2 * Copyright (c) 2008 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 * Copyright (c) 2002 Luigi Rizzo, Universita` di Pisa
32 * Redistribution and use in source and binary forms, with or without
33 * modification, are permitted provided that the following conditions
35 * 1. Redistributions of source code must retain the above copyright
36 * notice, this list of conditions and the following disclaimer.
37 * 2. Redistributions in binary form must reproduce the above copyright
38 * notice, this list of conditions and the following disclaimer in the
39 * documentation and/or other materials provided with the distribution.
41 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
42 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
43 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
44 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
45 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
46 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
47 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
48 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
50 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
53 * $FreeBSD: src/sys/netinet/ip_fw2.c,v 1.6.2.18 2003/10/17 11:01:03 scottl Exp $
60 * Implement IP packet firewall (new version)
64 #error IPFIREWALL requires INET.
68 #include <machine/spl.h>
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
74 #include <sys/kernel.h>
76 #include <sys/socket.h>
77 #include <sys/socketvar.h>
78 #include <sys/sysctl.h>
79 #include <sys/syslog.h>
80 #include <sys/ucred.h>
81 #include <sys/kern_event.h>
84 #include <net/route.h>
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/in_var.h>
88 #include <netinet/in_pcb.h>
89 #include <netinet/ip.h>
90 #include <netinet/ip_var.h>
91 #include <netinet/ip_icmp.h>
92 #include <netinet/ip_fw.h>
93 #include <netinet/ip_divert.h>
96 #include <netinet/ip_dummynet.h>
99 #include <netinet/tcp.h>
100 #include <netinet/tcp_timer.h>
101 #include <netinet/tcp_var.h>
102 #include <netinet/tcpip.h>
103 #include <netinet/udp.h>
104 #include <netinet/udp_var.h>
107 #include <netinet6/ipsec.h>
110 #include <netinet/if_ether.h> /* XXX for ETHERTYPE_IP */
112 #include "ip_fw2_compat.h"
114 #include <sys/kern_event.h>
118 #include <machine/in_cksum.h>
119 */ /* XXX for in_cksum */
122 * XXX This one should go in sys/mbuf.h. It is used to avoid that
123 * a firewall-generated packet loops forever through the firewall.
125 #ifndef M_SKIP_FIREWALL
126 #define M_SKIP_FIREWALL 0x4000
130 * set_disable contains one bit per set value (0..31).
131 * If the bit is set, all rules with the corresponding set
132 * are disabled. Set RESVD_SET(31) is reserved for the default rule
133 * and rules that are not deleted by the flush command,
134 * and CANNOT be disabled.
135 * Rules in set RESVD_SET can only be deleted explicitly.
137 static u_int32_t set_disable
;
140 static int verbose_limit
;
141 extern int fw_bypass
;
143 #define IPFW_DEFAULT_RULE 65535
145 #define IPFW_RULE_INACTIVE 1
148 * list of rules for layer 3
150 static struct ip_fw
*layer3_chain
;
152 MALLOC_DEFINE(M_IPFW
, "IpFw/IpAcct", "IpFw/IpAcct chain's");
154 static int fw_debug
= 0;
155 static int autoinc_step
= 100; /* bounded to 1..1000 in add_rule() */
157 static void ipfw_kev_post_msg(u_int32_t
);
159 static int Get32static_len(void);
160 static int Get64static_len(void);
164 static int ipfw_sysctl SYSCTL_HANDLER_ARGS
;
166 SYSCTL_NODE(_net_inet_ip
, OID_AUTO
, fw
, CTLFLAG_RW
|CTLFLAG_LOCKED
, 0, "Firewall");
167 SYSCTL_PROC(_net_inet_ip_fw
, OID_AUTO
, enable
,
168 CTLTYPE_INT
| CTLFLAG_RW
,
169 &fw_enable
, 0, ipfw_sysctl
, "I", "Enable ipfw");
170 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, autoinc_step
, CTLFLAG_RW
,
171 &autoinc_step
, 0, "Rule number autincrement step");
172 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, one_pass
,
175 "Only do a single pass through ipfw when using dummynet(4)");
176 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, debug
,
178 &fw_debug
, 0, "Enable printing of debug ip_fw statements");
179 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, verbose
,
181 &fw_verbose
, 0, "Log matches to ipfw rules");
182 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, verbose_limit
, CTLFLAG_RW
,
183 &verbose_limit
, 0, "Set upper limit of matches of ipfw rules logged");
186 * Description of dynamic rules.
188 * Dynamic rules are stored in lists accessed through a hash table
189 * (ipfw_dyn_v) whose size is curr_dyn_buckets. This value can
190 * be modified through the sysctl variable dyn_buckets which is
191 * updated when the table becomes empty.
193 * XXX currently there is only one list, ipfw_dyn.
195 * When a packet is received, its address fields are first masked
196 * with the mask defined for the rule, then hashed, then matched
197 * against the entries in the corresponding list.
198 * Dynamic rules can be used for different purposes:
200 * + enforcing limits on the number of sessions;
201 * + in-kernel NAT (not implemented yet)
203 * The lifetime of dynamic rules is regulated by dyn_*_lifetime,
204 * measured in seconds and depending on the flags.
206 * The total number of dynamic rules is stored in dyn_count.
207 * The max number of dynamic rules is dyn_max. When we reach
208 * the maximum number of rules we do not create anymore. This is
209 * done to avoid consuming too much memory, but also too much
210 * time when searching on each packet (ideally, we should try instead
211 * to put a limit on the length of the list on each bucket...).
213 * Each dynamic rule holds a pointer to the parent ipfw rule so
214 * we know what action to perform. Dynamic rules are removed when
215 * the parent rule is deleted. XXX we should make them survive.
217 * There are some limitations with dynamic rules -- we do not
218 * obey the 'randomized match', and we do not do multiple
219 * passes through the firewall. XXX check the latter!!!
221 static ipfw_dyn_rule
**ipfw_dyn_v
= NULL
;
222 static u_int32_t dyn_buckets
= 256; /* must be power of 2 */
223 static u_int32_t curr_dyn_buckets
= 256; /* must be power of 2 */
226 * Timeouts for various events in handing dynamic rules.
228 static u_int32_t dyn_ack_lifetime
= 300;
229 static u_int32_t dyn_syn_lifetime
= 20;
230 static u_int32_t dyn_fin_lifetime
= 1;
231 static u_int32_t dyn_rst_lifetime
= 1;
232 static u_int32_t dyn_udp_lifetime
= 10;
233 static u_int32_t dyn_short_lifetime
= 5;
236 * Keepalives are sent if dyn_keepalive is set. They are sent every
237 * dyn_keepalive_period seconds, in the last dyn_keepalive_interval
238 * seconds of lifetime of a rule.
239 * dyn_rst_lifetime and dyn_fin_lifetime should be strictly lower
240 * than dyn_keepalive_period.
243 static u_int32_t dyn_keepalive_interval
= 20;
244 static u_int32_t dyn_keepalive_period
= 5;
245 static u_int32_t dyn_keepalive
= 1; /* do send keepalives */
247 static u_int32_t static_count
; /* # of static rules */
248 static u_int32_t static_len
; /* size in bytes of static rules */
249 static u_int32_t static_len_32
; /* size in bytes of static rules for 32 bit client */
250 static u_int32_t static_len_64
; /* size in bytes of static rules for 64 bit client */
251 static u_int32_t dyn_count
; /* # of dynamic rules */
252 static u_int32_t dyn_max
= 4096; /* max # of dynamic rules */
254 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_buckets
, CTLFLAG_RW
,
255 &dyn_buckets
, 0, "Number of dyn. buckets");
256 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, curr_dyn_buckets
, CTLFLAG_RD
,
257 &curr_dyn_buckets
, 0, "Current Number of dyn. buckets");
258 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_count
, CTLFLAG_RD
,
259 &dyn_count
, 0, "Number of dyn. rules");
260 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_max
, CTLFLAG_RW
,
261 &dyn_max
, 0, "Max number of dyn. rules");
262 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, static_count
, CTLFLAG_RD
,
263 &static_count
, 0, "Number of static rules");
264 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_ack_lifetime
, CTLFLAG_RW
,
265 &dyn_ack_lifetime
, 0, "Lifetime of dyn. rules for acks");
266 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_syn_lifetime
, CTLFLAG_RW
,
267 &dyn_syn_lifetime
, 0, "Lifetime of dyn. rules for syn");
268 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_fin_lifetime
, CTLFLAG_RW
,
269 &dyn_fin_lifetime
, 0, "Lifetime of dyn. rules for fin");
270 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_rst_lifetime
, CTLFLAG_RW
,
271 &dyn_rst_lifetime
, 0, "Lifetime of dyn. rules for rst");
272 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_udp_lifetime
, CTLFLAG_RW
,
273 &dyn_udp_lifetime
, 0, "Lifetime of dyn. rules for UDP");
274 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_short_lifetime
, CTLFLAG_RW
,
275 &dyn_short_lifetime
, 0, "Lifetime of dyn. rules for other situations");
276 SYSCTL_INT(_net_inet_ip_fw
, OID_AUTO
, dyn_keepalive
, CTLFLAG_RW
,
277 &dyn_keepalive
, 0, "Enable keepalives for dyn. rules");
281 ipfw_sysctl SYSCTL_HANDLER_ARGS
283 #pragma unused(arg1, arg2)
286 error
= sysctl_handle_int(oidp
, oidp
->oid_arg1
, oidp
->oid_arg2
, req
);
287 if (error
|| !req
->newptr
)
290 ipfw_kev_post_msg(KEV_IPFW_ENABLE
);
295 #endif /* SYSCTL_NODE */
298 static ip_fw_chk_t ipfw_chk
;
301 lck_grp_t
*ipfw_mutex_grp
;
302 lck_grp_attr_t
*ipfw_mutex_grp_attr
;
303 lck_attr_t
*ipfw_mutex_attr
;
304 lck_mtx_t
*ipfw_mutex
;
306 extern void ipfwsyslog( int level
, const char *format
,...);
309 ip_dn_ruledel_t
*ip_dn_ruledel_ptr
= NULL
; /* hook into dummynet */
310 #endif /* DUMMYNET */
312 #define KEV_LOG_SUBCLASS 10
313 #define IPFWLOGEVENT 0
315 #define ipfwstring "ipfw:"
316 static size_t ipfwstringlen
;
318 #define dolog( a ) { \
319 if ( fw_verbose == 2 ) /* Apple logging, log to ipfw.log */ \
324 #define RULESIZE64(rule) (sizeof(struct ip_fw_64) + \
325 ((struct ip_fw *)(rule))->cmd_len * 4 - 4)
327 #define RULESIZE32(rule) (sizeof(struct ip_fw_32) + \
328 ((struct ip_fw *)(rule))->cmd_len * 4 - 4)
330 void ipfwsyslog( int level
, const char *format
,...)
334 struct kev_msg ev_msg
;
336 char msgBuf
[msgsize
];
341 va_start( ap
, format
);
342 loglen
= vsnprintf(msgBuf
, msgsize
, format
, ap
);
345 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
346 ev_msg
.kev_class
= KEV_NETWORK_CLASS
;
347 ev_msg
.kev_subclass
= KEV_LOG_SUBCLASS
;
348 ev_msg
.event_code
= IPFWLOGEVENT
;
350 /* get rid of the trailing \n */
353 pri
= LOG_PRI(level
);
355 /* remove "ipfw:" prefix if logging to ipfw log */
356 if ( !(strncmp( ipfwstring
, msgBuf
, ipfwstringlen
))){
357 dptr
= msgBuf
+ipfwstringlen
;
360 ev_msg
.dv
[0].data_ptr
= &pri
;
361 ev_msg
.dv
[0].data_length
= 1;
362 ev_msg
.dv
[1].data_ptr
= dptr
;
363 ev_msg
.dv
[1].data_length
= 100; /* bug in kern_post_msg, it can't handle size > 256-msghdr */
364 ev_msg
.dv
[2].data_length
= 0;
366 kev_post_msg(&ev_msg
);
370 * This macro maps an ip pointer into a layer3 header pointer of type T
372 #define L3HDR(T, ip) ((T *)((u_int32_t *)(ip) + (ip)->ip_hl))
375 icmptype_match(struct ip
*ip
, ipfw_insn_u32
*cmd
)
377 int type
= L3HDR(struct icmp
,ip
)->icmp_type
;
379 return (type
<= ICMP_MAXTYPE
&& (cmd
->d
[0] & (1<<type
)) );
382 #define TT ( (1 << ICMP_ECHO) | (1 << ICMP_ROUTERSOLICIT) | \
383 (1 << ICMP_TSTAMP) | (1 << ICMP_IREQ) | (1 << ICMP_MASKREQ) )
386 is_icmp_query(struct ip
*ip
)
388 int type
= L3HDR(struct icmp
, ip
)->icmp_type
;
389 return (type
<= ICMP_MAXTYPE
&& (TT
& (1<<type
)) );
397 int len
= static_len_32
;
401 for (rule
= layer3_chain
; rule
; rule
= rule
->next
) {
402 if (rule
->reserved_1
== IPFW_RULE_INACTIVE
) {
405 if ( rule
->act_ofs
){
406 useraction
= (char*)ACTION_PTR( rule
);
407 if ( ((ipfw_insn
*)useraction
)->opcode
== O_QUEUE
|| ((ipfw_insn
*)useraction
)->opcode
== O_PIPE
){
408 diff
= sizeof(ipfw_insn_pipe
) - sizeof(ipfw_insn_pipe_32
);
421 int len
= static_len_64
;
425 for (rule
= layer3_chain
; rule
; rule
= rule
->next
) {
426 if (rule
->reserved_1
== IPFW_RULE_INACTIVE
) {
429 if ( rule
->act_ofs
){
430 useraction
= (char *)ACTION_PTR( rule
);
431 if ( ((ipfw_insn
*)useraction
)->opcode
== O_QUEUE
|| ((ipfw_insn
*)useraction
)->opcode
== O_PIPE
){
432 diff
= sizeof(ipfw_insn_pipe_64
) - sizeof(ipfw_insn_pipe
);
442 copyto32fw_insn( struct ip_fw_32
*fw32
, struct ip_fw
*user_ip_fw
, int cmdsize
)
451 end
= ((char*)user_ip_fw
->cmd
) + cmdsize
;
452 useraction
= (char*)ACTION_PTR( user_ip_fw
);
453 fw32action
= (char*)fw32
->cmd
+ (user_ip_fw
->act_ofs
* sizeof(uint32_t));
454 if ( ( justcmdsize
= ( fw32action
- (char*)fw32
