - osfmk/kern/bsd_kern.c
xnu-3789.51.2.tar.gz
[apple/xnu.git] / osfmk / kern / bsd_kern.c
1 /*
2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 #include <mach/mach_types.h>
29 #include <mach/machine/vm_param.h>
30 #include <mach/task.h>
31
32 #include <kern/kern_types.h>
33 #include <kern/ledger.h>
34 #include <kern/processor.h>
35 #include <kern/thread.h>
36 #include <kern/task.h>
37 #include <kern/spl.h>
38 #include <kern/ast.h>
39 #include <ipc/ipc_port.h>
40 #include <ipc/ipc_object.h>
41 #include <vm/vm_map.h>
42 #include <vm/vm_kern.h>
43 #include <vm/pmap.h>
44 #include <vm/vm_protos.h> /* last */
45 #include <sys/resource.h>
46 #include <sys/signal.h>
47
48 #undef thread_should_halt
49
50 /* BSD KERN COMPONENT INTERFACE */
51
52 extern unsigned int not_in_kdp; /* Skip acquiring locks if we're in kdp */
53
54 thread_t get_firstthread(task_t);
55 int get_task_userstop(task_t);
56 int get_thread_userstop(thread_t);
57 boolean_t current_thread_aborted(void);
58 void task_act_iterate_wth_args(task_t, void(*)(thread_t, void *), void *);
59 kern_return_t get_signalact(task_t , thread_t *, int);
60 int fill_task_rusage(task_t task, rusage_info_current *ri);
61 int fill_task_io_rusage(task_t task, rusage_info_current *ri);
62 int fill_task_qos_rusage(task_t task, rusage_info_current *ri);
63 void fill_task_billed_usage(task_t task, rusage_info_current *ri);
64 void task_bsdtask_kill(task_t);
65
66 extern uint64_t get_dispatchqueue_serialno_offset_from_proc(void *p);
67 extern uint64_t proc_uniqueid(void *p);
68
69 #if MACH_BSD
70 extern void psignal(void *, int);
71 #endif
72
73 /*
74 *
75 */
76 void *get_bsdtask_info(task_t t)
77 {
78 return(t->bsd_info);
79 }
80
81 void task_bsdtask_kill(task_t t)
82 {
83 void * bsd_info = get_bsdtask_info(t);
84 if (bsd_info != NULL) {
85 psignal(bsd_info, SIGKILL);
86 }
87 }
88 /*
89 *
90 */
91 void *get_bsdthreadtask_info(thread_t th)
92 {
93 return(th->task != TASK_NULL ? th->task->bsd_info : NULL);
94 }
95
96 /*
97 *
98 */
99 void set_bsdtask_info(task_t t,void * v)
100 {
101 t->bsd_info=v;
102 }
103
104 /*
105 *
106 */
107 void *get_bsdthread_info(thread_t th)
108 {
109 return(th->uthread);
110 }
111
112 /*
113 * XXX
114 */
115 int get_thread_lock_count(thread_t th); /* forced forward */
116 int get_thread_lock_count(thread_t th)
117 {
118 return(th->mutex_count);
119 }
120
121 /*
122 * XXX: wait for BSD to fix signal code
123 * Until then, we cannot block here. We know the task
124 * can't go away, so we make sure it is still active after
125 * retrieving the first thread for extra safety.
