]> git.saurik.com Git - apple/xnu.git/blob - bsd/hfs/hfs_vnops.c
xnu-1699.22.81.tar.gz
[apple/xnu.git] / bsd / hfs / hfs_vnops.c
1 /*
2 * Copyright (c) 2000-2010 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28
29 #include <sys/systm.h>
30 #include <sys/param.h>
31 #include <sys/kernel.h>
32 #include <sys/file_internal.h>
33 #include <sys/dirent.h>
34 #include <sys/stat.h>
35 #include <sys/buf.h>
36 #include <sys/mount.h>
37 #include <sys/vnode_if.h>
38 #include <sys/vnode_internal.h>
39 #include <sys/malloc.h>
40 #include <sys/ubc.h>
41 #include <sys/ubc_internal.h>
42 #include <sys/paths.h>
43 #include <sys/quota.h>
44 #include <sys/time.h>
45 #include <sys/disk.h>
46 #include <sys/kauth.h>
47 #include <sys/uio_internal.h>
48 #include <sys/fsctl.h>
49 #include <sys/cprotect.h>
50
51 #include <string.h>
52
53 #include <miscfs/specfs/specdev.h>
54 #include <miscfs/fifofs/fifo.h>
55 #include <vfs/vfs_support.h>
56 #include <machine/spl.h>
57
58 #include <sys/kdebug.h>
59 #include <sys/sysctl.h>
60
61 #include "hfs.h"
62 #include "hfs_catalog.h"
63 #include "hfs_cnode.h"
64 #include "hfs_dbg.h"
65 #include "hfs_mount.h"
66 #include "hfs_quota.h"
67 #include "hfs_endian.h"
68
69 #include "hfscommon/headers/BTreesInternal.h"
70 #include "hfscommon/headers/FileMgrInternal.h"
71
72 #define KNDETACH_VNLOCKED 0x00000001
73
74 /* Global vfs data structures for hfs */
75
76 /* Always F_FULLFSYNC? 1=yes,0=no (default due to "various" reasons is 'no') */
77 int always_do_fullfsync = 0;
78 SYSCTL_DECL(_vfs_generic);
79 SYSCTL_INT (_vfs_generic, OID_AUTO, always_do_fullfsync, CTLFLAG_RW | CTLFLAG_LOCKED, &always_do_fullfsync, 0, "always F_FULLFSYNC when fsync is called");
80
81 int hfs_makenode(struct vnode *dvp, struct vnode **vpp,
82 struct componentname *cnp, struct vnode_attr *vap,
83 vfs_context_t ctx);
84 int hfs_metasync(struct hfsmount *hfsmp, daddr64_t node, __unused struct proc *p);
85 int hfs_metasync_all(struct hfsmount *hfsmp);
86
87 int hfs_removedir(struct vnode *, struct vnode *, struct componentname *,
88 int, int);
89 int hfs_removefile(struct vnode *, struct vnode *, struct componentname *,
90 int, int, int, struct vnode *, int);
91
92 int hfs_movedata (struct vnode *, struct vnode*);
93 static int hfs_move_fork (struct filefork *srcfork, struct cnode *src,
94 struct filefork *dstfork, struct cnode *dst);
95
96
97 #if FIFO
98 static int hfsfifo_read(struct vnop_read_args *);
99 static int hfsfifo_write(struct vnop_write_args *);
100 static int hfsfifo_close(struct vnop_close_args *);
101
102 extern int (**fifo_vnodeop_p)(void *);
103 #endif /* FIFO */
104
105 int hfs_vnop_close(struct vnop_close_args*);
106 int hfs_vnop_create(struct vnop_create_args*);
107 int hfs_vnop_exchange(struct vnop_exchange_args*);
108 int hfs_vnop_fsync(struct vnop_fsync_args*);
109 int hfs_vnop_mkdir(struct vnop_mkdir_args*);
110 int hfs_vnop_mknod(struct vnop_mknod_args*);
111 int hfs_vnop_getattr(struct vnop_getattr_args*);
112 int hfs_vnop_open(struct vnop_open_args*);
113 int hfs_vnop_readdir(struct vnop_readdir_args*);
114 int hfs_vnop_remove(struct vnop_remove_args*);
115 int hfs_vnop_rename(struct vnop_rename_args*);
116 int hfs_vnop_rmdir(struct vnop_rmdir_args*);
117 int hfs_vnop_symlink(struct vnop_symlink_args*);
118 int hfs_vnop_setattr(struct vnop_setattr_args*);
119 int hfs_vnop_readlink(struct vnop_readlink_args *);
120 int hfs_vnop_pathconf(struct vnop_pathconf_args *);
121 int hfs_vnop_whiteout(struct vnop_whiteout_args *);
122 int hfs_vnop_mmap(struct vnop_mmap_args *ap);
123 int hfsspec_read(struct vnop_read_args *);
124 int hfsspec_write(struct vnop_write_args *);
125 int hfsspec_close(struct vnop_close_args *);
126
127 /* Options for hfs_removedir and hfs_removefile */
128 #define HFSRM_SKIP_RESERVE 0x01
129
130
131
132
133 /*****************************************************************************
134 *
135 * Common Operations on vnodes
136 *
137 *****************************************************************************/
138
139 /*
140 * Create a regular file.
141 */
142 int
143 hfs_vnop_create(struct vnop_create_args *ap)
144 {
145 int error;
146
147 again:
148 error = hfs_makenode(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap, ap->a_context);
149
150 /*
151 * We speculatively skipped the original lookup of the leaf
152 * for CREATE. Since it exists, go get it as long as they
153 * didn't want an exclusive create.
154 */
155 if ((error == EEXIST) && !(ap->a_vap->va_vaflags & VA_EXCLUSIVE)) {
156 struct vnop_lookup_args args;
157
158 args.a_desc = &vnop_lookup_desc;
159 args.a_dvp = ap->a_dvp;
160 args.a_vpp = ap->a_vpp;
161 args.a_cnp = ap->a_cnp;
162 args.a_context = ap->a_context;
163 args.a_cnp->cn_nameiop = LOOKUP;
164 error = hfs_vnop_lookup(&args);
165 /*
166 * We can also race with remove for this file.
167 */
168 if (error == ENOENT) {
169 goto again;
170 }
171
172 /* Make sure it was file. */
173 if ((error == 0) && !vnode_isreg(*args.a_vpp)) {
174 vnode_put(*args.a_vpp);
175 *args.a_vpp = NULLVP;
176 error = EEXIST;
177 }
178 args.a_cnp->cn_nameiop = CREATE;
179 }
180 return (error);
181 }
182
183 /*
184 * Make device special file.
185 */
186 int
187 hfs_vnop_mknod(struct vnop_mknod_args *ap)
188 {
189 struct vnode_attr *vap = ap->a_vap;
190 struct vnode *dvp = ap->a_dvp;
191 struct vnode **vpp = ap->a_vpp;
192 struct cnode *cp;
193 int error;
194
195 if (VTOVCB(dvp)->vcbSigWord != kHFSPlusSigWord) {
196 return (ENOTSUP);
197 }
198
199 /* Create the vnode */
200 error = hfs_makenode(dvp, vpp, ap->a_cnp, vap, ap->a_context);
201 if (error)
202 return (error);
203
204 cp = VTOC(*vpp);
205 cp->c_touch_acctime = TRUE;
206 cp->c_touch_chgtime = TRUE;
207 cp->c_touch_modtime = TRUE;
208
209 if ((vap->va_rdev != VNOVAL) &&
210 (vap->va_type == VBLK || vap->va_type == VCHR))
211 cp->c_rdev = vap->va_rdev;
212
213 return (0);
214 }
215
216 #if HFS_COMPRESSION
217 /*
218 * hfs_ref_data_vp(): returns the data fork vnode for a given cnode.
219 * In the (hopefully rare) case where the data fork vnode is not
220 * present, it will use hfs_vget() to create a new vnode for the
221 * data fork.
222 *
223 * NOTE: If successful and a vnode is returned, the caller is responsible
224 * for releasing the returned vnode with vnode_rele().
225 */
226 static int
227 hfs_ref_data_vp(struct cnode *cp, struct vnode **data_vp, int skiplock)
228 {
229 int vref = 0;
230
231 if (!data_vp || !cp) /* sanity check incoming parameters */
232 return EINVAL;
233
234 /* maybe we should take the hfs cnode lock here, and if so, use the skiplock parameter to tell us not to */
235
236 if (!skiplock) hfs_lock(cp, HFS_SHARED_LOCK);
237 struct vnode *c_vp = cp->c_vp;
238 if (c_vp) {
239 /* we already have a data vnode */
240 *data_vp = c_vp;
241 vref = vnode_ref(*data_vp);
242 if (!skiplock) hfs_unlock(cp);
243 if (vref == 0) {
244 return 0;
245 }
246 return EINVAL;
247 }
248 /* no data fork vnode in the cnode, so ask hfs for one. */
249
250 if (!cp->c_rsrc_vp) {
251 /* if we don't have either a c_vp or c_rsrc_vp, we can't really do anything useful */
252 *data_vp = NULL;
253 if (!skiplock) hfs_unlock(cp);
254 return EINVAL;
255 }
256
257 if (0 == hfs_vget(VTOHFS(cp->c_rsrc_vp), cp->c_cnid, data_vp, 1, 0) &&
258 0 != data_vp) {
259 vref = vnode_ref(*data_vp);
260 vnode_put(*data_vp);
261 if (!skiplock) hfs_unlock(cp);
262 if (vref == 0) {
263 return 0;
264 }
265 return EINVAL;
266 }
267 /* there was an error getting the vnode */
268 *data_vp = NULL;
269 if (!skiplock) hfs_unlock(cp);
270 return EINVAL;
271 }
272
273 /*
274 * hfs_lazy_init_decmpfs_cnode(): returns the decmpfs_cnode for a cnode,
275 * allocating it if necessary; returns NULL if there was an allocation error
276 */
277 static decmpfs_cnode *
278 hfs_lazy_init_decmpfs_cnode(struct cnode *cp)
279 {
280 if (!cp->c_decmp) {
281 decmpfs_cnode *dp = NULL;
282 MALLOC_ZONE(dp, decmpfs_cnode *, sizeof(decmpfs_cnode), M_DECMPFS_CNODE, M_WAITOK);
283 if (!dp) {
284 /* error allocating a decmpfs cnode */
285 return NULL;
286 }
287 decmpfs_cnode_init(dp);
288 if (!OSCompareAndSwapPtr(NULL, dp, (void * volatile *)&cp->c_decmp)) {
289 /* another thread got here first, so free the decmpfs_cnode we allocated */
290 decmpfs_cnode_destroy(dp);
291 FREE_ZONE(dp, sizeof(*dp), M_DECMPFS_CNODE);
292 }
293 }
294
295 return cp->c_decmp;
296 }
297
298 /*
299 * hfs_file_is_compressed(): returns 1 if the file is compressed, and 0 (zero) if not.
300 * if the file's compressed flag is set, makes sure that the decmpfs_cnode field
301 * is allocated by calling hfs_lazy_init_decmpfs_cnode(), then makes sure it is populated,
302 * or else fills it in via the decmpfs_file_is_compressed() function.
303 */
304 int
305 hfs_file_is_compressed(struct cnode *cp, int skiplock)
306 {
307 int ret = 0;
308
309 /* fast check to see if file is compressed. If flag is clear, just answer no */
310 if (!(cp->c_flags & UF_COMPRESSED)) {
311 return 0;
312 }
313
314 decmpfs_cnode *dp = hfs_lazy_init_decmpfs_cnode(cp);
315 if (!dp) {
316 /* error allocating a decmpfs cnode, treat the file as uncompressed */
317 return 0;
318 }
319
320 /* flag was set, see if the decmpfs_cnode state is valid (zero == invalid) */
321 uint32_t decmpfs_state = decmpfs_cnode_get_vnode_state(dp);
322 switch(decmpfs_state) {
323 case FILE_IS_COMPRESSED:
324 case FILE_IS_CONVERTING: /* treat decompressing files as if they are compressed */
325 return 1;
326 case FILE_IS_NOT_COMPRESSED:
327 return 0;
328 /* otherwise the state is not cached yet */
329 }
330
331 /* decmpfs hasn't seen this file yet, so call decmpfs_file_is_compressed() to init the decmpfs_cnode struct */
332 struct vnode *data_vp = NULL;
333 if (0 == hfs_ref_data_vp(cp, &data_vp, skiplock)) {
334 if (data_vp) {
335 ret = decmpfs_file_is_compressed(data_vp, VTOCMP(data_vp)); // fill in decmpfs_cnode
336 vnode_rele(data_vp);
337 }
338 }
339 return ret;
340 }
341
342 /* hfs_uncompressed_size_of_compressed_file() - get the uncompressed size of the file.
343 * if the caller has passed a valid vnode (has a ref count > 0), then hfsmp and fid are not required.
344 * if the caller doesn't have a vnode, pass NULL in vp, and pass valid hfsmp and fid.
345 * files size is returned in size (required)
346 * if the indicated file is a directory (or something that doesn't have a data fork), then this call
347 * will return an error and the caller should fall back to treating the item as an uncompressed file
348 */
349 int
350 hfs_uncompressed_size_of_compressed_file(struct hfsmount *hfsmp, struct vnode *vp, cnid_t fid, off_t *size, int skiplock)
351 {
352 int ret = 0;
353 int putaway = 0; /* flag to remember if we used hfs_vget() */
354
355 if (!size) {
356 return EINVAL; /* no place to put the file size */
357 }
358
359 if (NULL == vp) {
360 if (!hfsmp || !fid) { /* make sure we have the required parameters */
361 return EINVAL;
362 }
363 if (0 != hfs_vget(hfsmp, fid, &vp, skiplock, 0)) { /* vnode is null, use hfs_vget() to get it */
364 vp = NULL;
365 } else {
366 putaway = 1; /* note that hfs_vget() was used to aquire the vnode */
367 }
368 }
369 /* this double check for compression (hfs_file_is_compressed)
370 * ensures the cached size is present in case decmpfs hasn't
371 * encountered this node yet.
372 */
373 if (vp) {
374 if (hfs_file_is_compressed(VTOC(vp), skiplock) ) {
375 *size = decmpfs_cnode_get_vnode_cached_size(VTOCMP(vp)); /* file info will be cached now, so get size */
376 } else {
377 if (VTOCMP(vp) && VTOCMP(vp)->cmp_type >= CMP_MAX) {
378 if (VTOCMP(vp)->cmp_type != DATALESS_CMPFS_TYPE) {
379 // if we don't recognize this type, just use the real data fork size
380 if (VTOC(vp)->c_datafork) {
381 *size = VTOC(vp)->c_datafork->ff_size;
382 ret = 0;
383 } else {
384 ret = EINVAL;
385 }
386 } else {
387 *size = decmpfs_cnode_get_vnode_cached_size(VTOCMP(vp)); /* file info will be cached now, so get size */
388 ret = 0;
389 }
390 } else {
391 ret = EINVAL;
392 }
393 }
394 }
395
396 if (putaway) { /* did we use hfs_vget() to get this vnode? */
397 vnode_put(vp); /* if so, release it and set it to null */
398 vp = NULL;
399 }
400 return ret;
401 }
402
403 int
404 hfs_hides_rsrc(vfs_context_t ctx, struct cnode *cp, int skiplock)
405 {
406 if (ctx == decmpfs_ctx)
407 return 0;
408 if (!hfs_file_is_compressed(cp, skiplock))
409 return 0;
410 return decmpfs_hides_rsrc(ctx, cp->c_decmp);
411 }
412
413 int
414 hfs_hides_xattr(vfs_context_t ctx, struct cnode *cp, const char *name, int skiplock)
415 {
416 if (ctx == decmpfs_ctx)
417 return 0;
418 if (!hfs_file_is_compressed(cp, skiplock))
419 return 0;
420 return decmpfs_hides_xattr(ctx, cp->c_decmp, name);
421 }
422 #endif /* HFS_COMPRESSION */
423
424 /*
425 * Open a file/directory.
426 */
427 int
428 hfs_vnop_open(struct vnop_open_args *ap)
429 {
430 struct vnode *vp = ap->a_vp;
431 struct filefork *fp;
432 struct timeval tv;
433 int error;
434 static int past_bootup = 0;
435 struct cnode *cp = VTOC(vp);
436 struct hfsmount *hfsmp = VTOHFS(vp);
437
438 #if HFS_COMPRESSION
439 if (ap->a_mode & FWRITE) {
440 /* open for write */
441 if ( hfs_file_is_compressed(cp, 1) ) { /* 1 == don't take the cnode lock */
442 /* opening a compressed file for write, so convert it to decompressed */
443 struct vnode *data_vp = NULL;
444 error = hfs_ref_data_vp(cp, &data_vp, 1); /* 1 == don't take the cnode lock */
445 if (0 == error) {
446 if (data_vp) {
447 error = decmpfs_decompress_file(data_vp, VTOCMP(data_vp), -1, 1, 0);
448 vnode_rele(data_vp);
449 } else {
450 error = EINVAL;
451 }
452 }
453 if (error != 0)
454 return error;
455 }
456 } else {
457 /* open for read */
458 if (hfs_file_is_compressed(cp, 1) ) { /* 1 == don't take the cnode lock */
459 if (VNODE_IS_RSRC(vp)) {
460 /* opening the resource fork of a compressed file, so nothing to do */
461 } else {
462 /* opening a compressed file for read, make sure it validates */
463 error = decmpfs_validate_compressed_file(vp, VTOCMP(vp));
464 if (error != 0)
465 return error;
466 }
467 }
468 }
469 #endif
470
471 /*
472 * Files marked append-only must be opened for appending.
473 */
474 if ((cp->c_flags & APPEND) && !vnode_isdir(vp) &&
475 (ap->a_mode & (FWRITE | O_APPEND)) == FWRITE)
476 return (EPERM);
477
478 if (vnode_isreg(vp) && !UBCINFOEXISTS(vp))
479 return (EBUSY); /* file is in use by the kernel */
480
481 /* Don't allow journal file to be opened externally. */
482 if (cp->c_fileid == hfsmp->hfs_jnlfileid)
483 return (EPERM);
484
485 /* If we're going to write to the file, initialize quotas. */
486 #if QUOTA
487 if ((ap->a_mode & FWRITE) && (hfsmp->hfs_flags & HFS_QUOTAS))
488 (void)hfs_getinoquota(cp);
489 #endif /* QUOTA */
490
491 /*
492 * On the first (non-busy) open of a fragmented
493 * file attempt to de-frag it (if its less than 20MB).
494 */
495 if ((hfsmp->hfs_flags & HFS_READ_ONLY) ||
496 (hfsmp->jnl == NULL) ||
497 #if NAMEDSTREAMS
498 !vnode_isreg(vp) || vnode_isinuse(vp, 0) || vnode_isnamedstream(vp)) {
499 #else
500 !vnode_isreg(vp) || vnode_isinuse(vp, 0)) {
501 #endif
502 return (0);
503 }
504
505 if ((error = hfs_lock(cp, HFS_EXCLUSIVE_LOCK)))
506 return (error);
507 fp = VTOF(vp);
508 if (fp->ff_blocks &&
509 fp->ff_extents[7].blockCount != 0 &&
510 fp->ff_size <= (20 * 1024 * 1024)) {
511 int no_mods = 0;
512 struct timeval now;
513 /*
514 * Wait until system bootup is done (3 min).
515 * And don't relocate a file that's been modified
516 * within the past minute -- this can lead to
517 * system thrashing.
518 */
519
520 if (!past_bootup) {
521 microuptime(&tv);
522 if (tv.tv_sec > (60*3)) {
523 past_bootup = 1;
524 }
525 }
526
527 microtime(&now);
528 if ((now.tv_sec - cp->c_mtime) > 60) {
529 no_mods = 1;
530 }
531
532 if (past_bootup && no_mods) {
533 (void) hfs_relocate(vp, hfsmp->nextAllocation + 4096,
534 vfs_context_ucred(ap->a_context),
535 vfs_context_proc(ap->a_context));
536 }
537 }
538 hfs_unlock(cp);
539
540 return (0);
541 }
542
543
544 /*
545 * Close a file/directory.
546 */
547 int
548 hfs_vnop_close(ap)
549 struct vnop_close_args /* {
550 struct vnode *a_vp;
551 int a_fflag;
552 vfs_context_t a_context;
553 } */ *ap;
554 {
555 register struct vnode *vp = ap->a_vp;
556 register struct cnode *cp;
557 struct proc *p = vfs_context_proc(ap->a_context);
558 struct hfsmount *hfsmp;
559 int busy;
560 int tooktrunclock = 0;
561 int knownrefs = 0;
562
563 if ( hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK) != 0)
564 return (0);
565 cp = VTOC(vp);
566 hfsmp = VTOHFS(vp);
567
568 /*
569 * If the rsrc fork is a named stream, it can cause the data fork to
570 * stay around, preventing de-allocation of these blocks.
571 * Do checks for truncation on close. Purge extra extents if they exist.
572 * Make sure the vp is not a directory, and that it has a resource fork,
573 * and that resource fork is also a named stream.
574 */
575
576 if ((vp->v_type == VREG) && (cp->c_rsrc_vp)
577 && (vnode_isnamedstream(cp->c_rsrc_vp))) {
578 uint32_t blks;
579
580 blks = howmany(VTOF(vp)->ff_size, VTOVCB(vp)->blockSize);
581 /*
582 * If there are extra blocks and there are only 2 refs on
583 * this vp (ourselves + rsrc fork holding ref on us), go ahead
584 * and try to truncate.
585 */
586 if ((blks < VTOF(vp)->ff_blocks) && (!vnode_isinuse(vp, 2))) {
587 // release cnode lock; must acquire truncate lock BEFORE cnode lock
588 hfs_unlock(cp);
589
590 hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK);
591 tooktrunclock = 1;
592
593 if (hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK) != 0) {
594 hfs_unlock_truncate(cp, 0);
595 // bail out if we can't re-acquire cnode lock
596 return 0;
597 }
598 // now re-test to make sure it's still valid
599 if (cp->c_rsrc_vp) {
600 knownrefs = 1 + vnode_isnamedstream(cp->c_rsrc_vp);
601 if (!vnode_isinuse(vp, knownrefs)){
602 // now we can truncate the file, if necessary
603 blks = howmany(VTOF(vp)->ff_size, VTOVCB(vp)->blockSize);
604 if (blks < VTOF(vp)->ff_blocks){
605 (void) hfs_truncate(vp, VTOF(vp)->ff_size, IO_NDELAY, 0, 0, ap->a_context);
606 }
607 }
608 }
609 }
610 }
611
612
613 // if we froze the fs and we're exiting, then "thaw" the fs
614 if (hfsmp->hfs_freezing_proc == p && proc_exiting(p)) {
615 hfsmp->hfs_freezing_proc = NULL;
616 hfs_unlock_global (hfsmp);
617 lck_rw_unlock_exclusive(&hfsmp->hfs_insync);
618 }
619
620 busy = vnode_isinuse(vp, 1);
621
622 if (busy) {
623 hfs_touchtimes(VTOHFS(vp), cp);
624 }
625 if (vnode_isdir(vp)) {
626 hfs_reldirhints(cp, busy);
627 } else if (vnode_issystem(vp) && !busy) {
628 vnode_recycle(vp);
629 }
630
631 if (tooktrunclock){
632 hfs_unlock_truncate(cp, 0);
633 }
634 hfs_unlock(cp);
635
636 if (ap->a_fflag & FWASWRITTEN) {
637 hfs_sync_ejectable(hfsmp);
638 }
639
640 return (0);
641 }
642
643 /*
644 * Get basic attributes.
645 */
646 int
647 hfs_vnop_getattr(struct vnop_getattr_args *ap)
648 {
649 #define VNODE_ATTR_TIMES \
650 (VNODE_ATTR_va_access_time|VNODE_ATTR_va_change_time|VNODE_ATTR_va_modify_time)
651 #define VNODE_ATTR_AUTH \
652 (VNODE_ATTR_va_mode | VNODE_ATTR_va_uid | VNODE_ATTR_va_gid | \
653 VNODE_ATTR_va_flags | VNODE_ATTR_va_acl)
654
655 struct vnode *vp = ap->a_vp;
656 struct vnode_attr *vap = ap->a_vap;
657 struct vnode *rvp = NULLVP;
658 struct hfsmount *hfsmp;
659 struct cnode *cp;
660 uint64_t data_size;
661 enum vtype v_type;
662 int error = 0;
663 cp = VTOC(vp);
664
665 #if HFS_COMPRESSION
666 /* we need to inspect the decmpfs state of the file before we take the hfs cnode lock */
667 int compressed = 0;
668 int hide_size = 0;
669 off_t uncompressed_size = -1;
670 if (VATTR_IS_ACTIVE(vap, va_data_size) || VATTR_IS_ACTIVE(vap, va_total_alloc) || VATTR_IS_ACTIVE(vap, va_data_alloc) || VATTR_IS_ACTIVE(vap, va_total_size)) {
671 /* we only care about whether the file is compressed if asked for the uncompressed size */
672 if (VNODE_IS_RSRC(vp)) {
673 /* if it's a resource fork, decmpfs may want us to hide the size */
674 hide_size = hfs_hides_rsrc(ap->a_context, cp, 0);
675 } else {
676 /* if it's a data fork, we need to know if it was compressed so we can report the uncompressed size */
677 compressed = hfs_file_is_compressed(cp, 0);
678 }
679 if ((VATTR_IS_ACTIVE(vap, va_data_size) || VATTR_IS_ACTIVE(vap, va_total_size))) {
680 // if it's compressed
681 if (compressed || (!VNODE_IS_RSRC(vp) && cp->c_decmp && cp->c_decmp->cmp_type >= CMP_MAX)) {
682 if (0 != hfs_uncompressed_size_of_compressed_file(NULL, vp, 0, &uncompressed_size, 0)) {
683 /* failed to get the uncompressed size, we'll check for this later */
684 uncompressed_size = -1;
685 } else {
686 // fake that it's compressed
687 compressed = 1;
688 }
689 }
690 }
691 }
692 #endif
693
694 /*
695 * Shortcut for vnode_authorize path. Each of the attributes
696 * in this set is updated atomically so we don't need to take
697 * the cnode lock to access them.
698 */
699 if ((vap->va_active & ~VNODE_ATTR_AUTH) == 0) {
700 /* Make sure file still exists. */
701 if (cp->c_flag & C_NOEXISTS)
702 return (ENOENT);
703
704 vap->va_uid = cp->c_uid;
705 vap->va_gid = cp->c_gid;
706 vap->va_mode = cp->c_mode;
707 vap->va_flags = cp->c_flags;
708 vap->va_supported |= VNODE_ATTR_AUTH & ~VNODE_ATTR_va_acl;
709
710 if ((cp->c_attr.ca_recflags & kHFSHasSecurityMask) == 0) {
711 vap->va_acl = (kauth_acl_t) KAUTH_FILESEC_NONE;
712 VATTR_SET_SUPPORTED(vap, va_acl);
713 }
714
715 return (0);
716 }
717
718 hfsmp = VTOHFS(vp);
719 v_type = vnode_vtype(vp);
720 /*
721 * If time attributes are requested and we have cnode times
722 * that require updating, then acquire an exclusive lock on
723 * the cnode before updating the times. Otherwise we can
724 * just acquire a shared lock.
725 */
726 if ((vap->va_active & VNODE_ATTR_TIMES) &&
727 (cp->c_touch_acctime || cp->c_touch_chgtime || cp->c_touch_modtime)) {
728 if ((error = hfs_lock(cp, HFS_EXCLUSIVE_LOCK)))
729 return (error);
730 hfs_touchtimes(hfsmp, cp);
731 }
732 else {
733 if ((error = hfs_lock(cp, HFS_SHARED_LOCK)))
734 return (error);
735 }
736
737 if (v_type == VDIR) {
738 data_size = (cp->c_entries + 2) * AVERAGE_HFSDIRENTRY_SIZE;
739
740 if (VATTR_IS_ACTIVE(vap, va_nlink)) {
741 int nlink;
742
743 /*
744 * For directories, the va_nlink is esentially a count
745 * of the ".." references to a directory plus the "."
746 * reference and the directory itself. So for HFS+ this
747 * becomes the sub-directory count plus two.
748 *
749 * In the absence of a sub-directory count we use the
750 * directory's item count. This will be too high in
751 * most cases since it also includes files.
752 */
753 if ((hfsmp->hfs_flags & HFS_FOLDERCOUNT) &&
754 (cp->c_attr.ca_recflags & kHFSHasFolderCountMask))
755 nlink = cp->c_attr.ca_dircount; /* implied ".." entries */
756 else
757 nlink = cp->c_entries;
758
759 /* Account for ourself and our "." entry */
760 nlink += 2;
761 /* Hide our private directories. */
762 if (cp->c_cnid == kHFSRootFolderID) {
763 if (hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid != 0) {
764 --nlink;
765 }
766 if (hfsmp->hfs_private_desc[DIR_HARDLINKS].cd_cnid != 0) {
767 --nlink;
768 }
769 }
770 VATTR_RETURN(vap, va_nlink, (u_int64_t)nlink);
771 }
772 if (VATTR_IS_ACTIVE(vap, va_nchildren)) {
773 int entries;
774
775 entries = cp->c_entries;
776 /* Hide our private files and directories. */
777 if (cp->c_cnid == kHFSRootFolderID) {
778 if (hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid != 0)
779 --entries;
780 if (hfsmp->hfs_private_desc[DIR_HARDLINKS].cd_cnid != 0)
781 --entries;
782 if (hfsmp->jnl || ((hfsmp->vcbAtrb & kHFSVolumeJournaledMask) && (hfsmp->hfs_flags & HFS_READ_ONLY)))
783 entries -= 2; /* hide the journal files */
784 }
785 VATTR_RETURN(vap, va_nchildren, entries);
786 }
787 /*
788 * The va_dirlinkcount is the count of real directory hard links.