->cmd
)))
455 bcopy( user_ip_fw
->cmd
, fw32
->cmd
, justcmdsize
);
456 while ( useraction
< end
){
457 if ( ((ipfw_insn
*)useraction
)->opcode
== O_QUEUE
|| ((ipfw_insn
*)useraction
)->opcode
== O_PIPE
){
458 actioncopysize
= sizeof(ipfw_insn_pipe_32
);
459 ((ipfw_insn
*)fw32action
)->opcode
= ((ipfw_insn
*)useraction
)->opcode
;
460 ((ipfw_insn
*)fw32action
)->arg1
= ((ipfw_insn
*)useraction
)->arg1
;
461 ((ipfw_insn
*)fw32action
)->len
= F_INSN_SIZE(ipfw_insn_pipe_32
);
462 diff
= ((ipfw_insn
*)useraction
)->len
- ((ipfw_insn
*)fw32action
)->len
;
464 fw32
->cmd_len
-= diff
;
467 actioncopysize
= (F_LEN((ipfw_insn
*)useraction
) ? (F_LEN((ipfw_insn
*)useraction
)) : 1 ) * sizeof(uint32_t);
468 bcopy( useraction
, fw32action
, actioncopysize
);
470 useraction
+= (F_LEN((ipfw_insn
*)useraction
) ? (F_LEN((ipfw_insn
*)useraction
)) : 1 ) * sizeof(uint32_t);
471 fw32action
+= actioncopysize
;
476 copyto64fw_insn( struct ip_fw_64
*fw64
, struct ip_fw
*user_ip_fw
, int cmdsize
)
485 end
= ((char *)user_ip_fw
->cmd
) + cmdsize
;
486 useraction
= (char*)ACTION_PTR( user_ip_fw
);
487 if ( (justcmdsize
= (useraction
- (char*)user_ip_fw
->cmd
)))
488 bcopy( user_ip_fw
->cmd
, fw64
->cmd
, justcmdsize
);
489 fw64action
= (char*)fw64
->cmd
+ justcmdsize
;
490 while ( useraction
< end
){
491 if ( ((ipfw_insn
*)user_ip_fw
)->opcode
== O_QUEUE
|| ((ipfw_insn
*)user_ip_fw
)->opcode
== O_PIPE
){
492 actioncopysize
= sizeof(ipfw_insn_pipe_64
);
493 ((ipfw_insn
*)fw64action
)->opcode
= ((ipfw_insn
*)useraction
)->opcode
;
494 ((ipfw_insn
*)fw64action
)->arg1
= ((ipfw_insn
*)useraction
)->arg1
;
495 ((ipfw_insn
*)fw64action
)->len
= F_INSN_SIZE(ipfw_insn_pipe_64
);
496 diff
= ((ipfw_insn
*)fw64action
)->len
- ((ipfw_insn
*)useraction
)->len
;
498 fw64
->cmd_len
+= diff
;
501 actioncopysize
= (F_LEN((ipfw_insn
*)useraction
) ? (F_LEN((ipfw_insn
*)useraction
)) : 1 ) * sizeof(uint32_t);
502 bcopy( useraction
, fw64action
, actioncopysize
);
504 useraction
+= (F_LEN((ipfw_insn
*)useraction
) ? (F_LEN((ipfw_insn
*)useraction
)) : 1 ) * sizeof(uint32_t);
505 fw64action
+= actioncopysize
;
510 copyto32fw( struct ip_fw
*user_ip_fw
, struct ip_fw_32
*fw32
, __unused
size_t copysize
)
512 size_t rulesize
, cmdsize
;
514 fw32
->version
= user_ip_fw
->version
;
515 fw32
->context
= CAST_DOWN_EXPLICIT( user32_addr_t
, user_ip_fw
->context
);
516 fw32
->next
= CAST_DOWN_EXPLICIT(user32_addr_t
, user_ip_fw
->next
);
517 fw32
->next_rule
= CAST_DOWN_EXPLICIT(user32_addr_t
, user_ip_fw
->next_rule
);
518 fw32
->act_ofs
= user_ip_fw
->act_ofs
;
519 fw32
->cmd_len
= user_ip_fw
->cmd_len
;
520 fw32
->rulenum
= user_ip_fw
->rulenum
;
521 fw32
->set
= user_ip_fw
->set
;
522 fw32
->set_masks
[0] = user_ip_fw
->set_masks
[0];
523 fw32
->set_masks
[1] = user_ip_fw
->set_masks
[1];
524 fw32
->pcnt
= user_ip_fw
->pcnt
;
525 fw32
->bcnt
= user_ip_fw
->bcnt
;
526 fw32
->timestamp
= user_ip_fw
->timestamp
;
527 fw32
->reserved_1
= user_ip_fw
->reserved_1
;
528 fw32
->reserved_2
= user_ip_fw
->reserved_2
;
529 rulesize
= sizeof(struct ip_fw_32
) + (user_ip_fw
->cmd_len
* sizeof(ipfw_insn
) - 4);
530 cmdsize
= user_ip_fw
->cmd_len
* sizeof(u_int32_t
);
531 copyto32fw_insn( fw32
, user_ip_fw
, cmdsize
);
535 copyto64fw( struct ip_fw
*user_ip_fw
, struct ip_fw_64
*fw64
, size_t copysize
)
537 size_t rulesize
, cmdsize
;
539 fw64
->version
= user_ip_fw
->version
;
540 fw64
->context
= CAST_DOWN_EXPLICIT(__uint64_t
, user_ip_fw
->context
);
541 fw64
->next
= CAST_DOWN_EXPLICIT(user64_addr_t
, user_ip_fw
->next
);
542 fw64
->next_rule
= CAST_DOWN_EXPLICIT(user64_addr_t
, user_ip_fw
->next_rule
);
543 fw64
->act_ofs
= user_ip_fw
->act_ofs
;
544 fw64
->cmd_len
= user_ip_fw
->cmd_len
;
545 fw64
->rulenum
= user_ip_fw
->rulenum
;
546 fw64
->set
= user_ip_fw
->set
;
547 fw64
->set_masks
[0] = user_ip_fw
->set_masks
[0];
548 fw64
->set_masks
[1] = user_ip_fw
->set_masks
[1];
549 fw64
->pcnt
= user_ip_fw
->pcnt
;
550 fw64
->bcnt
= user_ip_fw
->bcnt
;
551 fw64
->timestamp
= user_ip_fw
->timestamp
;
552 fw64
->reserved_1
= user_ip_fw
->reserved_1
;
553 fw64
->reserved_2
= user_ip_fw
->reserved_2
;
554 rulesize
= sizeof(struct ip_fw_64
) + (user_ip_fw
->cmd_len
* sizeof(ipfw_insn
) - 4);
555 if (rulesize
> copysize
)
556 cmdsize
= copysize
- sizeof(struct ip_fw_64
) + 4;
558 cmdsize
= user_ip_fw
->cmd_len
* sizeof(u_int32_t
);
559 copyto64fw_insn( fw64
, user_ip_fw
, cmdsize
);
563 copyfrom32fw_insn( struct ip_fw_32
*fw32
, struct ip_fw
*user_ip_fw
, int cmdsize
)
572 end
= ((char*)fw32
->cmd
) + cmdsize
;
573 fw32action
= (char*)ACTION_PTR( fw32
);
574 if ((justcmdsize
= (fw32action
- (char*)fw32
->cmd
)))
575 bcopy( fw32
->cmd
, user_ip_fw
->cmd
, justcmdsize
);
576 useraction
= (char*)user_ip_fw
->cmd
+ justcmdsize
;
577 while ( fw32action
< end
){
578 if ( ((ipfw_insn
*)fw32action
)->opcode
== O_QUEUE
|| ((ipfw_insn
*)fw32action
)->opcode
== O_PIPE
){
579 actioncopysize
= sizeof(ipfw_insn_pipe
);
580 ((ipfw_insn
*)useraction
)->opcode
= ((ipfw_insn
*)fw32action
)->opcode
;
581 ((ipfw_insn
*)useraction
)->arg1
= ((ipfw_insn
*)fw32action
)->arg1
;
582 ((ipfw_insn
*)useraction
)->len
= F_INSN_SIZE(ipfw_insn_pipe
);
583 diff
= ((ipfw_insn
*)useraction
)->len
- ((ipfw_insn
*)fw32action
)->len
;
585 /* readjust the cmd_len */
586 user_ip_fw
->cmd_len
+= diff
;
589 actioncopysize
= (F_LEN((ipfw_insn
*)fw32action
) ? (F_LEN((ipfw_insn
*)fw32action
)) : 1 ) * sizeof(uint32_t);
590 bcopy( fw32action
, useraction
, actioncopysize
);
592 fw32action
+= (F_LEN((ipfw_insn
*)fw32action
) ? (F_LEN((ipfw_insn
*)fw32action
)) : 1 ) * sizeof(uint32_t);
593 useraction
+= actioncopysize
;
596 return( useraction
- (char*)user_ip_fw
->cmd
);
600 copyfrom64fw_insn( struct ip_fw_64
*fw64
, struct ip_fw
*user_ip_fw
, int cmdsize
)
609 end
= ((char *)fw64
->cmd
) + cmdsize
;
610 fw64action
= (char*)ACTION_PTR( fw64
);
611 if ( (justcmdsize
= (fw64action
- (char*)fw64
->cmd
)))
612 bcopy( fw64
->cmd
, user_ip_fw
->cmd
, justcmdsize
);
613 useraction
= (char*)user_ip_fw
->cmd
+ justcmdsize
;
614 while ( fw64action
< end
){
615 if ( ((ipfw_insn
*)fw64action
)->opcode
== O_QUEUE
|| ((ipfw_insn
*)fw64action
)->opcode
== O_PIPE
){
616 actioncopysize
= sizeof(ipfw_insn_pipe
);
617 ((ipfw_insn
*)useraction
)->opcode
= ((ipfw_insn
*)fw64action
)->opcode
;
618 ((ipfw_insn
*)useraction
)->arg1
= ((ipfw_insn
*)fw64action
)->arg1
;
619 ((ipfw_insn
*)useraction
)->len
= F_INSN_SIZE(ipfw_insn_pipe
);
620 diff
= ((ipfw_insn
*)fw64action
)->len
- ((ipfw_insn
*)useraction
)->len
;
622 /* readjust the cmd_len */
623 user_ip_fw
->cmd_len
-= diff
;
626 actioncopysize
= (F_LEN((ipfw_insn
*)fw64action
) ? (F_LEN((ipfw_insn
*)fw64action
)) : 1 ) * sizeof(uint32_t);
627 bcopy( fw64action
, useraction
, actioncopysize
);
629 fw64action
+= (F_LEN((ipfw_insn
*)fw64action
) ? (F_LEN((ipfw_insn
*)fw64action
)) : 1 ) * sizeof(uint32_t);
630 useraction
+= actioncopysize
;
632 return( useraction
- (char*)user_ip_fw
->cmd
);
636 copyfrom32fw( struct ip_fw_32
*fw32
, struct ip_fw
*user_ip_fw
, size_t copysize
)
638 size_t rulesize
, cmdsize
;
640 user_ip_fw
->version
= fw32
->version
;
641 user_ip_fw
->context
= CAST_DOWN(void *, fw32
->context
);
642 user_ip_fw
->next
= CAST_DOWN(struct ip_fw
*, fw32
->next
);
643 user_ip_fw
->next_rule
= CAST_DOWN_EXPLICIT(struct ip_fw
*, fw32
->next_rule
);
644 user_ip_fw
->act_ofs
= fw32
->act_ofs
;
645 user_ip_fw
->cmd_len
= fw32
->cmd_len
;
646 user_ip_fw
->rulenum
= fw32
->rulenum
;
647 user_ip_fw
->set
= fw32
->set
;
648 user_ip_fw
->set_masks
[0] = fw32
->set_masks
[0];
649 user_ip_fw
->set_masks
[1] = fw32
->set_masks
[1];
650 user_ip_fw
->pcnt
= fw32
->pcnt
;
651 user_ip_fw
->bcnt
= fw32
->bcnt
;
652 user_ip_fw
->timestamp
= fw32
->timestamp
;
653 user_ip_fw
->reserved_1
= fw32
->reserved_1
;
654 user_ip_fw
->reserved_2
= fw32
->reserved_2
;
655 rulesize
= sizeof(struct ip_fw_32
) + (fw32
->cmd_len
* sizeof(ipfw_insn
) - 4);
656 if ( rulesize
> copysize
)
657 cmdsize
= copysize
- sizeof(struct ip_fw_32
)-4;
659 cmdsize
= fw32
->cmd_len
* sizeof(ipfw_insn
);
660 cmdsize
= copyfrom32fw_insn( fw32
, user_ip_fw
, cmdsize
);
661 return( sizeof(struct ip_fw
) + cmdsize
- 4);
665 copyfrom64fw( struct ip_fw_64
*fw64
, struct ip_fw
*user_ip_fw
, size_t copysize
)
667 size_t rulesize
, cmdsize
;
669 user_ip_fw
->version
= fw64
->version
;
670 user_ip_fw
->context
= CAST_DOWN_EXPLICIT( void *, fw64
->context
);
671 user_ip_fw
->next
= CAST_DOWN_EXPLICIT(struct ip_fw
*, fw64
->next
);
672 user_ip_fw
->next_rule
= CAST_DOWN_EXPLICIT(struct ip_fw
*, fw64
->next_rule
);
673 user_ip_fw
->act_ofs
= fw64
->act_ofs
;
674 user_ip_fw
->cmd_len
= fw64
->cmd_len
;
675 user_ip_fw
->rulenum
= fw64
->rulenum
;
676 user_ip_fw
->set
= fw64
->set
;
677 user_ip_fw
->set_masks
[0] = fw64
->set_masks
[0];
678 user_ip_fw
->set_masks
[1] = fw64
->set_masks
[1];
679 user_ip_fw
->pcnt
= fw64
->pcnt
;
680 user_ip_fw
->bcnt
= fw64
->bcnt
;
681 user_ip_fw
->timestamp
= fw64
->timestamp
;
682 user_ip_fw
->reserved_1
= fw64
->reserved_1
;
683 user_ip_fw
->reserved_2
= fw64
->reserved_2
;
684 //bcopy( fw64->cmd, user_ip_fw->cmd, fw64->cmd_len * sizeof(ipfw_insn));
685 rulesize
= sizeof(struct ip_fw_64
) + (fw64
->cmd_len
* sizeof(ipfw_insn
) - 4);
686 if ( rulesize
> copysize
)
687 cmdsize
= copysize
- sizeof(struct ip_fw_64
)-4;
689 cmdsize
= fw64
->cmd_len
* sizeof(ipfw_insn
);
690 cmdsize
= copyfrom64fw_insn( fw64
, user_ip_fw
, cmdsize
);
691 return( sizeof(struct ip_fw
) + cmdsize
- 4);
695 void cp_dyn_to_comp_32( struct ipfw_dyn_rule_compat_32
*dyn_rule_vers1
, int *len
)
697 struct ipfw_dyn_rule_compat_32
*dyn_last
=NULL
;
702 for (i
= 0; i
< curr_dyn_buckets
; i
++) {
703 for ( p
= ipfw_dyn_v
[i
] ; p
!= NULL
; p
= p
->next
) {
704 dyn_rule_vers1
->chain
= (user32_addr_t
)(p
->rule
->rulenum
);
705 dyn_rule_vers1
->id
= p
->id
;
706 dyn_rule_vers1
->mask
= p
->id
;
707 dyn_rule_vers1
->type
= p
->dyn_type
;
708 dyn_rule_vers1
->expire
= p
->expire
;
709 dyn_rule_vers1
->pcnt
= p
->pcnt
;
710 dyn_rule_vers1
->bcnt
= p
->bcnt
;
711 dyn_rule_vers1
->bucket
= p
->bucket
;
712 dyn_rule_vers1
->state
= p
->state
;
714 dyn_rule_vers1
->next
= CAST_DOWN_EXPLICIT( user32_addr_t
, p
->next
);
715 dyn_last
= dyn_rule_vers1
;
717 *len
+= sizeof(*dyn_rule_vers1
);
722 if (dyn_last
!= NULL
) {
723 dyn_last
->next
= ((user32_addr_t
)0);
730 void cp_dyn_to_comp_64( struct ipfw_dyn_rule_compat_64
*dyn_rule_vers1
, int *len
)
732 struct ipfw_dyn_rule_compat_64
*dyn_last
=NULL
;
737 for (i
= 0; i
< curr_dyn_buckets
; i
++) {
738 for ( p
= ipfw_dyn_v
[i
] ; p
!= NULL
; p
= p
->next
) {
739 dyn_rule_vers1
->chain
= (user64_addr_t
) p
->rule
->rulenum
;
740 dyn_rule_vers1
->id
= p
->id
;
741 dyn_rule_vers1
->mask
= p
->id
;
742 dyn_rule_vers1
->type
= p
->dyn_type
;
743 dyn_rule_vers1
->expire
= p
->expire
;
744 dyn_rule_vers1
->pcnt
= p
->pcnt
;
745 dyn_rule_vers1
->bcnt
= p
->bcnt
;
746 dyn_rule_vers1
->bucket
= p
->bucket
;
747 dyn_rule_vers1
->state
= p
->state
;
749 dyn_rule_vers1
->next
= CAST_DOWN(user64_addr_t
, p
->next
);
750 dyn_last
= dyn_rule_vers1
;
752 *len
+= sizeof(*dyn_rule_vers1
);
757 if (dyn_last
!= NULL
) {
758 dyn_last
->next
= CAST_DOWN(user64_addr_t
, NULL
);
764 sooptcopyin_fw( struct sockopt
*sopt
, struct ip_fw
*user_ip_fw
, size_t *size
)
766 size_t valsize
, copyinsize
= 0;
769 valsize
= sopt
->sopt_valsize
;
772 if (proc_is64bit(sopt
->sopt_p
)) {
773 struct ip_fw_64
*fw64
=NULL
;
775 if ( valsize
< sizeof(struct ip_fw_64
) ) {
779 copyinsize
= sizeof(struct ip_fw_64
);
780 if ( valsize
> copyinsize
)
781 sopt
->sopt_valsize
= valsize
= copyinsize
;
783 if ( sopt
->sopt_p
!= 0) {
784 fw64
= _MALLOC(copyinsize
, M_TEMP
, M_WAITOK
);
787 if ((error
= copyin(sopt
->sopt_val
, fw64
, valsize
)) != 0){
793 bcopy(CAST_DOWN(caddr_t
, sopt
->sopt_val
), fw64
, valsize
);
795 valsize
= copyfrom64fw( fw64
, user_ip_fw
, valsize
);
796 _FREE( fw64
, M_TEMP
);
798 struct ip_fw_32
*fw32
=NULL
;
800 if ( valsize
< sizeof(struct ip_fw_32
) ) {
804 copyinsize
= sizeof(struct ip_fw_32
);
805 if ( valsize
> copyinsize
)
806 sopt
->sopt_valsize
= valsize
= copyinsize
;
808 if ( sopt
->sopt_p
!= 0) {
809 fw32
= _MALLOC(copyinsize
, M_TEMP
, M_WAITOK
);
812 if ( (error
= copyin(sopt
->sopt_val
, fw32
, valsize
)) != 0){
813 _FREE( fw32
, M_TEMP
);
818 bcopy(CAST_DOWN(caddr_t
, sopt
->sopt_val
), fw32
, valsize
);
820 valsize
= copyfrom32fw( fw32
, user_ip_fw
, valsize
);
821 _FREE( fw32
, M_TEMP
);
829 * The following checks use two arrays of 8 or 16 bits to store the
830 * bits that we want set or clear, respectively. They are in the
831 * low and high half of cmd->arg1 or cmd->d[0].
