]> git.saurik.com Git - apple/xnu.git/blob - tools/tests/zero-to-n/zero-to-n.c
xnu-3248.60.10.tar.gz
[apple/xnu.git] / tools / tests / zero-to-n / zero-to-n.c
1 /*
2 * Copyright (c) 2009 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 #include <unistd.h>
29 #include <stdio.h>
30 #include <math.h>
31 #include <sys/kdebug.h>
32 #include <stdlib.h>
33 #include <pthread.h>
34 #include <errno.h>
35 #include <err.h>
36 #include <string.h>
37 #include <assert.h>
38 #include <sysexits.h>
39 #include <sys/sysctl.h>
40 #include <getopt.h>
41
42 #include <spawn.h>
43 #include <spawn_private.h>
44 #include <sys/spawn_internal.h>
45 #include <mach-o/dyld.h>
46
47 #include <libkern/OSAtomic.h>
48
49 #include <mach/mach_time.h>
50 #include <mach/mach.h>
51 #include <mach/task.h>
52 #include <mach/semaphore.h>
53
54 #include <pthread/qos_private.h>
55
56 typedef enum wake_type { WAKE_BROADCAST_ONESEM, WAKE_BROADCAST_PERTHREAD, WAKE_CHAIN, WAKE_HOP } wake_type_t;
57 typedef enum my_policy_type { MY_POLICY_REALTIME, MY_POLICY_TIMESHARE, MY_POLICY_FIXEDPRI } my_policy_type_t;
58
59 #define mach_assert_zero(error) do { if ((error) != 0) { fprintf(stderr, "[FAIL] error %d (%s) ", (error), mach_error_string(error)); assert(error == 0); } } while (0)
60 #define mach_assert_zero_t(tid, error) do { if ((error) != 0) { fprintf(stderr, "[FAIL] Thread %d error %d (%s) ", (tid), (error), mach_error_string(error)); assert(error == 0); } } while (0)
61 #define assert_zero_t(tid, error) do { if ((error) != 0) { fprintf(stderr, "[FAIL] Thread %d error %d ", (tid), (error)); assert(error == 0); } } while (0)
62
63 #define CONSTRAINT_NANOS (20000000ll) /* 20 ms */
64 #define COMPUTATION_NANOS (10000000ll) /* 10 ms */
65 #define TRACEWORTHY_NANOS (10000000ll) /* 10 ms */
66
67 #if DEBUG
68 #define debug_log(args...) printf(args)
69 #else
70 #define debug_log(args...) do { } while(0)
71 #endif
72
73 /* Declarations */
74 static void* worker_thread(void *arg);
75 static void usage();
76 static int thread_setup(uint32_t my_id);
77 static my_policy_type_t parse_thread_policy(const char *str);
78 static void selfexec_with_apptype(int argc, char *argv[]);
79 static void parse_args(int argc, char *argv[]);
80
81 /* Global variables (general) */
82 static uint32_t g_numcpus;
83 static uint32_t g_numthreads;
84 static wake_type_t g_waketype;
85 static policy_t g_policy;
86 static uint32_t g_iterations;
87 static struct mach_timebase_info g_mti;
88 static semaphore_t g_main_sem;
89 static uint64_t *g_thread_endtimes_abs;
90 static volatile uint32_t g_done_threads;
91 static boolean_t g_verbose = FALSE;
92 static boolean_t g_do_affinity = FALSE;
93 static uint64_t g_starttime_abs;
94 static uint32_t g_iteration_sleeptime_us = 0;
95
96 /* Threshold for dropping a 'bad run' tracepoint */
97 static uint64_t g_traceworthy_latency_ns = TRACEWORTHY_NANOS;
98
99 /* Have we re-execed to set apptype? */
100 static boolean_t g_seen_apptype = FALSE;
101
102 /* usleep in betweeen iterations */
103 static boolean_t g_do_sleep = TRUE;
104
105 /* Every thread spins until all threads have checked in */
106 static boolean_t g_do_all_spin = FALSE;
107
108 /* One randomly chosen thread holds up the train for a certain duration. */
109 static boolean_t g_do_one_long_spin = FALSE;