126 */
127 thread_t get_firstthread(task_t task)
128 {
129 thread_t thread = (thread_t)(void *)queue_first(&task->threads);
130
131 if (queue_end(&task->threads, (queue_entry_t)thread))
132 thread = THREAD_NULL;
133
134 if (!task->active)
135 return (THREAD_NULL);
136
137 return (thread);
138 }
139
140 kern_return_t
141 get_signalact(
142 task_t task,
143 thread_t *result_out,
144 int setast)
145 {
146 kern_return_t result = KERN_SUCCESS;
147 thread_t inc, thread = THREAD_NULL;
148
149 task_lock(task);
150
151 if (!task->active) {
152 task_unlock(task);
153
154 return (KERN_FAILURE);
155 }
156
157 for (inc = (thread_t)(void *)queue_first(&task->threads);
158 !queue_end(&task->threads, (queue_entry_t)inc); ) {
159 thread_mtx_lock(inc);
160 if (inc->active &&
161 (inc->sched_flags & TH_SFLAG_ABORTED_MASK) != TH_SFLAG_ABORT) {
162 thread = inc;
163 break;
164 }
165 thread_mtx_unlock(inc);
166
167 inc = (thread_t)(void *)queue_next(&inc->task_threads);
168 }
169
170 if (result_out)
171 *result_out = thread;
172
173 if (thread) {
174 if (setast)
175 act_set_astbsd(thread);
176
177 thread_mtx_unlock(thread);
178 }
179 else
180 result = KERN_FAILURE;
181
182 task_unlock(task);
183
184 return (result);
185 }
186
187
188 kern_return_t
189 check_actforsig(
190 task_t task,
191 thread_t thread,
192 int setast)
193 {
194 kern_return_t result = KERN_FAILURE;
195 thread_t inc;
196
197 task_lock(task);
198
199 if (!task->active) {
200 task_unlock(task);
201
202 return (KERN_FAILURE);
203 }
204
205 for (inc = (thread_t)(void *)queue_first(&task->threads);
206 !queue_end(&task->threads, (queue_entry_t)inc); ) {
207 if (inc == thread) {
208 thread_mtx_lock(inc);
209
210 if (inc->active &&
211 (inc->sched_flags & TH_SFLAG_ABORTED_MASK) != TH_SFLAG_ABORT) {
212 result = KERN_SUCCESS;
213 break;
214 }
215
216 thread_mtx_unlock(inc);
217 break;
218 }
219
220 inc = (thread_t)(void *)queue_next(&inc->task_threads);
221 }
222
223 if (result == KERN_SUCCESS) {
224 if (setast)
225 act_set_astbsd(thread);
226
227 thread_mtx_unlock(thread);
228 }
229
230 task_unlock(task);
231
232 return (result);
233 }
234
235 ledger_t get_task_ledger(task_t t)
236 {
237 return(t->ledger);
238 }
239
240 /*
241 * This is only safe to call from a thread executing in
242 * in the task's context or if the task is locked. Otherwise,
243 * the map could be switched for the task (and freed) before
244 * we go to return it here.
245 */
246 vm_map_t get_task_map(task_t t)
247 {
248 return(t->map);
249 }
250
251 vm_map_t get_task_map_reference(task_t t)
252 {
253 vm_map_t m;
254
255 if (t == NULL)
256 return VM_MAP_NULL;
257
258 task_lock(t);
259 if (!t->active) {
260 task_unlock(t);
261 return VM_MAP_NULL;
262 }
263 m = t->map;
264 vm_map_reference_swap(m);
265 task_unlock(t);
266 return m;
267 }
268
269 /*
270 *
271 */
272 ipc_space_t get_task_ipcspace(task_t t)
273 {
274 return(t->itk_space);
275 }
276
277 int get_task_numactivethreads(task_t task)
278 {
279 thread_t inc;
280 int num_active_thr=0;
281 task_lock(task);
282
283 for (inc = (thread_t)(void *)queue_first(&task->threads);
284 !queue_end(&task->threads, (queue_entry_t)inc); inc = (thread_t)(void *)queue_next(&inc->task_threads))
285 {
286 if(inc->active)
287 num_active_thr++;
288 }
289 task_unlock(task);
290 return num_active_thr;
291 }
292
293 int get_task_numacts(task_t t)
294 {
295 return(t->thread_count);
296 }
297
298 /* does this machine need 64bit register set for signal handler */
299 int is_64signalregset(void)
300 {
301 if (task_has_64BitData(current_task())) {
302 return(1);
303 }
304
305 return(0);
306 }
307
308 /*
309 * Swap in a new map for the task/thread pair; the old map reference is
310 * returned. Also does a pmap switch if thread provided is current thread.