833 * We scan options and store the bits we find set. We succeed if
835 * (want_set & ~bits) == 0 && (want_clear & ~bits) == want_clear
837 * The code is sometimes optimized not to store additional variables.
841 flags_match(ipfw_insn
*cmd
, u_int8_t bits
)
846 if ( ((cmd
->arg1
& 0xff) & bits
) != 0)
847 return 0; /* some bits we want set were clear */
848 want_clear
= (cmd
->arg1
>> 8) & 0xff;
849 if ( (want_clear
& bits
) != want_clear
)
850 return 0; /* some bits we want clear were set */
855 ipopts_match(struct ip
*ip
, ipfw_insn
*cmd
)
857 int optlen
, bits
= 0;
858 u_char
*cp
= (u_char
*)(ip
+ 1);
859 int x
= (ip
->ip_hl
<< 2) - sizeof (struct ip
);
861 for (; x
> 0; x
-= optlen
, cp
+= optlen
) {
862 int opt
= cp
[IPOPT_OPTVAL
];
864 if (opt
== IPOPT_EOL
)
866 if (opt
== IPOPT_NOP
)
869 optlen
= cp
[IPOPT_OLEN
];
870 if (optlen
<= 0 || optlen
> x
)
871 return 0; /* invalid or truncated */
879 bits
|= IP_FW_IPOPT_LSRR
;
883 bits
|= IP_FW_IPOPT_SSRR
;
887 bits
|= IP_FW_IPOPT_RR
;
891 bits
|= IP_FW_IPOPT_TS
;
895 return (flags_match(cmd
, bits
));
899 tcpopts_match(struct ip
*ip
, ipfw_insn
*cmd
)
901 int optlen
, bits
= 0;
902 struct tcphdr
*tcp
= L3HDR(struct tcphdr
,ip
);
903 u_char
*cp
= (u_char
*)(tcp
+ 1);
904 int x
= (tcp
->th_off
<< 2) - sizeof(struct tcphdr
);
906 for (; x
> 0; x
-= optlen
, cp
+= optlen
) {
908 if (opt
== TCPOPT_EOL
)
910 if (opt
== TCPOPT_NOP
)
924 bits
|= IP_FW_TCPOPT_MSS
;
928 bits
|= IP_FW_TCPOPT_WINDOW
;
931 case TCPOPT_SACK_PERMITTED
:
933 bits
|= IP_FW_TCPOPT_SACK
;
936 case TCPOPT_TIMESTAMP
:
937 bits
|= IP_FW_TCPOPT_TS
;
943 bits
|= IP_FW_TCPOPT_CC
;
947 return (flags_match(cmd
, bits
));
951 iface_match(struct ifnet
*ifp
, ipfw_insn_if
*cmd
)
953 if (ifp
== NULL
) /* no iface with this packet, match fails */
955 /* Check by name or by IP address */
956 if (cmd
->name
[0] != '\0') { /* match by name */
957 /* Check unit number (-1 is wildcard) */
958 if (cmd
->p
.unit
!= -1 && cmd
->p
.unit
!= ifp
->if_unit
)
961 if (!strncmp(ifp
->if_name
, cmd
->name
, IFNAMSIZ
))
966 ifnet_lock_shared(ifp
);
967 TAILQ_FOREACH(ia
, &ifp
->if_addrhead
, ifa_link
) {
968 if (ia
->ifa_addr
== NULL
)
970 if (ia
->ifa_addr
->sa_family
!= AF_INET
)
972 if (cmd
->p
.ip
.s_addr
== ((struct sockaddr_in
*)
973 (ia
->ifa_addr
))->sin_addr
.s_addr
) {
974 ifnet_lock_done(ifp
);
975 return(1); /* match */
978 ifnet_lock_done(ifp
);
980 return(0); /* no match, fail ... */
984 * The 'verrevpath' option checks that the interface that an IP packet
985 * arrives on is the same interface that traffic destined for the
986 * packet's source address would be routed out of. This is a measure
987 * to block forged packets. This is also commonly known as "anti-spoofing"
988 * or Unicast Reverse Path Forwarding (Unicast RFP) in Cisco-ese. The
989 * name of the knob is purposely reminisent of the Cisco IOS command,
991 * ip verify unicast reverse-path
993 * which implements the same functionality. But note that syntax is
994 * misleading. The check may be performed on all IP packets whether unicast,
995 * multicast, or broadcast.
998 verify_rev_path(struct in_addr src
, struct ifnet
*ifp
)
1000 static struct route ro
;
1001 struct sockaddr_in
*dst
;
1003 dst
= (struct sockaddr_in
*)&(ro
.ro_dst
);
1005 /* Check if we've cached the route from the previous call. */
1006 if (src
.s_addr
!= dst
->sin_addr
.s_addr
) {
1009 bzero(dst
, sizeof(*dst
));
1010 dst
->sin_family
= AF_INET
;
1011 dst
->sin_len
= sizeof(*dst
);
1012 dst
->sin_addr
= src
;
1014 rtalloc_ign(&ro
, RTF_CLONING
|RTF_PRCLONING
);
1016 if (ro
.ro_rt
!= NULL
)
1017 RT_LOCK_SPIN(ro
.ro_rt
);
1019 return 0; /* No route */
1020 if ((ifp
== NULL
) ||
1021 (ro
.ro_rt
->rt_ifp
->if_index
!= ifp
->if_index
)) {
1022 RT_UNLOCK(ro
.ro_rt
);
1025 RT_UNLOCK(ro
.ro_rt
);
1030 static u_int64_t norule_counter
; /* counter for ipfw_log(NULL...) */
1032 #define SNPARGS(buf, len) buf + len, sizeof(buf) > len ? sizeof(buf) - len : 0
1033 #define SNP(buf) buf, sizeof(buf)
1036 * We enter here when we have a rule with O_LOG.
1037 * XXX this function alone takes about 2Kbytes of code!
1040 ipfw_log(struct ip_fw
*f
, u_int hlen
, struct ether_header
*eh
,
1041 struct mbuf
*m
, struct ifnet
*oif
)
1044 int limit_reached
= 0;
1045 char ipv4str
[MAX_IPv4_STR_LEN
];
1046 char action2
[40], proto
[48], fragment
[28];
1051 if (f
== NULL
) { /* bogus pkt */
1052 if (verbose_limit
!= 0 && norule_counter
>= verbose_limit
)
1055 if (norule_counter
== verbose_limit
)
1056 limit_reached
= verbose_limit
;
1058 } else { /* O_LOG is the first action, find the real one */
1059 ipfw_insn
*cmd
= ACTION_PTR(f
);
1060 ipfw_insn_log
*l
= (ipfw_insn_log
*)cmd
;
1062 if (l
->max_log
!= 0 && l
->log_left
== 0)
1065 if (l
->log_left
== 0)
1066 limit_reached
= l
->max_log
;
1067 cmd
+= F_LEN(cmd
); /* point to first action */
1068 if (cmd
->opcode
== O_PROB
)
1072 switch (cmd
->opcode
) {
1078 if (cmd
->arg1
==ICMP_REJECT_RST
)
1080 else if (cmd
->arg1
==ICMP_UNREACH_HOST
)
1083 snprintf(SNPARGS(action2
, 0), "Unreach %d",
1094 snprintf(SNPARGS(action2
, 0), "Divert %d",
1098 snprintf(SNPARGS(action2
, 0), "Tee %d",
1102 snprintf(SNPARGS(action2
, 0), "SkipTo %d",
1106 snprintf(SNPARGS(action2
, 0), "Pipe %d",
1110 snprintf(SNPARGS(action2
, 0), "Queue %d",
1113 case O_FORWARD_IP
: {
1114 ipfw_insn_sa
*sa
= (ipfw_insn_sa
*)cmd
;
1117 if (f
->reserved_1
== IPFW_RULE_INACTIVE
) {
1120 len
= snprintf(SNPARGS(action2
, 0), "Forward to %s",
1121 inet_ntop(AF_INET
, &sa
->sa
.sin_addr
, ipv4str
, sizeof(ipv4str
)));
1122 if (sa
->sa
.sin_port
)
1123 snprintf(SNPARGS(action2
, len
), ":%d",
1133 if (hlen
== 0) { /* non-ip */
1134 snprintf(SNPARGS(proto
, 0), "MAC");
1136 struct ip
*ip
= mtod(m
, struct ip
*);
1137 /* these three are all aliases to the same thing */
1138 struct icmp
*const icmp
= L3HDR(struct icmp
, ip
);
1139 struct tcphdr
*const tcp
= (struct tcphdr
*)icmp
;
1140 struct udphdr
*const udp
= (struct udphdr
*)icmp
;
1142 int ip_off
, offset
, ip_len
;
1146 if (eh
!= NULL
) { /* layer 2 packets are as on the wire */
1147 ip_off
= ntohs(ip
->ip_off
);
1148 ip_len
= ntohs(ip
->ip_len
);
1150 ip_off
= ip
->ip_off
;
1151 ip_len
= ip
->ip_len
;
1153 offset
= ip_off
& IP_OFFMASK
;
1156 len
= snprintf(SNPARGS(proto
, 0), "TCP %s",
1157 inet_ntop(AF_INET
, &ip
->ip_src
, ipv4str
, sizeof(ipv4str
)));
1159 snprintf(SNPARGS(proto
, len
), ":%d %s:%d",
1160 ntohs(tcp
->th_sport
),
1161 inet_ntop(AF_INET
, &ip
->ip_dst
, ipv4str
, sizeof(ipv4str
)),
1162 ntohs(tcp
->th_dport
));
1164 snprintf(SNPARGS(proto
, len
), " %s",
1165 inet_ntop(AF_INET
, &ip
->ip_dst
, ipv4str
, sizeof(ipv4str
)));
1169 len
= snprintf(SNPARGS(proto
, 0), "UDP %s",
1170 inet_ntop(AF_INET
, &ip
->ip_src
, ipv4str
, sizeof(ipv4str
)));
1172 snprintf(SNPARGS(proto
, len
), ":%d %s:%d",
1173 ntohs(udp
->uh_sport
),
1174 inet_ntop(AF_INET
, &ip
->ip_dst
, ipv4str
, sizeof(ipv4str
)),
1175 ntohs(udp
->uh_dport
));
1177 snprintf(SNPARGS(proto
, len
), " %s",
1178 inet_ntop(AF_INET
, &ip
->ip_dst
, ipv4str
, sizeof(ipv4str
)));
1183 len
= snprintf(SNPARGS(proto
, 0),
1185 icmp
->icmp_type
, icmp
->icmp_code
);
1187 len
= snprintf(SNPARGS(proto
, 0), "ICMP ");
1188 len
+= snprintf(SNPARGS(proto
, len
), "%s",
1189 inet_ntop(AF_INET
, &ip
->ip_src
, ipv4str
, sizeof(ipv4str
)));
1190 snprintf(SNPARGS(proto
, len
), " %s",
1191 inet_ntop(AF_INET
, &ip
->ip_dst
, ipv4str
, sizeof(ipv4str
)));
1195 len
= snprintf(SNPARGS(proto
, 0), "P:%d %s", ip
->ip_p
,
1196 inet_ntop(AF_INET
, &ip
->ip_src
, ipv4str
, sizeof(ipv4str
)));
1197 snprintf(SNPARGS(proto
, len
), " %s",
1198 inet_ntop(AF_INET
, &ip
->ip_dst
, ipv4str
, sizeof(ipv4str
)));
1202 if (ip_off
& (IP_MF
| IP_OFFMASK
))
1203 snprintf(SNPARGS(fragment
, 0), " (frag %d:%d@%d%s)",
1204 ntohs(ip
->ip_id
), ip_len
- (ip
->ip_hl
<< 2),
1206 (ip_off
& IP_MF
) ? "+" : "");
1208 if (oif
|| m
->m_pkthdr
.rcvif
)
1210 dolog((LOG_AUTHPRIV
| LOG_INFO
,
1211 "ipfw: %d %s %s %s via %s%d%s\n",
1212 f
? f
->rulenum
: -1,
1213 action
, proto
, oif
? "out" : "in",
1214 oif
? oif
->if_name
: m
->m_pkthdr
.rcvif
->if_name
,
1215 oif
? oif
->if_unit
: m
->m_pkthdr
.rcvif
->if_unit
,
1219 dolog((LOG_AUTHPRIV
| LOG_INFO
,
1220 "ipfw: %d %s %s [no if info]%s\n",
1221 f
? f
->rulenum
: -1,
1222 action
, proto
, fragment
));
1225 dolog((LOG_AUTHPRIV
| LOG_NOTICE
,
1226 "ipfw: limit %d reached on entry %d\n",
1227 limit_reached
, f
? f
->rulenum
: -1));
1232 * IMPORTANT: the hash function for dynamic rules must be commutative
1233 * in source and destination (ip,port), because rules are bidirectional
1234 * and we want to find both in the same bucket.
1237 hash_packet(struct ipfw_flow_id
*id
)
1241 i
= (id
->dst_ip
) ^ (id
->src_ip
) ^ (id
->dst_port
) ^ (id
->src_port
);
1242 i
&= (curr_dyn_buckets
- 1);
1247 * unlink a dynamic rule from a chain. prev is a pointer to
1248 * the previous one, q is a pointer to the rule to delete,
1249 * head is a pointer to the head of the queue.
1250 * Modifies q and potentially also head.
1252 #define UNLINK_DYN_RULE(prev, head, q) { \
1253 ipfw_dyn_rule *old_q = q; \
1255 /* remove a refcount to the parent */ \
1256 if (q->dyn_type == O_LIMIT) \
1257 q->parent->count--; \
1258 DEB(printf("ipfw: unlink entry 0x%08x %d -> 0x%08x %d, %d left\n",\
1259 (q->id.src_ip), (q->id.src_port), \
1260 (q->id.dst_ip), (q->id.dst_port), dyn_count-1 ); ) \
1262 prev->next = q = q->next; \
1264 head = q = q->next; \
1266 _FREE(old_q, M_IPFW); }
1268 #define TIME_LEQ(a,b) ((int)((a)-(b)) <= 0)
1271 * Remove dynamic rules pointing to "rule", or all of them if rule == NULL.
1273 * If keep_me == NULL, rules are deleted even if not expired,
1274 * otherwise only expired rules are removed.
