]> git.saurik.com Git - apple/xnu.git/blob - osfmk/ppc/vmachmon.c
xnu-1486.2.11.tar.gz
[apple/xnu.git] / osfmk / ppc / vmachmon.c
1 /*
2 * Copyright (c) 2000-2006 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*-----------------------------------------------------------------------
29 ** vmachmon.c
30 **
31 ** C routines that we are adding to the MacOS X kernel.
32 **
33 -----------------------------------------------------------------------*/
34
35 #include <mach/mach_types.h>
36 #include <mach/kern_return.h>
37 #include <mach/host_info.h>
38 #include <kern/kern_types.h>
39 #include <kern/kalloc.h>
40 #include <kern/host.h>
41 #include <kern/task.h>
42 #include <kern/thread.h>
43 #include <ppc/exception.h>
44 #include <ppc/mappings.h>
45 #include <ppc/thread.h>
46 #include <ppc/savearea.h>
47 #include <ppc/misc_protos.h>
48 #include <ppc/fpu_protos.h>
49 #include <vm/vm_kern.h>
50 #include <vm/vm_fault.h>
51
52 #include <ppc/vmachmon.h>
53 #include <ppc/lowglobals.h>
54
55 extern double FloatInit;
56 extern unsigned long QNaNbarbarian[4];
57
58 /*************************************************************************************
59 Virtual Machine Monitor Internal Routines
60 **************************************************************************************/
61
62 /*-----------------------------------------------------------------------
63 ** vmm_get_entry
64 **
65 ** This function verifies and return a vmm context entry index
66 **
67 ** Inputs:
68 ** act - pointer to current thread activation
69 ** index - index into vmm control table (this is a "one based" value)
70 **
71 ** Outputs:
72 ** address of a vmmCntrlEntry or 0 if not found
73 -----------------------------------------------------------------------*/
74
75 static vmmCntrlEntry *vmm_get_entry(
76 thread_t act,
77 vmm_thread_index_t index)
78 {
79 vmmCntrlTable *CTable;
80 vmmCntrlEntry *CEntry;
81
82 index = index & vmmTInum; /* Clean up the index */
83
84 if (act->machine.vmmControl == 0) return NULL; /* No control table means no vmm */
85 if ((index - 1) >= kVmmMaxContexts) return NULL; /* Index not in range */
86
87 CTable = act->machine.vmmControl; /* Make the address a bit more convienient */
88 CEntry = &CTable->vmmc[index - 1]; /* Point to the entry */
89
90 if (!(CEntry->vmmFlags & vmmInUse)) return NULL; /* See if the slot is actually in use */
91
92 return CEntry;
93 }
94
95 /*-----------------------------------------------------------------------
96 ** vmm_get_adsp
97 **
98 ** This function verifies and returns the pmap for an address space.
99 ** If there is none and the request is valid, a pmap will be created.
100 **
101 ** Inputs:
102 ** act - pointer to current thread activation
103 ** index - index into vmm control table (this is a "one based" value)
104 **
105 ** Outputs:
106 ** address of a pmap or 0 if not found or could no be created
107 ** Note that if there is no pmap for the address space it will be created.
108 -----------------------------------------------------------------------*/
109
110 static pmap_t vmm_get_adsp(thread_t act, vmm_thread_index_t index)
111 {
112 pmap_t pmap;
113
114 if (act->machine.vmmControl == 0) return NULL; /* No control table means no vmm */
115 if ((index - 1) >= kVmmMaxContexts) return NULL; /* Index not in range */
116
117 pmap = act->machine.vmmControl->vmmAdsp[index - 1]; /* Get the pmap */
118 return (pmap); /* and return it. */
119 }
120
121 /*-----------------------------------------------------------------------
122 ** vmm_build_shadow_hash
123 **
124 ** Allocate and initialize a shadow hash table.
125 **
126 ** This function assumes that PAGE_SIZE is 4k-bytes.
127 **
128 -----------------------------------------------------------------------*/
129 static pmap_vmm_ext *vmm_build_shadow_hash(pmap_t pmap)
130 {
131 pmap_vmm_ext *ext; /* VMM pmap extension we're building */
132 ppnum_t extPP; /* VMM pmap extension physical page number */
133 kern_return_t ret; /* Return code from various calls */
134 uint32_t pages = GV_HPAGES; /* Number of pages in the hash table */
135 vm_offset_t free = VMX_HPIDX_OFFSET; /* Offset into extension page of free area (128-byte aligned) */
136 uint32_t freeSize = PAGE_SIZE - free; /* Number of free bytes in the extension page */
137 uint32_t idx;
138
139 if ((pages * sizeof(addr64_t)) + (pages * sizeof(vm_offset_t)) > freeSize) {
140 panic("vmm_build_shadow_hash: too little pmap_vmm_ext free space\n");
141 }
142
143 ret = kmem_alloc_kobject(kernel_map, (vm_offset_t *)&ext, PAGE_SIZE);
144 /* Allocate a page-sized extension block */
145 if (ret != KERN_SUCCESS) return (NULL); /* Return NULL for failed allocate */
146 bzero((char *)ext, PAGE_SIZE); /* Zero the entire extension block page */
147
148 extPP = pmap_find_phys(kernel_pmap, (vm_offset_t)ext);
149 /* Get extension block's physical page number */
150 if (!extPP) { /* This should not fail, but then again... */
151 panic("vmm_build_shadow_hash: could not translate pmap_vmm_ext vaddr %p\n", ext);
152 }
153
154 ext->vmxSalt = (addr64_t)(vm_offset_t)ext ^ ptoa_64(extPP);
155 /* Set effective<->physical conversion salt */
156 ext->vmxHostPmapPhys = (addr64_t)(vm_offset_t)pmap ^ pmap->pmapvr;
157 /* Set host pmap's physical address */
158 ext->vmxHostPmap = pmap; /* Set host pmap's effective address */
159 ext->vmxHashPgIdx = (addr64_t *)((vm_offset_t)ext + VMX_HPIDX_OFFSET);
160 /* Allocate physical index */
161 ext->vmxHashPgList = (vm_offset_t *)((vm_offset_t)ext + VMX_HPLIST_OFFSET);
162 /* Allocate page list */
163 ext->vmxActiveBitmap = (vm_offset_t *)((vm_offset_t)ext + VMX_ACTMAP_OFFSET);
164 /* Allocate active mapping bitmap */
165
166 /* The hash table is typically larger than a single page, but we don't require it to be in a
167 contiguous virtual or physical chunk. So, we allocate it page by page, noting the effective and
168 physical address of each page in vmxHashPgList and vmxHashPgIdx, respectively. */
169 for (idx = 0; idx < pages; idx++) {
170 mapping_t *map;
171 uint32_t mapIdx;
172 ret = kmem_alloc_kobject(kernel_map, &ext->vmxHashPgList[idx], PAGE_SIZE);
173 /* Allocate a hash-table page */
174 if (ret != KERN_SUCCESS) goto fail; /* Allocation failed, exit through cleanup */
175 bzero((char *)ext->vmxHashPgList[idx], PAGE_SIZE); /* Zero the page */
176 ext->vmxHashPgIdx[idx] = ptoa_64(pmap_find_phys(kernel_pmap, (addr64_t)ext->vmxHashPgList[idx]));
177 /* Put page's physical address into index */
178 if (!ext->vmxHashPgIdx[idx]) { /* Hash-table page's LRA failed */
179 panic("vmm_build_shadow_hash: could not translate hash-table vaddr %08X\n", ext->vmxHashPgList[idx]);
180 }
181 map = (mapping_t *)ext->vmxHashPgList[idx];
182 for (mapIdx = 0; mapIdx < GV_SLTS_PPG; mapIdx++) { /* Iterate over mappings in this page */
183 map->mpFlags = (mpGuest | mpgFree); /* Mark guest type and free */
184 map = (mapping_t *)((char *)map + GV_SLOT_SZ); /* Next slot-sized mapping */
185 }
186 }
187
188 return (ext); /* Return newly-minted VMM pmap extension */
189
190 fail:
191 for (idx = 0; idx < pages; idx++) { /* De-allocate any pages we managed to allocate */
192 if (ext->vmxHashPgList[idx]) {
193 kmem_free(kernel_map, ext->vmxHashPgList[idx], PAGE_SIZE);
194 }
195 }
196 kmem_free(kernel_map, (vm_offset_t)ext, PAGE_SIZE); /* Release the VMM pmap extension page */
197 return (NULL); /* Return NULL for failure */
198 }
199
200
201 /*-----------------------------------------------------------------------
202 ** vmm_release_shadow_hash
203 **
204 ** Release shadow hash table and VMM extension block
205 **
206 -----------------------------------------------------------------------*/
207 static void vmm_release_shadow_hash(pmap_vmm_ext *ext)
208 {
209 uint32_t idx;
210
211 for (idx = 0; idx < GV_HPAGES; idx++) { /* Release the hash table page by page */
212 kmem_free(kernel_map, ext->vmxHashPgList[idx], PAGE_SIZE);
213 }
214
215 kmem_free(kernel_map, (vm_offset_t)ext, PAGE_SIZE); /* Release the VMM pmap extension page */
216 }
217
218 /*-----------------------------------------------------------------------
219 ** vmm_activate_gsa
220 **
221 ** Activate guest shadow assist
222 **
223 -----------------------------------------------------------------------*/
224 static kern_return_t vmm_activate_gsa(
225 thread_t act,
226 vmm_thread_index_t index)
227 {
228 vmmCntrlTable *CTable = act->machine.vmmControl; /* Get VMM control table */
229 vmmCntrlEntry *CEntry;
230 pmap_t hpmap;
231 pmap_t gpmap;
232 if (!CTable) { /* Caller guarantees that this will work */
233 panic("vmm_activate_gsa: VMM control table not present; act = %p, idx = %lu\n",
234 act, index);
235 return KERN_FAILURE;
236 }
237 CEntry = vmm_get_entry(act, index); /* Get context from index */
238 if (!CEntry) { /* Caller guarantees that this will work */
239 panic("vmm_activate_gsa: Unexpected failure of vmm_get_entry; act = %p, idx = %lu\n",
240 act, index);
241 return KERN_FAILURE;
242 }
243
244 hpmap = act->map->pmap; /* Get host pmap */
245 gpmap = vmm_get_adsp(act, index); /* Get guest pmap */
246 if (!gpmap) { /* Caller guarantees that this will work */
247 panic("vmm_activate_gsa: Unexpected failure of vmm_get_adsp; act = %p, idx = %lu\n",
248 act, index);
249 return KERN_FAILURE;
250 }
251
252 if (!hpmap->pmapVmmExt) { /* If there's no VMM extension for this host, create one */
253 hpmap->pmapVmmExt = vmm_build_shadow_hash(hpmap); /* Build VMM extension plus shadow hash and attach */
254 if (hpmap->pmapVmmExt) { /* See if we succeeded */
255 hpmap->pmapVmmExtPhys = (addr64_t)(vm_offset_t)hpmap->pmapVmmExt ^ hpmap->pmapVmmExt->vmxSalt;
256 /* Get VMM extensions block physical address */
257 } else {
258 return KERN_RESOURCE_SHORTAGE; /* Not enough mojo to go */
259 }
260 }
261 gpmap->pmapVmmExt = hpmap->pmapVmmExt; /* Copy VMM extension block virtual address into guest */
262 gpmap->pmapVmmExtPhys = hpmap->pmapVmmExtPhys; /* and its physical address, too */
263 gpmap->pmapFlags |= pmapVMgsaa; /* Enable GSA for this guest */
264 CEntry->vmmXAFlgs |= vmmGSA; /* Show GSA active here, too */
265
266 return KERN_SUCCESS;
267 }
268
269
270 /*-----------------------------------------------------------------------
271 ** vmm_deactivate_gsa
272 **
273 ** Deactivate guest shadow assist
274 **
275 -----------------------------------------------------------------------*/
276 static void
277 vmm_deactivate_gsa(
278 thread_t act,
279 vmm_thread_index_t index)
280 {
281 vmmCntrlEntry *CEntry = vmm_get_entry(act, index); /* Get context from index */
282 pmap_t gpmap;
283 if (!CEntry) { /* Caller guarantees that this will work */
284 panic("vmm_deactivate_gsa: Unexpected failure of vmm_get_entry; act = %p, idx = %lu\n",
285 act, index);
286 }
287
288 gpmap = vmm_get_adsp(act, index); /* Get guest pmap */
289 if (!gpmap) { /* Caller guarantees that this will work */
290 panic("vmm_deactivate_gsa: Unexpected failure of vmm_get_adsp; act = %p, idx = %lu\n",
291 act, index);
292 }
293
294 gpmap->pmapFlags &= ~pmapVMgsaa; /* Deactivate GSA for this guest */
295 CEntry->vmmXAFlgs &= ~vmmGSA; /* Show GSA deactivated here, too */
296 }
297
298
299 /*-----------------------------------------------------------------------
300 ** vmm_flush_context
301 **
302 ** Flush specified guest context, purging all guest mappings and clearing
303 ** the context page.