110 static uint32_t g_one_long_spin_id = 0;
111 static uint64_t g_one_long_spin_length_abs = 0;
112 static uint64_t g_one_long_spin_length_ns = 0;
113
114 /* Each thread spins for a certain duration after waking up before blocking again. */
115 static boolean_t g_do_each_spin = FALSE;
116 static uint64_t g_each_spin_duration_abs = 0;
117 static uint64_t g_each_spin_duration_ns = 0;
118
119 /* Global variables (broadcast) */
120 static semaphore_t g_broadcastsem;
121 static semaphore_t g_leadersem;
122 static semaphore_t g_readysem;
123 static semaphore_t g_donesem;
124
125 /* Global variables (chain) */
126 static semaphore_t *g_semarr;
127
128 static uint64_t
129 abs_to_nanos(uint64_t abstime)
130 {
131 return (uint64_t)(abstime * (((double)g_mti.numer) / ((double)g_mti.denom)));
132 }
133
134 static uint64_t
135 nanos_to_abs(uint64_t ns)
136 {
137 return (uint64_t)(ns * (((double)g_mti.denom) / ((double)g_mti.numer)));
138 }
139
140 /*
141 * Figure out what thread policy to use
142 */
143 static my_policy_type_t
144 parse_thread_policy(const char *str)
145 {
146 if (strcmp(str, "timeshare") == 0) {
147 return MY_POLICY_TIMESHARE;
148 } else if (strcmp(str, "realtime") == 0) {
149 return MY_POLICY_REALTIME;
150 } else if (strcmp(str, "fixed") == 0) {
151 return MY_POLICY_FIXEDPRI;
152 } else {
153 errx(EX_USAGE, "Invalid thread policy \"%s\"", str);
154 }
155 }
156
157 /*
158 * Figure out what wakeup pattern to use
159 */
160 static wake_type_t
161 parse_wakeup_pattern(const char *str)
162 {
163 if (strcmp(str, "chain") == 0) {
164 return WAKE_CHAIN;
165 } else if (strcmp(str, "hop") == 0) {
166 return WAKE_HOP;
167 } else if (strcmp(str, "broadcast-single-sem") == 0) {
168 return WAKE_BROADCAST_ONESEM;
169 } else if (strcmp(str, "broadcast-per-thread") == 0) {
170 return WAKE_BROADCAST_PERTHREAD;
171 } else {
172 errx(EX_USAGE, "Invalid wakeup pattern \"%s\"", str);
173 }
174 }
175
176 /*
177 * Set policy
178 */
179 static int
180 thread_setup(uint32_t my_id)
181 {
182 kern_return_t kr;
183 errno_t ret;
184 thread_time_constraint_policy_data_t pol;
185
186 switch (g_policy) {
187 case MY_POLICY_TIMESHARE:
188 break;
189 case MY_POLICY_REALTIME:
190 /* Hard-coded realtime parameters (similar to what Digi uses) */
191 pol.period = 100000;
192 pol.constraint = (uint32_t) nanos_to_abs(CONSTRAINT_NANOS);
193 pol.computation = (uint32_t) nanos_to_abs(COMPUTATION_NANOS);
194 pol.preemptible = 0; /* Ignored by OS */
195
196 kr = thread_policy_set(mach_thread_self(), THREAD_TIME_CONSTRAINT_POLICY,
197 (thread_policy_t) &pol, THREAD_TIME_CONSTRAINT_POLICY_COUNT);
198 mach_assert_zero_t(my_id, kr);
199 break;
200 case MY_POLICY_FIXEDPRI:
201 ret = pthread_set_fixedpriority_self();
202 if (ret) errc(EX_OSERR, ret, "pthread_set_fixedpriority_self");
203 break;
204 default:
205 errx(EX_USAGE, "invalid policy type %d", g_policy);
206 }
207
208 if (g_do_affinity) {
209 thread_affinity_policy_data_t affinity;
210
211 affinity.affinity_tag = my_id % 2;
212
213 kr = thread_policy_set(mach_thread_self(), THREAD_AFFINITY_POLICY,
214 (thread_policy_t)&affinity, THREAD_AFFINITY_POLICY_COUNT);
215 mach_assert_zero_t(my_id, kr);
216 }
217
218 return 0;
219 }
220
221 /*
222 * Wait for a wakeup, potentially wake up another of the "0-N" threads,
223 * and notify the main thread when done.