1276 * The value of the second parameter is also used to point to identify
1277 * a rule we absolutely do not want to remove (e.g. because we are
1278 * holding a reference to it -- this is the case with O_LIMIT_PARENT
1279 * rules). The pointer is only used for comparison, so any non-null
1283 remove_dyn_rule(struct ip_fw
*rule
, ipfw_dyn_rule
*keep_me
)
1285 static u_int32_t last_remove
= 0;
1287 #define FORCE (keep_me == NULL)
1289 ipfw_dyn_rule
*prev
, *q
;
1290 int i
, pass
= 0, max_pass
= 0;
1291 struct timeval timenow
;
1293 getmicrotime(&timenow
);
1295 if (ipfw_dyn_v
== NULL
|| dyn_count
== 0)
1297 /* do not expire more than once per second, it is useless */
1298 if (!FORCE
&& last_remove
== timenow
.tv_sec
)
1300 last_remove
= timenow
.tv_sec
;
1303 * because O_LIMIT refer to parent rules, during the first pass only
1304 * remove child and mark any pending LIMIT_PARENT, and remove
1305 * them in a second pass.
1308 for (i
= 0 ; i
< curr_dyn_buckets
; i
++) {
1309 for (prev
=NULL
, q
= ipfw_dyn_v
[i
] ; q
; ) {
1311 * Logic can become complex here, so we split tests.
1315 if (rule
!= NULL
&& rule
!= q
->rule
)
1316 goto next
; /* not the one we are looking for */
1317 if (q
->dyn_type
== O_LIMIT_PARENT
) {
1319 * handle parent in the second pass,
1320 * record we need one.
1325 if (FORCE
&& q
->count
!= 0 ) {
1326 /* XXX should not happen! */
1327 printf("ipfw: OUCH! cannot remove rule,"
1328 " count %d\n", q
->count
);
1332 !TIME_LEQ( q
->expire
, timenow
.tv_sec
))
1335 if (q
->dyn_type
!= O_LIMIT_PARENT
|| !q
->count
) {
1336 UNLINK_DYN_RULE(prev
, ipfw_dyn_v
[i
], q
);
1344 if (pass
++ < max_pass
)
1350 * lookup a dynamic rule.
1352 static ipfw_dyn_rule
*
1353 lookup_dyn_rule(struct ipfw_flow_id
*pkt
, int *match_direction
,
1357 * stateful ipfw extensions.
1358 * Lookup into dynamic session queue
1360 #define MATCH_REVERSE 0
1361 #define MATCH_FORWARD 1
1362 #define MATCH_NONE 2
1363 #define MATCH_UNKNOWN 3
1364 #define BOTH_SYN (TH_SYN | (TH_SYN << 8))
1365 #define BOTH_FIN (TH_FIN | (TH_FIN << 8))
1367 int i
, dir
= MATCH_NONE
;
1368 ipfw_dyn_rule
*prev
, *q
=NULL
;
1369 struct timeval timenow
;
1371 getmicrotime(&timenow
);
1373 if (ipfw_dyn_v
== NULL
)
1374 goto done
; /* not found */
1375 i
= hash_packet( pkt
);
1376 for (prev
=NULL
, q
= ipfw_dyn_v
[i
] ; q
!= NULL
; ) {
1377 if (q
->dyn_type
== O_LIMIT_PARENT
&& q
->count
)
1379 if (TIME_LEQ( q
->expire
, timenow
.tv_sec
)) { /* expire entry */
1382 /* check if entry is TCP */
1383 if ( q
->id
.proto
== IPPROTO_TCP
)
1385 /* do not delete an established TCP connection which hasn't been closed by both sides */
1386 if ( (q
->state
& (BOTH_SYN
| BOTH_FIN
)) != (BOTH_SYN
| BOTH_FIN
) )
1390 UNLINK_DYN_RULE(prev
, ipfw_dyn_v
[i
], q
);
1394 if (pkt
->proto
== q
->id
.proto
&&
1395 q
->dyn_type
!= O_LIMIT_PARENT
) {
1396 if (pkt
->src_ip
== q
->id
.src_ip
&&
1397 pkt
->dst_ip
== q
->id
.dst_ip
&&
1398 pkt
->src_port
== q
->id
.src_port
&&
1399 pkt
->dst_port
== q
->id
.dst_port
) {
1400 dir
= MATCH_FORWARD
;
1403 if (pkt
->src_ip
== q
->id
.dst_ip
&&
1404 pkt
->dst_ip
== q
->id
.src_ip
&&
1405 pkt
->src_port
== q
->id
.dst_port
&&
1406 pkt
->dst_port
== q
->id
.src_port
) {
1407 dir
= MATCH_REVERSE
;
1416 goto done
; /* q = NULL, not found */
1418 if ( prev
!= NULL
) { /* found and not in front */
1419 prev
->next
= q
->next
;
1420 q
->next
= ipfw_dyn_v
[i
];
1423 if (pkt
->proto
== IPPROTO_TCP
) { /* update state according to flags */
1424 u_char flags
= pkt
->flags
& (TH_FIN
|TH_SYN
|TH_RST
);
1426 q
->state
|= (dir
== MATCH_FORWARD
) ? flags
: (flags
<< 8);
1428 case TH_SYN
: /* opening */
1429 q
->expire
= timenow
.tv_sec
+ dyn_syn_lifetime
;
1432 case BOTH_SYN
: /* move to established */
1433 case BOTH_SYN
| TH_FIN
: /* one side tries to close */
1434 case BOTH_SYN
| (TH_FIN
<< 8) :
1436 #define _SEQ_GE(a,b) ((int)(a) - (int)(b) >= 0)
1437 u_int32_t ack
= ntohl(tcp
->th_ack
);
1438 if (dir
== MATCH_FORWARD
) {
1439 if (q
->ack_fwd
== 0 || _SEQ_GE(ack
, q
->ack_fwd
))
1441 else { /* ignore out-of-sequence */
1445 if (q
->ack_rev
== 0 || _SEQ_GE(ack
, q
->ack_rev
))
1447 else { /* ignore out-of-sequence */
1452 q
->expire
= timenow
.tv_sec
+ dyn_ack_lifetime
;
1455 case BOTH_SYN
| BOTH_FIN
: /* both sides closed */
1456 if (dyn_fin_lifetime
>= dyn_keepalive_period
)
1457 dyn_fin_lifetime
= dyn_keepalive_period
- 1;
1458 q
->expire
= timenow
.tv_sec
+ dyn_fin_lifetime
;
1464 * reset or some invalid combination, but can also
1465 * occur if we use keep-state the wrong way.
1467 if ( (q
->state
& ((TH_RST
<< 8)|TH_RST
)) == 0)
1468 printf("invalid state: 0x%x\n", q
->state
);
1470 if (dyn_rst_lifetime
>= dyn_keepalive_period
)
1471 dyn_rst_lifetime
= dyn_keepalive_period
- 1;
1472 q
->expire
= timenow
.tv_sec
+ dyn_rst_lifetime
;
1475 } else if (pkt
->proto
== IPPROTO_UDP
) {
1476 q
->expire
= timenow
.tv_sec
+ dyn_udp_lifetime
;
1478 /* other protocols */
1479 q
->expire
= timenow
.tv_sec
+ dyn_short_lifetime
;
1482 if (match_direction
)
1483 *match_direction
= dir
;
1488 realloc_dynamic_table(void)
1491 * Try reallocation, make sure we have a power of 2 and do
1492 * not allow more than 64k entries. In case of overflow,
1496 if (dyn_buckets
> 65536)
1498 if ((dyn_buckets
& (dyn_buckets
-1)) != 0) { /* not a power of 2 */
1499 dyn_buckets
= curr_dyn_buckets
; /* reset */
1502 curr_dyn_buckets
= dyn_buckets
;
1503 if (ipfw_dyn_v
!= NULL
)
1504 _FREE(ipfw_dyn_v
, M_IPFW
);
1506 ipfw_dyn_v
= _MALLOC(curr_dyn_buckets
* sizeof(ipfw_dyn_rule
*),
1507 M_IPFW
, M_NOWAIT
| M_ZERO
);
1508 if (ipfw_dyn_v
!= NULL
|| curr_dyn_buckets
<= 2)
1510 curr_dyn_buckets
/= 2;
1515 * Install state of type 'type' for a dynamic session.
1516 * The hash table contains two type of rules:
1517 * - regular rules (O_KEEP_STATE)
1518 * - rules for sessions with limited number of sess per user
1519 * (O_LIMIT). When they are created, the parent is
1520 * increased by 1, and decreased on delete. In this case,
1521 * the third parameter is the parent rule and not the chain.
1522 * - "parent" rules for the above (O_LIMIT_PARENT).
1524 static ipfw_dyn_rule
*
1525 add_dyn_rule(struct ipfw_flow_id
*id
, u_int8_t dyn_type
, struct ip_fw
*rule
)
1529 struct timeval timenow
;
1531 getmicrotime(&timenow
);
1533 if (ipfw_dyn_v
== NULL
||
1534 (dyn_count
== 0 && dyn_buckets
!= curr_dyn_buckets
)) {
1535 realloc_dynamic_table();
1536 if (ipfw_dyn_v
== NULL
)
1537 return NULL
; /* failed ! */
1539 i
= hash_packet(id
);
1541 r
= _MALLOC(sizeof *r
, M_IPFW
, M_NOWAIT
| M_ZERO
);
1544 printf ("ipfw: sorry cannot allocate state\n");
1549 /* increase refcount on parent, and set pointer */
1550 if (dyn_type
== O_LIMIT
) {
1551 ipfw_dyn_rule
*parent
= (ipfw_dyn_rule
*)rule
;
1552 if ( parent
->dyn_type
!= O_LIMIT_PARENT
)
1553 panic("invalid parent");
1556 rule
= parent
->rule
;
1560 r
->expire
= timenow
.tv_sec
+ dyn_syn_lifetime
;
1562 r
->dyn_type
= dyn_type
;
1563 r
->pcnt
= r
->bcnt
= 0;
1567 r
->next
= ipfw_dyn_v
[i
];
1570 DEB(printf("ipfw: add dyn entry ty %d 0x%08x %d -> 0x%08x %d, total %d\n",
1572 (r
->id
.src_ip
), (r
->id
.src_port
),
1573 (r
->id
.dst_ip
), (r
->id
.dst_port
),
1579 * lookup dynamic parent rule using pkt and rule as search keys.
1580 * If the lookup fails, then install one.
1582 static ipfw_dyn_rule
*
1583 lookup_dyn_parent(struct ipfw_flow_id
*pkt
, struct ip_fw
*rule
)
1587 struct timeval timenow
;
1589 getmicrotime(&timenow
);
1592 i
= hash_packet( pkt
);
1593 for (q
= ipfw_dyn_v
[i
] ; q
!= NULL
; q
=q
->next
)
1594 if (q
->dyn_type
== O_LIMIT_PARENT
&&
1596 pkt
->proto
== q
->id
.proto
&&
1597 pkt
->src_ip
== q
->id
.src_ip
&&
1598 pkt
->dst_ip
== q
->id
.dst_ip
&&
1599 pkt
->src_port
== q
->id
.src_port
&&
1600 pkt
->dst_port
== q
->id
.dst_port
) {
1601 q
->expire
= timenow
.tv_sec
+ dyn_short_lifetime
;
1602 DEB(printf("ipfw: lookup_dyn_parent found 0x%p\n",q
);)
1606 return add_dyn_rule(pkt
, O_LIMIT_PARENT
, rule
);
1610 * Install dynamic state for rule type cmd->o.opcode
1612 * Returns 1 (failure) if state is not installed because of errors or because
1613 * session limitations are enforced.
1616 install_state(struct ip_fw
*rule
, ipfw_insn_limit
*cmd
,
1617 struct ip_fw_args
*args
)
1619 static int last_log
;
1620 struct timeval timenow
;
1623 getmicrotime(&timenow
);
1625 DEB(printf("ipfw: install state type %d 0x%08x %u -> 0x%08x %u\n",
1627 (args
->f_id
.src_ip
), (args
->f_id
.src_port
),
1628 (args
->f_id
.dst_ip
), (args
->f_id
.dst_port
) );)
1630 q
= lookup_dyn_rule(&args
->f_id
, NULL
, NULL
);
1632 if (q
!= NULL
) { /* should never occur */
1633 if (last_log
!= timenow
.tv_sec
) {
1634 last_log
= timenow
.tv_sec
;
1635 printf("ipfw: install_state: entry already present, done\n");
1640 if (dyn_count
>= dyn_max
)
1642 * Run out of slots, try to remove any expired rule.
1644 remove_dyn_rule(NULL
, (ipfw_dyn_rule
*)1);
1646 if (dyn_count
>= dyn_max
) {
1647 if (last_log
!= timenow
.tv_sec
) {
1648 last_log
= timenow
.tv_sec
;
1649 printf("ipfw: install_state: Too many dynamic rules\n");
1651 return 1; /* cannot install, notify caller */
1654 switch (cmd
->o
.opcode
) {
1655 case O_KEEP_STATE
: /* bidir rule */
1656 add_dyn_rule(&args
->f_id
, O_KEEP_STATE
, rule
);
1659 case O_LIMIT
: /* limit number of sessions */
1661 u_int16_t limit_mask
= cmd
->limit_mask
;
1662 struct ipfw_flow_id id
;
1663 ipfw_dyn_rule
*parent
;
1665 DEB(printf("ipfw: installing dyn-limit rule %d\n",
1668 id
.dst_ip
= id
.src_ip
= 0;
1669 id
.dst_port
= id
.src_port
= 0;
1670 id
.proto
= args
->f_id
.proto
;
1672 if (limit_mask
& DYN_SRC_ADDR
)
1673 id
.src_ip
= args
->f_id
.src_ip
;
1674 if (limit_mask
& DYN_DST_ADDR
)
1675 id
.dst_ip
= args
->f_id
.dst_ip
;
1676 if (limit_mask
& DYN_SRC_PORT
)
1677 id
.src_port
= args
->f_id
.src_port
;
1678 if (limit_mask
& DYN_DST_PORT
)
1679 id
.dst_port
= args
->f_id
.dst_port
;
1680 parent
= lookup_dyn_parent(&id
, rule
);
1681 if (parent
== NULL
) {
1682 printf("ipfw: add parent failed\n");
1685 if (parent
->count
>= cmd
->conn_limit
) {
1687 * See if we can remove some expired rule.
1689 remove_dyn_rule(rule
, parent
);
1690 if (parent
->count
>= cmd
->conn_limit
) {
1691 if (fw_verbose
&& last_log
!= timenow
.tv_sec
) {
1692 last_log
= timenow
.tv_sec
;
1693 dolog((LOG_AUTHPRIV
| LOG_DEBUG
,
1694 "drop session, too many entries\n"));
1699 add_dyn_rule(&args
->f_id
, O_LIMIT
, (struct ip_fw
*)parent
);
1703 printf("ipfw: unknown dynamic rule type %u\n", cmd
->o
.opcode
);
1706 lookup_dyn_rule(&args
->f_id
, NULL
, NULL
); /* XXX just set lifetime */
1711 * Generate a TCP packet, containing either a RST or a keepalive.
1712 * When flags & TH_RST, we are sending a RST packet, because of a
1713 * "reset" action matched the packet.
1714 * Otherwise we are sending a keepalive, and flags & TH_
1716 static struct mbuf
*
1717 send_pkt(struct ipfw_flow_id
*id
, u_int32_t seq
, u_int32_t ack
, int flags
)
1723 MGETHDR(m
, M_DONTWAIT
, MT_HEADER
); /* MAC-OK */
1726 m
->m_pkthdr
.rcvif
= (struct ifnet
*)0;
1727 m
->m_pkthdr
.len
= m
->m_len
= sizeof(struct ip
) + sizeof(struct tcphdr
);
1728 m
->m_data
+= max_linkhdr
;
1730 ip
= mtod(m
, struct ip
*);
1731 bzero(ip
, m
->m_len
);
1732 tcp
= (struct tcphdr
*)(ip
+ 1); /* no IP options */
1733 ip
->ip_p
= IPPROTO_TCP
;
1736 * Assume we are sending a RST (or a keepalive in the reverse
1737 * direction), swap src and destination addresses and ports.
1739 ip
->ip_src
.s_addr
= htonl(id
->dst_ip
);
1740 ip
->ip_dst
.s_addr
= htonl(id
->src_ip
);
1741 tcp
->th_sport
= htons(id
->dst_port
);
1742 tcp
->th_dport
= htons(id
->src_port
);
1743 if (flags
& TH_RST
) { /* we are sending a RST */
1744 if (flags
& TH_ACK
) {
1745 tcp
->th_seq
= htonl(ack
);
1746 tcp
->th_ack
= htonl(0);
1747 tcp
->th_flags
= TH_RST
;
1751 tcp
->th_seq
= htonl(0);
1752 tcp
->th_ack
= htonl(seq
);
1753 tcp
->th_flags
= TH_RST
| TH_ACK
;
1757 * We are sending a keepalive. flags & TH_SYN determines
1758 * the direction, forward if set, reverse if clear.