789 * (i.e. its not the sum of the implied "." and ".." references)
790 */
791 if (VATTR_IS_ACTIVE(vap, va_dirlinkcount)) {
792 VATTR_RETURN(vap, va_dirlinkcount, (uint32_t)cp->c_linkcount);
793 }
794 } else /* !VDIR */ {
795 data_size = VCTOF(vp, cp)->ff_size;
796
797 VATTR_RETURN(vap, va_nlink, (u_int64_t)cp->c_linkcount);
798 if (VATTR_IS_ACTIVE(vap, va_data_alloc)) {
799 u_int64_t blocks;
800
801 #if HFS_COMPRESSION
802 if (hide_size) {
803 VATTR_RETURN(vap, va_data_alloc, 0);
804 } else if (compressed) {
805 /* for compressed files, we report all allocated blocks as belonging to the data fork */
806 blocks = cp->c_blocks;
807 VATTR_RETURN(vap, va_data_alloc, blocks * (u_int64_t)hfsmp->blockSize);
808 }
809 else
810 #endif
811 {
812 blocks = VCTOF(vp, cp)->ff_blocks;
813 VATTR_RETURN(vap, va_data_alloc, blocks * (u_int64_t)hfsmp->blockSize);
814 }
815 }
816 }
817
818 /* conditional because 64-bit arithmetic can be expensive */
819 if (VATTR_IS_ACTIVE(vap, va_total_size)) {
820 if (v_type == VDIR) {
821 VATTR_RETURN(vap, va_total_size, (cp->c_entries + 2) * AVERAGE_HFSDIRENTRY_SIZE);
822 } else {
823 u_int64_t total_size = ~0ULL;
824 struct cnode *rcp;
825 #if HFS_COMPRESSION
826 if (hide_size) {
827 /* we're hiding the size of this file, so just return 0 */
828 total_size = 0;
829 } else if (compressed) {
830 if (uncompressed_size == -1) {
831 /*
832 * We failed to get the uncompressed size above,
833 * so we'll fall back to the standard path below
834 * since total_size is still -1
835 */
836 } else {
837 /* use the uncompressed size we fetched above */
838 total_size = uncompressed_size;
839 }
840 }
841 #endif
842 if (total_size == ~0ULL) {
843 if (cp->c_datafork) {
844 total_size = cp->c_datafork->ff_size;
845 }
846
847 if (cp->c_blocks - VTOF(vp)->ff_blocks) {
848 /* We deal with rsrc fork vnode iocount at the end of the function */
849 error = hfs_vgetrsrc(hfsmp, vp, &rvp, TRUE, FALSE);
850 if (error) {
851 /*
852 * Note that we call hfs_vgetrsrc with error_on_unlinked
853 * set to FALSE. This is because we may be invoked via
854 * fstat() on an open-unlinked file descriptor and we must
855 * continue to support access to the rsrc fork until it disappears.
856 * The code at the end of this function will be
857 * responsible for releasing the iocount generated by
858 * hfs_vgetrsrc. This is because we can't drop the iocount
859 * without unlocking the cnode first.
860 */
861 goto out;
862 }
863
864 rcp = VTOC(rvp);
865 if (rcp && rcp->c_rsrcfork) {
866 total_size += rcp->c_rsrcfork->ff_size;
867 }
868 }
869 }
870
871 VATTR_RETURN(vap, va_total_size, total_size);
872 }
873 }
874 if (VATTR_IS_ACTIVE(vap, va_total_alloc)) {
875 if (v_type == VDIR) {
876 VATTR_RETURN(vap, va_total_alloc, 0);
877 } else {
878 VATTR_RETURN(vap, va_total_alloc, (u_int64_t)cp->c_blocks * (u_int64_t)hfsmp->blockSize);
879 }
880 }
881
882 /*
883 * If the VFS wants extended security data, and we know that we
884 * don't have any (because it never told us it was setting any)
885 * then we can return the supported bit and no data. If we do
886 * have extended security, we can just leave the bit alone and
887 * the VFS will use the fallback path to fetch it.
888 */
889 if (VATTR_IS_ACTIVE(vap, va_acl)) {
890 if ((cp->c_attr.ca_recflags & kHFSHasSecurityMask) == 0) {
891 vap->va_acl = (kauth_acl_t) KAUTH_FILESEC_NONE;
892 VATTR_SET_SUPPORTED(vap, va_acl);
893 }
894 }
895 if (VATTR_IS_ACTIVE(vap, va_access_time)) {
896 /* Access times are lazily updated, get current time if needed */
897 if (cp->c_touch_acctime) {
898 struct timeval tv;
899
900 microtime(&tv);
901 vap->va_access_time.tv_sec = tv.tv_sec;
902 } else {
903 vap->va_access_time.tv_sec = cp->c_atime;
904 }
905 vap->va_access_time.tv_nsec = 0;
906 VATTR_SET_SUPPORTED(vap, va_access_time);
907 }
908 vap->va_create_time.tv_sec = cp->c_itime;
909 vap->va_create_time.tv_nsec = 0;
910 vap->va_modify_time.tv_sec = cp->c_mtime;
911 vap->va_modify_time.tv_nsec = 0;
912 vap->va_change_time.tv_sec = cp->c_ctime;
913 vap->va_change_time.tv_nsec = 0;
914 vap->va_backup_time.tv_sec = cp->c_btime;
915 vap->va_backup_time.tv_nsec = 0;
916
917 /* See if we need to emit the date added field to the user */
918 if (VATTR_IS_ACTIVE(vap, va_addedtime)) {
919 u_int32_t dateadded = hfs_get_dateadded (cp);
920 if (dateadded) {
921 vap->va_addedtime.tv_sec = dateadded;
922 vap->va_addedtime.tv_nsec = 0;
923 VATTR_SET_SUPPORTED (vap, va_addedtime);
924 }
925 }
926
927
928 /* XXX is this really a good 'optimal I/O size'? */
929 vap->va_iosize = hfsmp->hfs_logBlockSize;
930 vap->va_uid = cp->c_uid;
931 vap->va_gid = cp->c_gid;
932 vap->va_mode = cp->c_mode;
933 vap->va_flags = cp->c_flags;
934
935 /*
936 * Exporting file IDs from HFS Plus:
937 *
938 * For "normal" files the c_fileid is the same value as the
939 * c_cnid. But for hard link files, they are different - the
940 * c_cnid belongs to the active directory entry (ie the link)
941 * and the c_fileid is for the actual inode (ie the data file).
942 *
943 * The stat call (getattr) uses va_fileid and the Carbon APIs,
944 * which are hardlink-ignorant, will ask for va_linkid.
945 */
946 vap->va_fileid = (u_int64_t)cp->c_fileid;
947 /*
948 * We need to use the origin cache for both hardlinked files
949 * and directories. Hardlinked directories have multiple cnids
950 * and parents (one per link). Hardlinked files also have their
951 * own parents and link IDs separate from the indirect inode number.
952 * If we don't use the cache, we could end up vending the wrong ID
953 * because the cnode will only reflect the link that was looked up most recently.
954 */
955 if (cp->c_flag & C_HARDLINK) {
956 vap->va_linkid = (u_int64_t)hfs_currentcnid(cp);
957 vap->va_parentid = (u_int64_t)hfs_currentparent(cp);
958 } else {
959 vap->va_linkid = (u_int64_t)cp->c_cnid;
960 vap->va_parentid = (u_int64_t)cp->c_parentcnid;
961 }
962 vap->va_fsid = hfsmp->hfs_raw_dev;
963 vap->va_filerev = 0;
964 vap->va_encoding = cp->c_encoding;
965 vap->va_rdev = (v_type == VBLK || v_type == VCHR) ? cp->c_rdev : 0;
966 #if HFS_COMPRESSION
967 if (VATTR_IS_ACTIVE(vap, va_data_size)) {
968 if (hide_size)
969 vap->va_data_size = 0;
970 else if (compressed) {
971 if (uncompressed_size == -1) {
972 /* failed to get the uncompressed size above, so just return data_size */
973 vap->va_data_size = data_size;
974 } else {
975 /* use the uncompressed size we fetched above */
976 vap->va_data_size = uncompressed_size;
977 }
978 } else
979 vap->va_data_size = data_size;
980 // vap->va_supported |= VNODE_ATTR_va_data_size;
981 VATTR_SET_SUPPORTED(vap, va_data_size);
982 }
983 #else
984 vap->va_data_size = data_size;
985 vap->va_supported |= VNODE_ATTR_va_data_size;
986 #endif
987
988 /* Mark them all at once instead of individual VATTR_SET_SUPPORTED calls. */
989 vap->va_supported |= VNODE_ATTR_va_create_time | VNODE_ATTR_va_modify_time |
990 VNODE_ATTR_va_change_time| VNODE_ATTR_va_backup_time |
991 VNODE_ATTR_va_iosize | VNODE_ATTR_va_uid |
992 VNODE_ATTR_va_gid | VNODE_ATTR_va_mode |
993 VNODE_ATTR_va_flags |VNODE_ATTR_va_fileid |
994 VNODE_ATTR_va_linkid | VNODE_ATTR_va_parentid |
995 VNODE_ATTR_va_fsid | VNODE_ATTR_va_filerev |
996 VNODE_ATTR_va_encoding | VNODE_ATTR_va_rdev;
997
998 /* If this is the root, let VFS to find out the mount name, which
999 * may be different from the real name. Otherwise, we need to take care
1000 * for hardlinked files, which need to be looked up, if necessary
1001 */
1002 if (VATTR_IS_ACTIVE(vap, va_name) && (cp->c_cnid != kHFSRootFolderID)) {
1003 struct cat_desc linkdesc;
1004 int lockflags;
1005 int uselinkdesc = 0;
1006 cnid_t nextlinkid = 0;
1007 cnid_t prevlinkid = 0;
1008
1009 /* Get the name for ATTR_CMN_NAME. We need to take special care for hardlinks
1010 * here because the info. for the link ID requested by getattrlist may be
1011 * different than what's currently in the cnode. This is because the cnode
1012 * will be filled in with the information for the most recent link ID that went
1013 * through namei/lookup(). If there are competing lookups for hardlinks that point
1014 * to the same inode, one (or more) getattrlists could be vended incorrect name information.
1015 * Also, we need to beware of open-unlinked files which could have a namelen of 0.
1016 */
1017
1018 if ((cp->c_flag & C_HARDLINK) &&
1019 ((cp->c_desc.cd_namelen == 0) || (vap->va_linkid != cp->c_cnid))) {
1020 /* If we have no name and our link ID is the raw inode number, then we may
1021 * have an open-unlinked file. Go to the next link in this case.
1022 */
1023 if ((cp->c_desc.cd_namelen == 0) && (vap->va_linkid == cp->c_fileid)) {
1024 if ((error = hfs_lookup_siblinglinks(hfsmp, vap->va_linkid, &prevlinkid, &nextlinkid))){
1025 goto out;
1026 }
1027 }
1028 else {
1029 /* just use link obtained from vap above */
1030 nextlinkid = vap->va_linkid;
1031 }
1032
1033 /* We need to probe the catalog for the descriptor corresponding to the link ID
1034 * stored in nextlinkid. Note that we don't know if we have the exclusive lock
1035 * for the cnode here, so we can't just update the descriptor. Instead,
1036 * we should just store the descriptor's value locally and then use it to pass
1037 * out the name value as needed below.
1038 */
1039 if (nextlinkid){
1040 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
1041 error = cat_findname(hfsmp, nextlinkid, &linkdesc);
1042 hfs_systemfile_unlock(hfsmp, lockflags);
1043 if (error == 0) {
1044 uselinkdesc = 1;
1045 }
1046 }
1047 }
1048
1049 /* By this point, we've either patched up the name above and the c_desc
1050 * points to the correct data, or it already did, in which case we just proceed
1051 * by copying the name into the vap. Note that we will never set va_name to
1052 * supported if nextlinkid is never initialized. This could happen in the degenerate
1053 * case above involving the raw inode number, where it has no nextlinkid. In this case
1054 * we will simply not mark the name bit as supported.
1055 */
1056 if (uselinkdesc) {
1057 strlcpy(vap->va_name, (const char*) linkdesc.cd_nameptr, MAXPATHLEN);
1058 VATTR_SET_SUPPORTED(vap, va_name);
1059 cat_releasedesc(&linkdesc);
1060 }
1061 else if (cp->c_desc.cd_namelen) {
1062 strlcpy(vap->va_name, (const char*) cp->c_desc.cd_nameptr, MAXPATHLEN);
1063 VATTR_SET_SUPPORTED(vap, va_name);
1064 }
1065 }
1066
1067 out:
1068 hfs_unlock(cp);
1069 /*
1070 * We need to vnode_put the rsrc fork vnode only *after* we've released
1071 * the cnode lock, since vnode_put can trigger an inactive call, which
1072 * will go back into HFS and try to acquire a cnode lock.
1073 */
1074 if (rvp) {
1075 vnode_put (rvp);
1076 }
1077
1078 return (error);
1079 }
1080
1081 int
1082 hfs_vnop_setattr(ap)
1083 struct vnop_setattr_args /* {
1084 struct vnode *a_vp;
1085 struct vnode_attr *a_vap;
1086 vfs_context_t a_context;
1087 } */ *ap;
1088 {
1089 struct vnode_attr *vap = ap->a_vap;
1090 struct vnode *vp = ap->a_vp;
1091 struct cnode *cp = NULL;
1092 struct hfsmount *hfsmp;
1093 kauth_cred_t cred = vfs_context_ucred(ap->a_context);
1094 struct proc *p = vfs_context_proc(ap->a_context);
1095 int error = 0;
1096 uid_t nuid;
1097 gid_t ngid;
1098 time_t orig_ctime;
1099
1100 orig_ctime = VTOC(vp)->c_ctime;
1101
1102 #if HFS_COMPRESSION
1103 int decmpfs_reset_state = 0;
1104 /*
1105 we call decmpfs_update_attributes even if the file is not compressed
1106 because we want to update the incoming flags if the xattrs are invalid
1107 */
1108 error = decmpfs_update_attributes(vp, vap);
1109 if (error)
1110 return error;
1111
1112 //
1113 // if this is not a size-changing setattr and it is not just
1114 // an atime update, then check for a snapshot.
1115 //
1116 if (!VATTR_IS_ACTIVE(vap, va_data_size) && !(vap->va_active == VNODE_ATTR_va_access_time)) {
1117 check_for_tracked_file(vp, orig_ctime, NAMESPACE_HANDLER_METADATA_MOD, NULL);
1118 }
1119 #endif
1120
1121
1122 #if CONFIG_PROTECT
1123 if ((error = cp_handle_vnop(VTOC(vp), CP_WRITE_ACCESS)) != 0) {
1124 return (error);
1125 }
1126 #endif /* CONFIG_PROTECT */
1127
1128 hfsmp = VTOHFS(vp);
1129
1130 /* Don't allow modification of the journal file. */
1131 if (hfsmp->hfs_jnlfileid == VTOC(vp)->c_fileid) {
1132 return (EPERM);
1133 }
1134
1135 /*
1136 * File size change request.
1137 * We are guaranteed that this is not a directory, and that
1138 * the filesystem object is writeable.
1139 *
1140 * NOTE: HFS COMPRESSION depends on the data_size being set *before* the bsd flags are updated
1141 */
1142 VATTR_SET_SUPPORTED(vap, va_data_size);
1143 if (VATTR_IS_ACTIVE(vap, va_data_size) && !vnode_islnk(vp)) {
1144 #if HFS_COMPRESSION
1145 /* keep the compressed state locked until we're done truncating the file */
1146 decmpfs_cnode *dp = VTOCMP(vp);
1147 if (!dp) {
1148 /*
1149 * call hfs_lazy_init_decmpfs_cnode() to make sure that the decmpfs_cnode
1150 * is filled in; we need a decmpfs_cnode to lock out decmpfs state changes
1151 * on this file while it's truncating
1152 */
1153 dp = hfs_lazy_init_decmpfs_cnode(VTOC(vp));
1154 if (!dp) {
1155 /* failed to allocate a decmpfs_cnode */
1156 return ENOMEM; /* what should this be? */
1157 }
1158 }
1159
1160 check_for_tracked_file(vp, orig_ctime, vap->va_data_size == 0 ? NAMESPACE_HANDLER_TRUNCATE_OP|NAMESPACE_HANDLER_DELETE_OP : NAMESPACE_HANDLER_TRUNCATE_OP, NULL);
1161
1162 decmpfs_lock_compressed_data(dp, 1);
1163 if (hfs_file_is_compressed(VTOC(vp), 1)) {
1164 error = decmpfs_decompress_file(vp, dp, -1/*vap->va_data_size*/, 0, 1);
1165 if (error != 0) {
1166 decmpfs_unlock_compressed_data(dp, 1);
1167 return error;
1168 }
1169 }
1170 #endif
1171
1172 /* Take truncate lock before taking cnode lock. */
1173 hfs_lock_truncate(VTOC(vp), HFS_EXCLUSIVE_LOCK);
1174
1175 /* Perform the ubc_setsize before taking the cnode lock. */
1176 ubc_setsize(vp, vap->va_data_size);
1177
1178 if ((error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK))) {
1179 hfs_unlock_truncate(VTOC(vp), 0);
1180 #if HFS_COMPRESSION
1181 decmpfs_unlock_compressed_data(dp, 1);
1182 #endif
1183 return (error);
1184 }
1185 cp = VTOC(vp);
1186
1187 error = hfs_truncate(vp, vap->va_data_size, vap->va_vaflags & 0xffff, 1, 0, ap->a_context);
1188
1189 hfs_unlock_truncate(cp, 0);
1190 #if HFS_COMPRESSION
1191 decmpfs_unlock_compressed_data(dp, 1);
1192 #endif
1193 if (error)
1194 goto out;
1195 }
1196 if (cp == NULL) {
1197 if ((error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK)))
1198 return (error);
1199 cp = VTOC(vp);
1200 }
1201
1202 /*
1203 * If it is just an access time update request by itself
1204 * we know the request is from kernel level code, and we
1205 * can delay it without being as worried about consistency.
1206 * This change speeds up mmaps, in the rare case that they
1207 * get caught behind a sync.
1208 */
1209
1210 if (vap->va_active == VNODE_ATTR_va_access_time) {
1211 cp->c_touch_acctime=TRUE;
1212 goto out;
1213 }
1214
1215
1216
1217 /*
1218 * Owner/group change request.
1219 * We are guaranteed that the new owner/group is valid and legal.
1220 */
1221 VATTR_SET_SUPPORTED(vap, va_uid);
1222 VATTR_SET_SUPPORTED(vap, va_gid);
1223 nuid = VATTR_IS_ACTIVE(vap, va_uid) ? vap->va_uid : (uid_t)VNOVAL;
1224 ngid = VATTR_IS_ACTIVE(vap, va_gid) ? vap->va_gid : (gid_t)VNOVAL;
1225 if (((nuid != (uid_t)VNOVAL) || (ngid != (gid_t)VNOVAL)) &&
1226 ((error = hfs_chown(vp, nuid, ngid, cred, p)) != 0))
1227 goto out;
1228
1229 /*
1230 * Mode change request.
1231 * We are guaranteed that the mode value is valid and that in
1232 * conjunction with the owner and group, this change is legal.
1233 */
1234 VATTR_SET_SUPPORTED(vap, va_mode);
1235 if (VATTR_IS_ACTIVE(vap, va_mode) &&
1236 ((error = hfs_chmod(vp, (int)vap->va_mode, cred, p)) != 0))
1237 goto out;
1238
1239 /*
1240 * File flags change.
1241 * We are guaranteed that only flags allowed to change given the
1242 * current securelevel are being changed.
1243 */
1244 VATTR_SET_SUPPORTED(vap, va_flags);
1245 if (VATTR_IS_ACTIVE(vap, va_flags)) {
1246 u_int16_t *fdFlags;
1247
1248 #if HFS_COMPRESSION
1249 if ((cp->c_flags ^ vap->va_flags) & UF_COMPRESSED) {
1250 /*
1251 * the UF_COMPRESSED was toggled, so reset our cached compressed state
1252 * but we don't want to actually do the update until we've released the cnode lock down below
1253 * NOTE: turning the flag off doesn't actually decompress the file, so that we can
1254 * turn off the flag and look at the "raw" file for debugging purposes
1255 */
1256 decmpfs_reset_state = 1;
1257 }
1258 #endif
1259
1260 cp->c_flags = vap->va_flags;
1261 cp->c_touch_chgtime = TRUE;
1262
1263 /*
1264 * Mirror the UF_HIDDEN flag to the invisible bit of the Finder Info.
1265 *
1266 * The fdFlags for files and frFlags for folders are both 8 bytes
1267 * into the userInfo (the first 16 bytes of the Finder Info). They
1268 * are both 16-bit fields.
1269 */
1270 fdFlags = (u_int16_t *) &cp->c_finderinfo[8];
1271 if (vap->va_flags & UF_HIDDEN)
1272 *fdFlags |= OSSwapHostToBigConstInt16(kFinderInvisibleMask);
1273 else
1274 *fdFlags &= ~OSSwapHostToBigConstInt16(kFinderInvisibleMask);
1275 }
1276
1277 /*
1278 * Timestamp updates.
1279 */
1280 VATTR_SET_SUPPORTED(vap, va_create_time);
1281 VATTR_SET_SUPPORTED(vap, va_access_time);
1282 VATTR_SET_SUPPORTED(vap, va_modify_time);
1283 VATTR_SET_SUPPORTED(vap, va_backup_time);
1284 VATTR_SET_SUPPORTED(vap, va_change_time);
1285 if (VATTR_IS_ACTIVE(vap, va_create_time) ||
1286 VATTR_IS_ACTIVE(vap, va_access_time) ||
1287 VATTR_IS_ACTIVE(vap, va_modify_time) ||
1288 VATTR_IS_ACTIVE(vap, va_backup_time)) {
1289 if (VATTR_IS_ACTIVE(vap, va_create_time))
1290 cp->c_itime = vap->va_create_time.tv_sec;
1291 if (VATTR_IS_ACTIVE(vap, va_access_time)) {
1292 cp->c_atime = vap->va_access_time.tv_sec;
1293 cp->c_touch_acctime = FALSE;
1294 }
1295 if (VATTR_IS_ACTIVE(vap, va_modify_time)) {
1296 cp->c_mtime = vap->va_modify_time.tv_sec;
1297 cp->c_touch_modtime = FALSE;
1298 cp->c_touch_chgtime = TRUE;
1299
1300 /*
1301 * The utimes system call can reset the modification
1302 * time but it doesn't know about HFS create times.
1303 * So we need to ensure that the creation time is
1304 * always at least as old as the modification time.
1305 */
1306 if ((VTOVCB(vp)->vcbSigWord == kHFSPlusSigWord) &&
1307 (cp->c_cnid != kHFSRootFolderID) &&
1308 (cp->c_mtime < cp->c_itime)) {
1309 cp->c_itime = cp->c_mtime;
1310 }
1311 }
1312 if (VATTR_IS_ACTIVE(vap, va_backup_time))
1313 cp->c_btime = vap->va_backup_time.tv_sec;
1314 cp->c_flag |= C_MODIFIED;
1315 }
1316
1317 /*
1318 * Set name encoding.
1319 */
1320 VATTR_SET_SUPPORTED(vap, va_encoding);
1321 if (VATTR_IS_ACTIVE(vap, va_encoding)) {
1322 cp->c_encoding = vap->va_encoding;
1323 hfs_setencodingbits(hfsmp, cp->c_encoding);
1324 }
1325
1326 if ((error = hfs_update(vp, TRUE)) != 0)
1327 goto out;
1328 out:
1329 if (cp) {
1330 /* Purge origin cache for cnode, since caller now has correct link ID for it
1331 * We purge it here since it was acquired for us during lookup, and we no longer need it.
1332 */
1333 if ((cp->c_flag & C_HARDLINK) && (vp->v_type != VDIR)){
1334 hfs_relorigin(cp, 0);
1335 }
1336
1337 hfs_unlock(cp);
1338 #if HFS_COMPRESSION
1339 if (decmpfs_reset_state) {
1340 /*
1341 * we've changed the UF_COMPRESSED flag, so reset the decmpfs state for this cnode
1342 * but don't do it while holding the hfs cnode lock
1343 */
1344 decmpfs_cnode *dp = VTOCMP(vp);
1345 if (!dp) {
1346 /*
1347 * call hfs_lazy_init_decmpfs_cnode() to make sure that the decmpfs_cnode
1348 * is filled in; we need a decmpfs_cnode to prevent decmpfs state changes
1349 * on this file if it's locked
1350 */
1351 dp = hfs_lazy_init_decmpfs_cnode(VTOC(vp));
1352 if (!dp) {
1353 /* failed to allocate a decmpfs_cnode */
1354 return ENOMEM; /* what should this be? */
1355 }
1356 }
1357 decmpfs_cnode_set_vnode_state(dp, FILE_TYPE_UNKNOWN, 0);
1358 }
1359 #endif
1360 }
1361 return (error);
1362 }
1363
1364
1365 /*
1366 * Change the mode on a file.
1367 * cnode must be locked before calling.
1368 */
1369 int
1370 hfs_chmod(struct vnode *vp, int mode, __unused kauth_cred_t cred, __unused struct proc *p)
1371 {
1372 register struct cnode *cp = VTOC(vp);
1373
1374 if (VTOVCB(vp)->vcbSigWord != kHFSPlusSigWord)
1375 return (0);
1376
1377 // XXXdbg - don't allow modification of the journal or journal_info_block
1378 if (VTOHFS(vp)->jnl && cp && cp->c_datafork) {
1379 struct HFSPlusExtentDescriptor *extd;
1380
1381 extd = &cp->c_datafork->ff_extents[0];
1382 if (extd->startBlock == VTOVCB(vp)->vcbJinfoBlock || extd->startBlock == VTOHFS(vp)->jnl_start) {
1383 return EPERM;
1384 }
1385 }
1386
1387 #if OVERRIDE_UNKNOWN_PERMISSIONS
1388 if (((unsigned int)vfs_flags(VTOVFS(vp))) & MNT_UNKNOWNPERMISSIONS) {
1389 return (0);
1390 };
1391 #endif
1392 cp->c_mode &= ~ALLPERMS;
1393 cp->c_mode |= (mode & ALLPERMS);
1394 cp->c_touch_chgtime = TRUE;
1395 return (0);
1396 }
1397
1398
1399 int
1400 hfs_write_access(struct vnode *vp, kauth_cred_t cred, struct proc *p, Boolean considerFlags)
1401 {
1402 struct cnode *cp = VTOC(vp);
1403 int retval = 0;
1404 int is_member;
1405
1406 /*
1407 * Disallow write attempts on read-only file systems;
1408 * unless the file is a socket, fifo, or a block or
1409 * character device resident on the file system.
1410 */
1411 switch (vnode_vtype(vp)) {
1412 case VDIR:
1413 case VLNK:
1414 case VREG:
1415 if (VTOHFS(vp)->hfs_flags & HFS_READ_ONLY)
1416 return (EROFS);
1417 break;
1418 default:
1419 break;
1420 }
1421
1422 /* If immutable bit set, nobody gets to write it. */
1423 if (considerFlags && (cp->c_flags & IMMUTABLE))
1424 return (EPERM);
1425
1426 /* Otherwise, user id 0 always gets access. */
1427 if (!suser(cred, NULL))
1428 return (0);
1429
1430 /* Otherwise, check the owner. */
1431 if ((retval = hfs_owner_rights(VTOHFS(vp), cp->c_uid, cred, p, false)) == 0)
1432 return ((cp->c_mode & S_IWUSR) == S_IWUSR ? 0 : EACCES);
1433
1434 /* Otherwise, check the groups. */
1435 if (kauth_cred_ismember_gid(cred, cp->c_gid, &is_member) == 0 && is_member) {
1436 return ((cp->c_mode & S_IWGRP) == S_IWGRP ? 0 : EACCES);
1437 }
1438
1439 /* Otherwise, check everyone else. */
1440 return ((cp->c_mode & S_IWOTH) == S_IWOTH ? 0 : EACCES);
1441 }
1442
1443
1444 /*
1445 * Perform chown operation on cnode cp;
1446 * code must be locked prior to call.
1447 */
1448 int
1449 #if !QUOTA
1450 hfs_chown(struct vnode *vp, uid_t uid, gid_t gid, __unused kauth_cred_t cred,
1451 __unused struct proc *p)
1452 #else
1453 hfs_chown(struct vnode *vp, uid_t uid, gid_t gid, kauth_cred_t cred,
1454 __unused struct proc *p)
1455 #endif
1456 {
1457 register struct cnode *cp = VTOC(vp);
1458 uid_t ouid;
1459 gid_t ogid;
1460 #if QUOTA
1461 int error = 0;
1462 register int i;
1463 int64_t change;
1464 #endif /* QUOTA */
1465
1466 if (VTOVCB(vp)->vcbSigWord != kHFSPlusSigWord)
1467 return (ENOTSUP);
1468
1469 if (((unsigned int)vfs_flags(VTOVFS(vp))) & MNT_UNKNOWNPERMISSIONS)
1470 return (0);
1471
1472 if (uid == (uid_t)VNOVAL)
1473 uid = cp->c_uid;
1474 if (gid == (gid_t)VNOVAL)
1475 gid = cp->c_gid;
1476
1477 #if 0 /* we are guaranteed that this is already the case */
1478 /*
1479 * If we don't own the file, are trying to change the owner
1480 * of the file, or are not a member of the target group,
1481 * the caller must be superuser or the call fails.