311 */
312 vm_map_t
313 swap_task_map(task_t task, thread_t thread, vm_map_t map)
314 {
315 vm_map_t old_map;
316 boolean_t doswitch = (thread == current_thread()) ? TRUE : FALSE;
317
318 if (task != thread->task)
319 panic("swap_task_map");
320
321 task_lock(task);
322 mp_disable_preemption();
323
324 old_map = task->map;
325 thread->map = task->map = map;
326 vm_commit_pagezero_status(map);
327
328 if (doswitch) {
329 pmap_switch(map->pmap);
330 }
331 mp_enable_preemption();
332 task_unlock(task);
333
334 #if (defined(__i386__) || defined(__x86_64__)) && NCOPY_WINDOWS > 0
335 inval_copy_windows(thread);
336 #endif
337
338 return old_map;
339 }
340
341 /*
342 *
343 * This is only safe to call from a thread executing in
344 * in the task's context or if the task is locked. Otherwise,
345 * the map could be switched for the task (and freed) before
346 * we go to return it here.
347 */
348 pmap_t get_task_pmap(task_t t)
349 {
350 return(t->map->pmap);
351 }
352
353 /*
354 *
355 */
356 uint64_t get_task_resident_size(task_t task)
357 {
358 vm_map_t map;
359
360 map = (task == kernel_task) ? kernel_map: task->map;
361 return((uint64_t)pmap_resident_count(map->pmap) * PAGE_SIZE_64);
362 }
363
364 uint64_t get_task_compressed(task_t task)
365 {
366 vm_map_t map;
367
368 map = (task == kernel_task) ? kernel_map: task->map;
369 return((uint64_t)pmap_compressed(map->pmap) * PAGE_SIZE_64);
370 }
371
372 uint64_t get_task_resident_max(task_t task)
373 {
374 vm_map_t map;
375
376 map = (task == kernel_task) ? kernel_map: task->map;
377 return((uint64_t)pmap_resident_max(map->pmap) * PAGE_SIZE_64);
378 }
379
380 uint64_t get_task_purgeable_size(task_t task)
381 {
382 kern_return_t ret;
383 ledger_amount_t credit, debit;
384 uint64_t volatile_size = 0;
385
386 ret = ledger_get_entries(task->ledger, task_ledgers.purgeable_volatile, &credit, &debit);
387 if (ret != KERN_SUCCESS) {
388 return 0;
389 }
390
391 volatile_size += (credit - debit);
392
393 ret = ledger_get_entries(task->ledger, task_ledgers.purgeable_volatile_compressed, &credit, &debit);
394 if (ret != KERN_SUCCESS) {
395 return 0;
396 }
397
398 volatile_size += (credit - debit);
399
400 return volatile_size;
401 }
402
403 /*
404 *
405 */
406 uint64_t get_task_phys_footprint(task_t task)
407 {
408 kern_return_t ret;
409 ledger_amount_t credit, debit;
410
411 ret = ledger_get_entries(task->ledger, task_ledgers.phys_footprint, &credit, &debit);
412 if (KERN_SUCCESS == ret) {
413 return (credit - debit);
414 }
415
416 return 0;
417 }
418
419 /*
420 *
421 */
422 uint64_t get_task_phys_footprint_max(task_t task)
423 {
424 kern_return_t ret;
425 ledger_amount_t max;
426
427 ret = ledger_get_maximum(task->ledger, task_ledgers.phys_footprint, &max);
428 if (KERN_SUCCESS == ret) {
429 return max;
430 }
431
432 return 0;
433 }
434
435 /*
436 *
437 */
438 uint64_t get_task_phys_footprint_limit(task_t task)
439 {
440 kern_return_t ret;