224 */
225 static void*
226 worker_thread(void *arg)
227 {
228 uint32_t my_id = (uint32_t)(uintptr_t)arg;
229 kern_return_t kr;
230
231 volatile double x = 0.0;
232 volatile double y = 0.0;
233
234 /* Set policy and so forth */
235 thread_setup(my_id);
236
237 for (uint32_t i = 0; i < g_iterations; i++) {
238 if (my_id == 0) {
239 /*
240 * Leader thread either wakes everyone up or starts the chain going.
241 */
242
243 /* Give the worker threads undisturbed time to finish before waiting on them */
244 if (g_do_sleep)
245 usleep(g_iteration_sleeptime_us);
246
247 debug_log("%d Leader thread wait for ready\n", i);
248
249 /*
250 * Wait for everyone else to declare ready
251 * Is there a better way to do this that won't interfere with the rest of the chain?
252 * TODO: Invent 'semaphore wait for N signals'
253 */
254
255 for (uint32_t j = 0 ; j < g_numthreads - 1; j++) {
256 kr = semaphore_wait(g_readysem);
257 mach_assert_zero_t(my_id, kr);
258 }
259
260 debug_log("%d Leader thread wait\n", i);
261
262 /* Signal main thread and wait for start of iteration */
263
264 kr = semaphore_wait_signal(g_leadersem, g_main_sem);
265 mach_assert_zero_t(my_id, kr);
266
267 g_thread_endtimes_abs[my_id] = mach_absolute_time();
268
269 debug_log("%d Leader thread go\n", i);
270
271 assert_zero_t(my_id, g_done_threads);
272
273 switch (g_waketype) {
274 case WAKE_BROADCAST_ONESEM:
275 kr = semaphore_signal_all(g_broadcastsem);
276 mach_assert_zero_t(my_id, kr);
277 break;
278 case WAKE_BROADCAST_PERTHREAD:
279 for (uint32_t j = 1; j < g_numthreads; j++) {
280 kr = semaphore_signal(g_semarr[j]);
281 mach_assert_zero_t(my_id, kr);
282 }
283 break;
284 case WAKE_CHAIN:
285 kr = semaphore_signal(g_semarr[my_id + 1]);
286 mach_assert_zero_t(my_id, kr);
287 break;
288 case WAKE_HOP:
289 kr = semaphore_wait_signal(g_donesem, g_semarr[my_id + 1]);
290 mach_assert_zero_t(my_id, kr);
291 break;
292 }
293 } else {
294 /*
295 * Everyone else waits to be woken up,
296 * records when she wakes up, and possibly
297 * wakes up a friend.