1759 * NOTE: seq and ack are always assumed to be correct
1760 * as set by the caller. This may be confusing...
1762 if (flags
& TH_SYN
) {
1764 * we have to rewrite the correct addresses!
1766 ip
->ip_dst
.s_addr
= htonl(id
->dst_ip
);
1767 ip
->ip_src
.s_addr
= htonl(id
->src_ip
);
1768 tcp
->th_dport
= htons(id
->dst_port
);
1769 tcp
->th_sport
= htons(id
->src_port
);
1771 tcp
->th_seq
= htonl(seq
);
1772 tcp
->th_ack
= htonl(ack
);
1773 tcp
->th_flags
= TH_ACK
;
1776 * set ip_len to the payload size so we can compute
1777 * the tcp checksum on the pseudoheader
1778 * XXX check this, could save a couple of words ?
1780 ip
->ip_len
= htons(sizeof(struct tcphdr
));
1781 tcp
->th_sum
= in_cksum(m
, m
->m_pkthdr
.len
);
1783 * now fill fields left out earlier
1785 ip
->ip_ttl
= ip_defttl
;
1786 ip
->ip_len
= m
->m_pkthdr
.len
;
1787 m
->m_flags
|= M_SKIP_FIREWALL
;
1793 * sends a reject message, consuming the mbuf passed as an argument.
1796 send_reject(struct ip_fw_args
*args
, int code
, int offset
, __unused
int ip_len
)
1799 if (code
!= ICMP_REJECT_RST
) { /* Send an ICMP unreach */
1800 /* We need the IP header in host order for icmp_error(). */
1801 if (args
->eh
!= NULL
) {
1802 struct ip
*ip
= mtod(args
->m
, struct ip
*);
1803 ip
->ip_len
= ntohs(ip
->ip_len
);
1804 ip
->ip_off
= ntohs(ip
->ip_off
);
1806 args
->m
->m_flags
|= M_SKIP_FIREWALL
;
1807 icmp_error(args
->m
, ICMP_UNREACH
, code
, 0L, 0);
1808 } else if (offset
== 0 && args
->f_id
.proto
== IPPROTO_TCP
) {
1809 struct tcphdr
*const tcp
=
1810 L3HDR(struct tcphdr
, mtod(args
->m
, struct ip
*));
1811 if ( (tcp
->th_flags
& TH_RST
) == 0) {
1814 m
= send_pkt(&(args
->f_id
), ntohl(tcp
->th_seq
),
1816 tcp
->th_flags
| TH_RST
);
1818 struct route sro
; /* fake route */
1820 bzero (&sro
, sizeof (sro
));
1821 ip_output_list(m
, 0, NULL
, &sro
, 0, NULL
, NULL
);
1834 * Given an ip_fw *, lookup_next_rule will return a pointer
1835 * to the next rule, which can be either the jump
1836 * target (for skipto instructions) or the next one in the list (in
1837 * all other cases including a missing jump target).
1838 * The result is also written in the "next_rule" field of the rule.
1839 * Backward jumps are not allowed, so start looking from the next
1842 * This never returns NULL -- in case we do not have an exact match,
1843 * the next rule is returned. When the ruleset is changed,
1844 * pointers are flushed so we are always correct.
1847 static struct ip_fw
*
1848 lookup_next_rule(struct ip_fw
*me
)
1850 struct ip_fw
*rule
= NULL
;
1853 /* look for action, in case it is a skipto */
1854 cmd
= ACTION_PTR(me
);
1855 if (cmd
->opcode
== O_LOG
)
1857 if ( cmd
->opcode
== O_SKIPTO
)
1858 for (rule
= me
->next
; rule
; rule
= rule
->next
)
1859 if (rule
->rulenum
>= cmd
->arg1
)
1861 if (rule
== NULL
) /* failure or not a skipto */
1863 me
->next_rule
= rule
;
1868 * The main check routine for the firewall.
1870 * All arguments are in args so we can modify them and return them
1871 * back to the caller.
1875 * args->m (in/out) The packet; we set to NULL when/if we nuke it.
1876 * Starts with the IP header.
1877 * args->eh (in) Mac header if present, or NULL for layer3 packet.
1878 * args->oif Outgoing interface, or NULL if packet is incoming.
1879 * The incoming interface is in the mbuf. (in)
1880 * args->divert_rule (in/out)
1881 * Skip up to the first rule past this rule number;
1882 * upon return, non-zero port number for divert or tee.
1884 * args->rule Pointer to the last matching rule (in/out)
1885 * args->next_hop Socket we are forwarding to (out).
1886 * args->f_id Addresses grabbed from the packet (out)
1890 * IP_FW_PORT_DENY_FLAG the packet must be dropped.
1891 * 0 The packet is to be accepted and routed normally OR
1892 * the packet was denied/rejected and has been dropped;
1893 * in the latter case, *m is equal to NULL upon return.
1894 * port Divert the packet to port, with these caveats:
1896 * - If IP_FW_PORT_TEE_FLAG is set, tee the packet instead
1897 * of diverting it (ie, 'ipfw tee').
1899 * - If IP_FW_PORT_DYNT_FLAG is set, interpret the lower
1900 * 16 bits as a dummynet pipe number instead of diverting
1904 ipfw_chk(struct ip_fw_args
*args
)
1907 * Local variables hold state during the processing of a packet.
1909 * IMPORTANT NOTE: to speed up the processing of rules, there
1910 * are some assumption on the values of the variables, which
1911 * are documented here. Should you change them, please check
1912 * the implementation of the various instructions to make sure
1913 * that they still work.
1915 * args->eh The MAC header. It is non-null for a layer2
1916 * packet, it is NULL for a layer-3 packet.
1918 * m | args->m Pointer to the mbuf, as received from the caller.
1919 * It may change if ipfw_chk() does an m_pullup, or if it
1920 * consumes the packet because it calls send_reject().
1921 * XXX This has to change, so that ipfw_chk() never modifies
1922 * or consumes the buffer.
1923 * ip is simply an alias of the value of m, and it is kept
1924 * in sync with it (the packet is supposed to start with
1927 struct mbuf
*m
= args
->m
;
1928 struct ip
*ip
= mtod(m
, struct ip
*);
1931 * oif | args->oif If NULL, ipfw_chk has been called on the
1932 * inbound path (ether_input, bdg_forward, ip_input).
1933 * If non-NULL, ipfw_chk has been called on the outbound path
1934 * (ether_output, ip_output).
1936 struct ifnet
*oif
= args
->oif
;
1938 struct ip_fw
*f
= NULL
; /* matching rule */
1942 * hlen The length of the IPv4 header.
1943 * hlen >0 means we have an IPv4 packet.
1945 u_int hlen
= 0; /* hlen >0 means we have an IP pkt */
1948 * offset The offset of a fragment. offset != 0 means that
1949 * we have a fragment at this offset of an IPv4 packet.
1950 * offset == 0 means that (if this is an IPv4 packet)
1951 * this is the first or only fragment.
1956 * Local copies of addresses. They are only valid if we have
1959 * proto The protocol. Set to 0 for non-ip packets,
1960 * or to the protocol read from the packet otherwise.
1961 * proto != 0 means that we have an IPv4 packet.
1963 * src_port, dst_port port numbers, in HOST format. Only
1964 * valid for TCP and UDP packets.
1966 * src_ip, dst_ip ip addresses, in NETWORK format.
1967 * Only valid for IPv4 packets.
1970 u_int16_t src_port
= 0, dst_port
= 0; /* NOTE: host format */
1971 struct in_addr src_ip
= { 0 } , dst_ip
= { 0 }; /* NOTE: network format */
1974 int dyn_dir
= MATCH_UNKNOWN
;
1975 ipfw_dyn_rule
*q
= NULL
;
1976 struct timeval timenow
;
1978 if (m
->m_flags
& M_SKIP_FIREWALL
|| fw_bypass
) {
1979 return 0; /* accept */
1983 * Clear packet chain if we find one here.
1986 if (m
->m_nextpkt
!= NULL
) {
1987 m_freem_list(m
->m_nextpkt
);
1988 m
->m_nextpkt
= NULL
;
1991 lck_mtx_lock(ipfw_mutex
);
1993 getmicrotime(&timenow
);
1995 * dyn_dir = MATCH_UNKNOWN when rules unchecked,
1996 * MATCH_NONE when checked and not matched (q = NULL),
1997 * MATCH_FORWARD or MATCH_REVERSE otherwise (q != NULL)
2000 pktlen
= m
->m_pkthdr
.len
;
2001 if (args
->eh
== NULL
|| /* layer 3 packet */
2002 ( m
->m_pkthdr
.len
>= sizeof(struct ip
) &&
2003 ntohs(args
->eh
->ether_type
) == ETHERTYPE_IP
))
2004 hlen
= ip
->ip_hl
<< 2;
2007 * Collect parameters into local variables for faster matching.
2009 if (hlen
== 0) { /* do not grab addresses for non-ip pkts */
2010 proto
= args
->f_id
.proto
= 0; /* mark f_id invalid */
2011 goto after_ip_checks
;
2014 proto
= args
->f_id
.proto
= ip
->ip_p
;
2015 src_ip
= ip
->ip_src
;
2016 dst_ip
= ip
->ip_dst
;
2017 if (args
->eh
!= NULL
) { /* layer 2 packets are as on the wire */
2018 offset
= ntohs(ip
->ip_off
) & IP_OFFMASK
;
2019 ip_len
= ntohs(ip
->ip_len
);
2021 offset
= ip
->ip_off
& IP_OFFMASK
;
2022 ip_len
= ip
->ip_len
;
2024 pktlen
= ip_len
< pktlen
? ip_len
: pktlen
;
2026 #define PULLUP_TO(len) \
2028 if ((m)->m_len < (len)) { \
2029 args->m = m = m_pullup(m, (len)); \
2031 goto pullup_failed; \
2032 ip = mtod(m, struct ip *); \
2042 PULLUP_TO(hlen
+ sizeof(struct tcphdr
));
2043 tcp
= L3HDR(struct tcphdr
, ip
);
2044 dst_port
= tcp
->th_dport
;
2045 src_port
= tcp
->th_sport
;
2046 args
->f_id
.flags
= tcp
->th_flags
;
2054 PULLUP_TO(hlen
+ sizeof(struct udphdr
));
2055 udp
= L3HDR(struct udphdr
, ip
);
2056 dst_port
= udp
->uh_dport
;
2057 src_port
= udp
->uh_sport
;
2062 PULLUP_TO(hlen
+ 4); /* type, code and checksum. */
2063 args
->f_id
.flags
= L3HDR(struct icmp
, ip
)->icmp_type
;
2072 args
->f_id
.src_ip
= ntohl(src_ip
.s_addr
);
2073 args
->f_id
.dst_ip
= ntohl(dst_ip
.s_addr
);
2074 args
->f_id
.src_port
= src_port
= ntohs(src_port
);
2075 args
->f_id
.dst_port
= dst_port
= ntohs(dst_port
);
2080 * Packet has already been tagged. Look for the next rule
2081 * to restart processing.
2083 * If fw_one_pass != 0 then just accept it.
2084 * XXX should not happen here, but optimized out in
2088 lck_mtx_unlock(ipfw_mutex
);
2092 f
= args
->rule
->next_rule
;
2094 f
= lookup_next_rule(args
->rule
);
2097 * Find the starting rule. It can be either the first
2098 * one, or the one after divert_rule if asked so.
2100 int skipto
= args
->divert_rule
;
2103 if (args
->eh
== NULL
&& skipto
!= 0) {
2104 if (skipto
>= IPFW_DEFAULT_RULE
) {
2105 lck_mtx_unlock(ipfw_mutex
);
2106 return(IP_FW_PORT_DENY_FLAG
); /* invalid */
2108 while (f
&& f
->rulenum
<= skipto
)
2110 if (f
== NULL
) { /* drop packet */
2111 lck_mtx_unlock(ipfw_mutex
);
2112 return(IP_FW_PORT_DENY_FLAG
);
2116 args
->divert_rule
= 0; /* reset to avoid confusion later */
2119 * Now scan the rules, and parse microinstructions for each rule.
2121 for (; f
; f
= f
->next
) {
2124 int skip_or
; /* skip rest of OR block */
2127 if (f
->reserved_1
== IPFW_RULE_INACTIVE
) {
2131 if (set_disable
& (1 << f
->set
) )
2135 for (l
= f
->cmd_len
, cmd
= f
->cmd
; l
> 0 ;
2136 l
-= cmdlen
, cmd
+= cmdlen
) {
2140 * check_body is a jump target used when we find a
2141 * CHECK_STATE, and need to jump to the body of
2146 cmdlen
= F_LEN(cmd
);
2148 * An OR block (insn_1 || .. || insn_n) has the
2149 * F_OR bit set in all but the last instruction.
2150 * The first match will set "skip_or", and cause
2151 * the following instructions to be skipped until
2152 * past the one with the F_OR bit clear.
2154 if (skip_or
) { /* skip this instruction */
2155 if ((cmd
->len
& F_OR
) == 0)
2156 skip_or
= 0; /* next one is good */
2159 match
= 0; /* set to 1 if we succeed */
2161 switch (cmd
->opcode
) {
2163 * The first set of opcodes compares the packet's
2164 * fields with some pattern, setting 'match' if a
2165 * match is found. At the end of the loop there is
2166 * logic to deal with F_NOT and F_OR flags associated
2174 printf("ipfw: opcode %d unimplemented\n",
2183 * We only check offset == 0 && proto != 0,
2184 * as this ensures that we have an IPv4
2185 * packet with the ports info.
2191 struct inpcbinfo
*pi
;
2195 if (proto
== IPPROTO_TCP
) {
2198 } else if (proto
== IPPROTO_UDP
) {
2205 in_pcblookup_hash(pi
,
2206 dst_ip
, htons(dst_port
),
2207 src_ip
, htons(src_port
),
2209 in_pcblookup_hash(pi
,
2210 src_ip
, htons(src_port
),
2211 dst_ip
, htons(dst_port
),
2214 if (pcb
== NULL
|| pcb
->inp_socket
== NULL
)
2216 #if __FreeBSD_version < 500034
2217 #define socheckuid(a,b) (kauth_cred_getuid((a)->so_cred) != (b))
2219 if (cmd
->opcode
== O_UID
) {
2222 (pcb
->inp_socket
->so_uid
== (uid_t
)((ipfw_insn_u32
*)cmd
)->d
[0]);
2224 !socheckuid(pcb
->inp_socket
,
2225 (uid_t
)((ipfw_insn_u32
*)cmd
)->d
[0]);
2231 kauth_cred_ismember_gid(pcb
->inp_socket
->so_cred
,
2232 (gid_t
)((ipfw_insn_u32
*)cmd
)->d
[0], &match
);
2235 /* release reference on pcb */
2236 in_pcb_checkstate(pcb
, WNT_RELEASE
, 0);
2242 match
= iface_match(m
->m_pkthdr
.rcvif
,
2243 (ipfw_insn_if
*)cmd
);
2247 match
= iface_match(oif
, (ipfw_insn_if
*)cmd
);
2251 match
= iface_match(oif
? oif
:
2252 m
->m_pkthdr
.rcvif
, (ipfw_insn_if
*)cmd
);
2256 if (args
->eh
!= NULL
) { /* have MAC header */
2257 u_int32_t
*want
= (u_int32_t
*)
2258 ((ipfw_insn_mac
*)cmd
)->addr
;
2259 u_int32_t
*mask
= (u_int32_t
*)
2260 ((ipfw_insn_mac
*)cmd
)->mask
;
2261 u_int32_t
*hdr
= (u_int32_t
*)args
->eh
;
2264 ( want
[0] == (hdr
[0] & mask
[0]) &&
2265 want
[1] == (hdr
[1] & mask
[1]) &&
2266 want
[2] == (hdr
[2] & mask
[2]) );
2271 if (args
->eh
!= NULL
) {
2273 ntohs(args
->eh
->ether_type
);
2275 ((ipfw_insn_u16
*)cmd
)->ports
;
2278 for (i
= cmdlen
- 1; !match
&& i
>0;
2280 match
= (t
>=p
[0] && t
<=p
[1]);
2285 match
= (hlen
> 0 && offset
!= 0);
2288 case O_IN
: /* "out" is "not in" */
2289 match
= (oif
== NULL
);
2293 match
= (args
->eh
!= NULL
);
2298 * We do not allow an arg of 0 so the
2299 * check of "proto" only suffices.