441 ledger_amount_t max;
442
443 ret = ledger_get_limit(task->ledger, task_ledgers.phys_footprint, &max);
444 if (KERN_SUCCESS == ret) {
445 return max;
446 }
447
448 return 0;
449 }
450
451 uint64_t get_task_internal(task_t task)
452 {
453 kern_return_t ret;
454 ledger_amount_t credit, debit;
455
456 ret = ledger_get_entries(task->ledger, task_ledgers.internal, &credit, &debit);
457 if (KERN_SUCCESS == ret) {
458 return (credit - debit);
459 }
460
461 return 0;
462 }
463
464 uint64_t get_task_internal_compressed(task_t task)
465 {
466 kern_return_t ret;
467 ledger_amount_t credit, debit;
468
469 ret = ledger_get_entries(task->ledger, task_ledgers.internal_compressed, &credit, &debit);
470 if (KERN_SUCCESS == ret) {
471 return (credit - debit);
472 }
473
474 return 0;
475 }
476
477 uint64_t get_task_purgeable_nonvolatile(task_t task)
478 {
479 kern_return_t ret;
480 ledger_amount_t credit, debit;
481
482 ret = ledger_get_entries(task->ledger, task_ledgers.purgeable_nonvolatile, &credit, &debit);
483 if (KERN_SUCCESS == ret) {
484 return (credit - debit);
485 }
486
487 return 0;
488 }
489
490 uint64_t get_task_purgeable_nonvolatile_compressed(task_t task)
491 {
492 kern_return_t ret;
493 ledger_amount_t credit, debit;
494
495 ret = ledger_get_entries(task->ledger, task_ledgers.purgeable_nonvolatile_compressed, &credit, &debit);
496 if (KERN_SUCCESS == ret) {
497 return (credit - debit);
498 }
499
500 return 0;
501 }
502
503 uint64_t get_task_alternate_accounting(task_t task)
504 {
505 kern_return_t ret;
506 ledger_amount_t credit, debit;
507
508 ret = ledger_get_entries(task->ledger, task_ledgers.alternate_accounting, &credit, &debit);
509 if (KERN_SUCCESS == ret) {
510 return (credit - debit);
511 }
512
513 return 0;
514 }
515
516 uint64_t get_task_alternate_accounting_compressed(task_t task)
517 {
518 kern_return_t ret;
519 ledger_amount_t credit, debit;
520
521 ret = ledger_get_entries(task->ledger, task_ledgers.alternate_accounting_compressed, &credit, &debit);
522 if (KERN_SUCCESS == ret) {
523 return (credit - debit);
524 }
525
526 return 0;
527 }
528
529 uint64_t get_task_page_table(task_t task)
530 {
531 kern_return_t ret;
532 ledger_amount_t credit, debit;
533
534 ret = ledger_get_entries(task->ledger, task_ledgers.page_table, &credit, &debit);
535 if (KERN_SUCCESS == ret) {
536 return (credit - debit);
537 }
538
539 return 0;
540 }
541
542 uint64_t get_task_iokit_mapped(task_t task)
543 {
544 kern_return_t ret;
545 ledger_amount_t credit, debit;
546
547 ret = ledger_get_entries(task->ledger, task_ledgers.iokit_mapped, &credit, &debit);
548 if (KERN_SUCCESS == ret) {
549 return (credit - debit);
550 }
551
552 return 0;
553 }
554
555 uint64_t get_task_cpu_time(task_t task)
556 {
557 kern_return_t ret;
558 ledger_amount_t credit, debit;
559
560 ret = ledger_get_entries(task->ledger, task_ledgers.cpu_time, &credit, &debit);
561 if (KERN_SUCCESS == ret) {
562 return (credit - debit);