1482 */
1483 if ((kauth_cred_getuid(cred) != cp->c_uid || uid != cp->c_uid ||
1484 (gid != cp->c_gid &&
1485 (kauth_cred_ismember_gid(cred, gid, &is_member) || !is_member))) &&
1486 (error = suser(cred, 0)))
1487 return (error);
1488 #endif
1489
1490 ogid = cp->c_gid;
1491 ouid = cp->c_uid;
1492 #if QUOTA
1493 if ((error = hfs_getinoquota(cp)))
1494 return (error);
1495 if (ouid == uid) {
1496 dqrele(cp->c_dquot[USRQUOTA]);
1497 cp->c_dquot[USRQUOTA] = NODQUOT;
1498 }
1499 if (ogid == gid) {
1500 dqrele(cp->c_dquot[GRPQUOTA]);
1501 cp->c_dquot[GRPQUOTA] = NODQUOT;
1502 }
1503
1504 /*
1505 * Eventually need to account for (fake) a block per directory
1506 * if (vnode_isdir(vp))
1507 * change = VTOHFS(vp)->blockSize;
1508 * else
1509 */
1510
1511 change = (int64_t)(cp->c_blocks) * (int64_t)VTOVCB(vp)->blockSize;
1512 (void) hfs_chkdq(cp, -change, cred, CHOWN);
1513 (void) hfs_chkiq(cp, -1, cred, CHOWN);
1514 for (i = 0; i < MAXQUOTAS; i++) {
1515 dqrele(cp->c_dquot[i]);
1516 cp->c_dquot[i] = NODQUOT;
1517 }
1518 #endif /* QUOTA */
1519 cp->c_gid = gid;
1520 cp->c_uid = uid;
1521 #if QUOTA
1522 if ((error = hfs_getinoquota(cp)) == 0) {
1523 if (ouid == uid) {
1524 dqrele(cp->c_dquot[USRQUOTA]);
1525 cp->c_dquot[USRQUOTA] = NODQUOT;
1526 }
1527 if (ogid == gid) {
1528 dqrele(cp->c_dquot[GRPQUOTA]);
1529 cp->c_dquot[GRPQUOTA] = NODQUOT;
1530 }
1531 if ((error = hfs_chkdq(cp, change, cred, CHOWN)) == 0) {
1532 if ((error = hfs_chkiq(cp, 1, cred, CHOWN)) == 0)
1533 goto good;
1534 else
1535 (void) hfs_chkdq(cp, -change, cred, CHOWN|FORCE);
1536 }
1537 for (i = 0; i < MAXQUOTAS; i++) {
1538 dqrele(cp->c_dquot[i]);
1539 cp->c_dquot[i] = NODQUOT;
1540 }
1541 }
1542 cp->c_gid = ogid;
1543 cp->c_uid = ouid;
1544 if (hfs_getinoquota(cp) == 0) {
1545 if (ouid == uid) {
1546 dqrele(cp->c_dquot[USRQUOTA]);
1547 cp->c_dquot[USRQUOTA] = NODQUOT;
1548 }
1549 if (ogid == gid) {
1550 dqrele(cp->c_dquot[GRPQUOTA]);
1551 cp->c_dquot[GRPQUOTA] = NODQUOT;
1552 }
1553 (void) hfs_chkdq(cp, change, cred, FORCE|CHOWN);
1554 (void) hfs_chkiq(cp, 1, cred, FORCE|CHOWN);
1555 (void) hfs_getinoquota(cp);
1556 }
1557 return (error);
1558 good:
1559 if (hfs_getinoquota(cp))
1560 panic("hfs_chown: lost quota");
1561 #endif /* QUOTA */
1562
1563
1564 /*
1565 According to the SUSv3 Standard, chown() shall mark
1566 for update the st_ctime field of the file.
1567 (No exceptions mentioned)
1568 */
1569 cp->c_touch_chgtime = TRUE;
1570 return (0);
1571 }
1572
1573
1574 /*
1575 * The hfs_exchange routine swaps the fork data in two files by
1576 * exchanging some of the information in the cnode. It is used
1577 * to preserve the file ID when updating an existing file, in
1578 * case the file is being tracked through its file ID. Typically
1579 * its used after creating a new file during a safe-save.
1580 */
1581 int
1582 hfs_vnop_exchange(ap)
1583 struct vnop_exchange_args /* {
1584 struct vnode *a_fvp;
1585 struct vnode *a_tvp;
1586 int a_options;
1587 vfs_context_t a_context;
1588 } */ *ap;
1589 {
1590 struct vnode *from_vp = ap->a_fvp;
1591 struct vnode *to_vp = ap->a_tvp;
1592 struct cnode *from_cp;
1593 struct cnode *to_cp;
1594 struct hfsmount *hfsmp;
1595 struct cat_desc tempdesc;
1596 struct cat_attr tempattr;
1597 const unsigned char *from_nameptr;
1598 const unsigned char *to_nameptr;
1599 char from_iname[32];
1600 char to_iname[32];
1601 u_int32_t tempflag;
1602 cnid_t from_parid;
1603 cnid_t to_parid;
1604 int lockflags;
1605 int error = 0, started_tr = 0, got_cookie = 0;
1606 cat_cookie_t cookie;
1607 time_t orig_from_ctime, orig_to_ctime;
1608
1609 /* The files must be on the same volume. */
1610 if (vnode_mount(from_vp) != vnode_mount(to_vp))
1611 return (EXDEV);
1612
1613 if (from_vp == to_vp)
1614 return (EINVAL);
1615
1616 orig_from_ctime = VTOC(from_vp)->c_ctime;
1617 orig_to_ctime = VTOC(to_vp)->c_ctime;
1618
1619 #if HFS_COMPRESSION
1620 if ( hfs_file_is_compressed(VTOC(from_vp), 0) ) {
1621 if ( 0 != ( error = decmpfs_decompress_file(from_vp, VTOCMP(from_vp), -1, 0, 1) ) ) {
1622 return error;
1623 }
1624 }
1625
1626 if ( hfs_file_is_compressed(VTOC(to_vp), 0) ) {
1627 if ( 0 != ( error = decmpfs_decompress_file(to_vp, VTOCMP(to_vp), -1, 0, 1) ) ) {
1628 return error;
1629 }
1630 }
1631 #endif // HFS_COMPRESSION
1632
1633 /*
1634 * Normally, we want to notify the user handlers about the event,
1635 * except if it's a handler driving the event.
1636 */
1637 if ((ap->a_options & FSOPT_EXCHANGE_DATA_ONLY) == 0) {
1638 check_for_tracked_file(from_vp, orig_from_ctime, NAMESPACE_HANDLER_WRITE_OP, NULL);
1639 check_for_tracked_file(to_vp, orig_to_ctime, NAMESPACE_HANDLER_WRITE_OP, NULL);
1640 }
1641 else {
1642 /*
1643 * We're doing a data-swap.
1644 * Take the truncate lock/cnode lock, then verify there are no mmap references.
1645 * Issue a hfs_filedone to flush out all of the remaining state for this file.
1646 * Allow the rest of the codeflow to re-acquire the cnode locks in order.
1647 */
1648
1649 hfs_lock_truncate (VTOC(from_vp), HFS_SHARED_LOCK);
1650
1651 if ((error = hfs_lock(VTOC(from_vp), HFS_EXCLUSIVE_LOCK))) {
1652 hfs_unlock_truncate (VTOC(from_vp), 0);
1653 return error;
1654 }
1655
1656 /* Verify the source file is not in use by anyone besides us (including mmap refs) */
1657 if (vnode_isinuse(from_vp, 1)) {
1658 error = EBUSY;
1659 hfs_unlock(VTOC(from_vp));
1660 hfs_unlock_truncate (VTOC(from_vp), 0);
1661 return error;
1662 }
1663
1664 /* Flush out the data in the source file */
1665 VTOC(from_vp)->c_flag |= C_SWAPINPROGRESS;
1666 error = hfs_filedone (from_vp, ap->a_context);
1667 VTOC(from_vp)->c_flag &= ~C_SWAPINPROGRESS;
1668 hfs_unlock(VTOC(from_vp));
1669 hfs_unlock_truncate(VTOC(from_vp), 0);
1670
1671 if (error) {
1672 return error;
1673 }
1674 }
1675
1676
1677 if ((error = hfs_lockpair(VTOC(from_vp), VTOC(to_vp), HFS_EXCLUSIVE_LOCK)))
1678 return (error);
1679
1680 from_cp = VTOC(from_vp);
1681 to_cp = VTOC(to_vp);
1682 hfsmp = VTOHFS(from_vp);
1683
1684 /* Only normal files can be exchanged. */
1685 if (!vnode_isreg(from_vp) || !vnode_isreg(to_vp) ||
1686 VNODE_IS_RSRC(from_vp) || VNODE_IS_RSRC(to_vp)) {
1687 error = EINVAL;
1688 goto exit;
1689 }
1690
1691 // XXXdbg - don't allow modification of the journal or journal_info_block
1692 if (hfsmp->jnl) {
1693 struct HFSPlusExtentDescriptor *extd;
1694
1695 if (from_cp->c_datafork) {
1696 extd = &from_cp->c_datafork->ff_extents[0];
1697 if (extd->startBlock == VTOVCB(from_vp)->vcbJinfoBlock || extd->startBlock == hfsmp->jnl_start) {
1698 error = EPERM;
1699 goto exit;
1700 }
1701 }
1702
1703 if (to_cp->c_datafork) {
1704 extd = &to_cp->c_datafork->ff_extents[0];
1705 if (extd->startBlock == VTOVCB(to_vp)->vcbJinfoBlock || extd->startBlock == hfsmp->jnl_start) {
1706 error = EPERM;
1707 goto exit;
1708 }
1709 }
1710 }
1711
1712 /*
1713 * Ok, now that all of the pre-flighting is done, call the underlying
1714 * function if needed.
1715 */
1716 if (ap->a_options & FSOPT_EXCHANGE_DATA_ONLY) {
1717 error = hfs_movedata(from_vp, to_vp);
1718 goto exit;
1719 }
1720
1721
1722 if ((error = hfs_start_transaction(hfsmp)) != 0) {
1723 goto exit;
1724 }
1725 started_tr = 1;
1726
1727 /*
1728 * Reserve some space in the Catalog file.
1729 */
1730 if ((error = cat_preflight(hfsmp, CAT_EXCHANGE, &cookie, vfs_context_proc(ap->a_context)))) {
1731 goto exit;
1732 }
1733 got_cookie = 1;
1734
1735 /* The backend code always tries to delete the virtual
1736 * extent id for exchanging files so we need to lock
1737 * the extents b-tree.
1738 */
1739 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_EXTENTS | SFL_ATTRIBUTE, HFS_EXCLUSIVE_LOCK);
1740
1741 /* Account for the location of the catalog objects. */
1742 if (from_cp->c_flag & C_HARDLINK) {
1743 MAKE_INODE_NAME(from_iname, sizeof(from_iname),
1744 from_cp->c_attr.ca_linkref);
1745 from_nameptr = (unsigned char *)from_iname;
1746 from_parid = hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid;
1747 from_cp->c_hint = 0;
1748 } else {
1749 from_nameptr = from_cp->c_desc.cd_nameptr;
1750 from_parid = from_cp->c_parentcnid;
1751 }
1752 if (to_cp->c_flag & C_HARDLINK) {
1753 MAKE_INODE_NAME(to_iname, sizeof(to_iname),
1754 to_cp->c_attr.ca_linkref);
1755 to_nameptr = (unsigned char *)to_iname;
1756 to_parid = hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid;
1757 to_cp->c_hint = 0;
1758 } else {
1759 to_nameptr = to_cp->c_desc.cd_nameptr;
1760 to_parid = to_cp->c_parentcnid;
1761 }
1762
1763 /* Do the exchange */
1764 error = ExchangeFileIDs(hfsmp, from_nameptr, to_nameptr, from_parid,
1765 to_parid, from_cp->c_hint, to_cp->c_hint);
1766 hfs_systemfile_unlock(hfsmp, lockflags);
1767
1768 /*
1769 * Note that we don't need to exchange any extended attributes
1770 * since the attributes are keyed by file ID.
1771 */
1772
1773 if (error != E_NONE) {
1774 error = MacToVFSError(error);
1775 goto exit;
1776 }
1777
1778 /* Purge the vnodes from the name cache */
1779 if (from_vp)
1780 cache_purge(from_vp);
1781 if (to_vp)
1782 cache_purge(to_vp);
1783
1784 /* Save a copy of from attributes before swapping. */
1785 bcopy(&from_cp->c_desc, &tempdesc, sizeof(struct cat_desc));
1786 bcopy(&from_cp->c_attr, &tempattr, sizeof(struct cat_attr));
1787 tempflag = from_cp->c_flag & (C_HARDLINK | C_HASXATTRS);
1788
1789 /*
1790 * Swap the descriptors and all non-fork related attributes.
1791 * (except the modify date)
1792 */
1793 bcopy(&to_cp->c_desc, &from_cp->c_desc, sizeof(struct cat_desc));
1794
1795 from_cp->c_hint = 0;
1796 from_cp->c_fileid = from_cp->c_cnid;
1797 from_cp->c_itime = to_cp->c_itime;
1798 from_cp->c_btime = to_cp->c_btime;
1799 from_cp->c_atime = to_cp->c_atime;
1800 from_cp->c_ctime = to_cp->c_ctime;
1801 from_cp->c_gid = to_cp->c_gid;
1802 from_cp->c_uid = to_cp->c_uid;
1803 from_cp->c_flags = to_cp->c_flags;
1804 from_cp->c_mode = to_cp->c_mode;
1805 from_cp->c_linkcount = to_cp->c_linkcount;
1806 from_cp->c_flag = to_cp->c_flag & (C_HARDLINK | C_HASXATTRS);
1807 from_cp->c_attr.ca_recflags = to_cp->c_attr.ca_recflags;
1808 bcopy(to_cp->c_finderinfo, from_cp->c_finderinfo, 32);
1809
1810 bcopy(&tempdesc, &to_cp->c_desc, sizeof(struct cat_desc));
1811 to_cp->c_hint = 0;
1812 to_cp->c_fileid = to_cp->c_cnid;
1813 to_cp->c_itime = tempattr.ca_itime;
1814 to_cp->c_btime = tempattr.ca_btime;
1815 to_cp->c_atime = tempattr.ca_atime;
1816 to_cp->c_ctime = tempattr.ca_ctime;
1817 to_cp->c_gid = tempattr.ca_gid;
1818 to_cp->c_uid = tempattr.ca_uid;
1819 to_cp->c_flags = tempattr.ca_flags;
1820 to_cp->c_mode = tempattr.ca_mode;
1821 to_cp->c_linkcount = tempattr.ca_linkcount;
1822 to_cp->c_flag = tempflag;
1823 to_cp->c_attr.ca_recflags = tempattr.ca_recflags;
1824 bcopy(tempattr.ca_finderinfo, to_cp->c_finderinfo, 32);
1825
1826 /* Rehash the cnodes using their new file IDs */
1827 hfs_chash_rehash(hfsmp, from_cp, to_cp);
1828
1829 /*
1830 * When a file moves out of "Cleanup At Startup"
1831 * we can drop its NODUMP status.
1832 */
1833 if ((from_cp->c_flags & UF_NODUMP) &&
1834 (from_cp->c_parentcnid != to_cp->c_parentcnid)) {
1835 from_cp->c_flags &= ~UF_NODUMP;
1836 from_cp->c_touch_chgtime = TRUE;
1837 }
1838 if ((to_cp->c_flags & UF_NODUMP) &&
1839 (to_cp->c_parentcnid != from_cp->c_parentcnid)) {
1840 to_cp->c_flags &= ~UF_NODUMP;
1841 to_cp->c_touch_chgtime = TRUE;
1842 }
1843
1844 exit:
1845 if (got_cookie) {
1846 cat_postflight(hfsmp, &cookie, vfs_context_proc(ap->a_context));
1847 }
1848 if (started_tr) {
1849 hfs_end_transaction(hfsmp);
1850 }
1851
1852 hfs_unlockpair(from_cp, to_cp);
1853 return (error);
1854 }
1855
1856 int
1857 hfs_vnop_mmap(struct vnop_mmap_args *ap)
1858 {
1859 struct vnode *vp = ap->a_vp;
1860 int error;
1861
1862 if (VNODE_IS_RSRC(vp)) {
1863 /* allow pageins of the resource fork */
1864 } else {
1865 int compressed = hfs_file_is_compressed(VTOC(vp), 1); /* 1 == don't take the cnode lock */
1866 time_t orig_ctime = VTOC(vp)->c_ctime;
1867
1868 if (!compressed && (VTOC(vp)->c_flags & UF_COMPRESSED)) {
1869 error = check_for_dataless_file(vp, NAMESPACE_HANDLER_READ_OP);
1870 if (error != 0) {
1871 return error;
1872 }
1873 }
1874
1875 if (ap->a_fflags & PROT_WRITE) {
1876 check_for_tracked_file(vp, orig_ctime, NAMESPACE_HANDLER_WRITE_OP, NULL);
1877 }
1878 }
1879
1880 //
1881 // NOTE: we return ENOTSUP because we want the cluster layer
1882 // to actually do all the real work.
1883 //
1884 return (ENOTSUP);
1885 }
1886
1887 /*
1888 * hfs_movedata
1889 *
1890 * This is a non-symmetric variant of exchangedata. In this function,
1891 * the contents of the fork in from_vp are moved to the fork
1892 * specified by to_vp.
1893 *
1894 * The cnodes pointed to by 'from_vp' and 'to_vp' must be locked.
1895 *
1896 * The vnode pointed to by 'to_vp' *must* be empty prior to invoking this function.
1897 * We impose this restriction because we may not be able to fully delete the entire
1898 * file's contents in a single transaction, particularly if it has a lot of extents.
1899 * In the normal file deletion codepath, the file is screened for two conditions:
1900 * 1) bigger than 400MB, and 2) more than 8 extents. If so, the file is relocated to
1901 * the hidden directory and the deletion is broken up into multiple truncates. We can't
1902 * do that here because both files need to exist in the namespace. The main reason this
1903 * is imposed is that we may have to touch a whole lot of bitmap blocks if there are
1904 * many extents.
1905 *
1906 * Any data written to 'from_vp' after this call completes is not guaranteed
1907 * to be moved.
1908 *
1909 * Arguments:
1910 * vnode from_vp: source file
1911 * vnode to_vp: destination file; must be empty
1912 *
1913 * Returns:
1914 * EFBIG - Destination file was not empty
1915 * 0 - success
1916 *
1917 *
1918 */
1919 int hfs_movedata (struct vnode *from_vp, struct vnode *to_vp) {
1920
1921 struct cnode *from_cp;
1922 struct cnode *to_cp;
1923 struct hfsmount *hfsmp = NULL;
1924 int error = 0;
1925 int started_tr = 0;
1926 int lockflags = 0;
1927 int overflow_blocks;
1928 int rsrc = 0;
1929
1930
1931 /* Get the HFS pointers */
1932 from_cp = VTOC(from_vp);
1933 to_cp = VTOC(to_vp);
1934 hfsmp = VTOHFS(from_vp);
1935
1936 /* Verify that neither source/dest file is open-unlinked */
1937 if (from_cp->c_flag & (C_DELETED | C_NOEXISTS)) {
1938 error = EBUSY;
1939 goto movedata_exit;
1940 }
1941
1942 if (to_cp->c_flag & (C_DELETED | C_NOEXISTS)) {
1943 error = EBUSY;
1944 goto movedata_exit;
1945 }
1946
1947 /*
1948 * Verify the source file is not in use by anyone besides us.
1949 *
1950 * This function is typically invoked by a namespace handler
1951 * process responding to a temporarily stalled system call.
1952 * The FD that it is working off of is opened O_EVTONLY, so
1953 * it really has no active usecounts (the kusecount from O_EVTONLY
1954 * is subtracted from the total usecounts).
1955 *
1956 * As a result, we shouldn't have any active usecounts against
1957 * this vnode when we go to check it below.
1958 */
1959 if (vnode_isinuse(from_vp, 0)) {
1960 error = EBUSY;
1961 goto movedata_exit;
1962 }
1963
1964 if (from_cp->c_rsrc_vp == from_vp) {
1965 rsrc = 1;
1966 }
1967
1968 /*
1969 * We assume that the destination file is already empty.
1970 * Verify that it is.
1971 */
1972 if (rsrc) {
1973 if (to_cp->c_rsrcfork->ff_size > 0) {
1974 error = EFBIG;
1975 goto movedata_exit;
1976 }
1977 }
1978 else {
1979 if (to_cp->c_datafork->ff_size > 0) {
1980 error = EFBIG;
1981 goto movedata_exit;
1982 }
1983 }
1984
1985 /* If the source has the rsrc open, make sure the destination is also the rsrc */
1986 if (rsrc) {
1987 if (to_vp != to_cp->c_rsrc_vp) {
1988 error = EINVAL;
1989 goto movedata_exit;
1990 }
1991 }
1992 else {
1993 /* Verify that both forks are data forks */
1994 if (to_vp != to_cp->c_vp) {
1995 error = EINVAL;
1996 goto movedata_exit;
1997 }
1998 }
1999
2000 /*
2001 * See if the source file has overflow extents. If it doesn't, we don't
2002 * need to call into MoveData, and the catalog will be enough.
2003 */
2004 if (rsrc) {
2005 overflow_blocks = overflow_extents(from_cp->c_rsrcfork);
2006 }
2007 else {
2008 overflow_blocks = overflow_extents(from_cp->c_datafork);
2009 }
2010
2011 if ((error = hfs_start_transaction (hfsmp)) != 0) {
2012 goto movedata_exit;
2013 }
2014 started_tr = 1;
2015
2016 /* Lock the system files: catalog, extents, attributes */
2017 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_EXTENTS | SFL_ATTRIBUTE, HFS_EXCLUSIVE_LOCK);
2018
2019 /* Copy over any catalog allocation data into the new spot. */
2020 if (rsrc) {
2021 if ((error = hfs_move_fork (from_cp->c_rsrcfork, from_cp, to_cp->c_rsrcfork, to_cp))){
2022 hfs_systemfile_unlock(hfsmp, lockflags);
2023 goto movedata_exit;
2024 }
2025 }
2026 else {
2027 if ((error = hfs_move_fork (from_cp->c_datafork, from_cp, to_cp->c_datafork, to_cp))) {
2028 hfs_systemfile_unlock(hfsmp, lockflags);
2029 goto movedata_exit;
2030 }
2031 }
2032
2033 /*
2034 * Note that because all we're doing is moving the extents around, we can
2035 * probably do this in a single transaction: Each extent record (group of 8)
2036 * is 64 bytes. A extent overflow B-Tree node is typically 4k. This means
2037 * each node can hold roughly ~60 extent records == (480 extents).
2038 *
2039 * If a file was massively fragmented and had 20k extents, this means we'd
2040 * roughly touch 20k/480 == 41 to 42 nodes, plus the index nodes, for half
2041 * of the operation. (inserting or deleting). So if we're manipulating 80-100
2042 * nodes, this is basically 320k of data to write to the journal in
2043 * a bad case.
2044 */
2045 if (overflow_blocks != 0) {
2046 if (rsrc) {
2047 error = MoveData(hfsmp, from_cp->c_cnid, to_cp->c_cnid, 1);
2048 }
2049 else {
2050 error = MoveData (hfsmp, from_cp->c_cnid, to_cp->c_cnid, 0);
2051 }
2052 }
2053
2054 if (error) {
2055 /* Reverse the operation. Copy the fork data back into the source */
2056 if (rsrc) {
2057 hfs_move_fork (to_cp->c_rsrcfork, to_cp, from_cp->c_rsrcfork, from_cp);
2058 }
2059 else {
2060 hfs_move_fork (to_cp->c_datafork, to_cp, from_cp->c_datafork, from_cp);
2061 }
2062 }
2063 else {
2064 struct cat_fork *src_data = NULL;
2065 struct cat_fork *src_rsrc = NULL;
2066 struct cat_fork *dst_data = NULL;
2067 struct cat_fork *dst_rsrc = NULL;
2068
2069 /* Touch the times*/
2070 to_cp->c_touch_acctime = TRUE;
2071 to_cp->c_touch_chgtime = TRUE;
2072 to_cp->c_touch_modtime = TRUE;
2073
2074 from_cp->c_touch_acctime = TRUE;
2075 from_cp->c_touch_chgtime = TRUE;
2076 from_cp->c_touch_modtime = TRUE;
2077
2078 hfs_touchtimes(hfsmp, to_cp);
2079 hfs_touchtimes(hfsmp, from_cp);
2080
2081 if (from_cp->c_datafork) {
2082 src_data = &from_cp->c_datafork->ff_data;
2083 }
2084 if (from_cp->c_rsrcfork) {
2085 src_rsrc = &from_cp->c_rsrcfork->ff_data;
2086 }
2087
2088 if (to_cp->c_datafork) {
2089 dst_data = &to_cp->c_datafork->ff_data;
2090 }
2091 if (to_cp->c_rsrcfork) {
2092 dst_rsrc = &to_cp->c_rsrcfork->ff_data;
2093 }
2094
2095 /* Update the catalog nodes */
2096 (void) cat_update(hfsmp, &from_cp->c_desc, &from_cp->c_attr,
2097 src_data, src_rsrc);
2098
2099 (void) cat_update(hfsmp, &to_cp->c_desc, &to_cp->c_attr,
2100 dst_data, dst_rsrc);
2101
2102 }
2103 /* unlock the system files */
2104 hfs_systemfile_unlock(hfsmp, lockflags);
2105
2106
2107 movedata_exit:
2108 if (started_tr) {
2109 hfs_end_transaction(hfsmp);
2110 }
2111
2112 return error;
2113
2114 }
2115
2116 /*
2117 * Copy all of the catalog and runtime data in srcfork to dstfork.
2118 *
2119 * This allows us to maintain the invalid ranges across the movedata operation so
2120 * we don't need to force all of the pending IO right now. In addition, we move all
2121 * non overflow-extent extents into the destination here.
2122 */
2123 static int hfs_move_fork (struct filefork *srcfork, struct cnode *src_cp,
2124 struct filefork *dstfork, struct cnode *dst_cp) {
2125 struct rl_entry *invalid_range;
2126 int size = sizeof(struct HFSPlusExtentDescriptor);
2127 size = size * kHFSPlusExtentDensity;
2128
2129 /* If the dstfork has any invalid ranges, bail out */
2130 invalid_range = TAILQ_FIRST(&dstfork->ff_invalidranges);
2131 if (invalid_range != NULL) {
2132 return EFBIG;
2133 }
2134
2135 if (dstfork->ff_data.cf_size != 0 || dstfork->ff_data.cf_new_size != 0) {
2136 return EFBIG;
2137 }
2138
2139 /* First copy the invalid ranges */
2140 while ((invalid_range = TAILQ_FIRST(&srcfork->ff_invalidranges))) {
2141 off_t start = invalid_range->rl_start;
2142 off_t end = invalid_range->rl_end;
2143
2144 /* Remove it from the srcfork and add it to dstfork */
2145 rl_remove(start, end, &srcfork->ff_invalidranges);
2146 rl_add(start, end, &dstfork->ff_invalidranges);
2147 }
2148
2149 /*
2150 * Ignore the ff_union. We don't move symlinks or system files.
2151 * Now copy the in-catalog extent information
2152 */
2153 dstfork->ff_data.cf_size = srcfork->ff_data.cf_size;
2154 dstfork->ff_data.cf_new_size = srcfork->ff_data.cf_new_size;
2155 dstfork->ff_data.cf_vblocks = srcfork->ff_data.cf_vblocks;
2156 dstfork->ff_data.cf_blocks = srcfork->ff_data.cf_blocks;
2157
2158 /* just memcpy the whole array of extents to the new location. */
2159 memcpy (dstfork->ff_data.cf_extents, srcfork->ff_data.cf_extents, size);
2160
2161 /*
2162 * Copy the cnode attribute data.
2163 *
2164 */
2165 src_cp->c_blocks -= srcfork->ff_data.cf_vblocks;
2166 src_cp->c_blocks -= srcfork->ff_data.cf_blocks;
2167
2168 dst_cp->c_blocks += srcfork->ff_data.cf_vblocks;
2169 dst_cp->c_blocks += srcfork->ff_data.cf_blocks;
2170
2171 /* Now delete the entries in the source fork */
2172 srcfork->ff_data.cf_size = 0;
2173 srcfork->ff_data.cf_new_size = 0;
2174 srcfork->ff_data.cf_union.cfu_bytesread = 0;
2175 srcfork->ff_data.cf_vblocks = 0;
2176 srcfork->ff_data.cf_blocks = 0;
2177
2178 /* Zero out the old extents */
2179 bzero (srcfork->ff_data.cf_extents, size);
2180 return 0;
2181 }
2182
2183
2184
2185 /*
2186 * cnode must be locked
2187 */
2188 int
2189 hfs_fsync(struct vnode *vp, int waitfor, int fullsync, struct proc *p)
2190 {
2191 struct cnode *cp = VTOC(vp);
2192 struct filefork *fp = NULL;
2193 int retval = 0;
2194 struct hfsmount *hfsmp = VTOHFS(vp);
2195 struct rl_entry *invalid_range;
2196 struct timeval tv;
2197 int waitdata; /* attributes necessary for data retrieval */
2198 int wait; /* all other attributes (e.g. atime, etc.) */
2199 int lockflag;
2200 int took_trunc_lock = 0;
2201
2202 /*
2203 * Applications which only care about data integrity rather than full
2204 * file integrity may opt out of (delay) expensive metadata update
2205 * operations as a performance optimization.
2206 */
2207 wait = (waitfor == MNT_WAIT);
2208 waitdata = (waitfor == MNT_DWAIT) | wait;
2209 if (always_do_fullfsync)
2210 fullsync = 1;
2211
2212 /* HFS directories don't have any data blocks. */
2213 if (vnode_isdir(vp))
2214 goto metasync;
2215 fp = VTOF(vp);
2216
2217 /*
2218 * For system files flush the B-tree header and
2219 * for regular files write out any clusters
2220 */
2221 if (vnode_issystem(vp)) {
2222 if (VTOF(vp)->fcbBTCBPtr != NULL) {
2223 // XXXdbg
2224 if (hfsmp->jnl == NULL) {
2225 BTFlushPath(VTOF(vp));
2226 }
2227 }
2228 } else if (UBCINFOEXISTS(vp)) {
2229 hfs_unlock(cp);
2230 hfs_lock_truncate(cp, HFS_SHARED_LOCK);
2231 took_trunc_lock = 1;
2232
2233 if (fp->ff_unallocblocks != 0) {
2234 hfs_unlock_truncate(cp, 0);
2235
2236 hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK);
2237 }
2238 /* Don't hold cnode lock when calling into cluster layer. */
2239 (void) cluster_push(vp, waitdata ? IO_SYNC : 0);
2240
2241 hfs_lock(cp, HFS_FORCE_LOCK);
2242 }
2243 /*
2244 * When MNT_WAIT is requested and the zero fill timeout
2245 * has expired then we must explicitly zero out any areas
2246 * that are currently marked invalid (holes).
2247 *
2248 * Files with NODUMP can bypass zero filling here.