2301 match
= (proto
== cmd
->arg1
);
2305 match
= (hlen
> 0 &&
2306 ((ipfw_insn_ip
*)cmd
)->addr
.s_addr
==
2314 (cmd
->opcode
== O_IP_DST_MASK
) ?
2315 dst_ip
.s_addr
: src_ip
.s_addr
;
2316 uint32_t *p
= ((ipfw_insn_u32
*)cmd
)->d
;
2319 for (; !match
&& i
>0; i
-= 2, p
+= 2)
2320 match
= (p
[0] == (a
& p
[1]));
2328 INADDR_TO_IFP(src_ip
, tif
);
2329 match
= (tif
!= NULL
);
2336 u_int32_t
*d
= (u_int32_t
*)(cmd
+1);
2338 cmd
->opcode
== O_IP_DST_SET
?
2344 addr
-= d
[0]; /* subtract base */
2345 match
= (addr
< cmd
->arg1
) &&
2346 ( d
[ 1 + (addr
>>5)] &
2347 (1<<(addr
& 0x1f)) );
2352 match
= (hlen
> 0 &&
2353 ((ipfw_insn_ip
*)cmd
)->addr
.s_addr
==
2361 INADDR_TO_IFP(dst_ip
, tif
);
2362 match
= (tif
!= NULL
);
2369 * offset == 0 && proto != 0 is enough
2370 * to guarantee that we have an IPv4
2371 * packet with port info.
2373 if ((proto
==IPPROTO_UDP
|| proto
==IPPROTO_TCP
)
2376 (cmd
->opcode
== O_IP_SRCPORT
) ?
2377 src_port
: dst_port
;
2379 ((ipfw_insn_u16
*)cmd
)->ports
;
2382 for (i
= cmdlen
- 1; !match
&& i
>0;
2384 match
= (x
>=p
[0] && x
<=p
[1]);
2389 match
= (offset
== 0 && proto
==IPPROTO_ICMP
&&
2390 icmptype_match(ip
, (ipfw_insn_u32
*)cmd
) );
2394 match
= (hlen
> 0 && ipopts_match(ip
, cmd
) );
2398 match
= (hlen
> 0 && cmd
->arg1
== ip
->ip_v
);
2404 if (hlen
> 0) { /* only for IP packets */
2409 if (cmd
->opcode
== O_IPLEN
)
2411 else if (cmd
->opcode
== O_IPTTL
)
2413 else /* must be IPID */
2414 x
= ntohs(ip
->ip_id
);
2416 match
= (cmd
->arg1
== x
);
2419 /* otherwise we have ranges */
2420 p
= ((ipfw_insn_u16
*)cmd
)->ports
;
2422 for (; !match
&& i
>0; i
--, p
+= 2)
2423 match
= (x
>= p
[0] && x
<= p
[1]);
2427 case O_IPPRECEDENCE
:
2428 match
= (hlen
> 0 &&
2429 (cmd
->arg1
== (ip
->ip_tos
& 0xe0)) );
2433 match
= (hlen
> 0 &&
2434 flags_match(cmd
, ip
->ip_tos
));
2438 match
= (proto
== IPPROTO_TCP
&& offset
== 0 &&
2440 L3HDR(struct tcphdr
,ip
)->th_flags
));
2444 match
= (proto
== IPPROTO_TCP
&& offset
== 0 &&
2445 tcpopts_match(ip
, cmd
));
2449 match
= (proto
== IPPROTO_TCP
&& offset
== 0 &&
2450 ((ipfw_insn_u32
*)cmd
)->d
[0] ==
2451 L3HDR(struct tcphdr
,ip
)->th_seq
);
2455 match
= (proto
== IPPROTO_TCP
&& offset
== 0 &&
2456 ((ipfw_insn_u32
*)cmd
)->d
[0] ==
2457 L3HDR(struct tcphdr
,ip
)->th_ack
);
2461 match
= (proto
== IPPROTO_TCP
&& offset
== 0 &&
2463 L3HDR(struct tcphdr
,ip
)->th_win
);
2467 /* reject packets which have SYN only */
2468 /* XXX should i also check for TH_ACK ? */
2469 match
= (proto
== IPPROTO_TCP
&& offset
== 0 &&
2470 (L3HDR(struct tcphdr
,ip
)->th_flags
&
2471 (TH_RST
| TH_ACK
| TH_SYN
)) != TH_SYN
);
2476 ipfw_log(f
, hlen
, args
->eh
, m
, oif
);
2481 match
= (random()<((ipfw_insn_u32
*)cmd
)->d
[0]);
2485 /* Outgoing packets automatically pass/match */
2486 match
= ((oif
!= NULL
) ||
2487 (m
->m_pkthdr
.rcvif
== NULL
) ||
2488 verify_rev_path(src_ip
, m
->m_pkthdr
.rcvif
));
2493 match
= (m_tag_find(m
,
2494 PACKET_TAG_IPSEC_IN_DONE
, NULL
) != NULL
);
2497 match
= (ipsec_gethist(m
, NULL
) != NULL
);
2499 /* otherwise no match */
2503 * The second set of opcodes represents 'actions',
2504 * i.e. the terminal part of a rule once the packet
2505 * matches all previous patterns.
2506 * Typically there is only one action for each rule,
2507 * and the opcode is stored at the end of the rule
2508 * (but there are exceptions -- see below).
2510 * In general, here we set retval and terminate the
2511 * outer loop (would be a 'break 3' in some language,
2512 * but we need to do a 'goto done').
2515 * O_COUNT and O_SKIPTO actions:
2516 * instead of terminating, we jump to the next rule
2517 * ('goto next_rule', equivalent to a 'break 2'),
2518 * or to the SKIPTO target ('goto again' after
2519 * having set f, cmd and l), respectively.
2521 * O_LIMIT and O_KEEP_STATE: these opcodes are
2522 * not real 'actions', and are stored right
2523 * before the 'action' part of the rule.
2524 * These opcodes try to install an entry in the
2525 * state tables; if successful, we continue with
2526 * the next opcode (match=1; break;), otherwise
2527 * the packet * must be dropped
2528 * ('goto done' after setting retval);
2530 * O_PROBE_STATE and O_CHECK_STATE: these opcodes
2531 * cause a lookup of the state table, and a jump
2532 * to the 'action' part of the parent rule
2533 * ('goto check_body') if an entry is found, or
2534 * (CHECK_STATE only) a jump to the next rule if
2535 * the entry is not found ('goto next_rule').
2536 * The result of the lookup is cached to make
2537 * further instances of these opcodes are
2542 if (install_state(f
,
2543 (ipfw_insn_limit
*)cmd
, args
)) {
2544 retval
= IP_FW_PORT_DENY_FLAG
;
2545 goto done
; /* error/limit violation */
2553 * dynamic rules are checked at the first
2554 * keep-state or check-state occurrence,
2555 * with the result being stored in dyn_dir.
2556 * The compiler introduces a PROBE_STATE
2557 * instruction for us when we have a
2558 * KEEP_STATE (because PROBE_STATE needs
2561 if (dyn_dir
== MATCH_UNKNOWN
&&
2562 (q
= lookup_dyn_rule(&args
->f_id
,
2563 &dyn_dir
, proto
== IPPROTO_TCP
?
2564 L3HDR(struct tcphdr
, ip
) : NULL
))
2567 * Found dynamic entry, update stats
2568 * and jump to the 'action' part of
2574 cmd
= ACTION_PTR(f
);
2575 l
= f
->cmd_len
- f
->act_ofs
;
2579 * Dynamic entry not found. If CHECK_STATE,
2580 * skip to next rule, if PROBE_STATE just
2581 * ignore and continue with next opcode.
2583 if (cmd
->opcode
== O_CHECK_STATE
)
2589 retval
= 0; /* accept */
2594 args
->rule
= f
; /* report matching rule */
2595 retval
= cmd
->arg1
| IP_FW_PORT_DYNT_FLAG
;
2600 if (args
->eh
) /* not on layer 2 */
2602 args
->divert_rule
= f
->rulenum
;
2603 retval
= (cmd
->opcode
== O_DIVERT
) ?
2605 cmd
->arg1
| IP_FW_PORT_TEE_FLAG
;
2610 f
->pcnt
++; /* update stats */
2612 f
->timestamp
= timenow
.tv_sec
;
2613 if (cmd
->opcode
== O_COUNT
)
2616 if (f
->next_rule
== NULL
)
2617 lookup_next_rule(f
);
2623 * Drop the packet and send a reject notice
2624 * if the packet is not ICMP (or is an ICMP
2625 * query), and it is not multicast/broadcast.
2627 if (hlen
> 0 && offset
== 0 &&
2628 (proto
!= IPPROTO_ICMP
||
2629 is_icmp_query(ip
)) &&
2630 !(m
->m_flags
& (M_BCAST
|M_MCAST
)) &&
2631 !IN_MULTICAST(dst_ip
.s_addr
)) {
2632 send_reject(args
, cmd
->arg1
,
2638 retval
= IP_FW_PORT_DENY_FLAG
;
2642 if (args
->eh
) /* not valid on layer2 pkts */
2644 if (!q
|| dyn_dir
== MATCH_FORWARD
)
2646 &((ipfw_insn_sa
*)cmd
)->sa
;
2651 panic("-- unknown opcode %d\n", cmd
->opcode
);
2652 } /* end of switch() on opcodes */
2654 if (cmd
->len
& F_NOT
)
2658 if (cmd
->len
& F_OR
)
2661 if (!(cmd
->len
& F_OR
)) /* not an OR block, */
2662 break; /* try next rule */
2665 } /* end of inner for, scan opcodes */
2667 next_rule
:; /* try next rule */
2669 } /* end of outer for, scan rules */
2670 printf("ipfw: ouch!, skip past end of rules, denying packet\n");
2671 lck_mtx_unlock(ipfw_mutex
);
2672 return(IP_FW_PORT_DENY_FLAG
);
2675 /* Update statistics */
2678 f
->timestamp
= timenow
.tv_sec
;
2679 lck_mtx_unlock(ipfw_mutex
);
2684 printf("ipfw: pullup failed\n");
2685 lck_mtx_unlock(ipfw_mutex
);
2686 return(IP_FW_PORT_DENY_FLAG
);
2690 * When a rule is added/deleted, clear the next_rule pointers in all rules.
2691 * These will be reconstructed on the fly as packets are matched.
2692 * Must be called at splimp().
2695 flush_rule_ptrs(void)
2699 for (rule
= layer3_chain
; rule
; rule
= rule
->next
)
2700 rule
->next_rule
= NULL
;
2704 * When pipes/queues are deleted, clear the "pipe_ptr" pointer to a given
2705 * pipe/queue, or to all of them (match == NULL).
2706 * Must be called at splimp().
2709 flush_pipe_ptrs(struct dn_flow_set
*match
)
2713 for (rule
= layer3_chain
; rule
; rule
= rule
->next
) {
2714 ipfw_insn_pipe
*cmd
= (ipfw_insn_pipe
*)ACTION_PTR(rule
);
2716 if (cmd
->o
.opcode
!= O_PIPE
&& cmd
->o
.opcode
!= O_QUEUE
)
2719 * XXX Use bcmp/bzero to handle pipe_ptr to overcome
2720 * possible alignment problems on 64-bit architectures.
2721 * This code is seldom used so we do not worry too
2722 * much about efficiency.
2724 if (match
== NULL
||
2725 !bcmp(&cmd
->pipe_ptr
, &match
, sizeof(match
)) )
2726 bzero(&cmd
->pipe_ptr
, sizeof(cmd
->pipe_ptr
));
2731 * Add a new rule to the list. Copy the rule into a malloc'ed area, then
2732 * possibly create a rule number and add the rule to the list.
2733 * Update the rule_number in the input struct so the caller knows it as well.
2736 add_rule(struct ip_fw
**head
, struct ip_fw
*input_rule
)
2738 struct ip_fw
*rule
, *f
, *prev
;
2739 int l
= RULESIZE(input_rule
);
2741 if (*head
== NULL
&& input_rule
->rulenum
!= IPFW_DEFAULT_RULE
)
2744 rule
= _MALLOC(l
, M_IPFW
, M_WAIT
);
2746 printf("ipfw2: add_rule MALLOC failed\n");
2751 bcopy(input_rule
, rule
, l
);
2754 rule
->next_rule
= NULL
;
2758 rule
->timestamp
= 0;
2760 if (*head
== NULL
) { /* default rule */
2766 * If rulenum is 0, find highest numbered rule before the
2767 * default rule, and add autoinc_step
2769 if (autoinc_step
< 1)
2771 else if (autoinc_step
> 1000)
2772 autoinc_step
= 1000;
2773 if (rule
->rulenum
== 0) {
2775 * locate the highest numbered rule before default
2777 for (f
= *head
; f
; f
= f
->next
) {
2778 if (f
->rulenum
== IPFW_DEFAULT_RULE
)
2780 rule
->rulenum
= f
->rulenum
;
2782 if (rule
->rulenum
< IPFW_DEFAULT_RULE
- autoinc_step
)
2783 rule
->rulenum
+= autoinc_step
;
2784 input_rule
->rulenum
= rule
->rulenum
;
2788 * Now insert the new rule in the right place in the sorted list.
2790 for (prev
= NULL
, f
= *head
; f
; prev
= f
, f
= f
->next
) {
2791 if (f
->rulenum
> rule
->rulenum
) { /* found the location */
2795 } else { /* head insert */
2806 static_len_32
+= RULESIZE32(input_rule
);
2807 static_len_64
+= RULESIZE64(input_rule
);
2808 DEB(printf("ipfw: installed rule %d, static count now %d\n",
2809 rule
->rulenum
, static_count
);)
2814 * Free storage associated with a static rule (including derived
2816 * The caller is in charge of clearing rule pointers to avoid
2817 * dangling pointers.
2818 * @return a pointer to the next entry.
2819 * Arguments are not checked, so they better be correct.
2820 * Must be called at splimp().
2822 static struct ip_fw
*
2823 delete_rule(struct ip_fw
**head
, struct ip_fw
*prev
, struct ip_fw
*rule
)
2826 int l
= RULESIZE(rule
);
2829 remove_dyn_rule(rule
, NULL
/* force removal */);
2836 static_len_32
-= RULESIZE32(rule
);
2837 static_len_64
-= RULESIZE64(rule
);
2840 if (DUMMYNET_LOADED
)
2841 ip_dn_ruledel_ptr(rule
);
2842 #endif /* DUMMYNET */
2843 _FREE(rule
, M_IPFW
);
2847 #if DEBUG_INACTIVE_RULES
2849 print_chain(struct ip_fw
**chain
)
2851 struct ip_fw
*rule
= *chain
;
2853 for (; rule
; rule
= rule
->next
) {
2854 ipfw_insn
*cmd
= ACTION_PTR(rule
);
2856 printf("ipfw: rule->rulenum = %d\n", rule
->rulenum
);
2858 if (rule
->reserved_1
== IPFW_RULE_INACTIVE
) {
2859 printf("ipfw: rule->reserved = IPFW_RULE_INACTIVE\n");
2862 switch (cmd
->opcode
) {
2864 printf("ipfw: ACTION: Deny\n");
2868 if (cmd
->arg1
==ICMP_REJECT_RST
)
2869 printf("ipfw: ACTION: Reset\n");
2870 else if (cmd
->arg1
==ICMP_UNREACH_HOST
)
2871 printf("ipfw: ACTION: Reject\n");
2875 printf("ipfw: ACTION: Accept\n");
2878 printf("ipfw: ACTION: Count\n");
2881 printf("ipfw: ACTION: Divert\n");
2884 printf("ipfw: ACTION: Tee\n");
2887 printf("ipfw: ACTION: SkipTo\n");
2890 printf("ipfw: ACTION: Pipe\n");
2893 printf("ipfw: ACTION: Queue\n");
2896 printf("ipfw: ACTION: Forward\n");
2899 printf("ipfw: invalid action! %d\n", cmd
->opcode
);
2903 #endif /* DEBUG_INACTIVE_RULES */
2906 flush_inactive(void *param
)
2908 struct ip_fw
*inactive_rule
= (struct ip_fw
*)param
;
2909 struct ip_fw
*rule
, *prev
;
2911 lck_mtx_lock(ipfw_mutex
);
2913 for (rule
= layer3_chain
, prev
= NULL
; rule
; ) {
2914 if (rule
== inactive_rule
&& rule
->reserved_1
== IPFW_RULE_INACTIVE
) {
2915 struct ip_fw
*n
= rule
;
2918 layer3_chain
= rule
->next
;
2921 prev
->next
= rule
->next
;
2932 #if DEBUG_INACTIVE_RULES
2933 print_chain(&layer3_chain
);
2935 lck_mtx_unlock(ipfw_mutex
);
2939 mark_inactive(struct ip_fw
**prev
, struct ip_fw
**rule
)
2941 int l
= RULESIZE(*rule
);
2943 if ((*rule
)->reserved_1
!= IPFW_RULE_INACTIVE
) {
2944 (*rule
)->reserved_1
= IPFW_RULE_INACTIVE
;
2947 static_len_32
-= RULESIZE32(*rule
);
2948 static_len_64
-= RULESIZE64(*rule
);
2950 timeout(flush_inactive
, *rule
, 30*hz
); /* 30 sec. */
2954 *rule
= (*rule
)->next
;
2958 * Deletes all rules from a chain (except rules in set RESVD_SET
2959 * unless kill_default = 1).
