]> git.saurik.com Git - apple/xnu.git/blob - osfmk/vm/vm_fault.c
xnu-3248.60.10.tar.gz
[apple/xnu.git] / osfmk / vm / vm_fault.c
1 /*
2 * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58 /*
59 * File: vm_fault.c
60 * Author: Avadis Tevanian, Jr., Michael Wayne Young
61 *
62 * Page fault handling module.
63 */
64
65 #include <mach_cluster_stats.h>
66 #include <mach_pagemap.h>
67 #include <libkern/OSAtomic.h>
68
69 #include <mach/mach_types.h>
70 #include <mach/kern_return.h>
71 #include <mach/message.h> /* for error codes */
72 #include <mach/vm_param.h>
73 #include <mach/vm_behavior.h>
74 #include <mach/memory_object.h>
75 /* For memory_object_data_{request,unlock} */
76 #include <mach/sdt.h>
77
78 #include <kern/kern_types.h>
79 #include <kern/host_statistics.h>
80 #include <kern/counters.h>
81 #include <kern/task.h>
82 #include <kern/thread.h>
83 #include <kern/sched_prim.h>
84 #include <kern/host.h>
85 #include <kern/xpr.h>
86 #include <kern/mach_param.h>
87 #include <kern/macro_help.h>
88 #include <kern/zalloc.h>
89 #include <kern/misc_protos.h>
90
91 #include <vm/vm_compressor.h>
92 #include <vm/vm_compressor_pager.h>
93 #include <vm/vm_fault.h>
94 #include <vm/vm_map.h>
95 #include <vm/vm_object.h>
96 #include <vm/vm_page.h>
97 #include <vm/vm_kern.h>
98 #include <vm/pmap.h>
99 #include <vm/vm_pageout.h>
100 #include <vm/vm_protos.h>
101 #include <vm/vm_external.h>
102 #include <vm/memory_object.h>
103 #include <vm/vm_purgeable_internal.h> /* Needed by some vm_page.h macros */
104 #include <vm/vm_shared_region.h>
105
106 #include <sys/codesign.h>
107
108 #include <libsa/sys/timers.h> /* for struct timespec */
109
110 #define VM_FAULT_CLASSIFY 0
111
112 #define TRACEFAULTPAGE 0 /* (TEST/DEBUG) */
113
114 unsigned int vm_object_pagein_throttle = 16;
115
116 /*
117 * We apply a hard throttle to the demand zero rate of tasks that we believe are running out of control which
118 * kicks in when swap space runs out. 64-bit programs have massive address spaces and can leak enormous amounts
119 * of memory if they're buggy and can run the system completely out of swap space. If this happens, we
120 * impose a hard throttle on them to prevent them from taking the last bit of memory left. This helps
121 * keep the UI active so that the user has a chance to kill the offending task before the system
122 * completely hangs.
123 *
124 * The hard throttle is only applied when the system is nearly completely out of swap space and is only applied
125 * to tasks that appear to be bloated. When swap runs out, any task using more than vm_hard_throttle_threshold
126 * will be throttled. The throttling is done by giving the thread that's trying to demand zero a page a
127 * delay of HARD_THROTTLE_DELAY microseconds before being allowed to try the page fault again.
128 */
129
130 extern void throttle_lowpri_io(int);
131
132 uint64_t vm_hard_throttle_threshold;
133
134
135
136 #define NEED_TO_HARD_THROTTLE_THIS_TASK() (vm_wants_task_throttled(current_task()) || \
137 (vm_page_free_count < vm_page_throttle_limit && \
138 proc_get_effective_thread_policy(current_thread(), TASK_POLICY_IO) > THROTTLE_LEVEL_THROTTLED))
139
140
141 #define HARD_THROTTLE_DELAY 5000 /* 5000 us == 5 ms */
142 #define SOFT_THROTTLE_DELAY 200 /* 200 us == .2 ms */
143
144 #define VM_PAGE_CREATION_THROTTLE_PERIOD_SECS 6
145 #define VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC 20000
146
147
148 boolean_t current_thread_aborted(void);
149
150 /* Forward declarations of internal routines. */
151 static kern_return_t vm_fault_wire_fast(
152 vm_map_t map,
153 vm_map_offset_t va,
154 vm_prot_t prot,
155 vm_map_entry_t entry,
156 pmap_t pmap,
157 vm_map_offset_t pmap_addr,
158 ppnum_t *physpage_p);
159
160 static kern_return_t vm_fault_internal(
161 vm_map_t map,
162 vm_map_offset_t vaddr,
163 vm_prot_t caller_prot,
164 boolean_t change_wiring,
165 int interruptible,
166 pmap_t pmap,
167 vm_map_offset_t pmap_addr,
168 ppnum_t *physpage_p);
169
170 static void vm_fault_copy_cleanup(
171 vm_page_t page,
172 vm_page_t top_page);
173
174 static void vm_fault_copy_dst_cleanup(
175 vm_page_t page);
176
177 #if VM_FAULT_CLASSIFY
178 extern void vm_fault_classify(vm_object_t object,
179 vm_object_offset_t offset,
180 vm_prot_t fault_type);
181
182 extern void vm_fault_classify_init(void);
183 #endif
184
185 unsigned long vm_pmap_enter_blocked = 0;
186 unsigned long vm_pmap_enter_retried = 0;
187
188 unsigned long vm_cs_validates = 0;
189 unsigned long vm_cs_revalidates = 0;
190 unsigned long vm_cs_query_modified = 0;
191 unsigned long vm_cs_validated_dirtied = 0;
192 unsigned long vm_cs_bitmap_validated = 0;
193
194 void vm_pre_fault(vm_map_offset_t);
195
196 extern int not_in_kdp;
197 extern char *kdp_compressor_decompressed_page;
198 extern addr64_t kdp_compressor_decompressed_page_paddr;
199 extern ppnum_t kdp_compressor_decompressed_page_ppnum;
200
201 /*
202 * Routine: vm_fault_init
203 * Purpose:
204 * Initialize our private data structures.
205 */
206 void
207 vm_fault_init(void)
208 {
209 int i, vm_compressor_temp;
210 boolean_t need_default_val = TRUE;
211 /*
212 * Choose a value for the hard throttle threshold based on the amount of ram. The threshold is
213 * computed as a percentage of available memory, and the percentage used is scaled inversely with
214 * the amount of memory. The percentage runs between 10% and 35%. We use 35% for small memory systems
215 * and reduce the value down to 10% for very large memory configurations. This helps give us a
216 * definition of a memory hog that makes more sense relative to the amount of ram in the machine.
217 * The formula here simply uses the number of gigabytes of ram to adjust the percentage.
218 */
219
220 vm_hard_throttle_threshold = sane_size * (35 - MIN((int)(sane_size / (1024*1024*1024)), 25)) / 100;
221
222 /*
223 * Configure compressed pager behavior. A boot arg takes precedence over a device tree entry.
224 */
225
226 if (PE_parse_boot_argn("vm_compressor", &vm_compressor_temp, sizeof (vm_compressor_temp))) {
227 for ( i = 0; i < VM_PAGER_MAX_MODES; i++) {
228 if (vm_compressor_temp > 0 &&
229 ((vm_compressor_temp & ( 1 << i)) == vm_compressor_temp)) {
230 need_default_val = FALSE;
231 vm_compressor_mode = vm_compressor_temp;
232 break;
233 }
234 }
235 if (need_default_val)
236 printf("Ignoring \"vm_compressor\" boot arg %d\n", vm_compressor_temp);
237 }
238 if (need_default_val) {
239 /* If no boot arg or incorrect boot arg, try device tree. */
240 PE_get_default("kern.vm_compressor", &vm_compressor_mode, sizeof(vm_compressor_mode));
241 }
242 PE_parse_boot_argn("vm_compressor_threads", &vm_compressor_thread_count, sizeof (vm_compressor_thread_count));
243
244 if (PE_parse_boot_argn("vm_compressor_immediate", &vm_compressor_temp, sizeof (vm_compressor_temp)))
245 vm_compressor_immediate_preferred_override = TRUE;
246 else {
247 if (PE_get_default("kern.vm_compressor_immediate", &vm_compressor_temp, sizeof(vm_compressor_temp)))
248 vm_compressor_immediate_preferred_override = TRUE;
249 }
250 if (vm_compressor_immediate_preferred_override == TRUE) {
251 if (vm_compressor_temp)
252 vm_compressor_immediate_preferred = TRUE;
253 else
254 vm_compressor_immediate_preferred = FALSE;
255 }
256 printf("\"vm_compressor_mode\" is %d\n", vm_compressor_mode);
257 }
258
259 /*
260 * Routine: vm_fault_cleanup
261 * Purpose:
262 * Clean up the result of vm_fault_page.
263 * Results:
264 * The paging reference for "object" is released.
265 * "object" is unlocked.
266 * If "top_page" is not null, "top_page" is
267 * freed and the paging reference for the object
268 * containing it is released.
269 *
270 * In/out conditions:
271 * "object" must be locked.
272 */
273 void
274 vm_fault_cleanup(
275 register vm_object_t object,
276 register vm_page_t top_page)
277 {
278 vm_object_paging_end(object);
279 vm_object_unlock(object);
280
281 if (top_page != VM_PAGE_NULL) {
282 object = top_page->object;
283
284 vm_object_lock(object);
285 VM_PAGE_FREE(top_page);
286 vm_object_paging_end(object);
287 vm_object_unlock(object);
288 }
289 }
290
291 #if MACH_CLUSTER_STATS
292 #define MAXCLUSTERPAGES 16
293 struct {
294 unsigned long pages_in_cluster;
295 unsigned long pages_at_higher_offsets;
296 unsigned long pages_at_lower_offsets;
297 } cluster_stats_in[MAXCLUSTERPAGES];
298 #define CLUSTER_STAT(clause) clause
299 #define CLUSTER_STAT_HIGHER(x) \
300 ((cluster_stats_in[(x)].pages_at_higher_offsets)++)
301 #define CLUSTER_STAT_LOWER(x) \
302 ((cluster_stats_in[(x)].pages_at_lower_offsets)++)
303 #define CLUSTER_STAT_CLUSTER(x) \
304 ((cluster_stats_in[(x)].pages_in_cluster)++)
305 #else /* MACH_CLUSTER_STATS */
306 #define CLUSTER_STAT(clause)
307 #endif /* MACH_CLUSTER_STATS */
308
309 #define ALIGNED(x) (((x) & (PAGE_SIZE_64 - 1)) == 0)
310
311
312 boolean_t vm_page_deactivate_behind = TRUE;
313 /*
314 * default sizes given VM_BEHAVIOR_DEFAULT reference behavior
315 */
316 #define VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW 128
317 #define VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER 16 /* don't make this too big... */
318 /* we use it to size an array on the stack */
319
320 int vm_default_behind = VM_DEFAULT_DEACTIVATE_BEHIND_WINDOW;
321
322 #define MAX_SEQUENTIAL_RUN (1024 * 1024 * 1024)
323
324 /*
325 * vm_page_is_sequential
326 *
327 * Determine if sequential access is in progress
328 * in accordance with the behavior specified.
329 * Update state to indicate current access pattern.
330 *
331 * object must have at least the shared lock held
332 */
333 static
334 void
335 vm_fault_is_sequential(
336 vm_object_t object,
337 vm_object_offset_t offset,
338 vm_behavior_t behavior)
339 {
340 vm_object_offset_t last_alloc;
341 int sequential;
342 int orig_sequential;
343
344 last_alloc = object->last_alloc;
345 sequential = object->sequential;
346 orig_sequential = sequential;
347
348 switch (behavior) {
349 case VM_BEHAVIOR_RANDOM:
350 /*
351 * reset indicator of sequential behavior
352 */
353 sequential = 0;
354 break;
355
356 case VM_BEHAVIOR_SEQUENTIAL:
357 if (offset && last_alloc == offset - PAGE_SIZE_64) {
358 /*
359 * advance indicator of sequential behavior
360 */
361 if (sequential < MAX_SEQUENTIAL_RUN)
362 sequential += PAGE_SIZE;
363 } else {
364 /*
365 * reset indicator of sequential behavior
366 */
367 sequential = 0;
368 }
369 break;
370
371 case VM_BEHAVIOR_RSEQNTL:
372 if (last_alloc && last_alloc == offset + PAGE_SIZE_64) {
373 /*
374 * advance indicator of sequential behavior
375 */
376 if (sequential > -MAX_SEQUENTIAL_RUN)
377 sequential -= PAGE_SIZE;
378 } else {
379 /*
380 * reset indicator of sequential behavior
381 */
382 sequential = 0;
383 }
384 break;
385
386 case VM_BEHAVIOR_DEFAULT:
387 default:
388 if (offset && last_alloc == (offset - PAGE_SIZE_64)) {
389 /*
390 * advance indicator of sequential behavior
391 */
392 if (sequential < 0)
393 sequential = 0;
394 if (sequential < MAX_SEQUENTIAL_RUN)
395 sequential += PAGE_SIZE;
396
397 } else if (last_alloc && last_alloc == (offset + PAGE_SIZE_64)) {
398 /*
399 * advance indicator of sequential behavior
400 */
401 if (sequential > 0)
402 sequential = 0;
403 if (sequential > -MAX_SEQUENTIAL_RUN)
404 sequential -= PAGE_SIZE;
405 } else {
406 /*
407 * reset indicator of sequential behavior
408 */
409 sequential = 0;
410 }
411 break;
412 }
413 if (sequential != orig_sequential) {
414 if (!OSCompareAndSwap(orig_sequential, sequential, (UInt32 *)&object->sequential)) {
415 /*
416 * if someone else has already updated object->sequential
417 * don't bother trying to update it or object->last_alloc
418 */
419 return;
420 }
421 }
422 /*
423 * I'd like to do this with a OSCompareAndSwap64, but that
424 * doesn't exist for PPC... however, it shouldn't matter
425 * that much... last_alloc is maintained so that we can determine
426 * if a sequential access pattern is taking place... if only
427 * one thread is banging on this object, no problem with the unprotected
428 * update... if 2 or more threads are banging away, we run the risk of
429 * someone seeing a mangled update... however, in the face of multiple
430 * accesses, no sequential access pattern can develop anyway, so we
431 * haven't lost any real info.
432 */
433 object->last_alloc = offset;
434 }
435
436
437 int vm_page_deactivate_behind_count = 0;
438
439 /*
440 * vm_page_deactivate_behind
441 *
442 * Determine if sequential access is in progress
443 * in accordance with the behavior specified. If
444 * so, compute a potential page to deactivate and
445 * deactivate it.
446 *
447 * object must be locked.
448 *
449 * return TRUE if we actually deactivate a page
450 */
451 static
452 boolean_t
453 vm_fault_deactivate_behind(
454 vm_object_t object,
455 vm_object_offset_t offset,
456 vm_behavior_t behavior)
457 {
458 int n;
459 int pages_in_run = 0;
460 int max_pages_in_run = 0;
461 int sequential_run;
462 int sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
463 vm_object_offset_t run_offset = 0;
464 vm_object_offset_t pg_offset = 0;
465 vm_page_t m;
466 vm_page_t page_run[VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER];
467
468 pages_in_run = 0;
469 #if TRACEFAULTPAGE
470 dbgTrace(0xBEEF0018, (unsigned int) object, (unsigned int) vm_fault_deactivate_behind); /* (TEST/DEBUG) */
471 #endif
472
473 if (object == kernel_object || vm_page_deactivate_behind == FALSE) {
474 /*
475 * Do not deactivate pages from the kernel object: they
476 * are not intended to become pageable.
477 * or we've disabled the deactivate behind mechanism
478 */
479 return FALSE;
480 }
481 if ((sequential_run = object->sequential)) {
482 if (sequential_run < 0) {
483 sequential_behavior = VM_BEHAVIOR_RSEQNTL;
484 sequential_run = 0 - sequential_run;
485 } else {
486 sequential_behavior = VM_BEHAVIOR_SEQUENTIAL;
487 }
488 }
489 switch (behavior) {
490 case VM_BEHAVIOR_RANDOM:
491 break;
492 case VM_BEHAVIOR_SEQUENTIAL:
493 if (sequential_run >= (int)PAGE_SIZE) {
494 run_offset = 0 - PAGE_SIZE_64;
495 max_pages_in_run = 1;
496 }
497 break;
498 case VM_BEHAVIOR_RSEQNTL:
499 if (sequential_run >= (int)PAGE_SIZE) {
500 run_offset = PAGE_SIZE_64;
501 max_pages_in_run = 1;
502 }
503 break;
504 case VM_BEHAVIOR_DEFAULT:
505 default:
506 { vm_object_offset_t behind = vm_default_behind * PAGE_SIZE_64;
507
508 /*
509 * determine if the run of sequential accesss has been
510 * long enough on an object with default access behavior
511 * to consider it for deactivation
512 */
513 if ((uint64_t)sequential_run >= behind && (sequential_run % (VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER * PAGE_SIZE)) == 0) {
514 /*
515 * the comparisons between offset and behind are done
516 * in this kind of odd fashion in order to prevent wrap around
517 * at the end points
518 */
519 if (sequential_behavior == VM_BEHAVIOR_SEQUENTIAL) {
520 if (offset >= behind) {
521 run_offset = 0 - behind;
522 pg_offset = PAGE_SIZE_64;
523 max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER;
524 }
525 } else {
526 if (offset < -behind) {
527 run_offset = behind;
528 pg_offset = 0 - PAGE_SIZE_64;
529 max_pages_in_run = VM_DEFAULT_DEACTIVATE_BEHIND_CLUSTER;
530 }
531 }
532 }
533 break;
534 }
535 }
536 for (n = 0; n < max_pages_in_run; n++) {
537 m = vm_page_lookup(object, offset + run_offset + (n * pg_offset));
538
539 if (m && !m->laundry && !m->busy && !m->no_cache && !m->throttled && !m->fictitious && !m->absent) {
540 page_run[pages_in_run++] = m;
541
542 /*
543 * by not passing in a pmap_flush_context we will forgo any TLB flushing, local or otherwise...
544 *
545 * a TLB flush isn't really needed here since at worst we'll miss the reference bit being
546 * updated in the PTE if a remote processor still has this mapping cached in its TLB when the
547 * new reference happens. If no futher references happen on the page after that remote TLB flushes
548 * we'll see a clean, non-referenced page when it eventually gets pulled out of the inactive queue
549 * by pageout_scan, which is just fine since the last reference would have happened quite far
550 * in the past (TLB caches don't hang around for very long), and of course could just as easily
551 * have happened before we did the deactivate_behind.
552 */
553 pmap_clear_refmod_options(m->phys_page, VM_MEM_REFERENCED, PMAP_OPTIONS_NOFLUSH, (void *)NULL);
554 }
555 }
556 if (pages_in_run) {
557 vm_page_lockspin_queues();
558
559 for (n = 0; n < pages_in_run; n++) {
560
561 m = page_run[n];
562
563 vm_page_deactivate_internal(m, FALSE);
564
565 vm_page_deactivate_behind_count++;
566 #if TRACEFAULTPAGE
567 dbgTrace(0xBEEF0019, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
568 #endif
569 }
570 vm_page_unlock_queues();
571
572 return TRUE;
573 }
574 return FALSE;
575 }
576
577
578 #if (DEVELOPMENT || DEBUG)
579 uint32_t vm_page_creation_throttled_hard = 0;
580 uint32_t vm_page_creation_throttled_soft = 0;
581 uint64_t vm_page_creation_throttle_avoided = 0;
582 #endif /* DEVELOPMENT || DEBUG */
583
584 static int
585 vm_page_throttled(boolean_t page_kept)
586 {
587 clock_sec_t elapsed_sec;
588 clock_sec_t tv_sec;
589 clock_usec_t tv_usec;
590
591 thread_t thread = current_thread();
592
593 if (thread->options & TH_OPT_VMPRIV)
594 return (0);
595
596 if (thread->t_page_creation_throttled) {
597 thread->t_page_creation_throttled = 0;
598
599 if (page_kept == FALSE)
600 goto no_throttle;
601 }
602 if (NEED_TO_HARD_THROTTLE_THIS_TASK()) {
603 #if (DEVELOPMENT || DEBUG)
604 thread->t_page_creation_throttled_hard++;
605 OSAddAtomic(1, &vm_page_creation_throttled_hard);
606 #endif /* DEVELOPMENT || DEBUG */
607 return (HARD_THROTTLE_DELAY);
608 }
609
610 if ((vm_page_free_count < vm_page_throttle_limit || ((COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) && SWAPPER_NEEDS_TO_UNTHROTTLE())) &&
611 thread->t_page_creation_count > (VM_PAGE_CREATION_THROTTLE_PERIOD_SECS * VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC)) {
612
613 if (vm_page_free_wanted == 0 && vm_page_free_wanted_privileged == 0) {
614 #if (DEVELOPMENT || DEBUG)
615 OSAddAtomic64(1, &vm_page_creation_throttle_avoided);
616 #endif
617 goto no_throttle;
618 }
619 clock_get_system_microtime(&tv_sec, &tv_usec);
620
621 elapsed_sec = tv_sec - thread->t_page_creation_time;
622
623 if (elapsed_sec <= VM_PAGE_CREATION_THROTTLE_PERIOD_SECS ||
624 (thread->t_page_creation_count / elapsed_sec) >= VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC) {
625
626 if (elapsed_sec >= (3 * VM_PAGE_CREATION_THROTTLE_PERIOD_SECS)) {
627 /*
628 * we'll reset our stats to give a well behaved app
629 * that was unlucky enough to accumulate a bunch of pages
630 * over a long period of time a chance to get out of
631 * the throttled state... we reset the counter and timestamp
632 * so that if it stays under the rate limit for the next second
633 * it will be back in our good graces... if it exceeds it, it
634 * will remain in the throttled state
635 */
636 thread->t_page_creation_time = tv_sec;
637 thread->t_page_creation_count = VM_PAGE_CREATION_THROTTLE_RATE_PER_SEC * (VM_PAGE_CREATION_THROTTLE_PERIOD_SECS - 1);
638 }
639 ++vm_page_throttle_count;
640
641 thread->t_page_creation_throttled = 1;
642
643 if ((COMPRESSED_PAGER_IS_ACTIVE || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE) && HARD_THROTTLE_LIMIT_REACHED()) {
644 #if (DEVELOPMENT || DEBUG)
645 thread->t_page_creation_throttled_hard++;
646 OSAddAtomic(1, &vm_page_creation_throttled_hard);
647 #endif /* DEVELOPMENT || DEBUG */
648 return (HARD_THROTTLE_DELAY);
649 } else {
650 #if (DEVELOPMENT || DEBUG)
651 thread->t_page_creation_throttled_soft++;
652 OSAddAtomic(1, &vm_page_creation_throttled_soft);
653 #endif /* DEVELOPMENT || DEBUG */
654 return (SOFT_THROTTLE_DELAY);
655 }
656 }
657 thread->t_page_creation_time = tv_sec;
658 thread->t_page_creation_count = 0;
659 }
660 no_throttle:
661 thread->t_page_creation_count++;
662
663 return (0);
664 }
665
666
667 /*
668 * check for various conditions that would
669 * prevent us from creating a ZF page...