563 }
564
565 return 0;
566 }
567
568 /*
569 *
570 */
571 task_t get_threadtask(thread_t th)
572 {
573 return(th->task);
574 }
575
576 /*
577 *
578 */
579 vm_map_offset_t
580 get_map_min(
581 vm_map_t map)
582 {
583 return(vm_map_min(map));
584 }
585
586 /*
587 *
588 */
589 vm_map_offset_t
590 get_map_max(
591 vm_map_t map)
592 {
593 return(vm_map_max(map));
594 }
595 vm_map_size_t
596 get_vmmap_size(
597 vm_map_t map)
598 {
599 return(map->size);
600 }
601
602 #if CONFIG_COREDUMP
603
604 static int
605 get_vmsubmap_entries(
606 vm_map_t map,
607 vm_object_offset_t start,
608 vm_object_offset_t end)
609 {
610 int total_entries = 0;
611 vm_map_entry_t entry;
612
613 if (not_in_kdp)
614 vm_map_lock(map);
615 entry = vm_map_first_entry(map);
616 while((entry != vm_map_to_entry(map)) && (entry->vme_start < start)) {
617 entry = entry->vme_next;
618 }
619
620 while((entry != vm_map_to_entry(map)) && (entry->vme_start < end)) {
621 if(entry->is_sub_map) {
622 total_entries +=
623 get_vmsubmap_entries(VME_SUBMAP(entry),
624 VME_OFFSET(entry),
625 (VME_OFFSET(entry) +
626 entry->vme_end -
627 entry->vme_start));
628 } else {
629 total_entries += 1;
630 }
631 entry = entry->vme_next;
632 }
633 if (not_in_kdp)
634 vm_map_unlock(map);
635 return(total_entries);
636 }
637
638 int
639 get_vmmap_entries(
640 vm_map_t map)
641 {
642 int total_entries = 0;
643 vm_map_entry_t entry;
644
645 if (not_in_kdp)
646 vm_map_lock(map);
647 entry = vm_map_first_entry(map);
648
649 while(entry != vm_map_to_entry(map)) {
650 if(entry->is_sub_map) {
651 total_entries +=
652 get_vmsubmap_entries(VME_SUBMAP(entry),
653 VME_OFFSET(entry),
654 (VME_OFFSET(entry) +
655 entry->vme_end -
656 entry->vme_start));
657 } else {
658 total_entries += 1;
659 }
660 entry = entry->vme_next;
661 }
662 if (not_in_kdp)
663 vm_map_unlock(map);
664 return(total_entries);
665 }
666 #endif /* CONFIG_COREDUMP */
667
668 /*
669 *
670 */
671 /*
672 *
673 */
674 int
675 get_task_userstop(
676 task_t task)
677 {
678 return(task->user_stop_count);
679 }
680
681 /*
682 *
683 */
684 int
685 get_thread_userstop(
686 thread_t th)
687 {
688 return(th->user_stop_count);
689 }
690
691 /*
692 *
693 */
694 boolean_t
695 get_task_pidsuspended(
696 task_t task)
697 {
698 return (task->pidsuspended);
699 }
700
701 /*
702 *
703 */
704 boolean_t
705 get_task_frozen(
706 task_t task)
707 {
708 return (task->frozen);
709 }
710
711 /*
712 *
713 */
714 boolean_t
715 thread_should_abort(
716 thread_t th)
717 {
718 return ((th->sched_flags & TH_SFLAG_ABORTED_MASK) == TH_SFLAG_ABORT);
719 }
720
721 /*
722 * This routine is like thread_should_abort() above. It checks to
723 * see if the current thread is aborted. But unlike above, it also
724 * checks to see if thread is safely aborted. If so, it returns
725 * that fact, and clears the condition (safe aborts only should
726 * have a single effect, and a poll of the abort status
727 * qualifies.