304 **
305 -----------------------------------------------------------------------*/
306 static void vmm_flush_context(
307 thread_t act,
308 vmm_thread_index_t index)
309 {
310 vmmCntrlEntry *CEntry;
311 vmmCntrlTable *CTable;
312 vmm_state_page_t *vks;
313 vmm_version_t version;
314
315 CEntry = vmm_get_entry(act, index); /* Convert index to entry */
316 if (!CEntry) { /* Caller guarantees that this will work */
317 panic("vmm_flush_context: Unexpected failure of vmm_get_entry; act = %p, idx = %lu\n",
318 act, index);
319 return;
320 }
321
322 if(CEntry->vmmFacCtx.FPUsave) { /* Is there any floating point context? */
323 toss_live_fpu(&CEntry->vmmFacCtx); /* Get rid of any live context here */
324 save_release((struct savearea *)CEntry->vmmFacCtx.FPUsave); /* Release it */
325 }
326
327 if(CEntry->vmmFacCtx.VMXsave) { /* Is there any vector context? */
328 toss_live_vec(&CEntry->vmmFacCtx); /* Get rid of any live context here */
329 save_release((struct savearea *)CEntry->vmmFacCtx.VMXsave); /* Release it */
330 }
331
332 vmm_unmap_all_pages(act, index); /* Blow away all mappings for this context */
333
334 CTable = act->machine.vmmControl; /* Get the control table address */
335 CTable->vmmGFlags = CTable->vmmGFlags & ~vmmLastAdSp; /* Make sure we don't try to automap into this */
336
337 CEntry->vmmFlags &= vmmInUse; /* Clear out all of the flags for this entry except in use */
338 CEntry->vmmFacCtx.FPUsave = NULL; /* Clear facility context control */
339 CEntry->vmmFacCtx.FPUlevel = NULL; /* Clear facility context control */
340 CEntry->vmmFacCtx.FPUcpu = 0; /* Clear facility context control */
341 CEntry->vmmFacCtx.VMXsave = NULL; /* Clear facility context control */
342 CEntry->vmmFacCtx.VMXlevel = NULL; /* Clear facility context control */
343 CEntry->vmmFacCtx.VMXcpu = 0; /* Clear facility context control */
344
345 vks = CEntry->vmmContextKern; /* Get address of the context page */
346 version = vks->interface_version; /* Save the version code */
347 bzero((char *)vks, 4096); /* Clear all */
348
349 vks->interface_version = version; /* Set our version code */
350 vks->thread_index = index % vmmTInum; /* Tell the user the index for this virtual machine */
351
352 /* Context is now flushed */
353 }
354
355
356 /*************************************************************************************
357 Virtual Machine Monitor Exported Functionality
358
359 The following routines are used to implement a quick-switch mechanism for
360 virtual machines that need to execute within their own processor envinroment
361 (including register and MMU state).
362 **************************************************************************************/
363
364 /*-----------------------------------------------------------------------
365 ** vmm_get_version
366 **
367 ** This function returns the current version of the virtual machine
368 ** interface. It is divided into two portions. The top 16 bits
369 ** represent the major version number, and the bottom 16 bits
370 ** represent the minor version number. Clients using the Vmm
371 ** functionality should make sure they are using a verison new
372 ** enough for them.
373 **
374 ** Inputs:
375 ** none
376 **
377 ** Outputs:
378 ** 32-bit number representing major/minor version of
379 ** the Vmm module
380 -----------------------------------------------------------------------*/
381
382 int vmm_get_version(struct savearea *save)
383 {
384 save->save_r3 = kVmmCurrentVersion; /* Return the version */
385 return 1;
386 }
387
388
389 /*-----------------------------------------------------------------------
390 ** Vmm_get_features
391 **
392 ** This function returns a set of flags that represents the functionality
393 ** supported by the current verison of the Vmm interface. Clients should
394 ** use this to determine whether they can run on this system.
395 **
396 ** Inputs:
397 ** none
398 **
399 ** Outputs:
400 ** 32-bit number representing functionality supported by this
401 ** version of the Vmm module
402 -----------------------------------------------------------------------*/
403
404 int vmm_get_features(struct savearea *save)
405 {
406 save->save_r3 = kVmmCurrentFeatures; /* Return the features */
407 if(getPerProc()->pf.Available & pf64Bit) {
408 save->save_r3 &= ~kVmmFeature_LittleEndian; /* No little endian here */
409 save->save_r3 |= kVmmFeature_SixtyFourBit; /* Set that we can do 64-bit */
410 }
411 return 1;
412 }
413
414
415 /*-----------------------------------------------------------------------
416 ** vmm_max_addr
417 **
418 ** This function returns the maximum addressable virtual address sported
419 **
420 ** Outputs:
421 ** Returns max address
422 -----------------------------------------------------------------------*/
423
424 addr64_t
425 vmm_max_addr(__unused thread_t act)
426 {
427 return vm_max_address; /* Return the maximum address */
428 }
429
430 /*-----------------------------------------------------------------------
431 ** vmm_get_XA
432 **
433 ** This function retrieves the eXtended Architecture flags for the specifed VM.
434 **
435 ** We need to return the result in the return code rather than in the return parameters
436 ** because we need an architecture independent format so the results are actually
437 ** usable by the host. For example, the return parameters for 64-bit are 8 bytes wide vs.
438 ** 4 for 32-bit.
439 **
440 **
441 ** Inputs:
442 ** act - pointer to current thread activation structure
443 ** index - index returned by vmm_init_context
444 **
445 ** Outputs:
446 ** Return code is set to the XA flags. If the index is invalid or the
447 ** context has not been created, we return 0.
448 -----------------------------------------------------------------------*/
449
450 unsigned int vmm_get_XA(
451 thread_t act,
452 vmm_thread_index_t index)
453 {
454 vmmCntrlEntry *CEntry;
455
456 CEntry = vmm_get_entry(act, index); /* Convert index to entry */
457 if (CEntry == NULL) return 0; /* Either this isn't a vmm or the index is bogus */
458
459 return CEntry->vmmXAFlgs; /* Return the flags */
460 }
461
462 /*-----------------------------------------------------------------------
463 ** vmm_init_context
464 **
465 ** This function initializes an emulation context. It allocates
466 ** a new pmap (address space) and fills in the initial processor
467 ** state within the specified structure. The structure, mapped
468 ** into the client's logical address space, must be page-aligned.
469 **
470 ** Inputs:
471 ** act - pointer to current thread activation
472 ** version - requested version of the Vmm interface (allowing
473 ** future versions of the interface to change, but still
474 ** support older clients)
475 ** vmm_user_state - pointer to a logical page within the
476 ** client's address space
477 **
478 ** Outputs:
479 ** kernel return code indicating success or failure
480 -----------------------------------------------------------------------*/
481
482 int vmm_init_context(struct savearea *save)
483 {
484
485 thread_t act;
486 vmm_version_t version;
487 vmm_state_page_t * vmm_user_state;
488 vmmCntrlTable *CTable;
489 vm_offset_t conkern;
490 vmm_state_page_t * vks;
491 ppnum_t conphys;
492 kern_return_t ret;
493 int cvi, i;
494 task_t task;
495 thread_t fact, gact;
496 pmap_t hpmap;
497 pmap_t gpmap;
498
499 vmm_user_state = CAST_DOWN(vmm_state_page_t *, save->save_r4); /* Get the user address of the comm area */
500 if ((unsigned int)vmm_user_state & (PAGE_SIZE - 1)) { /* Make sure the comm area is page aligned */
501 save->save_r3 = KERN_FAILURE; /* Return failure */
502 return 1;
503 }
504
505 /* Make sure that the version requested is supported */
506 version = save->save_r3; /* Pick up passed in version */
507 if (((version >> 16) < kVmmMinMajorVersion) || ((version >> 16) > (kVmmCurrentVersion >> 16))) {
508 save->save_r3 = KERN_FAILURE; /* Return failure */
509 return 1;
510 }
511
512 if((version & 0xFFFF) > kVmmCurMinorVersion) { /* Check for valid minor */
513 save->save_r3 = KERN_FAILURE; /* Return failure */
514 return 1;
515 }
516
517 act = current_thread(); /* Pick up our activation */
518
519 ml_set_interrupts_enabled(TRUE); /* This can take a bit of time so pass interruptions */
520
521 task = current_task(); /* Figure out who we are */
522
523 task_lock(task); /* Lock our task */
524
525 fact = (thread_t)task->threads.next; /* Get the first activation on task */
526 gact = NULL; /* Pretend we didn't find it yet */
527
528 for(i = 0; i < task->thread_count; i++) { /* All of the activations */
529 if(fact->machine.vmmControl) { /* Is this a virtual machine monitor? */
530 gact = fact; /* Yeah... */
531 break; /* Bail the loop... */
532 }
533 fact = (thread_t)fact->task_threads.next; /* Go to the next one */
534 }
535
536
537 /*
538 * We only allow one thread per task to be a virtual machine monitor right now. This solves
539 * a number of potential problems that I can't put my finger on right now.
540 *
541 * Utlimately, I think we want to move the controls and make all this task based instead of
542 * thread based. That would allow an emulator architecture to spawn a kernel thread for each
543 * VM (if they want) rather than hand dispatch contexts.