670 * cleanup is based on being called from vm_fault_page
671 *
672 * object must be locked
673 * object == m->object
674 */
675 static vm_fault_return_t
676 vm_fault_check(vm_object_t object, vm_page_t m, vm_page_t first_m, boolean_t interruptible_state, boolean_t page_throttle)
677 {
678 int throttle_delay;
679
680 if (object->shadow_severed ||
681 VM_OBJECT_PURGEABLE_FAULT_ERROR(object)) {
682 /*
683 * Either:
684 * 1. the shadow chain was severed,
685 * 2. the purgeable object is volatile or empty and is marked
686 * to fault on access while volatile.
687 * Just have to return an error at this point
688 */
689 if (m != VM_PAGE_NULL)
690 VM_PAGE_FREE(m);
691 vm_fault_cleanup(object, first_m);
692
693 thread_interrupt_level(interruptible_state);
694
695 return (VM_FAULT_MEMORY_ERROR);
696 }
697 if (vm_backing_store_low) {
698 /*
699 * are we protecting the system from
700 * backing store exhaustion. If so
701 * sleep unless we are privileged.
702 */
703 if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) {
704
705 if (m != VM_PAGE_NULL)
706 VM_PAGE_FREE(m);
707 vm_fault_cleanup(object, first_m);
708
709 assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT);
710
711 thread_block(THREAD_CONTINUE_NULL);
712 thread_interrupt_level(interruptible_state);
713
714 return (VM_FAULT_RETRY);
715 }
716 }
717 if (page_throttle == TRUE) {
718 if ((throttle_delay = vm_page_throttled(FALSE))) {
719 /*
720 * we're throttling zero-fills...
721 * treat this as if we couldn't grab a page
722 */
723 if (m != VM_PAGE_NULL)
724 VM_PAGE_FREE(m);
725 vm_fault_cleanup(object, first_m);
726
727 VM_DEBUG_EVENT(vmf_check_zfdelay, VMF_CHECK_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
728
729 delay(throttle_delay);
730
731 if (current_thread_aborted()) {
732 thread_interrupt_level(interruptible_state);
733 return VM_FAULT_INTERRUPTED;
734 }
735 thread_interrupt_level(interruptible_state);
736
737 return (VM_FAULT_MEMORY_SHORTAGE);
738 }
739 }
740 return (VM_FAULT_SUCCESS);
741 }
742
743
744 /*
745 * do the work to zero fill a page and
746 * inject it into the correct paging queue
747 *
748 * m->object must be locked
749 * page queue lock must NOT be held
750 */
751 static int
752 vm_fault_zero_page(vm_page_t m, boolean_t no_zero_fill)
753 {
754 int my_fault = DBG_ZERO_FILL_FAULT;
755
756 /*
757 * This is is a zero-fill page fault...
758 *
759 * Checking the page lock is a waste of
760 * time; this page was absent, so
761 * it can't be page locked by a pager.
762 *
763 * we also consider it undefined
764 * with respect to instruction
765 * execution. i.e. it is the responsibility
766 * of higher layers to call for an instruction
767 * sync after changing the contents and before
768 * sending a program into this area. We
769 * choose this approach for performance
770 */
771 m->pmapped = TRUE;
772
773 m->cs_validated = FALSE;
774 m->cs_tainted = FALSE;
775 m->cs_nx = FALSE;
776
777 if (no_zero_fill == TRUE) {
778 my_fault = DBG_NZF_PAGE_FAULT;
779
780 if (m->absent && m->busy)
781 return (my_fault);
782 } else {
783 vm_page_zero_fill(m);
784
785 VM_STAT_INCR(zero_fill_count);
786 DTRACE_VM2(zfod, int, 1, (uint64_t *), NULL);
787 }
788 assert(!m->laundry);
789 assert(m->object != kernel_object);
790 //assert(m->pageq.next == NULL && m->pageq.prev == NULL);
791
792 if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) &&
793 (m->object->purgable == VM_PURGABLE_DENY ||
794 m->object->purgable == VM_PURGABLE_NONVOLATILE ||
795 m->object->purgable == VM_PURGABLE_VOLATILE )) {
796
797 vm_page_lockspin_queues();
798
799 if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default)) {
800 assert(!VM_PAGE_WIRED(m));
801
802 /*
803 * can't be on the pageout queue since we don't
804 * have a pager to try and clean to
805 */
806 assert(!m->pageout_queue);
807
808 vm_page_queues_remove(m);
809 vm_page_check_pageable_safe(m);
810 queue_enter(&vm_page_queue_throttled, m, vm_page_t, pageq);
811 m->throttled = TRUE;
812 vm_page_throttled_count++;
813 }
814 vm_page_unlock_queues();
815 }
816 return (my_fault);
817 }
818
819
820 /*
821 * Routine: vm_fault_page
822 * Purpose:
823 * Find the resident page for the virtual memory
824 * specified by the given virtual memory object
825 * and offset.
826 * Additional arguments:
827 * The required permissions for the page is given
828 * in "fault_type". Desired permissions are included
829 * in "protection".
830 * fault_info is passed along to determine pagein cluster
831 * limits... it contains the expected reference pattern,
832 * cluster size if available, etc...
833 *
834 * If the desired page is known to be resident (for
835 * example, because it was previously wired down), asserting
836 * the "unwiring" parameter will speed the search.
837 *
838 * If the operation can be interrupted (by thread_abort
839 * or thread_terminate), then the "interruptible"
840 * parameter should be asserted.
841 *
842 * Results:
843 * The page containing the proper data is returned
844 * in "result_page".
845 *
846 * In/out conditions:
847 * The source object must be locked and referenced,
848 * and must donate one paging reference. The reference
849 * is not affected. The paging reference and lock are
850 * consumed.
851 *
852 * If the call succeeds, the object in which "result_page"
853 * resides is left locked and holding a paging reference.
854 * If this is not the original object, a busy page in the
855 * original object is returned in "top_page", to prevent other
856 * callers from pursuing this same data, along with a paging
857 * reference for the original object. The "top_page" should
858 * be destroyed when this guarantee is no longer required.
859 * The "result_page" is also left busy. It is not removed
860 * from the pageout queues.
861 * Special Case:
862 * A return value of VM_FAULT_SUCCESS_NO_PAGE means that the
863 * fault succeeded but there's no VM page (i.e. the VM object
864 * does not actually hold VM pages, but device memory or
865 * large pages). The object is still locked and we still hold a
866 * paging_in_progress reference.
867 */
868 unsigned int vm_fault_page_blocked_access = 0;
869 unsigned int vm_fault_page_forced_retry = 0;
870
871 vm_fault_return_t
872 vm_fault_page(
873 /* Arguments: */
874 vm_object_t first_object, /* Object to begin search */
875 vm_object_offset_t first_offset, /* Offset into object */
876 vm_prot_t fault_type, /* What access is requested */
877 boolean_t must_be_resident,/* Must page be resident? */
878 boolean_t caller_lookup, /* caller looked up page */
879 /* Modifies in place: */
880 vm_prot_t *protection, /* Protection for mapping */
881 vm_page_t *result_page, /* Page found, if successful */
882 /* Returns: */
883 vm_page_t *top_page, /* Page in top object, if
884 * not result_page. */
885 int *type_of_fault, /* if non-null, fill in with type of fault
886 * COW, zero-fill, etc... returned in trace point */
887 /* More arguments: */
888 kern_return_t *error_code, /* code if page is in error */
889 boolean_t no_zero_fill, /* don't zero fill absent pages */
890 boolean_t data_supply, /* treat as data_supply if
891 * it is a write fault and a full
892 * page is provided */
893 vm_object_fault_info_t fault_info)
894 {
895 vm_page_t m;
896 vm_object_t object;
897 vm_object_offset_t offset;
898 vm_page_t first_m;
899 vm_object_t next_object;
900 vm_object_t copy_object;
901 boolean_t look_for_page;
902 boolean_t force_fault_retry = FALSE;
903 vm_prot_t access_required = fault_type;
904 vm_prot_t wants_copy_flag;
905 CLUSTER_STAT(int pages_at_higher_offsets;)
906 CLUSTER_STAT(int pages_at_lower_offsets;)
907 kern_return_t wait_result;
908 boolean_t interruptible_state;
909 boolean_t data_already_requested = FALSE;
910 vm_behavior_t orig_behavior;
911 vm_size_t orig_cluster_size;
912 vm_fault_return_t error;
913 int my_fault;
914 uint32_t try_failed_count;
915 int interruptible; /* how may fault be interrupted? */
916 int external_state = VM_EXTERNAL_STATE_UNKNOWN;
917 memory_object_t pager;
918 vm_fault_return_t retval;
919
920 /*
921 * MACH page map - an optional optimization where a bit map is maintained
922 * by the VM subsystem for internal objects to indicate which pages of
923 * the object currently reside on backing store. This existence map
924 * duplicates information maintained by the vnode pager. It is
925 * created at the time of the first pageout against the object, i.e.
926 * at the same time pager for the object is created. The optimization
927 * is designed to eliminate pager interaction overhead, if it is
928 * 'known' that the page does not exist on backing store.
929 *
930 * MUST_ASK_PAGER() evaluates to TRUE if the page specified by object/offset is
931 * either marked as paged out in the existence map for the object or no
932 * existence map exists for the object. MUST_ASK_PAGER() is one of the
933 * criteria in the decision to invoke the pager. It is also used as one
934 * of the criteria to terminate the scan for adjacent pages in a clustered
935 * pagein operation. Note that MUST_ASK_PAGER() always evaluates to TRUE for
936 * permanent objects. Note also that if the pager for an internal object
937 * has not been created, the pager is not invoked regardless of the value
938 * of MUST_ASK_PAGER() and that clustered pagein scans are only done on an object
939 * for which a pager has been created.
940 *
941 * PAGED_OUT() evaluates to TRUE if the page specified by the object/offset
942 * is marked as paged out in the existence map for the object. PAGED_OUT()
943 * PAGED_OUT() is used to determine if a page has already been pushed
944 * into a copy object in order to avoid a redundant page out operation.
945 */
946 #if MACH_PAGEMAP
947 #define MUST_ASK_PAGER(o, f, s) \
948 ((vm_external_state_get((o)->existence_map, (f)) \
949 != VM_EXTERNAL_STATE_ABSENT) && \
950 (s = (VM_COMPRESSOR_PAGER_STATE_GET((o), (f)))) \
951 != VM_EXTERNAL_STATE_ABSENT)
952 #define PAGED_OUT(o, f) \
953 ((vm_external_state_get((o)->existence_map, (f)) \
954 == VM_EXTERNAL_STATE_EXISTS) || \
955 (VM_COMPRESSOR_PAGER_STATE_GET((o), (f)) \
956 == VM_EXTERNAL_STATE_EXISTS))
957 #else /* MACH_PAGEMAP */
958 #define MUST_ASK_PAGER(o, f, s) \
959 ((s = VM_COMPRESSOR_PAGER_STATE_GET((o), (f))) != VM_EXTERNAL_STATE_ABSENT)
960 #define PAGED_OUT(o, f) \
961 (VM_COMPRESSOR_PAGER_STATE_GET((o), (f)) == VM_EXTERNAL_STATE_EXISTS)
962 #endif /* MACH_PAGEMAP */
963
964 /*
965 * Recovery actions
966 */
967 #define RELEASE_PAGE(m) \
968 MACRO_BEGIN \
969 PAGE_WAKEUP_DONE(m); \
970 if (!m->active && !m->inactive && !m->throttled) { \
971 vm_page_lockspin_queues(); \
972 if (!m->active && !m->inactive && !m->throttled) { \
973 if (COMPRESSED_PAGER_IS_ACTIVE) \
974 vm_page_deactivate(m); \
975 else \
976 vm_page_activate(m); \
977 } \
978 vm_page_unlock_queues(); \
979 } \
980 MACRO_END
981
982 #if TRACEFAULTPAGE
983 dbgTrace(0xBEEF0002, (unsigned int) first_object, (unsigned int) first_offset); /* (TEST/DEBUG) */
984 #endif
985
986 interruptible = fault_info->interruptible;
987 interruptible_state = thread_interrupt_level(interruptible);
988
989 /*
990 * INVARIANTS (through entire routine):
991 *
992 * 1) At all times, we must either have the object
993 * lock or a busy page in some object to prevent
994 * some other thread from trying to bring in
995 * the same page.
996 *
997 * Note that we cannot hold any locks during the
998 * pager access or when waiting for memory, so
999 * we use a busy page then.
1000 *
1001 * 2) To prevent another thread from racing us down the
1002 * shadow chain and entering a new page in the top
1003 * object before we do, we must keep a busy page in
1004 * the top object while following the shadow chain.
1005 *
1006 * 3) We must increment paging_in_progress on any object
1007 * for which we have a busy page before dropping
1008 * the object lock
1009 *
1010 * 4) We leave busy pages on the pageout queues.
1011 * If the pageout daemon comes across a busy page,
1012 * it will remove the page from the pageout queues.
1013 */
1014
1015 object = first_object;
1016 offset = first_offset;
1017 first_m = VM_PAGE_NULL;
1018 access_required = fault_type;
1019
1020
1021 XPR(XPR_VM_FAULT,
1022 "vm_f_page: obj 0x%X, offset 0x%X, type %d, prot %d\n",
1023 object, offset, fault_type, *protection, 0);
1024
1025 /*
1026 * default type of fault
1027 */
1028 my_fault = DBG_CACHE_HIT_FAULT;
1029
1030 while (TRUE) {
1031 #if TRACEFAULTPAGE
1032 dbgTrace(0xBEEF0003, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */
1033 #endif
1034 if (!object->alive) {
1035 /*
1036 * object is no longer valid
1037 * clean up and return error
1038 */
1039 vm_fault_cleanup(object, first_m);
1040 thread_interrupt_level(interruptible_state);
1041
1042 return (VM_FAULT_MEMORY_ERROR);
1043 }
1044
1045 if (!object->pager_created && object->phys_contiguous) {
1046 /*
1047 * A physically-contiguous object without a pager:
1048 * must be a "large page" object. We do not deal
1049 * with VM pages for this object.
1050 */
1051 caller_lookup = FALSE;
1052 m = VM_PAGE_NULL;
1053 goto phys_contig_object;
1054 }
1055
1056 if (object->blocked_access) {
1057 /*
1058 * Access to this VM object has been blocked.
1059 * Replace our "paging_in_progress" reference with
1060 * a "activity_in_progress" reference and wait for
1061 * access to be unblocked.
1062 */
1063 caller_lookup = FALSE; /* no longer valid after sleep */
1064 vm_object_activity_begin(object);
1065 vm_object_paging_end(object);
1066 while (object->blocked_access) {
1067 vm_object_sleep(object,
1068 VM_OBJECT_EVENT_UNBLOCKED,
1069 THREAD_UNINT);
1070 }
1071 vm_fault_page_blocked_access++;
1072 vm_object_paging_begin(object);
1073 vm_object_activity_end(object);
1074 }
1075
1076 /*
1077 * See whether the page at 'offset' is resident
1078 */
1079 if (caller_lookup == TRUE) {
1080 /*
1081 * The caller has already looked up the page
1082 * and gave us the result in "result_page".
1083 * We can use this for the first lookup but
1084 * it loses its validity as soon as we unlock
1085 * the object.
1086 */
1087 m = *result_page;
1088 caller_lookup = FALSE; /* no longer valid after that */
1089 } else {
1090 m = vm_page_lookup(object, offset);
1091 }
1092 #if TRACEFAULTPAGE
1093 dbgTrace(0xBEEF0004, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
1094 #endif
1095 if (m != VM_PAGE_NULL) {
1096
1097 if (m->busy) {
1098 /*
1099 * The page is being brought in,
1100 * wait for it and then retry.
1101 */
1102 #if TRACEFAULTPAGE
1103 dbgTrace(0xBEEF0005, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
1104 #endif
1105 wait_result = PAGE_SLEEP(object, m, interruptible);
1106
1107 XPR(XPR_VM_FAULT,
1108 "vm_f_page: block busy obj 0x%X, offset 0x%X, page 0x%X\n",
1109 object, offset,
1110 m, 0, 0);
1111 counter(c_vm_fault_page_block_busy_kernel++);
1112
1113 if (wait_result != THREAD_AWAKENED) {
1114 vm_fault_cleanup(object, first_m);
1115 thread_interrupt_level(interruptible_state);
1116
1117 if (wait_result == THREAD_RESTART)
1118 return (VM_FAULT_RETRY);
1119 else
1120 return (VM_FAULT_INTERRUPTED);
1121 }
1122 continue;
1123 }
1124 if (m->laundry) {
1125 m->pageout = FALSE;
1126
1127 if (!m->cleaning)
1128 vm_pageout_steal_laundry(m, FALSE);
1129 }
1130 if (m->phys_page == vm_page_guard_addr) {
1131 /*
1132 * Guard page: off limits !
1133 */
1134 if (fault_type == VM_PROT_NONE) {
1135 /*
1136 * The fault is not requesting any
1137 * access to the guard page, so it must
1138 * be just to wire or unwire it.
1139 * Let's pretend it succeeded...
1140 */
1141 m->busy = TRUE;
1142 *result_page = m;
1143 assert(first_m == VM_PAGE_NULL);
1144 *top_page = first_m;
1145 if (type_of_fault)
1146 *type_of_fault = DBG_GUARD_FAULT;
1147 thread_interrupt_level(interruptible_state);
1148 return VM_FAULT_SUCCESS;
1149 } else {
1150 /*
1151 * The fault requests access to the
1152 * guard page: let's deny that !
1153 */
1154 vm_fault_cleanup(object, first_m);
1155 thread_interrupt_level(interruptible_state);
1156 return VM_FAULT_MEMORY_ERROR;
1157 }
1158 }
1159
1160 if (m->error) {
1161 /*
1162 * The page is in error, give up now.
1163 */
1164 #if TRACEFAULTPAGE
1165 dbgTrace(0xBEEF0006, (unsigned int) m, (unsigned int) error_code); /* (TEST/DEBUG) */
1166 #endif
1167 if (error_code)
1168 *error_code = KERN_MEMORY_ERROR;
1169 VM_PAGE_FREE(m);
1170
1171 vm_fault_cleanup(object, first_m);
1172 thread_interrupt_level(interruptible_state);
1173
1174 return (VM_FAULT_MEMORY_ERROR);
1175 }
1176 if (m->restart) {
1177 /*
1178 * The pager wants us to restart
1179 * at the top of the chain,
1180 * typically because it has moved the
1181 * page to another pager, then do so.
1182 */
1183 #if TRACEFAULTPAGE
1184 dbgTrace(0xBEEF0007, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
1185 #endif
1186 VM_PAGE_FREE(m);
1187
1188 vm_fault_cleanup(object, first_m);
1189 thread_interrupt_level(interruptible_state);
1190
1191 return (VM_FAULT_RETRY);
1192 }
1193 if (m->absent) {
1194 /*
1195 * The page isn't busy, but is absent,
1196 * therefore it's deemed "unavailable".
1197 *
1198 * Remove the non-existent page (unless it's
1199 * in the top object) and move on down to the
1200 * next object (if there is one).
1201 */
1202 #if TRACEFAULTPAGE
1203 dbgTrace(0xBEEF0008, (unsigned int) m, (unsigned int) object->shadow); /* (TEST/DEBUG) */
1204 #endif
1205 next_object = object->shadow;
1206
1207 if (next_object == VM_OBJECT_NULL) {
1208 /*
1209 * Absent page at bottom of shadow
1210 * chain; zero fill the page we left
1211 * busy in the first object, and free
1212 * the absent page.
1213 */
1214 assert(!must_be_resident);
1215
1216 /*
1217 * check for any conditions that prevent
1218 * us from creating a new zero-fill page
1219 * vm_fault_check will do all of the
1220 * fault cleanup in the case of an error condition
1221 * including resetting the thread_interrupt_level
1222 */
1223 error = vm_fault_check(object, m, first_m, interruptible_state, (type_of_fault == NULL) ? TRUE : FALSE);
1224
1225 if (error != VM_FAULT_SUCCESS)
1226 return (error);
1227
1228 XPR(XPR_VM_FAULT,
1229 "vm_f_page: zero obj 0x%X, off 0x%X, page 0x%X, first_obj 0x%X\n",
1230 object, offset,
1231 m,
1232 first_object, 0);
1233
1234 if (object != first_object) {
1235 /*
1236 * free the absent page we just found
1237 */
1238 VM_PAGE_FREE(m);
1239
1240 /*
1241 * drop reference and lock on current object
1242 */
1243 vm_object_paging_end(object);
1244 vm_object_unlock(object);
1245
1246 /*
1247 * grab the original page we
1248 * 'soldered' in place and
1249 * retake lock on 'first_object'
1250 */
1251 m = first_m;
1252 first_m = VM_PAGE_NULL;
1253
1254 object = first_object;
1255 offset = first_offset;
1256
1257 vm_object_lock(object);
1258 } else {
1259 /*
1260 * we're going to use the absent page we just found
1261 * so convert it to a 'busy' page
1262 */
1263 m->absent = FALSE;
1264 m->busy = TRUE;
1265 }
1266 if (fault_info->mark_zf_absent && no_zero_fill == TRUE)
1267 m->absent = TRUE;
1268 /*
1269 * zero-fill the page and put it on
1270 * the correct paging queue
1271 */
1272 my_fault = vm_fault_zero_page(m, no_zero_fill);
1273
1274 break;
1275 } else {
1276 if (must_be_resident)
1277 vm_object_paging_end(object);
1278 else if (object != first_object) {
1279 vm_object_paging_end(object);
1280 VM_PAGE_FREE(m);
1281 } else {
1282 first_m = m;
1283 m->absent = FALSE;
1284 m->busy = TRUE;
1285
1286 vm_page_lockspin_queues();
1287
1288 assert(!m->pageout_queue);
1289 vm_page_queues_remove(m);
1290
1291 vm_page_unlock_queues();
1292 }
1293 XPR(XPR_VM_FAULT,
1294 "vm_f_page: unavail obj 0x%X, off 0x%X, next_obj 0x%X, newoff 0x%X\n",
1295 object, offset,
1296 next_object,
1297 offset+object->vo_shadow_offset,0);
1298
1299 offset += object->vo_shadow_offset;
1300 fault_info->lo_offset += object->vo_shadow_offset;
1301 fault_info->hi_offset += object->vo_shadow_offset;
1302 access_required = VM_PROT_READ;
1303
1304 vm_object_lock(next_object);
1305 vm_object_unlock(object);
1306 object = next_object;
1307 vm_object_paging_begin(object);
1308
1309 /*
1310 * reset to default type of fault
1311 */
1312 my_fault = DBG_CACHE_HIT_FAULT;
1313
1314 continue;
1315 }
1316 }
1317 if ((m->cleaning)
1318 && ((object != first_object) || (object->copy != VM_OBJECT_NULL))
1319 && (fault_type & VM_PROT_WRITE)) {
1320 /*
1321 * This is a copy-on-write fault that will
1322 * cause us to revoke access to this page, but
1323 * this page is in the process of being cleaned
1324 * in a clustered pageout. We must wait until
1325 * the cleaning operation completes before
1326 * revoking access to the original page,
1327 * otherwise we might attempt to remove a
1328 * wired mapping.