298 */
299 switch(g_waketype) {
300 case WAKE_BROADCAST_ONESEM:
301 kr = semaphore_wait_signal(g_broadcastsem, g_readysem);
302 mach_assert_zero_t(my_id, kr);
303
304 g_thread_endtimes_abs[my_id] = mach_absolute_time();
305 break;
306
307 case WAKE_BROADCAST_PERTHREAD:
308 kr = semaphore_wait_signal(g_semarr[my_id], g_readysem);
309 mach_assert_zero_t(my_id, kr);
310
311 g_thread_endtimes_abs[my_id] = mach_absolute_time();
312 break;
313
314 case WAKE_CHAIN:
315 kr = semaphore_wait_signal(g_semarr[my_id], g_readysem);
316 mach_assert_zero_t(my_id, kr);
317
318 /* Signal the next thread *after* recording wake time */
319
320 g_thread_endtimes_abs[my_id] = mach_absolute_time();
321
322 if (my_id < (g_numthreads - 1)) {
323 kr = semaphore_signal(g_semarr[my_id + 1]);
324 mach_assert_zero_t(my_id, kr);
325 }
326
327 break;
328
329 case WAKE_HOP:
330 kr = semaphore_wait_signal(g_semarr[my_id], g_readysem);
331 mach_assert_zero_t(my_id, kr);
332
333 /* Signal the next thread *after* recording wake time */
334
335 g_thread_endtimes_abs[my_id] = mach_absolute_time();
336
337 if (my_id < (g_numthreads - 1)) {
338 kr = semaphore_wait_signal(g_donesem, g_semarr[my_id + 1]);
339 mach_assert_zero_t(my_id, kr);
340 } else {
341 kr = semaphore_signal_all(g_donesem);
342 mach_assert_zero_t(my_id, kr);
343 }
344
345 break;
346 }
347 }
348
349 debug_log("Thread %p woke up for iteration %d.\n", pthread_self(), i);
350
351 if (g_do_one_long_spin && g_one_long_spin_id == my_id) {
352 /* One randomly chosen thread holds up the train for a while. */
353
354 uint64_t endspin = g_starttime_abs + g_one_long_spin_length_abs;
355 while (mach_absolute_time() < endspin) {
356 y = y + 1.5 + x;
357 x = sqrt(y);
358 }
359 }
360
361 if (g_do_each_spin) {
362 /* Each thread spins for a certain duration after waking up before blocking again. */
363
364 uint64_t endspin = mach_absolute_time() + g_each_spin_duration_abs;
365 while (mach_absolute_time() < endspin) {
366 y = y + 1.5 + x;
367 x = sqrt(y);
368 }
369 }
370
371 int32_t new = OSAtomicIncrement32((volatile int32_t *)&g_done_threads);
372 (void)new;
373
374 debug_log("Thread %p new value is %d, iteration %d\n", pthread_self(), new, i);
375
376 if (g_do_all_spin) {
377 /* Everyone spins until the last thread checks in. */
378
379 while (g_done_threads < g_numthreads) {
380 y = y + 1.5 + x;
381 x = sqrt(y);
382 }
383 }
384
385 debug_log("Thread %p done spinning, iteration %d\n", pthread_self(), i);
386 }
387
388 if (my_id == 0) {
389 /* Give the worker threads undisturbed time to finish before waiting on them */
390 if (g_do_sleep)
391 usleep(g_iteration_sleeptime_us);
392
393 /* Wait for the worker threads to finish */
394 for (uint32_t i = 0 ; i < g_numthreads - 1; i++) {
395 kr = semaphore_wait(g_readysem);
396 mach_assert_zero_t(my_id, kr);
397 }
398
399 /* Tell everyone and the main thread that the last iteration is done */
400 debug_log("%d Leader thread done\n", i);
401
402 kr = semaphore_signal_all(g_main_sem);
403 mach_assert_zero_t(my_id, kr);
404 } else {
405 /* Hold up thread teardown so it doesn't affect the last iteration */
406 kr = semaphore_wait_signal(g_main_sem, g_readysem);
407 mach_assert_zero_t(my_id, kr);
408 }
409
410 return 0;
411 }
412
413 /*