544 */
545
546 if(gact && (gact != act)) { /* Check if another thread is a vmm or trying to be */
547 task_unlock(task); /* Release task lock */
548 ml_set_interrupts_enabled(FALSE); /* Set back interruptions */
549 save->save_r3 = KERN_FAILURE; /* We must play alone... */
550 return 1;
551 }
552
553 if(!gact) act->machine.vmmControl = (vmmCntrlTable *)1; /* Temporarily mark that we are the vmm thread */
554
555 task_unlock(task); /* Safe to release now (because we've marked ourselves) */
556
557 CTable = act->machine.vmmControl; /* Get the control table address */
558 if ((unsigned int)CTable == 1) { /* If we are marked, try to allocate a new table, otherwise we have one */
559 if(!(CTable = (vmmCntrlTable *)kalloc(sizeof(vmmCntrlTable)))) { /* Get a fresh emulation control table */
560 act->machine.vmmControl = NULL; /* Unmark us as vmm 'cause we failed */
561 ml_set_interrupts_enabled(FALSE); /* Set back interruptions */
562 save->save_r3 = KERN_RESOURCE_SHORTAGE; /* No storage... */
563 return 1;
564 }
565
566 bzero((void *)CTable, sizeof(vmmCntrlTable)); /* Clean it up */
567 act->machine.vmmControl = CTable; /* Initialize the table anchor */
568 }
569
570 for(cvi = 0; cvi < kVmmMaxContexts; cvi++) { /* Search to find a free slot */
571 if(!(CTable->vmmc[cvi].vmmFlags & vmmInUse)) break; /* Bail if we find an unused slot */
572 }
573
574 if(cvi >= kVmmMaxContexts) { /* Did we find one? */
575 ml_set_interrupts_enabled(FALSE); /* Set back interruptions */
576 save->save_r3 = KERN_RESOURCE_SHORTAGE; /* No empty slots... */
577 return 1;
578 }
579
580 ret = vm_map_wire( /* Wire the virtual machine monitor's context area */
581 act->map,
582 (vm_offset_t)vmm_user_state,
583 (vm_offset_t)vmm_user_state + PAGE_SIZE,
584 VM_PROT_READ | VM_PROT_WRITE,
585 FALSE);
586
587 if (ret != KERN_SUCCESS) /* The wire failed, return the code */
588 goto return_in_shame;
589
590 /* Map the vmm state into the kernel's address space. */
591 conphys = pmap_find_phys(act->map->pmap, (addr64_t)((uintptr_t)vmm_user_state));
592
593 /* Find a virtual address to use. */
594 ret = kmem_alloc_pageable(kernel_map, &conkern, PAGE_SIZE);
595 if (ret != KERN_SUCCESS) { /* Did we find an address? */
596 (void) vm_map_unwire(act->map, /* No, unwire the context area */
597 (vm_offset_t)vmm_user_state,
598 (vm_offset_t)vmm_user_state + PAGE_SIZE,
599 TRUE);
600 goto return_in_shame;
601 }
602
603 /* Map it into the kernel's address space. */
604
605 pmap_enter(kernel_pmap, conkern, conphys,
606 VM_PROT_READ | VM_PROT_WRITE,
607 VM_WIMG_USE_DEFAULT, TRUE);
608
609 /* Clear the vmm state structure. */
610 vks = (vmm_state_page_t *)conkern;
611 bzero((char *)vks, PAGE_SIZE);
612
613
614 /* We're home free now. Simply fill in the necessary info and return. */
615
616 vks->interface_version = version; /* Set our version code */
617 vks->thread_index = cvi + 1; /* Tell the user the index for this virtual machine */
618
619 CTable->vmmc[cvi].vmmFlags = vmmInUse; /* Mark the slot in use and make sure the rest are clear */
620 CTable->vmmc[cvi].vmmContextKern = vks; /* Remember the kernel address of comm area */
621 CTable->vmmc[cvi].vmmContextPhys = conphys; /* Remember the state page physical addr */
622 CTable->vmmc[cvi].vmmContextUser = vmm_user_state; /* Remember user address of comm area */
623
624 CTable->vmmc[cvi].vmmFacCtx.FPUsave = NULL; /* Clear facility context control */
625 CTable->vmmc[cvi].vmmFacCtx.FPUlevel = NULL; /* Clear facility context control */
626 CTable->vmmc[cvi].vmmFacCtx.FPUcpu = 0; /* Clear facility context control */
627 CTable->vmmc[cvi].vmmFacCtx.VMXsave = NULL; /* Clear facility context control */
628 CTable->vmmc[cvi].vmmFacCtx.VMXlevel = NULL; /* Clear facility context control */
629 CTable->vmmc[cvi].vmmFacCtx.VMXcpu = 0; /* Clear facility context control */
630 CTable->vmmc[cvi].vmmFacCtx.facAct = act; /* Point back to the activation */
631
632 (void)hw_atomic_add(&saveanchor.savetarget, 2); /* Account for the number of extra saveareas we think we might "need" */
633
634 hpmap = act->map->pmap; /* Get host pmap */
635 gpmap = pmap_create(0, FALSE); /* Make a fresh guest pmap */
636 if (gpmap) { /* Did we succeed ? */
637 CTable->vmmAdsp[cvi] = gpmap; /* Remember guest pmap for new context */
638 if (lowGlo.lgVMMforcedFeats & vmmGSA) { /* Forcing on guest shadow assist ? */
639 vmm_activate_gsa(act, cvi+1); /* Activate GSA */
640 }
641 } else {
642 ret = KERN_RESOURCE_SHORTAGE; /* We've failed to allocate a guest pmap */
643 goto return_in_shame; /* Shame on us. */
644 }
645
646 if (!(hpmap->pmapFlags & pmapVMhost)) { /* Do this stuff if this is our first time hosting */
647 hpmap->pmapFlags |= pmapVMhost; /* We're now hosting */
648 }
649
650 ml_set_interrupts_enabled(FALSE); /* Set back interruptions */
651 save->save_r3 = KERN_SUCCESS; /* Hip, hip, horay... */
652 return 1;
653
654 return_in_shame:
655 if(!gact) kfree(CTable, sizeof(vmmCntrlTable)); /* Toss the table if we just allocated it */
656 act->machine.vmmControl = NULL; /* Unmark us as vmm 'cause we failed */
657 ml_set_interrupts_enabled(FALSE); /* Set back interruptions */
658 save->save_r3 = ret; /* Pass back return code... */
659 return 1;
660
661 }
662
663
664 /*-----------------------------------------------------------------------
665 ** vmm_tear_down_context
666 **
667 ** This function uninitializes an emulation context. It deallocates
668 ** internal resources associated with the context block.
669 **
670 ** Inputs:
671 ** act - pointer to current thread activation structure
672 ** index - index returned by vmm_init_context
673 **
674 ** Outputs:
675 ** kernel return code indicating success or failure
676 **
677 ** Strangeness note:
678 ** This call will also trash the address space with the same ID. While this
679 ** is really not too cool, we have to do it because we need to make
680 ** sure that old VMM users (not that we really have any) who depend upon
681 ** the address space going away with the context still work the same.
682 -----------------------------------------------------------------------*/
683
684 kern_return_t vmm_tear_down_context(
685 thread_t act,
686 vmm_thread_index_t index)
687 {
688 vmmCntrlEntry *CEntry;
689 vmmCntrlTable *CTable;
690 int cvi;
691 pmap_t gpmap;
692 pmap_t pmap;
693
694 CEntry = vmm_get_entry(act, index); /* Convert index to entry */
695 if (CEntry == NULL) return KERN_FAILURE; /* Either this isn't vmm thread or the index is bogus */
696
697 ml_set_interrupts_enabled(TRUE); /* This can take a bit of time so pass interruptions */
698
699 (void)hw_atomic_sub(&saveanchor.savetarget, 2); /* We don't need these extra saveareas anymore */
700
701 if(CEntry->vmmFacCtx.FPUsave) { /* Is there any floating point context? */
702 toss_live_fpu(&CEntry->vmmFacCtx); /* Get rid of any live context here */
703 save_release((struct savearea *)CEntry->vmmFacCtx.FPUsave); /* Release it */
704 }
705
706 if(CEntry->vmmFacCtx.VMXsave) { /* Is there any vector context? */
707 toss_live_vec(&CEntry->vmmFacCtx); /* Get rid of any live context here */
708 save_release((struct savearea *)CEntry->vmmFacCtx.VMXsave); /* Release it */
709 }
710
711 CEntry->vmmPmap = NULL; /* Remove this trace */
712 gpmap = act->machine.vmmControl->vmmAdsp[index - 1];
713 /* Get context's guest pmap (if any) */
714 if (gpmap) { /* Check if there is an address space assigned here */
715 if (gpmap->pmapFlags & pmapVMgsaa) { /* Handle guest shadow assist case specially */
716 hw_rem_all_gv(gpmap); /* Remove all guest mappings from shadow hash table */
717 } else {
718 mapping_remove(gpmap, 0xFFFFFFFFFFFFF000LL);/* Remove final page explicitly because we might have mapped it */
719 pmap_remove(gpmap, 0, 0xFFFFFFFFFFFFF000LL);/* Remove all entries from this map */
720 }
721 pmap_destroy(gpmap); /* Toss the pmap for this context */
722 act->machine.vmmControl->vmmAdsp[index - 1] = NULL; /* Clean it up */
723 }
724
725 (void) vm_map_unwire( /* Unwire the user comm page */
726 act->map,
727 (vm_offset_t)CEntry->vmmContextUser,
728 (vm_offset_t)CEntry->vmmContextUser + PAGE_SIZE,
729 FALSE);
730
731 kmem_free(kernel_map, (vm_offset_t)CEntry->vmmContextKern, PAGE_SIZE); /* Remove kernel's view of the comm page */
732
733 CTable = act->machine.vmmControl; /* Get the control table address */
734 CTable->vmmGFlags = CTable->vmmGFlags & ~vmmLastAdSp; /* Make sure we don't try to automap into this */
735
736 CEntry->vmmFlags = 0; /* Clear out all of the flags for this entry including in use */
737 CEntry->vmmContextKern = NULL; /* Clear the kernel address of comm area */
738 CEntry->vmmContextUser = NULL; /* Clear the user address of comm area */
739
740 CEntry->vmmFacCtx.FPUsave = NULL; /* Clear facility context control */
741 CEntry->vmmFacCtx.FPUlevel = NULL; /* Clear facility context control */
742 CEntry->vmmFacCtx.FPUcpu = 0; /* Clear facility context control */
743 CEntry->vmmFacCtx.VMXsave = NULL; /* Clear facility context control */
744 CEntry->vmmFacCtx.VMXlevel = NULL; /* Clear facility context control */
745 CEntry->vmmFacCtx.VMXcpu = 0; /* Clear facility context control */
746 CEntry->vmmFacCtx.facAct = NULL; /* Clear facility context control */
747
748 for(cvi = 0; cvi < kVmmMaxContexts; cvi++) { /* Search to find a free slot */
749 if(CTable->vmmc[cvi].vmmFlags & vmmInUse) { /* Return if there are still some in use */
750 ml_set_interrupts_enabled(FALSE); /* No more interruptions */
751 return KERN_SUCCESS; /* Leave... */
752 }
753 }
754
755 /*
756 * When we have tossed the last context, toss any address spaces left over before releasing
757 * the VMM control block
758 */
759
760 for(cvi = 1; cvi <= kVmmMaxContexts; cvi++) { /* Look at all slots */
761 if(!act->machine.vmmControl->vmmAdsp[index - 1]) continue; /* Nothing to remove here */
762 mapping_remove(act->machine.vmmControl->vmmAdsp[index - 1], 0xFFFFFFFFFFFFF000LL); /* Remove final page explicitly because we might have mapped it */
763 pmap_remove(act->machine.vmmControl->vmmAdsp[index - 1], 0, 0xFFFFFFFFFFFFF000LL); /* Remove all entries from this map */
764 pmap_destroy(act->machine.vmmControl->vmmAdsp[index - 1]); /* Toss the pmap for this context */
765 act->machine.vmmControl->vmmAdsp[index - 1] = NULL; /* Clear just in case */
766 }
767
768 pmap = act->map->pmap; /* Get our pmap */
769 if (pmap->pmapVmmExt) { /* Release any VMM pmap extension block and shadow hash table */
770 vmm_release_shadow_hash(pmap->pmapVmmExt); /* Release extension block and shadow hash table */
771 pmap->pmapVmmExt = NULL; /* Forget extension block */
772 pmap->pmapVmmExtPhys = 0; /* Forget extension block's physical address, too */
773 }
774 pmap->pmapFlags &= ~pmapVMhost; /* We're no longer hosting */
775
776 kfree(CTable, sizeof(vmmCntrlTable)); /* Toss the table because to tossed the last context */
777 act->machine.vmmControl = NULL; /* Unmark us as vmm */
778
779 ml_set_interrupts_enabled(FALSE); /* No more interruptions */
780
781 return KERN_SUCCESS;
782 }
783
784
785 /*-----------------------------------------------------------------------
786 ** vmm_activate_XA
787 **
788 ** This function activates the eXtended Architecture flags for the specifed VM.