1329 */
1330 #if TRACEFAULTPAGE
1331 dbgTrace(0xBEEF0009, (unsigned int) m, (unsigned int) offset); /* (TEST/DEBUG) */
1332 #endif
1333 XPR(XPR_VM_FAULT,
1334 "vm_f_page: cleaning obj 0x%X, offset 0x%X, page 0x%X\n",
1335 object, offset,
1336 m, 0, 0);
1337 /*
1338 * take an extra ref so that object won't die
1339 */
1340 vm_object_reference_locked(object);
1341
1342 vm_fault_cleanup(object, first_m);
1343
1344 counter(c_vm_fault_page_block_backoff_kernel++);
1345 vm_object_lock(object);
1346 assert(object->ref_count > 0);
1347
1348 m = vm_page_lookup(object, offset);
1349
1350 if (m != VM_PAGE_NULL && m->cleaning) {
1351 PAGE_ASSERT_WAIT(m, interruptible);
1352
1353 vm_object_unlock(object);
1354 wait_result = thread_block(THREAD_CONTINUE_NULL);
1355 vm_object_deallocate(object);
1356
1357 goto backoff;
1358 } else {
1359 vm_object_unlock(object);
1360
1361 vm_object_deallocate(object);
1362 thread_interrupt_level(interruptible_state);
1363
1364 return (VM_FAULT_RETRY);
1365 }
1366 }
1367 if (type_of_fault == NULL && m->speculative &&
1368 !(fault_info != NULL && fault_info->stealth)) {
1369 /*
1370 * If we were passed a non-NULL pointer for
1371 * "type_of_fault", than we came from
1372 * vm_fault... we'll let it deal with
1373 * this condition, since it
1374 * needs to see m->speculative to correctly
1375 * account the pageins, otherwise...
1376 * take it off the speculative queue, we'll
1377 * let the caller of vm_fault_page deal
1378 * with getting it onto the correct queue
1379 *
1380 * If the caller specified in fault_info that
1381 * it wants a "stealth" fault, we also leave
1382 * the page in the speculative queue.
1383 */
1384 vm_page_lockspin_queues();
1385 if (m->speculative)
1386 vm_page_queues_remove(m);
1387 vm_page_unlock_queues();
1388 }
1389
1390 if (m->encrypted) {
1391 /*
1392 * ENCRYPTED SWAP:
1393 * the user needs access to a page that we
1394 * encrypted before paging it out.
1395 * Decrypt the page now.
1396 * Keep it busy to prevent anyone from
1397 * accessing it during the decryption.
1398 */
1399 m->busy = TRUE;
1400 vm_page_decrypt(m, 0);
1401 assert(object == m->object);
1402 assert(m->busy);
1403 PAGE_WAKEUP_DONE(m);
1404
1405 /*
1406 * Retry from the top, in case
1407 * something changed while we were
1408 * decrypting.
1409 */
1410 continue;
1411 }
1412 ASSERT_PAGE_DECRYPTED(m);
1413
1414 if (m->object->code_signed) {
1415 /*
1416 * CODE SIGNING:
1417 * We just paged in a page from a signed
1418 * memory object but we don't need to
1419 * validate it now. We'll validate it if
1420 * when it gets mapped into a user address
1421 * space for the first time or when the page
1422 * gets copied to another object as a result
1423 * of a copy-on-write.
1424 */
1425 }
1426
1427 /*
1428 * We mark the page busy and leave it on
1429 * the pageout queues. If the pageout
1430 * deamon comes across it, then it will
1431 * remove the page from the queue, but not the object
1432 */
1433 #if TRACEFAULTPAGE
1434 dbgTrace(0xBEEF000B, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
1435 #endif
1436 XPR(XPR_VM_FAULT,
1437 "vm_f_page: found page obj 0x%X, offset 0x%X, page 0x%X\n",
1438 object, offset, m, 0, 0);
1439 assert(!m->busy);
1440 assert(!m->absent);
1441
1442 m->busy = TRUE;
1443 break;
1444 }
1445
1446
1447 /*
1448 * we get here when there is no page present in the object at
1449 * the offset we're interested in... we'll allocate a page
1450 * at this point if the pager associated with
1451 * this object can provide the data or we're the top object...
1452 * object is locked; m == NULL
1453 */
1454 if (must_be_resident) {
1455 if (fault_type == VM_PROT_NONE &&
1456 object == kernel_object) {
1457 /*
1458 * We've been called from vm_fault_unwire()
1459 * while removing a map entry that was allocated
1460 * with KMA_KOBJECT and KMA_VAONLY. This page
1461 * is not present and there's nothing more to
1462 * do here (nothing to unwire).
1463 */
1464 vm_fault_cleanup(object, first_m);
1465 thread_interrupt_level(interruptible_state);
1466
1467 return VM_FAULT_MEMORY_ERROR;
1468 }
1469
1470 goto dont_look_for_page;
1471 }
1472
1473 #if !MACH_PAGEMAP
1474 data_supply = FALSE;
1475 #endif /* !MACH_PAGEMAP */
1476
1477 look_for_page = (object->pager_created && (MUST_ASK_PAGER(object, offset, external_state) == TRUE) && !data_supply);
1478
1479 #if TRACEFAULTPAGE
1480 dbgTrace(0xBEEF000C, (unsigned int) look_for_page, (unsigned int) object); /* (TEST/DEBUG) */
1481 #endif
1482 if (!look_for_page && object == first_object && !object->phys_contiguous) {
1483 /*
1484 * Allocate a new page for this object/offset pair as a placeholder
1485 */
1486 m = vm_page_grab();
1487 #if TRACEFAULTPAGE
1488 dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
1489 #endif
1490 if (m == VM_PAGE_NULL) {
1491
1492 vm_fault_cleanup(object, first_m);
1493 thread_interrupt_level(interruptible_state);
1494
1495 return (VM_FAULT_MEMORY_SHORTAGE);
1496 }
1497
1498 if (fault_info && fault_info->batch_pmap_op == TRUE) {
1499 vm_page_insert_internal(m, object, offset, VM_KERN_MEMORY_NONE, FALSE, TRUE, TRUE, FALSE, NULL);
1500 } else {
1501 vm_page_insert(m, object, offset);
1502 }
1503 }
1504 if (look_for_page) {
1505 kern_return_t rc;
1506 int my_fault_type;
1507
1508 /*
1509 * If the memory manager is not ready, we
1510 * cannot make requests.
1511 */
1512 if (!object->pager_ready) {
1513 #if TRACEFAULTPAGE
1514 dbgTrace(0xBEEF000E, (unsigned int) 0, (unsigned int) 0); /* (TEST/DEBUG) */
1515 #endif
1516 if (m != VM_PAGE_NULL)
1517 VM_PAGE_FREE(m);
1518
1519 XPR(XPR_VM_FAULT,
1520 "vm_f_page: ready wait obj 0x%X, offset 0x%X\n",
1521 object, offset, 0, 0, 0);
1522
1523 /*
1524 * take an extra ref so object won't die
1525 */
1526 vm_object_reference_locked(object);
1527 vm_fault_cleanup(object, first_m);
1528 counter(c_vm_fault_page_block_backoff_kernel++);
1529
1530 vm_object_lock(object);
1531 assert(object->ref_count > 0);
1532
1533 if (!object->pager_ready) {
1534 wait_result = vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGER_READY, interruptible);
1535
1536 vm_object_unlock(object);
1537 if (wait_result == THREAD_WAITING)
1538 wait_result = thread_block(THREAD_CONTINUE_NULL);
1539 vm_object_deallocate(object);
1540
1541 goto backoff;
1542 } else {
1543 vm_object_unlock(object);
1544 vm_object_deallocate(object);
1545 thread_interrupt_level(interruptible_state);
1546
1547 return (VM_FAULT_RETRY);
1548 }
1549 }
1550 if (!object->internal && !object->phys_contiguous && object->paging_in_progress > vm_object_pagein_throttle) {
1551 /*
1552 * If there are too many outstanding page
1553 * requests pending on this external object, we
1554 * wait for them to be resolved now.
1555 */
1556 #if TRACEFAULTPAGE
1557 dbgTrace(0xBEEF0010, (unsigned int) m, (unsigned int) 0); /* (TEST/DEBUG) */
1558 #endif
1559 if (m != VM_PAGE_NULL)
1560 VM_PAGE_FREE(m);
1561 /*
1562 * take an extra ref so object won't die
1563 */
1564 vm_object_reference_locked(object);
1565
1566 vm_fault_cleanup(object, first_m);
1567
1568 counter(c_vm_fault_page_block_backoff_kernel++);
1569
1570 vm_object_lock(object);
1571 assert(object->ref_count > 0);
1572
1573 if (object->paging_in_progress >= vm_object_pagein_throttle) {
1574 vm_object_assert_wait(object, VM_OBJECT_EVENT_PAGING_ONLY_IN_PROGRESS, interruptible);
1575
1576 vm_object_unlock(object);
1577 wait_result = thread_block(THREAD_CONTINUE_NULL);
1578 vm_object_deallocate(object);
1579
1580 goto backoff;
1581 } else {
1582 vm_object_unlock(object);
1583 vm_object_deallocate(object);
1584 thread_interrupt_level(interruptible_state);
1585
1586 return (VM_FAULT_RETRY);
1587 }
1588 }
1589 if (object->internal &&
1590 (COMPRESSED_PAGER_IS_ACTIVE
1591 || DEFAULT_FREEZER_COMPRESSED_PAGER_IS_ACTIVE)) {
1592 int compressed_count_delta;
1593
1594 if (m == VM_PAGE_NULL) {
1595 /*
1596 * Allocate a new page for this object/offset pair as a placeholder
1597 */
1598 m = vm_page_grab();
1599 #if TRACEFAULTPAGE
1600 dbgTrace(0xBEEF000D, (unsigned int) m, (unsigned int) object); /* (TEST/DEBUG) */
1601 #endif
1602 if (m == VM_PAGE_NULL) {
1603
1604 vm_fault_cleanup(object, first_m);
1605 thread_interrupt_level(interruptible_state);
1606
1607 return (VM_FAULT_MEMORY_SHORTAGE);
1608 }
1609
1610 m->absent = TRUE;
1611 if (fault_info && fault_info->batch_pmap_op == TRUE) {
1612 vm_page_insert_internal(m, object, offset, VM_KERN_MEMORY_NONE, FALSE, TRUE, TRUE, FALSE, NULL);
1613 } else {
1614 vm_page_insert(m, object, offset);
1615 }
1616 }
1617 assert(m->busy);
1618
1619 m->absent = TRUE;
1620 pager = object->pager;
1621
1622 assert(object->paging_in_progress > 0);
1623 vm_object_unlock(object);
1624
1625 rc = vm_compressor_pager_get(
1626 pager,
1627 offset + object->paging_offset,
1628 m->phys_page,
1629 &my_fault_type,
1630 0,
1631 &compressed_count_delta);
1632
1633 if (type_of_fault == NULL) {
1634 int throttle_delay;
1635
1636 /*
1637 * we weren't called from vm_fault, so we
1638 * need to apply page creation throttling
1639 * do it before we re-acquire any locks
1640 */
1641 if (my_fault_type == DBG_COMPRESSOR_FAULT) {
1642 if ((throttle_delay = vm_page_throttled(TRUE))) {
1643 VM_DEBUG_EVENT(vmf_compressordelay, VMF_COMPRESSORDELAY, DBG_FUNC_NONE, throttle_delay, 0, 1, 0);
1644 delay(throttle_delay);
1645 }
1646 }
1647 }
1648 vm_object_lock(object);
1649 assert(object->paging_in_progress > 0);
1650
1651 vm_compressor_pager_count(
1652 pager,
1653 compressed_count_delta,
1654 FALSE, /* shared_lock */
1655 object);
1656
1657 switch (rc) {
1658 case KERN_SUCCESS:
1659 m->absent = FALSE;
1660 m->dirty = TRUE;
1661 if ((m->object->wimg_bits &
1662 VM_WIMG_MASK) !=
1663 VM_WIMG_USE_DEFAULT) {
1664 /*
1665 * If the page is not cacheable,
1666 * we can't let its contents
1667 * linger in the data cache
1668 * after the decompression.
1669 */
1670 pmap_sync_page_attributes_phys(
1671 m->phys_page);
1672 } else {
1673 m->written_by_kernel = TRUE;
1674 }
1675
1676 /*
1677 * If the object is purgeable, its
1678 * owner's purgeable ledgers have been
1679 * updated in vm_page_insert() but the
1680 * page was also accounted for in a
1681 * "compressed purgeable" ledger, so
1682 * update that now.
1683 */
1684 if ((object->purgable !=
1685 VM_PURGABLE_DENY) &&
1686 (object->vo_purgeable_owner !=
1687 NULL)) {
1688 /*
1689 * One less compressed
1690 * purgeable page.
1691 */
1692 vm_purgeable_compressed_update(
1693 object,
1694 -1);
1695 }
1696
1697 break;
1698 case KERN_MEMORY_FAILURE:
1699 m->unusual = TRUE;
1700 m->error = TRUE;
1701 m->absent = FALSE;
1702 break;
1703 case KERN_MEMORY_ERROR:
1704 assert(m->absent);
1705 break;
1706 default:
1707 panic("vm_fault_page(): unexpected "
1708 "error %d from "
1709 "vm_compressor_pager_get()\n",
1710 rc);
1711 }
1712 PAGE_WAKEUP_DONE(m);
1713
1714 rc = KERN_SUCCESS;
1715 goto data_requested;
1716 }
1717 my_fault_type = DBG_PAGEIN_FAULT;
1718
1719 if (m != VM_PAGE_NULL) {
1720 VM_PAGE_FREE(m);
1721 m = VM_PAGE_NULL;
1722 }
1723
1724 #if TRACEFAULTPAGE
1725 dbgTrace(0xBEEF0012, (unsigned int) object, (unsigned int) 0); /* (TEST/DEBUG) */
1726 #endif
1727
1728 /*
1729 * It's possible someone called vm_object_destroy while we weren't
1730 * holding the object lock. If that has happened, then bail out
1731 * here.
1732 */
1733
1734 pager = object->pager;
1735
1736 if (pager == MEMORY_OBJECT_NULL) {
1737 vm_fault_cleanup(object, first_m);
1738 thread_interrupt_level(interruptible_state);
1739 return VM_FAULT_MEMORY_ERROR;
1740 }
1741
1742 /*
1743 * We have an absent page in place for the faulting offset,
1744 * so we can release the object lock.
1745 */
1746
1747 vm_object_unlock(object);
1748
1749 /*
1750 * If this object uses a copy_call strategy,
1751 * and we are interested in a copy of this object
1752 * (having gotten here only by following a
1753 * shadow chain), then tell the memory manager
1754 * via a flag added to the desired_access
1755 * parameter, so that it can detect a race
1756 * between our walking down the shadow chain
1757 * and its pushing pages up into a copy of
1758 * the object that it manages.
1759 */
1760 if (object->copy_strategy == MEMORY_OBJECT_COPY_CALL && object != first_object)
1761 wants_copy_flag = VM_PROT_WANTS_COPY;
1762 else
1763 wants_copy_flag = VM_PROT_NONE;
1764
1765 XPR(XPR_VM_FAULT,
1766 "vm_f_page: data_req obj 0x%X, offset 0x%X, page 0x%X, acc %d\n",
1767 object, offset, m,
1768 access_required | wants_copy_flag, 0);
1769
1770 if (object->copy == first_object) {
1771 /*
1772 * if we issue the memory_object_data_request in
1773 * this state, we are subject to a deadlock with
1774 * the underlying filesystem if it is trying to
1775 * shrink the file resulting in a push of pages
1776 * into the copy object... that push will stall
1777 * on the placeholder page, and if the pushing thread
1778 * is holding a lock that is required on the pagein
1779 * path (such as a truncate lock), we'll deadlock...
1780 * to avoid this potential deadlock, we throw away
1781 * our placeholder page before calling memory_object_data_request
1782 * and force this thread to retry the vm_fault_page after
1783 * we have issued the I/O. the second time through this path
1784 * we will find the page already in the cache (presumably still
1785 * busy waiting for the I/O to complete) and then complete
1786 * the fault w/o having to go through memory_object_data_request again
1787 */
1788 assert(first_m != VM_PAGE_NULL);
1789 assert(first_m->object == first_object);
1790
1791 vm_object_lock(first_object);
1792 VM_PAGE_FREE(first_m);
1793 vm_object_paging_end(first_object);
1794 vm_object_unlock(first_object);
1795
1796 first_m = VM_PAGE_NULL;
1797 force_fault_retry = TRUE;
1798
1799 vm_fault_page_forced_retry++;
1800 }
1801
1802 if (data_already_requested == TRUE) {
1803 orig_behavior = fault_info->behavior;
1804 orig_cluster_size = fault_info->cluster_size;
1805
1806 fault_info->behavior = VM_BEHAVIOR_RANDOM;
1807 fault_info->cluster_size = PAGE_SIZE;
1808 }
1809 /*
1810 * Call the memory manager to retrieve the data.
1811 */
1812 rc = memory_object_data_request(
1813 pager,
1814 offset + object->paging_offset,
1815 PAGE_SIZE,
1816 access_required | wants_copy_flag,
1817 (memory_object_fault_info_t)fault_info);
1818
1819 if (data_already_requested == TRUE) {
1820 fault_info->behavior = orig_behavior;
1821 fault_info->cluster_size = orig_cluster_size;
1822 } else
1823 data_already_requested = TRUE;
1824
1825 DTRACE_VM2(maj_fault, int, 1, (uint64_t *), NULL);
1826 #if TRACEFAULTPAGE
1827 dbgTrace(0xBEEF0013, (unsigned int) object, (unsigned int) rc); /* (TEST/DEBUG) */
1828 #endif
1829 vm_object_lock(object);
1830
1831 data_requested:
1832 if (rc != KERN_SUCCESS) {
1833
1834 vm_fault_cleanup(object, first_m);
1835 thread_interrupt_level(interruptible_state);
1836
1837 return ((rc == MACH_SEND_INTERRUPTED) ?
1838 VM_FAULT_INTERRUPTED :
1839 VM_FAULT_MEMORY_ERROR);
1840 } else {
1841 clock_sec_t tv_sec;
1842 clock_usec_t tv_usec;
1843
1844 if (my_fault_type == DBG_PAGEIN_FAULT) {
1845 clock_get_system_microtime(&tv_sec, &tv_usec);
1846 current_thread()->t_page_creation_time = tv_sec;
1847 current_thread()->t_page_creation_count = 0;
1848 }
1849 }
1850 if ((interruptible != THREAD_UNINT) && (current_thread()->sched_flags & TH_SFLAG_ABORT)) {
1851
1852 vm_fault_cleanup(object, first_m);
1853 thread_interrupt_level(interruptible_state);
1854
1855 return (VM_FAULT_INTERRUPTED);
1856 }
1857 if (force_fault_retry == TRUE) {
1858
1859 vm_fault_cleanup(object, first_m);
1860 thread_interrupt_level(interruptible_state);
1861
1862 return (VM_FAULT_RETRY);
1863 }
1864 if (m == VM_PAGE_NULL && object->phys_contiguous) {
1865 /*
1866 * No page here means that the object we
1867 * initially looked up was "physically
1868 * contiguous" (i.e. device memory). However,
1869 * with Virtual VRAM, the object might not
1870 * be backed by that device memory anymore,
1871 * so we're done here only if the object is
1872 * still "phys_contiguous".
1873 * Otherwise, if the object is no longer
1874 * "phys_contiguous", we need to retry the
1875 * page fault against the object's new backing
1876 * store (different memory object).
1877 */
1878 phys_contig_object:
1879 goto done;
1880 }
1881 /*
1882 * potentially a pagein fault
1883 * if we make it through the state checks
1884 * above, than we'll count it as such
1885 */
1886 my_fault = my_fault_type;
1887
1888 /*
1889 * Retry with same object/offset, since new data may
1890 * be in a different page (i.e., m is meaningless at
1891 * this point).
1892 */
1893 continue;
1894 }
1895 dont_look_for_page:
1896 /*
1897 * We get here if the object has no pager, or an existence map
1898 * exists and indicates the page isn't present on the pager
1899 * or we're unwiring a page. If a pager exists, but there
1900 * is no existence map, then the m->absent case above handles
1901 * the ZF case when the pager can't provide the page
1902 */
1903 #if TRACEFAULTPAGE
1904 dbgTrace(0xBEEF0014, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
1905 #endif
1906 if (object == first_object)
1907 first_m = m;
1908 else
1909 assert(m == VM_PAGE_NULL);
1910
1911 XPR(XPR_VM_FAULT,
1912 "vm_f_page: no pager obj 0x%X, offset 0x%X, page 0x%X, next_obj 0x%X\n",
1913 object, offset, m,
1914 object->shadow, 0);
1915
1916 next_object = object->shadow;
1917
1918 if (next_object == VM_OBJECT_NULL) {
1919 /*
1920 * we've hit the bottom of the shadown chain,
1921 * fill the page in the top object with zeros.
1922 */
1923 assert(!must_be_resident);
1924
1925 if (object != first_object) {
1926 vm_object_paging_end(object);
1927 vm_object_unlock(object);
1928
1929 object = first_object;
1930 offset = first_offset;
1931 vm_object_lock(object);
1932 }
1933 m = first_m;
1934 assert(m->object == object);
1935 first_m = VM_PAGE_NULL;
1936
1937 /*
1938 * check for any conditions that prevent
1939 * us from creating a new zero-fill page
1940 * vm_fault_check will do all of the
1941 * fault cleanup in the case of an error condition
1942 * including resetting the thread_interrupt_level
1943 */
1944 error = vm_fault_check(object, m, first_m, interruptible_state, (type_of_fault == NULL) ? TRUE : FALSE);
1945
1946 if (error != VM_FAULT_SUCCESS)
1947 return (error);
1948
1949 if (m == VM_PAGE_NULL) {
1950 m = vm_page_grab();
1951
1952 if (m == VM_PAGE_NULL) {
1953 vm_fault_cleanup(object, VM_PAGE_NULL);
1954 thread_interrupt_level(interruptible_state);
1955
1956 return (VM_FAULT_MEMORY_SHORTAGE);
1957 }
1958 vm_page_insert(m, object, offset);
1959 }
1960 if (fault_info->mark_zf_absent && no_zero_fill == TRUE)
1961 m->absent = TRUE;
1962
1963 my_fault = vm_fault_zero_page(m, no_zero_fill);
1964
1965 break;
1966
1967 } else {
1968 /*
1969 * Move on to the next object. Lock the next
1970 * object before unlocking the current one.
1971 */
1972 if ((object != first_object) || must_be_resident)
1973 vm_object_paging_end(object);
1974
1975 offset += object->vo_shadow_offset;
1976 fault_info->lo_offset += object->vo_shadow_offset;
1977 fault_info->hi_offset += object->vo_shadow_offset;
1978 access_required = VM_PROT_READ;
1979
1980 vm_object_lock(next_object);
1981 vm_object_unlock(object);
1982
1983 object = next_object;
1984 vm_object_paging_begin(object);
1985 }
1986 }
1987
1988 /*
1989 * PAGE HAS BEEN FOUND.