728 */
729 boolean_t
730 current_thread_aborted (
731 void)
732 {
733 thread_t th = current_thread();
734 spl_t s;
735
736 if ((th->sched_flags & TH_SFLAG_ABORTED_MASK) == TH_SFLAG_ABORT &&
737 (th->options & TH_OPT_INTMASK) != THREAD_UNINT)
738 return (TRUE);
739 if (th->sched_flags & TH_SFLAG_ABORTSAFELY) {
740 s = splsched();
741 thread_lock(th);
742 if (th->sched_flags & TH_SFLAG_ABORTSAFELY)
743 th->sched_flags &= ~TH_SFLAG_ABORTED_MASK;
744 thread_unlock(th);
745 splx(s);
746 }
747 return FALSE;
748 }
749
750 /*
751 *
752 */
753 void
754 task_act_iterate_wth_args(
755 task_t task,
756 void (*func_callback)(thread_t, void *),
757 void *func_arg)
758 {
759 thread_t inc;
760
761 task_lock(task);
762
763 for (inc = (thread_t)(void *)queue_first(&task->threads);
764 !queue_end(&task->threads, (queue_entry_t)inc); ) {
765 (void) (*func_callback)(inc, func_arg);
766 inc = (thread_t)(void *)queue_next(&inc->task_threads);
767 }
768
769 task_unlock(task);
770 }
771
772
773 #include <sys/bsdtask_info.h>
774
775 void
776 fill_taskprocinfo(task_t task, struct proc_taskinfo_internal * ptinfo)
777 {
778 vm_map_t map;
779 task_absolutetime_info_data_t tinfo;
780 thread_t thread;
781 uint32_t cswitch = 0, numrunning = 0;
782 uint32_t syscalls_unix = 0;
783 uint32_t syscalls_mach = 0;
784
785 task_lock(task);
786
787 map = (task == kernel_task)? kernel_map: task->map;
788
789 ptinfo->pti_virtual_size = map->size;
790 ptinfo->pti_resident_size =
791 (mach_vm_size_t)(pmap_resident_count(map->pmap))
792 * PAGE_SIZE_64;
793
794 ptinfo->pti_policy = ((task != kernel_task)?
795 POLICY_TIMESHARE: POLICY_RR);
796
797 tinfo.threads_user = tinfo.threads_system = 0;
798 tinfo.total_user = task->total_user_time;
799 tinfo.total_system = task->total_system_time;
800
801 queue_iterate(&task->threads, thread, thread_t, task_threads) {
802 uint64_t tval;
803 spl_t x;
804
805 if (thread->options & TH_OPT_IDLE_THREAD)
806 continue;
807
808 x = splsched();
809 thread_lock(thread);
810
811 if ((thread->state & TH_RUN) == TH_RUN)
812 numrunning++;
813 cswitch += thread->c_switch;
814 tval = timer_grab(&thread->user_timer);
815 tinfo.threads_user += tval;
816 tinfo.total_user += tval;
817
818 tval = timer_grab(&thread->system_timer);
819
820 if (thread->precise_user_kernel_time) {
821 tinfo.threads_system += tval;
822 tinfo.total_system += tval;
823 } else {
824 /* system_timer may represent either sys or user */
825 tinfo.threads_user += tval;
826 tinfo.total_user += tval;
827 }
828
829 syscalls_unix += thread->syscalls_unix;
830 syscalls_mach += thread->syscalls_mach;
831
832 thread_unlock(thread);
833 splx(x);
834 }
835
836 ptinfo->pti_total_system = tinfo.total_system;
837 ptinfo->pti_total_user = tinfo.total_user;
838 ptinfo->pti_threads_system = tinfo.threads_system;
839 ptinfo->pti_threads_user = tinfo.threads_user;
840
841 ptinfo->pti_faults = task->faults;
842 ptinfo->pti_pageins = task->pageins;
843 ptinfo->pti_cow_faults = task->cow_faults;
844 ptinfo->pti_messages_sent = task->messages_sent;