789 **
790 ** We need to return the result in the return code rather than in the return parameters
791 ** because we need an architecture independent format so the results are actually
792 ** usable by the host. For example, the return parameters for 64-bit are 8 bytes wide vs.
793 ** 4 for 32-bit.
794 **
795 ** Note that this function does a lot of the same stuff as vmm_tear_down_context
796 ** and vmm_init_context.
797 **
798 ** Inputs:
799 ** act - pointer to current thread activation structure
800 ** index - index returned by vmm_init_context
801 ** flags - the extended architecture flags
802 **
803 **
804 ** Outputs:
805 ** KERN_SUCCESS if vm is valid and initialized. KERN_FAILURE if not.
806 ** Also, the internal flags are set and, additionally, the VM is completely reset.
807 -----------------------------------------------------------------------*/
808 kern_return_t vmm_activate_XA(
809 thread_t act,
810 vmm_thread_index_t index,
811 unsigned int xaflags)
812 {
813 vmmCntrlEntry *CEntry;
814 kern_return_t result = KERN_SUCCESS; /* Assume success */
815
816 if ((xaflags & ~kVmmSupportedSetXA) || ((xaflags & vmm64Bit) && (!getPerProc()->pf.Available & pf64Bit)))
817 return (KERN_FAILURE); /* Unknown or unsupported feature requested */
818
819 CEntry = vmm_get_entry(act, index); /* Convert index to entry */
820 if (CEntry == NULL) return KERN_FAILURE; /* Either this isn't a vmm or the index is bogus */
821
822 ml_set_interrupts_enabled(TRUE); /* This can take a bit of time so pass interruptions */
823
824 vmm_flush_context(act, index); /* Flush the context */
825
826 if (xaflags & vmm64Bit) { /* Activating 64-bit mode ? */
827 CEntry->vmmXAFlgs |= vmm64Bit; /* Activate 64-bit mode */
828 }
829
830 if (xaflags & vmmGSA) { /* Activating guest shadow assist ? */
831 result = vmm_activate_gsa(act, index); /* Activate guest shadow assist */
832 }
833
834 ml_set_interrupts_enabled(FALSE); /* No more interruptions */
835
836 return result; /* Return activate result */
837 }
838
839 /*-----------------------------------------------------------------------
840 ** vmm_deactivate_XA
841 **
842 -----------------------------------------------------------------------*/
843 kern_return_t vmm_deactivate_XA(
844 thread_t act,
845 vmm_thread_index_t index,
846 unsigned int xaflags)
847 {
848 vmmCntrlEntry *CEntry;
849 kern_return_t result = KERN_SUCCESS; /* Assume success */
850
851 if ((xaflags & ~kVmmSupportedSetXA) || ((xaflags & vmm64Bit) && (getPerProc()->pf.Available & pf64Bit)))
852 return (KERN_FAILURE); /* Unknown or unsupported feature requested */
853
854 CEntry = vmm_get_entry(act, index); /* Convert index to entry */
855 if (CEntry == NULL) return KERN_FAILURE; /* Either this isn't a vmm or the index is bogus */
856
857 ml_set_interrupts_enabled(TRUE); /* This can take a bit of time so pass interruptions */
858
859 vmm_flush_context(act, index); /* Flush the context */
860
861 if (xaflags & vmm64Bit) { /* Deactivating 64-bit mode ? */
862 CEntry->vmmXAFlgs &= ~vmm64Bit; /* Deactivate 64-bit mode */
863 }
864
865 if (xaflags & vmmGSA) { /* Deactivating guest shadow assist ? */
866 vmm_deactivate_gsa(act, index); /* Deactivate guest shadow assist */
867 }
868
869 ml_set_interrupts_enabled(FALSE); /* No more interruptions */
870
871 return result; /* Return deactivate result */
872 }
873
874
875 /*-----------------------------------------------------------------------
876 ** vmm_tear_down_all
877 **
878 ** This function uninitializes all emulation contexts. If there are
879 ** any vmm contexts, it calls vmm_tear_down_context for each one.
880 **
881 ** Note: this can also be called from normal thread termination. Because of
882 ** that, we will context switch out of an alternate if we are currenty in it.
883 ** It will be terminated with no valid return code set because we don't expect
884 ** the activation to ever run again.
885 **
886 ** Inputs:
887 ** activation to tear down
888 **
889 ** Outputs:
890 ** All vmm contexts released and VMM shut down
891 -----------------------------------------------------------------------*/
892 void vmm_tear_down_all(thread_t act) {
893
894 vmmCntrlTable *CTable;
895 int cvi;
896 kern_return_t ret;
897 struct savearea *save;
898 spl_t s;
899
900 if(act->machine.specFlags & runningVM) { /* Are we actually in a context right now? */
901 save = find_user_regs(act); /* Find the user state context */
902 if(!save) { /* Did we find it? */
903 panic("vmm_tear_down_all: runningVM marked but no user state context\n");
904 return;
905 }
906
907 save->save_exception = kVmmBogusContext*4; /* Indicate that this context is bogus now */
908 s = splhigh(); /* Make sure interrupts are off */
909 vmm_force_exit(act, save); /* Force and exit from VM state */
910 splx(s); /* Restore interrupts */
911 }
912
913 if(act->machine.vmmControl) { /* Do we have a vmm control block? */
914 CTable = act->machine.vmmControl;
915 for(cvi = 1; cvi <= kVmmMaxContexts; cvi++) { /* Look at all slots */
916 if(CTable->vmmc[cvi - 1].vmmFlags & vmmInUse) { /* Is this one in use */
917 ret = vmm_tear_down_context(act, cvi); /* Take down the found context */
918 if(ret != KERN_SUCCESS) { /* Did it go away? */
919 panic("vmm_tear_down_all: vmm_tear_down_context failed; ret=%08X, act = %p, cvi = %d\n",
920 ret, act, cvi);
921 }
922 }
923 }
924
925 /*
926 * Note that all address apces should be gone here.
927 */
928 if(act->machine.vmmControl) { /* Did we find one? */
929 panic("vmm_tear_down_all: control table did not get deallocated\n"); /* Table did not go away */
930 }
931 }
932 }
933
934 /*-----------------------------------------------------------------------
935 ** vmm_map_page
936 **
937 ** This function maps a page from within the client's logical
938 ** address space into the alternate address space.
939 **
940 ** The page need not be locked or resident. If not resident, it will be faulted
941 ** in by this code, which may take some time. Also, if the page is not locked,
942 ** it, and this mapping may disappear at any time, even before it gets used. Note also
943 ** that reference and change information is NOT preserved when a page is unmapped, either
944 ** explicitly or implicitly (e.g., a pageout, being unmapped in the non-alternate address
945 ** space). This means that if RC is needed, the page MUST be wired.
946 **
947 ** Note that if there is already a mapping at the address, it is removed and all
948 ** information (including RC) is lost BEFORE an attempt is made to map it. Also,
949 ** if the map call fails, the old address is still unmapped..
950 **
951 ** Inputs:
952 ** act - pointer to current thread activation
953 ** index - index of address space to map into
954 ** va - virtual address within the client's address
955 ** space
956 ** ava - virtual address within the alternate address
957 ** space
958 ** prot - protection flags
959 **
960 ** Note that attempted mapping of areas in nested pmaps (shared libraries) or block mapped
961 ** areas are not allowed and will fail. Same with directly mapped I/O areas.