414 * Given an array of uint64_t values, compute average, max, min, and standard deviation
415 */
416 static void
417 compute_stats(uint64_t *values, uint64_t count, float *averagep, uint64_t *maxp, uint64_t *minp, float *stddevp)
418 {
419 uint32_t i;
420 uint64_t _sum = 0;
421 uint64_t _max = 0;
422 uint64_t _min = UINT64_MAX;
423 float _avg = 0;
424 float _dev = 0;
425
426 for (i = 0; i < count; i++) {
427 _sum += values[i];
428 _max = values[i] > _max ? values[i] : _max;
429 _min = values[i] < _min ? values[i] : _min;
430 }
431
432 _avg = ((float)_sum) / ((float)count);
433
434 _dev = 0;
435 for (i = 0; i < count; i++) {
436 _dev += powf((((float)values[i]) - _avg), 2);
437 }
438
439 _dev /= count;
440 _dev = sqrtf(_dev);
441
442 *averagep = _avg;
443 *maxp = _max;
444 *minp = _min;
445 *stddevp = _dev;
446 }
447
448 int
449 main(int argc, char **argv)
450 {
451 errno_t ret;
452 kern_return_t kr;
453
454 pthread_t *threads;
455 uint64_t *worst_latencies_ns;
456 uint64_t *worst_latencies_from_first_ns;
457 uint64_t max, min;
458 float avg, stddev;
459
460 for (int i = 0; i < argc; i++)
461 if (strcmp(argv[i], "--switched_apptype") == 0)
462 g_seen_apptype = TRUE;
463
464 if (!g_seen_apptype)
465 selfexec_with_apptype(argc, argv);
466
467 parse_args(argc, argv);
468
469 srand((unsigned int)time(NULL));
470
471 mach_timebase_info(&g_mti);
472
473 size_t ncpu_size = sizeof(g_numcpus);
474 ret = sysctlbyname("hw.ncpu", &g_numcpus, &ncpu_size, NULL, 0);
475 if (ret) err(EX_OSERR, "Failed sysctlbyname(hw.ncpu)");
476
477 if (g_do_each_spin)
478 g_each_spin_duration_abs = nanos_to_abs(g_each_spin_duration_ns);
479
480 /* Configure the long-spin thread to take up half of its computation */
481 if (g_do_one_long_spin) {
482 g_one_long_spin_length_ns = COMPUTATION_NANOS / 2;
483 g_one_long_spin_length_abs = nanos_to_abs(g_one_long_spin_length_ns);
484 }
485
486 /* Estimate the amount of time the cleanup phase needs to back off */
487 g_iteration_sleeptime_us = g_numthreads * 20;
488
489 uint32_t threads_per_core = (g_numthreads / g_numcpus) + 1;
490 if (g_do_each_spin)
491 g_iteration_sleeptime_us += threads_per_core * (g_each_spin_duration_ns / NSEC_PER_USEC);
492 if (g_do_one_long_spin)
493 g_iteration_sleeptime_us += g_one_long_spin_length_ns / NSEC_PER_USEC;
494
495 /* Arrays for threads and their wakeup times */
496 threads = (pthread_t*) valloc(sizeof(pthread_t) * g_numthreads);
497 assert(threads);
498
499 size_t endtimes_size = sizeof(uint64_t) * g_numthreads;
500
501 g_thread_endtimes_abs = (uint64_t*) valloc(endtimes_size);
502 assert(g_thread_endtimes_abs);
503
504 /* Ensure the allocation is pre-faulted */
505 ret = memset_s(g_thread_endtimes_abs, endtimes_size, 0, endtimes_size);
506 if (ret) errc(EX_OSERR, ret, "memset_s endtimes");
507
508 size_t latencies_size = sizeof(uint64_t) * g_iterations;
509
510 worst_latencies_ns = (uint64_t*) valloc(latencies_size);
511 assert(worst_latencies_ns);
512
513 /* Ensure the allocation is pre-faulted */
514 ret = memset_s(worst_latencies_ns, latencies_size, 0, latencies_size);
515 if (ret) errc(EX_OSERR, ret, "memset_s latencies");
516
517 worst_latencies_from_first_ns = (uint64_t*) valloc(latencies_size);
518 assert(worst_latencies_from_first_ns);
519