1990 *
1991 * This page (m) is:
1992 * busy, so that we can play with it;
1993 * not absent, so that nobody else will fill it;
1994 * possibly eligible for pageout;
1995 *
1996 * The top-level page (first_m) is:
1997 * VM_PAGE_NULL if the page was found in the
1998 * top-level object;
1999 * busy, not absent, and ineligible for pageout.
2000 *
2001 * The current object (object) is locked. A paging
2002 * reference is held for the current and top-level
2003 * objects.
2004 */
2005
2006 #if TRACEFAULTPAGE
2007 dbgTrace(0xBEEF0015, (unsigned int) object, (unsigned int) m); /* (TEST/DEBUG) */
2008 #endif
2009 #if EXTRA_ASSERTIONS
2010 assert(m->busy && !m->absent);
2011 assert((first_m == VM_PAGE_NULL) ||
2012 (first_m->busy && !first_m->absent &&
2013 !first_m->active && !first_m->inactive));
2014 #endif /* EXTRA_ASSERTIONS */
2015
2016 /*
2017 * ENCRYPTED SWAP:
2018 * If we found a page, we must have decrypted it before we
2019 * get here...
2020 */
2021 ASSERT_PAGE_DECRYPTED(m);
2022
2023 XPR(XPR_VM_FAULT,
2024 "vm_f_page: FOUND obj 0x%X, off 0x%X, page 0x%X, 1_obj 0x%X, 1_m 0x%X\n",
2025 object, offset, m,
2026 first_object, first_m);
2027
2028 /*
2029 * If the page is being written, but isn't
2030 * already owned by the top-level object,
2031 * we have to copy it into a new page owned
2032 * by the top-level object.
2033 */
2034 if (object != first_object) {
2035
2036 #if TRACEFAULTPAGE
2037 dbgTrace(0xBEEF0016, (unsigned int) object, (unsigned int) fault_type); /* (TEST/DEBUG) */
2038 #endif
2039 if (fault_type & VM_PROT_WRITE) {
2040 vm_page_t copy_m;
2041
2042 /*
2043 * We only really need to copy if we
2044 * want to write it.
2045 */
2046 assert(!must_be_resident);
2047
2048 /*
2049 * are we protecting the system from
2050 * backing store exhaustion. If so
2051 * sleep unless we are privileged.
2052 */
2053 if (vm_backing_store_low) {
2054 if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) {
2055
2056 RELEASE_PAGE(m);
2057 vm_fault_cleanup(object, first_m);
2058
2059 assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT);
2060
2061 thread_block(THREAD_CONTINUE_NULL);
2062 thread_interrupt_level(interruptible_state);
2063
2064 return (VM_FAULT_RETRY);
2065 }
2066 }
2067 /*
2068 * If we try to collapse first_object at this
2069 * point, we may deadlock when we try to get
2070 * the lock on an intermediate object (since we
2071 * have the bottom object locked). We can't
2072 * unlock the bottom object, because the page
2073 * we found may move (by collapse) if we do.
2074 *
2075 * Instead, we first copy the page. Then, when
2076 * we have no more use for the bottom object,
2077 * we unlock it and try to collapse.
2078 *
2079 * Note that we copy the page even if we didn't
2080 * need to... that's the breaks.
2081 */
2082
2083 /*
2084 * Allocate a page for the copy
2085 */
2086 copy_m = vm_page_grab();
2087
2088 if (copy_m == VM_PAGE_NULL) {
2089 RELEASE_PAGE(m);
2090
2091 vm_fault_cleanup(object, first_m);
2092 thread_interrupt_level(interruptible_state);
2093
2094 return (VM_FAULT_MEMORY_SHORTAGE);
2095 }
2096 XPR(XPR_VM_FAULT,
2097 "vm_f_page: page_copy obj 0x%X, offset 0x%X, m 0x%X, copy_m 0x%X\n",
2098 object, offset,
2099 m, copy_m, 0);
2100
2101 vm_page_copy(m, copy_m);
2102
2103 /*
2104 * If another map is truly sharing this
2105 * page with us, we have to flush all
2106 * uses of the original page, since we
2107 * can't distinguish those which want the
2108 * original from those which need the
2109 * new copy.
2110 *
2111 * XXXO If we know that only one map has
2112 * access to this page, then we could
2113 * avoid the pmap_disconnect() call.
2114 */
2115 if (m->pmapped)
2116 pmap_disconnect(m->phys_page);
2117
2118 if (m->clustered) {
2119 VM_PAGE_COUNT_AS_PAGEIN(m);
2120 VM_PAGE_CONSUME_CLUSTERED(m);
2121 }
2122 assert(!m->cleaning);
2123
2124 /*
2125 * We no longer need the old page or object.
2126 */
2127 RELEASE_PAGE(m);
2128
2129 vm_object_paging_end(object);
2130 vm_object_unlock(object);
2131
2132 my_fault = DBG_COW_FAULT;
2133 VM_STAT_INCR(cow_faults);
2134 DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL);
2135 current_task()->cow_faults++;
2136
2137 object = first_object;
2138 offset = first_offset;
2139
2140 vm_object_lock(object);
2141 /*
2142 * get rid of the place holder
2143 * page that we soldered in earlier
2144 */
2145 VM_PAGE_FREE(first_m);
2146 first_m = VM_PAGE_NULL;
2147
2148 /*
2149 * and replace it with the
2150 * page we just copied into
2151 */
2152 assert(copy_m->busy);
2153 vm_page_insert(copy_m, object, offset);
2154 SET_PAGE_DIRTY(copy_m, TRUE);
2155
2156 m = copy_m;
2157 /*
2158 * Now that we've gotten the copy out of the
2159 * way, let's try to collapse the top object.
2160 * But we have to play ugly games with
2161 * paging_in_progress to do that...
2162 */
2163 vm_object_paging_end(object);
2164 vm_object_collapse(object, offset, TRUE);
2165 vm_object_paging_begin(object);
2166
2167 } else
2168 *protection &= (~VM_PROT_WRITE);
2169 }
2170 /*
2171 * Now check whether the page needs to be pushed into the
2172 * copy object. The use of asymmetric copy on write for
2173 * shared temporary objects means that we may do two copies to
2174 * satisfy the fault; one above to get the page from a
2175 * shadowed object, and one here to push it into the copy.
2176 */
2177 try_failed_count = 0;
2178
2179 while ((copy_object = first_object->copy) != VM_OBJECT_NULL) {
2180 vm_object_offset_t copy_offset;
2181 vm_page_t copy_m;
2182
2183 #if TRACEFAULTPAGE
2184 dbgTrace(0xBEEF0017, (unsigned int) copy_object, (unsigned int) fault_type); /* (TEST/DEBUG) */
2185 #endif
2186 /*
2187 * If the page is being written, but hasn't been
2188 * copied to the copy-object, we have to copy it there.
2189 */
2190 if ((fault_type & VM_PROT_WRITE) == 0) {
2191 *protection &= ~VM_PROT_WRITE;
2192 break;
2193 }
2194
2195 /*
2196 * If the page was guaranteed to be resident,
2197 * we must have already performed the copy.
2198 */
2199 if (must_be_resident)
2200 break;
2201
2202 /*
2203 * Try to get the lock on the copy_object.
2204 */
2205 if (!vm_object_lock_try(copy_object)) {
2206
2207 vm_object_unlock(object);
2208 try_failed_count++;
2209
2210 mutex_pause(try_failed_count); /* wait a bit */
2211 vm_object_lock(object);
2212
2213 continue;
2214 }
2215 try_failed_count = 0;
2216
2217 /*
2218 * Make another reference to the copy-object,
2219 * to keep it from disappearing during the
2220 * copy.
2221 */
2222 vm_object_reference_locked(copy_object);
2223
2224 /*
2225 * Does the page exist in the copy?
2226 */
2227 copy_offset = first_offset - copy_object->vo_shadow_offset;
2228
2229 if (copy_object->vo_size <= copy_offset)
2230 /*
2231 * Copy object doesn't cover this page -- do nothing.
2232 */
2233 ;
2234 else if ((copy_m = vm_page_lookup(copy_object, copy_offset)) != VM_PAGE_NULL) {
2235 /*
2236 * Page currently exists in the copy object
2237 */
2238 if (copy_m->busy) {
2239 /*
2240 * If the page is being brought
2241 * in, wait for it and then retry.
2242 */
2243 RELEASE_PAGE(m);
2244
2245 /*
2246 * take an extra ref so object won't die
2247 */
2248 vm_object_reference_locked(copy_object);
2249 vm_object_unlock(copy_object);
2250 vm_fault_cleanup(object, first_m);
2251 counter(c_vm_fault_page_block_backoff_kernel++);
2252
2253 vm_object_lock(copy_object);
2254 assert(copy_object->ref_count > 0);
2255 VM_OBJ_RES_DECR(copy_object);
2256 vm_object_lock_assert_exclusive(copy_object);
2257 copy_object->ref_count--;
2258 assert(copy_object->ref_count > 0);
2259 copy_m = vm_page_lookup(copy_object, copy_offset);
2260 /*
2261 * ENCRYPTED SWAP:
2262 * it's OK if the "copy_m" page is encrypted,
2263 * because we're not moving it nor handling its
2264 * contents.
2265 */
2266 if (copy_m != VM_PAGE_NULL && copy_m->busy) {
2267 PAGE_ASSERT_WAIT(copy_m, interruptible);
2268
2269 vm_object_unlock(copy_object);
2270 wait_result = thread_block(THREAD_CONTINUE_NULL);
2271 vm_object_deallocate(copy_object);
2272
2273 goto backoff;
2274 } else {
2275 vm_object_unlock(copy_object);
2276 vm_object_deallocate(copy_object);
2277 thread_interrupt_level(interruptible_state);
2278
2279 return (VM_FAULT_RETRY);
2280 }
2281 }
2282 }
2283 else if (!PAGED_OUT(copy_object, copy_offset)) {
2284 /*
2285 * If PAGED_OUT is TRUE, then the page used to exist
2286 * in the copy-object, and has already been paged out.
2287 * We don't need to repeat this. If PAGED_OUT is
2288 * FALSE, then either we don't know (!pager_created,
2289 * for example) or it hasn't been paged out.
2290 * (VM_EXTERNAL_STATE_UNKNOWN||VM_EXTERNAL_STATE_ABSENT)
2291 * We must copy the page to the copy object.
2292 */
2293
2294 if (vm_backing_store_low) {
2295 /*
2296 * we are protecting the system from
2297 * backing store exhaustion. If so
2298 * sleep unless we are privileged.
2299 */
2300 if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV)) {
2301 assert_wait((event_t)&vm_backing_store_low, THREAD_UNINT);
2302
2303 RELEASE_PAGE(m);
2304 VM_OBJ_RES_DECR(copy_object);
2305 vm_object_lock_assert_exclusive(copy_object);
2306 copy_object->ref_count--;
2307 assert(copy_object->ref_count > 0);
2308
2309 vm_object_unlock(copy_object);
2310 vm_fault_cleanup(object, first_m);
2311 thread_block(THREAD_CONTINUE_NULL);
2312 thread_interrupt_level(interruptible_state);
2313
2314 return (VM_FAULT_RETRY);
2315 }
2316 }
2317 /*
2318 * Allocate a page for the copy
2319 */
2320 copy_m = vm_page_alloc(copy_object, copy_offset);
2321
2322 if (copy_m == VM_PAGE_NULL) {
2323 RELEASE_PAGE(m);
2324
2325 VM_OBJ_RES_DECR(copy_object);
2326 vm_object_lock_assert_exclusive(copy_object);
2327 copy_object->ref_count--;
2328 assert(copy_object->ref_count > 0);
2329
2330 vm_object_unlock(copy_object);
2331 vm_fault_cleanup(object, first_m);
2332 thread_interrupt_level(interruptible_state);
2333
2334 return (VM_FAULT_MEMORY_SHORTAGE);
2335 }
2336 /*
2337 * Must copy page into copy-object.
2338 */
2339 vm_page_copy(m, copy_m);
2340
2341 /*
2342 * If the old page was in use by any users
2343 * of the copy-object, it must be removed
2344 * from all pmaps. (We can't know which
2345 * pmaps use it.)
2346 */
2347 if (m->pmapped)
2348 pmap_disconnect(m->phys_page);
2349
2350 if (m->clustered) {
2351 VM_PAGE_COUNT_AS_PAGEIN(m);
2352 VM_PAGE_CONSUME_CLUSTERED(m);
2353 }
2354 /*
2355 * If there's a pager, then immediately
2356 * page out this page, using the "initialize"
2357 * option. Else, we use the copy.
2358 */
2359 if ((!copy_object->pager_ready)
2360 #if MACH_PAGEMAP
2361 || vm_external_state_get(copy_object->existence_map, copy_offset) == VM_EXTERNAL_STATE_ABSENT
2362 #endif
2363 || VM_COMPRESSOR_PAGER_STATE_GET(copy_object, copy_offset) == VM_EXTERNAL_STATE_ABSENT
2364 ) {
2365
2366 vm_page_lockspin_queues();
2367 assert(!m->cleaning);
2368 vm_page_activate(copy_m);
2369 vm_page_unlock_queues();
2370
2371 SET_PAGE_DIRTY(copy_m, TRUE);
2372 PAGE_WAKEUP_DONE(copy_m);
2373
2374 } else if (copy_object->internal &&
2375 (DEFAULT_PAGER_IS_ACTIVE || DEFAULT_FREEZER_IS_ACTIVE)) {
2376 /*
2377 * For internal objects check with the pager to see
2378 * if the page already exists in the backing store.
2379 * If yes, then we can drop the copy page. If not,
2380 * then we'll activate it, mark it dirty and keep it
2381 * around.
2382 */
2383
2384 kern_return_t kr = KERN_SUCCESS;
2385
2386 memory_object_t copy_pager = copy_object->pager;
2387 assert(copy_pager != MEMORY_OBJECT_NULL);
2388 vm_object_paging_begin(copy_object);
2389
2390 vm_object_unlock(copy_object);
2391
2392 kr = memory_object_data_request(
2393 copy_pager,
2394 copy_offset + copy_object->paging_offset,
2395 0, /* Only query the pager. */
2396 VM_PROT_READ,
2397 NULL);
2398
2399 vm_object_lock(copy_object);
2400
2401 vm_object_paging_end(copy_object);
2402
2403 /*
2404 * Since we dropped the copy_object's lock,
2405 * check whether we'll have to deallocate
2406 * the hard way.
2407 */
2408 if ((copy_object->shadow != object) || (copy_object->ref_count == 1)) {
2409 vm_object_unlock(copy_object);
2410 vm_object_deallocate(copy_object);
2411 vm_object_lock(object);
2412
2413 continue;
2414 }
2415 if (kr == KERN_SUCCESS) {
2416 /*
2417 * The pager has the page. We don't want to overwrite
2418 * that page by sending this one out to the backing store.
2419 * So we drop the copy page.
2420 */
2421 VM_PAGE_FREE(copy_m);
2422
2423 } else {
2424 /*
2425 * The pager doesn't have the page. We'll keep this one
2426 * around in the copy object. It might get sent out to
2427 * the backing store under memory pressure.
2428 */
2429 vm_page_lockspin_queues();
2430 assert(!m->cleaning);
2431 vm_page_activate(copy_m);
2432 vm_page_unlock_queues();
2433
2434 SET_PAGE_DIRTY(copy_m, TRUE);
2435 PAGE_WAKEUP_DONE(copy_m);
2436 }
2437 } else {
2438
2439 assert(copy_m->busy == TRUE);
2440 assert(!m->cleaning);
2441
2442 /*
2443 * dirty is protected by the object lock
2444 */
2445 SET_PAGE_DIRTY(copy_m, TRUE);
2446
2447 /*
2448 * The page is already ready for pageout:
2449 * not on pageout queues and busy.
2450 * Unlock everything except the
2451 * copy_object itself.
2452 */
2453 vm_object_unlock(object);
2454
2455 /*
2456 * Write the page to the copy-object,
2457 * flushing it from the kernel.
2458 */
2459 vm_pageout_initialize_page(copy_m);
2460
2461 /*
2462 * Since the pageout may have
2463 * temporarily dropped the
2464 * copy_object's lock, we
2465 * check whether we'll have
2466 * to deallocate the hard way.
2467 */
2468 if ((copy_object->shadow != object) || (copy_object->ref_count == 1)) {
2469 vm_object_unlock(copy_object);
2470 vm_object_deallocate(copy_object);
2471 vm_object_lock(object);
2472
2473 continue;
2474 }
2475 /*
2476 * Pick back up the old object's
2477 * lock. [It is safe to do so,
2478 * since it must be deeper in the
2479 * object tree.]
2480 */
2481 vm_object_lock(object);
2482 }
2483
2484 /*
2485 * Because we're pushing a page upward
2486 * in the object tree, we must restart
2487 * any faults that are waiting here.
2488 * [Note that this is an expansion of
2489 * PAGE_WAKEUP that uses the THREAD_RESTART
2490 * wait result]. Can't turn off the page's
2491 * busy bit because we're not done with it.
2492 */
2493 if (m->wanted) {
2494 m->wanted = FALSE;
2495 thread_wakeup_with_result((event_t) m, THREAD_RESTART);
2496 }
2497 }
2498 /*
2499 * The reference count on copy_object must be
2500 * at least 2: one for our extra reference,
2501 * and at least one from the outside world
2502 * (we checked that when we last locked
2503 * copy_object).
2504 */
2505 vm_object_lock_assert_exclusive(copy_object);
2506 copy_object->ref_count--;
2507 assert(copy_object->ref_count > 0);
2508
2509 VM_OBJ_RES_DECR(copy_object);
2510 vm_object_unlock(copy_object);
2511
2512 break;
2513 }
2514
2515 done:
2516 *result_page = m;
2517 *top_page = first_m;
2518
2519 XPR(XPR_VM_FAULT,
2520 "vm_f_page: DONE obj 0x%X, offset 0x%X, m 0x%X, first_m 0x%X\n",
2521 object, offset, m, first_m, 0);
2522
2523 if (m != VM_PAGE_NULL) {
2524 retval = VM_FAULT_SUCCESS;
2525
2526 if (my_fault == DBG_PAGEIN_FAULT) {
2527
2528 VM_PAGE_COUNT_AS_PAGEIN(m);
2529
2530 if (m->object->internal)
2531 my_fault = DBG_PAGEIND_FAULT;
2532 else
2533 my_fault = DBG_PAGEINV_FAULT;
2534
2535 /*
2536 * evaluate access pattern and update state
2537 * vm_fault_deactivate_behind depends on the
2538 * state being up to date
2539 */
2540 vm_fault_is_sequential(object, offset, fault_info->behavior);
2541
2542 vm_fault_deactivate_behind(object, offset, fault_info->behavior);
2543 } else if (my_fault == DBG_COMPRESSOR_FAULT || my_fault == DBG_COMPRESSOR_SWAPIN_FAULT) {
2544
2545 VM_STAT_INCR(decompressions);
2546 }
2547 if (type_of_fault)
2548 *type_of_fault = my_fault;
2549 } else {
2550 retval = VM_FAULT_SUCCESS_NO_VM_PAGE;
2551 assert(first_m == VM_PAGE_NULL);
2552 assert(object == first_object);
2553 }
2554
2555 thread_interrupt_level(interruptible_state);
2556
2557 #if TRACEFAULTPAGE
2558 dbgTrace(0xBEEF001A, (unsigned int) VM_FAULT_SUCCESS, 0); /* (TEST/DEBUG) */
2559 #endif
2560 return retval;
2561
2562 backoff:
2563 thread_interrupt_level(interruptible_state);
2564
2565 if (wait_result == THREAD_INTERRUPTED)
2566 return (VM_FAULT_INTERRUPTED);
2567 return (VM_FAULT_RETRY);
2568
2569 #undef RELEASE_PAGE
2570 }
2571
2572
2573
2574 /*
2575 * CODE SIGNING:
2576 * When soft faulting a page, we have to validate the page if:
2577 * 1. the page is being mapped in user space
2578 * 2. the page hasn't already been found to be "tainted"
2579 * 3. the page belongs to a code-signed object
2580 * 4. the page has not been validated yet or has been mapped for write.
2581 */
2582 #define VM_FAULT_NEED_CS_VALIDATION(pmap, page) \
2583 ((pmap) != kernel_pmap /*1*/ && \
2584 !(page)->cs_tainted /*2*/ && \
2585 (page)->object->code_signed /*3*/ && \
2586 (!(page)->cs_validated || (page)->wpmapped /*4*/))
2587
2588
2589 /*
2590 * page queue lock must NOT be held
2591 * m->object must be locked
2592 *
2593 * NOTE: m->object could be locked "shared" only if we are called
2594 * from vm_fault() as part of a soft fault. If so, we must be
2595 * careful not to modify the VM object in any way that is not
2596 * legal under a shared lock...
2597 */
2598 extern int proc_selfpid(void);
2599 extern char *proc_name_address(void *p);
2600 unsigned long cs_enter_tainted_rejected = 0;
2601 unsigned long cs_enter_tainted_accepted = 0;
2602 kern_return_t
2603 vm_fault_enter(vm_page_t m,
2604 pmap_t pmap,
2605 vm_map_offset_t vaddr,
2606 vm_prot_t prot,
2607 vm_prot_t caller_prot,
2608 boolean_t wired,
2609 boolean_t change_wiring,
2610 boolean_t no_cache,
2611 boolean_t cs_bypass,
2612 __unused int user_tag,
2613 int pmap_options,
2614 boolean_t *need_retry,
2615 int *type_of_fault)
2616 {
2617 kern_return_t kr, pe_result;
2618 boolean_t previously_pmapped = m->pmapped;
2619 boolean_t must_disconnect = 0;
2620 boolean_t map_is_switched, map_is_switch_protected;
2621 int cs_enforcement_enabled;
2622 vm_prot_t fault_type;
2623
2624 fault_type = change_wiring ? VM_PROT_NONE : caller_prot;
2625
2626 vm_object_lock_assert_held(m->object);
2627 #if DEBUG
2628 lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_NOTOWNED);
2629 #endif /* DEBUG */
2630
2631 if (m->phys_page == vm_page_guard_addr) {
2632 assert(m->fictitious);
2633 return KERN_SUCCESS;
2634 }
2635
2636 if (*type_of_fault == DBG_ZERO_FILL_FAULT) {
2637
2638 vm_object_lock_assert_exclusive(m->object);
2639
2640 } else if ((fault_type & VM_PROT_WRITE) == 0) {
2641 /*
2642 * This is not a "write" fault, so we
2643 * might not have taken the object lock
2644 * exclusively and we might not be able
2645 * to update the "wpmapped" bit in
2646 * vm_fault_enter().
2647 * Let's just grant read access to
2648 * the page for now and we'll
2649 * soft-fault again if we need write
2650 * access later...