2249 */
2250 if (fp && (((cp->c_flag & C_ALWAYS_ZEROFILL) && !TAILQ_EMPTY(&fp->ff_invalidranges)) ||
2251 ((wait || (cp->c_flag & C_ZFWANTSYNC)) &&
2252 ((cp->c_flags & UF_NODUMP) == 0) &&
2253 UBCINFOEXISTS(vp) && (vnode_issystem(vp) ==0) &&
2254 cp->c_zftimeout != 0))) {
2255
2256 microuptime(&tv);
2257 if ((cp->c_flag & C_ALWAYS_ZEROFILL) == 0 && !fullsync && tv.tv_sec < (long)cp->c_zftimeout) {
2258 /* Remember that a force sync was requested. */
2259 cp->c_flag |= C_ZFWANTSYNC;
2260 goto datasync;
2261 }
2262 if (!TAILQ_EMPTY(&fp->ff_invalidranges)) {
2263 if (!took_trunc_lock || (cp->c_truncatelockowner == HFS_SHARED_OWNER)) {
2264 hfs_unlock(cp);
2265 if (took_trunc_lock) {
2266 hfs_unlock_truncate(cp, 0);
2267 }
2268 hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK);
2269 hfs_lock(cp, HFS_FORCE_LOCK);
2270 took_trunc_lock = 1;
2271 }
2272 while ((invalid_range = TAILQ_FIRST(&fp->ff_invalidranges))) {
2273 off_t start = invalid_range->rl_start;
2274 off_t end = invalid_range->rl_end;
2275
2276 /* The range about to be written must be validated
2277 * first, so that VNOP_BLOCKMAP() will return the
2278 * appropriate mapping for the cluster code:
2279 */
2280 rl_remove(start, end, &fp->ff_invalidranges);
2281
2282 /* Don't hold cnode lock when calling into cluster layer. */
2283 hfs_unlock(cp);
2284 (void) cluster_write(vp, (struct uio *) 0,
2285 fp->ff_size, end + 1, start, (off_t)0,
2286 IO_HEADZEROFILL | IO_NOZERODIRTY | IO_NOCACHE);
2287 hfs_lock(cp, HFS_FORCE_LOCK);
2288 cp->c_flag |= C_MODIFIED;
2289 }
2290 hfs_unlock(cp);
2291 (void) cluster_push(vp, waitdata ? IO_SYNC : 0);
2292 hfs_lock(cp, HFS_FORCE_LOCK);
2293 }
2294 cp->c_flag &= ~C_ZFWANTSYNC;
2295 cp->c_zftimeout = 0;
2296 }
2297 datasync:
2298 if (took_trunc_lock) {
2299 hfs_unlock_truncate(cp, 0);
2300 took_trunc_lock = 0;
2301 }
2302 /*
2303 * if we have a journal and if journal_active() returns != 0 then the
2304 * we shouldn't do anything to a locked block (because it is part
2305 * of a transaction). otherwise we'll just go through the normal
2306 * code path and flush the buffer. note journal_active() can return
2307 * -1 if the journal is invalid -- however we still need to skip any
2308 * locked blocks as they get cleaned up when we finish the transaction
2309 * or close the journal.
2310 */
2311 // if (hfsmp->jnl && journal_active(hfsmp->jnl) >= 0)
2312 if (hfsmp->jnl)
2313 lockflag = BUF_SKIP_LOCKED;
2314 else
2315 lockflag = 0;
2316
2317 /*
2318 * Flush all dirty buffers associated with a vnode.
2319 */
2320 buf_flushdirtyblks(vp, waitdata, lockflag, "hfs_fsync");
2321
2322 metasync:
2323 if (vnode_isreg(vp) && vnode_issystem(vp)) {
2324 if (VTOF(vp)->fcbBTCBPtr != NULL) {
2325 microuptime(&tv);
2326 BTSetLastSync(VTOF(vp), tv.tv_sec);
2327 }
2328 cp->c_touch_acctime = FALSE;
2329 cp->c_touch_chgtime = FALSE;
2330 cp->c_touch_modtime = FALSE;
2331 } else if ( !(vp->v_flag & VSWAP) ) /* User file */ {
2332 retval = hfs_update(vp, wait);
2333
2334 /*
2335 * When MNT_WAIT is requested push out the catalog record for
2336 * this file. If they asked for a full fsync, we can skip this
2337 * because the journal_flush or hfs_metasync_all will push out
2338 * all of the metadata changes.
2339 */
2340 if ((retval == 0) && wait && !fullsync && cp->c_hint &&
2341 !ISSET(cp->c_flag, C_DELETED | C_NOEXISTS)) {
2342 hfs_metasync(VTOHFS(vp), (daddr64_t)cp->c_hint, p);
2343 }
2344
2345 /*
2346 * If this was a full fsync, make sure all metadata
2347 * changes get to stable storage.
2348 */
2349 if (fullsync) {
2350 if (hfsmp->jnl) {
2351 hfs_journal_flush(hfsmp, FALSE);
2352
2353 if (journal_uses_fua(hfsmp->jnl)) {
2354 /*
2355 * the journal_flush did NOT issue a sync track cache command,
2356 * and the fullsync indicates we are supposed to flush all cached
2357 * data to the media, so issue the sync track cache command
2358 * explicitly
2359 */
2360 VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, NULL);
2361 }
2362 } else {
2363 retval = hfs_metasync_all(hfsmp);
2364 /* XXX need to pass context! */
2365 VNOP_IOCTL(hfsmp->hfs_devvp, DKIOCSYNCHRONIZECACHE, NULL, FWRITE, NULL);
2366 }
2367 }
2368 }
2369
2370 return (retval);
2371 }
2372
2373
2374 /* Sync an hfs catalog b-tree node */
2375 int
2376 hfs_metasync(struct hfsmount *hfsmp, daddr64_t node, __unused struct proc *p)
2377 {
2378 vnode_t vp;
2379 buf_t bp;
2380 int lockflags;
2381
2382 vp = HFSTOVCB(hfsmp)->catalogRefNum;
2383
2384 // XXXdbg - don't need to do this on a journaled volume
2385 if (hfsmp->jnl) {
2386 return 0;
2387 }
2388
2389 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_EXCLUSIVE_LOCK);
2390 /*
2391 * Look for a matching node that has been delayed
2392 * but is not part of a set (B_LOCKED).
2393 *
2394 * BLK_ONLYVALID causes buf_getblk to return a
2395 * buf_t for the daddr64_t specified only if it's
2396 * currently resident in the cache... the size
2397 * parameter to buf_getblk is ignored when this flag
2398 * is set
2399 */
2400 bp = buf_getblk(vp, node, 0, 0, 0, BLK_META | BLK_ONLYVALID);
2401
2402 if (bp) {
2403 if ((buf_flags(bp) & (B_LOCKED | B_DELWRI)) == B_DELWRI)
2404 (void) VNOP_BWRITE(bp);
2405 else
2406 buf_brelse(bp);
2407 }
2408
2409 hfs_systemfile_unlock(hfsmp, lockflags);
2410
2411 return (0);
2412 }
2413
2414
2415 /*
2416 * Sync all hfs B-trees. Use this instead of journal_flush for a volume
2417 * without a journal. Note that the volume bitmap does not get written;
2418 * we rely on fsck_hfs to fix that up (which it can do without any loss
2419 * of data).
2420 */
2421 int
2422 hfs_metasync_all(struct hfsmount *hfsmp)
2423 {
2424 int lockflags;
2425
2426 /* Lock all of the B-trees so we get a mutually consistent state */
2427 lockflags = hfs_systemfile_lock(hfsmp,
2428 SFL_CATALOG|SFL_EXTENTS|SFL_ATTRIBUTE, HFS_EXCLUSIVE_LOCK);
2429
2430 /* Sync each of the B-trees */
2431 if (hfsmp->hfs_catalog_vp)
2432 hfs_btsync(hfsmp->hfs_catalog_vp, 0);
2433 if (hfsmp->hfs_extents_vp)
2434 hfs_btsync(hfsmp->hfs_extents_vp, 0);
2435 if (hfsmp->hfs_attribute_vp)
2436 hfs_btsync(hfsmp->hfs_attribute_vp, 0);
2437
2438 /* Wait for all of the writes to complete */
2439 if (hfsmp->hfs_catalog_vp)
2440 vnode_waitforwrites(hfsmp->hfs_catalog_vp, 0, 0, 0, "hfs_metasync_all");
2441 if (hfsmp->hfs_extents_vp)
2442 vnode_waitforwrites(hfsmp->hfs_extents_vp, 0, 0, 0, "hfs_metasync_all");
2443 if (hfsmp->hfs_attribute_vp)
2444 vnode_waitforwrites(hfsmp->hfs_attribute_vp, 0, 0, 0, "hfs_metasync_all");
2445
2446 hfs_systemfile_unlock(hfsmp, lockflags);
2447
2448 return 0;
2449 }
2450
2451
2452 /*ARGSUSED 1*/
2453 static int
2454 hfs_btsync_callback(struct buf *bp, __unused void *dummy)
2455 {
2456 buf_clearflags(bp, B_LOCKED);
2457 (void) buf_bawrite(bp);
2458
2459 return(BUF_CLAIMED);
2460 }
2461
2462
2463 int
2464 hfs_btsync(struct vnode *vp, int sync_transaction)
2465 {
2466 struct cnode *cp = VTOC(vp);
2467 struct timeval tv;
2468 int flags = 0;
2469
2470 if (sync_transaction)
2471 flags |= BUF_SKIP_NONLOCKED;
2472 /*
2473 * Flush all dirty buffers associated with b-tree.
2474 */
2475 buf_iterate(vp, hfs_btsync_callback, flags, 0);
2476
2477 microuptime(&tv);
2478 if (vnode_issystem(vp) && (VTOF(vp)->fcbBTCBPtr != NULL))
2479 (void) BTSetLastSync(VTOF(vp), tv.tv_sec);
2480 cp->c_touch_acctime = FALSE;
2481 cp->c_touch_chgtime = FALSE;
2482 cp->c_touch_modtime = FALSE;
2483
2484 return 0;
2485 }
2486
2487 /*
2488 * Remove a directory.
2489 */
2490 int
2491 hfs_vnop_rmdir(ap)
2492 struct vnop_rmdir_args /* {
2493 struct vnode *a_dvp;
2494 struct vnode *a_vp;
2495 struct componentname *a_cnp;
2496 vfs_context_t a_context;
2497 } */ *ap;
2498 {
2499 struct vnode *dvp = ap->a_dvp;
2500 struct vnode *vp = ap->a_vp;
2501 struct cnode *dcp = VTOC(dvp);
2502 struct cnode *cp = VTOC(vp);
2503 int error;
2504 time_t orig_ctime;
2505
2506 orig_ctime = VTOC(vp)->c_ctime;
2507
2508 if (!S_ISDIR(cp->c_mode)) {
2509 return (ENOTDIR);
2510 }
2511 if (dvp == vp) {
2512 return (EINVAL);
2513 }
2514
2515 check_for_tracked_file(vp, orig_ctime, NAMESPACE_HANDLER_DELETE_OP, NULL);
2516 cp = VTOC(vp);
2517
2518 if ((error = hfs_lockpair(dcp, cp, HFS_EXCLUSIVE_LOCK))) {
2519 return (error);
2520 }
2521
2522 /* Check for a race with rmdir on the parent directory */
2523 if (dcp->c_flag & (C_DELETED | C_NOEXISTS)) {
2524 hfs_unlockpair (dcp, cp);
2525 return ENOENT;
2526 }
2527 error = hfs_removedir(dvp, vp, ap->a_cnp, 0, 0);
2528
2529 hfs_unlockpair(dcp, cp);
2530
2531 return (error);
2532 }
2533
2534 /*
2535 * Remove a directory
2536 *
2537 * Both dvp and vp cnodes are locked
2538 */
2539 int
2540 hfs_removedir(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2541 int skip_reserve, int only_unlink)
2542 {
2543 struct cnode *cp;
2544 struct cnode *dcp;
2545 struct hfsmount * hfsmp;
2546 struct cat_desc desc;
2547 int lockflags;
2548 int error = 0, started_tr = 0;
2549
2550 cp = VTOC(vp);
2551 dcp = VTOC(dvp);
2552 hfsmp = VTOHFS(vp);
2553
2554 if (dcp == cp) {
2555 return (EINVAL); /* cannot remove "." */
2556 }
2557 if (cp->c_flag & (C_NOEXISTS | C_DELETED)) {
2558 return (0);
2559 }
2560 if (cp->c_entries != 0) {
2561 return (ENOTEMPTY);
2562 }
2563
2564 /*
2565 * If the directory is open or in use (e.g. opendir() or current working
2566 * directory for some process); wait for inactive/reclaim to actually
2567 * remove cnode from the catalog. Both inactive and reclaim codepaths are capable
2568 * of removing open-unlinked directories from the catalog, as well as getting rid
2569 * of EAs still on the element. So change only_unlink to true, so that it will get
2570 * cleaned up below.
2571 *
2572 * Otherwise, we can get into a weird old mess where the directory has C_DELETED,
2573 * but it really means C_NOEXISTS because the item was actually removed from the
2574 * catalog. Then when we try to remove the entry from the catalog later on, it won't
2575 * really be there anymore.
2576 */
2577 if (vnode_isinuse(vp, 0)) {
2578 only_unlink = 1;
2579 }
2580
2581 /* Deal with directory hardlinks */
2582 if (cp->c_flag & C_HARDLINK) {
2583 /*
2584 * Note that if we have a directory which was a hardlink at any point,
2585 * its actual directory data is stored in the directory inode in the hidden
2586 * directory rather than the leaf element(s) present in the namespace.
2587 *
2588 * If there are still other hardlinks to this directory,
2589 * then we'll just eliminate this particular link and the vnode will still exist.
2590 * If this is the last link to an empty directory, then we'll open-unlink the
2591 * directory and it will be only tagged with C_DELETED (as opposed to C_NOEXISTS).
2592 *
2593 * We could also return EBUSY here.
2594 */
2595
2596 return hfs_unlink(hfsmp, dvp, vp, cnp, skip_reserve);
2597 }
2598
2599 /*
2600 * In a few cases, we may want to allow the directory to persist in an
2601 * open-unlinked state. If the directory is being open-unlinked (still has usecount
2602 * references), or if it has EAs, or if it was being deleted as part of a rename,
2603 * then we go ahead and move it to the hidden directory.
2604 *
2605 * If the directory is being open-unlinked, then we want to keep the catalog entry
2606 * alive so that future EA calls and fchmod/fstat etc. do not cause issues later.
2607 *
2608 * If the directory had EAs, then we want to use the open-unlink trick so that the
2609 * EA removal is not done in one giant transaction. Otherwise, it could cause a panic
2610 * due to overflowing the journal.
2611 *
2612 * Finally, if it was deleted as part of a rename, we move it to the hidden directory
2613 * in order to maintain rename atomicity.
2614 *
2615 * Note that the allow_dirs argument to hfs_removefile specifies that it is
2616 * supposed to handle directories for this case.
2617 */
2618
2619 if (((hfsmp->hfs_attribute_vp != NULL) &&
2620 ((cp->c_attr.ca_recflags & kHFSHasAttributesMask) != 0)) ||
2621 (only_unlink != 0)) {
2622
2623 int ret = hfs_removefile(dvp, vp, cnp, 0, 0, 1, NULL, only_unlink);
2624 /*
2625 * Even though hfs_vnop_rename calls vnode_recycle for us on tvp we call
2626 * it here just in case we were invoked by rmdir() on a directory that had
2627 * EAs. To ensure that we start reclaiming the space as soon as possible,
2628 * we call vnode_recycle on the directory.
2629 */
2630 vnode_recycle(vp);
2631
2632 return ret;
2633
2634 }
2635
2636 dcp->c_flag |= C_DIR_MODIFICATION;
2637
2638 #if QUOTA
2639 if (hfsmp->hfs_flags & HFS_QUOTAS)
2640 (void)hfs_getinoquota(cp);
2641 #endif
2642 if ((error = hfs_start_transaction(hfsmp)) != 0) {
2643 goto out;
2644 }
2645 started_tr = 1;
2646
2647 /*
2648 * Verify the directory is empty (and valid).
2649 * (Rmdir ".." won't be valid since
2650 * ".." will contain a reference to
2651 * the current directory and thus be
2652 * non-empty.)
2653 */
2654 if ((dcp->c_flags & APPEND) || (cp->c_flags & (IMMUTABLE | APPEND))) {
2655 error = EPERM;
2656 goto out;
2657 }
2658
2659 /* Remove the entry from the namei cache: */
2660 cache_purge(vp);
2661
2662 /*
2663 * Protect against a race with rename by using the component
2664 * name passed in and parent id from dvp (instead of using
2665 * the cp->c_desc which may have changed).
2666 */
2667 desc.cd_nameptr = (const u_int8_t *)cnp->cn_nameptr;
2668 desc.cd_namelen = cnp->cn_namelen;
2669 desc.cd_parentcnid = dcp->c_fileid;
2670 desc.cd_cnid = cp->c_cnid;
2671 desc.cd_flags = CD_ISDIR;
2672 desc.cd_encoding = cp->c_encoding;
2673 desc.cd_hint = 0;
2674
2675 if (!hfs_valid_cnode(hfsmp, dvp, cnp, cp->c_fileid, NULL, &error)) {
2676 error = 0;
2677 goto out;
2678 }
2679
2680 /* Remove entry from catalog */
2681 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_ATTRIBUTE | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
2682
2683 if (!skip_reserve) {
2684 /*
2685 * Reserve some space in the Catalog file.
2686 */
2687 if ((error = cat_preflight(hfsmp, CAT_DELETE, NULL, 0))) {
2688 hfs_systemfile_unlock(hfsmp, lockflags);
2689 goto out;
2690 }
2691 }
2692
2693 error = cat_delete(hfsmp, &desc, &cp->c_attr);
2694 if (error == 0) {
2695 /* The parent lost a child */
2696 if (dcp->c_entries > 0)
2697 dcp->c_entries--;
2698 DEC_FOLDERCOUNT(hfsmp, dcp->c_attr);
2699 dcp->c_dirchangecnt++;
2700 dcp->c_touch_chgtime = TRUE;
2701 dcp->c_touch_modtime = TRUE;
2702 hfs_touchtimes(hfsmp, cp);
2703 (void) cat_update(hfsmp, &dcp->c_desc, &dcp->c_attr, NULL, NULL);
2704 cp->c_flag &= ~(C_MODIFIED | C_FORCEUPDATE);
2705 }
2706
2707 hfs_systemfile_unlock(hfsmp, lockflags);
2708
2709 if (error)
2710 goto out;
2711
2712 #if QUOTA
2713 if (hfsmp->hfs_flags & HFS_QUOTAS)
2714 (void)hfs_chkiq(cp, -1, NOCRED, 0);
2715 #endif /* QUOTA */
2716
2717 hfs_volupdate(hfsmp, VOL_RMDIR, (dcp->c_cnid == kHFSRootFolderID));
2718
2719 /* Mark C_NOEXISTS since the catalog entry is now gone */
2720 cp->c_flag |= C_NOEXISTS;
2721 out:
2722 dcp->c_flag &= ~C_DIR_MODIFICATION;
2723 wakeup((caddr_t)&dcp->c_flag);
2724
2725 if (started_tr) {
2726 hfs_end_transaction(hfsmp);
2727 }
2728
2729 return (error);
2730 }
2731
2732
2733 /*
2734 * Remove a file or link.
2735 */
2736 int
2737 hfs_vnop_remove(ap)
2738 struct vnop_remove_args /* {
2739 struct vnode *a_dvp;
2740 struct vnode *a_vp;
2741 struct componentname *a_cnp;
2742 int a_flags;
2743 vfs_context_t a_context;
2744 } */ *ap;
2745 {
2746 struct vnode *dvp = ap->a_dvp;
2747 struct vnode *vp = ap->a_vp;
2748 struct cnode *dcp = VTOC(dvp);
2749 struct cnode *cp;
2750 struct vnode *rvp = NULL;
2751 struct hfsmount *hfsmp = VTOHFS(vp);
2752 int error=0, recycle_rsrc=0;
2753 int drop_rsrc_vnode = 0;
2754 time_t orig_ctime;
2755
2756 if (dvp == vp) {
2757 return (EINVAL);
2758 }
2759
2760 orig_ctime = VTOC(vp)->c_ctime;
2761 if (!vnode_isnamedstream(vp)) {
2762 error = check_for_tracked_file(vp, orig_ctime, NAMESPACE_HANDLER_DELETE_OP, NULL);
2763 if (error) {
2764 // XXXdbg - decide on a policy for handling namespace handler failures!
2765 // for now we just let them proceed.
2766 }
2767 }
2768 error = 0;
2769
2770 cp = VTOC(vp);
2771
2772 /*
2773 * We need to grab the cnode lock on 'cp' before the lockpair()
2774 * to get an iocount on the rsrc fork BEFORE we enter hfs_removefile.
2775 * To prevent other deadlocks, it's best to call hfs_vgetrsrc in a way that
2776 * allows it to drop the cnode lock that it expects to be held coming in.
2777 * If we don't, we could commit a lock order violation, causing a deadlock.
2778 * In order to safely get the rsrc vnode with an iocount, we need to only hold the
2779 * lock on the file temporarily. Unlike hfs_vnop_rename, we don't have to worry
2780 * about one rsrc fork getting recycled for another, but we do want to ensure
2781 * that there are no deadlocks due to lock ordering issues.
2782 *
2783 * Note: this function may be invoked for directory hardlinks, so just skip these
2784 * steps if 'vp' is a directory.
2785 */
2786
2787
2788 if ((vp->v_type == VLNK) || (vp->v_type == VREG)) {
2789
2790 if ((error = hfs_lock (cp, HFS_EXCLUSIVE_LOCK))) {
2791 return (error);
2792 }
2793
2794 error = hfs_vgetrsrc(hfsmp, vp, &rvp, TRUE, TRUE);
2795 hfs_unlock(cp);
2796 if (error) {
2797 /* we may have gotten an rsrc vp even though we got an error */
2798 if (rvp) {
2799 vnode_put(rvp);
2800 rvp = NULL;
2801 }
2802 return (error);
2803 }
2804 drop_rsrc_vnode = 1;
2805 }
2806 /* Now that we may have an iocount on rvp, do the lock pair */
2807
2808 hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK);
2809
2810 if ((error = hfs_lockpair(dcp, cp, HFS_EXCLUSIVE_LOCK))) {
2811 hfs_unlock_truncate(cp, 0);
2812 /* drop the iocount on rvp if necessary */
2813 if (drop_rsrc_vnode) {
2814 vnode_put (rvp);
2815 }
2816 return (error);
2817 }
2818
2819 /*
2820 * Check to see if we raced rmdir for the parent directory
2821 * hfs_removefile already checks for a race on vp/cp
2822 */
2823 if (dcp->c_flag & (C_DELETED | C_NOEXISTS)) {
2824 error = ENOENT;
2825 goto rm_done;
2826 }
2827
2828 error = hfs_removefile(dvp, vp, ap->a_cnp, ap->a_flags, 0, 0, rvp, 0);
2829
2830 /*
2831 * If the remove succeeded in deleting the file, then we may need to mark
2832 * the resource fork for recycle so that it is reclaimed as quickly
2833 * as possible. If it were not recycled quickly, then this resource fork
2834 * vnode could keep a v_parent reference on the data fork, which prevents it
2835 * from going through reclaim (by giving it extra usecounts), except in the force-
2836 * unmount case.
2837 *
2838 * However, a caveat: we need to continue to supply resource fork
2839 * access to open-unlinked files even if the resource fork is not open. This is
2840 * a requirement for the compressed files work. Luckily, hfs_vgetrsrc will handle
2841 * this already if the data fork has been re-parented to the hidden directory.
2842 *
2843 * As a result, all we really need to do here is mark the resource fork vnode
2844 * for recycle. If it goes out of core, it can be brought in again if needed.
2845 * If the cnode was instead marked C_NOEXISTS, then there wouldn't be any
2846 * more work.
2847 */
2848 if ((error == 0) && (rvp)) {
2849 recycle_rsrc = 1;
2850 }
2851
2852 /*
2853 * Drop the truncate lock before unlocking the cnode
2854 * (which can potentially perform a vnode_put and
2855 * recycle the vnode which in turn might require the
2856 * truncate lock)
2857 */
2858 rm_done:
2859 hfs_unlock_truncate(cp, 0);
2860 hfs_unlockpair(dcp, cp);
2861
2862 if (recycle_rsrc) {
2863 /* inactive or reclaim on rvp will clean up the blocks from the rsrc fork */
2864 vnode_recycle(rvp);
2865 }
2866
2867 if (drop_rsrc_vnode) {
2868 /* drop iocount on rsrc fork, was obtained at beginning of fxn */
2869 vnode_put(rvp);
2870 }
2871
2872 return (error);
2873 }
2874
2875
2876 static int
2877 hfs_removefile_callback(struct buf *bp, void *hfsmp) {
2878
2879 if ( !(buf_flags(bp) & B_META))
2880 panic("hfs: symlink bp @ %p is not marked meta-data!\n", bp);
2881 /*
2882 * it's part of the current transaction, kill it.
2883 */
2884 journal_kill_block(((struct hfsmount *)hfsmp)->jnl, bp);
2885
2886 return (BUF_CLAIMED);
2887 }
2888
2889 /*
2890 * hfs_removefile
2891 *
2892 * Similar to hfs_vnop_remove except there are additional options.
2893 * This function may be used to remove directories if they have
2894 * lots of EA's -- note the 'allow_dirs' argument.
2895 *
2896 * The 'rvp' argument is used to pass in a resource fork vnode with
2897 * an iocount to prevent it from getting recycled during usage. If it
2898 * is NULL, then it is assumed the caller is a VNOP that cannot operate
2899 * on resource forks, like hfs_vnop_symlink or hfs_removedir. Otherwise in
2900 * a VNOP that takes multiple vnodes, we could violate lock order and
2901 * cause a deadlock.
2902 *
2903 * Requires cnode and truncate locks to be held.
2904 */
2905 int
2906 hfs_removefile(struct vnode *dvp, struct vnode *vp, struct componentname *cnp,
2907 int flags, int skip_reserve, int allow_dirs,
2908 struct vnode *rvp, int only_unlink)
2909 {
2910 struct cnode *cp;
2911 struct cnode *dcp;
2912 struct hfsmount *hfsmp;
2913 struct cat_desc desc;
2914 struct timeval tv;
2915 int dataforkbusy = 0;
2916 int rsrcforkbusy = 0;
2917 int lockflags;
2918 int error = 0;
2919 int started_tr = 0;
2920 int isbigfile = 0, defer_remove=0, isdir=0;
2921 int update_vh = 0;
2922
2923 cp = VTOC(vp);
2924 dcp = VTOC(dvp);
2925 hfsmp = VTOHFS(vp);
2926
2927 /* Check if we lost a race post lookup. */
2928 if (cp->c_flag & (C_NOEXISTS | C_DELETED)) {
2929 return (0);
2930 }
2931
2932 if (!hfs_valid_cnode(hfsmp, dvp, cnp, cp->c_fileid, NULL, &error)) {
2933 return 0;
2934 }
2935
2936 /* Make sure a remove is permitted */
2937 if (VNODE_IS_RSRC(vp)) {
2938 return (EPERM);
2939 }
2940 /* Don't allow deleting the journal or journal_info_block. */
2941 if (hfsmp->jnl &&
2942 (cp->c_fileid == hfsmp->hfs_jnlfileid || cp->c_fileid == hfsmp->hfs_jnlinfoblkid)) {
2943 return (EPERM);
2944 }
2945 /*
2946 * Hard links require special handling.
2947 */
2948 if (cp->c_flag & C_HARDLINK) {
2949 if ((flags & VNODE_REMOVE_NODELETEBUSY) && vnode_isinuse(vp, 0)) {
2950 return (EBUSY);
2951 } else {
2952 /* A directory hard link with a link count of one is
2953 * treated as a regular directory. Therefore it should
2954 * only be removed using rmdir().
2955 */
2956 if ((vnode_isdir(vp) == 1) && (cp->c_linkcount == 1) &&
2957 (allow_dirs == 0)) {
2958 return (EPERM);
2959 }
2960 return hfs_unlink(hfsmp, dvp, vp, cnp, skip_reserve);
2961 }
2962 }
2963 /* Directories should call hfs_rmdir! (unless they have a lot of attributes) */
2964 if (vnode_isdir(vp)) {
2965 if (allow_dirs == 0)
2966 return (EPERM); /* POSIX */
2967 isdir = 1;
2968 }
2969 /* Sanity check the parent ids. */
2970 if ((cp->c_parentcnid != hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid) &&
2971 (cp->c_parentcnid != dcp->c_fileid)) {
2972 return (EINVAL);
2973 }
2974
2975 dcp->c_flag |= C_DIR_MODIFICATION;
2976
2977 // this guy is going away so mark him as such
2978 cp->c_flag |= C_DELETED;
2979
2980
2981 /* Remove our entry from the namei cache. */
2982 cache_purge(vp);
2983
2984 /*
2985 * We expect the caller, if operating on files,
2986 * will have passed in a resource fork vnode with
2987 * an iocount, even if there was no content.
2988 * We only do the hfs_truncate on the rsrc fork
2989 * if we know that it DID have content, however.
2990 * This has the bonus of not requiring us to defer
2991 * its removal, unless it is in use.
2992 */
2993
2994 /* Check if this file is being used. */
2995 if (isdir == 0) {
2996 dataforkbusy = vnode_isinuse(vp, 0);
2997 /* Only need to defer resource fork removal if in use and has content */
2998 if (rvp && (cp->c_blocks - VTOF(vp)->ff_blocks)) {
2999 rsrcforkbusy = vnode_isinuse(rvp, 0);
3000 }
3001 }
3002
3003 /* Check if we have to break the deletion into multiple pieces. */
3004 if (isdir == 0) {
3005 isbigfile = ((cp->c_datafork->ff_size >= HFS_BIGFILE_SIZE) && overflow_extents(VTOF(vp)));
3006 }
3007
3008 /* Check if the file has xattrs. If it does we'll have to delete them in
3009 individual transactions in case there are too many */
3010 if ((hfsmp->hfs_attribute_vp != NULL) &&
3011 (cp->c_attr.ca_recflags & kHFSHasAttributesMask) != 0) {
3012 defer_remove = 1;
3013 }
3014
3015 /* If we are explicitly told to only unlink item and move to hidden dir, then do it */
3016 if (only_unlink) {
3017 defer_remove = 1;
3018 }
3019
3020 /*
3021 * Carbon semantics prohibit deleting busy files.
3022 * (enforced when VNODE_REMOVE_NODELETEBUSY is requested)
3023 */
3024 if (dataforkbusy || rsrcforkbusy) {
3025 if ((flags & VNODE_REMOVE_NODELETEBUSY) ||
3026 (hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid == 0)) {
3027 error = EBUSY;
3028 goto out;
3029 }
3030 }
3031
3032 #if QUOTA
3033 if (hfsmp->hfs_flags & HFS_QUOTAS)
3034 (void)hfs_getinoquota(cp);
3035 #endif /* QUOTA */
3036
3037 /*
3038 * Do a ubc_setsize to indicate we need to wipe contents if:
3039 * 1) item is a regular file.