962 **
963 ** Input conditions:
964 ** Interrupts disabled (from fast trap)
965 **
966 ** Outputs:
967 ** kernel return code indicating success or failure
968 ** if success, va resident and alternate mapping made
969 -----------------------------------------------------------------------*/
970
971 kern_return_t vmm_map_page(
972 thread_t act,
973 vmm_adsp_id_t index,
974 addr64_t cva,
975 addr64_t ava,
976 vm_prot_t prot)
977 {
978 kern_return_t ret;
979 register mapping_t *mp;
980 vm_map_t map;
981 addr64_t ova, nextva;
982 pmap_t pmap;
983
984 pmap = vmm_get_adsp(act, index); /* Get the guest pmap for this address space */
985 if(!pmap) return KERN_FAILURE; /* Bogus address space, no VMs, or we can't make a pmap, failure... */
986
987 if(ava > vm_max_address) return kVmmInvalidAddress; /* Does the machine support an address of this size? */
988
989 map = current_thread()->map; /* Get the host's map */
990
991 if (pmap->pmapFlags & pmapVMgsaa) { /* Guest shadow assist active ? */
992 ret = hw_res_map_gv(map->pmap, pmap, cva, ava, getProtPPC(prot, TRUE));
993 /* Attempt to resume an existing gv->phys mapping */
994 if (mapRtOK != ret) { /* Nothing to resume, construct a new mapping */
995 unsigned int pindex;
996 phys_entry_t *physent;
997 unsigned int pattr;
998 unsigned int wimg;
999 unsigned int mflags;
1000 addr64_t gva;
1001
1002 while (1) { /* Find host mapping or fail */
1003 mp = mapping_find(map->pmap, cva, &nextva, 0);
1004 /* Attempt to find host mapping and pin it */
1005 if (mp) break; /* Got it */
1006
1007 ml_set_interrupts_enabled(TRUE);
1008 /* Open 'rupt window */
1009 ret = vm_fault(map, /* Didn't find it, try to fault in host page read/write */
1010 vm_map_trunc_page(cva),
1011 VM_PROT_READ | VM_PROT_WRITE,
1012 FALSE, /* change wiring */
1013 THREAD_UNINT,
1014 NULL,
1015 0);
1016 ml_set_interrupts_enabled(FALSE);
1017 /* Close 'rupt window */
1018 if (ret != KERN_SUCCESS)
1019 return KERN_FAILURE; /* Fault failed, return failure */
1020 }
1021
1022 if (mpNormal != (mp->mpFlags & mpType)) {
1023 /* Host mapping must be a vanilla page */
1024 mapping_drop_busy(mp); /* Un-pin host mapping */
1025 return KERN_FAILURE; /* Return failure */
1026 }
1027
1028 /* Partially construct gv->phys mapping */
1029 physent = mapping_phys_lookup(mp->mpPAddr, &pindex);
1030 if (!physent) {
1031 mapping_drop_busy(mp);
1032 return KERN_FAILURE;
1033 }
1034 pattr = ((physent->ppLink & (ppI | ppG)) >> 60);
1035 wimg = 0x2;
1036 if (pattr & mmFlgCInhib) wimg |= 0x4;
1037 if (pattr & mmFlgGuarded) wimg |= 0x1;
1038 mflags = (pindex << 16) | mpGuest;
1039 gva = ((ava & ~mpHWFlags) | (wimg << 3) | getProtPPC(prot, TRUE));
1040
1041 hw_add_map_gv(map->pmap, pmap, gva, mflags, mp->mpPAddr);
1042 /* Construct new guest->phys mapping */
1043
1044 mapping_drop_busy(mp); /* Un-pin host mapping */
1045 }
1046 } else {
1047 while(1) { /* Keep trying until we get it or until we fail */
1048
1049 mp = mapping_find(map->pmap, cva, &nextva, 0); /* Find the mapping for this address */
1050
1051 if(mp) break; /* We found it */
1052
1053 ml_set_interrupts_enabled(TRUE); /* Enable interruptions */
1054 ret = vm_fault(map, /* Didn't find it, try to fault it in read/write... */
1055 vm_map_trunc_page(cva),
1056 VM_PROT_READ | VM_PROT_WRITE,
1057 FALSE, /*change wiring */
1058 THREAD_UNINT,
1059 NULL,
1060 0);
1061 ml_set_interrupts_enabled(FALSE); /* Disable interruptions */
1062 if (ret != KERN_SUCCESS) return KERN_FAILURE; /* There isn't a page there, return... */
1063 }
1064
1065 if((mp->mpFlags & mpType) != mpNormal) { /* If this is a block, a nest, or some other special thing, we can't map it */
1066 mapping_drop_busy(mp); /* We have everything we need from the mapping */
1067 return KERN_FAILURE; /* Leave in shame */
1068 }
1069
1070 while(1) { /* Keep trying the enter until it goes in */
1071 ova = mapping_make(pmap, ava, mp->mpPAddr, 0, 1, prot); /* Enter the mapping into the pmap */
1072 if(!ova) break; /* If there were no collisions, we are done... */
1073 mapping_remove(pmap, ova); /* Remove the mapping that collided */
1074 }
1075
1076 mapping_drop_busy(mp); /* We have everything we need from the mapping */
1077 }
1078
1079 if (!((getPerProc()->spcFlags) & FamVMmode)) {
1080 act->machine.vmmControl->vmmLastMap = ava & 0xFFFFFFFFFFFFF000ULL; /* Remember the last mapping we made */
1081 act->machine.vmmControl->vmmGFlags = (act->machine.vmmControl->vmmGFlags & ~vmmLastAdSp) | index; /* Remember last address space */
1082 }
1083
1084 return KERN_SUCCESS;
1085 }
1086
1087
1088 /*-----------------------------------------------------------------------
1089 ** vmm_map_execute
1090 **
1091 ** This function maps a page from within the client's logical
1092 ** address space into the alternate address space of the
1093 ** Virtual Machine Monitor context and then directly starts executing.
1094 **
1095 ** See description of vmm_map_page for details.
1096 **
1097 ** Inputs:
1098 ** Index is used for both the context and the address space ID.
1099 ** index[24:31] is the context id and index[16:23] is the address space.
1100 ** if the address space ID is 0, the context ID is used for it.
1101 **
1102 ** Outputs:
1103 ** Normal exit is to run the VM. Abnormal exit is triggered via a
1104 ** non-KERN_SUCCESS return from vmm_map_page or later during the
1105 ** attempt to transition into the VM.
1106 -----------------------------------------------------------------------*/
1107
1108 vmm_return_code_t vmm_map_execute(
1109 thread_t act,
1110 vmm_thread_index_t index,
1111 addr64_t cva,
1112 addr64_t ava,
1113 vm_prot_t prot)
1114 {
1115 kern_return_t ret;
1116 vmmCntrlEntry *CEntry;
1117 unsigned int adsp;
1118 vmm_thread_index_t cndx;
1119
1120 cndx = index & 0xFF; /* Clean it up */
1121
1122 CEntry = vmm_get_entry(act, cndx); /* Get and validate the index */
1123 if (CEntry == NULL) return kVmmBogusContext; /* Return bogus context */
1124
1125 if (((getPerProc()->spcFlags) & FamVMmode) && (CEntry != act->machine.vmmCEntry))
1126 return kVmmBogusContext; /* Yes, invalid index in Fam */
1127
1128 adsp = (index >> 8) & 0xFF; /* Get any requested address space */
1129 if(!adsp) adsp = (index & 0xFF); /* If 0, use context ID as address space ID */
1130
1131 ret = vmm_map_page(act, adsp, cva, ava, prot); /* Go try to map the page on in */
1132
1133
1134 if(ret == KERN_SUCCESS) {
1135 act->machine.vmmControl->vmmLastMap = ava & 0xFFFFFFFFFFFFF000ULL; /* Remember the last mapping we made */
1136 act->machine.vmmControl->vmmGFlags = (act->machine.vmmControl->vmmGFlags & ~vmmLastAdSp) | cndx; /* Remember last address space */
1137 vmm_execute_vm(act, cndx); /* Return was ok, launch the VM */
1138 }
1139
1140 return ret; /* We had trouble mapping in the page */
1141
1142 }
1143
1144 /*-----------------------------------------------------------------------
1145 ** vmm_map_list
1146 **
1147 ** This function maps a list of pages into various address spaces
1148 **
1149 ** Inputs:
1150 ** act - pointer to current thread activation
1151 ** index - index of default address space (used if not specifed in list entry
1152 ** count - number of pages to release
1153 ** flavor - 0 if 32-bit version, 1 if 64-bit
1154 ** vmcpComm in the comm page contains up to kVmmMaxMapPages to map
1155 **
1156 ** Outputs:
1157 ** kernel return code indicating success or failure
1158 ** KERN_FAILURE is returned if kVmmMaxUnmapPages is exceeded
1159 ** or the vmm_map_page call fails.
1160 ** We return kVmmInvalidAddress if virtual address size is not supported
1161 -----------------------------------------------------------------------*/
1162
1163 kern_return_t vmm_map_list(
1164 thread_t act,
1165 vmm_adsp_id_t index,
1166 unsigned int cnt,
1167 unsigned int flavor)
1168 {
1169 vmmCntrlEntry *CEntry;
1170 boolean_t ret;
1171 unsigned int i;
1172 vmmMList *lst;
1173 vmmMList64 *lstx;
1174 addr64_t cva;
1175 addr64_t ava;
1176 vm_prot_t prot;
1177 vmm_adsp_id_t adsp;
1178
1179 CEntry = vmm_get_entry(act, index); /* Convert index to entry */
1180 if (CEntry == NULL) return KERN_FAILURE; /* Either this isn't a vmm or the index is bogus */
1181
1182 if(cnt > kVmmMaxMapPages) return KERN_FAILURE; /* They tried to map too many */
1183 if(!cnt) return KERN_SUCCESS; /* If they said none, we're done... */
1184
1185 lst = (vmmMList *)&((vmm_comm_page_t *)CEntry->vmmContextKern)->vmcpComm[0]; /* Point to the first entry */
1186 lstx = (vmmMList64 *)&((vmm_comm_page_t *)CEntry->vmmContextKern)->vmcpComm[0]; /* Point to the first entry */
1187
1188 for(i = 0; i < cnt; i++) { /* Step and release all pages in list */
1189 if(flavor) { /* Check if 32- or 64-bit addresses */
1190 cva = lstx[i].vmlva; /* Get the 64-bit actual address */
1191 ava = lstx[i].vmlava; /* Get the 64-bit guest address */
1192 }
1193 else {
1194 cva = lst[i].vmlva; /* Get the 32-bit actual address */
1195 ava = lst[i].vmlava; /* Get the 32-bit guest address */
1196 }
1197
1198 prot = ava & vmmlProt; /* Extract the protection bits */
1199 adsp = (ava & vmmlAdID) >> 4; /* Extract an explicit address space request */
1200 if(!adsp) /* If no explicit, use supplied default */
1201 adsp = index - 1;
1202 ava &= 0xFFFFFFFFFFFFF000ULL; /* Clean up the address */
1203
1204 ret = vmm_map_page(act, index, cva, ava, prot); /* Go try to map the page on in */
1205 if(ret != KERN_SUCCESS) /* Bail if any error */
1206 return ret;
1207 }
1208
1209 return KERN_SUCCESS;
1210 }
1211
1212 /*-----------------------------------------------------------------------
1213 ** vmm_get_page_mapping
1214 **
1215 ** Given a context index and a guest virtual address, convert the address
1216 ** to its corresponding host virtual address.
1217 **
1218 ** Inputs:
1219 ** act - pointer to current thread activation
1220 ** index - context index
1221 ** gva - guest virtual address
1222 **
1223 ** Outputs:
1224 ** Host virtual address (page aligned) or -1 if not mapped or any failure
1225 **
1226 ** Note:
1227 ** If the host address space contains multiple virtual addresses mapping
1228 ** to the physical address corresponding to the specified guest virtual
1229 ** address (i.e., host virtual aliases), it is unpredictable which host
1230 ** virtual address (alias) will be returned. Moral of the story: No host
1231 ** virtual aliases.