2651 */
2652 prot &= ~VM_PROT_WRITE;
2653 }
2654 if (m->pmapped == FALSE) {
2655
2656 if (m->clustered) {
2657 if (*type_of_fault == DBG_CACHE_HIT_FAULT) {
2658 /*
2659 * found it in the cache, but this
2660 * is the first fault-in of the page (m->pmapped == FALSE)
2661 * so it must have come in as part of
2662 * a cluster... account 1 pagein against it
2663 */
2664 if (m->object->internal)
2665 *type_of_fault = DBG_PAGEIND_FAULT;
2666 else
2667 *type_of_fault = DBG_PAGEINV_FAULT;
2668
2669 VM_PAGE_COUNT_AS_PAGEIN(m);
2670 }
2671 VM_PAGE_CONSUME_CLUSTERED(m);
2672 }
2673 }
2674
2675 if (*type_of_fault != DBG_COW_FAULT) {
2676 DTRACE_VM2(as_fault, int, 1, (uint64_t *), NULL);
2677
2678 if (pmap == kernel_pmap) {
2679 DTRACE_VM2(kernel_asflt, int, 1, (uint64_t *), NULL);
2680 }
2681 }
2682
2683 /* Validate code signature if necessary. */
2684 if (VM_FAULT_NEED_CS_VALIDATION(pmap, m)) {
2685 vm_object_lock_assert_exclusive(m->object);
2686
2687 if (m->cs_validated) {
2688 vm_cs_revalidates++;
2689 }
2690
2691 /* VM map is locked, so 1 ref will remain on VM object -
2692 * so no harm if vm_page_validate_cs drops the object lock */
2693 vm_page_validate_cs(m);
2694 }
2695
2696 #define page_immutable(m,prot) ((m)->cs_validated /*&& ((prot) & VM_PROT_EXECUTE)*/)
2697 #define page_nx(m) ((m)->cs_nx)
2698
2699 map_is_switched = ((pmap != vm_map_pmap(current_task()->map)) &&
2700 (pmap == vm_map_pmap(current_thread()->map)));
2701 map_is_switch_protected = current_thread()->map->switch_protect;
2702
2703 /* If the map is switched, and is switch-protected, we must protect
2704 * some pages from being write-faulted: immutable pages because by
2705 * definition they may not be written, and executable pages because that
2706 * would provide a way to inject unsigned code.
2707 * If the page is immutable, we can simply return. However, we can't
2708 * immediately determine whether a page is executable anywhere. But,
2709 * we can disconnect it everywhere and remove the executable protection
2710 * from the current map. We do that below right before we do the
2711 * PMAP_ENTER.
2712 */
2713 cs_enforcement_enabled = cs_enforcement(NULL);
2714
2715 if(cs_enforcement_enabled && map_is_switched &&
2716 map_is_switch_protected && page_immutable(m, prot) &&
2717 (prot & VM_PROT_WRITE))
2718 {
2719 return KERN_CODESIGN_ERROR;
2720 }
2721
2722 if (cs_enforcement_enabled && page_nx(m) && (prot & VM_PROT_EXECUTE)) {
2723 if (cs_debug)
2724 printf("page marked to be NX, not letting it be mapped EXEC\n");
2725 return KERN_CODESIGN_ERROR;
2726 }
2727
2728 /* A page could be tainted, or pose a risk of being tainted later.
2729 * Check whether the receiving process wants it, and make it feel
2730 * the consequences (that hapens in cs_invalid_page()).
2731 * For CS Enforcement, two other conditions will
2732 * cause that page to be tainted as well:
2733 * - pmapping an unsigned page executable - this means unsigned code;
2734 * - writeable mapping of a validated page - the content of that page
2735 * can be changed without the kernel noticing, therefore unsigned
2736 * code can be created
2737 */
2738 if (!cs_bypass &&
2739 (m->cs_tainted ||
2740 (cs_enforcement_enabled &&
2741 (/* The page is unsigned and wants to be executable */
2742 (!m->cs_validated && (prot & VM_PROT_EXECUTE)) ||
2743 /* The page should be immutable, but is in danger of being modified
2744 * This is the case where we want policy from the code directory -
2745 * is the page immutable or not? For now we have to assume that
2746 * code pages will be immutable, data pages not.
2747 * We'll assume a page is a code page if it has a code directory
2748 * and we fault for execution.
2749 * That is good enough since if we faulted the code page for
2750 * writing in another map before, it is wpmapped; if we fault
2751 * it for writing in this map later it will also be faulted for executing
2752 * at the same time; and if we fault for writing in another map
2753 * later, we will disconnect it from this pmap so we'll notice
2754 * the change.
2755 */
2756 (page_immutable(m, prot) && ((prot & VM_PROT_WRITE) || m->wpmapped))
2757 ))
2758 ))
2759 {
2760 /* We will have a tainted page. Have to handle the special case
2761 * of a switched map now. If the map is not switched, standard
2762 * procedure applies - call cs_invalid_page().
2763 * If the map is switched, the real owner is invalid already.
2764 * There is no point in invalidating the switching process since
2765 * it will not be executing from the map. So we don't call
2766 * cs_invalid_page() in that case. */
2767 boolean_t reject_page;
2768 if(map_is_switched) {
2769 assert(pmap==vm_map_pmap(current_thread()->map));
2770 assert(!(prot & VM_PROT_WRITE) || (map_is_switch_protected == FALSE));
2771 reject_page = FALSE;
2772 } else {
2773 if (cs_debug > 5)
2774 printf("vm_fault: signed: %s validate: %s tainted: %s wpmapped: %s slid: %s prot: 0x%x\n",
2775 m->object->code_signed ? "yes" : "no",
2776 m->cs_validated ? "yes" : "no",
2777 m->cs_tainted ? "yes" : "no",
2778 m->wpmapped ? "yes" : "no",
2779 m->slid ? "yes" : "no",
2780 (int)prot);
2781 reject_page = cs_invalid_page((addr64_t) vaddr);
2782 }
2783
2784 if (reject_page) {
2785 /* reject the invalid page: abort the page fault */
2786 int pid;
2787 const char *procname;
2788 task_t task;
2789 vm_object_t file_object, shadow;
2790 vm_object_offset_t file_offset;
2791 char *pathname, *filename;
2792 vm_size_t pathname_len, filename_len;
2793 boolean_t truncated_path;
2794 #define __PATH_MAX 1024
2795 struct timespec mtime, cs_mtime;
2796
2797 kr = KERN_CODESIGN_ERROR;
2798 cs_enter_tainted_rejected++;
2799
2800 /* get process name and pid */
2801 procname = "?";
2802 task = current_task();
2803 pid = proc_selfpid();
2804 if (task->bsd_info != NULL)
2805 procname = proc_name_address(task->bsd_info);
2806
2807 /* get file's VM object */
2808 file_object = m->object;
2809 file_offset = m->offset;
2810 for (shadow = file_object->shadow;
2811 shadow != VM_OBJECT_NULL;
2812 shadow = file_object->shadow) {
2813 vm_object_lock_shared(shadow);
2814 if (file_object != m->object) {
2815 vm_object_unlock(file_object);
2816 }
2817 file_offset += file_object->vo_shadow_offset;
2818 file_object = shadow;
2819 }
2820
2821 mtime.tv_sec = 0;
2822 mtime.tv_nsec = 0;
2823 cs_mtime.tv_sec = 0;
2824 cs_mtime.tv_nsec = 0;
2825
2826 /* get file's pathname and/or filename */
2827 pathname = NULL;
2828 filename = NULL;
2829 pathname_len = 0;
2830 filename_len = 0;
2831 truncated_path = FALSE;
2832 /* no pager -> no file -> no pathname, use "<nil>" in that case */
2833 if (file_object->pager != NULL) {
2834 pathname = (char *)kalloc(__PATH_MAX * 2);
2835 if (pathname) {
2836 pathname[0] = '\0';
2837 pathname_len = __PATH_MAX;
2838 filename = pathname + pathname_len;
2839 filename_len = __PATH_MAX;
2840 }
2841 vnode_pager_get_object_name(file_object->pager,
2842 pathname,
2843 pathname_len,
2844 filename,
2845 filename_len,
2846 &truncated_path);
2847 if (pathname) {
2848 /* safety first... */
2849 pathname[__PATH_MAX-1] = '\0';
2850 filename[__PATH_MAX-1] = '\0';
2851 }
2852 vnode_pager_get_object_mtime(file_object->pager,
2853 &mtime,
2854 &cs_mtime);
2855 }
2856 printf("CODE SIGNING: process %d[%s]: "
2857 "rejecting invalid page at address 0x%llx "
2858 "from offset 0x%llx in file \"%s%s%s\" "
2859 "(cs_mtime:%lu.%ld %s mtime:%lu.%ld) "
2860 "(signed:%d validated:%d tainted:%d "
2861 "wpmapped:%d slid:%d)\n",
2862 pid, procname, (addr64_t) vaddr,
2863 file_offset,
2864 (pathname ? pathname : "<nil>"),
2865 (truncated_path ? "/.../" : ""),
2866 (truncated_path ? filename : ""),
2867 cs_mtime.tv_sec, cs_mtime.tv_nsec,
2868 ((cs_mtime.tv_sec == mtime.tv_sec &&
2869 cs_mtime.tv_nsec == mtime.tv_nsec)
2870 ? "=="
2871 : "!="),
2872 mtime.tv_sec, mtime.tv_nsec,
2873 m->object->code_signed,
2874 m->cs_validated,
2875 m->cs_tainted,
2876 m->wpmapped,
2877 m->slid);
2878 if (file_object != m->object) {
2879 vm_object_unlock(file_object);
2880 }
2881 if (pathname_len != 0) {
2882 kfree(pathname, __PATH_MAX * 2);
2883 pathname = NULL;
2884 filename = NULL;
2885 }
2886 } else {
2887 /* proceed with the invalid page */
2888 kr = KERN_SUCCESS;
2889 if (!m->cs_validated &&
2890 !m->object->code_signed) {
2891 /*
2892 * This page has not been (fully) validated but
2893 * does not belong to a code-signed object
2894 * so it should not be forcefully considered
2895 * as tainted.
2896 * We're just concerned about it here because
2897 * we've been asked to "execute" it but that
2898 * does not mean that it should cause other
2899 * accesses to fail.
2900 * This happens when a debugger sets a
2901 * breakpoint and we then execute code in
2902 * that page. Marking the page as "tainted"
2903 * would cause any inspection tool ("leaks",
2904 * "vmmap", "CrashReporter", ...) to get killed
2905 * due to code-signing violation on that page,
2906 * even though they're just reading it and not
2907 * executing from it.
2908 */
2909 } else {
2910 /*
2911 * Page might have been tainted before or not;
2912 * now it definitively is. If the page wasn't
2913 * tainted, we must disconnect it from all
2914 * pmaps later, to force existing mappings
2915 * through that code path for re-consideration
2916 * of the validity of that page.
2917 */
2918 must_disconnect = !m->cs_tainted;
2919 m->cs_tainted = TRUE;
2920 }
2921 cs_enter_tainted_accepted++;
2922 }
2923 if (kr != KERN_SUCCESS) {
2924 if (cs_debug) {
2925 printf("CODESIGNING: vm_fault_enter(0x%llx): "
2926 "*** INVALID PAGE ***\n",
2927 (long long)vaddr);
2928 }
2929 #if !SECURE_KERNEL
2930 if (cs_enforcement_panic) {
2931 panic("CODESIGNING: panicking on invalid page\n");
2932 }
2933 #endif
2934 }
2935
2936 } else {
2937 /* proceed with the valid page */
2938 kr = KERN_SUCCESS;
2939 }
2940
2941 boolean_t page_queues_locked = FALSE;
2942 #define __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED() \
2943 MACRO_BEGIN \
2944 if (! page_queues_locked) { \
2945 page_queues_locked = TRUE; \
2946 vm_page_lockspin_queues(); \
2947 } \
2948 MACRO_END
2949 #define __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED() \
2950 MACRO_BEGIN \
2951 if (page_queues_locked) { \
2952 page_queues_locked = FALSE; \
2953 vm_page_unlock_queues(); \
2954 } \
2955 MACRO_END
2956
2957 /*
2958 * Hold queues lock to manipulate
2959 * the page queues. Change wiring
2960 * case is obvious.
2961 */
2962 assert(m->compressor || m->object != compressor_object);
2963 if (m->compressor) {
2964 /*
2965 * Compressor pages are neither wired
2966 * nor pageable and should never change.
2967 */
2968 assert(m->object == compressor_object);
2969 } else if (change_wiring) {
2970 __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED();
2971
2972 if (wired) {
2973 if (kr == KERN_SUCCESS) {
2974 vm_page_wire(m, VM_PROT_MEMORY_TAG(caller_prot), TRUE);
2975 }
2976 } else {
2977 vm_page_unwire(m, TRUE);
2978 }
2979 /* we keep the page queues lock, if we need it later */
2980
2981 } else {
2982 if (kr != KERN_SUCCESS) {
2983 __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED();
2984 vm_page_deactivate(m);
2985 /* we keep the page queues lock, if we need it later */
2986 } else if (((!m->active && !m->inactive) ||
2987 m->clean_queue ||
2988 no_cache) &&
2989 !VM_PAGE_WIRED(m) && !m->throttled) {
2990
2991 if (vm_page_local_q &&
2992 !no_cache &&
2993 (*type_of_fault == DBG_COW_FAULT ||
2994 *type_of_fault == DBG_ZERO_FILL_FAULT) ) {
2995 struct vpl *lq;
2996 uint32_t lid;
2997
2998 __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED();
2999 vm_object_lock_assert_exclusive(m->object);
3000
3001 /*
3002 * we got a local queue to stuff this
3003 * new page on...
3004 * its safe to manipulate local and
3005 * local_id at this point since we're
3006 * behind an exclusive object lock and
3007 * the page is not on any global queue.
3008 *
3009 * we'll use the current cpu number to
3010 * select the queue note that we don't
3011 * need to disable preemption... we're
3012 * going to behind the local queue's
3013 * lock to do the real work
3014 */
3015 lid = cpu_number();
3016
3017 lq = &vm_page_local_q[lid].vpl_un.vpl;
3018
3019 VPL_LOCK(&lq->vpl_lock);
3020
3021 vm_page_check_pageable_safe(m);
3022 queue_enter(&lq->vpl_queue, m,
3023 vm_page_t, pageq);
3024 m->local = TRUE;
3025 m->local_id = lid;
3026 lq->vpl_count++;
3027
3028 if (m->object->internal)
3029 lq->vpl_internal_count++;
3030 else
3031 lq->vpl_external_count++;
3032
3033 VPL_UNLOCK(&lq->vpl_lock);
3034
3035 if (lq->vpl_count > vm_page_local_q_soft_limit)
3036 {
3037 /*
3038 * we're beyond the soft limit
3039 * for the local queue
3040 * vm_page_reactivate_local will
3041 * 'try' to take the global page
3042 * queue lock... if it can't
3043 * that's ok... we'll let the
3044 * queue continue to grow up
3045 * to the hard limit... at that
3046 * point we'll wait for the
3047 * lock... once we've got the
3048 * lock, we'll transfer all of
3049 * the pages from the local
3050 * queue to the global active
3051 * queue
3052 */
3053 vm_page_reactivate_local(lid, FALSE, FALSE);
3054 }
3055 } else {
3056
3057 __VM_PAGE_LOCKSPIN_QUEUES_IF_NEEDED();
3058
3059 /*
3060 * test again now that we hold the
3061 * page queue lock
3062 */
3063 if (!VM_PAGE_WIRED(m)) {
3064 if (m->clean_queue) {
3065 vm_page_queues_remove(m);
3066
3067 vm_pageout_cleaned_reactivated++;
3068 vm_pageout_cleaned_fault_reactivated++;
3069 }
3070
3071 if ((!m->active &&
3072 !m->inactive) ||
3073 no_cache) {
3074 /*
3075 * If this is a no_cache mapping
3076 * and the page has never been
3077 * mapped before or was
3078 * previously a no_cache page,
3079 * then we want to leave pages
3080 * in the speculative state so
3081 * that they can be readily
3082 * recycled if free memory runs
3083 * low. Otherwise the page is
3084 * activated as normal.
3085 */
3086
3087 if (no_cache &&
3088 (!previously_pmapped ||
3089 m->no_cache)) {
3090 m->no_cache = TRUE;
3091
3092 if (!m->speculative)
3093 vm_page_speculate(m, FALSE);
3094
3095 } else if (!m->active &&
3096 !m->inactive) {
3097
3098 vm_page_activate(m);
3099 }
3100 }
3101 }
3102 /* we keep the page queues lock, if we need it later */
3103 }
3104 }
3105 }
3106 /* we're done with the page queues lock, if we ever took it */
3107 __VM_PAGE_UNLOCK_QUEUES_IF_NEEDED();
3108
3109
3110 /* If we have a KERN_SUCCESS from the previous checks, we either have
3111 * a good page, or a tainted page that has been accepted by the process.
3112 * In both cases the page will be entered into the pmap.
3113 * If the page is writeable, we need to disconnect it from other pmaps
3114 * now so those processes can take note.
3115 */
3116 if (kr == KERN_SUCCESS) {
3117
3118 /*
3119 * NOTE: we may only hold the vm_object lock SHARED
3120 * at this point, so we need the phys_page lock to
3121 * properly serialize updating the pmapped and
3122 * xpmapped bits
3123 */
3124 if ((prot & VM_PROT_EXECUTE) && !m->xpmapped) {
3125
3126 pmap_lock_phys_page(m->phys_page);
3127 /*
3128 * go ahead and take the opportunity
3129 * to set 'pmapped' here so that we don't
3130 * need to grab this lock a 2nd time
3131 * just below
3132 */
3133 m->pmapped = TRUE;
3134
3135 if (!m->xpmapped) {
3136
3137 m->xpmapped = TRUE;
3138
3139 pmap_unlock_phys_page(m->phys_page);
3140
3141 if (!m->object->internal)
3142 OSAddAtomic(1, &vm_page_xpmapped_external_count);
3143
3144 if ((COMPRESSED_PAGER_IS_ACTIVE) &&
3145 m->object->internal &&
3146 m->object->pager != NULL) {
3147 /*
3148 * This page could have been
3149 * uncompressed by the
3150 * compressor pager and its
3151 * contents might be only in
3152 * the data cache.
3153 * Since it's being mapped for
3154 * "execute" for the fist time,
3155 * make sure the icache is in
3156 * sync.
3157 */
3158 pmap_sync_page_data_phys(m->phys_page);
3159 }
3160 } else
3161 pmap_unlock_phys_page(m->phys_page);
3162 } else {
3163 if (m->pmapped == FALSE) {
3164 pmap_lock_phys_page(m->phys_page);
3165 m->pmapped = TRUE;
3166 pmap_unlock_phys_page(m->phys_page);
3167 }
3168 }
3169 if (vm_page_is_slideable(m)) {
3170 boolean_t was_busy = m->busy;
3171
3172 vm_object_lock_assert_exclusive(m->object);
3173
3174 m->busy = TRUE;
3175 kr = vm_page_slide(m, 0);
3176 assert(m->busy);
3177 if(!was_busy) {
3178 PAGE_WAKEUP_DONE(m);
3179 }
3180 if (kr != KERN_SUCCESS) {
3181 /*
3182 * This page has not been slid correctly,
3183 * do not do the pmap_enter() !
3184 * Let vm_fault_enter() return the error
3185 * so the caller can fail the fault.
3186 */
3187 goto after_the_pmap_enter;
3188 }
3189 }
3190
3191 if (fault_type & VM_PROT_WRITE) {
3192
3193 if (m->wpmapped == FALSE) {
3194 vm_object_lock_assert_exclusive(m->object);
3195 if (!m->object->internal)
3196 task_update_logical_writes(current_task(), PAGE_SIZE, TASK_WRITE_DEFERRED);
3197 m->wpmapped = TRUE;
3198 }
3199 if (must_disconnect) {
3200 /*
3201 * We can only get here
3202 * because of the CSE logic
3203 */
3204 assert(cs_enforcement_enabled);
3205 pmap_disconnect(m->phys_page);
3206 /*
3207 * If we are faulting for a write, we can clear
3208 * the execute bit - that will ensure the page is
3209 * checked again before being executable, which
3210 * protects against a map switch.
3211 * This only happens the first time the page
3212 * gets tainted, so we won't get stuck here
3213 * to make an already writeable page executable.
3214 */
3215 if (!cs_bypass){
3216 prot &= ~VM_PROT_EXECUTE;
3217 }
3218 }
3219 }
3220
3221 /* Prevent a deadlock by not
3222 * holding the object lock if we need to wait for a page in
3223 * pmap_enter() - <rdar://problem/7138958> */
3224 PMAP_ENTER_OPTIONS(pmap, vaddr, m, prot, fault_type, 0,
3225 wired,
3226 pmap_options | PMAP_OPTIONS_NOWAIT,
3227 pe_result);
3228
3229 if(pe_result == KERN_RESOURCE_SHORTAGE) {
3230
3231 if (need_retry) {
3232 /*
3233 * this will be non-null in the case where we hold the lock
3234 * on the top-object in this chain... we can't just drop
3235 * the lock on the object we're inserting the page into
3236 * and recall the PMAP_ENTER since we can still cause
3237 * a deadlock if one of the critical paths tries to
3238 * acquire the lock on the top-object and we're blocked
3239 * in PMAP_ENTER waiting for memory... our only recourse
3240 * is to deal with it at a higher level where we can
3241 * drop both locks.
3242 */
3243 *need_retry = TRUE;
3244 vm_pmap_enter_retried++;
3245 goto after_the_pmap_enter;
3246 }
3247 /* The nonblocking version of pmap_enter did not succeed.
3248 * and we don't need to drop other locks and retry
3249 * at the level above us, so
3250 * use the blocking version instead. Requires marking
3251 * the page busy and unlocking the object */
3252 boolean_t was_busy = m->busy;
3253
3254 vm_object_lock_assert_exclusive(m->object);
3255
3256 m->busy = TRUE;
3257 vm_object_unlock(m->object);
3258
3259 PMAP_ENTER_OPTIONS(pmap, vaddr, m, prot, fault_type,
3260 0, wired,
3261 pmap_options, pe_result);
3262
3263 /* Take the object lock again. */
3264 vm_object_lock(m->object);
3265
3266 /* If the page was busy, someone else will wake it up.
3267 * Otherwise, we have to do it now. */
3268 assert(m->busy);
3269 if(!was_busy) {
3270 PAGE_WAKEUP_DONE(m);
3271 }
3272 vm_pmap_enter_blocked++;
3273 }
3274 }
3275
3276 after_the_pmap_enter:
3277 return kr;
3278 }
3279
3280 void
3281 vm_pre_fault(vm_map_offset_t vaddr)
3282 {
3283 if (pmap_find_phys(current_map()->pmap, vaddr) == 0) {
3284
3285 vm_fault(current_map(), /* map */
3286 vaddr, /* vaddr */
3287 VM_PROT_READ, /* fault_type */
3288 FALSE, /* change_wiring */
3289 THREAD_UNINT, /* interruptible */
3290 NULL, /* caller_pmap */
3291 0 /* caller_pmap_addr */);
3292 }
3293 }
3294
3295
3296 /*
3297 * Routine: vm_fault
3298 * Purpose:
3299 * Handle page faults, including pseudo-faults
3300 * used to change the wiring status of pages.