3040 * 2) Neither fork is busy AND we are not told to unlink this.
3041 *
3042 * We need to check for the defer_remove since it can be set without
3043 * having a busy data or rsrc fork
3044 */
3045 if (isdir == 0 && (!dataforkbusy || !rsrcforkbusy) && (defer_remove == 0)) {
3046 /*
3047 * A ubc_setsize can cause a pagein so defer it
3048 * until after the cnode lock is dropped. The
3049 * cnode lock cannot be dropped/reacquired here
3050 * since we might already hold the journal lock.
3051 */
3052 if (!dataforkbusy && cp->c_datafork->ff_blocks && !isbigfile) {
3053 cp->c_flag |= C_NEED_DATA_SETSIZE;
3054 }
3055 if (!rsrcforkbusy && rvp) {
3056 cp->c_flag |= C_NEED_RSRC_SETSIZE;
3057 }
3058 }
3059
3060 if ((error = hfs_start_transaction(hfsmp)) != 0) {
3061 goto out;
3062 }
3063 started_tr = 1;
3064
3065 // XXXdbg - if we're journaled, kill any dirty symlink buffers
3066 if (hfsmp->jnl && vnode_islnk(vp) && (defer_remove == 0)) {
3067 buf_iterate(vp, hfs_removefile_callback, BUF_SKIP_NONLOCKED, (void *)hfsmp);
3068 }
3069
3070 /*
3071 * Prepare to truncate any non-busy forks. Busy forks will
3072 * get truncated when their vnode goes inactive.
3073 * Note that we will only enter this region if we
3074 * can avoid creating an open-unlinked file. If
3075 * either region is busy, we will have to create an open
3076 * unlinked file.
3077 *
3078 * Since we are deleting the file, we need to stagger the runtime
3079 * modifications to do things in such a way that a crash won't
3080 * result in us getting overlapped extents or any other
3081 * bad inconsistencies. As such, we call prepare_release_storage
3082 * which updates the UBC, updates quota information, and releases
3083 * any loaned blocks that belong to this file. No actual
3084 * truncation or bitmap manipulation is done until *AFTER*
3085 * the catalog record is removed.
3086 */
3087 if (isdir == 0 && (!dataforkbusy && !rsrcforkbusy) && (only_unlink == 0)) {
3088
3089 if (!dataforkbusy && !isbigfile && cp->c_datafork->ff_blocks != 0) {
3090
3091 error = hfs_prepare_release_storage (hfsmp, vp);
3092 if (error) {
3093 goto out;
3094 }
3095 update_vh = 1;
3096 }
3097 if (!rsrcforkbusy && rvp) {
3098 error = hfs_prepare_release_storage (hfsmp, rvp);
3099 if (error) {
3100 goto out;
3101 }
3102 update_vh = 1;
3103 }
3104 }
3105
3106 /*
3107 * Protect against a race with rename by using the component
3108 * name passed in and parent id from dvp (instead of using
3109 * the cp->c_desc which may have changed). Also, be aware that
3110 * because we allow directories to be passed in, we need to special case
3111 * this temporary descriptor in case we were handed a directory.
3112 */
3113 if (isdir) {
3114 desc.cd_flags = CD_ISDIR;
3115 }
3116 else {
3117 desc.cd_flags = 0;
3118 }
3119 desc.cd_encoding = cp->c_desc.cd_encoding;
3120 desc.cd_nameptr = (const u_int8_t *)cnp->cn_nameptr;
3121 desc.cd_namelen = cnp->cn_namelen;
3122 desc.cd_parentcnid = dcp->c_fileid;
3123 desc.cd_hint = cp->c_desc.cd_hint;
3124 desc.cd_cnid = cp->c_cnid;
3125 microtime(&tv);
3126
3127 /*
3128 * There are two cases to consider:
3129 * 1. File/Dir is busy/big/defer_remove ==> move/rename the file/dir
3130 * 2. File is not in use ==> remove the file
3131 *
3132 * We can get a directory in case 1 because it may have had lots of attributes,
3133 * which need to get removed here.
3134 */
3135 if (dataforkbusy || rsrcforkbusy || isbigfile || defer_remove) {
3136 char delname[32];
3137 struct cat_desc to_desc;
3138 struct cat_desc todir_desc;
3139
3140 /*
3141 * Orphan this file or directory (move to hidden directory).
3142 * Again, we need to take care that we treat directories as directories,
3143 * and files as files. Because directories with attributes can be passed in
3144 * check to make sure that we have a directory or a file before filling in the
3145 * temporary descriptor's flags. We keep orphaned directories AND files in
3146 * the FILE_HARDLINKS private directory since we're generalizing over all
3147 * orphaned filesystem objects.
3148 */
3149 bzero(&todir_desc, sizeof(todir_desc));
3150 todir_desc.cd_parentcnid = 2;
3151
3152 MAKE_DELETED_NAME(delname, sizeof(delname), cp->c_fileid);
3153 bzero(&to_desc, sizeof(to_desc));
3154 to_desc.cd_nameptr = (const u_int8_t *)delname;
3155 to_desc.cd_namelen = strlen(delname);
3156 to_desc.cd_parentcnid = hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid;
3157 if (isdir) {
3158 to_desc.cd_flags = CD_ISDIR;
3159 }
3160 else {
3161 to_desc.cd_flags = 0;
3162 }
3163 to_desc.cd_cnid = cp->c_cnid;
3164
3165 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_EXCLUSIVE_LOCK);
3166 if (!skip_reserve) {
3167 if ((error = cat_preflight(hfsmp, CAT_RENAME, NULL, 0))) {
3168 hfs_systemfile_unlock(hfsmp, lockflags);
3169 goto out;
3170 }
3171 }
3172
3173 error = cat_rename(hfsmp, &desc, &todir_desc,
3174 &to_desc, (struct cat_desc *)NULL);
3175
3176 if (error == 0) {
3177 hfsmp->hfs_private_attr[FILE_HARDLINKS].ca_entries++;
3178 if (isdir == 1) {
3179 INC_FOLDERCOUNT(hfsmp, hfsmp->hfs_private_attr[FILE_HARDLINKS]);
3180 }
3181 (void) cat_update(hfsmp, &hfsmp->hfs_private_desc[FILE_HARDLINKS],
3182 &hfsmp->hfs_private_attr[FILE_HARDLINKS], NULL, NULL);
3183
3184 /* Update the parent directory */
3185 if (dcp->c_entries > 0)
3186 dcp->c_entries--;
3187 if (isdir == 1) {
3188 DEC_FOLDERCOUNT(hfsmp, dcp->c_attr);
3189 }
3190 dcp->c_dirchangecnt++;
3191 dcp->c_ctime = tv.tv_sec;
3192 dcp->c_mtime = tv.tv_sec;
3193 (void) cat_update(hfsmp, &dcp->c_desc, &dcp->c_attr, NULL, NULL);
3194
3195 /* Update the file or directory's state */
3196 cp->c_flag |= C_DELETED;
3197 cp->c_ctime = tv.tv_sec;
3198 --cp->c_linkcount;
3199 (void) cat_update(hfsmp, &to_desc, &cp->c_attr, NULL, NULL);
3200 }
3201 hfs_systemfile_unlock(hfsmp, lockflags);
3202 if (error)
3203 goto out;
3204
3205 }
3206 else /* Not busy */ {
3207
3208 #if QUOTA
3209 off_t savedbytes;
3210 int blksize = hfsmp->blockSize;
3211 #endif
3212 u_int32_t fileid = cp->c_fileid;
3213
3214 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_ATTRIBUTE | SFL_BITMAP, HFS_EXCLUSIVE_LOCK);
3215 if (!skip_reserve) {
3216 if ((error = cat_preflight(hfsmp, CAT_DELETE, NULL, 0))) {
3217 hfs_systemfile_unlock(hfsmp, lockflags);
3218 goto out;
3219 }
3220 }
3221
3222 error = cat_delete(hfsmp, &desc, &cp->c_attr);
3223
3224 if (error && error != ENXIO && error != ENOENT) {
3225 printf("hfs_removefile: deleting file %s (%d), err: %d\n",
3226 cp->c_desc.cd_nameptr, cp->c_attr.ca_fileid, error);
3227 }
3228
3229 if (error == 0) {
3230 /* Update the parent directory */
3231 if (dcp->c_entries > 0)
3232 dcp->c_entries--;
3233 dcp->c_dirchangecnt++;
3234 dcp->c_ctime = tv.tv_sec;
3235 dcp->c_mtime = tv.tv_sec;
3236 (void) cat_update(hfsmp, &dcp->c_desc, &dcp->c_attr, NULL, NULL);
3237 }
3238 hfs_systemfile_unlock(hfsmp, lockflags);
3239 if (error) {
3240 goto out;
3241 }
3242
3243 /*
3244 * Now that we've wiped out the catalog record, the file effectively doesn't
3245 * exist anymore. So update the quota records to reflect the loss of the
3246 * data fork and the resource fork.
3247 */
3248 #if QUOTA
3249 if (cp->c_datafork->ff_blocks > 0) {
3250 savedbytes = ((off_t)cp->c_datafork->ff_blocks * (off_t)blksize);
3251 (void) hfs_chkdq(cp, (int64_t)-(savedbytes), NOCRED, 0);
3252 }
3253
3254 if (cp->c_rsrcfork && (cp->c_rsrcfork->ff_blocks > 0)) {
3255 savedbytes = ((off_t)cp->c_rsrcfork->ff_blocks * (off_t)blksize);
3256 (void) hfs_chkdq(cp, (int64_t)-(savedbytes), NOCRED, 0);
3257 }
3258
3259 if (hfsmp->hfs_flags & HFS_QUOTAS) {
3260 (void)hfs_chkiq(cp, -1, NOCRED, 0);
3261 }
3262 #endif
3263
3264
3265 /*
3266 * If we didn't get any errors deleting the catalog entry, then go ahead
3267 * and release the backing store now. The filefork pointers are still valid.
3268 */
3269 error = hfs_release_storage (hfsmp, cp->c_datafork, cp->c_rsrcfork, fileid);
3270
3271 if (error) {
3272 /*
3273 * If we encountered an error updating the extents and bitmap,
3274 * mark the volume inconsistent. At this point, the catalog record has
3275 * already been deleted, so we can't recover it at this point. We need
3276 * to proceed and update the volume header and mark the cnode C_NOEXISTS.
3277 * The subsequent fsck should be able to recover the free space for us.
3278 */
3279 hfs_mark_volume_inconsistent(hfsmp);
3280 }
3281 else {
3282 /* reset update_vh to 0, since hfs_release_storage should have done it for us */
3283 update_vh = 0;
3284 }
3285
3286 cp->c_flag |= C_NOEXISTS;
3287 cp->c_flag &= ~C_DELETED;
3288
3289 cp->c_touch_chgtime = TRUE; /* XXX needed ? */
3290 --cp->c_linkcount;
3291
3292 /*
3293 * We must never get a directory if we're in this else block. We could
3294 * accidentally drop the number of files in the volume header if we did.
3295 */
3296 hfs_volupdate(hfsmp, VOL_RMFILE, (dcp->c_cnid == kHFSRootFolderID));
3297
3298 }
3299
3300 /*
3301 * All done with this cnode's descriptor...
3302 *
3303 * Note: all future catalog calls for this cnode must be by
3304 * fileid only. This is OK for HFS (which doesn't have file
3305 * thread records) since HFS doesn't support the removal of
3306 * busy files.
3307 */
3308 cat_releasedesc(&cp->c_desc);
3309
3310 out:
3311 if (error) {
3312 cp->c_flag &= ~C_DELETED;
3313 }
3314
3315 if (update_vh) {
3316 /*
3317 * If we bailed out earlier, we may need to update the volume header
3318 * to deal with the borrowed blocks accounting.
3319 */
3320 hfs_volupdate (hfsmp, VOL_UPDATE, 0);
3321 }
3322
3323 if (started_tr) {
3324 hfs_end_transaction(hfsmp);
3325 }
3326
3327 dcp->c_flag &= ~C_DIR_MODIFICATION;
3328 wakeup((caddr_t)&dcp->c_flag);
3329
3330 return (error);
3331 }
3332
3333
3334 __private_extern__ void
3335 replace_desc(struct cnode *cp, struct cat_desc *cdp)
3336 {
3337 // fixes 4348457 and 4463138
3338 if (&cp->c_desc == cdp) {
3339 return;
3340 }
3341
3342 /* First release allocated name buffer */
3343 if (cp->c_desc.cd_flags & CD_HASBUF && cp->c_desc.cd_nameptr != 0) {
3344 const u_int8_t *name = cp->c_desc.cd_nameptr;
3345
3346 cp->c_desc.cd_nameptr = 0;
3347 cp->c_desc.cd_namelen = 0;
3348 cp->c_desc.cd_flags &= ~CD_HASBUF;
3349 vfs_removename((const char *)name);
3350 }
3351 bcopy(cdp, &cp->c_desc, sizeof(cp->c_desc));
3352
3353 /* Cnode now owns the name buffer */
3354 cdp->cd_nameptr = 0;
3355 cdp->cd_namelen = 0;
3356 cdp->cd_flags &= ~CD_HASBUF;
3357 }
3358
3359 /*
3360 * Rename a cnode.
3361 *
3362 * The VFS layer guarantees that:
3363 * - source and destination will either both be directories, or
3364 * both not be directories.
3365 * - all the vnodes are from the same file system
3366 *
3367 * When the target is a directory, HFS must ensure that its empty.
3368 *
3369 * Note that this function requires up to 6 vnodes in order to work properly
3370 * if it is operating on files (and not on directories). This is because only
3371 * files can have resource forks, and we now require iocounts to be held on the
3372 * vnodes corresponding to the resource forks (if applicable) as well as
3373 * the files or directories undergoing rename. The problem with not holding
3374 * iocounts on the resource fork vnodes is that it can lead to a deadlock
3375 * situation: The rsrc fork of the source file may be recycled and reclaimed
3376 * in order to provide a vnode for the destination file's rsrc fork. Since
3377 * data and rsrc forks share the same cnode, we'd eventually try to lock the
3378 * source file's cnode in order to sync its rsrc fork to disk, but it's already
3379 * been locked. By taking the rsrc fork vnodes up front we ensure that they
3380 * cannot be recycled, and that the situation mentioned above cannot happen.
3381 */
3382 int
3383 hfs_vnop_rename(ap)
3384 struct vnop_rename_args /* {
3385 struct vnode *a_fdvp;
3386 struct vnode *a_fvp;
3387 struct componentname *a_fcnp;
3388 struct vnode *a_tdvp;
3389 struct vnode *a_tvp;
3390 struct componentname *a_tcnp;
3391 vfs_context_t a_context;
3392 } */ *ap;
3393 {
3394 struct vnode *tvp = ap->a_tvp;
3395 struct vnode *tdvp = ap->a_tdvp;
3396 struct vnode *fvp = ap->a_fvp;
3397 struct vnode *fdvp = ap->a_fdvp;
3398 struct vnode *fvp_rsrc = NULLVP;
3399 struct vnode *tvp_rsrc = NULLVP;
3400 struct componentname *tcnp = ap->a_tcnp;
3401 struct componentname *fcnp = ap->a_fcnp;
3402 struct proc *p = vfs_context_proc(ap->a_context);
3403 struct cnode *fcp;
3404 struct cnode *fdcp;
3405 struct cnode *tdcp;
3406 struct cnode *tcp;
3407 struct cnode *error_cnode;
3408 struct cat_desc from_desc;
3409 struct cat_desc to_desc;
3410 struct cat_desc out_desc;
3411 struct hfsmount *hfsmp;
3412 cat_cookie_t cookie;
3413 int tvp_deleted = 0;
3414 int started_tr = 0, got_cookie = 0;
3415 int took_trunc_lock = 0;
3416 int lockflags;
3417 int error;
3418 time_t orig_from_ctime, orig_to_ctime;
3419 int emit_rename = 1;
3420 int emit_delete = 1;
3421
3422 orig_from_ctime = VTOC(fvp)->c_ctime;
3423 if (tvp && VTOC(tvp)) {
3424 orig_to_ctime = VTOC(tvp)->c_ctime;
3425 } else {
3426 orig_to_ctime = ~0;
3427 }
3428
3429 hfsmp = VTOHFS(tdvp);
3430 /*
3431 * Do special case checks here. If fvp == tvp then we need to check the
3432 * cnode with locks held.
3433 */
3434 if (fvp == tvp) {
3435 int is_hardlink = 0;
3436 /*
3437 * In this case, we do *NOT* ever emit a DELETE event.
3438 * We may not necessarily emit a RENAME event
3439 */
3440 emit_delete = 0;
3441 if ((error = hfs_lock(VTOC(fvp), HFS_SHARED_LOCK))) {
3442 return error;
3443 }
3444 /* Check to see if the item is a hardlink or not */
3445 is_hardlink = (VTOC(fvp)->c_flag & C_HARDLINK);
3446 hfs_unlock (VTOC(fvp));
3447
3448 /*
3449 * If the item is not a hardlink, then case sensitivity must be off, otherwise
3450 * two names should not resolve to the same cnode unless they were case variants.
3451 */
3452 if (is_hardlink) {
3453 emit_rename = 0;
3454 /*
3455 * Hardlinks are a little trickier. We only want to emit a rename event
3456 * if the item is a hardlink, the parent directories are the same, case sensitivity
3457 * is off, and the case folded names are the same. See the fvp == tvp case below for more
3458 * info.
3459 */
3460
3461 if ((fdvp == tdvp) && ((hfsmp->hfs_flags & HFS_CASE_SENSITIVE) == 0)) {
3462 if (hfs_namecmp((const u_int8_t *)fcnp->cn_nameptr, fcnp->cn_namelen,
3463 (const u_int8_t *)tcnp->cn_nameptr, tcnp->cn_namelen) == 0) {
3464 /* Then in this case only it is ok to emit a rename */
3465 emit_rename = 1;
3466 }
3467 }
3468 }
3469 }
3470 if (emit_rename) {
3471 check_for_tracked_file(fvp, orig_from_ctime, NAMESPACE_HANDLER_RENAME_OP, NULL);
3472 }
3473
3474 if (tvp && VTOC(tvp)) {
3475 if (emit_delete) {
3476 check_for_tracked_file(tvp, orig_to_ctime, NAMESPACE_HANDLER_DELETE_OP, NULL);
3477 }
3478 }
3479
3480 /*
3481 * Before grabbing the four locks, we may need to get an iocount on the resource fork
3482 * vnodes in question, just like hfs_vnop_remove. If fvp and tvp are not
3483 * directories, then go ahead and grab the resource fork vnodes now
3484 * one at a time. We don't actively need the fvp_rsrc to do the rename operation,
3485 * but we need the iocount to prevent the vnode from getting recycled/reclaimed
3486 * during the middle of the VNOP.
3487 */
3488
3489
3490 if ((vnode_isreg(fvp)) || (vnode_islnk(fvp))) {
3491
3492 if ((error = hfs_lock (VTOC(fvp), HFS_EXCLUSIVE_LOCK))) {
3493 return (error);
3494 }
3495 /*
3496 * We care if we race against rename/delete with this cp, so we'll error out
3497 * if the file becomes open-unlinked during this call.
3498 */
3499 error = hfs_vgetrsrc(VTOHFS(fvp), fvp, &fvp_rsrc, TRUE, TRUE);
3500 hfs_unlock (VTOC(fvp));
3501 if (error) {
3502 if (fvp_rsrc) {
3503 vnode_put(fvp_rsrc);
3504 }
3505 return error;
3506 }
3507 }
3508
3509 if (tvp && (vnode_isreg(tvp) || vnode_islnk(tvp))) {
3510 /*
3511 * Lock failure is OK on tvp, since we may race with a remove on the dst.
3512 * But this shouldn't stop rename from proceeding, so only try to
3513 * grab the resource fork if the lock succeeded.
3514 */
3515 if (hfs_lock (VTOC(tvp), HFS_EXCLUSIVE_LOCK) == 0) {
3516 tcp = VTOC(tvp);
3517 /*
3518 * We only care if we get an open-unlinked file on the dst so we
3519 * know to null out tvp/tcp to make the rename operation act
3520 * as if they never existed. Because they're effectively out of the
3521 * namespace already it's fine to do this. If this is true, then
3522 * make sure to unlock the cnode and drop the iocount only after the unlock.
3523 */
3524
3525 error = hfs_vgetrsrc(VTOHFS(tvp), tvp, &tvp_rsrc, TRUE, TRUE);
3526 hfs_unlock (tcp);
3527 if (error) {
3528 /*
3529 * Since we specify TRUE for error_on_unlinked in hfs_vgetrsrc,
3530 * we can get a rsrc fork vnode even if it returns an error.
3531 */
3532 tcp = NULL;
3533 tvp = NULL;
3534 if (tvp_rsrc) {
3535 vnode_put (tvp_rsrc);
3536 tvp_rsrc = NULL;
3537 }
3538 /* just bypass truncate lock and act as if we never got tcp/tvp */
3539 goto retry;
3540 }
3541 }
3542 }
3543
3544 /* When tvp exists, take the truncate lock for hfs_removefile(). */
3545 if (tvp && (vnode_isreg(tvp) || vnode_islnk(tvp))) {
3546 hfs_lock_truncate(VTOC(tvp), HFS_EXCLUSIVE_LOCK);
3547 took_trunc_lock = 1;
3548 }
3549
3550 retry:
3551 error = hfs_lockfour(VTOC(fdvp), VTOC(fvp), VTOC(tdvp), tvp ? VTOC(tvp) : NULL,
3552 HFS_EXCLUSIVE_LOCK, &error_cnode);
3553 if (error) {
3554 if (took_trunc_lock) {
3555 hfs_unlock_truncate(VTOC(tvp), 0);
3556 took_trunc_lock = 0;
3557 }
3558 /*
3559 * tvp might no longer exist. If the cause of the lock failure
3560 * was tvp, then we can try again with tvp/tcp set to NULL.
3561 * This is ok because the vfs syscall will vnode_put the vnodes
3562 * after we return from hfs_vnop_rename.
3563 */
3564 if ((error == ENOENT) && (tvp != NULL) && (error_cnode == VTOC(tvp))) {
3565 tcp = NULL;
3566 tvp = NULL;
3567 goto retry;
3568 }
3569 /* otherwise, drop iocounts on the rsrc forks and bail out */
3570 if (fvp_rsrc) {
3571 vnode_put (fvp_rsrc);
3572 }
3573 if (tvp_rsrc) {
3574 vnode_put (tvp_rsrc);
3575 }
3576 return (error);
3577 }
3578
3579 fdcp = VTOC(fdvp);
3580 fcp = VTOC(fvp);
3581 tdcp = VTOC(tdvp);
3582 tcp = tvp ? VTOC(tvp) : NULL;
3583
3584 /* Ensure we didn't race src or dst parent directories with rmdir. */
3585 if (fdcp->c_flag & (C_NOEXISTS | C_DELETED)) {
3586 error = ENOENT;
3587 goto out;
3588 }
3589
3590 if (tdcp->c_flag & (C_NOEXISTS | C_DELETED)) {
3591 error = ENOENT;
3592 goto out;
3593 }
3594
3595
3596 /* Check for a race against unlink. The hfs_valid_cnode checks validate
3597 * the parent/child relationship with fdcp and tdcp, as well as the
3598 * component name of the target cnodes.
3599 */
3600 if ((fcp->c_flag & (C_NOEXISTS | C_DELETED)) || !hfs_valid_cnode(hfsmp, fdvp, fcnp, fcp->c_fileid, NULL, &error)) {
3601 error = ENOENT;
3602 goto out;
3603 }
3604
3605 if (tcp && ((tcp->c_flag & (C_NOEXISTS | C_DELETED)) || !hfs_valid_cnode(hfsmp, tdvp, tcnp, tcp->c_fileid, NULL, &error))) {
3606 //
3607 // hmm, the destination vnode isn't valid any more.
3608 // in this case we can just drop him and pretend he
3609 // never existed in the first place.
3610 //
3611 if (took_trunc_lock) {
3612 hfs_unlock_truncate(VTOC(tvp), 0);
3613 took_trunc_lock = 0;
3614 }
3615 error = 0;
3616
3617 hfs_unlockfour(fdcp, fcp, tdcp, tcp);
3618
3619 tcp = NULL;
3620 tvp = NULL;
3621
3622 // retry the locking with tvp null'ed out
3623 goto retry;
3624 }
3625
3626 fdcp->c_flag |= C_DIR_MODIFICATION;
3627 if (fdvp != tdvp) {
3628 tdcp->c_flag |= C_DIR_MODIFICATION;
3629 }
3630
3631 /*
3632 * Disallow renaming of a directory hard link if the source and
3633 * destination parent directories are different, or a directory whose
3634 * descendant is a directory hard link and the one of the ancestors
3635 * of the destination directory is a directory hard link.
3636 */
3637 if (vnode_isdir(fvp) && (fdvp != tdvp)) {
3638 if (fcp->c_flag & C_HARDLINK) {
3639 error = EPERM;
3640 goto out;
3641 }
3642 if (fcp->c_attr.ca_recflags & kHFSHasChildLinkMask) {
3643 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
3644 if (cat_check_link_ancestry(hfsmp, tdcp->c_fileid, 0)) {
3645 error = EPERM;
3646 hfs_systemfile_unlock(hfsmp, lockflags);
3647 goto out;
3648 }
3649 hfs_systemfile_unlock(hfsmp, lockflags);
3650 }
3651 }
3652
3653 /*
3654 * The following edge case is caught here:
3655 * (to cannot be a descendent of from)
3656 *
3657 * o fdvp
3658 * /
3659 * /
3660 * o fvp
3661 * \
3662 * \
3663 * o tdvp
3664 * /
3665 * /
3666 * o tvp
3667 */
3668 if (tdcp->c_parentcnid == fcp->c_fileid) {
3669 error = EINVAL;
3670 goto out;
3671 }
3672
3673 /*
3674 * The following two edge cases are caught here:
3675 * (note tvp is not empty)
3676 *
3677 * o tdvp o tdvp
3678 * / /
3679 * / /
3680 * o tvp tvp o fdvp
3681 * \ \
3682 * \ \
3683 * o fdvp o fvp
3684 * /
3685 * /
3686 * o fvp
3687 */
3688 if (tvp && vnode_isdir(tvp) && (tcp->c_entries != 0) && fvp != tvp) {
3689 error = ENOTEMPTY;
3690 goto out;
3691 }
3692
3693 /*
3694 * The following edge case is caught here:
3695 * (the from child and parent are the same)
3696 *
3697 * o tdvp
3698 * /
3699 * /
3700 * fdvp o fvp
3701 */
3702 if (fdvp == fvp) {
3703 error = EINVAL;
3704 goto out;
3705 }
3706
3707 /*
3708 * Make sure "from" vnode and its parent are changeable.
3709 */
3710 if ((fcp->c_flags & (IMMUTABLE | APPEND)) || (fdcp->c_flags & APPEND)) {
3711 error = EPERM;
3712 goto out;
3713 }
3714
3715 /*
3716 * If the destination parent directory is "sticky", then the
3717 * user must own the parent directory, or the destination of
3718 * the rename, otherwise the destination may not be changed
3719 * (except by root). This implements append-only directories.
3720 *
3721 * Note that checks for immutable and write access are done
3722 * by the call to hfs_removefile.
3723 */
3724 if (tvp && (tdcp->c_mode & S_ISTXT) &&
3725 (suser(vfs_context_ucred(tcnp->cn_context), NULL)) &&
3726 (kauth_cred_getuid(vfs_context_ucred(tcnp->cn_context)) != tdcp->c_uid) &&
3727 (hfs_owner_rights(hfsmp, tcp->c_uid, vfs_context_ucred(tcnp->cn_context), p, false)) ) {
3728 error = EPERM;
3729 goto out;
3730 }
3731
3732 #if QUOTA
3733 if (tvp)
3734 (void)hfs_getinoquota(tcp);
3735 #endif
3736 /* Preflighting done, take fvp out of the name space. */
3737 cache_purge(fvp);
3738
3739 bzero(&from_desc, sizeof(from_desc));
3740 from_desc.cd_nameptr = (const u_int8_t *)fcnp->cn_nameptr;
3741 from_desc.cd_namelen = fcnp->cn_namelen;
3742 from_desc.cd_parentcnid = fdcp->c_fileid;
3743 from_desc.cd_flags = fcp->c_desc.cd_flags & ~(CD_HASBUF | CD_DECOMPOSED);
3744 from_desc.cd_cnid = fcp->c_cnid;
3745
3746 bzero(&to_desc, sizeof(to_desc));
3747 to_desc.cd_nameptr = (const u_int8_t *)tcnp->cn_nameptr;
3748 to_desc.cd_namelen = tcnp->cn_namelen;
3749 to_desc.cd_parentcnid = tdcp->c_fileid;
3750 to_desc.cd_flags = fcp->c_desc.cd_flags & ~(CD_HASBUF | CD_DECOMPOSED);
3751 to_desc.cd_cnid = fcp->c_cnid;
3752
3753 if ((error = hfs_start_transaction(hfsmp)) != 0) {
3754 goto out;
3755 }
3756 started_tr = 1;
3757
3758 /* hfs_vnop_link() and hfs_vnop_rename() set kHFSHasChildLinkMask
3759 * inside a journal transaction and without holding a cnode lock.
3760 * As setting of this bit depends on being in journal transaction for
3761 * concurrency, check this bit again after we start journal transaction for rename
3762 * to ensure that this directory does not have any descendant that
3763 * is a directory hard link.