1232 -----------------------------------------------------------------------*/
1233
1234 addr64_t vmm_get_page_mapping(
1235 thread_t act,
1236 vmm_adsp_id_t index,
1237 addr64_t gva)
1238 {
1239 register mapping_t *mp;
1240 pmap_t pmap;
1241 addr64_t nextva, hva;
1242 ppnum_t pa;
1243
1244 pmap = vmm_get_adsp(act, index); /* Get and validate the index */
1245 if (!pmap)return -1; /* No good, failure... */
1246
1247 if (pmap->pmapFlags & pmapVMgsaa) { /* Guest shadow assist (GSA) active ? */
1248 return (hw_gva_to_hva(pmap, gva)); /* Convert guest to host virtual address */
1249 } else {
1250 mp = mapping_find(pmap, gva, &nextva, 0); /* Find guest mapping for this virtual address */
1251
1252 if(!mp) return -1; /* Not mapped, return -1 */
1253
1254 pa = mp->mpPAddr; /* Remember the physical page address */
1255
1256 mapping_drop_busy(mp); /* Go ahead and relase the mapping now */
1257
1258 pmap = current_thread()->map->pmap; /* Get the host pmap */
1259 hva = mapping_p2v(pmap, pa); /* Now find the source virtual */
1260
1261 if(hva != 0) return hva; /* We found it... */
1262
1263 panic("vmm_get_page_mapping: could not back-map guest va (%016llX)\n", gva);
1264 /* We are bad wrong if we can't find it */
1265
1266 return -1; /* Never executed, prevents compiler warning */
1267 }
1268 }
1269
1270 /*-----------------------------------------------------------------------
1271 ** vmm_unmap_page
1272 **
1273 ** This function unmaps a page from the guest address space.
1274 **
1275 ** Inputs:
1276 ** act - pointer to current thread activation
1277 ** index - index of vmm state for this page
1278 ** va - virtual address within the vmm's address
1279 ** space
1280 **
1281 ** Outputs:
1282 ** kernel return code indicating success or failure
1283 -----------------------------------------------------------------------*/
1284
1285 kern_return_t vmm_unmap_page(
1286 thread_t act,
1287 vmm_adsp_id_t index,
1288 addr64_t va)
1289 {
1290 addr64_t nadd;
1291 pmap_t pmap;
1292
1293 pmap = vmm_get_adsp(act, index); /* Get and validate the index */
1294 if (!pmap)return -1; /* No good, failure... */
1295
1296 if (pmap->pmapFlags & pmapVMgsaa) { /* Handle guest shadow assist specially */
1297 hw_susp_map_gv(act->map->pmap, pmap, va); /* Suspend the mapping */
1298 return (KERN_SUCCESS); /* Always returns success */
1299 } else {
1300 nadd = mapping_remove(pmap, va); /* Toss the mapping */
1301
1302 return ((nadd & 1) ? KERN_FAILURE : KERN_SUCCESS); /* Return... */
1303 }
1304 }
1305
1306 /*-----------------------------------------------------------------------
1307 ** vmm_unmap_list
1308 **
1309 ** This function unmaps a list of pages from the alternate's logical
1310 ** address space.
1311 **
1312 ** Inputs:
1313 ** act - pointer to current thread activation
1314 ** index - index of vmm state for this page
1315 ** count - number of pages to release
1316 ** flavor - 0 if 32-bit, 1 if 64-bit
1317 ** vmcpComm in the comm page contains up to kVmmMaxUnmapPages to unmap
1318 **
1319 ** Outputs:
1320 ** kernel return code indicating success or failure
1321 ** KERN_FAILURE is returned if kVmmMaxUnmapPages is exceeded
1322 -----------------------------------------------------------------------*/
1323
1324 kern_return_t vmm_unmap_list(
1325 thread_t act,
1326 vmm_adsp_id_t index,
1327 unsigned int cnt,
1328 unsigned int flavor)
1329 {
1330 vmmCntrlEntry *CEntry;
1331 kern_return_t kern_result = KERN_SUCCESS;
1332 unsigned int i;
1333 addr64_t gva;
1334 vmmUMList *lst;
1335 vmmUMList64 *lstx;
1336 pmap_t pmap;
1337 int adsp;
1338
1339 CEntry = vmm_get_entry(act, index); /* Convert index to entry */
1340 if (CEntry == NULL) { /* Either this isn't a vmm or the index is bogus */
1341 kern_result = KERN_FAILURE;
1342 goto out;
1343 }
1344
1345 if(cnt > kVmmMaxUnmapPages) { /* They tried to unmap too many */
1346 kern_result = KERN_FAILURE;
1347 goto out;
1348 }
1349 if(!cnt) { /* If they said none, we're done... */
1350 kern_result = KERN_SUCCESS;
1351 goto out;
1352 }
1353
1354 lstx = (vmmUMList64 *) &((vmm_comm_page_t *)CEntry->vmmContextKern)->vmcpComm[0]; /* Point to the first entry */
1355 lst = (vmmUMList *)lstx;
1356
1357 for(i = 0; i < cnt; i++) { /* Step and release all pages in list */
1358 if(flavor) { /* Check if 32- or 64-bit addresses */
1359 gva = lstx[i].vmlava; /* Get the 64-bit guest address */
1360 }
1361 else {
1362 gva = lst[i].vmlava; /* Get the 32-bit guest address */
1363 }
1364
1365 adsp = (gva & vmmlAdID) >> 4; /* Extract an explicit address space request */
1366 if(!adsp) /* If no explicit, use supplied default */
1367 adsp = index - 1;
1368 pmap = act->machine.vmmControl->vmmAdsp[adsp]; /* Get the pmap for this request */
1369 if(!pmap)
1370 continue; /* Ain't nuthin' mapped here, no durn map... */
1371
1372 gva &= 0xFFFFFFFFFFFFF000ULL; /* Clean up the address */
1373 if (pmap->pmapFlags & pmapVMgsaa) { /* Handle guest shadow assist specially */
1374 hw_susp_map_gv(act->map->pmap, pmap, gva);
1375 /* Suspend the mapping */
1376 } else {
1377 (void)mapping_remove(pmap, gva); /* Toss the mapping */
1378 }
1379 }
1380
1381 out:
1382 return kern_result;
1383 }
1384
1385 /*-----------------------------------------------------------------------
1386 ** vmm_unmap_all_pages
1387 **
1388 ** This function unmaps all pages from the alternates's logical
1389 ** address space.
1390 **
1391 ** Inputs:
1392 ** act - pointer to current thread activation
1393 ** index - index of context state
1394 **
1395 ** Outputs:
1396 ** none
1397 **
1398 ** Note:
1399 ** All pages are unmapped, but the address space (i.e., pmap) is still alive
1400 -----------------------------------------------------------------------*/
1401
1402 void vmm_unmap_all_pages(
1403 thread_t act,
1404 vmm_adsp_id_t index)
1405 {
1406 pmap_t pmap;
1407
1408 pmap = vmm_get_adsp(act, index); /* Convert index to entry */
1409 if (!pmap) return; /* Either this isn't vmm thread or the index is bogus */
1410
1411 if (pmap->pmapFlags & pmapVMgsaa) { /* Handle guest shadow assist specially */
1412 hw_rem_all_gv(pmap); /* Remove all guest's mappings from shadow hash table */
1413 } else {
1414 /*
1415 * Note: the pmap code won't deal with the last page in the address space, so handle it explicitly
1416 */
1417 mapping_remove(pmap, 0xFFFFFFFFFFFFF000LL); /* Remove final page explicitly because we might have mapped it */
1418 pmap_remove(pmap, 0, 0xFFFFFFFFFFFFF000LL); /* Remove all entries from this map */
1419 }
1420 }
1421
1422
1423 /*-----------------------------------------------------------------------
1424 ** vmm_get_page_dirty_flag
1425 **
1426 ** This function returns the changed flag of the page
1427 ** and optionally clears clears the flag.
1428 **
1429 ** Inputs:
1430 ** act - pointer to current thread activation
1431 ** index - index of vmm state for this page
1432 ** va - virtual address within the vmm's address
1433 ** space
1434 ** reset - Clears dirty if true, untouched if not
1435 **
1436 ** Outputs:
1437 ** the dirty bit
1438 ** clears the dirty bit in the pte if requested
1439 **
1440 ** Note:
1441 ** The RC bits are merged into the global physical entry
1442 -----------------------------------------------------------------------*/
1443
1444 boolean_t vmm_get_page_dirty_flag(
1445 thread_t act,
1446 vmm_adsp_id_t index,
1447 addr64_t va,
1448 unsigned int reset)
1449 {
1450 unsigned int RC;
1451 pmap_t pmap;
1452
1453 pmap = vmm_get_adsp(act, index); /* Convert index to entry */
1454 if (!pmap) return 1; /* Either this isn't vmm thread or the index is bogus */
1455
1456 if (pmap->pmapFlags & pmapVMgsaa) { /* Handle guest shadow assist specially */
1457 RC = hw_test_rc_gv(act->map->pmap, pmap, va, reset);/* Fetch the RC bits and clear if requested */
1458 } else {
1459 RC = hw_test_rc(pmap, (addr64_t)va, reset); /* Fetch the RC bits and clear if requested */
1460 }
1461
1462 switch (RC & mapRetCode) { /* Decode return code */
1463
1464 case mapRtOK: /* Changed */
1465 return ((RC & (unsigned int)mpC) == (unsigned int)mpC); /* Return if dirty or not */
1466 break;
1467
1468 case mapRtNotFnd: /* Didn't find it */
1469 return 1; /* Return dirty */
1470 break;
1471
1472 default:
1473 panic("vmm_get_page_dirty_flag: hw_test_rc failed - rc = %d, pmap = %p, va = %016llX\n", RC, pmap, va);
1474
1475 }
1476
1477 return 1; /* Return the change bit */
1478 }
1479
1480
1481 /*-----------------------------------------------------------------------
1482 ** vmm_protect_page
1483 **
1484 ** This function sets the protection bits of a mapped page
1485 **
1486 ** Inputs:
1487 ** act - pointer to current thread activation
1488 ** index - index of vmm state for this page
1489 ** va - virtual address within the vmm's address
1490 ** space
1491 ** prot - Protection flags
1492 **
1493 ** Outputs:
1494 ** none
1495 ** Protection bits of the mapping are modifed
1496 **
1497 -----------------------------------------------------------------------*/
1498
1499 kern_return_t vmm_protect_page(
1500 thread_t act,
1501 vmm_adsp_id_t index,
1502 addr64_t va,
1503 vm_prot_t prot)
1504 {
1505 addr64_t nextva;
1506 int ret;
1507 pmap_t pmap;
1508
1509 pmap = vmm_get_adsp(act, index); /* Convert index to entry */
1510 if (!pmap) return KERN_FAILURE; /* Either this isn't vmm thread or the index is bogus */
1511
1512 if (pmap->pmapFlags & pmapVMgsaa) { /* Handle guest shadow assist specially */
1513 ret = hw_protect_gv(pmap, va, prot); /* Try to change protection, GSA varient */
1514 } else {
1515 ret = hw_protect(pmap, va, prot, &nextva); /* Try to change protection */
1516 }
1517
1518 switch (ret) { /* Decode return code */
1519
1520 case mapRtOK: /* All ok... */
1521 break; /* Outta here */
1522
1523 case mapRtNotFnd: /* Didn't find it */
1524 return KERN_SUCCESS; /* Ok, return... */
1525 break;
1526
1527 default:
1528 panic("vmm_protect_page: hw_protect failed - rc = %d, pmap = %p, va = %016llX\n", ret, pmap, (addr64_t)va);
1529
1530 }
1531
1532 if (!((getPerProc()->spcFlags) & FamVMmode)) {
1533 act->machine.vmmControl->vmmLastMap = va & 0xFFFFFFFFFFFFF000ULL; /* Remember the last mapping we made */
1534 act->machine.vmmControl->vmmGFlags = (act->machine.vmmControl->vmmGFlags & ~vmmLastAdSp) | index; /* Remember last address space */
1535 }
1536
1537 return KERN_SUCCESS; /* Return */
1538 }
1539
1540
1541 /*-----------------------------------------------------------------------
1542 ** vmm_protect_execute
1543 **
1544 ** This function sets the protection bits of a mapped page
1545 ** and then directly starts executing.