3301 * Returns:
3302 * Explicit continuations have been removed.
3303 * Implementation:
3304 * vm_fault and vm_fault_page save mucho state
3305 * in the moral equivalent of a closure. The state
3306 * structure is allocated when first entering vm_fault
3307 * and deallocated when leaving vm_fault.
3308 */
3309
3310 extern int _map_enter_debug;
3311
3312 unsigned long vm_fault_collapse_total = 0;
3313 unsigned long vm_fault_collapse_skipped = 0;
3314
3315
3316 kern_return_t
3317 vm_fault(
3318 vm_map_t map,
3319 vm_map_offset_t vaddr,
3320 vm_prot_t fault_type,
3321 boolean_t change_wiring,
3322 int interruptible,
3323 pmap_t caller_pmap,
3324 vm_map_offset_t caller_pmap_addr)
3325 {
3326 return vm_fault_internal(map, vaddr, fault_type, change_wiring,
3327 interruptible, caller_pmap, caller_pmap_addr,
3328 NULL);
3329 }
3330
3331
3332 kern_return_t
3333 vm_fault_internal(
3334 vm_map_t map,
3335 vm_map_offset_t vaddr,
3336 vm_prot_t caller_prot,
3337 boolean_t change_wiring,
3338 int interruptible,
3339 pmap_t caller_pmap,
3340 vm_map_offset_t caller_pmap_addr,
3341 ppnum_t *physpage_p)
3342 {
3343 vm_map_version_t version; /* Map version for verificiation */
3344 boolean_t wired; /* Should mapping be wired down? */
3345 vm_object_t object; /* Top-level object */
3346 vm_object_offset_t offset; /* Top-level offset */
3347 vm_prot_t prot; /* Protection for mapping */
3348 vm_object_t old_copy_object; /* Saved copy object */
3349 vm_page_t result_page; /* Result of vm_fault_page */
3350 vm_page_t top_page; /* Placeholder page */
3351 kern_return_t kr;
3352
3353 vm_page_t m; /* Fast access to result_page */
3354 kern_return_t error_code;
3355 vm_object_t cur_object;
3356 vm_object_offset_t cur_offset;
3357 vm_page_t cur_m;
3358 vm_object_t new_object;
3359 int type_of_fault;
3360 pmap_t pmap;
3361 boolean_t interruptible_state;
3362 vm_map_t real_map = map;
3363 vm_map_t original_map = map;
3364 vm_prot_t fault_type;
3365 vm_prot_t original_fault_type;
3366 struct vm_object_fault_info fault_info;
3367 boolean_t need_collapse = FALSE;
3368 boolean_t need_retry = FALSE;
3369 boolean_t *need_retry_ptr = NULL;
3370 int object_lock_type = 0;
3371 int cur_object_lock_type;
3372 vm_object_t top_object = VM_OBJECT_NULL;
3373 int throttle_delay;
3374 int compressed_count_delta;
3375
3376
3377 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
3378 (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_START,
3379 ((uint64_t)vaddr >> 32),
3380 vaddr,
3381 (map == kernel_map),
3382 0,
3383 0);
3384
3385 if (get_preemption_level() != 0) {
3386 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
3387 (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END,
3388 ((uint64_t)vaddr >> 32),
3389 vaddr,
3390 KERN_FAILURE,
3391 0,
3392 0);
3393
3394 return (KERN_FAILURE);
3395 }
3396
3397 interruptible_state = thread_interrupt_level(interruptible);
3398
3399 fault_type = (change_wiring ? VM_PROT_NONE : caller_prot);
3400
3401 VM_STAT_INCR(faults);
3402 current_task()->faults++;
3403 original_fault_type = fault_type;
3404
3405 if (fault_type & VM_PROT_WRITE)
3406 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3407 else
3408 object_lock_type = OBJECT_LOCK_SHARED;
3409
3410 cur_object_lock_type = OBJECT_LOCK_SHARED;
3411
3412 RetryFault:
3413 /*
3414 * assume we will hit a page in the cache
3415 * otherwise, explicitly override with
3416 * the real fault type once we determine it
3417 */
3418 type_of_fault = DBG_CACHE_HIT_FAULT;
3419
3420 /*
3421 * Find the backing store object and offset into
3422 * it to begin the search.
3423 */
3424 fault_type = original_fault_type;
3425 map = original_map;
3426 vm_map_lock_read(map);
3427
3428 kr = vm_map_lookup_locked(&map, vaddr, fault_type,
3429 object_lock_type, &version,
3430 &object, &offset, &prot, &wired,
3431 &fault_info,
3432 &real_map);
3433
3434
3435 if (kr != KERN_SUCCESS) {
3436 vm_map_unlock_read(map);
3437 goto done;
3438 }
3439 pmap = real_map->pmap;
3440 fault_info.interruptible = interruptible;
3441 fault_info.stealth = FALSE;
3442 fault_info.io_sync = FALSE;
3443 fault_info.mark_zf_absent = FALSE;
3444 fault_info.batch_pmap_op = FALSE;
3445
3446 /*
3447 * If the page is wired, we must fault for the current protection
3448 * value, to avoid further faults.
3449 */
3450 if (wired) {
3451 fault_type = prot | VM_PROT_WRITE;
3452 /*
3453 * since we're treating this fault as a 'write'
3454 * we must hold the top object lock exclusively
3455 */
3456 if (object_lock_type == OBJECT_LOCK_SHARED) {
3457
3458 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3459
3460 if (vm_object_lock_upgrade(object) == FALSE) {
3461 /*
3462 * couldn't upgrade, so explictly
3463 * take the lock exclusively
3464 */
3465 vm_object_lock(object);
3466 }
3467 }
3468 }
3469
3470 #if VM_FAULT_CLASSIFY
3471 /*
3472 * Temporary data gathering code
3473 */
3474 vm_fault_classify(object, offset, fault_type);
3475 #endif
3476 /*
3477 * Fast fault code. The basic idea is to do as much as
3478 * possible while holding the map lock and object locks.
3479 * Busy pages are not used until the object lock has to
3480 * be dropped to do something (copy, zero fill, pmap enter).
3481 * Similarly, paging references aren't acquired until that
3482 * point, and object references aren't used.
3483 *
3484 * If we can figure out what to do
3485 * (zero fill, copy on write, pmap enter) while holding
3486 * the locks, then it gets done. Otherwise, we give up,
3487 * and use the original fault path (which doesn't hold
3488 * the map lock, and relies on busy pages).
3489 * The give up cases include:
3490 * - Have to talk to pager.
3491 * - Page is busy, absent or in error.
3492 * - Pager has locked out desired access.
3493 * - Fault needs to be restarted.
3494 * - Have to push page into copy object.
3495 *
3496 * The code is an infinite loop that moves one level down
3497 * the shadow chain each time. cur_object and cur_offset
3498 * refer to the current object being examined. object and offset
3499 * are the original object from the map. The loop is at the
3500 * top level if and only if object and cur_object are the same.
3501 *
3502 * Invariants: Map lock is held throughout. Lock is held on
3503 * original object and cur_object (if different) when
3504 * continuing or exiting loop.
3505 *
3506 */
3507
3508
3509 /*
3510 * If this page is to be inserted in a copy delay object
3511 * for writing, and if the object has a copy, then the
3512 * copy delay strategy is implemented in the slow fault page.
3513 */
3514 if (object->copy_strategy == MEMORY_OBJECT_COPY_DELAY &&
3515 object->copy != VM_OBJECT_NULL && (fault_type & VM_PROT_WRITE))
3516 goto handle_copy_delay;
3517
3518 cur_object = object;
3519 cur_offset = offset;
3520
3521 while (TRUE) {
3522 if (!cur_object->pager_created &&
3523 cur_object->phys_contiguous) /* superpage */
3524 break;
3525
3526 if (cur_object->blocked_access) {
3527 /*
3528 * Access to this VM object has been blocked.
3529 * Let the slow path handle it.
3530 */
3531 break;
3532 }
3533
3534 m = vm_page_lookup(cur_object, cur_offset);
3535
3536 if (m != VM_PAGE_NULL) {
3537 if (m->busy) {
3538 wait_result_t result;
3539
3540 /*
3541 * in order to do the PAGE_ASSERT_WAIT, we must
3542 * have object that 'm' belongs to locked exclusively
3543 */
3544 if (object != cur_object) {
3545
3546 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
3547
3548 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3549
3550 if (vm_object_lock_upgrade(cur_object) == FALSE) {
3551 /*
3552 * couldn't upgrade so go do a full retry
3553 * immediately since we can no longer be
3554 * certain about cur_object (since we
3555 * don't hold a reference on it)...
3556 * first drop the top object lock
3557 */
3558 vm_object_unlock(object);
3559
3560 vm_map_unlock_read(map);
3561 if (real_map != map)
3562 vm_map_unlock(real_map);
3563
3564 goto RetryFault;
3565 }
3566 }
3567 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
3568
3569 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3570
3571 if (vm_object_lock_upgrade(object) == FALSE) {
3572 /*
3573 * couldn't upgrade, so explictly take the lock
3574 * exclusively and go relookup the page since we
3575 * will have dropped the object lock and
3576 * a different thread could have inserted
3577 * a page at this offset
3578 * no need for a full retry since we're
3579 * at the top level of the object chain
3580 */
3581 vm_object_lock(object);
3582
3583 continue;
3584 }
3585 }
3586 if (m->pageout_queue && m->object->internal && COMPRESSED_PAGER_IS_ACTIVE) {
3587 /*
3588 * m->busy == TRUE and the object is locked exclusively
3589 * if m->pageout_queue == TRUE after we acquire the
3590 * queues lock, we are guaranteed that it is stable on
3591 * the pageout queue and therefore reclaimable
3592 *
3593 * NOTE: this is only true for the internal pageout queue
3594 * in the compressor world
3595 */
3596 vm_page_lock_queues();
3597
3598 if (m->pageout_queue) {
3599 vm_pageout_throttle_up(m);
3600 vm_page_unlock_queues();
3601
3602 PAGE_WAKEUP_DONE(m);
3603 goto reclaimed_from_pageout;
3604 }
3605 vm_page_unlock_queues();
3606 }
3607 if (object != cur_object)
3608 vm_object_unlock(object);
3609
3610 vm_map_unlock_read(map);
3611 if (real_map != map)
3612 vm_map_unlock(real_map);
3613
3614 result = PAGE_ASSERT_WAIT(m, interruptible);
3615
3616 vm_object_unlock(cur_object);
3617
3618 if (result == THREAD_WAITING) {
3619 result = thread_block(THREAD_CONTINUE_NULL);
3620
3621 counter(c_vm_fault_page_block_busy_kernel++);
3622 }
3623 if (result == THREAD_AWAKENED || result == THREAD_RESTART)
3624 goto RetryFault;
3625
3626 kr = KERN_ABORTED;
3627 goto done;
3628 }
3629 reclaimed_from_pageout:
3630 if (m->laundry) {
3631 if (object != cur_object) {
3632 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
3633 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3634
3635 vm_object_unlock(object);
3636 vm_object_unlock(cur_object);
3637
3638 vm_map_unlock_read(map);
3639 if (real_map != map)
3640 vm_map_unlock(real_map);
3641
3642 goto RetryFault;
3643 }
3644
3645 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
3646
3647 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3648
3649 if (vm_object_lock_upgrade(object) == FALSE) {
3650 /*
3651 * couldn't upgrade, so explictly take the lock
3652 * exclusively and go relookup the page since we
3653 * will have dropped the object lock and
3654 * a different thread could have inserted
3655 * a page at this offset
3656 * no need for a full retry since we're
3657 * at the top level of the object chain
3658 */
3659 vm_object_lock(object);
3660
3661 continue;
3662 }
3663 }
3664 m->pageout = FALSE;
3665
3666 vm_pageout_steal_laundry(m, FALSE);
3667 }
3668
3669 if (m->phys_page == vm_page_guard_addr) {
3670 /*
3671 * Guard page: let the slow path deal with it
3672 */
3673 break;
3674 }
3675 if (m->unusual && (m->error || m->restart || m->private || m->absent)) {
3676 /*
3677 * Unusual case... let the slow path deal with it
3678 */
3679 break;
3680 }
3681 if (VM_OBJECT_PURGEABLE_FAULT_ERROR(m->object)) {
3682 if (object != cur_object)
3683 vm_object_unlock(object);
3684 vm_map_unlock_read(map);
3685 if (real_map != map)
3686 vm_map_unlock(real_map);
3687 vm_object_unlock(cur_object);
3688 kr = KERN_MEMORY_ERROR;
3689 goto done;
3690 }
3691
3692 if (m->encrypted) {
3693 /*
3694 * ENCRYPTED SWAP:
3695 * We've soft-faulted (because it's not in the page
3696 * table) on an encrypted page.
3697 * Keep the page "busy" so that no one messes with
3698 * it during the decryption.
3699 * Release the extra locks we're holding, keep only
3700 * the page's VM object lock.
3701 *
3702 * in order to set 'busy' on 'm', we must
3703 * have object that 'm' belongs to locked exclusively
3704 */
3705 if (object != cur_object) {
3706 vm_object_unlock(object);
3707
3708 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
3709
3710 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3711
3712 if (vm_object_lock_upgrade(cur_object) == FALSE) {
3713 /*
3714 * couldn't upgrade so go do a full retry
3715 * immediately since we've already dropped
3716 * the top object lock associated with this page
3717 * and the current one got dropped due to the
3718 * failed upgrade... the state is no longer valid
3719 */
3720 vm_map_unlock_read(map);
3721 if (real_map != map)
3722 vm_map_unlock(real_map);
3723
3724 goto RetryFault;
3725 }
3726 }
3727 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
3728
3729 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3730
3731 if (vm_object_lock_upgrade(object) == FALSE) {
3732 /*
3733 * couldn't upgrade, so explictly take the lock
3734 * exclusively and go relookup the page since we
3735 * will have dropped the object lock and
3736 * a different thread could have inserted
3737 * a page at this offset
3738 * no need for a full retry since we're
3739 * at the top level of the object chain
3740 */
3741 vm_object_lock(object);
3742
3743 continue;
3744 }
3745 }
3746 m->busy = TRUE;
3747
3748 vm_map_unlock_read(map);
3749 if (real_map != map)
3750 vm_map_unlock(real_map);
3751
3752 vm_page_decrypt(m, 0);
3753
3754 assert(m->busy);
3755 PAGE_WAKEUP_DONE(m);
3756
3757 vm_object_unlock(cur_object);
3758 /*
3759 * Retry from the top, in case anything
3760 * changed while we were decrypting...
3761 */
3762 goto RetryFault;
3763 }
3764 ASSERT_PAGE_DECRYPTED(m);
3765
3766 if(vm_page_is_slideable(m)) {
3767 /*
3768 * We might need to slide this page, and so,
3769 * we want to hold the VM object exclusively.
3770 */
3771 if (object != cur_object) {
3772 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
3773 vm_object_unlock(object);
3774 vm_object_unlock(cur_object);
3775
3776 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3777
3778 vm_map_unlock_read(map);
3779 if (real_map != map)
3780 vm_map_unlock(real_map);
3781
3782 goto RetryFault;
3783 }
3784 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
3785
3786 vm_object_unlock(object);
3787 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3788 vm_map_unlock_read(map);
3789 goto RetryFault;
3790 }
3791 }
3792
3793 if (VM_FAULT_NEED_CS_VALIDATION(map->pmap, m) ||
3794 (physpage_p != NULL && (prot & VM_PROT_WRITE))) {
3795 upgrade_for_validation:
3796 /*
3797 * We might need to validate this page
3798 * against its code signature, so we
3799 * want to hold the VM object exclusively.
3800 */
3801 if (object != cur_object) {
3802 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
3803 vm_object_unlock(object);
3804 vm_object_unlock(cur_object);
3805
3806 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3807
3808 vm_map_unlock_read(map);
3809 if (real_map != map)
3810 vm_map_unlock(real_map);
3811
3812 goto RetryFault;
3813 }
3814
3815 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
3816
3817 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
3818
3819 if (vm_object_lock_upgrade(object) == FALSE) {
3820 /*
3821 * couldn't upgrade, so explictly take the lock
3822 * exclusively and go relookup the page since we
3823 * will have dropped the object lock and
3824 * a different thread could have inserted
3825 * a page at this offset
3826 * no need for a full retry since we're
3827 * at the top level of the object chain
3828 */
3829 vm_object_lock(object);
3830
3831 continue;
3832 }
3833 }
3834 }
3835 /*
3836 * Two cases of map in faults:
3837 * - At top level w/o copy object.
3838 * - Read fault anywhere.
3839 * --> must disallow write.
3840 */
3841
3842 if (object == cur_object && object->copy == VM_OBJECT_NULL) {
3843
3844 goto FastPmapEnter;
3845 }
3846
3847 if ((fault_type & VM_PROT_WRITE) == 0) {
3848
3849 if (object != cur_object) {
3850 /*
3851 * We still need to hold the top object
3852 * lock here to prevent a race between
3853 * a read fault (taking only "shared"
3854 * locks) and a write fault (taking
3855 * an "exclusive" lock on the top
3856 * object.
3857 * Otherwise, as soon as we release the
3858 * top lock, the write fault could
3859 * proceed and actually complete before
3860 * the read fault, and the copied page's
3861 * translation could then be overwritten
3862 * by the read fault's translation for
3863 * the original page.
3864 *
3865 * Let's just record what the top object
3866 * is and we'll release it later.
3867 */
3868 top_object = object;
3869
3870 /*
3871 * switch to the object that has the new page
3872 */
3873 object = cur_object;
3874 object_lock_type = cur_object_lock_type;
3875 }
3876 FastPmapEnter:
3877 /*
3878 * prepare for the pmap_enter...
3879 * object and map are both locked
3880 * m contains valid data
3881 * object == m->object
3882 * cur_object == NULL or it's been unlocked
3883 * no paging references on either object or cur_object
3884 */
3885 if (top_object != VM_OBJECT_NULL || object_lock_type != OBJECT_LOCK_EXCLUSIVE)
3886 need_retry_ptr = &need_retry;
3887 else
3888 need_retry_ptr = NULL;
3889
3890 if (caller_pmap) {
3891 kr = vm_fault_enter(m,
3892 caller_pmap,
3893 caller_pmap_addr,
3894 prot,
3895 caller_prot,
3896 wired,
3897 change_wiring,
3898 fault_info.no_cache,
3899 fault_info.cs_bypass,
3900 fault_info.user_tag,
3901 fault_info.pmap_options,
3902 need_retry_ptr,
3903 &type_of_fault);
3904 } else {
3905 kr = vm_fault_enter(m,
3906 pmap,
3907 vaddr,
3908 prot,
3909 caller_prot,
3910 wired,
3911 change_wiring,
3912 fault_info.no_cache,
3913 fault_info.cs_bypass,
3914 fault_info.user_tag,
3915 fault_info.pmap_options,
3916 need_retry_ptr,
3917 &type_of_fault);
3918 }
3919
3920 if (kr == KERN_SUCCESS &&
3921 physpage_p != NULL) {
3922 /* for vm_map_wire_and_extract() */
3923 *physpage_p = m->phys_page;
3924 if (prot & VM_PROT_WRITE) {
3925 vm_object_lock_assert_exclusive(
3926 m->object);
3927 m->dirty = TRUE;
3928 }
3929 }
3930
3931 if (top_object != VM_OBJECT_NULL) {
3932 /*
3933 * It's safe to drop the top object
3934 * now that we've done our
3935 * vm_fault_enter(). Any other fault
3936 * in progress for that virtual
3937 * address will either find our page
3938 * and translation or put in a new page
3939 * and translation.
3940 */
3941 vm_object_unlock(top_object);
3942 top_object = VM_OBJECT_NULL;
3943 }
3944
3945 if (need_collapse == TRUE)
3946 vm_object_collapse(object, offset, TRUE);
3947
3948 if (need_retry == FALSE &&
3949 (type_of_fault == DBG_PAGEIND_FAULT || type_of_fault == DBG_PAGEINV_FAULT || type_of_fault == DBG_CACHE_HIT_FAULT)) {
3950 /*
3951 * evaluate access pattern and update state
3952 * vm_fault_deactivate_behind depends on the
3953 * state being up to date
3954 */
3955 vm_fault_is_sequential(object, cur_offset, fault_info.behavior);
3956
3957 vm_fault_deactivate_behind(object, cur_offset, fault_info.behavior);
3958 }
3959 /*
3960 * That's it, clean up and return.
3961 */
3962 if (m->busy)
3963 PAGE_WAKEUP_DONE(m);
3964
3965 vm_object_unlock(object);
3966
3967 vm_map_unlock_read(map);
3968 if (real_map != map)
3969 vm_map_unlock(real_map);
3970
3971 if (need_retry == TRUE) {
3972 /*
3973 * vm_fault_enter couldn't complete the PMAP_ENTER...
3974 * at this point we don't hold any locks so it's safe
3975 * to ask the pmap layer to expand the page table to
3976 * accommodate this mapping... once expanded, we'll
3977 * re-drive the fault which should result in vm_fault_enter
3978 * being able to successfully enter the mapping this time around
3979 */
3980 (void)pmap_enter_options(
3981 pmap, vaddr, 0, 0, 0, 0, 0,
3982 PMAP_OPTIONS_NOENTER, NULL);
3983
3984 need_retry = FALSE;
3985 goto RetryFault;
3986 }
3987 goto done;
3988 }
3989 /*
3990 * COPY ON WRITE FAULT
3991 */
3992 assert(object_lock_type == OBJECT_LOCK_EXCLUSIVE);
3993
3994 /*
3995 * If objects match, then
3996 * object->copy must not be NULL (else control
3997 * would be in previous code block), and we
3998 * have a potential push into the copy object
3999 * with which we can't cope with here.
4000 */
4001 if (cur_object == object) {
4002 /*
4003 * must take the slow path to
4004 * deal with the copy push
4005 */
4006 break;
4007 }
4008
4009 /*
4010 * This is now a shadow based copy on write
4011 * fault -- it requires a copy up the shadow
4012 * chain.
4013 */
4014
4015 if ((cur_object_lock_type == OBJECT_LOCK_SHARED) &&
4016 VM_FAULT_NEED_CS_VALIDATION(NULL, m)) {
4017 goto upgrade_for_validation;
4018 }
4019
4020 /*
4021 * Allocate a page in the original top level
4022 * object. Give up if allocate fails. Also
4023 * need to remember current page, as it's the
4024 * source of the copy.
4025 *
4026 * at this point we hold locks on both
4027 * object and cur_object... no need to take
4028 * paging refs or mark pages BUSY since
4029 * we don't drop either object lock until
4030 * the page has been copied and inserted
4031 */
4032 cur_m = m;
4033 m = vm_page_grab();
4034
4035 if (m == VM_PAGE_NULL) {
4036 /*
4037 * no free page currently available...
4038 * must take the slow path
4039 */
4040 break;
4041 }
4042 /*
4043 * Now do the copy. Mark the source page busy...
4044 *
4045 * NOTE: This code holds the map lock across
4046 * the page copy.
