2 * Copyright (c) 2000-2007 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 #include <i386/rtclock.h>
31 #include <i386/proc_reg.h>
32 #include <i386/eflags.h>
34 #include <i386/postcode.h>
35 #include <i386/apic.h>
41 ** Entry - %esp contains pointer to 64 bit structure.
43 ** Exit - 64 bit structure filled in.
46 ENTRY(ml_get_timebase)
60 * Convert between various timer units
62 * uint64_t tmrCvt(uint64_t time, uint64_t *conversion)
64 * This code converts 64-bit time units to other units.
65 * For example, the TSC is converted to HPET units.
67 * Time is a 64-bit integer that is some number of ticks.
68 * Conversion is 64-bit fixed point number which is composed
69 * of a 32 bit integer and a 32 bit fraction.
71 * The time ticks are multiplied by the conversion factor. The
72 * calculations are done as a 128-bit value but both the high
73 * and low words are dropped. The high word is overflow and the
74 * low word is the fraction part of the result.
76 * We return a 64-bit value.
78 * Note that we can use this function to multiply 2 conversion factors.
79 * We do this in order to calculate the multiplier used to convert
80 * directly between any two units.
89 pushl %ebp // Save a volatile
90 movl %esp,%ebp // Get the parameters - 8
91 pushl %ebx // Save a volatile
92 pushl %esi // Save a volatile
93 pushl %edi // Save a volatile
95 // %ebp + 8 - low-order ts
96 // %ebp + 12 - high-order ts
97 // %ebp + 16 - low-order cvt
98 // %ebp + 20 - high-order cvt
100 movl 8(%ebp),%eax // Get low-order ts
101 mull 16(%ebp) // Multiply by low-order conversion
102 movl %edx,%edi // Need to save only the high order part
104 movl 12(%ebp),%eax // Get the high-order ts
105 mull 16(%ebp) // Multiply by low-order conversion
106 addl %eax,%edi // Add in the overflow from the low x low calculation
107 adcl $0,%edx // Add in any overflow to high high part
108 movl %edx,%esi // Save high high part
110 // We now have the upper 64 bits of the 96 bit multiply of ts and the low half of cvt
113 movl 8(%ebp),%eax // Get low-order ts
114 mull 20(%ebp) // Multiply by high-order conversion
115 movl %eax,%ebx // Need to save the low order part
116 movl %edx,%ecx // Need to save the high order part
118 movl 12(%ebp),%eax // Get the high-order ts
119 mull 20(%ebp) // Multiply by high-order conversion
121 // Now have %ecx:%ebx as low part of high low and %edx:%eax as high part of high high
122 // We don't care about the highest word since it is overflow
124 addl %edi,%ebx // Add the low words
125 adcl %ecx,%esi // Add in the high plus carry from low
126 addl %eax,%esi // Add in the rest of the high
128 movl %ebx,%eax // Pass back low word
129 movl %esi,%edx // and the high word
131 popl %edi // Restore a volatile
132 popl %esi // Restore a volatile
133 popl %ebx // Restore a volatile
134 popl %ebp // Restore a volatile
139 /* void _rtc_nanotime_store(uint64_t tsc,
143 rtc_nanotime_t *dst) ;
145 .globl EXT(_rtc_nanotime_store)
148 LEXT(_rtc_nanotime_store)
153 mov 32(%ebp),%edx /* get ptr to rtc_nanotime_info */
155 movl RNT_GENERATION(%edx),%esi /* get current generation */
156 movl $0,RNT_GENERATION(%edx) /* flag data as being updated */
159 mov %eax,RNT_TSC_BASE(%edx)
161 mov %eax,RNT_TSC_BASE+4(%edx)
164 mov %eax,RNT_SCALE(%edx)
167 mov %eax,RNT_SHIFT(%edx)
170 mov %eax,RNT_NS_BASE(%edx)
172 mov %eax,RNT_NS_BASE+4(%edx)
174 incl %esi /* next generation */
176 incl %esi /* skip 0, which is a flag */
177 1: movl %esi,RNT_GENERATION(%edx) /* update generation and make usable */
184 /* unint64_t _rtc_nanotime_read( rtc_nanotime_t *rntp, int slow );
186 * This is the same as the commpage nanotime routine, except that it uses the
187 * kernel internal "rtc_nanotime_info" data instead of the commpage data. The two copies
188 * of data (one in the kernel and one in user space) are kept in sync by rtc_clock_napped().
190 * Warning! There is another copy of this code in osfmk/i386/locore.s. The
191 * two versions must be kept in sync with each other!
193 * There are actually two versions of the algorithm, one each for "slow" and "fast"
194 * processors. The more common "fast" algorithm is:
196 * nanoseconds = (((rdtsc - rnt_tsc_base) * rnt_tsc_scale) / 2**32) - rnt_ns_base;
198 * Of course, the divide by 2**32 is a nop. rnt_tsc_scale is a constant computed during initialization:
200 * rnt_tsc_scale = (10e9 * 2**32) / tscFreq;
202 * The "slow" algorithm uses long division:
204 * nanoseconds = (((rdtsc - rnt_tsc_base) * 10e9) / tscFreq) - rnt_ns_base;
206 * Since this routine is not synchronized and can be called in any context,
207 * we use a generation count to guard against seeing partially updated data. In addition,
208 * the _rtc_nanotime_store() routine -- just above -- zeroes the generation before
209 * updating the data, and stores the nonzero generation only after all other data has been
210 * stored. Because IA32 guarantees that stores by one processor must be seen in order
211 * by another, we can avoid using a lock. We spin while the generation is zero.
213 * In accordance with the ABI, we return the 64-bit nanotime in %edx:%eax.
216 .globl EXT(_rtc_nanotime_read)
218 LEXT(_rtc_nanotime_read)
224 movl 8(%ebp),%edi /* get ptr to rtc_nanotime_info */
225 movl 12(%ebp),%eax /* get "slow" flag */
229 /* Processor whose TSC frequency is faster than SLOW_TSC_THRESHOLD */
230 RTC_NANOTIME_READ_FAST()
238 /* Processor whose TSC frequency is slower than or equal to SLOW_TSC_THRESHOLD */
240 movl RNT_GENERATION(%edi),%esi /* get generation (0 if being changed) */
241 testl %esi,%esi /* if being changed, loop until stable */
243 pushl %esi /* save generation */
244 pushl RNT_SHIFT(%edi) /* save low 32 bits of tscFreq */
247 rdtsc /* get TSC in %edx:%eax */
249 subl RNT_TSC_BASE(%edi),%eax
250 sbbl RNT_TSC_BASE+4(%edi),%edx
253 * Do the math to convert tsc ticks to nanoseconds. We first
254 * do long multiply of 1 billion times the tsc. Then we do
255 * long division by the tsc frequency
257 mov $1000000000, %ecx /* number of nanoseconds in a second */
265 adc $0, %edx /* result in edx:eax:esi */
267 popl %ecx /* get low 32 tscFreq */
277 mov %ebx, %edx /* result in edx:eax */
279 movl 8(%ebp),%edi /* recover ptr to rtc_nanotime_info */
280 popl %esi /* recover generation */
282 addl RNT_NS_BASE(%edi),%eax
283 adcl RNT_NS_BASE+4(%edi),%edx
285 cmpl RNT_GENERATION(%edi),%esi /* have the parameters changed? */
286 jne Lslow /* yes, loop until stable */
292 ret /* result in edx:eax */