1546 **
1547 ** See description of vmm_protect_page for details
1548 **
1549 ** Inputs:
1550 ** See vmm_protect_page and vmm_map_execute
1551 **
1552 ** Outputs:
1553 ** Normal exit is to run the VM. Abnormal exit is triggered via a
1554 ** non-KERN_SUCCESS return from vmm_map_page or later during the
1555 ** attempt to transition into the VM.
1556 -----------------------------------------------------------------------*/
1557
1558 vmm_return_code_t vmm_protect_execute(
1559 thread_t act,
1560 vmm_thread_index_t index,
1561 addr64_t va,
1562 vm_prot_t prot)
1563 {
1564 kern_return_t ret;
1565 vmmCntrlEntry *CEntry;
1566 unsigned int adsp;
1567 vmm_thread_index_t cndx;
1568
1569 cndx = index & 0xFF; /* Clean it up */
1570 CEntry = vmm_get_entry(act, cndx); /* Get and validate the index */
1571 if (CEntry == NULL) return kVmmBogusContext; /* Return bogus context */
1572
1573 adsp = (index >> 8) & 0xFF; /* Get any requested address space */
1574 if(!adsp) adsp = (index & 0xFF); /* If 0, use context ID as address space ID */
1575
1576 if (((getPerProc()->spcFlags) & FamVMmode) && (CEntry != act->machine.vmmCEntry))
1577 return kVmmBogusContext; /* Yes, invalid index in Fam */
1578
1579 ret = vmm_protect_page(act, adsp, va, prot); /* Go try to change access */
1580
1581 if(ret == KERN_SUCCESS) {
1582 act->machine.vmmControl->vmmLastMap = va & 0xFFFFFFFFFFFFF000ULL; /* Remember the last mapping we made */
1583 act->machine.vmmControl->vmmGFlags = (act->machine.vmmControl->vmmGFlags & ~vmmLastAdSp) | cndx; /* Remember last address space */
1584 vmm_execute_vm(act, cndx); /* Return was ok, launch the VM */
1585 }
1586
1587 return ret; /* We had trouble of some kind (shouldn't happen) */
1588
1589 }
1590
1591
1592 /*-----------------------------------------------------------------------
1593 ** vmm_get_float_state
1594 **
1595 ** This function causes the current floating point state to
1596 ** be saved into the shared context area. It also clears the
1597 ** vmmFloatCngd changed flag.
1598 **
1599 ** Inputs:
1600 ** act - pointer to current thread activation structure
1601 ** index - index returned by vmm_init_context
1602 **
1603 ** Outputs:
1604 ** context saved
1605 -----------------------------------------------------------------------*/
1606
1607 kern_return_t vmm_get_float_state(
1608 thread_t act,
1609 vmm_thread_index_t index)
1610 {
1611 vmmCntrlEntry *CEntry;
1612 int i;
1613 register struct savearea_fpu *sv;
1614
1615 CEntry = vmm_get_entry(act, index); /* Convert index to entry */
1616 if (CEntry == NULL) return KERN_FAILURE; /* Either this isn't vmm thread or the index is bogus */
1617
1618 act->machine.specFlags &= ~floatCng; /* Clear the special flag */
1619 CEntry->vmmContextKern->vmmStat &= ~vmmFloatCngd; /* Clear the change indication */
1620
1621 fpu_save(&CEntry->vmmFacCtx); /* Save context if live */
1622
1623 if(CEntry->vmmFacCtx.FPUsave) { /* Is there context yet? */
1624 sv = CEntry->vmmFacCtx.FPUsave;
1625 bcopy((char *)&sv->save_fp0, (char *)&(CEntry->vmmContextKern->vmm_proc_state.ppcFPRs), 32 * 8); /* 32 registers */
1626 return KERN_SUCCESS;
1627 }
1628
1629
1630 for(i = 0; i < 32; i++) { /* Initialize floating points */
1631 CEntry->vmmContextKern->vmm_proc_state.ppcFPRs[i].d = FloatInit; /* Initial value */
1632 }
1633
1634 return KERN_SUCCESS;
1635 }
1636
1637 /*-----------------------------------------------------------------------
1638 ** vmm_get_vector_state
1639 **
1640 ** This function causes the current vector state to
1641 ** be saved into the shared context area. It also clears the
1642 ** vmmVectorCngd changed flag.
1643 **
1644 ** Inputs:
1645 ** act - pointer to current thread activation structure
1646 ** index - index returned by vmm_init_context
1647 **
1648 ** Outputs:
1649 ** context saved
1650 -----------------------------------------------------------------------*/
1651
1652 kern_return_t vmm_get_vector_state(
1653 thread_t act,
1654 vmm_thread_index_t index)
1655 {
1656 vmmCntrlEntry *CEntry;
1657 int i, j;
1658 unsigned int vrvalidwrk;
1659 register struct savearea_vec *sv;
1660
1661 CEntry = vmm_get_entry(act, index); /* Convert index to entry */
1662 if (CEntry == NULL) return KERN_FAILURE; /* Either this isn't vmm thread or the index is bogus */
1663
1664 vec_save(&CEntry->vmmFacCtx); /* Save context if live */
1665
1666 act->machine.specFlags &= ~vectorCng; /* Clear the special flag */
1667 CEntry->vmmContextKern->vmmStat &= ~vmmVectCngd; /* Clear the change indication */
1668
1669 if(CEntry->vmmFacCtx.VMXsave) { /* Is there context yet? */
1670 sv = CEntry->vmmFacCtx.VMXsave;
1671 vrvalidwrk = sv->save_vrvalid; /* Get the valid flags */
1672
1673 for(i = 0; i < 32; i++) { /* Copy the saved registers and invalidate the others */
1674 if(vrvalidwrk & 0x80000000) { /* Do we have a valid value here? */
1675 for(j = 0; j < 4; j++) { /* If so, copy it over */
1676 CEntry->vmmContextKern->vmm_proc_state.ppcVRs[i].i[j] = ((unsigned int *)&(sv->save_vr0))[(i * 4) + j];
1677 }
1678 }
1679 else {
1680 for(j = 0; j < 4; j++) { /* Otherwise set to empty value */
1681 CEntry->vmmContextKern->vmm_proc_state.ppcVRs[i].i[j] = QNaNbarbarian[j];
1682 }
1683 }
1684
1685 vrvalidwrk = vrvalidwrk << 1; /* Shift over to the next */
1686
1687 }
1688
1689 return KERN_SUCCESS;
1690 }
1691
1692 for(i = 0; i < 32; i++) { /* Initialize vector registers */
1693 for(j=0; j < 4; j++) { /* Do words */
1694 CEntry->vmmContextKern->vmm_proc_state.ppcVRs[i].i[j] = QNaNbarbarian[j]; /* Initial value */
1695 }
1696 }
1697
1698 return KERN_SUCCESS;
1699 }
1700
1701 /*-----------------------------------------------------------------------
1702 ** vmm_set_timer
1703 **
1704 ** This function causes a timer (in AbsoluteTime) for a specific time
1705 ** to be set It also clears the vmmTimerPop flag if the timer is actually
1706 ** set, it is cleared otherwise.
1707 **
1708 ** A timer is cleared by setting setting the time to 0. This will clear
1709 ** the vmmTimerPop bit. Simply setting the timer to earlier than the
1710 ** current time clears the internal timer request, but leaves the
1711 ** vmmTimerPop flag set.
1712 **
1713 **
1714 ** Inputs:
1715 ** act - pointer to current thread activation structure
1716 ** index - index returned by vmm_init_context
1717 ** timerhi - high order word of AbsoluteTime to pop
1718 ** timerlo - low order word of AbsoluteTime to pop
1719 **
1720 ** Outputs:
1721 ** timer set, vmmTimerPop cleared
1722 -----------------------------------------------------------------------*/
1723
1724 kern_return_t vmm_set_timer(
1725 thread_t act,
1726 vmm_thread_index_t index,
1727 unsigned int timerhi,
1728 unsigned int timerlo)
1729 {
1730 vmmCntrlEntry *CEntry;
1731
1732 CEntry = vmm_get_entry(act, index); /* Convert index to entry */
1733 if (CEntry == NULL) return KERN_FAILURE; /* Either this isn't vmm thread or the index is bogus */
1734
1735 CEntry->vmmTimer = ((uint64_t)timerhi << 32) | timerlo;
1736
1737 vmm_timer_pop(act); /* Go adjust all of the timer stuff */
1738 return KERN_SUCCESS; /* Leave now... */
1739 }
1740
1741
1742 /*-----------------------------------------------------------------------
1743 ** vmm_get_timer
1744 **
1745 ** This function causes the timer for a specified VM to be
1746 ** returned in return_params[0] and return_params[1].
1747 ** Note that this is kind of funky for 64-bit VMs because we
1748 ** split the timer into two parts so that we still set parms 0 and 1.
1749 ** Obviously, we don't need to do this because the parms are 8 bytes
1750 ** wide.
1751 **
1752 **
1753 ** Inputs:
1754 ** act - pointer to current thread activation structure
1755 ** index - index returned by vmm_init_context
1756 **
1757 ** Outputs:
1758 ** Timer value set in return_params[0] and return_params[1].
1759 ** Set to 0 if timer is not set.
1760 -----------------------------------------------------------------------*/
1761
1762 kern_return_t vmm_get_timer(
1763 thread_t act,
1764 vmm_thread_index_t index)
1765 {
1766 vmmCntrlEntry *CEntry;
1767
1768 CEntry = vmm_get_entry(act, index); /* Convert index to entry */
1769 if (CEntry == NULL) return KERN_FAILURE; /* Either this isn't vmm thread or the index is bogus */
1770
1771 if(CEntry->vmmXAFlgs & vmm64Bit) { /* A 64-bit virtual machine? */
1772 CEntry->vmmContextKern->vmmRet.vmmrp64.return_params[0] = (uint32_t)(CEntry->vmmTimer >> 32); /* Return the last timer value */
1773 CEntry->vmmContextKern->vmmRet.vmmrp64.return_params[1] = (uint32_t)CEntry->vmmTimer; /* Return the last timer value */
1774 }
1775 else {
1776 CEntry->vmmContextKern->vmmRet.vmmrp32.return_params[0] = (CEntry->vmmTimer >> 32); /* Return the last timer value */
1777 CEntry->vmmContextKern->vmmRet.vmmrp32.return_params[1] = (uint32_t)CEntry->vmmTimer; /* Return the last timer value */
1778 }
1779 return KERN_SUCCESS;
1780 }
1781
1782
1783 /*-----------------------------------------------------------------------
1784 ** vmm_timer_pop
1785 **
1786 ** This function causes all timers in the array of VMs to be updated.