4047 */
4048 vm_page_copy(cur_m, m);
4049 vm_page_insert(m, object, offset);
4050 SET_PAGE_DIRTY(m, FALSE);
4051
4052 /*
4053 * Now cope with the source page and object
4054 */
4055 if (object->ref_count > 1 && cur_m->pmapped)
4056 pmap_disconnect(cur_m->phys_page);
4057
4058 if (cur_m->clustered) {
4059 VM_PAGE_COUNT_AS_PAGEIN(cur_m);
4060 VM_PAGE_CONSUME_CLUSTERED(cur_m);
4061 }
4062 need_collapse = TRUE;
4063
4064 if (!cur_object->internal &&
4065 cur_object->copy_strategy == MEMORY_OBJECT_COPY_DELAY) {
4066 /*
4067 * The object from which we've just
4068 * copied a page is most probably backed
4069 * by a vnode. We don't want to waste too
4070 * much time trying to collapse the VM objects
4071 * and create a bottleneck when several tasks
4072 * map the same file.
4073 */
4074 if (cur_object->copy == object) {
4075 /*
4076 * Shared mapping or no COW yet.
4077 * We can never collapse a copy
4078 * object into its backing object.
4079 */
4080 need_collapse = FALSE;
4081 } else if (cur_object->copy == object->shadow &&
4082 object->shadow->resident_page_count == 0) {
4083 /*
4084 * Shared mapping after a COW occurred.
4085 */
4086 need_collapse = FALSE;
4087 }
4088 }
4089 vm_object_unlock(cur_object);
4090
4091 if (need_collapse == FALSE)
4092 vm_fault_collapse_skipped++;
4093 vm_fault_collapse_total++;
4094
4095 type_of_fault = DBG_COW_FAULT;
4096 VM_STAT_INCR(cow_faults);
4097 DTRACE_VM2(cow_fault, int, 1, (uint64_t *), NULL);
4098 current_task()->cow_faults++;
4099
4100 goto FastPmapEnter;
4101
4102 } else {
4103 /*
4104 * No page at cur_object, cur_offset... m == NULL
4105 */
4106 if (cur_object->pager_created) {
4107 int compressor_external_state = VM_EXTERNAL_STATE_UNKNOWN;
4108
4109 if (MUST_ASK_PAGER(cur_object, cur_offset, compressor_external_state) == TRUE) {
4110 int my_fault_type;
4111 int c_flags = C_DONT_BLOCK;
4112 boolean_t insert_cur_object = FALSE;
4113
4114 /*
4115 * May have to talk to a pager...
4116 * if so, take the slow path by
4117 * doing a 'break' from the while (TRUE) loop
4118 *
4119 * external_state will only be set to VM_EXTERNAL_STATE_EXISTS
4120 * if the compressor is active and the page exists there
4121 */
4122 if (compressor_external_state != VM_EXTERNAL_STATE_EXISTS)
4123 break;
4124
4125 if (map == kernel_map || real_map == kernel_map) {
4126 /*
4127 * can't call into the compressor with the kernel_map
4128 * lock held, since the compressor may try to operate
4129 * on the kernel map in order to return an empty c_segment
4130 */
4131 break;
4132 }
4133 if (object != cur_object) {
4134 if (fault_type & VM_PROT_WRITE)
4135 c_flags |= C_KEEP;
4136 else
4137 insert_cur_object = TRUE;
4138 }
4139 if (insert_cur_object == TRUE) {
4140
4141 if (cur_object_lock_type == OBJECT_LOCK_SHARED) {
4142
4143 cur_object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4144
4145 if (vm_object_lock_upgrade(cur_object) == FALSE) {
4146 /*
4147 * couldn't upgrade so go do a full retry
4148 * immediately since we can no longer be
4149 * certain about cur_object (since we
4150 * don't hold a reference on it)...
4151 * first drop the top object lock
4152 */
4153 vm_object_unlock(object);
4154
4155 vm_map_unlock_read(map);
4156 if (real_map != map)
4157 vm_map_unlock(real_map);
4158
4159 goto RetryFault;
4160 }
4161 }
4162 } else if (object_lock_type == OBJECT_LOCK_SHARED) {
4163
4164 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4165
4166 if (object != cur_object) {
4167 /*
4168 * we can't go for the upgrade on the top
4169 * lock since the upgrade may block waiting
4170 * for readers to drain... since we hold
4171 * cur_object locked at this point, waiting
4172 * for the readers to drain would represent
4173 * a lock order inversion since the lock order
4174 * for objects is the reference order in the
4175 * shadown chain
4176 */
4177 vm_object_unlock(object);
4178 vm_object_unlock(cur_object);
4179
4180 vm_map_unlock_read(map);
4181 if (real_map != map)
4182 vm_map_unlock(real_map);
4183
4184 goto RetryFault;
4185 }
4186 if (vm_object_lock_upgrade(object) == FALSE) {
4187 /*
4188 * couldn't upgrade, so explictly take the lock
4189 * exclusively and go relookup the page since we
4190 * will have dropped the object lock and
4191 * a different thread could have inserted
4192 * a page at this offset
4193 * no need for a full retry since we're
4194 * at the top level of the object chain
4195 */
4196 vm_object_lock(object);
4197
4198 continue;
4199 }
4200 }
4201 m = vm_page_grab();
4202
4203 if (m == VM_PAGE_NULL) {
4204 /*
4205 * no free page currently available...
4206 * must take the slow path
4207 */
4208 break;
4209 }
4210
4211 /*
4212 * The object is and remains locked
4213 * so no need to take a
4214 * "paging_in_progress" reference.
4215 */
4216 boolean_t shared_lock;
4217 if ((object == cur_object &&
4218 object_lock_type == OBJECT_LOCK_EXCLUSIVE) ||
4219 (object != cur_object &&
4220 cur_object_lock_type == OBJECT_LOCK_EXCLUSIVE)) {
4221 shared_lock = FALSE;
4222 } else {
4223 shared_lock = TRUE;
4224 }
4225
4226 kr = vm_compressor_pager_get(
4227 cur_object->pager,
4228 (cur_offset +
4229 cur_object->paging_offset),
4230 m->phys_page,
4231 &my_fault_type,
4232 c_flags,
4233 &compressed_count_delta);
4234
4235 vm_compressor_pager_count(
4236 cur_object->pager,
4237 compressed_count_delta,
4238 shared_lock,
4239 cur_object);
4240
4241 if (kr != KERN_SUCCESS) {
4242 vm_page_release(m);
4243 break;
4244 }
4245 m->dirty = TRUE;
4246
4247 /*
4248 * If the object is purgeable, its
4249 * owner's purgeable ledgers will be
4250 * updated in vm_page_insert() but the
4251 * page was also accounted for in a
4252 * "compressed purgeable" ledger, so
4253 * update that now.
4254 */
4255 if (object != cur_object &&
4256 !insert_cur_object) {
4257 /*
4258 * We're not going to insert
4259 * the decompressed page into
4260 * the object it came from.
4261 *
4262 * We're dealing with a
4263 * copy-on-write fault on
4264 * "object".
4265 * We're going to decompress
4266 * the page directly into the
4267 * target "object" while
4268 * keepin the compressed
4269 * page for "cur_object", so
4270 * no ledger update in that
4271 * case.
4272 */
4273 } else if ((cur_object->purgable ==
4274 VM_PURGABLE_DENY) ||
4275 (cur_object->vo_purgeable_owner ==
4276 NULL)) {
4277 /*
4278 * "cur_object" is not purgeable
4279 * or is not owned, so no
4280 * purgeable ledgers to update.
4281 */
4282 } else {
4283 /*
4284 * One less compressed
4285 * purgeable page for
4286 * cur_object's owner.
4287 */
4288 vm_purgeable_compressed_update(
4289 cur_object,
4290 -1);
4291 }
4292
4293 if (insert_cur_object) {
4294 vm_page_insert(m, cur_object, cur_offset);
4295 } else {
4296 vm_page_insert(m, object, offset);
4297 }
4298
4299 if ((m->object->wimg_bits & VM_WIMG_MASK) != VM_WIMG_USE_DEFAULT) {
4300 /*
4301 * If the page is not cacheable,
4302 * we can't let its contents
4303 * linger in the data cache
4304 * after the decompression.
4305 */
4306 pmap_sync_page_attributes_phys(m->phys_page);
4307 }
4308
4309 type_of_fault = my_fault_type;
4310
4311 VM_STAT_INCR(decompressions);
4312
4313 if (cur_object != object) {
4314 if (insert_cur_object) {
4315 top_object = object;
4316 /*
4317 * switch to the object that has the new page
4318 */
4319 object = cur_object;
4320 object_lock_type = cur_object_lock_type;
4321 } else {
4322 vm_object_unlock(cur_object);
4323 cur_object = object;
4324 }
4325 }
4326 goto FastPmapEnter;
4327 }
4328 /*
4329 * existence map present and indicates
4330 * that the pager doesn't have this page
4331 */
4332 }
4333 if (cur_object->shadow == VM_OBJECT_NULL) {
4334 /*
4335 * Zero fill fault. Page gets
4336 * inserted into the original object.
4337 */
4338 if (cur_object->shadow_severed ||
4339 VM_OBJECT_PURGEABLE_FAULT_ERROR(cur_object))
4340 {
4341 if (object != cur_object)
4342 vm_object_unlock(cur_object);
4343 vm_object_unlock(object);
4344
4345 vm_map_unlock_read(map);
4346 if (real_map != map)
4347 vm_map_unlock(real_map);
4348
4349 kr = KERN_MEMORY_ERROR;
4350 goto done;
4351 }
4352 if (vm_backing_store_low) {
4353 /*
4354 * we are protecting the system from
4355 * backing store exhaustion...
4356 * must take the slow path if we're
4357 * not privileged
4358 */
4359 if (!(current_task()->priv_flags & VM_BACKING_STORE_PRIV))
4360 break;
4361 }
4362 if (cur_object != object) {
4363 vm_object_unlock(cur_object);
4364
4365 cur_object = object;
4366 }
4367 if (object_lock_type == OBJECT_LOCK_SHARED) {
4368
4369 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4370
4371 if (vm_object_lock_upgrade(object) == FALSE) {
4372 /*
4373 * couldn't upgrade so do a full retry on the fault
4374 * since we dropped the object lock which
4375 * could allow another thread to insert
4376 * a page at this offset
4377 */
4378 vm_map_unlock_read(map);
4379 if (real_map != map)
4380 vm_map_unlock(real_map);
4381
4382 goto RetryFault;
4383 }
4384 }
4385 m = vm_page_alloc(object, offset);
4386
4387 if (m == VM_PAGE_NULL) {
4388 /*
4389 * no free page currently available...
4390 * must take the slow path
4391 */
4392 break;
4393 }
4394
4395 /*
4396 * Now zero fill page...
4397 * the page is probably going to
4398 * be written soon, so don't bother
4399 * to clear the modified bit
4400 *
4401 * NOTE: This code holds the map
4402 * lock across the zero fill.
4403 */
4404 type_of_fault = vm_fault_zero_page(m, map->no_zero_fill);
4405
4406 goto FastPmapEnter;
4407 }
4408 /*
4409 * On to the next level in the shadow chain
4410 */
4411 cur_offset += cur_object->vo_shadow_offset;
4412 new_object = cur_object->shadow;
4413
4414 /*
4415 * take the new_object's lock with the indicated state
4416 */
4417 if (cur_object_lock_type == OBJECT_LOCK_SHARED)
4418 vm_object_lock_shared(new_object);
4419 else
4420 vm_object_lock(new_object);
4421
4422 if (cur_object != object)
4423 vm_object_unlock(cur_object);
4424
4425 cur_object = new_object;
4426
4427 continue;
4428 }
4429 }
4430 /*
4431 * Cleanup from fast fault failure. Drop any object
4432 * lock other than original and drop map lock.
4433 */
4434 if (object != cur_object)
4435 vm_object_unlock(cur_object);
4436
4437 /*
4438 * must own the object lock exclusively at this point
4439 */
4440 if (object_lock_type == OBJECT_LOCK_SHARED) {
4441 object_lock_type = OBJECT_LOCK_EXCLUSIVE;
4442
4443 if (vm_object_lock_upgrade(object) == FALSE) {
4444 /*
4445 * couldn't upgrade, so explictly
4446 * take the lock exclusively
4447 * no need to retry the fault at this
4448 * point since "vm_fault_page" will
4449 * completely re-evaluate the state
4450 */
4451 vm_object_lock(object);
4452 }
4453 }
4454
4455 handle_copy_delay:
4456 vm_map_unlock_read(map);
4457 if (real_map != map)
4458 vm_map_unlock(real_map);
4459
4460 /*
4461 * Make a reference to this object to
4462 * prevent its disposal while we are messing with
4463 * it. Once we have the reference, the map is free
4464 * to be diddled. Since objects reference their
4465 * shadows (and copies), they will stay around as well.
4466 */
4467 vm_object_reference_locked(object);
4468 vm_object_paging_begin(object);
4469
4470 XPR(XPR_VM_FAULT,"vm_fault -> vm_fault_page\n",0,0,0,0,0);
4471
4472 error_code = 0;
4473
4474 result_page = VM_PAGE_NULL;
4475 kr = vm_fault_page(object, offset, fault_type,
4476 (change_wiring && !wired),
4477 FALSE, /* page not looked up */
4478 &prot, &result_page, &top_page,
4479 &type_of_fault,
4480 &error_code, map->no_zero_fill,
4481 FALSE, &fault_info);
4482
4483 /*
4484 * if kr != VM_FAULT_SUCCESS, then the paging reference
4485 * has been dropped and the object unlocked... the ref_count
4486 * is still held
4487 *
4488 * if kr == VM_FAULT_SUCCESS, then the paging reference
4489 * is still held along with the ref_count on the original object
4490 *
4491 * the object is returned locked with a paging reference
4492 *
4493 * if top_page != NULL, then it's BUSY and the
4494 * object it belongs to has a paging reference
4495 * but is returned unlocked
4496 */
4497 if (kr != VM_FAULT_SUCCESS &&
4498 kr != VM_FAULT_SUCCESS_NO_VM_PAGE) {
4499 /*
4500 * we didn't succeed, lose the object reference immediately.
4501 */
4502 vm_object_deallocate(object);
4503
4504 /*
4505 * See why we failed, and take corrective action.
4506 */
4507 switch (kr) {
4508 case VM_FAULT_MEMORY_SHORTAGE:
4509 if (vm_page_wait((change_wiring) ?
4510 THREAD_UNINT :
4511 THREAD_ABORTSAFE))
4512 goto RetryFault;
4513 /*
4514 * fall thru
4515 */
4516 case VM_FAULT_INTERRUPTED:
4517 kr = KERN_ABORTED;
4518 goto done;
4519 case VM_FAULT_RETRY:
4520 goto RetryFault;
4521 case VM_FAULT_MEMORY_ERROR:
4522 if (error_code)
4523 kr = error_code;
4524 else
4525 kr = KERN_MEMORY_ERROR;
4526 goto done;
4527 default:
4528 panic("vm_fault: unexpected error 0x%x from "
4529 "vm_fault_page()\n", kr);
4530 }
4531 }
4532 m = result_page;
4533
4534 if (m != VM_PAGE_NULL) {
4535 assert((change_wiring && !wired) ?
4536 (top_page == VM_PAGE_NULL) :
4537 ((top_page == VM_PAGE_NULL) == (m->object == object)));
4538 }
4539
4540 /*
4541 * What to do with the resulting page from vm_fault_page
4542 * if it doesn't get entered into the physical map:
4543 */
4544 #define RELEASE_PAGE(m) \
4545 MACRO_BEGIN \
4546 PAGE_WAKEUP_DONE(m); \
4547 if (!m->active && !m->inactive && !m->throttled) { \
4548 vm_page_lockspin_queues(); \
4549 if (!m->active && !m->inactive && !m->throttled) \
4550 vm_page_activate(m); \
4551 vm_page_unlock_queues(); \
4552 } \
4553 MACRO_END
4554
4555 /*
4556 * We must verify that the maps have not changed
4557 * since our last lookup.
4558 */
4559 if (m != VM_PAGE_NULL) {
4560 old_copy_object = m->object->copy;
4561 vm_object_unlock(m->object);
4562 } else {
4563 old_copy_object = VM_OBJECT_NULL;
4564 vm_object_unlock(object);
4565 }
4566
4567 /*
4568 * no object locks are held at this point
4569 */
4570 if ((map != original_map) || !vm_map_verify(map, &version)) {
4571 vm_object_t retry_object;
4572 vm_object_offset_t retry_offset;
4573 vm_prot_t retry_prot;
4574
4575 /*
4576 * To avoid trying to write_lock the map while another
4577 * thread has it read_locked (in vm_map_pageable), we
4578 * do not try for write permission. If the page is
4579 * still writable, we will get write permission. If it
4580 * is not, or has been marked needs_copy, we enter the
4581 * mapping without write permission, and will merely
4582 * take another fault.
4583 */
4584 map = original_map;
4585 vm_map_lock_read(map);
4586
4587 kr = vm_map_lookup_locked(&map, vaddr,
4588 fault_type & ~VM_PROT_WRITE,
4589 OBJECT_LOCK_EXCLUSIVE, &version,
4590 &retry_object, &retry_offset, &retry_prot,
4591 &wired,
4592 &fault_info,
4593 &real_map);
4594 pmap = real_map->pmap;
4595
4596 if (kr != KERN_SUCCESS) {
4597 vm_map_unlock_read(map);
4598
4599 if (m != VM_PAGE_NULL) {
4600 /*
4601 * retake the lock so that
4602 * we can drop the paging reference
4603 * in vm_fault_cleanup and do the
4604 * PAGE_WAKEUP_DONE in RELEASE_PAGE
4605 */
4606 vm_object_lock(m->object);
4607
4608 RELEASE_PAGE(m);
4609
4610 vm_fault_cleanup(m->object, top_page);
4611 } else {
4612 /*
4613 * retake the lock so that
4614 * we can drop the paging reference
4615 * in vm_fault_cleanup
4616 */
4617 vm_object_lock(object);
4618
4619 vm_fault_cleanup(object, top_page);
4620 }
4621 vm_object_deallocate(object);
4622
4623 goto done;
4624 }
4625 vm_object_unlock(retry_object);
4626
4627 if ((retry_object != object) || (retry_offset != offset)) {
4628
4629 vm_map_unlock_read(map);
4630 if (real_map != map)
4631 vm_map_unlock(real_map);
4632
4633 if (m != VM_PAGE_NULL) {
4634 /*
4635 * retake the lock so that
4636 * we can drop the paging reference
4637 * in vm_fault_cleanup and do the
4638 * PAGE_WAKEUP_DONE in RELEASE_PAGE
4639 */
4640 vm_object_lock(m->object);
4641
4642 RELEASE_PAGE(m);
4643
4644 vm_fault_cleanup(m->object, top_page);
4645 } else {
4646 /*
4647 * retake the lock so that
4648 * we can drop the paging reference
4649 * in vm_fault_cleanup
4650 */
4651 vm_object_lock(object);
4652
4653 vm_fault_cleanup(object, top_page);
4654 }
4655 vm_object_deallocate(object);
4656
4657 goto RetryFault;
4658 }
4659 /*
4660 * Check whether the protection has changed or the object
4661 * has been copied while we left the map unlocked.
4662 */
4663 prot &= retry_prot;
4664 }
4665 if (m != VM_PAGE_NULL) {
4666 vm_object_lock(m->object);
4667
4668 if (m->object->copy != old_copy_object) {
4669 /*
4670 * The copy object changed while the top-level object
4671 * was unlocked, so take away write permission.
4672 */
4673 prot &= ~VM_PROT_WRITE;
4674 }
4675 } else
4676 vm_object_lock(object);
4677
4678 /*
4679 * If we want to wire down this page, but no longer have
4680 * adequate permissions, we must start all over.
4681 */
4682 if (wired && (fault_type != (prot | VM_PROT_WRITE))) {
4683
4684 vm_map_verify_done(map, &version);
4685 if (real_map != map)
4686 vm_map_unlock(real_map);
4687
4688 if (m != VM_PAGE_NULL) {
4689 RELEASE_PAGE(m);
4690
4691 vm_fault_cleanup(m->object, top_page);
4692 } else
4693 vm_fault_cleanup(object, top_page);
4694
4695 vm_object_deallocate(object);
4696
4697 goto RetryFault;
4698 }
4699 if (m != VM_PAGE_NULL) {
4700 /*
4701 * Put this page into the physical map.
4702 * We had to do the unlock above because pmap_enter
4703 * may cause other faults. The page may be on
4704 * the pageout queues. If the pageout daemon comes
4705 * across the page, it will remove it from the queues.