2960 * Must be called at splimp().
2963 free_chain(struct ip_fw
**chain
, int kill_default
)
2965 struct ip_fw
*prev
, *rule
;
2967 flush_rule_ptrs(); /* more efficient to do outside the loop */
2968 for (prev
= NULL
, rule
= *chain
; rule
; )
2969 if (kill_default
|| rule
->set
!= RESVD_SET
) {
2970 ipfw_insn
*cmd
= ACTION_PTR(rule
);
2972 /* skip over forwarding rules so struct isn't
2973 * deleted while pointer is still in use elsewhere
2975 if (cmd
->opcode
== O_FORWARD_IP
) {
2976 mark_inactive(&prev
, &rule
);
2979 rule
= delete_rule(chain
, prev
, rule
);
2989 * Remove all rules with given number, and also do set manipulation.
2990 * Assumes chain != NULL && *chain != NULL.
2992 * The argument is an u_int32_t. The low 16 bit are the rule or set number,
2993 * the next 8 bits are the new set, the top 8 bits are the command:
2995 * 0 delete rules with given number
2996 * 1 delete rules with given set number
2997 * 2 move rules with given number to new set
2998 * 3 move rules with given set number to new set
2999 * 4 swap sets with given numbers
3002 del_entry(struct ip_fw
**chain
, u_int32_t arg
)
3004 struct ip_fw
*prev
= NULL
, *rule
= *chain
;
3005 u_int16_t rulenum
; /* rule or old_set */
3006 u_int8_t cmd
, new_set
;
3008 rulenum
= arg
& 0xffff;
3009 cmd
= (arg
>> 24) & 0xff;
3010 new_set
= (arg
>> 16) & 0xff;
3014 if (new_set
> RESVD_SET
)
3016 if (cmd
== 0 || cmd
== 2) {
3017 if (rulenum
>= IPFW_DEFAULT_RULE
)
3020 if (rulenum
> RESVD_SET
) /* old_set */
3025 case 0: /* delete rules with given number */
3027 * locate first rule to delete
3029 for (; rule
->rulenum
< rulenum
; prev
= rule
, rule
= rule
->next
)
3031 if (rule
->rulenum
!= rulenum
)
3035 * flush pointers outside the loop, then delete all matching
3036 * rules. prev remains the same throughout the cycle.
3039 while (rule
->rulenum
== rulenum
) {
3040 ipfw_insn
*insn
= ACTION_PTR(rule
);
3042 /* keep forwarding rules around so struct isn't
3043 * deleted while pointer is still in use elsewhere
3045 if (insn
->opcode
== O_FORWARD_IP
) {
3046 mark_inactive(&prev
, &rule
);
3049 rule
= delete_rule(chain
, prev
, rule
);
3054 case 1: /* delete all rules with given set number */
3056 while (rule
->rulenum
< IPFW_DEFAULT_RULE
) {
3057 if (rule
->set
== rulenum
) {
3058 ipfw_insn
*insn
= ACTION_PTR(rule
);
3060 /* keep forwarding rules around so struct isn't
3061 * deleted while pointer is still in use elsewhere
3063 if (insn
->opcode
== O_FORWARD_IP
) {
3064 mark_inactive(&prev
, &rule
);
3067 rule
= delete_rule(chain
, prev
, rule
);
3077 case 2: /* move rules with given number to new set */
3078 for (; rule
->rulenum
< IPFW_DEFAULT_RULE
; rule
= rule
->next
)
3079 if (rule
->rulenum
== rulenum
)
3080 rule
->set
= new_set
;
3083 case 3: /* move rules with given set number to new set */
3084 for (; rule
->rulenum
< IPFW_DEFAULT_RULE
; rule
= rule
->next
)
3085 if (rule
->set
== rulenum
)
3086 rule
->set
= new_set
;
3089 case 4: /* swap two sets */
3090 for (; rule
->rulenum
< IPFW_DEFAULT_RULE
; rule
= rule
->next
)
3091 if (rule
->set
== rulenum
)
3092 rule
->set
= new_set
;
3093 else if (rule
->set
== new_set
)
3094 rule
->set
= rulenum
;
3101 * Clear counters for a specific rule.
3104 clear_counters(struct ip_fw
*rule
, int log_only
)
3106 ipfw_insn_log
*l
= (ipfw_insn_log
*)ACTION_PTR(rule
);
3108 if (log_only
== 0) {
3109 rule
->bcnt
= rule
->pcnt
= 0;
3110 rule
->timestamp
= 0;
3112 if (l
->o
.opcode
== O_LOG
)
3113 l
->log_left
= l
->max_log
;
3117 * Reset some or all counters on firewall rules.
3118 * @arg frwl is null to clear all entries, or contains a specific
3120 * @arg log_only is 1 if we only want to reset logs, zero otherwise.
3123 zero_entry(int rulenum
, int log_only
)
3130 for (rule
= layer3_chain
; rule
; rule
= rule
->next
)
3131 clear_counters(rule
, log_only
);
3132 msg
= log_only
? "ipfw: All logging counts reset.\n" :
3133 "ipfw: Accounting cleared.\n";
3137 * We can have multiple rules with the same number, so we
3138 * need to clear them all.
3140 for (rule
= layer3_chain
; rule
; rule
= rule
->next
)
3141 if (rule
->rulenum
== rulenum
) {
3142 while (rule
&& rule
->rulenum
== rulenum
) {
3143 clear_counters(rule
, log_only
);
3149 if (!cleared
) /* we did not find any matching rules */
3151 msg
= log_only
? "ipfw: Entry %d logging count reset.\n" :
3152 "ipfw: Entry %d cleared.\n";
3156 dolog((LOG_AUTHPRIV
| LOG_NOTICE
, msg
, rulenum
));
3162 * Check validity of the structure before insert.
3163 * Fortunately rules are simple, so this mostly need to check rule sizes.
3166 check_ipfw_struct(struct ip_fw
*rule
, int size
)
3172 if (size
< sizeof(*rule
)) {
3173 printf("ipfw: rule too short\n");
3176 /* first, check for valid size */
3179 printf("ipfw: size mismatch (have %d want %d)\n", size
, l
);
3183 * Now go for the individual checks. Very simple ones, basically only
3184 * instruction sizes.
3186 for (l
= rule
->cmd_len
, cmd
= rule
->cmd
;
3187 l
> 0 ; l
-= cmdlen
, cmd
+= cmdlen
) {
3188 cmdlen
= F_LEN(cmd
);
3190 printf("ipfw: opcode %d size truncated\n",
3194 DEB(printf("ipfw: opcode %d\n", cmd
->opcode
);)
3195 switch (cmd
->opcode
) {
3206 case O_IPPRECEDENCE
:
3214 if (cmdlen
!= F_INSN_SIZE(ipfw_insn
))
3220 #endif /* __APPLE__ */
3227 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_u32
))
3232 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_limit
))
3237 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_log
))
3240 /* enforce logging limit */
3242 ((ipfw_insn_log
*)cmd
)->max_log
== 0 && verbose_limit
!= 0) {
3243 ((ipfw_insn_log
*)cmd
)->max_log
= verbose_limit
;
3246 ((ipfw_insn_log
*)cmd
)->log_left
=
3247 ((ipfw_insn_log
*)cmd
)->max_log
;
3253 /* only odd command lengths */
3254 if ( !(cmdlen
& 1) || cmdlen
> 31)
3260 if (cmd
->arg1
== 0 || cmd
->arg1
> 256) {
3261 printf("ipfw: invalid set size %d\n",
3265 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_u32
) +
3271 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_mac
))
3279 if (cmdlen
< 1 || cmdlen
> 31)
3285 case O_IP_DSTPORT
: /* XXX artificial limit, 30 port pairs */
3286 if (cmdlen
< 2 || cmdlen
> 31)
3293 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_if
))
3299 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_pipe
))
3304 if (cmdlen
!= F_INSN_SIZE(ipfw_insn_sa
))
3308 case O_FORWARD_MAC
: /* XXX not implemented yet */
3317 if (cmdlen
!= F_INSN_SIZE(ipfw_insn
))
3321 printf("ipfw: opcode %d, multiple actions"
3328 printf("ipfw: opcode %d, action must be"
3335 printf("ipfw: opcode %d, unknown opcode\n",
3340 if (have_action
== 0) {
3341 printf("ipfw: missing action\n");
3347 printf("ipfw: opcode %d size %d wrong\n",
3348 cmd
->opcode
, cmdlen
);
3354 ipfw_kev_post_msg(u_int32_t event_code
)
3356 struct kev_msg ev_msg
;
3358 bzero(&ev_msg
, sizeof(struct kev_msg
));
3360 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
3361 ev_msg
.kev_class
= KEV_FIREWALL_CLASS
;
3362 ev_msg
.kev_subclass
= KEV_IPFW_SUBCLASS
;
3363 ev_msg
.event_code
= event_code
;
3365 kev_post_msg(&ev_msg
);
3370 * {set|get}sockopt parser.
3373 ipfw_ctl(struct sockopt
*sopt
)
3375 #define RULE_MAXSIZE (256*sizeof(u_int32_t))
3376 u_int32_t api_version
;
3380 size_t rulesize
= RULE_MAXSIZE
;
3381 struct ip_fw
*bp
, *buf
, *rule
;
3384 /* copy of orig sopt to send to ipfw_get_command_and_version() */
3385 struct sockopt tmp_sopt
= *sopt
;
3386 struct timeval timenow
;
3388 getmicrotime(&timenow
);
3391 * Disallow modifications in really-really secure mode, but still allow
3392 * the logging counters to be reset.
3394 if (sopt
->sopt_name
== IP_FW_ADD
||
3395 (sopt
->sopt_dir
== SOPT_SET
&& sopt
->sopt_name
!= IP_FW_RESETLOG
)) {
3396 #if __FreeBSD_version >= 500034
3397 error
= securelevel_ge(sopt
->sopt_td
->td_ucred
, 3);
3400 #else /* FreeBSD 4.x */
3401 if (securelevel
>= 3)
3406 /* first get the command and version, then do conversion as necessary */
3407 error
= ipfw_get_command_and_version(&tmp_sopt
, &command
, &api_version
);
3409 /* error getting the version */
3413 if (proc_is64bit(sopt
->sopt_p
))
3421 * pass up a copy of the current rules. Static rules
3422 * come first (the last of which has number IPFW_DEFAULT_RULE),
3423 * followed by a possibly empty list of dynamic rule.
3424 * The last dynamic rule has NULL in the "next" field.
3426 lck_mtx_lock(ipfw_mutex
);
3429 size
= Get64static_len();
3430 dynrulesize
= sizeof(ipfw_dyn_rule_64
);
3432 size
+= (dyn_count
* dynrulesize
);
3434 size
= Get32static_len();
3435 dynrulesize
= sizeof(ipfw_dyn_rule_32
);
3437 size
+= (dyn_count
* dynrulesize
);
3441 * XXX todo: if the user passes a short length just to know
3442 * how much room is needed, do not bother filling up the
3443 * buffer, just jump to the sooptcopyout.
3445 buf
= _MALLOC(size
, M_TEMP
, M_WAITOK
);
3447 lck_mtx_unlock(ipfw_mutex
);
3455 for (rule
= layer3_chain
; rule
; rule
= rule
->next
) {
3457 if (rule
->reserved_1
== IPFW_RULE_INACTIVE
) {
3464 copyto64fw( rule
, (struct ip_fw_64
*)bp
, size
);
3465 bcopy(&set_disable
, &(( (struct ip_fw_64
*)bp
)->next_rule
), sizeof(set_disable
));
3466 /* do not use macro RULESIZE64 since we want RULESIZE for ip_fw_64 */
3467 rulesize_64
= sizeof(struct ip_fw_64
) + ((struct ip_fw_64
*)(bp
))->cmd_len
* 4 - 4;
3468 bp
= (struct ip_fw
*)((char *)bp
+ rulesize_64
);
3472 copyto32fw( rule
, (struct ip_fw_32
*)bp
, size
);
3473 bcopy(&set_disable
, &(( (struct ip_fw_32
*)bp
)->next_rule
), sizeof(set_disable
));
3474 /* do not use macro RULESIZE32 since we want RULESIZE for ip_fw_32 */
3475 rulesize_32
= sizeof(struct ip_fw_32
) + ((struct ip_fw_32
*)(bp
))->cmd_len
* 4 - 4;
3476 bp
= (struct ip_fw
*)((char *)bp
+ rulesize_32
);
3482 char *dst
, *last
= NULL
;
3485 for (i
= 0 ; i
< curr_dyn_buckets
; i
++ )
3486 for ( p
= ipfw_dyn_v
[i
] ; p
!= NULL
;
3487 p
= p
->next
, dst
+= dynrulesize
) {
3489 ipfw_dyn_rule_64
*ipfw_dyn_dst
;
3491 ipfw_dyn_dst
= (ipfw_dyn_rule_64
*)dst
;
3493 * store a non-null value in "next".
3494 * The userland code will interpret a
3495 * NULL here as a marker
3496 * for the last dynamic rule.
3498 ipfw_dyn_dst
->next
= CAST_DOWN_EXPLICIT(user64_addr_t
, dst
);
3499 ipfw_dyn_dst
->rule
= p
->rule
->rulenum
;
3500 ipfw_dyn_dst
->parent
= CAST_DOWN(user64_addr_t
, p
->parent
);
3501 ipfw_dyn_dst
->pcnt
= p
->pcnt
;
3502 ipfw_dyn_dst
->bcnt
= p
->bcnt
;
3503 ipfw_dyn_dst
->id
= p
->id
;
3504 ipfw_dyn_dst
->expire
=
3505 TIME_LEQ(p
->expire
, timenow
.tv_sec
) ?
3506 0 : p
->expire
- timenow
.tv_sec
;
3507 ipfw_dyn_dst
->bucket
= p
->bucket
;
3508 ipfw_dyn_dst
->state
= p
->state
;
3509 ipfw_dyn_dst
->ack_fwd
= p
->ack_fwd
;
3510 ipfw_dyn_dst
->ack_rev
= p
->ack_rev
;
3511 ipfw_dyn_dst
->dyn_type
= p
->dyn_type
;
3512 ipfw_dyn_dst
->count
= p
->count
;
3513 last
= (char*)&ipfw_dyn_dst
->next
;
3515 ipfw_dyn_rule_32
*ipfw_dyn_dst
;
3517 ipfw_dyn_dst
= (ipfw_dyn_rule_32
*)dst
;
3519 * store a non-null value in "next".
3520 * The userland code will interpret a
3521 * NULL here as a marker
3522 * for the last dynamic rule.