3764 */
3765 if (vnode_isdir(fvp) && (fdvp != tdvp)) {
3766 if (fcp->c_attr.ca_recflags & kHFSHasChildLinkMask) {
3767 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
3768 if (cat_check_link_ancestry(hfsmp, tdcp->c_fileid, 0)) {
3769 error = EPERM;
3770 hfs_systemfile_unlock(hfsmp, lockflags);
3771 goto out;
3772 }
3773 hfs_systemfile_unlock(hfsmp, lockflags);
3774 }
3775 }
3776
3777 // if it's a hardlink then re-lookup the name so
3778 // that we get the correct cnid in from_desc (see
3779 // the comment in hfs_removefile for more details)
3780 //
3781 if (fcp->c_flag & C_HARDLINK) {
3782 struct cat_desc tmpdesc;
3783 cnid_t real_cnid;
3784
3785 tmpdesc.cd_nameptr = (const u_int8_t *)fcnp->cn_nameptr;
3786 tmpdesc.cd_namelen = fcnp->cn_namelen;
3787 tmpdesc.cd_parentcnid = fdcp->c_fileid;
3788 tmpdesc.cd_hint = fdcp->c_childhint;
3789 tmpdesc.cd_flags = fcp->c_desc.cd_flags & CD_ISDIR;
3790 tmpdesc.cd_encoding = 0;
3791
3792 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
3793
3794 if (cat_lookup(hfsmp, &tmpdesc, 0, NULL, NULL, NULL, &real_cnid) != 0) {
3795 hfs_systemfile_unlock(hfsmp, lockflags);
3796 goto out;
3797 }
3798
3799 // use the real cnid instead of whatever happened to be there
3800 from_desc.cd_cnid = real_cnid;
3801 hfs_systemfile_unlock(hfsmp, lockflags);
3802 }
3803
3804 /*
3805 * Reserve some space in the Catalog file.
3806 */
3807 if ((error = cat_preflight(hfsmp, CAT_RENAME + CAT_DELETE, &cookie, p))) {
3808 goto out;
3809 }
3810 got_cookie = 1;
3811
3812 /*
3813 * If the destination exists then it may need to be removed.
3814 *
3815 * Due to HFS's locking system, we should always move the
3816 * existing 'tvp' element to the hidden directory in hfs_vnop_rename.
3817 * Because the VNOP_LOOKUP call enters and exits the filesystem independently
3818 * of the actual vnop that it was trying to do (stat, link, readlink),
3819 * we must release the cnode lock of that element during the interim to
3820 * do MAC checking, vnode authorization, and other calls. In that time,
3821 * the item can be deleted (or renamed over). However, only in the rename
3822 * case is it inappropriate to return ENOENT from any of those calls. Either
3823 * the call should return information about the old element (stale), or get
3824 * information about the newer element that we are about to write in its place.
3825 *
3826 * HFS lookup has been modified to detect a rename and re-drive its
3827 * lookup internally. For other calls that have already succeeded in
3828 * their lookup call and are waiting to acquire the cnode lock in order
3829 * to proceed, that cnode lock will not fail due to the cnode being marked
3830 * C_NOEXISTS, because it won't have been marked as such. It will only
3831 * have C_DELETED. Thus, they will simply act on the stale open-unlinked
3832 * element. All future callers will get the new element.
3833 *
3834 * To implement this behavior, we pass the "only_unlink" argument to
3835 * hfs_removefile and hfs_removedir. This will result in the vnode acting
3836 * as though it is open-unlinked. Additionally, when we are done moving the
3837 * element to the hidden directory, we vnode_recycle the target so that it is
3838 * reclaimed as soon as possible. Reclaim and inactive are both
3839 * capable of clearing out unused blocks for an open-unlinked file or dir.
3840 */
3841 if (tvp) {
3842 /*
3843 * When fvp matches tvp they could be case variants
3844 * or matching hard links.
3845 */
3846 if (fvp == tvp) {
3847 if (!(fcp->c_flag & C_HARDLINK)) {
3848 /*
3849 * If they're not hardlinks, then fvp == tvp must mean we
3850 * are using case-insensitive HFS because case-sensitive would
3851 * not use the same vnode for both. In this case we just update
3852 * the catalog for: a -> A
3853 */
3854 goto skip_rm; /* simple case variant */
3855
3856 }
3857 /* For all cases below, we must be using hardlinks */
3858 else if ((fdvp != tdvp) ||
3859 (hfsmp->hfs_flags & HFS_CASE_SENSITIVE)) {
3860 /*
3861 * If the parent directories are not the same, AND the two items
3862 * are hardlinks, posix says to do nothing:
3863 * dir1/fred <-> dir2/bob and the op was mv dir1/fred -> dir2/bob
3864 * We just return 0 in this case.
3865 *
3866 * If case sensitivity is on, and we are using hardlinks
3867 * then renaming is supposed to do nothing.
3868 * dir1/fred <-> dir2/FRED, and op == mv dir1/fred -> dir2/FRED
3869 */
3870 goto out; /* matching hardlinks, nothing to do */
3871
3872 } else if (hfs_namecmp((const u_int8_t *)fcnp->cn_nameptr, fcnp->cn_namelen,
3873 (const u_int8_t *)tcnp->cn_nameptr, tcnp->cn_namelen) == 0) {
3874 /*
3875 * If we get here, then the following must be true:
3876 * a) We are running case-insensitive HFS+.
3877 * b) Both paths 'fvp' and 'tvp' are in the same parent directory.
3878 * c) the two names are case-variants of each other.
3879 *
3880 * In this case, we are really only dealing with a single catalog record
3881 * whose name is being updated.
3882 *
3883 * op is dir1/fred -> dir1/FRED
3884 *
3885 * We need to special case the name matching, because if
3886 * dir1/fred <-> dir1/bob were the two links, and the
3887 * op was dir1/fred -> dir1/bob
3888 * That would fail/do nothing.
3889 */
3890 goto skip_rm; /* case-variant hardlink in the same dir */
3891 } else {
3892 goto out; /* matching hardlink, nothing to do */
3893 }
3894 }
3895
3896
3897 if (vnode_isdir(tvp)) {
3898 /*
3899 * hfs_removedir will eventually call hfs_removefile on the directory
3900 * we're working on, because only hfs_removefile does the renaming of the
3901 * item to the hidden directory. The directory will stay around in the
3902 * hidden directory with C_DELETED until it gets an inactive or a reclaim.
3903 * That way, we can destroy all of the EAs as needed and allow new ones to be
3904 * written.
3905 */
3906 error = hfs_removedir(tdvp, tvp, tcnp, HFSRM_SKIP_RESERVE, 1);
3907 }
3908 else {
3909 error = hfs_removefile(tdvp, tvp, tcnp, 0, HFSRM_SKIP_RESERVE, 0, tvp_rsrc, 1);
3910
3911 /*
3912 * If the destination file had a resource fork vnode, then we need to get rid of
3913 * its blocks when there are no more references to it. Because the call to
3914 * hfs_removefile above always open-unlinks things, we need to force an inactive/reclaim
3915 * on the resource fork vnode, in order to prevent block leaks. Otherwise,
3916 * the resource fork vnode could prevent the data fork vnode from going out of scope
3917 * because it holds a v_parent reference on it. So we mark it for termination
3918 * with a call to vnode_recycle. hfs_vnop_reclaim has been modified so that it
3919 * can clean up the blocks of open-unlinked files and resource forks.
3920 *
3921 * We can safely call vnode_recycle on the resource fork because we took an iocount
3922 * reference on it at the beginning of the function.
3923 */
3924
3925 if ((error == 0) && (tcp->c_flag & C_DELETED) && (tvp_rsrc)) {
3926 vnode_recycle(tvp_rsrc);
3927 }
3928 }
3929
3930 if (error) {
3931 goto out;
3932 }
3933
3934 tvp_deleted = 1;
3935
3936 /* Mark 'tcp' as being deleted due to a rename */
3937 tcp->c_flag |= C_RENAMED;
3938
3939 /*
3940 * Aggressively mark tvp/tcp for termination to ensure that we recover all blocks
3941 * as quickly as possible.
3942 */
3943 vnode_recycle(tvp);
3944 }
3945 skip_rm:
3946 /*
3947 * All done with tvp and fvp.
3948 *
3949 * We also jump to this point if there was no destination observed during lookup and namei.
3950 * However, because only iocounts are held at the VFS layer, there is nothing preventing a
3951 * competing thread from racing us and creating a file or dir at the destination of this rename
3952 * operation. If this occurs, it may cause us to get a spurious EEXIST out of the cat_rename
3953 * call below. To preserve rename's atomicity, we need to signal VFS to re-drive the
3954 * namei/lookup and restart the rename operation. EEXIST is an allowable errno to be bubbled
3955 * out of the rename syscall, but not for this reason, since it is a synonym errno for ENOTEMPTY.
3956 * To signal VFS, we return ERECYCLE (which is also used for lookup restarts). This errno
3957 * will be swallowed and it will restart the operation.
3958 */
3959
3960 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_EXCLUSIVE_LOCK);
3961 error = cat_rename(hfsmp, &from_desc, &tdcp->c_desc, &to_desc, &out_desc);
3962 hfs_systemfile_unlock(hfsmp, lockflags);
3963
3964 if (error) {
3965 if (error == EEXIST) {
3966 error = ERECYCLE;
3967 }
3968 goto out;
3969 }
3970
3971 /* Invalidate negative cache entries in the destination directory */
3972 if (tdcp->c_flag & C_NEG_ENTRIES) {
3973 cache_purge_negatives(tdvp);
3974 tdcp->c_flag &= ~C_NEG_ENTRIES;
3975 }
3976
3977 /* Update cnode's catalog descriptor */
3978 replace_desc(fcp, &out_desc);
3979 fcp->c_parentcnid = tdcp->c_fileid;
3980 fcp->c_hint = 0;
3981
3982 /* Now indicate this cnode needs to have date-added written to the finderinfo */
3983 fcp->c_flag |= C_NEEDS_DATEADDED;
3984 (void) hfs_update (fvp, 0);
3985
3986
3987 hfs_volupdate(hfsmp, vnode_isdir(fvp) ? VOL_RMDIR : VOL_RMFILE,
3988 (fdcp->c_cnid == kHFSRootFolderID));
3989 hfs_volupdate(hfsmp, vnode_isdir(fvp) ? VOL_MKDIR : VOL_MKFILE,
3990 (tdcp->c_cnid == kHFSRootFolderID));
3991
3992 /* Update both parent directories. */
3993 if (fdvp != tdvp) {
3994 if (vnode_isdir(fvp)) {
3995 /* If the source directory has directory hard link
3996 * descendants, set the kHFSHasChildLinkBit in the
3997 * destination parent hierarchy
3998 */
3999 if ((fcp->c_attr.ca_recflags & kHFSHasChildLinkMask) &&
4000 !(tdcp->c_attr.ca_recflags & kHFSHasChildLinkMask)) {
4001
4002 tdcp->c_attr.ca_recflags |= kHFSHasChildLinkMask;
4003
4004 error = cat_set_childlinkbit(hfsmp, tdcp->c_parentcnid);
4005 if (error) {
4006 printf ("hfs_vnop_rename: error updating parent chain for %u\n", tdcp->c_cnid);
4007 error = 0;
4008 }
4009 }
4010 INC_FOLDERCOUNT(hfsmp, tdcp->c_attr);
4011 DEC_FOLDERCOUNT(hfsmp, fdcp->c_attr);
4012 }
4013 tdcp->c_entries++;
4014 tdcp->c_dirchangecnt++;
4015 if (fdcp->c_entries > 0)
4016 fdcp->c_entries--;
4017 fdcp->c_dirchangecnt++;
4018 fdcp->c_touch_chgtime = TRUE;
4019 fdcp->c_touch_modtime = TRUE;
4020
4021 fdcp->c_flag |= C_FORCEUPDATE; // XXXdbg - force it out!
4022 (void) hfs_update(fdvp, 0);
4023 }
4024 tdcp->c_childhint = out_desc.cd_hint; /* Cache directory's location */
4025 tdcp->c_touch_chgtime = TRUE;
4026 tdcp->c_touch_modtime = TRUE;
4027
4028 tdcp->c_flag |= C_FORCEUPDATE; // XXXdbg - force it out!
4029 (void) hfs_update(tdvp, 0);
4030 out:
4031 if (got_cookie) {
4032 cat_postflight(hfsmp, &cookie, p);
4033 }
4034 if (started_tr) {
4035 hfs_end_transaction(hfsmp);
4036 }
4037
4038 fdcp->c_flag &= ~C_DIR_MODIFICATION;
4039 wakeup((caddr_t)&fdcp->c_flag);
4040 if (fdvp != tdvp) {
4041 tdcp->c_flag &= ~C_DIR_MODIFICATION;
4042 wakeup((caddr_t)&tdcp->c_flag);
4043 }
4044
4045 if (took_trunc_lock) {
4046 hfs_unlock_truncate(VTOC(tvp), 0);
4047 }
4048
4049 hfs_unlockfour(fdcp, fcp, tdcp, tcp);
4050
4051 /* Now vnode_put the resource forks vnodes if necessary */
4052 if (tvp_rsrc) {
4053 vnode_put(tvp_rsrc);
4054 }
4055 if (fvp_rsrc) {
4056 vnode_put(fvp_rsrc);
4057 }
4058
4059 /* After tvp is removed the only acceptable error is EIO */
4060 if (error && tvp_deleted)
4061 error = EIO;
4062
4063 return (error);
4064 }
4065
4066
4067 /*
4068 * Make a directory.
4069 */
4070 int
4071 hfs_vnop_mkdir(struct vnop_mkdir_args *ap)
4072 {
4073 /***** HACK ALERT ********/
4074 ap->a_cnp->cn_flags |= MAKEENTRY;
4075 return hfs_makenode(ap->a_dvp, ap->a_vpp, ap->a_cnp, ap->a_vap, ap->a_context);
4076 }
4077
4078
4079 /*
4080 * Create a symbolic link.
4081 */
4082 int
4083 hfs_vnop_symlink(struct vnop_symlink_args *ap)
4084 {
4085 struct vnode **vpp = ap->a_vpp;
4086 struct vnode *dvp = ap->a_dvp;
4087 struct vnode *vp = NULL;
4088 struct cnode *cp = NULL;
4089 struct hfsmount *hfsmp;
4090 struct filefork *fp;
4091 struct buf *bp = NULL;
4092 char *datap;
4093 int started_tr = 0;
4094 u_int32_t len;
4095 int error;
4096
4097 /* HFS standard disks don't support symbolic links */
4098 if (VTOVCB(dvp)->vcbSigWord != kHFSPlusSigWord)
4099 return (ENOTSUP);
4100
4101 /* Check for empty target name */
4102 if (ap->a_target[0] == 0)
4103 return (EINVAL);
4104
4105 hfsmp = VTOHFS(dvp);
4106 len = strlen(ap->a_target);
4107
4108 /* Check for free space */
4109 if (((u_int64_t)hfs_freeblks(hfsmp, 0) * (u_int64_t)hfsmp->blockSize) < len) {
4110 return (ENOSPC);
4111 }
4112
4113 /* Create the vnode */
4114 ap->a_vap->va_mode |= S_IFLNK;
4115 if ((error = hfs_makenode(dvp, vpp, ap->a_cnp, ap->a_vap, ap->a_context))) {
4116 goto out;
4117 }
4118 vp = *vpp;
4119 if ((error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK))) {
4120 goto out;
4121 }
4122 cp = VTOC(vp);
4123 fp = VTOF(vp);
4124
4125 if (cp->c_flag & (C_NOEXISTS | C_DELETED)) {
4126 goto out;
4127 }
4128
4129 #if QUOTA
4130 (void)hfs_getinoquota(cp);
4131 #endif /* QUOTA */
4132
4133 if ((error = hfs_start_transaction(hfsmp)) != 0) {
4134 goto out;
4135 }
4136 started_tr = 1;
4137
4138 /*
4139 * Allocate space for the link.
4140 *
4141 * Since we're already inside a transaction,
4142 * tell hfs_truncate to skip the ubc_setsize.
4143 *
4144 * Don't need truncate lock since a symlink is treated as a system file.
4145 */
4146 error = hfs_truncate(vp, len, IO_NOZEROFILL, 1, 0, ap->a_context);
4147
4148 /* On errors, remove the symlink file */
4149 if (error) {
4150 /*
4151 * End the transaction so we don't re-take the cnode lock
4152 * below while inside a transaction (lock order violation).
4153 */
4154 hfs_end_transaction(hfsmp);
4155
4156 /* hfs_removefile() requires holding the truncate lock */
4157 hfs_unlock(cp);
4158 hfs_lock_truncate(cp, HFS_EXCLUSIVE_LOCK);
4159 hfs_lock(cp, HFS_FORCE_LOCK);
4160
4161 if (hfs_start_transaction(hfsmp) != 0) {
4162 started_tr = 0;
4163 hfs_unlock_truncate(cp, TRUE);
4164 goto out;
4165 }
4166
4167 (void) hfs_removefile(dvp, vp, ap->a_cnp, 0, 0, 0, NULL, 0);
4168 hfs_unlock_truncate(cp, 0);
4169 goto out;
4170 }
4171
4172 /* Write the link to disk */
4173 bp = buf_getblk(vp, (daddr64_t)0, roundup((int)fp->ff_size, hfsmp->hfs_physical_block_size),
4174 0, 0, BLK_META);
4175 if (hfsmp->jnl) {
4176 journal_modify_block_start(hfsmp->jnl, bp);
4177 }
4178 datap = (char *)buf_dataptr(bp);
4179 bzero(datap, buf_size(bp));
4180 bcopy(ap->a_target, datap, len);
4181
4182 if (hfsmp->jnl) {
4183 journal_modify_block_end(hfsmp->jnl, bp, NULL, NULL);
4184 } else {
4185 buf_bawrite(bp);
4186 }
4187 /*
4188 * We defered the ubc_setsize for hfs_truncate
4189 * since we were inside a transaction.
4190 *
4191 * We don't need to drop the cnode lock here
4192 * since this is a symlink.
4193 */
4194 ubc_setsize(vp, len);
4195 out:
4196 if (started_tr)
4197 hfs_end_transaction(hfsmp);
4198 if ((cp != NULL) && (vp != NULL)) {
4199 hfs_unlock(cp);
4200 }
4201 if (error) {
4202 if (vp) {
4203 vnode_put(vp);
4204 }
4205 *vpp = NULL;
4206 }
4207 return (error);
4208 }
4209
4210
4211 /* structures to hold a "." or ".." directory entry */
4212 struct hfs_stddotentry {
4213 u_int32_t d_fileno; /* unique file number */
4214 u_int16_t d_reclen; /* length of this structure */
4215 u_int8_t d_type; /* dirent file type */
4216 u_int8_t d_namlen; /* len of filename */
4217 char d_name[4]; /* "." or ".." */
4218 };
4219
4220 struct hfs_extdotentry {
4221 u_int64_t d_fileno; /* unique file number */
4222 u_int64_t d_seekoff; /* seek offset (optional, used by servers) */
4223 u_int16_t d_reclen; /* length of this structure */
4224 u_int16_t d_namlen; /* len of filename */
4225 u_int8_t d_type; /* dirent file type */
4226 u_char d_name[3]; /* "." or ".." */
4227 };
4228
4229 typedef union {
4230 struct hfs_stddotentry std;
4231 struct hfs_extdotentry ext;
4232 } hfs_dotentry_t;
4233
4234 /*
4235 * hfs_vnop_readdir reads directory entries into the buffer pointed
4236 * to by uio, in a filesystem independent format. Up to uio_resid
4237 * bytes of data can be transferred. The data in the buffer is a
4238 * series of packed dirent structures where each one contains the
4239 * following entries:
4240 *
4241 * u_int32_t d_fileno; // file number of entry
4242 * u_int16_t d_reclen; // length of this record
4243 * u_int8_t d_type; // file type
4244 * u_int8_t d_namlen; // length of string in d_name
4245 * char d_name[MAXNAMELEN+1]; // null terminated file name
4246 *
4247 * The current position (uio_offset) refers to the next block of
4248 * entries. The offset can only be set to a value previously
4249 * returned by hfs_vnop_readdir or zero. This offset does not have
4250 * to match the number of bytes returned (in uio_resid).
4251 *
4252 * In fact, the offset used by HFS is essentially an index (26 bits)
4253 * with a tag (6 bits). The tag is for associating the next request
4254 * with the current request. This enables us to have multiple threads
4255 * reading the directory while the directory is also being modified.
4256 *
4257 * Each tag/index pair is tied to a unique directory hint. The hint
4258 * contains information (filename) needed to build the catalog b-tree
4259 * key for finding the next set of entries.
4260 *
4261 * If the directory is marked as deleted-but-in-use (cp->c_flag & C_DELETED),
4262 * do NOT synthesize entries for "." and "..".
4263 */
4264 int
4265 hfs_vnop_readdir(ap)
4266 struct vnop_readdir_args /* {
4267 vnode_t a_vp;
4268 uio_t a_uio;
4269 int a_flags;
4270 int *a_eofflag;
4271 int *a_numdirent;
4272 vfs_context_t a_context;
4273 } */ *ap;
4274 {
4275 struct vnode *vp = ap->a_vp;
4276 uio_t uio = ap->a_uio;
4277 struct cnode *cp;
4278 struct hfsmount *hfsmp;
4279 directoryhint_t *dirhint = NULL;
4280 directoryhint_t localhint;
4281 off_t offset;
4282 off_t startoffset;
4283 int error = 0;
4284 int eofflag = 0;
4285 user_addr_t user_start = 0;
4286 user_size_t user_len = 0;
4287 int index;
4288 unsigned int tag;
4289 int items;
4290 int lockflags;
4291 int extended;
4292 int nfs_cookies;
4293 cnid_t cnid_hint = 0;
4294
4295 items = 0;
4296 startoffset = offset = uio_offset(uio);
4297 extended = (ap->a_flags & VNODE_READDIR_EXTENDED);
4298 nfs_cookies = extended && (ap->a_flags & VNODE_READDIR_REQSEEKOFF);
4299
4300 /* Sanity check the uio data. */
4301 if (uio_iovcnt(uio) > 1)
4302 return (EINVAL);
4303
4304 if (VTOC(vp)->c_flags & UF_COMPRESSED) {
4305 int compressed = hfs_file_is_compressed(VTOC(vp), 0); /* 0 == take the cnode lock */
4306 if (VTOCMP(vp) != NULL && !compressed) {
4307 error = check_for_dataless_file(vp, NAMESPACE_HANDLER_READ_OP);
4308 if (error) {
4309 return error;
4310 }
4311 }
4312 }
4313
4314 cp = VTOC(vp);
4315 hfsmp = VTOHFS(vp);
4316
4317 /* Note that the dirhint calls require an exclusive lock. */
4318 if ((error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK)))
4319 return (error);
4320
4321 /* Pick up cnid hint (if any). */
4322 if (nfs_cookies) {
4323 cnid_hint = (cnid_t)(uio_offset(uio) >> 32);
4324 uio_setoffset(uio, uio_offset(uio) & 0x00000000ffffffffLL);
4325 if (cnid_hint == INT_MAX) { /* searching pass the last item */
4326 eofflag = 1;
4327 goto out;
4328 }
4329 }
4330 /*
4331 * Synthesize entries for "." and "..", unless the directory has
4332 * been deleted, but not closed yet (lazy delete in progress).
4333 */
4334 if (offset == 0 && !(cp->c_flag & C_DELETED)) {
4335 hfs_dotentry_t dotentry[2];
4336 size_t uiosize;
4337
4338 if (extended) {
4339 struct hfs_extdotentry *entry = &dotentry[0].ext;
4340
4341 entry->d_fileno = cp->c_cnid;
4342 entry->d_reclen = sizeof(struct hfs_extdotentry);
4343 entry->d_type = DT_DIR;
4344 entry->d_namlen = 1;
4345 entry->d_name[0] = '.';
4346 entry->d_name[1] = '\0';
4347 entry->d_name[2] = '\0';
4348 entry->d_seekoff = 1;
4349
4350 ++entry;
4351 entry->d_fileno = cp->c_parentcnid;
4352 entry->d_reclen = sizeof(struct hfs_extdotentry);
4353 entry->d_type = DT_DIR;
4354 entry->d_namlen = 2;
4355 entry->d_name[0] = '.';
4356 entry->d_name[1] = '.';
4357 entry->d_name[2] = '\0';
4358 entry->d_seekoff = 2;
4359 uiosize = 2 * sizeof(struct hfs_extdotentry);
4360 } else {
4361 struct hfs_stddotentry *entry = &dotentry[0].std;
4362
4363 entry->d_fileno = cp->c_cnid;
4364 entry->d_reclen = sizeof(struct hfs_stddotentry);
4365 entry->d_type = DT_DIR;
4366 entry->d_namlen = 1;
4367 *(int *)&entry->d_name[0] = 0;
4368 entry->d_name[0] = '.';
4369
4370 ++entry;
4371 entry->d_fileno = cp->c_parentcnid;
4372 entry->d_reclen = sizeof(struct hfs_stddotentry);
4373 entry->d_type = DT_DIR;
4374 entry->d_namlen = 2;
4375 *(int *)&entry->d_name[0] = 0;
4376 entry->d_name[0] = '.';
4377 entry->d_name[1] = '.';
4378 uiosize = 2 * sizeof(struct hfs_stddotentry);
4379 }
4380 if ((error = uiomove((caddr_t)&dotentry, uiosize, uio))) {
4381 goto out;
4382 }
4383 offset += 2;
4384 }
4385
4386 /* If there are no real entries then we're done. */
4387 if (cp->c_entries == 0) {
4388 error = 0;
4389 eofflag = 1;
4390 uio_setoffset(uio, offset);
4391 goto seekoffcalc;
4392 }
4393
4394 //
4395 // We have to lock the user's buffer here so that we won't
4396 // fault on it after we've acquired a shared lock on the
4397 // catalog file. The issue is that you can get a 3-way
4398 // deadlock if someone else starts a transaction and then
4399 // tries to lock the catalog file but can't because we're
4400 // here and we can't service our page fault because VM is
4401 // blocked trying to start a transaction as a result of
4402 // trying to free up pages for our page fault. It's messy
4403 // but it does happen on dual-processors that are paging
4404 // heavily (see radar 3082639 for more info). By locking
4405 // the buffer up-front we prevent ourselves from faulting
4406 // while holding the shared catalog file lock.
4407 //
4408 // Fortunately this and hfs_search() are the only two places
4409 // currently (10/30/02) that can fault on user data with a
4410 // shared lock on the catalog file.
4411 //
4412 if (hfsmp->jnl && uio_isuserspace(uio)) {
4413 user_start = uio_curriovbase(uio);
4414 user_len = uio_curriovlen(uio);
4415
4416 if ((error = vslock(user_start, user_len)) != 0) {
4417 user_start = 0;
4418 goto out;
4419 }
4420 }
4421 /* Convert offset into a catalog directory index. */
4422 index = (offset & HFS_INDEX_MASK) - 2;
4423 tag = offset & ~HFS_INDEX_MASK;
4424
4425 /* Lock catalog during cat_findname and cat_getdirentries. */
4426 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
4427
4428 /* When called from NFS, try and resolve a cnid hint. */
4429 if (nfs_cookies && cnid_hint != 0) {
4430 if (cat_findname(hfsmp, cnid_hint, &localhint.dh_desc) == 0) {
4431 if ( localhint.dh_desc.cd_parentcnid == cp->c_fileid) {
4432 localhint.dh_index = index - 1;
4433 localhint.dh_time = 0;
4434 bzero(&localhint.dh_link, sizeof(localhint.dh_link));
4435 dirhint = &localhint; /* don't forget to release the descriptor */
4436 } else {
4437 cat_releasedesc(&localhint.dh_desc);
4438 }
4439 }
4440 }
4441
4442 /* Get a directory hint (cnode must be locked exclusive) */
4443 if (dirhint == NULL) {
4444 dirhint = hfs_getdirhint(cp, ((index - 1) & HFS_INDEX_MASK) | tag, 0);
4445
4446 /* Hide tag from catalog layer. */
4447 dirhint->dh_index &= HFS_INDEX_MASK;
4448 if (dirhint->dh_index == HFS_INDEX_MASK) {
4449 dirhint->dh_index = -1;
4450 }
4451 }
4452
4453 if (index == 0) {
4454 dirhint->dh_threadhint = cp->c_dirthreadhint;
4455 }
4456 else {
4457 /*
4458 * If we have a non-zero index, there is a possibility that during the last
4459 * call to hfs_vnop_readdir we hit EOF for this directory. If that is the case
4460 * then we don't want to return any new entries for the caller. Just return 0
4461 * items, mark the eofflag, and bail out. Because we won't have done any work, the
4462 * code at the end of the function will release the dirhint for us.
4463 *
4464 * Don't forget to unlock the catalog lock on the way out, too.
4465 */
4466 if (dirhint->dh_desc.cd_flags & CD_EOF) {
4467 error = 0;
4468 eofflag = 1;
4469 uio_setoffset(uio, startoffset);
4470 hfs_systemfile_unlock (hfsmp, lockflags);
4471
4472 goto seekoffcalc;
4473 }
4474 }
4475
4476 /* Pack the buffer with dirent entries. */
4477 error = cat_getdirentries(hfsmp, cp->c_entries, dirhint, uio, extended, &items, &eofflag);
4478
4479 if (index == 0 && error == 0) {
4480 cp->c_dirthreadhint = dirhint->dh_threadhint;
4481 }
4482
4483 hfs_systemfile_unlock(hfsmp, lockflags);
4484
4485 if (error != 0) {
4486 goto out;
4487 }
4488
4489 /* Get index to the next item */
4490 index += items;
4491
4492 if (items >= (int)cp->c_entries) {
4493 eofflag = 1;
4494 }
4495
4496 /* Convert catalog directory index back into an offset. */
4497 while (tag == 0)
4498 tag = (++cp->c_dirhinttag) << HFS_INDEX_BITS;
4499 uio_setoffset(uio, (index + 2) | tag);
4500 dirhint->dh_index |= tag;
4501
4502 seekoffcalc:
4503 cp->c_touch_acctime = TRUE;
4504
4505 if (ap->a_numdirent) {
4506 if (startoffset == 0)
4507 items += 2;
4508 *ap->a_numdirent = items;
4509 }
4510
4511 out:
4512 if (user_start) {
4513 vsunlock(user_start, user_len, TRUE);
4514 }
4515 /* If we didn't do anything then go ahead and dump the hint. */
4516 if ((dirhint != NULL) &&
4517 (dirhint != &localhint) &&
4518 (uio_offset(uio) == startoffset)) {
4519 hfs_reldirhint(cp, dirhint);
4520 eofflag = 1;
4521 }
4522 if (ap->a_eofflag) {
4523 *ap->a_eofflag = eofflag;
4524 }
4525 if (dirhint == &localhint) {
4526 cat_releasedesc(&localhint.dh_desc);
4527 }
4528 hfs_unlock(cp);
4529 return (error);
4530 }
4531
4532
4533 /*
4534 * Read contents of a symbolic link.