845 ptinfo->pti_messages_received = task->messages_received;
846 ptinfo->pti_syscalls_mach = task->syscalls_mach + syscalls_mach;
847 ptinfo->pti_syscalls_unix = task->syscalls_unix + syscalls_unix;
848 ptinfo->pti_csw = task->c_switch + cswitch;
849 ptinfo->pti_threadnum = task->thread_count;
850 ptinfo->pti_numrunning = numrunning;
851 ptinfo->pti_priority = task->priority;
852
853 task_unlock(task);
854 }
855
856 int
857 fill_taskthreadinfo(task_t task, uint64_t thaddr, int thuniqueid, struct proc_threadinfo_internal * ptinfo, void * vpp, int *vidp)
858 {
859 thread_t thact;
860 int err=0;
861 mach_msg_type_number_t count;
862 thread_basic_info_data_t basic_info;
863 kern_return_t kret;
864 uint64_t addr = 0;
865
866 task_lock(task);
867
868 for (thact = (thread_t)(void *)queue_first(&task->threads);
869 !queue_end(&task->threads, (queue_entry_t)thact); ) {
870 addr = (thuniqueid==0)?thact->machine.cthread_self: thact->thread_id;
871 if (addr == thaddr)
872 {
873
874 count = THREAD_BASIC_INFO_COUNT;
875 if ((kret = thread_info_internal(thact, THREAD_BASIC_INFO, (thread_info_t)&basic_info, &count)) != KERN_SUCCESS) {
876 err = 1;
877 goto out;
878 }
879 ptinfo->pth_user_time = ((basic_info.user_time.seconds * (integer_t)NSEC_PER_SEC) + (basic_info.user_time.microseconds * (integer_t)NSEC_PER_USEC));
880 ptinfo->pth_system_time = ((basic_info.system_time.seconds * (integer_t)NSEC_PER_SEC) + (basic_info.system_time.microseconds * (integer_t)NSEC_PER_USEC));
881
882 ptinfo->pth_cpu_usage = basic_info.cpu_usage;
883 ptinfo->pth_policy = basic_info.policy;
884 ptinfo->pth_run_state = basic_info.run_state;
885 ptinfo->pth_flags = basic_info.flags;
886 ptinfo->pth_sleep_time = basic_info.sleep_time;
887 ptinfo->pth_curpri = thact->sched_pri;
888 ptinfo->pth_priority = thact->base_pri;
889 ptinfo->pth_maxpriority = thact->max_priority;
890
891 if ((vpp != NULL) && (thact->uthread != NULL))
892 bsd_threadcdir(thact->uthread, vpp, vidp);
893 bsd_getthreadname(thact->uthread,ptinfo->pth_name);
894 err = 0;
895 goto out;
896 }
897 thact = (thread_t)(void *)queue_next(&thact->task_threads);
898 }
899 err = 1;
900
901 out:
902 task_unlock(task);
903 return(err);
904 }
905
906 int
907 fill_taskthreadlist(task_t task, void * buffer, int thcount)
908 {
909 int numthr=0;
910 thread_t thact;
911 uint64_t * uptr;
912 uint64_t thaddr;
913
914 uptr = (uint64_t *)buffer;
915
916 task_lock(task);
917
918 for (thact = (thread_t)(void *)queue_first(&task->threads);
919 !queue_end(&task->threads, (queue_entry_t)thact); ) {
920 thaddr = thact->machine.cthread_self;
921 *uptr++ = thaddr;
922 numthr++;
923 if (numthr >= thcount)
924 goto out;
925 thact = (thread_t)(void *)queue_next(&thact->task_threads);
926 }
927
928 out:
929 task_unlock(task);
930 return (int)(numthr * sizeof(uint64_t));
931
932 }
933
934 int
935 get_numthreads(task_t task)
936 {
937 return(task->thread_count);
938 }
939
940 /*
941 * Gather the various pieces of info about the designated task,
942 * and collect it all into a single rusage_info.