3524 ipfw_dyn_dst
->next
= CAST_DOWN_EXPLICIT(user32_addr_t
, dst
);
3525 ipfw_dyn_dst
->rule
= p
->rule
->rulenum
;
3526 ipfw_dyn_dst
->parent
= CAST_DOWN_EXPLICIT(user32_addr_t
, p
->parent
);
3527 ipfw_dyn_dst
->pcnt
= p
->pcnt
;
3528 ipfw_dyn_dst
->bcnt
= p
->bcnt
;
3529 ipfw_dyn_dst
->id
= p
->id
;
3530 ipfw_dyn_dst
->expire
=
3531 TIME_LEQ(p
->expire
, timenow
.tv_sec
) ?
3532 0 : p
->expire
- timenow
.tv_sec
;
3533 ipfw_dyn_dst
->bucket
= p
->bucket
;
3534 ipfw_dyn_dst
->state
= p
->state
;
3535 ipfw_dyn_dst
->ack_fwd
= p
->ack_fwd
;
3536 ipfw_dyn_dst
->ack_rev
= p
->ack_rev
;
3537 ipfw_dyn_dst
->dyn_type
= p
->dyn_type
;
3538 ipfw_dyn_dst
->count
= p
->count
;
3539 last
= (char*)&ipfw_dyn_dst
->next
;
3542 if (last
!= NULL
) /* mark last dynamic rule */
3543 bzero(last
, sizeof(last
));
3545 lck_mtx_unlock(ipfw_mutex
);
3547 /* convert back if necessary and copyout */
3548 if (api_version
== IP_FW_VERSION_0
) {
3550 struct ip_old_fw
*buf2
, *rule_vers0
;
3552 lck_mtx_lock(ipfw_mutex
);
3553 buf2
= _MALLOC(static_count
* sizeof(struct ip_old_fw
), M_TEMP
, M_WAITOK
);
3555 lck_mtx_unlock(ipfw_mutex
);
3563 for (i
= 0; i
< static_count
; i
++) {
3564 /* static rules have different sizes */
3565 int j
= RULESIZE(bp
);
3566 ipfw_convert_from_latest(bp
, rule_vers0
, api_version
, is64user
);
3567 bp
= (struct ip_fw
*)((char *)bp
+ j
);
3568 len
+= sizeof(*rule_vers0
);
3571 lck_mtx_unlock(ipfw_mutex
);
3572 error
= sooptcopyout(sopt
, buf2
, len
);
3573 _FREE(buf2
, M_TEMP
);
3575 } else if (api_version
== IP_FW_VERSION_1
) {
3576 int i
, len
= 0, buf_size
;
3577 struct ip_fw_compat
*buf2
;
3578 size_t ipfwcompsize
;
3579 size_t ipfwdyncompsize
;
3582 lck_mtx_lock(ipfw_mutex
);
3584 ipfwcompsize
= sizeof(struct ip_fw_compat_64
);
3585 ipfwdyncompsize
= sizeof(struct ipfw_dyn_rule_compat_64
);
3587 ipfwcompsize
= sizeof(struct ip_fw_compat_32
);
3588 ipfwdyncompsize
= sizeof(struct ipfw_dyn_rule_compat_32
);
3591 buf_size
= static_count
* ipfwcompsize
+
3592 dyn_count
* ipfwdyncompsize
;
3594 buf2
= _MALLOC(buf_size
, M_TEMP
, M_WAITOK
);
3596 lck_mtx_unlock(ipfw_mutex
);
3601 rule_vers1
= (char*)buf2
;
3603 /* first do static rules */
3604 for (i
= 0; i
< static_count
; i
++) {
3605 /* static rules have different sizes */
3608 ipfw_convert_from_latest(bp
, (void *)rule_vers1
, api_version
, is64user
);
3609 rulesize_64
= sizeof(struct ip_fw_64
) + ((struct ip_fw_64
*)(bp
))->cmd_len
* 4 - 4;
3610 bp
= (struct ip_fw
*)((char *)bp
+ rulesize_64
);
3613 ipfw_convert_from_latest(bp
, (void *)rule_vers1
, api_version
, is64user
);
3614 rulesize_32
= sizeof(struct ip_fw_32
) + ((struct ip_fw_32
*)(bp
))->cmd_len
* 4 - 4;
3615 bp
= (struct ip_fw
*)((char *)bp
+ rulesize_32
);
3617 len
+= ipfwcompsize
;
3618 rule_vers1
+= ipfwcompsize
;
3620 /* now do dynamic rules */
3622 cp_dyn_to_comp_64( (struct ipfw_dyn_rule_compat_64
*)rule_vers1
, &len
);
3624 cp_dyn_to_comp_32( (struct ipfw_dyn_rule_compat_32
*)rule_vers1
, &len
);
3626 lck_mtx_unlock(ipfw_mutex
);
3627 error
= sooptcopyout(sopt
, buf2
, len
);
3628 _FREE(buf2
, M_TEMP
);
3631 error
= sooptcopyout(sopt
, buf
, size
);
3640 * Normally we cannot release the lock on each iteration.
3641 * We could do it here only because we start from the head all
3642 * the times so there is no risk of missing some entries.
3643 * On the other hand, the risk is that we end up with
3644 * a very inconsistent ruleset, so better keep the lock
3645 * around the whole cycle.
3647 * XXX this code can be improved by resetting the head of
3648 * the list to point to the default rule, and then freeing
3649 * the old list without the need for a lock.
3652 lck_mtx_lock(ipfw_mutex
);
3653 free_chain(&layer3_chain
, 0 /* keep default rule */);
3655 #if DEBUG_INACTIVE_RULES
3656 print_chain(&layer3_chain
);
3658 lck_mtx_unlock(ipfw_mutex
);
3663 size_t savedsopt_valsize
=0;
3664 rule
= _MALLOC(RULE_MAXSIZE
, M_TEMP
, M_WAITOK
);
3670 bzero(rule
, RULE_MAXSIZE
);
3672 if (api_version
!= IP_FW_CURRENT_API_VERSION
) {
3673 error
= ipfw_convert_to_latest(sopt
, rule
, api_version
, is64user
);
3676 savedsopt_valsize
= sopt
->sopt_valsize
; /* it might get modified in sooptcopyin_fw */
3677 error
= sooptcopyin_fw( sopt
, rule
, &rulesize
);
3682 if ((api_version
== IP_FW_VERSION_0
) || (api_version
== IP_FW_VERSION_1
)) {
3683 /* the rule has already been checked so just
3684 * adjust sopt_valsize to match what would be expected.
3686 sopt
->sopt_valsize
= RULESIZE(rule
);
3687 rulesize
= RULESIZE(rule
);
3689 error
= check_ipfw_struct(rule
, rulesize
);
3691 lck_mtx_lock(ipfw_mutex
);
3692 error
= add_rule(&layer3_chain
, rule
);
3693 if (!error
&& fw_bypass
)
3695 lck_mtx_unlock(ipfw_mutex
);
3697 size
= RULESIZE(rule
);
3698 if (!error
&& sopt
->sopt_dir
== SOPT_GET
) {
3699 /* convert back if necessary and copyout */
3700 if (api_version
== IP_FW_VERSION_0
) {
3701 struct ip_old_fw rule_vers0
;
3703 ipfw_convert_from_latest(rule
, &rule_vers0
, api_version
, is64user
);
3704 sopt
->sopt_valsize
= sizeof(struct ip_old_fw
);
3706 error
= sooptcopyout(sopt
, &rule_vers0
, sizeof(struct ip_old_fw
));
3707 } else if (api_version
== IP_FW_VERSION_1
) {
3708 struct ip_fw_compat rule_vers1
;
3709 ipfw_convert_from_latest(rule
, &rule_vers1
, api_version
, is64user
);
3710 sopt
->sopt_valsize
= sizeof(struct ip_fw_compat
);
3712 error
= sooptcopyout(sopt
, &rule_vers1
, sizeof(struct ip_fw_compat
));
3715 userrule
= _MALLOC(savedsopt_valsize
, M_TEMP
, M_WAITOK
);
3716 if ( userrule
== NULL
)
3717 userrule
= (char*)rule
;
3718 if (proc_is64bit(sopt
->sopt_p
)){
3719 copyto64fw( rule
, (struct ip_fw_64
*)userrule
, savedsopt_valsize
);
3722 copyto32fw( rule
, (struct ip_fw_32
*)userrule
, savedsopt_valsize
);
3724 error
= sooptcopyout(sopt
, userrule
, savedsopt_valsize
);
3726 _FREE(userrule
, M_TEMP
);
3732 _FREE(rule
, M_TEMP
);
3738 * IP_FW_DEL is used for deleting single rules or sets,
3739 * and (ab)used to atomically manipulate sets.
3740 * rule->rulenum != 0 indicates single rule delete
3741 * rule->set_masks used to manipulate sets
3742 * rule->set_masks[0] contains info on sets to be
3743 * disabled, swapped, or moved
3744 * rule->set_masks[1] contains sets to be enabled.
3747 /* there is only a simple rule passed in
3748 * (no cmds), so use a temp struct to copy
3750 struct ip_fw temp_rule
;
3754 bzero(&temp_rule
, sizeof(struct ip_fw
));
3755 if (api_version
!= IP_FW_CURRENT_API_VERSION
) {
3756 error
= ipfw_convert_to_latest(sopt
, &temp_rule
, api_version
, is64user
);
3759 error
= sooptcopyin_fw(sopt
, &temp_rule
, 0 );
3763 /* set_masks is used to distinguish between deleting
3764 * single rules or atomically manipulating sets
3766 lck_mtx_lock(ipfw_mutex
);
3768 arg
= temp_rule
.set_masks
[0];
3769 cmd
= (arg
>> 24) & 0xff;
3771 if (temp_rule
.rulenum
) {
3773 error
= del_entry(&layer3_chain
, temp_rule
.rulenum
);
3774 #if DEBUG_INACTIVE_RULES
3775 print_chain(&layer3_chain
);
3779 /* set reassignment - see comment above del_entry() for details */
3780 error
= del_entry(&layer3_chain
, temp_rule
.set_masks
[0]);
3781 #if DEBUG_INACTIVE_RULES
3782 print_chain(&layer3_chain
);
3785 else if (temp_rule
.set_masks
[0] != 0 ||
3786 temp_rule
.set_masks
[1] != 0) {
3787 /* set enable/disable */
3789 (set_disable
| temp_rule
.set_masks
[0]) & ~temp_rule
.set_masks
[1] &
3790 ~(1<<RESVD_SET
); /* set RESVD_SET always enabled */
3793 if (!layer3_chain
->next
)
3795 lck_mtx_unlock(ipfw_mutex
);
3800 case IP_FW_RESETLOG
: /* using rule->rulenum */
3802 /* there is only a simple rule passed in
3803 * (no cmds), so use a temp struct to copy
3805 struct ip_fw temp_rule
;
3807 bzero(&temp_rule
, sizeof(struct ip_fw
));
3809 if (api_version
!= IP_FW_CURRENT_API_VERSION
) {
3810 error
= ipfw_convert_to_latest(sopt
, &temp_rule
, api_version
, is64user
);
3813 if (sopt
->sopt_val
!= 0) {
3814 error
= sooptcopyin_fw( sopt
, &temp_rule
, 0);
3819 lck_mtx_lock(ipfw_mutex
);
3820 error
= zero_entry(temp_rule
.rulenum
, sopt
->sopt_name
== IP_FW_RESETLOG
);
3821 lck_mtx_unlock(ipfw_mutex
);
3826 printf("ipfw: ipfw_ctl invalid option %d\n", sopt
->sopt_name
);
3830 if (error
!= EINVAL
) {
3834 ipfw_kev_post_msg(KEV_IPFW_ADD
);
3838 ipfw_kev_post_msg(KEV_IPFW_DEL
);
3841 case IP_OLD_FW_FLUSH
:
3842 ipfw_kev_post_msg(KEV_IPFW_FLUSH
);
3854 * dummynet needs a reference to the default rule, because rules can be
3855 * deleted while packets hold a reference to them. When this happens,
3856 * dummynet changes the reference to the default rule (it could well be a
3857 * NULL pointer, but this way we do not need to check for the special
3858 * case, plus here he have info on the default behaviour).
3860 struct ip_fw
*ip_fw_default_rule
;
3863 * This procedure is only used to handle keepalives. It is invoked
3864 * every dyn_keepalive_period
3867 ipfw_tick(__unused
void * unused
)
3869 struct mbuf
*m0
, *m
, *mnext
, **mtailp
;
3872 struct timeval timenow
;
3874 if (dyn_keepalive
== 0 || ipfw_dyn_v
== NULL
|| dyn_count
== 0)
3877 getmicrotime(&timenow
);
3880 * We make a chain of packets to go out here -- not deferring
3881 * until after we drop the ipfw lock would result
3882 * in a lock order reversal with the normal packet input -> ipfw
3888 lck_mtx_lock(ipfw_mutex
);
3889 for (i
= 0 ; i
< curr_dyn_buckets
; i
++) {
3890 for (q
= ipfw_dyn_v
[i
] ; q
; q
= q
->next
) {
3891 if (q
->dyn_type
== O_LIMIT_PARENT
)
3893 if (q
->id
.proto
!= IPPROTO_TCP
)
3895 if ( (q
->state
& BOTH_SYN
) != BOTH_SYN
)
3897 if (TIME_LEQ( timenow
.tv_sec
+dyn_keepalive_interval
,
3899 continue; /* too early */
3900 if (TIME_LEQ(q
->expire
, timenow
.tv_sec
))
3901 continue; /* too late, rule expired */
3903 *mtailp
= send_pkt(&(q
->id
), q
->ack_rev
- 1, q
->ack_fwd
, TH_SYN
);
3904 if (*mtailp
!= NULL
)
3905 mtailp
= &(*mtailp
)->m_nextpkt
;
3907 *mtailp
= send_pkt(&(q
->id
), q
->ack_fwd
- 1, q
->ack_rev
, 0);
3908 if (*mtailp
!= NULL
)
3909 mtailp
= &(*mtailp
)->m_nextpkt
;
3912 lck_mtx_unlock(ipfw_mutex
);
3914 for (m
= mnext
= m0
; m
!= NULL
; m
= mnext
) {
3915 struct route sro
; /* fake route */
3917 mnext
= m
->m_nextpkt
;
3918 m
->m_nextpkt
= NULL
;
3919 bzero (&sro
, sizeof (sro
));
3920 ip_output_list(m
, 0, NULL
, &sro
, 0, NULL
, NULL
);
3925 timeout(ipfw_tick
, NULL
, dyn_keepalive_period
*hz
);
3931 struct ip_fw default_rule
;
3934 ipfw_mutex_grp_attr
= lck_grp_attr_alloc_init();
3935 ipfw_mutex_grp
= lck_grp_alloc_init("ipfw", ipfw_mutex_grp_attr
);
3936 ipfw_mutex_attr
= lck_attr_alloc_init();
3938 if ((ipfw_mutex
= lck_mtx_alloc_init(ipfw_mutex_grp
, ipfw_mutex_attr
)) == NULL
) {
3939 printf("ipfw_init: can't alloc ipfw_mutex\n");
3943 layer3_chain
= NULL
;
3945 bzero(&default_rule
, sizeof default_rule
);
3947 default_rule
.act_ofs
= 0;
3948 default_rule
.rulenum
= IPFW_DEFAULT_RULE
;
3949 default_rule
.cmd_len
= 1;
3950 default_rule
.set
= RESVD_SET
;
3952 default_rule
.cmd
[0].len
= 1;
3953 default_rule
.cmd
[0].opcode
=
3954 #ifdef IPFIREWALL_DEFAULT_TO_ACCEPT
3959 if (add_rule(&layer3_chain
, &default_rule
)) {
3960 printf("ipfw2: add_rule failed adding default rule\n");
3961 printf("ipfw2 failed initialization!!\n");
3965 ip_fw_default_rule
= layer3_chain
;
3967 #ifdef IPFIREWALL_VERBOSE
3970 #ifdef IPFIREWALL_VERBOSE_LIMIT
3971 verbose_limit
= IPFIREWALL_VERBOSE_LIMIT
;
3975 printf("ipfw2 verbose logging enabled: unlimited logging by default\n");
3977 printf("ipfw2 verbose logging enabled: limited to %d packets/entry by default\n",
3982 ip_fw_chk_ptr
= ipfw_chk
;
3983 ip_fw_ctl_ptr
= ipfw_ctl
;
3985 ipfwstringlen
= strlen( ipfwstring
);
3987 timeout(ipfw_tick
, NULL
, hz
);