520 /* Ensure the allocation is pre-faulted */
521 ret = memset_s(worst_latencies_from_first_ns, latencies_size, 0, latencies_size);
522 if (ret) errc(EX_OSERR, ret, "memset_s latencies_from_first");
523
524 kr = semaphore_create(mach_task_self(), &g_main_sem, SYNC_POLICY_FIFO, 0);
525 mach_assert_zero(kr);
526
527 /* Either one big semaphore or one per thread */
528 if (g_waketype == WAKE_CHAIN ||
529 g_waketype == WAKE_BROADCAST_PERTHREAD ||
530 g_waketype == WAKE_HOP) {
531
532 g_semarr = valloc(sizeof(semaphore_t) * g_numthreads);
533 assert(g_semarr);
534
535 for (uint32_t i = 0; i < g_numthreads; i++) {
536 kr = semaphore_create(mach_task_self(), &g_semarr[i], SYNC_POLICY_FIFO, 0);
537 mach_assert_zero(kr);
538 }
539
540 g_leadersem = g_semarr[0];
541 } else {
542 kr = semaphore_create(mach_task_self(), &g_broadcastsem, SYNC_POLICY_FIFO, 0);
543 mach_assert_zero(kr);
544 kr = semaphore_create(mach_task_self(), &g_leadersem, SYNC_POLICY_FIFO, 0);
545 mach_assert_zero(kr);
546 }
547
548 if (g_waketype == WAKE_HOP) {
549 kr = semaphore_create(mach_task_self(), &g_donesem, SYNC_POLICY_FIFO, 0);
550 mach_assert_zero(kr);
551 }
552
553 kr = semaphore_create(mach_task_self(), &g_readysem, SYNC_POLICY_FIFO, 0);
554 mach_assert_zero(kr);
555
556 /* Create the threads */
557 g_done_threads = 0;
558 for (uint32_t i = 0; i < g_numthreads; i++) {
559 ret = pthread_create(&threads[i], NULL, worker_thread, (void*)(uintptr_t)i);
560 if (ret) errc(EX_OSERR, ret, "pthread_create %d", i);
561 }
562
563 ret = setpriority(PRIO_DARWIN_ROLE, 0, PRIO_DARWIN_ROLE_UI_FOCAL);
564 if (ret) errc(EX_OSERR, ret, "setpriority");
565
566 thread_setup(0);
567
568 /* Let everyone get settled */
569 kr = semaphore_wait(g_main_sem);
570 mach_assert_zero(kr);
571
572 /* Give the system a bit more time to settle */
573 if (g_do_sleep)
574 usleep(g_iteration_sleeptime_us);
575
576 /* Go! */
577 for (uint32_t i = 0; i < g_iterations; i++) {
578 uint32_t j;
579 uint64_t worst_abs = 0, best_abs = UINT64_MAX;
580
581 if (g_do_one_long_spin)
582 g_one_long_spin_id = (uint32_t)rand() % g_numthreads;
583
584 debug_log("%d Main thread reset\n", i);
585
586 g_done_threads = 0;
587 OSMemoryBarrier();
588
589 g_starttime_abs = mach_absolute_time();
590
591 /* Fire them off and wait for worker threads to finish */
592 kr = semaphore_wait_signal(g_main_sem, g_leadersem);
593 mach_assert_zero(kr);
594
595 debug_log("%d Main thread return\n", i);
596
597 /*
598 * We report the worst latencies relative to start time
599 * and relative to the lead worker thread.
600 */
601 for (j = 0; j < g_numthreads; j++) {
602 uint64_t latency_abs;
603
604 latency_abs = g_thread_endtimes_abs[j] - g_starttime_abs;
605 worst_abs = worst_abs < latency_abs ? latency_abs : worst_abs;
606 }
607
608 worst_latencies_ns[i] = abs_to_nanos(worst_abs);
609
610 worst_abs = 0;
611 for (j = 1; j < g_numthreads; j++) {
612 uint64_t latency_abs;
613
614 latency_abs = g_thread_endtimes_abs[j] - g_thread_endtimes_abs[0];
615 worst_abs = worst_abs < latency_abs ? latency_abs : worst_abs;
616 best_abs = best_abs > latency_abs ? latency_abs : best_abs;
617 }
618
619 worst_latencies_from_first_ns[i] = abs_to_nanos(worst_abs);
620
621 /*
622 * In the event of a bad run, cut a trace point.