4535 */
4536 int
4537 hfs_vnop_readlink(ap)
4538 struct vnop_readlink_args /* {
4539 struct vnode *a_vp;
4540 struct uio *a_uio;
4541 vfs_context_t a_context;
4542 } */ *ap;
4543 {
4544 struct vnode *vp = ap->a_vp;
4545 struct cnode *cp;
4546 struct filefork *fp;
4547 int error;
4548
4549 if (!vnode_islnk(vp))
4550 return (EINVAL);
4551
4552 if ((error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK)))
4553 return (error);
4554 cp = VTOC(vp);
4555 fp = VTOF(vp);
4556
4557 /* Zero length sym links are not allowed */
4558 if (fp->ff_size == 0 || fp->ff_size > MAXPATHLEN) {
4559 error = EINVAL;
4560 goto exit;
4561 }
4562
4563 /* Cache the path so we don't waste buffer cache resources */
4564 if (fp->ff_symlinkptr == NULL) {
4565 struct buf *bp = NULL;
4566
4567 MALLOC(fp->ff_symlinkptr, char *, fp->ff_size, M_TEMP, M_WAITOK);
4568 if (fp->ff_symlinkptr == NULL) {
4569 error = ENOMEM;
4570 goto exit;
4571 }
4572 error = (int)buf_meta_bread(vp, (daddr64_t)0,
4573 roundup((int)fp->ff_size, VTOHFS(vp)->hfs_physical_block_size),
4574 vfs_context_ucred(ap->a_context), &bp);
4575 if (error) {
4576 if (bp)
4577 buf_brelse(bp);
4578 if (fp->ff_symlinkptr) {
4579 FREE(fp->ff_symlinkptr, M_TEMP);
4580 fp->ff_symlinkptr = NULL;
4581 }
4582 goto exit;
4583 }
4584 bcopy((char *)buf_dataptr(bp), fp->ff_symlinkptr, (size_t)fp->ff_size);
4585
4586 if (VTOHFS(vp)->jnl && (buf_flags(bp) & B_LOCKED) == 0) {
4587 buf_markinvalid(bp); /* data no longer needed */
4588 }
4589 buf_brelse(bp);
4590 }
4591 error = uiomove((caddr_t)fp->ff_symlinkptr, (int)fp->ff_size, ap->a_uio);
4592
4593 /*
4594 * Keep track blocks read
4595 */
4596 if ((VTOHFS(vp)->hfc_stage == HFC_RECORDING) && (error == 0)) {
4597
4598 /*
4599 * If this file hasn't been seen since the start of
4600 * the current sampling period then start over.
4601 */
4602 if (cp->c_atime < VTOHFS(vp)->hfc_timebase)
4603 VTOF(vp)->ff_bytesread = fp->ff_size;
4604 else
4605 VTOF(vp)->ff_bytesread += fp->ff_size;
4606
4607 // if (VTOF(vp)->ff_bytesread > fp->ff_size)
4608 // cp->c_touch_acctime = TRUE;
4609 }
4610
4611 exit:
4612 hfs_unlock(cp);
4613 return (error);
4614 }
4615
4616
4617 /*
4618 * Get configurable pathname variables.
4619 */
4620 int
4621 hfs_vnop_pathconf(ap)
4622 struct vnop_pathconf_args /* {
4623 struct vnode *a_vp;
4624 int a_name;
4625 int *a_retval;
4626 vfs_context_t a_context;
4627 } */ *ap;
4628 {
4629 switch (ap->a_name) {
4630 case _PC_LINK_MAX:
4631 if (VTOHFS(ap->a_vp)->hfs_flags & HFS_STANDARD)
4632 *ap->a_retval = 1;
4633 else
4634 *ap->a_retval = HFS_LINK_MAX;
4635 break;
4636 case _PC_NAME_MAX:
4637 if (VTOHFS(ap->a_vp)->hfs_flags & HFS_STANDARD)
4638 *ap->a_retval = kHFSMaxFileNameChars; /* 31 */
4639 else
4640 *ap->a_retval = kHFSPlusMaxFileNameChars; /* 255 */
4641 break;
4642 case _PC_PATH_MAX:
4643 *ap->a_retval = PATH_MAX; /* 1024 */
4644 break;
4645 case _PC_PIPE_BUF:
4646 *ap->a_retval = PIPE_BUF;
4647 break;
4648 case _PC_CHOWN_RESTRICTED:
4649 *ap->a_retval = 200112; /* _POSIX_CHOWN_RESTRICTED */
4650 break;
4651 case _PC_NO_TRUNC:
4652 *ap->a_retval = 200112; /* _POSIX_NO_TRUNC */
4653 break;
4654 case _PC_NAME_CHARS_MAX:
4655 if (VTOHFS(ap->a_vp)->hfs_flags & HFS_STANDARD)
4656 *ap->a_retval = kHFSMaxFileNameChars; /* 31 */
4657 else
4658 *ap->a_retval = kHFSPlusMaxFileNameChars; /* 255 */
4659 break;
4660 case _PC_CASE_SENSITIVE:
4661 if (VTOHFS(ap->a_vp)->hfs_flags & HFS_CASE_SENSITIVE)
4662 *ap->a_retval = 1;
4663 else
4664 *ap->a_retval = 0;
4665 break;
4666 case _PC_CASE_PRESERVING:
4667 *ap->a_retval = 1;
4668 break;
4669 case _PC_FILESIZEBITS:
4670 if (VTOHFS(ap->a_vp)->hfs_flags & HFS_STANDARD)
4671 *ap->a_retval = 32;
4672 else
4673 *ap->a_retval = 64; /* number of bits to store max file size */
4674 break;
4675 case _PC_XATTR_SIZE_BITS:
4676 /* Number of bits to store maximum extended attribute size */
4677 *ap->a_retval = HFS_XATTR_SIZE_BITS;
4678 break;
4679 default:
4680 return (EINVAL);
4681 }
4682
4683 return (0);
4684 }
4685
4686
4687 /*
4688 * Update a cnode's on-disk metadata.
4689 *
4690 * If waitfor is set, then wait for the disk write of
4691 * the node to complete.
4692 *
4693 * The cnode must be locked exclusive
4694 */
4695 int
4696 hfs_update(struct vnode *vp, __unused int waitfor)
4697 {
4698 struct cnode *cp = VTOC(vp);
4699 struct proc *p;
4700 struct cat_fork *dataforkp = NULL;
4701 struct cat_fork *rsrcforkp = NULL;
4702 struct cat_fork datafork;
4703 struct cat_fork rsrcfork;
4704 struct hfsmount *hfsmp;
4705 int lockflags;
4706 int error;
4707
4708 p = current_proc();
4709 hfsmp = VTOHFS(vp);
4710
4711 if (((vnode_issystem(vp) && (cp->c_cnid < kHFSFirstUserCatalogNodeID))) ||
4712 hfsmp->hfs_catalog_vp == NULL){
4713 return (0);
4714 }
4715 if ((hfsmp->hfs_flags & HFS_READ_ONLY) || (cp->c_mode == 0)) {
4716 cp->c_flag &= ~C_MODIFIED;
4717 cp->c_touch_acctime = 0;
4718 cp->c_touch_chgtime = 0;
4719 cp->c_touch_modtime = 0;
4720 return (0);
4721 }
4722
4723 hfs_touchtimes(hfsmp, cp);
4724
4725 /* Nothing to update. */
4726 if ((cp->c_flag & (C_MODIFIED | C_FORCEUPDATE)) == 0) {
4727 return (0);
4728 }
4729
4730 if (cp->c_datafork)
4731 dataforkp = &cp->c_datafork->ff_data;
4732 if (cp->c_rsrcfork)
4733 rsrcforkp = &cp->c_rsrcfork->ff_data;
4734
4735 /*
4736 * For delayed allocations updates are
4737 * postponed until an fsync or the file
4738 * gets written to disk.
4739 *
4740 * Deleted files can defer meta data updates until inactive.
4741 *
4742 * If we're ever called with the C_FORCEUPDATE flag though
4743 * we have to do the update.
4744 */
4745 if (ISSET(cp->c_flag, C_FORCEUPDATE) == 0 &&
4746 (ISSET(cp->c_flag, C_DELETED) ||
4747 (dataforkp && cp->c_datafork->ff_unallocblocks) ||
4748 (rsrcforkp && cp->c_rsrcfork->ff_unallocblocks))) {
4749 // cp->c_flag &= ~(C_ACCESS | C_CHANGE | C_UPDATE);
4750 cp->c_flag |= C_MODIFIED;
4751
4752 return (0);
4753 }
4754
4755 if ((error = hfs_start_transaction(hfsmp)) != 0) {
4756 return error;
4757 }
4758
4759 /*
4760 * Modify the values passed to cat_update based on whether or not
4761 * the file has invalid ranges or borrowed blocks.
4762 */
4763 if (dataforkp) {
4764 off_t numbytes = 0;
4765
4766 /* copy the datafork into a temporary copy so we don't pollute the cnode's */
4767 bcopy(dataforkp, &datafork, sizeof(datafork));
4768 dataforkp = &datafork;
4769
4770 /*
4771 * If there are borrowed blocks, ensure that they are subtracted
4772 * from the total block count before writing the cnode entry to disk.
4773 * Only extents that have actually been marked allocated in the bitmap
4774 * should be reflected in the total block count for this fork.
4775 */
4776 if (cp->c_datafork->ff_unallocblocks != 0) {
4777 // make sure that we don't assign a negative block count
4778 if (cp->c_datafork->ff_blocks < cp->c_datafork->ff_unallocblocks) {
4779 panic("hfs: ff_blocks %d is less than unalloc blocks %d\n",
4780 cp->c_datafork->ff_blocks, cp->c_datafork->ff_unallocblocks);
4781 }
4782
4783 /* Also cap the LEOF to the total number of bytes that are allocated. */
4784 datafork.cf_blocks = (cp->c_datafork->ff_blocks - cp->c_datafork->ff_unallocblocks);
4785 datafork.cf_size = datafork.cf_blocks * HFSTOVCB(hfsmp)->blockSize;
4786 }
4787
4788 /*
4789 * For files with invalid ranges (holes) the on-disk
4790 * field representing the size of the file (cf_size)
4791 * must be no larger than the start of the first hole.
4792 * However, note that if the first invalid range exists
4793 * solely within borrowed blocks, then our LEOF and block
4794 * count should both be zero. As a result, set it to the
4795 * min of the current cf_size and the start of the first
4796 * invalid range, because it may have already been reduced
4797 * to zero by the borrowed blocks check above.
4798 */
4799 if (!TAILQ_EMPTY(&cp->c_datafork->ff_invalidranges)) {
4800 numbytes = TAILQ_FIRST(&cp->c_datafork->ff_invalidranges)->rl_start;
4801 datafork.cf_size = MIN((numbytes), (datafork.cf_size));
4802 }
4803 }
4804
4805 /*
4806 * For resource forks with delayed allocations, make sure
4807 * the block count and file size match the number of blocks
4808 * actually allocated to the file on disk.
4809 */
4810 if (rsrcforkp && (cp->c_rsrcfork->ff_unallocblocks != 0)) {
4811 bcopy(rsrcforkp, &rsrcfork, sizeof(rsrcfork));
4812 rsrcfork.cf_blocks = (cp->c_rsrcfork->ff_blocks - cp->c_rsrcfork->ff_unallocblocks);
4813 rsrcfork.cf_size = rsrcfork.cf_blocks * HFSTOVCB(hfsmp)->blockSize;
4814 rsrcforkp = &rsrcfork;
4815 }
4816
4817 /*
4818 * Lock the Catalog b-tree file.
4819 */
4820 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_EXCLUSIVE_LOCK);
4821
4822 /* XXX - waitfor is not enforced */
4823 error = cat_update(hfsmp, &cp->c_desc, &cp->c_attr, dataforkp, rsrcforkp);
4824
4825 hfs_systemfile_unlock(hfsmp, lockflags);
4826
4827 /* After the updates are finished, clear the flags */
4828 cp->c_flag &= ~(C_MODIFIED | C_FORCEUPDATE);
4829
4830 hfs_end_transaction(hfsmp);
4831
4832 return (error);
4833 }
4834
4835 /*
4836 * Allocate a new node
4837 * Note - Function does not create and return a vnode for whiteout creation.
4838 */
4839 int
4840 hfs_makenode(struct vnode *dvp, struct vnode **vpp, struct componentname *cnp,
4841 struct vnode_attr *vap, vfs_context_t ctx)
4842 {
4843 struct cnode *cp = NULL;
4844 struct cnode *dcp = NULL;
4845 struct vnode *tvp;
4846 struct hfsmount *hfsmp;
4847 struct cat_desc in_desc, out_desc;
4848 struct cat_attr attr;
4849 struct timeval tv;
4850 int lockflags;
4851 int error, started_tr = 0;
4852 enum vtype vnodetype;
4853 int mode;
4854 int newvnode_flags = 0;
4855 int nocache = 0;
4856 u_int32_t gnv_flags = 0;
4857
4858 if ((error = hfs_lock(VTOC(dvp), HFS_EXCLUSIVE_LOCK)))
4859 return (error);
4860
4861 /* set the cnode pointer only after successfully acquiring lock */
4862 dcp = VTOC(dvp);
4863
4864 /* Don't allow creation of new entries in open-unlinked directories */
4865 if ((error = hfs_checkdeleted(dcp))) {
4866 hfs_unlock(dcp);
4867 return error;
4868 }
4869
4870 dcp->c_flag |= C_DIR_MODIFICATION;
4871
4872 hfsmp = VTOHFS(dvp);
4873 *vpp = NULL;
4874 tvp = NULL;
4875 out_desc.cd_flags = 0;
4876 out_desc.cd_nameptr = NULL;
4877
4878 vnodetype = vap->va_type;
4879 if (vnodetype == VNON)
4880 vnodetype = VREG;
4881 mode = MAKEIMODE(vnodetype, vap->va_mode);
4882
4883 #if CONFIG_PROTECT
4884 /* If we're creating a regular file on a CP filesystem, then delay caching */
4885 if ((vnodetype == VREG ) && (cp_fs_protected (VTOVFS(dvp)))) {
4886 nocache = 1;
4887 }
4888 #endif
4889
4890 /* Check if were out of usable disk space. */
4891 if ((hfs_freeblks(hfsmp, 1) == 0) && (vfs_context_suser(ctx) != 0)) {
4892 error = ENOSPC;
4893 goto exit;
4894 }
4895
4896 microtime(&tv);
4897
4898 /* Setup the default attributes */
4899 bzero(&attr, sizeof(attr));
4900 attr.ca_mode = mode;
4901 attr.ca_linkcount = 1;
4902 if (VATTR_IS_ACTIVE(vap, va_rdev)) {
4903 attr.ca_rdev = vap->va_rdev;
4904 }
4905 if (VATTR_IS_ACTIVE(vap, va_create_time)) {
4906 VATTR_SET_SUPPORTED(vap, va_create_time);
4907 attr.ca_itime = vap->va_create_time.tv_sec;
4908 } else {
4909 attr.ca_itime = tv.tv_sec;
4910 }
4911 if ((hfsmp->hfs_flags & HFS_STANDARD) && gTimeZone.tz_dsttime) {
4912 attr.ca_itime += 3600; /* Same as what hfs_update does */
4913 }
4914 attr.ca_atime = attr.ca_ctime = attr.ca_mtime = attr.ca_itime;
4915 attr.ca_atimeondisk = attr.ca_atime;
4916 if (VATTR_IS_ACTIVE(vap, va_flags)) {
4917 VATTR_SET_SUPPORTED(vap, va_flags);
4918 attr.ca_flags = vap->va_flags;
4919 }
4920
4921 /*
4922 * HFS+ only: all files get ThreadExists
4923 * HFSX only: dirs get HasFolderCount
4924 */
4925 if (!(hfsmp->hfs_flags & HFS_STANDARD)) {
4926 if (vnodetype == VDIR) {
4927 if (hfsmp->hfs_flags & HFS_FOLDERCOUNT)
4928 attr.ca_recflags = kHFSHasFolderCountMask;
4929 } else {
4930 attr.ca_recflags = kHFSThreadExistsMask;
4931 }
4932 }
4933
4934 /* Add the date added to the item */
4935 hfs_write_dateadded (&attr, attr.ca_atime);
4936
4937 attr.ca_uid = vap->va_uid;
4938 attr.ca_gid = vap->va_gid;
4939 VATTR_SET_SUPPORTED(vap, va_mode);
4940 VATTR_SET_SUPPORTED(vap, va_uid);
4941 VATTR_SET_SUPPORTED(vap, va_gid);
4942
4943 #if QUOTA
4944 /* check to see if this node's creation would cause us to go over
4945 * quota. If so, abort this operation.
4946 */
4947 if (hfsmp->hfs_flags & HFS_QUOTAS) {
4948 if ((error = hfs_quotacheck(hfsmp, 1, attr.ca_uid, attr.ca_gid,
4949 vfs_context_ucred(ctx)))) {
4950 goto exit;
4951 }
4952 }
4953 #endif
4954
4955
4956 /* Tag symlinks with a type and creator. */
4957 if (vnodetype == VLNK) {
4958 struct FndrFileInfo *fip;
4959
4960 fip = (struct FndrFileInfo *)&attr.ca_finderinfo;
4961 fip->fdType = SWAP_BE32(kSymLinkFileType);
4962 fip->fdCreator = SWAP_BE32(kSymLinkCreator);
4963 }
4964 if (cnp->cn_flags & ISWHITEOUT)
4965 attr.ca_flags |= UF_OPAQUE;
4966
4967 /* Setup the descriptor */
4968 in_desc.cd_nameptr = (const u_int8_t *)cnp->cn_nameptr;
4969 in_desc.cd_namelen = cnp->cn_namelen;
4970 in_desc.cd_parentcnid = dcp->c_fileid;
4971 in_desc.cd_flags = S_ISDIR(mode) ? CD_ISDIR : 0;
4972 in_desc.cd_hint = dcp->c_childhint;
4973 in_desc.cd_encoding = 0;
4974
4975 if ((error = hfs_start_transaction(hfsmp)) != 0) {
4976 goto exit;
4977 }
4978 started_tr = 1;
4979
4980 // have to also lock the attribute file because cat_create() needs
4981 // to check that any fileID it wants to use does not have orphaned
4982 // attributes in it.
4983 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG | SFL_ATTRIBUTE, HFS_EXCLUSIVE_LOCK);
4984
4985 /* Reserve some space in the Catalog file. */
4986 if ((error = cat_preflight(hfsmp, CAT_CREATE, NULL, 0))) {
4987 hfs_systemfile_unlock(hfsmp, lockflags);
4988 goto exit;
4989 }
4990 error = cat_create(hfsmp, &in_desc, &attr, &out_desc);
4991 if (error == 0) {
4992 /* Update the parent directory */
4993 dcp->c_childhint = out_desc.cd_hint; /* Cache directory's location */
4994 dcp->c_entries++;
4995 if (vnodetype == VDIR) {
4996 INC_FOLDERCOUNT(hfsmp, dcp->c_attr);
4997 }
4998 dcp->c_dirchangecnt++;
4999 dcp->c_ctime = tv.tv_sec;
5000 dcp->c_mtime = tv.tv_sec;
5001 (void) cat_update(hfsmp, &dcp->c_desc, &dcp->c_attr, NULL, NULL);
5002 }
5003 hfs_systemfile_unlock(hfsmp, lockflags);
5004 if (error)
5005 goto exit;
5006
5007 /* Invalidate negative cache entries in the directory */
5008 if (dcp->c_flag & C_NEG_ENTRIES) {
5009 cache_purge_negatives(dvp);
5010 dcp->c_flag &= ~C_NEG_ENTRIES;
5011 }
5012
5013 hfs_volupdate(hfsmp, vnodetype == VDIR ? VOL_MKDIR : VOL_MKFILE,
5014 (dcp->c_cnid == kHFSRootFolderID));
5015
5016 // XXXdbg
5017 // have to end the transaction here before we call hfs_getnewvnode()
5018 // because that can cause us to try and reclaim a vnode on a different
5019 // file system which could cause us to start a transaction which can
5020 // deadlock with someone on that other file system (since we could be
5021 // holding two transaction locks as well as various vnodes and we did
5022 // not obtain the locks on them in the proper order).
5023 //
5024 // NOTE: this means that if the quota check fails or we have to update
5025 // the change time on a block-special device that those changes
5026 // will happen as part of independent transactions.
5027 //
5028 if (started_tr) {
5029 hfs_end_transaction(hfsmp);
5030 started_tr = 0;
5031 }
5032
5033 /* Do not create vnode for whiteouts */
5034 if (S_ISWHT(mode)) {
5035 goto exit;
5036 }
5037
5038 gnv_flags |= GNV_CREATE;
5039 if (nocache) {
5040 gnv_flags |= GNV_NOCACHE;
5041 }
5042
5043 /*
5044 * Create a vnode for the object just created.
5045 *
5046 * NOTE: Maintaining the cnode lock on the parent directory is important,
5047 * as it prevents race conditions where other threads want to look up entries
5048 * in the directory and/or add things as we are in the process of creating
5049 * the vnode below. However, this has the potential for causing a
5050 * double lock panic when dealing with shadow files on a HFS boot partition.
5051 * The panic could occur if we are not cleaning up after ourselves properly
5052 * when done with a shadow file or in the error cases. The error would occur if we
5053 * try to create a new vnode, and then end up reclaiming another shadow vnode to
5054 * create the new one. However, if everything is working properly, this should
5055 * be a non-issue as we would never enter that reclaim codepath.
5056 *
5057 * The cnode is locked on successful return.
5058 */
5059 error = hfs_getnewvnode(hfsmp, dvp, cnp, &out_desc, gnv_flags, &attr,
5060 NULL, &tvp, &newvnode_flags);
5061 if (error)
5062 goto exit;
5063
5064 cp = VTOC(tvp);
5065 *vpp = tvp;
5066
5067 #if CONFIG_PROTECT
5068 error = cp_entry_create_keys(cp);
5069 /*
5070 * If we fail to create keys, then do NOT allow this vnode to percolate out into the
5071 * namespace. Delete it and return the errno that cp_entry_create_keys generated.
5072 * Luckily, we can do this without issues because the entry was newly created
5073 * and we're still holding the directory cnode lock. Because we prevented it from
5074 * getting inserted into the namecache upon vnode creation, all accesss to this file
5075 * would have to go through the directory, whose lock we are still holding.
5076 */
5077 if (error) {
5078 /*
5079 * If we fail to remove/recycle the item here, we can't do much about it. Log
5080 * a message to the console and then we can backtrack it. The ultimate error
5081 * that will get emitted to userland will be from the failure to create the EA blob.
5082 */
5083 int err = hfs_removefile (dvp, tvp, cnp, 0, 0, 0, NULL, 0);
5084 if (err) {
5085 printf("hfs_makenode: removefile failed (%d) for CP file %p\n", err, tvp);
5086 }
5087 hfs_unlock (cp);
5088 err = vnode_recycle (tvp);
5089 if (err) {
5090 printf("hfs_makenode: vnode_recycle failed (%d) for CP file %p\n", err, tvp);
5091 }
5092 /* Drop the iocount on the new vnode to force reclamation/recycling */
5093 vnode_put (tvp);
5094 cp = NULL;
5095 *vpp = NULL;
5096 }
5097 else {
5098 /* insert item into name cache if it wasn't already inserted.*/
5099 if (nocache) {
5100 cache_enter (dvp, tvp, cnp);
5101 }
5102 }
5103
5104 #endif
5105 /*
5106 * If CONFIG_PROTECT is not enabled, then all items will get automatically added into
5107 * the namecache, as nocache will be set to 0.
5108 */
5109
5110 #if QUOTA
5111 /*
5112 * Once we create this vnode, we need to initialize its quota data
5113 * structures, if necessary. We know that it is OK to just go ahead and
5114 * initialize because we've already validated earlier (through the hfs_quotacheck
5115 * function) to see if creating this cnode/vnode would cause us to go over quota.
5116 */
5117 if (hfsmp->hfs_flags & HFS_QUOTAS) {
5118 (void) hfs_getinoquota(cp);
5119 }
5120 #endif
5121
5122 exit:
5123 cat_releasedesc(&out_desc);
5124
5125 /*
5126 * Make sure we release cnode lock on dcp.
5127 */
5128 if (dcp) {
5129 dcp->c_flag &= ~C_DIR_MODIFICATION;
5130 wakeup((caddr_t)&dcp->c_flag);
5131
5132 hfs_unlock(dcp);
5133 }
5134 if (error == 0 && cp != NULL) {
5135 hfs_unlock(cp);
5136 }
5137 if (started_tr) {
5138 hfs_end_transaction(hfsmp);
5139 started_tr = 0;
5140 }
5141
5142 return (error);
5143 }
5144
5145
5146 /*
5147 * hfs_vgetrsrc acquires a resource fork vnode corresponding to the cnode that is
5148 * found in 'vp'. The rsrc fork vnode is returned with the cnode locked and iocount
5149 * on the rsrc vnode.
5150 *
5151 * *rvpp is an output argument for returning the pointer to the resource fork vnode.
5152 * In most cases, the resource fork vnode will not be set if we return an error.
5153 * However, if error_on_unlinked is set, we may have already acquired the resource fork vnode
5154 * before we discover the error (the file has gone open-unlinked). In this case only,
5155 * we may return a vnode in the output argument despite an error.
5156 *
5157 * If can_drop_lock is set, then it is safe for this function to temporarily drop
5158 * and then re-acquire the cnode lock. We may need to do this, for example, in order to
5159 * acquire an iocount or promote our lock.
5160 *
5161 * error_on_unlinked is an argument which indicates that we are to return an error if we
5162 * discover that the cnode has gone into an open-unlinked state ( C_DELETED or C_NOEXISTS)
5163 * is set in the cnode flags. This is only necessary if can_drop_lock is true, otherwise
5164 * there's really no reason to double-check for errors on the cnode.
5165 */
5166
5167 int
5168 hfs_vgetrsrc(struct hfsmount *hfsmp, struct vnode *vp, struct vnode **rvpp,
5169 int can_drop_lock, int error_on_unlinked)
5170 {
5171 struct vnode *rvp;
5172 struct vnode *dvp = NULLVP;
5173 struct cnode *cp = VTOC(vp);
5174 int error;
5175 int vid;
5176 int delete_status = 0;
5177
5178 if (vnode_vtype(vp) == VDIR) {
5179 return EINVAL;
5180 }
5181
5182 /*
5183 * Need to check the status of the cnode to validate it hasn't gone
5184 * open-unlinked on us before we can actually do work with it.
5185 */
5186 delete_status = hfs_checkdeleted(cp);
5187 if ((delete_status) && (error_on_unlinked)) {
5188 return delete_status;
5189 }
5190
5191 restart:
5192 /* Attempt to use existing vnode */
5193 if ((rvp = cp->c_rsrc_vp)) {
5194 vid = vnode_vid(rvp);
5195
5196 /*
5197 * It is not safe to hold the cnode lock when calling vnode_getwithvid()
5198 * for the alternate fork -- vnode_getwithvid() could deadlock waiting
5199 * for a VL_WANTTERM while another thread has an iocount on the alternate
5200 * fork vnode and is attempting to acquire the common cnode lock.
5201 *
5202 * But it's also not safe to drop the cnode lock when we're holding
5203 * multiple cnode locks, like during a hfs_removefile() operation
5204 * since we could lock out of order when re-acquiring the cnode lock.
5205 *
5206 * So we can only drop the lock here if its safe to drop it -- which is
5207 * most of the time with the exception being hfs_removefile().
5208 */
5209 if (can_drop_lock)
5210 hfs_unlock(cp);
5211
5212 error = vnode_getwithvid(rvp, vid);
5213
5214 if (can_drop_lock) {
5215 (void) hfs_lock(cp, HFS_FORCE_LOCK);
5216
5217 /*
5218 * When we relinquished our cnode lock, the cnode could have raced
5219 * with a delete and gotten deleted. If the caller did not want
5220 * us to ignore open-unlinked files, then re-check the C_DELETED
5221 * state and see if we need to return an ENOENT here because the item
5222 * got deleted in the intervening time.
5223 */
5224 if (error_on_unlinked) {
5225 if ((delete_status = hfs_checkdeleted(cp))) {
5226 /*
5227 * If error == 0, this means that we succeeded in acquiring an iocount on the
5228 * rsrc fork vnode. However, if we're in this block of code, that means that we noticed
5229 * that the cnode has gone open-unlinked. In this case, the caller requested that we
5230 * not do any other work and return an errno. The caller will be responsible for
5231 * dropping the iocount we just acquired because we can't do it until we've released
5232 * the cnode lock.
5233 */
5234 if (error == 0) {
5235 *rvpp = rvp;
5236 }
5237 return delete_status;
5238 }
5239 }
5240
5241 /*
5242 * When our lock was relinquished, the resource fork
5243 * could have been recycled. Check for this and try
5244 * again.
5245 */
5246 if (error == ENOENT)
5247 goto restart;
5248 }
5249 if (error) {
5250 const char * name = (const char *)VTOC(vp)->c_desc.cd_nameptr;
5251
5252 if (name)
5253 printf("hfs_vgetrsrc: couldn't get resource"
5254 " fork for %s, err %d\n", name, error);
5255 return (error);
5256 }
5257 } else {
5258 struct cat_fork rsrcfork;
5259 struct componentname cn;
5260 struct cat_desc *descptr = NULL;
5261 struct cat_desc to_desc;
5262 char delname[32];
5263 int lockflags;
5264 int newvnode_flags = 0;
5265
5266 /*
5267 * Make sure cnode lock is exclusive, if not upgrade it.
5268 *
5269 * We assume that we were called from a read-only VNOP (getattr)
5270 * and that its safe to have the cnode lock dropped and reacquired.
5271 */
5272 if (cp->c_lockowner != current_thread()) {
5273 if (!can_drop_lock) {
5274 return (EINVAL);
5275 }
5276 /*
5277 * If the upgrade fails we lose the lock and
5278 * have to take the exclusive lock on our own.
5279 */
5280 if (lck_rw_lock_shared_to_exclusive(&cp->c_rwlock) == FALSE)
5281 lck_rw_lock_exclusive(&cp->c_rwlock);
5282 cp->c_lockowner = current_thread();
5283 }
5284
5285 /*
5286 * hfs_vgetsrc may be invoked for a cnode that has already been marked
5287 * C_DELETED. This is because we need to continue to provide rsrc
5288 * fork access to open-unlinked files. In this case, build a fake descriptor
5289 * like in hfs_removefile. If we don't do this, buildkey will fail in
5290 * cat_lookup because this cnode has no name in its descriptor. However,
5291 * only do this if the caller did not specify that they wanted us to
5292 * error out upon encountering open-unlinked files.