1787 ** All appropriate flags are set or reset. If a VM is currently
1788 ** running and its timer expired, it is intercepted.
1789 **
1790 ** The qactTimer value is set to the lowest unexpired timer. It is
1791 ** zeroed if all timers are expired or have been reset.
1792 **
1793 ** Inputs:
1794 ** act - pointer to current thread activation structure
1795 **
1796 ** Outputs:
1797 ** timers set, vmmTimerPop cleared or set
1798 -----------------------------------------------------------------------*/
1799
1800 void vmm_timer_pop(
1801 thread_t act)
1802 {
1803 vmmCntrlTable *CTable;
1804 int cvi, any;
1805 uint64_t now, soonest;
1806 struct savearea *sv;
1807
1808 if(!((unsigned int)act->machine.vmmControl & 0xFFFFFFFE)) { /* Are there any virtual machines? */
1809 panic("vmm_timer_pop: No virtual machines defined; act = %p\n", act);
1810 }
1811
1812 soonest = 0xFFFFFFFFFFFFFFFFULL; /* Max time */
1813
1814 clock_get_uptime(&now); /* What time is it? */
1815
1816 CTable = act->machine.vmmControl; /* Make this easier */
1817 any = 0; /* Haven't found a running unexpired timer yet */
1818
1819 for(cvi = 0; cvi < kVmmMaxContexts; cvi++) { /* Cycle through all and check time now */
1820
1821 if(!(CTable->vmmc[cvi].vmmFlags & vmmInUse)) continue; /* Do not check if the entry is empty */
1822
1823 if(CTable->vmmc[cvi].vmmTimer == 0) { /* Is the timer reset? */
1824 CTable->vmmc[cvi].vmmFlags &= ~vmmTimerPop; /* Clear timer popped */
1825 CTable->vmmc[cvi].vmmContextKern->vmmStat &= ~vmmTimerPop; /* Clear timer popped */
1826 continue; /* Check next */
1827 }
1828
1829 if (CTable->vmmc[cvi].vmmTimer <= now) {
1830 CTable->vmmc[cvi].vmmFlags |= vmmTimerPop; /* Set timer popped here */
1831 CTable->vmmc[cvi].vmmContextKern->vmmStat |= vmmTimerPop; /* Set timer popped here */
1832 if((unsigned int)&CTable->vmmc[cvi] == (unsigned int)act->machine.vmmCEntry) { /* Is this the running VM? */
1833 sv = find_user_regs(act); /* Get the user state registers */
1834 if(!sv) { /* Did we find something? */
1835 panic("vmm_timer_pop: no user context; act = %p\n", act);
1836 }
1837 sv->save_exception = kVmmReturnNull*4; /* Indicate that this is a null exception */
1838 vmm_force_exit(act, sv); /* Intercept a running VM */
1839 }
1840 continue; /* Check the rest */
1841 }
1842 else { /* It hasn't popped yet */
1843 CTable->vmmc[cvi].vmmFlags &= ~vmmTimerPop; /* Set timer not popped here */
1844 CTable->vmmc[cvi].vmmContextKern->vmmStat &= ~vmmTimerPop; /* Set timer not popped here */
1845 }
1846
1847 any = 1; /* Show we found an active unexpired timer */
1848
1849 if (CTable->vmmc[cvi].vmmTimer < soonest)
1850 soonest = CTable->vmmc[cvi].vmmTimer;
1851 }
1852
1853 if(any) {
1854 if (act->machine.qactTimer == 0 || soonest <= act->machine.qactTimer)
1855 act->machine.qactTimer = soonest; /* Set lowest timer */
1856 }
1857 }
1858
1859
1860
1861 /*-----------------------------------------------------------------------
1862 ** vmm_stop_vm
1863 **
1864 ** This function prevents the specified VM(s) to from running.
1865 ** If any is currently executing, the execution is intercepted
1866 ** with a code of kVmmStopped. Note that execution of the VM is
1867 ** blocked until a vmmExecuteVM is called with the start flag set to 1.
1868 ** This provides the ability for a thread to stop execution of a VM and
1869 ** insure that it will not be run until the emulator has processed the
1870 ** "virtual" interruption.
1871 **
1872 ** Inputs:
1873 ** vmmask - 32 bit mask corresponding to the VMs to put in stop state
1874 ** NOTE: if this mask is all 0s, any executing VM is intercepted with
1875 * a kVmmStopped (but not marked stopped), otherwise this is a no-op. Also note that there
1876 ** note that there is a potential race here and the VM may not stop.
1877 **
1878 ** Outputs:
1879 ** kernel return code indicating success
1880 ** or if no VMs are enabled, an invalid syscall exception.
1881 -----------------------------------------------------------------------*/
1882
1883 int vmm_stop_vm(struct savearea *save)
1884 {
1885
1886 thread_t act;
1887 vmmCntrlTable *CTable;
1888 int cvi, i;
1889 task_t task;
1890 thread_t fact;
1891 unsigned int vmmask;
1892 ReturnHandler *stopapc;
1893
1894 ml_set_interrupts_enabled(TRUE); /* This can take a bit of time so pass interruptions */
1895
1896 task = current_task(); /* Figure out who we are */
1897
1898 task_lock(task); /* Lock our task */
1899
1900 fact = (thread_t)task->threads.next; /* Get the first activation on task */
1901 act = NULL; /* Pretend we didn't find it yet */
1902
1903 for(i = 0; i < task->thread_count; i++) { /* All of the activations */
1904 if(fact->machine.vmmControl) { /* Is this a virtual machine monitor? */
1905 act = fact; /* Yeah... */
1906 break; /* Bail the loop... */
1907 }
1908 fact = (thread_t)fact->task_threads.next; /* Go to the next one */
1909 }
1910
1911 if(!((unsigned int)act)) { /* See if we have VMMs yet */
1912 task_unlock(task); /* No, unlock the task */
1913 ml_set_interrupts_enabled(FALSE); /* Set back interruptions */
1914 return 0; /* Go generate a syscall exception */
1915 }
1916
1917 thread_reference(act);
1918
1919 task_unlock(task); /* Safe to release now */
1920
1921 thread_mtx_lock(act);
1922
1923 CTable = act->machine.vmmControl; /* Get the pointer to the table */
1924
1925 if(!((unsigned int)CTable & -2)) { /* Are there any all the way up yet? */
1926 thread_mtx_unlock(act); /* Unlock the activation */
1927 thread_deallocate(act);
1928 ml_set_interrupts_enabled(FALSE); /* Set back interruptions */
1929 return 0; /* Go generate a syscall exception */
1930 }
1931
1932 if(!(vmmask = save->save_r3)) { /* Get the stop mask and check if all zeros */
1933 thread_mtx_unlock(act); /* Unlock the activation */
1934 thread_deallocate(act);
1935 ml_set_interrupts_enabled(FALSE); /* Set back interruptions */
1936 save->save_r3 = KERN_SUCCESS; /* Set success */
1937 return 1; /* Return... */
1938 }
1939
1940 for(cvi = 0; cvi < kVmmMaxContexts; cvi++) { /* Search slots */
1941 if((0x80000000 & vmmask) && (CTable->vmmc[cvi].vmmFlags & vmmInUse)) { /* See if we need to stop and if it is in use */
1942 hw_atomic_or_noret(&CTable->vmmc[cvi].vmmFlags, vmmXStop); /* Set this one to stop */
1943 }
1944 vmmask = vmmask << 1; /* Slide mask over */
1945 }
1946
1947 if(hw_compare_and_store(0, 1, &act->machine.emPendRupts)) { /* See if there is already a stop pending and lock out others if not */
1948 thread_mtx_unlock(act); /* Already one pending, unlock the activation */
1949 thread_deallocate(act);
1950 ml_set_interrupts_enabled(FALSE); /* Set back interruptions */
1951 save->save_r3 = KERN_SUCCESS; /* Say we did it... */
1952 return 1; /* Leave */
1953 }
1954
1955 if(!(stopapc = (ReturnHandler *)kalloc(sizeof(ReturnHandler)))) { /* Get a return handler control block */
1956 act->machine.emPendRupts = 0; /* No memory, say we have given up request */
1957 thread_mtx_unlock(act); /* Unlock the activation */
1958 thread_deallocate(act);
1959 ml_set_interrupts_enabled(FALSE); /* Set back interruptions */
1960 save->save_r3 = KERN_RESOURCE_SHORTAGE; /* No storage... */
1961 return 1; /* Return... */
1962 }
1963
1964 ml_set_interrupts_enabled(FALSE); /* Disable interruptions for now */
1965
1966 stopapc->handler = vmm_interrupt; /* Set interruption routine */
1967
1968 stopapc->next = act->handlers; /* Put our interrupt at the start of the list */
1969 act->handlers = stopapc; /* Point to us */
1970
1971 act_set_apc(act); /* Set an APC AST */
1972 ml_set_interrupts_enabled(TRUE); /* Enable interruptions now */
1973
1974 thread_mtx_unlock(act); /* Unlock the activation */
1975 thread_deallocate(act);
1976
1977 ml_set_interrupts_enabled(FALSE); /* Set back interruptions */
1978 save->save_r3 = KERN_SUCCESS; /* Hip, hip, horay... */
1979 return 1;
1980 }
1981
1982 /*-----------------------------------------------------------------------
1983 ** vmm_interrupt
1984 **
1985 ** This function is executed asynchronously from an APC AST.
1986 ** It is to be used for anything that needs to interrupt a running VM.
1987 ** This include any kind of interruption generation (other than timer pop)
1988 ** or entering the stopped state.
1989 **
1990 ** Inputs:
1991 ** ReturnHandler *rh - the return handler control block as required by the APC.
1992 ** thread_t act - the activation
1993 **
1994 ** Outputs:
1995 ** Whatever needed to be done is done.
1996 -----------------------------------------------------------------------*/
1997
1998 void vmm_interrupt(ReturnHandler *rh, thread_t act) {
1999
2000 vmmCntrlTable *CTable;
2001 struct savearea *sv;
2002 boolean_t inter;
2003
2004
2005
2006 kfree(rh, sizeof(ReturnHandler)); /* Release the return handler block */
2007
2008 inter = ml_set_interrupts_enabled(FALSE); /* Disable interruptions for now */
2009
2010 act->machine.emPendRupts = 0; /* Say that there are no more interrupts pending */
2011 CTable = act->machine.vmmControl; /* Get the pointer to the table */
2012
2013 if(!((unsigned int)CTable & -2)) return; /* Leave if we aren't doing VMs any more... */
2014
2015 if(act->machine.vmmCEntry && (act->machine.vmmCEntry->vmmFlags & vmmXStop)) { /* Do we need to stop the running guy? */
2016 sv = find_user_regs(act); /* Get the user state registers */
2017 if(!sv) { /* Did we find something? */
2018 panic("vmm_interrupt: no user context; act = %p\n", act);
2019 }
2020 sv->save_exception = kVmmStopped*4; /* Set a "stopped" exception */
2021 vmm_force_exit(act, sv); /* Intercept a running VM */
2022 }
2023 ml_set_interrupts_enabled(inter); /* Put interrupts back to what they were */
2024 }