943 */
944 int
945 fill_task_rusage(task_t task, rusage_info_current *ri)
946 {
947 struct task_power_info powerinfo;
948
949 assert(task != TASK_NULL);
950 task_lock(task);
951
952 task_power_info_locked(task, &powerinfo, NULL, NULL);
953 ri->ri_pkg_idle_wkups = powerinfo.task_platform_idle_wakeups;
954 ri->ri_interrupt_wkups = powerinfo.task_interrupt_wakeups;
955 ri->ri_user_time = powerinfo.total_user;
956 ri->ri_system_time = powerinfo.total_system;
957
958 ledger_get_balance(task->ledger, task_ledgers.phys_footprint,
959 (ledger_amount_t *)&ri->ri_phys_footprint);
960 ledger_get_balance(task->ledger, task_ledgers.phys_mem,
961 (ledger_amount_t *)&ri->ri_resident_size);
962 ledger_get_balance(task->ledger, task_ledgers.wired_mem,
963 (ledger_amount_t *)&ri->ri_wired_size);
964
965 ri->ri_pageins = task->pageins;
966
967 task_unlock(task);
968 return (0);
969 }
970
971 void
972 fill_task_billed_usage(task_t task __unused, rusage_info_current *ri)
973 {
974 #if CONFIG_BANK
975 ri->ri_billed_system_time = bank_billed_time_safe(task);
976 ri->ri_serviced_system_time = bank_serviced_time_safe(task);
977 #else
978 ri->ri_billed_system_time = 0;
979 ri->ri_serviced_system_time = 0;
980 #endif
981 }
982
983 int
984 fill_task_io_rusage(task_t task, rusage_info_current *ri)
985 {
986 assert(task != TASK_NULL);
987 task_lock(task);
988
989 if (task->task_io_stats) {
990 ri->ri_diskio_bytesread = task->task_io_stats->disk_reads.size;
991 ri->ri_diskio_byteswritten = (task->task_io_stats->total_io.size - task->task_io_stats->disk_reads.size);
992 } else {
993 /* I/O Stats unavailable */
994 ri->ri_diskio_bytesread = 0;
995 ri->ri_diskio_byteswritten = 0;
996 }
997 task_unlock(task);
998 return (0);
999 }
1000
1001 int
1002 fill_task_qos_rusage(task_t task, rusage_info_current *ri)
1003 {
1004 thread_t thread;
1005
1006 assert(task != TASK_NULL);
1007 task_lock(task);
1008
1009 /* Rollup Qos time of all the threads to task */
1010 queue_iterate(&task->threads, thread, thread_t, task_threads) {
1011 if (thread->options & TH_OPT_IDLE_THREAD)
1012 continue;
1013
1014 thread_update_qos_cpu_time(thread);
1015 }
1016 ri->ri_cpu_time_qos_default = task->cpu_time_qos_stats.cpu_time_qos_default;
1017 ri->ri_cpu_time_qos_maintenance = task->cpu_time_qos_stats.cpu_time_qos_maintenance;
1018 ri->ri_cpu_time_qos_background = task->cpu_time_qos_stats.cpu_time_qos_background;
1019 ri->ri_cpu_time_qos_utility = task->cpu_time_qos_stats.cpu_time_qos_utility;
1020 ri->ri_cpu_time_qos_legacy = task->cpu_time_qos_stats.cpu_time_qos_legacy;
1021 ri->ri_cpu_time_qos_user_initiated = task->cpu_time_qos_stats.cpu_time_qos_user_initiated;
1022 ri->ri_cpu_time_qos_user_interactive = task->cpu_time_qos_stats.cpu_time_qos_user_interactive;
1023
1024 task_unlock(task);
1025 return (0);
1026 }
1027
1028 uint64_t
1029 get_task_dispatchqueue_serialno_offset(task_t task)
1030 {
1031 uint64_t dq_serialno_offset = 0;
1032
1033 if (task->bsd_info) {
1034 dq_serialno_offset = get_dispatchqueue_serialno_offset_from_proc(task->bsd_info);
1035 }
1036
1037 return dq_serialno_offset;
1038 }
1039
1040 uint64_t
1041 get_task_uniqueid(task_t task)
1042 {
1043 if (task->bsd_info) {
1044 return proc_uniqueid(task->bsd_info);
1045 } else {
1046 return UINT64_MAX;
1047 }
1048 }
1049
1050 #if CONFIG_MACF
1051 struct label *
1052 get_task_crash_label(task_t task)
1053 {
1054 return task->crash_label;
1055 }
1056
1057 void
1058 set_task_crash_label(task_t task, struct label *label)
1059 {
1060 task->crash_label = label;
1061 }
1062 #endif