5293 */
5294
5295 if ((error_on_unlinked) && (can_drop_lock)) {
5296 if ((error = hfs_checkdeleted(cp))) {
5297 return error;
5298 }
5299 }
5300
5301 if ((cp->c_flag & C_DELETED ) && (cp->c_desc.cd_namelen == 0)) {
5302 bzero (&to_desc, sizeof(to_desc));
5303 bzero (delname, 32);
5304 MAKE_DELETED_NAME(delname, sizeof(delname), cp->c_fileid);
5305 to_desc.cd_nameptr = (const u_int8_t*) delname;
5306 to_desc.cd_namelen = strlen(delname);
5307 to_desc.cd_parentcnid = hfsmp->hfs_private_desc[FILE_HARDLINKS].cd_cnid;
5308 to_desc.cd_flags = 0;
5309 to_desc.cd_cnid = cp->c_cnid;
5310
5311 descptr = &to_desc;
5312 }
5313 else {
5314 descptr = &cp->c_desc;
5315 }
5316
5317
5318 lockflags = hfs_systemfile_lock(hfsmp, SFL_CATALOG, HFS_SHARED_LOCK);
5319
5320 /* Get resource fork data */
5321 error = cat_lookup(hfsmp, descptr, 1, (struct cat_desc *)0,
5322 (struct cat_attr *)0, &rsrcfork, NULL);
5323
5324 hfs_systemfile_unlock(hfsmp, lockflags);
5325 if (error) {
5326 return (error);
5327 }
5328 /*
5329 * Supply hfs_getnewvnode with a component name.
5330 */
5331 cn.cn_pnbuf = NULL;
5332 if (descptr->cd_nameptr) {
5333 MALLOC_ZONE(cn.cn_pnbuf, caddr_t, MAXPATHLEN, M_NAMEI, M_WAITOK);
5334 cn.cn_nameiop = LOOKUP;
5335 cn.cn_flags = ISLASTCN | HASBUF;
5336 cn.cn_context = NULL;
5337 cn.cn_pnlen = MAXPATHLEN;
5338 cn.cn_nameptr = cn.cn_pnbuf;
5339 cn.cn_hash = 0;
5340 cn.cn_consume = 0;
5341 cn.cn_namelen = snprintf(cn.cn_nameptr, MAXPATHLEN,
5342 "%s%s", descptr->cd_nameptr,
5343 _PATH_RSRCFORKSPEC);
5344 }
5345 dvp = vnode_getparent(vp);
5346 error = hfs_getnewvnode(hfsmp, dvp, cn.cn_pnbuf ? &cn : NULL,
5347 descptr, GNV_WANTRSRC | GNV_SKIPLOCK, &cp->c_attr,
5348 &rsrcfork, &rvp, &newvnode_flags);
5349 if (dvp)
5350 vnode_put(dvp);
5351 if (cn.cn_pnbuf)
5352 FREE_ZONE(cn.cn_pnbuf, cn.cn_pnlen, M_NAMEI);
5353 if (error)
5354 return (error);
5355 }
5356
5357 *rvpp = rvp;
5358 return (0);
5359 }
5360
5361 /*
5362 * Wrapper for special device reads
5363 */
5364 int
5365 hfsspec_read(ap)
5366 struct vnop_read_args /* {
5367 struct vnode *a_vp;
5368 struct uio *a_uio;
5369 int a_ioflag;
5370 vfs_context_t a_context;
5371 } */ *ap;
5372 {
5373 /*
5374 * Set access flag.
5375 */
5376 VTOC(ap->a_vp)->c_touch_acctime = TRUE;
5377 return (VOCALL (spec_vnodeop_p, VOFFSET(vnop_read), ap));
5378 }
5379
5380 /*
5381 * Wrapper for special device writes
5382 */
5383 int
5384 hfsspec_write(ap)
5385 struct vnop_write_args /* {
5386 struct vnode *a_vp;
5387 struct uio *a_uio;
5388 int a_ioflag;
5389 vfs_context_t a_context;
5390 } */ *ap;
5391 {
5392 /*
5393 * Set update and change flags.
5394 */
5395 VTOC(ap->a_vp)->c_touch_chgtime = TRUE;
5396 VTOC(ap->a_vp)->c_touch_modtime = TRUE;
5397 return (VOCALL (spec_vnodeop_p, VOFFSET(vnop_write), ap));
5398 }
5399
5400 /*
5401 * Wrapper for special device close
5402 *
5403 * Update the times on the cnode then do device close.
5404 */
5405 int
5406 hfsspec_close(ap)
5407 struct vnop_close_args /* {
5408 struct vnode *a_vp;
5409 int a_fflag;
5410 vfs_context_t a_context;
5411 } */ *ap;
5412 {
5413 struct vnode *vp = ap->a_vp;
5414 struct cnode *cp;
5415
5416 if (vnode_isinuse(ap->a_vp, 0)) {
5417 if (hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK) == 0) {
5418 cp = VTOC(vp);
5419 hfs_touchtimes(VTOHFS(vp), cp);
5420 hfs_unlock(cp);
5421 }
5422 }
5423 return (VOCALL (spec_vnodeop_p, VOFFSET(vnop_close), ap));
5424 }
5425
5426 #if FIFO
5427 /*
5428 * Wrapper for fifo reads
5429 */
5430 static int
5431 hfsfifo_read(ap)
5432 struct vnop_read_args /* {
5433 struct vnode *a_vp;
5434 struct uio *a_uio;
5435 int a_ioflag;
5436 vfs_context_t a_context;
5437 } */ *ap;
5438 {
5439 /*
5440 * Set access flag.
5441 */
5442 VTOC(ap->a_vp)->c_touch_acctime = TRUE;
5443 return (VOCALL (fifo_vnodeop_p, VOFFSET(vnop_read), ap));
5444 }
5445
5446 /*
5447 * Wrapper for fifo writes
5448 */
5449 static int
5450 hfsfifo_write(ap)
5451 struct vnop_write_args /* {
5452 struct vnode *a_vp;
5453 struct uio *a_uio;
5454 int a_ioflag;
5455 vfs_context_t a_context;
5456 } */ *ap;
5457 {
5458 /*
5459 * Set update and change flags.
5460 */
5461 VTOC(ap->a_vp)->c_touch_chgtime = TRUE;
5462 VTOC(ap->a_vp)->c_touch_modtime = TRUE;
5463 return (VOCALL (fifo_vnodeop_p, VOFFSET(vnop_write), ap));
5464 }
5465
5466 /*
5467 * Wrapper for fifo close
5468 *
5469 * Update the times on the cnode then do device close.
5470 */
5471 static int
5472 hfsfifo_close(ap)
5473 struct vnop_close_args /* {
5474 struct vnode *a_vp;
5475 int a_fflag;
5476 vfs_context_t a_context;
5477 } */ *ap;
5478 {
5479 struct vnode *vp = ap->a_vp;
5480 struct cnode *cp;
5481
5482 if (vnode_isinuse(ap->a_vp, 1)) {
5483 if (hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK) == 0) {
5484 cp = VTOC(vp);
5485 hfs_touchtimes(VTOHFS(vp), cp);
5486 hfs_unlock(cp);
5487 }
5488 }
5489 return (VOCALL (fifo_vnodeop_p, VOFFSET(vnop_close), ap));
5490 }
5491
5492
5493 #endif /* FIFO */
5494
5495 /*
5496 * Synchronize a file's in-core state with that on disk.
5497 */
5498 int
5499 hfs_vnop_fsync(ap)
5500 struct vnop_fsync_args /* {
5501 struct vnode *a_vp;
5502 int a_waitfor;
5503 vfs_context_t a_context;
5504 } */ *ap;
5505 {
5506 struct vnode* vp = ap->a_vp;
5507 int error;
5508
5509 /* Note: We check hfs flags instead of vfs mount flag because during
5510 * read-write update, hfs marks itself read-write much earlier than
5511 * the vfs, and hence won't result in skipping of certain writes like
5512 * zero'ing out of unused nodes, creation of hotfiles btree, etc.
5513 */
5514 if (VTOHFS(vp)->hfs_flags & HFS_READ_ONLY) {
5515 return 0;
5516 }
5517
5518 #if CONFIG_PROTECT
5519 if ((error = cp_handle_vnop(VTOC(vp), CP_WRITE_ACCESS)) != 0) {
5520 return (error);
5521 }
5522 #endif /* CONFIG_PROTECT */
5523
5524 /*
5525 * We need to allow ENOENT lock errors since unlink
5526 * systenm call can call VNOP_FSYNC during vclean.
5527 */
5528 error = hfs_lock(VTOC(vp), HFS_EXCLUSIVE_LOCK);
5529 if (error)
5530 return (0);
5531
5532 error = hfs_fsync(vp, ap->a_waitfor, 0, vfs_context_proc(ap->a_context));
5533
5534 hfs_unlock(VTOC(vp));
5535 return (error);
5536 }
5537
5538
5539 int
5540 hfs_vnop_whiteout(ap)
5541 struct vnop_whiteout_args /* {
5542 struct vnode *a_dvp;
5543 struct componentname *a_cnp;
5544 int a_flags;
5545 vfs_context_t a_context;
5546 } */ *ap;
5547 {
5548 int error = 0;
5549 struct vnode *vp = NULL;
5550 struct vnode_attr va;
5551 struct vnop_lookup_args lookup_args;
5552 struct vnop_remove_args remove_args;
5553 struct hfsmount *hfsmp;
5554
5555 hfsmp = VTOHFS(ap->a_dvp);
5556 if (hfsmp->hfs_flags & HFS_STANDARD) {
5557 error = ENOTSUP;
5558 goto exit;
5559 }
5560
5561 switch (ap->a_flags) {
5562 case LOOKUP:
5563 error = 0;
5564 break;
5565
5566 case CREATE:
5567 VATTR_INIT(&va);
5568 VATTR_SET(&va, va_type, VREG);
5569 VATTR_SET(&va, va_mode, S_IFWHT);
5570 VATTR_SET(&va, va_uid, 0);
5571 VATTR_SET(&va, va_gid, 0);
5572
5573 error = hfs_makenode(ap->a_dvp, &vp, ap->a_cnp, &va, ap->a_context);
5574 /* No need to release the vnode as no vnode is created for whiteouts */
5575 break;
5576
5577 case DELETE:
5578 lookup_args.a_dvp = ap->a_dvp;
5579 lookup_args.a_vpp = &vp;
5580 lookup_args.a_cnp = ap->a_cnp;
5581 lookup_args.a_context = ap->a_context;
5582
5583 error = hfs_vnop_lookup(&lookup_args);
5584 if (error) {
5585 break;
5586 }
5587
5588 remove_args.a_dvp = ap->a_dvp;
5589 remove_args.a_vp = vp;
5590 remove_args.a_cnp = ap->a_cnp;
5591 remove_args.a_flags = 0;
5592 remove_args.a_context = ap->a_context;
5593
5594 error = hfs_vnop_remove(&remove_args);
5595 vnode_put(vp);
5596 break;
5597
5598 default:
5599 panic("hfs_vnop_whiteout: unknown operation (flag = %x)\n", ap->a_flags);
5600 };
5601
5602 exit:
5603 return (error);
5604 }
5605
5606 int (**hfs_vnodeop_p)(void *);
5607 int (**hfs_std_vnodeop_p) (void *);
5608
5609 #define VOPFUNC int (*)(void *)
5610
5611 static int hfs_readonly_op (__unused void* ap) { return (EROFS); }
5612
5613 /*
5614 * In 10.6 and forward, HFS Standard is read-only and deprecated. The vnop table below
5615 * is for use with HFS standard to block out operations that would modify the file system
5616 */
5617
5618 struct vnodeopv_entry_desc hfs_standard_vnodeop_entries[] = {
5619 { &vnop_default_desc, (VOPFUNC)vn_default_error },
5620 { &vnop_lookup_desc, (VOPFUNC)hfs_vnop_lookup }, /* lookup */
5621 { &vnop_create_desc, (VOPFUNC)hfs_readonly_op }, /* create (READONLY) */
5622 { &vnop_mknod_desc, (VOPFUNC)hfs_readonly_op }, /* mknod (READONLY) */
5623 { &vnop_open_desc, (VOPFUNC)hfs_vnop_open }, /* open */
5624 { &vnop_close_desc, (VOPFUNC)hfs_vnop_close }, /* close */
5625 { &vnop_getattr_desc, (VOPFUNC)hfs_vnop_getattr }, /* getattr */
5626 { &vnop_setattr_desc, (VOPFUNC)hfs_readonly_op }, /* setattr */
5627 { &vnop_read_desc, (VOPFUNC)hfs_vnop_read }, /* read */
5628 { &vnop_write_desc, (VOPFUNC)hfs_readonly_op }, /* write (READONLY) */
5629 { &vnop_ioctl_desc, (VOPFUNC)hfs_vnop_ioctl }, /* ioctl */
5630 { &vnop_select_desc, (VOPFUNC)hfs_vnop_select }, /* select */
5631 { &vnop_revoke_desc, (VOPFUNC)nop_revoke }, /* revoke */
5632 { &vnop_exchange_desc, (VOPFUNC)hfs_readonly_op }, /* exchange (READONLY)*/
5633 { &vnop_mmap_desc, (VOPFUNC)err_mmap }, /* mmap */
5634 { &vnop_fsync_desc, (VOPFUNC)hfs_readonly_op}, /* fsync (READONLY) */
5635 { &vnop_remove_desc, (VOPFUNC)hfs_readonly_op }, /* remove (READONLY) */
5636 { &vnop_link_desc, (VOPFUNC)hfs_readonly_op }, /* link ( READONLLY) */
5637 { &vnop_rename_desc, (VOPFUNC)hfs_readonly_op }, /* rename (READONLY)*/
5638 { &vnop_mkdir_desc, (VOPFUNC)hfs_readonly_op }, /* mkdir (READONLY) */
5639 { &vnop_rmdir_desc, (VOPFUNC)hfs_readonly_op }, /* rmdir (READONLY) */
5640 { &vnop_symlink_desc, (VOPFUNC)hfs_readonly_op }, /* symlink (READONLY) */
5641 { &vnop_readdir_desc, (VOPFUNC)hfs_vnop_readdir }, /* readdir */
5642 { &vnop_readdirattr_desc, (VOPFUNC)hfs_vnop_readdirattr }, /* readdirattr */
5643 { &vnop_readlink_desc, (VOPFUNC)hfs_vnop_readlink }, /* readlink */
5644 { &vnop_inactive_desc, (VOPFUNC)hfs_vnop_inactive }, /* inactive */
5645 { &vnop_reclaim_desc, (VOPFUNC)hfs_vnop_reclaim }, /* reclaim */
5646 { &vnop_strategy_desc, (VOPFUNC)hfs_vnop_strategy }, /* strategy */
5647 { &vnop_pathconf_desc, (VOPFUNC)hfs_vnop_pathconf }, /* pathconf */
5648 { &vnop_advlock_desc, (VOPFUNC)err_advlock }, /* advlock */
5649 { &vnop_allocate_desc, (VOPFUNC)hfs_readonly_op }, /* allocate (READONLY) */
5650 { &vnop_searchfs_desc, (VOPFUNC)hfs_vnop_search }, /* search fs */
5651 { &vnop_bwrite_desc, (VOPFUNC)hfs_readonly_op }, /* bwrite (READONLY) */
5652 { &vnop_pagein_desc, (VOPFUNC)hfs_vnop_pagein }, /* pagein */
5653 { &vnop_pageout_desc,(VOPFUNC) hfs_readonly_op }, /* pageout (READONLY) */
5654 { &vnop_copyfile_desc, (VOPFUNC)hfs_readonly_op }, /* copyfile (READONLY)*/
5655 { &vnop_blktooff_desc, (VOPFUNC)hfs_vnop_blktooff }, /* blktooff */
5656 { &vnop_offtoblk_desc, (VOPFUNC)hfs_vnop_offtoblk }, /* offtoblk */
5657 { &vnop_blockmap_desc, (VOPFUNC)hfs_vnop_blockmap }, /* blockmap */
5658 { &vnop_getxattr_desc, (VOPFUNC)hfs_vnop_getxattr},
5659 { &vnop_setxattr_desc, (VOPFUNC)hfs_readonly_op}, /* set xattr (READONLY) */
5660 { &vnop_removexattr_desc, (VOPFUNC)hfs_readonly_op}, /* remove xattr (READONLY) */
5661 { &vnop_listxattr_desc, (VOPFUNC)hfs_vnop_listxattr},
5662 { &vnop_whiteout_desc, (VOPFUNC)hfs_readonly_op}, /* whiteout (READONLY) */
5663 #if NAMEDSTREAMS
5664 { &vnop_getnamedstream_desc, (VOPFUNC)hfs_vnop_getnamedstream },
5665 { &vnop_makenamedstream_desc, (VOPFUNC)hfs_readonly_op },
5666 { &vnop_removenamedstream_desc, (VOPFUNC)hfs_readonly_op },
5667 #endif
5668 { NULL, (VOPFUNC)NULL }
5669 };
5670
5671 struct vnodeopv_desc hfs_std_vnodeop_opv_desc =
5672 { &hfs_std_vnodeop_p, hfs_standard_vnodeop_entries };
5673
5674
5675 /* VNOP table for HFS+ */
5676 struct vnodeopv_entry_desc hfs_vnodeop_entries[] = {
5677 { &vnop_default_desc, (VOPFUNC)vn_default_error },
5678 { &vnop_lookup_desc, (VOPFUNC)hfs_vnop_lookup }, /* lookup */
5679 { &vnop_create_desc, (VOPFUNC)hfs_vnop_create }, /* create */
5680 { &vnop_mknod_desc, (VOPFUNC)hfs_vnop_mknod }, /* mknod */
5681 { &vnop_open_desc, (VOPFUNC)hfs_vnop_open }, /* open */
5682 { &vnop_close_desc, (VOPFUNC)hfs_vnop_close }, /* close */
5683 { &vnop_getattr_desc, (VOPFUNC)hfs_vnop_getattr }, /* getattr */
5684 { &vnop_setattr_desc, (VOPFUNC)hfs_vnop_setattr }, /* setattr */
5685 { &vnop_read_desc, (VOPFUNC)hfs_vnop_read }, /* read */
5686 { &vnop_write_desc, (VOPFUNC)hfs_vnop_write }, /* write */
5687 { &vnop_ioctl_desc, (VOPFUNC)hfs_vnop_ioctl }, /* ioctl */
5688 { &vnop_select_desc, (VOPFUNC)hfs_vnop_select }, /* select */
5689 { &vnop_revoke_desc, (VOPFUNC)nop_revoke }, /* revoke */
5690 { &vnop_exchange_desc, (VOPFUNC)hfs_vnop_exchange }, /* exchange */
5691 { &vnop_mmap_desc, (VOPFUNC)hfs_vnop_mmap }, /* mmap */
5692 { &vnop_fsync_desc, (VOPFUNC)hfs_vnop_fsync }, /* fsync */
5693 { &vnop_remove_desc, (VOPFUNC)hfs_vnop_remove }, /* remove */
5694 { &vnop_link_desc, (VOPFUNC)hfs_vnop_link }, /* link */
5695 { &vnop_rename_desc, (VOPFUNC)hfs_vnop_rename }, /* rename */
5696 { &vnop_mkdir_desc, (VOPFUNC)hfs_vnop_mkdir }, /* mkdir */
5697 { &vnop_rmdir_desc, (VOPFUNC)hfs_vnop_rmdir }, /* rmdir */
5698 { &vnop_symlink_desc, (VOPFUNC)hfs_vnop_symlink }, /* symlink */
5699 { &vnop_readdir_desc, (VOPFUNC)hfs_vnop_readdir }, /* readdir */
5700 { &vnop_readdirattr_desc, (VOPFUNC)hfs_vnop_readdirattr }, /* readdirattr */
5701 { &vnop_readlink_desc, (VOPFUNC)hfs_vnop_readlink }, /* readlink */
5702 { &vnop_inactive_desc, (VOPFUNC)hfs_vnop_inactive }, /* inactive */
5703 { &vnop_reclaim_desc, (VOPFUNC)hfs_vnop_reclaim }, /* reclaim */
5704 { &vnop_strategy_desc, (VOPFUNC)hfs_vnop_strategy }, /* strategy */
5705 { &vnop_pathconf_desc, (VOPFUNC)hfs_vnop_pathconf }, /* pathconf */
5706 { &vnop_advlock_desc, (VOPFUNC)err_advlock }, /* advlock */
5707 { &vnop_allocate_desc, (VOPFUNC)hfs_vnop_allocate }, /* allocate */
5708 { &vnop_searchfs_desc, (VOPFUNC)hfs_vnop_search }, /* search fs */
5709 { &vnop_bwrite_desc, (VOPFUNC)hfs_vnop_bwrite }, /* bwrite */
5710 { &vnop_pagein_desc, (VOPFUNC)hfs_vnop_pagein }, /* pagein */
5711 { &vnop_pageout_desc,(VOPFUNC) hfs_vnop_pageout }, /* pageout */
5712 { &vnop_copyfile_desc, (VOPFUNC)err_copyfile }, /* copyfile */
5713 { &vnop_blktooff_desc, (VOPFUNC)hfs_vnop_blktooff }, /* blktooff */
5714 { &vnop_offtoblk_desc, (VOPFUNC)hfs_vnop_offtoblk }, /* offtoblk */
5715 { &vnop_blockmap_desc, (VOPFUNC)hfs_vnop_blockmap }, /* blockmap */
5716 { &vnop_getxattr_desc, (VOPFUNC)hfs_vnop_getxattr},
5717 { &vnop_setxattr_desc, (VOPFUNC)hfs_vnop_setxattr},
5718 { &vnop_removexattr_desc, (VOPFUNC)hfs_vnop_removexattr},
5719 { &vnop_listxattr_desc, (VOPFUNC)hfs_vnop_listxattr},
5720 { &vnop_whiteout_desc, (VOPFUNC)hfs_vnop_whiteout},
5721 #if NAMEDSTREAMS
5722 { &vnop_getnamedstream_desc, (VOPFUNC)hfs_vnop_getnamedstream },
5723 { &vnop_makenamedstream_desc, (VOPFUNC)hfs_vnop_makenamedstream },
5724 { &vnop_removenamedstream_desc, (VOPFUNC)hfs_vnop_removenamedstream },
5725 #endif
5726 { NULL, (VOPFUNC)NULL }
5727 };
5728
5729 struct vnodeopv_desc hfs_vnodeop_opv_desc =
5730 { &hfs_vnodeop_p, hfs_vnodeop_entries };
5731
5732
5733 /* Spec Op vnop table for HFS+ */
5734 int (**hfs_specop_p)(void *);
5735 struct vnodeopv_entry_desc hfs_specop_entries[] = {
5736 { &vnop_default_desc, (VOPFUNC)vn_default_error },
5737 { &vnop_lookup_desc, (VOPFUNC)spec_lookup }, /* lookup */
5738 { &vnop_create_desc, (VOPFUNC)spec_create }, /* create */
5739 { &vnop_mknod_desc, (VOPFUNC)spec_mknod }, /* mknod */
5740 { &vnop_open_desc, (VOPFUNC)spec_open }, /* open */
5741 { &vnop_close_desc, (VOPFUNC)hfsspec_close }, /* close */
5742 { &vnop_getattr_desc, (VOPFUNC)hfs_vnop_getattr }, /* getattr */
5743 { &vnop_setattr_desc, (VOPFUNC)hfs_vnop_setattr }, /* setattr */
5744 { &vnop_read_desc, (VOPFUNC)hfsspec_read }, /* read */
5745 { &vnop_write_desc, (VOPFUNC)hfsspec_write }, /* write */
5746 { &vnop_ioctl_desc, (VOPFUNC)spec_ioctl }, /* ioctl */
5747 { &vnop_select_desc, (VOPFUNC)spec_select }, /* select */
5748 { &vnop_revoke_desc, (VOPFUNC)spec_revoke }, /* revoke */
5749 { &vnop_mmap_desc, (VOPFUNC)spec_mmap }, /* mmap */
5750 { &vnop_fsync_desc, (VOPFUNC)hfs_vnop_fsync }, /* fsync */
5751 { &vnop_remove_desc, (VOPFUNC)spec_remove }, /* remove */
5752 { &vnop_link_desc, (VOPFUNC)spec_link }, /* link */
5753 { &vnop_rename_desc, (VOPFUNC)spec_rename }, /* rename */
5754 { &vnop_mkdir_desc, (VOPFUNC)spec_mkdir }, /* mkdir */
5755 { &vnop_rmdir_desc, (VOPFUNC)spec_rmdir }, /* rmdir */
5756 { &vnop_symlink_desc, (VOPFUNC)spec_symlink }, /* symlink */
5757 { &vnop_readdir_desc, (VOPFUNC)spec_readdir }, /* readdir */
5758 { &vnop_readlink_desc, (VOPFUNC)spec_readlink }, /* readlink */
5759 { &vnop_inactive_desc, (VOPFUNC)hfs_vnop_inactive }, /* inactive */
5760 { &vnop_reclaim_desc, (VOPFUNC)hfs_vnop_reclaim }, /* reclaim */
5761 { &vnop_strategy_desc, (VOPFUNC)spec_strategy }, /* strategy */
5762 { &vnop_pathconf_desc, (VOPFUNC)spec_pathconf }, /* pathconf */
5763 { &vnop_advlock_desc, (VOPFUNC)err_advlock }, /* advlock */
5764 { &vnop_bwrite_desc, (VOPFUNC)hfs_vnop_bwrite },
5765 { &vnop_pagein_desc, (VOPFUNC)hfs_vnop_pagein }, /* Pagein */
5766 { &vnop_pageout_desc, (VOPFUNC)hfs_vnop_pageout }, /* Pageout */
5767 { &vnop_copyfile_desc, (VOPFUNC)err_copyfile }, /* copyfile */
5768 { &vnop_blktooff_desc, (VOPFUNC)hfs_vnop_blktooff }, /* blktooff */
5769 { &vnop_offtoblk_desc, (VOPFUNC)hfs_vnop_offtoblk }, /* offtoblk */
5770 { (struct vnodeop_desc*)NULL, (VOPFUNC)NULL }
5771 };
5772 struct vnodeopv_desc hfs_specop_opv_desc =
5773 { &hfs_specop_p, hfs_specop_entries };
5774
5775 #if FIFO
5776 /* HFS+ FIFO VNOP table */
5777 int (**hfs_fifoop_p)(void *);
5778 struct vnodeopv_entry_desc hfs_fifoop_entries[] = {
5779 { &vnop_default_desc, (VOPFUNC)vn_default_error },
5780 { &vnop_lookup_desc, (VOPFUNC)fifo_lookup }, /* lookup */
5781 { &vnop_create_desc, (VOPFUNC)fifo_create }, /* create */
5782 { &vnop_mknod_desc, (VOPFUNC)fifo_mknod }, /* mknod */
5783 { &vnop_open_desc, (VOPFUNC)fifo_open }, /* open */
5784 { &vnop_close_desc, (VOPFUNC)hfsfifo_close }, /* close */
5785 { &vnop_getattr_desc, (VOPFUNC)hfs_vnop_getattr }, /* getattr */
5786 { &vnop_setattr_desc, (VOPFUNC)hfs_vnop_setattr }, /* setattr */
5787 { &vnop_read_desc, (VOPFUNC)hfsfifo_read }, /* read */
5788 { &vnop_write_desc, (VOPFUNC)hfsfifo_write }, /* write */
5789 { &vnop_ioctl_desc, (VOPFUNC)fifo_ioctl }, /* ioctl */
5790 { &vnop_select_desc, (VOPFUNC)fifo_select }, /* select */
5791 { &vnop_revoke_desc, (VOPFUNC)fifo_revoke }, /* revoke */
5792 { &vnop_mmap_desc, (VOPFUNC)fifo_mmap }, /* mmap */
5793 { &vnop_fsync_desc, (VOPFUNC)hfs_vnop_fsync }, /* fsync */
5794 { &vnop_remove_desc, (VOPFUNC)fifo_remove }, /* remove */
5795 { &vnop_link_desc, (VOPFUNC)fifo_link }, /* link */
5796 { &vnop_rename_desc, (VOPFUNC)fifo_rename }, /* rename */
5797 { &vnop_mkdir_desc, (VOPFUNC)fifo_mkdir }, /* mkdir */
5798 { &vnop_rmdir_desc, (VOPFUNC)fifo_rmdir }, /* rmdir */
5799 { &vnop_symlink_desc, (VOPFUNC)fifo_symlink }, /* symlink */
5800 { &vnop_readdir_desc, (VOPFUNC)fifo_readdir }, /* readdir */
5801 { &vnop_readlink_desc, (VOPFUNC)fifo_readlink }, /* readlink */
5802 { &vnop_inactive_desc, (VOPFUNC)hfs_vnop_inactive }, /* inactive */
5803 { &vnop_reclaim_desc, (VOPFUNC)hfs_vnop_reclaim }, /* reclaim */
5804 { &vnop_strategy_desc, (VOPFUNC)fifo_strategy }, /* strategy */
5805 { &vnop_pathconf_desc, (VOPFUNC)fifo_pathconf }, /* pathconf */
5806 { &vnop_advlock_desc, (VOPFUNC)err_advlock }, /* advlock */
5807 { &vnop_bwrite_desc, (VOPFUNC)hfs_vnop_bwrite },
5808 { &vnop_pagein_desc, (VOPFUNC)hfs_vnop_pagein }, /* Pagein */
5809 { &vnop_pageout_desc, (VOPFUNC)hfs_vnop_pageout }, /* Pageout */
5810 { &vnop_copyfile_desc, (VOPFUNC)err_copyfile }, /* copyfile */
5811 { &vnop_blktooff_desc, (VOPFUNC)hfs_vnop_blktooff }, /* blktooff */
5812 { &vnop_offtoblk_desc, (VOPFUNC)hfs_vnop_offtoblk }, /* offtoblk */
5813 { &vnop_blockmap_desc, (VOPFUNC)hfs_vnop_blockmap }, /* blockmap */
5814 { (struct vnodeop_desc*)NULL, (VOPFUNC)NULL }
5815 };
5816 struct vnodeopv_desc hfs_fifoop_opv_desc =
5817 { &hfs_fifoop_p, hfs_fifoop_entries };
5818 #endif /* FIFO */
5819
5820
5821