623 */
624 if (worst_latencies_from_first_ns[i] > g_traceworthy_latency_ns) {
625 /* Ariadne's ad-hoc test signpost */
626 kdebug_trace(ARIADNEDBG_CODE(0, 0), worst_latencies_from_first_ns[i], g_traceworthy_latency_ns, 0, 0);
627
628 if (g_verbose)
629 printf("Worst on this round was %.2f us.\n", ((float)worst_latencies_from_first_ns[i]) / 1000.0);
630 }
631
632 /* Give the system a bit more time to settle */
633 if (g_do_sleep)
634 usleep(g_iteration_sleeptime_us);
635 }
636
637 /* Rejoin threads */
638 for (uint32_t i = 0; i < g_numthreads; i++) {
639 ret = pthread_join(threads[i], NULL);
640 if (ret) errc(EX_OSERR, ret, "pthread_join %d", i);
641 }
642
643 compute_stats(worst_latencies_ns, g_iterations, &avg, &max, &min, &stddev);
644 printf("Results (from a stop):\n");
645 printf("Max:\t\t%.2f us\n", ((float)max) / 1000.0);
646 printf("Min:\t\t%.2f us\n", ((float)min) / 1000.0);
647 printf("Avg:\t\t%.2f us\n", avg / 1000.0);
648 printf("Stddev:\t\t%.2f us\n", stddev / 1000.0);
649
650 putchar('\n');
651
652 compute_stats(worst_latencies_from_first_ns, g_iterations, &avg, &max, &min, &stddev);
653 printf("Results (relative to first thread):\n");
654 printf("Max:\t\t%.2f us\n", ((float)max) / 1000.0);
655 printf("Min:\t\t%.2f us\n", ((float)min) / 1000.0);
656 printf("Avg:\t\t%.2f us\n", avg / 1000.0);
657 printf("Stddev:\t\t%.2f us\n", stddev / 1000.0);
658
659 #if 0
660 for (uint32_t i = 0; i < g_iterations; i++) {
661 printf("Iteration %d: %f us\n", i, worst_latencies_ns[i] / 1000.0);
662 }
663 #endif
664
665 free(threads);
666 free(g_thread_endtimes_abs);
667 free(worst_latencies_ns);
668 free(worst_latencies_from_first_ns);
669
670 return 0;
671 }
672
673 /*
674 * WARNING: This is SPI specifically intended for use by launchd to start UI
675 * apps. We use it here for a test tool only to opt into QoS using the same
676 * policies. Do not use this outside xnu or libxpc/launchd.
677 */
678 static void
679 selfexec_with_apptype(int argc, char *argv[])
680 {
681 int ret;
682 posix_spawnattr_t attr;
683 extern char **environ;
684 char *new_argv[argc + 1 + 1 /* NULL */];
685 int i;
686 char prog[PATH_MAX];
687 uint32_t prog_size = PATH_MAX;
688
689 ret = _NSGetExecutablePath(prog, &prog_size);
690 if (ret) err(EX_OSERR, "_NSGetExecutablePath");
691
692 for (i=0; i < argc; i++) {
693 new_argv[i] = argv[i];
694 }
695
696 new_argv[i] = "--switched_apptype";
697 new_argv[i+1] = NULL;
698
699 ret = posix_spawnattr_init(&attr);
700 if (ret) errc(EX_OSERR, ret, "posix_spawnattr_init");
701
702 ret = posix_spawnattr_setflags(&attr, POSIX_SPAWN_SETEXEC);
703 if (ret) errc(EX_OSERR, ret, "posix_spawnattr_setflags");
704
705 ret = posix_spawnattr_setprocesstype_np(&attr, POSIX_SPAWN_PROC_TYPE_APP_DEFAULT);
706 if (ret) errc(EX_OSERR, ret, "posix_spawnattr_setprocesstype_np");
707
708 ret = posix_spawn(NULL, prog, NULL, &attr, new_argv, environ);
709 if (ret) errc(EX_OSERR, ret, "posix_spawn");
710 }
711
712 /*
713 * Admittedly not very attractive.
714 */
715 static void __attribute__((noreturn))
716 usage()
717 {
718 errx(EX_USAGE, "Usage: zn <threads> <chain | hop | broadcast-single-sem | broadcast-per-thread> "
719 "<realtime | timeshare | fixed> <iterations> [--trace <traceworthy latency in ns>] "
720 "[--spin-one] [--spin-all] [--spin-time <nanos>] [--affinity] [--no-sleep] [--verbose]");
721 }
722
723 static void
724 parse_args(int argc, char *argv[])
725 {
726 int ch, option_index = 0;
727 char *cp;
728
729 static struct option longopts[] = {
730 { "spin-time", required_argument, NULL, 2 },
731 { "trace", required_argument, NULL, 3 },
732 { "switched_apptype", no_argument, (int*)&g_seen_apptype, TRUE },
733 { "spin-one", no_argument, (int*)&g_do_one_long_spin, TRUE },
734 { "spin-all", no_argument, (int*)&g_do_all_spin, TRUE },
735 { "affinity", no_argument, (int*)&g_do_affinity, TRUE },
736 { "no-sleep", no_argument, (int*)&g_do_sleep, FALSE },
737 { "verbose", no_argument, (int*)&g_verbose, TRUE },
738 { "help", no_argument, NULL, 'h' },
739 { NULL, 0, NULL, 0 }
740 };
741
742 while ((ch = getopt_long(argc, argv, "h", longopts, &option_index)) != -1) {
743 switch (ch) {
744 case 0:
745 /* getopt_long set a variable */
746 break;
747 case 2:
748 /* spin-time */
749 g_do_each_spin = TRUE;
750 g_each_spin_duration_ns = strtoull(optarg, &cp, 10);
751
752 if (cp == optarg || *cp)
753 errx(EX_USAGE, "arg --%s requires a decimal number, found \"%s\"",
754 longopts[option_index].name, optarg);
755 break;
756 case 3:
757 /* trace */
758 g_traceworthy_latency_ns = strtoull(optarg, &cp, 10);
759
760 if (cp == optarg || *cp)
761 errx(EX_USAGE, "arg --%s requires a decimal number, found \"%s\"",
762 longopts[option_index].name, optarg);
763 break;
764 case '?':
765 case 'h':
766 default:
767 usage();
768 /* NORETURN */
769 }
770 }
771
772 /*
773 * getopt_long reorders all the options to the beginning of the argv array.
774 * Jump past them to the non-option arguments.
775 */
776
777 argc -= optind;
778 argv += optind;
779
780 if (argc > 4) {
781 warnx("Too many non-option arguments passed");
782 usage();
783 }
784
785 if (argc != 4) {
786 warnx("Missing required <threads> <waketype> <policy> <iterations> arguments");
787 usage();
788 }
789
790 /* How many threads? */
791 g_numthreads = (uint32_t)strtoull(argv[0], &cp, 10);
792
793 if (cp == argv[0] || *cp)
794 errx(EX_USAGE, "numthreads requires a decimal number, found \"%s\"", argv[0]);
795
796 if (g_numthreads < 1)
797 errx(EX_USAGE, "Must use at least one thread");
798
799 /* What wakeup pattern? */
800 g_waketype = parse_wakeup_pattern(argv[1]);
801
802 /* Policy */
803 g_policy = parse_thread_policy(argv[2]);
804
805 /* Iterations */
806 g_iterations = (uint32_t)strtoull(argv[3], &cp, 10);
807
808 if (cp == argv[3] || *cp)
809 errx(EX_USAGE, "numthreads requires a decimal number, found \"%s\"", argv[3]);
810
811 if (g_iterations < 1)
812 errx(EX_USAGE, "Must have at least one iteration");
813
814 if (g_numthreads == 1 && g_waketype == WAKE_CHAIN)
815 errx(EX_USAGE, "chain mode requires more than one thread");
816
817 if (g_numthreads == 1 && g_waketype == WAKE_HOP)
818 errx(EX_USAGE, "hop mode requires more than one thread");
819 }
820
821