4706 */
4707 if (caller_pmap) {
4708 kr = vm_fault_enter(m,
4709 caller_pmap,
4710 caller_pmap_addr,
4711 prot,
4712 caller_prot,
4713 wired,
4714 change_wiring,
4715 fault_info.no_cache,
4716 fault_info.cs_bypass,
4717 fault_info.user_tag,
4718 fault_info.pmap_options,
4719 NULL,
4720 &type_of_fault);
4721 } else {
4722 kr = vm_fault_enter(m,
4723 pmap,
4724 vaddr,
4725 prot,
4726 caller_prot,
4727 wired,
4728 change_wiring,
4729 fault_info.no_cache,
4730 fault_info.cs_bypass,
4731 fault_info.user_tag,
4732 fault_info.pmap_options,
4733 NULL,
4734 &type_of_fault);
4735 }
4736 if (kr != KERN_SUCCESS) {
4737 /* abort this page fault */
4738 vm_map_verify_done(map, &version);
4739 if (real_map != map)
4740 vm_map_unlock(real_map);
4741 PAGE_WAKEUP_DONE(m);
4742 vm_fault_cleanup(m->object, top_page);
4743 vm_object_deallocate(object);
4744 goto done;
4745 }
4746 if (physpage_p != NULL) {
4747 /* for vm_map_wire_and_extract() */
4748 *physpage_p = m->phys_page;
4749 if (prot & VM_PROT_WRITE) {
4750 vm_object_lock_assert_exclusive(m->object);
4751 m->dirty = TRUE;
4752 }
4753 }
4754 } else {
4755
4756 vm_map_entry_t entry;
4757 vm_map_offset_t laddr;
4758 vm_map_offset_t ldelta, hdelta;
4759
4760 /*
4761 * do a pmap block mapping from the physical address
4762 * in the object
4763 */
4764
4765 #ifdef ppc
4766 /* While we do not worry about execution protection in */
4767 /* general, certian pages may have instruction execution */
4768 /* disallowed. We will check here, and if not allowed */
4769 /* to execute, we return with a protection failure. */
4770
4771 if ((fault_type & VM_PROT_EXECUTE) &&
4772 (!pmap_eligible_for_execute((ppnum_t)(object->vo_shadow_offset >> 12)))) {
4773
4774 vm_map_verify_done(map, &version);
4775
4776 if (real_map != map)
4777 vm_map_unlock(real_map);
4778
4779 vm_fault_cleanup(object, top_page);
4780 vm_object_deallocate(object);
4781
4782 kr = KERN_PROTECTION_FAILURE;
4783 goto done;
4784 }
4785 #endif /* ppc */
4786
4787 if (real_map != map)
4788 vm_map_unlock(real_map);
4789
4790 if (original_map != map) {
4791 vm_map_unlock_read(map);
4792 vm_map_lock_read(original_map);
4793 map = original_map;
4794 }
4795 real_map = map;
4796
4797 laddr = vaddr;
4798 hdelta = 0xFFFFF000;
4799 ldelta = 0xFFFFF000;
4800
4801 while (vm_map_lookup_entry(map, laddr, &entry)) {
4802 if (ldelta > (laddr - entry->vme_start))
4803 ldelta = laddr - entry->vme_start;
4804 if (hdelta > (entry->vme_end - laddr))
4805 hdelta = entry->vme_end - laddr;
4806 if (entry->is_sub_map) {
4807
4808 laddr = ((laddr - entry->vme_start)
4809 + VME_OFFSET(entry));
4810 vm_map_lock_read(VME_SUBMAP(entry));
4811
4812 if (map != real_map)
4813 vm_map_unlock_read(map);
4814 if (entry->use_pmap) {
4815 vm_map_unlock_read(real_map);
4816 real_map = VME_SUBMAP(entry);
4817 }
4818 map = VME_SUBMAP(entry);
4819
4820 } else {
4821 break;
4822 }
4823 }
4824
4825 if (vm_map_lookup_entry(map, laddr, &entry) &&
4826 (VME_OBJECT(entry) != NULL) &&
4827 (VME_OBJECT(entry) == object)) {
4828 int superpage;
4829
4830 if (!object->pager_created &&
4831 object->phys_contiguous &&
4832 VME_OFFSET(entry) == 0 &&
4833 (entry->vme_end - entry->vme_start == object->vo_size) &&
4834 VM_MAP_PAGE_ALIGNED(entry->vme_start, (object->vo_size-1))) {
4835 superpage = VM_MEM_SUPERPAGE;
4836 } else {
4837 superpage = 0;
4838 }
4839
4840 if (superpage && physpage_p) {
4841 /* for vm_map_wire_and_extract() */
4842 *physpage_p = (ppnum_t)
4843 ((((vm_map_offset_t)
4844 object->vo_shadow_offset)
4845 + VME_OFFSET(entry)
4846 + (laddr - entry->vme_start))
4847 >> PAGE_SHIFT);
4848 }
4849
4850 if (caller_pmap) {
4851 /*
4852 * Set up a block mapped area
4853 */
4854 assert((uint32_t)((ldelta + hdelta) >> PAGE_SHIFT) == ((ldelta + hdelta) >> PAGE_SHIFT));
4855 pmap_map_block(caller_pmap,
4856 (addr64_t)(caller_pmap_addr - ldelta),
4857 (ppnum_t)((((vm_map_offset_t) (VME_OBJECT(entry)->vo_shadow_offset)) +
4858 VME_OFFSET(entry) + (laddr - entry->vme_start) - ldelta) >> PAGE_SHIFT),
4859 (uint32_t)((ldelta + hdelta) >> PAGE_SHIFT), prot,
4860 (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0);
4861 } else {
4862 /*
4863 * Set up a block mapped area
4864 */
4865 assert((uint32_t)((ldelta + hdelta) >> PAGE_SHIFT) == ((ldelta + hdelta) >> PAGE_SHIFT));
4866 pmap_map_block(real_map->pmap,
4867 (addr64_t)(vaddr - ldelta),
4868 (ppnum_t)((((vm_map_offset_t)(VME_OBJECT(entry)->vo_shadow_offset)) +
4869 VME_OFFSET(entry) + (laddr - entry->vme_start) - ldelta) >> PAGE_SHIFT),
4870 (uint32_t)((ldelta + hdelta) >> PAGE_SHIFT), prot,
4871 (VM_WIMG_MASK & (int)object->wimg_bits) | superpage, 0);
4872 }
4873 }
4874 }
4875
4876 /*
4877 * Unlock everything, and return
4878 */
4879 vm_map_verify_done(map, &version);
4880 if (real_map != map)
4881 vm_map_unlock(real_map);
4882
4883 if (m != VM_PAGE_NULL) {
4884 PAGE_WAKEUP_DONE(m);
4885
4886 vm_fault_cleanup(m->object, top_page);
4887 } else
4888 vm_fault_cleanup(object, top_page);
4889
4890 vm_object_deallocate(object);
4891
4892 #undef RELEASE_PAGE
4893
4894 kr = KERN_SUCCESS;
4895 done:
4896 thread_interrupt_level(interruptible_state);
4897
4898 /*
4899 * Only I/O throttle on faults which cause a pagein/swapin.
4900 */
4901 if ((type_of_fault == DBG_PAGEIND_FAULT) || (type_of_fault == DBG_PAGEINV_FAULT) || (type_of_fault == DBG_COMPRESSOR_SWAPIN_FAULT)) {
4902 throttle_lowpri_io(1);
4903 } else {
4904 if (kr == KERN_SUCCESS && type_of_fault != DBG_CACHE_HIT_FAULT && type_of_fault != DBG_GUARD_FAULT) {
4905
4906 if ((throttle_delay = vm_page_throttled(TRUE))) {
4907
4908 if (vm_debug_events) {
4909 if (type_of_fault == DBG_COMPRESSOR_FAULT)
4910 VM_DEBUG_EVENT(vmf_compressordelay, VMF_COMPRESSORDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
4911 else if (type_of_fault == DBG_COW_FAULT)
4912 VM_DEBUG_EVENT(vmf_cowdelay, VMF_COWDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
4913 else
4914 VM_DEBUG_EVENT(vmf_zfdelay, VMF_ZFDELAY, DBG_FUNC_NONE, throttle_delay, 0, 0, 0);
4915 }
4916 delay(throttle_delay);
4917 }
4918 }
4919 }
4920 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_TRACE,
4921 (MACHDBG_CODE(DBG_MACH_VM, 2)) | DBG_FUNC_END,
4922 ((uint64_t)vaddr >> 32),
4923 vaddr,
4924 kr,
4925 type_of_fault,
4926 0);
4927
4928 return (kr);
4929 }
4930
4931 /*
4932 * vm_fault_wire:
4933 *
4934 * Wire down a range of virtual addresses in a map.
4935 */
4936 kern_return_t
4937 vm_fault_wire(
4938 vm_map_t map,
4939 vm_map_entry_t entry,
4940 vm_prot_t prot,
4941 pmap_t pmap,
4942 vm_map_offset_t pmap_addr,
4943 ppnum_t *physpage_p)
4944 {
4945
4946 register vm_map_offset_t va;
4947 register vm_map_offset_t end_addr = entry->vme_end;
4948 register kern_return_t rc;
4949
4950 assert(entry->in_transition);
4951
4952 if ((VME_OBJECT(entry) != NULL) &&
4953 !entry->is_sub_map &&
4954 VME_OBJECT(entry)->phys_contiguous) {
4955 return KERN_SUCCESS;
4956 }
4957
4958 /*
4959 * Inform the physical mapping system that the
4960 * range of addresses may not fault, so that
4961 * page tables and such can be locked down as well.
4962 */
4963
4964 pmap_pageable(pmap, pmap_addr,
4965 pmap_addr + (end_addr - entry->vme_start), FALSE);
4966
4967 /*
4968 * We simulate a fault to get the page and enter it
4969 * in the physical map.
4970 */
4971
4972 for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) {
4973 rc = vm_fault_wire_fast(map, va, prot, entry, pmap,
4974 pmap_addr + (va - entry->vme_start),
4975 physpage_p);
4976 if (rc != KERN_SUCCESS) {
4977 rc = vm_fault_internal(map, va, prot, TRUE,
4978 ((pmap == kernel_pmap)
4979 ? THREAD_UNINT
4980 : THREAD_ABORTSAFE),
4981 pmap,
4982 (pmap_addr +
4983 (va - entry->vme_start)),
4984 physpage_p);
4985 DTRACE_VM2(softlock, int, 1, (uint64_t *), NULL);
4986 }
4987
4988 if (rc != KERN_SUCCESS) {
4989 struct vm_map_entry tmp_entry = *entry;
4990
4991 /* unwire wired pages */
4992 tmp_entry.vme_end = va;
4993 vm_fault_unwire(map,
4994 &tmp_entry, FALSE, pmap, pmap_addr);
4995
4996 return rc;
4997 }
4998 }
4999 return KERN_SUCCESS;
5000 }
5001
5002 /*
5003 * vm_fault_unwire:
5004 *
5005 * Unwire a range of virtual addresses in a map.
5006 */
5007 void
5008 vm_fault_unwire(
5009 vm_map_t map,
5010 vm_map_entry_t entry,
5011 boolean_t deallocate,
5012 pmap_t pmap,
5013 vm_map_offset_t pmap_addr)
5014 {
5015 register vm_map_offset_t va;
5016 register vm_map_offset_t end_addr = entry->vme_end;
5017 vm_object_t object;
5018 struct vm_object_fault_info fault_info;
5019
5020 object = (entry->is_sub_map) ? VM_OBJECT_NULL : VME_OBJECT(entry);
5021
5022 /*
5023 * If it's marked phys_contiguous, then vm_fault_wire() didn't actually
5024 * do anything since such memory is wired by default. So we don't have
5025 * anything to undo here.
5026 */
5027
5028 if (object != VM_OBJECT_NULL && object->phys_contiguous)
5029 return;
5030
5031 fault_info.interruptible = THREAD_UNINT;
5032 fault_info.behavior = entry->behavior;
5033 fault_info.user_tag = VME_ALIAS(entry);
5034 fault_info.pmap_options = 0;
5035 if (entry->iokit_acct ||
5036 (!entry->is_sub_map && !entry->use_pmap)) {
5037 fault_info.pmap_options |= PMAP_OPTIONS_ALT_ACCT;
5038 }
5039 fault_info.lo_offset = VME_OFFSET(entry);
5040 fault_info.hi_offset = (entry->vme_end - entry->vme_start) + VME_OFFSET(entry);
5041 fault_info.no_cache = entry->no_cache;
5042 fault_info.stealth = TRUE;
5043 fault_info.io_sync = FALSE;
5044 fault_info.cs_bypass = FALSE;
5045 fault_info.mark_zf_absent = FALSE;
5046 fault_info.batch_pmap_op = FALSE;
5047
5048 /*
5049 * Since the pages are wired down, we must be able to
5050 * get their mappings from the physical map system.
5051 */
5052
5053 for (va = entry->vme_start; va < end_addr; va += PAGE_SIZE) {
5054
5055 if (object == VM_OBJECT_NULL) {
5056 if (pmap) {
5057 pmap_change_wiring(pmap,
5058 pmap_addr + (va - entry->vme_start), FALSE);
5059 }
5060 (void) vm_fault(map, va, VM_PROT_NONE,
5061 TRUE, THREAD_UNINT, pmap, pmap_addr);
5062 } else {
5063 vm_prot_t prot;
5064 vm_page_t result_page;
5065 vm_page_t top_page;
5066 vm_object_t result_object;
5067 vm_fault_return_t result;
5068
5069 if (end_addr - va > (vm_size_t) -1) {
5070 /* 32-bit overflow */
5071 fault_info.cluster_size = (vm_size_t) (0 - PAGE_SIZE);
5072 } else {
5073 fault_info.cluster_size = (vm_size_t) (end_addr - va);
5074 assert(fault_info.cluster_size == end_addr - va);
5075 }
5076
5077 do {
5078 prot = VM_PROT_NONE;
5079
5080 vm_object_lock(object);
5081 vm_object_paging_begin(object);
5082 XPR(XPR_VM_FAULT,
5083 "vm_fault_unwire -> vm_fault_page\n",
5084 0,0,0,0,0);
5085 result_page = VM_PAGE_NULL;
5086 result = vm_fault_page(
5087 object,
5088 (VME_OFFSET(entry) +
5089 (va - entry->vme_start)),
5090 VM_PROT_NONE, TRUE,
5091 FALSE, /* page not looked up */
5092 &prot, &result_page, &top_page,
5093 (int *)0,
5094 NULL, map->no_zero_fill,
5095 FALSE, &fault_info);
5096 } while (result == VM_FAULT_RETRY);
5097
5098 /*
5099 * If this was a mapping to a file on a device that has been forcibly
5100 * unmounted, then we won't get a page back from vm_fault_page(). Just
5101 * move on to the next one in case the remaining pages are mapped from
5102 * different objects. During a forced unmount, the object is terminated
5103 * so the alive flag will be false if this happens. A forced unmount will
5104 * will occur when an external disk is unplugged before the user does an
5105 * eject, so we don't want to panic in that situation.
5106 */
5107
5108 if (result == VM_FAULT_MEMORY_ERROR && !object->alive)
5109 continue;
5110
5111 if (result == VM_FAULT_MEMORY_ERROR &&
5112 object == kernel_object) {
5113 /*
5114 * This must have been allocated with
5115 * KMA_KOBJECT and KMA_VAONLY and there's
5116 * no physical page at this offset.
5117 * We're done (no page to free).
5118 */
5119 assert(deallocate);
5120 continue;
5121 }
5122
5123 if (result != VM_FAULT_SUCCESS)
5124 panic("vm_fault_unwire: failure");
5125
5126 result_object = result_page->object;
5127
5128 if (deallocate) {
5129 assert(result_page->phys_page !=
5130 vm_page_fictitious_addr);
5131 pmap_disconnect(result_page->phys_page);
5132 VM_PAGE_FREE(result_page);
5133 } else {
5134 if ((pmap) && (result_page->phys_page != vm_page_guard_addr))
5135 pmap_change_wiring(pmap,
5136 pmap_addr + (va - entry->vme_start), FALSE);
5137
5138
5139 if (VM_PAGE_WIRED(result_page)) {
5140 vm_page_lockspin_queues();
5141 vm_page_unwire(result_page, TRUE);
5142 vm_page_unlock_queues();
5143 }
5144 if(entry->zero_wired_pages) {
5145 pmap_zero_page(result_page->phys_page);
5146 entry->zero_wired_pages = FALSE;
5147 }
5148
5149 PAGE_WAKEUP_DONE(result_page);
5150 }
5151 vm_fault_cleanup(result_object, top_page);
5152 }
5153 }
5154
5155 /*
5156 * Inform the physical mapping system that the range
5157 * of addresses may fault, so that page tables and
5158 * such may be unwired themselves.
5159 */
5160
5161 pmap_pageable(pmap, pmap_addr,
5162 pmap_addr + (end_addr - entry->vme_start), TRUE);
5163
5164 }
5165
5166 /*
5167 * vm_fault_wire_fast:
5168 *
5169 * Handle common case of a wire down page fault at the given address.
5170 * If successful, the page is inserted into the associated physical map.
5171 * The map entry is passed in to avoid the overhead of a map lookup.
5172 *
5173 * NOTE: the given address should be truncated to the
5174 * proper page address.
5175 *
5176 * KERN_SUCCESS is returned if the page fault is handled; otherwise,
5177 * a standard error specifying why the fault is fatal is returned.
5178 *
5179 * The map in question must be referenced, and remains so.
5180 * Caller has a read lock on the map.
5181 *
5182 * This is a stripped version of vm_fault() for wiring pages. Anything
5183 * other than the common case will return KERN_FAILURE, and the caller
5184 * is expected to call vm_fault().
5185 */
5186 static kern_return_t
5187 vm_fault_wire_fast(
5188 __unused vm_map_t map,
5189 vm_map_offset_t va,
5190 vm_prot_t caller_prot,
5191 vm_map_entry_t entry,
5192 pmap_t pmap,
5193 vm_map_offset_t pmap_addr,
5194 ppnum_t *physpage_p)
5195 {
5196 vm_object_t object;
5197 vm_object_offset_t offset;
5198 register vm_page_t m;
5199 vm_prot_t prot;
5200 thread_t thread = current_thread();
5201 int type_of_fault;
5202 kern_return_t kr;
5203
5204 VM_STAT_INCR(faults);
5205
5206 if (thread != THREAD_NULL && thread->task != TASK_NULL)
5207 thread->task->faults++;
5208
5209 /*
5210 * Recovery actions
5211 */
5212
5213 #undef RELEASE_PAGE
5214 #define RELEASE_PAGE(m) { \
5215 PAGE_WAKEUP_DONE(m); \
5216 vm_page_lockspin_queues(); \
5217 vm_page_unwire(m, TRUE); \
5218 vm_page_unlock_queues(); \
5219 }
5220
5221
5222 #undef UNLOCK_THINGS
5223 #define UNLOCK_THINGS { \
5224 vm_object_paging_end(object); \
5225 vm_object_unlock(object); \
5226 }
5227
5228 #undef UNLOCK_AND_DEALLOCATE
5229 #define UNLOCK_AND_DEALLOCATE { \
5230 UNLOCK_THINGS; \
5231 vm_object_deallocate(object); \
5232 }
5233 /*
5234 * Give up and have caller do things the hard way.
5235 */
5236
5237 #define GIVE_UP { \
5238 UNLOCK_AND_DEALLOCATE; \
5239 return(KERN_FAILURE); \
5240 }
5241
5242
5243 /*
5244 * If this entry is not directly to a vm_object, bail out.
5245 */
5246 if (entry->is_sub_map) {
5247 assert(physpage_p == NULL);
5248 return(KERN_FAILURE);
5249 }
5250
5251 /*
5252 * Find the backing store object and offset into it.
5253 */
5254
5255 object = VME_OBJECT(entry);
5256 offset = (va - entry->vme_start) + VME_OFFSET(entry);
5257 prot = entry->protection;
5258
5259 /*
5260 * Make a reference to this object to prevent its
5261 * disposal while we are messing with it.
5262 */
5263
5264 vm_object_lock(object);
5265 vm_object_reference_locked(object);
5266 vm_object_paging_begin(object);
5267
5268 /*
5269 * INVARIANTS (through entire routine):
5270 *
5271 * 1) At all times, we must either have the object
5272 * lock or a busy page in some object to prevent
5273 * some other thread from trying to bring in
5274 * the same page.
5275 *
5276 * 2) Once we have a busy page, we must remove it from
5277 * the pageout queues, so that the pageout daemon
5278 * will not grab it away.
5279 *
5280 */
5281
5282 /*
5283 * Look for page in top-level object. If it's not there or
5284 * there's something going on, give up.
5285 * ENCRYPTED SWAP: use the slow fault path, since we'll need to
5286 * decrypt the page before wiring it down.
5287 */
5288 m = vm_page_lookup(object, offset);
5289 if ((m == VM_PAGE_NULL) || (m->busy) || (m->encrypted) ||
5290 (m->unusual && ( m->error || m->restart || m->absent))) {
5291
5292 GIVE_UP;
5293 }
5294 ASSERT_PAGE_DECRYPTED(m);
5295
5296 if (m->fictitious &&
5297 m->phys_page == vm_page_guard_addr) {
5298 /*
5299 * Guard pages are fictitious pages and are never
5300 * entered into a pmap, so let's say it's been wired...
5301 */
5302 kr = KERN_SUCCESS;
5303 goto done;
5304 }
5305
5306 /*
5307 * Wire the page down now. All bail outs beyond this
5308 * point must unwire the page.
5309 */
5310
5311 vm_page_lockspin_queues();
5312 vm_page_wire(m, VM_PROT_MEMORY_TAG(caller_prot), TRUE);
5313 vm_page_unlock_queues();
5314
5315 /*
5316 * Mark page busy for other threads.
5317 */
5318 assert(!m->busy);
5319 m->busy = TRUE;
5320 assert(!m->absent);
5321
5322 /*
5323 * Give up if the page is being written and there's a copy object
5324 */
5325 if ((object->copy != VM_OBJECT_NULL) && (prot & VM_PROT_WRITE)) {
5326 RELEASE_PAGE(m);
5327 GIVE_UP;
5328 }
5329
5330 /*
5331 * Put this page into the physical map.
5332 */
5333 type_of_fault = DBG_CACHE_HIT_FAULT;
5334 kr = vm_fault_enter(m,
5335 pmap,
5336 pmap_addr,
5337 prot,
5338 prot,
5339 TRUE,
5340 FALSE,
5341 FALSE,
5342 FALSE,
5343 VME_ALIAS(entry),
5344 ((entry->iokit_acct ||
5345 (!entry->is_sub_map && !entry->use_pmap))
5346 ? PMAP_OPTIONS_ALT_ACCT
5347 : 0),
5348 NULL,
5349 &type_of_fault);
5350
5351 done:
5352 /*
5353 * Unlock everything, and return
5354 */
5355
5356 if (physpage_p) {
5357 /* for vm_map_wire_and_extract() */
5358 if (kr == KERN_SUCCESS) {
5359 *physpage_p = m->phys_page;
5360 if (prot & VM_PROT_WRITE) {
5361 vm_object_lock_assert_exclusive(m->object);
5362 m->dirty = TRUE;
5363 }
5364 } else {
5365 *physpage_p = 0;
5366 }
5367 }
5368
5369 PAGE_WAKEUP_DONE(m);
5370 UNLOCK_AND_DEALLOCATE;
5371
5372 return kr;
5373
5374 }
5375
5376 /*
5377 * Routine: vm_fault_copy_cleanup
5378 * Purpose:
5379 * Release a page used by vm_fault_copy.
5380 */
5381
5382 static void
5383 vm_fault_copy_cleanup(
5384 vm_page_t page,
5385 vm_page_t top_page)
5386 {
5387 vm_object_t object = page->object;
5388
5389 vm_object_lock(object);
5390 PAGE_WAKEUP_DONE(page);
5391 if (!page->active && !page->inactive && !page->throttled) {
5392 vm_page_lockspin_queues();
5393 if (!page->active && !page->inactive && !page->throttled)
5394 vm_page_activate(page);
5395 vm_page_unlock_queues();
5396 }
5397 vm_fault_cleanup(object, top_page);
5398 }
5399
5400 static void
5401 vm_fault_copy_dst_cleanup(
5402 vm_page_t page)
5403 {
5404 vm_object_t object;
5405
5406 if (page != VM_PAGE_NULL) {
5407 object = page->object;
5408 vm_object_lock(object);
5409 vm_page_lockspin_queues();
5410 vm_page_unwire(page, TRUE);
5411 vm_page_unlock_queues();
5412 vm_object_paging_end(object);
5413 vm_object_unlock(object);
5414 }
5415 }
5416
5417 /*
5418 * Routine: vm_fault_copy
5419 *
5420 * Purpose:
5421 * Copy pages from one virtual memory object to another --
5422 * neither the source nor destination pages need be resident.
5423 *
5424 * Before actually copying a page, the version associated with
5425 * the destination address map wil be verified.
5426 *
5427 * In/out conditions:
5428 * The caller must hold a reference, but not a lock, to
5429 * each of the source and destination objects and to the
5430 * destination map.
5431 *
5432 * Results:
5433 * Returns KERN_SUCCESS if no errors were encountered in
5434 * reading or writing the data. Returns KERN_INTERRUPTED if
5435 * the operation was interrupted (only possible if the
5436 * "interruptible" argument is asserted). Other return values
5437 * indicate a permanent error in copying the data.
5438 *
5439 * The actual amount of data copied will be returned in the
5440 * "copy_size" argument. In the event that the destination map
5441 * verification failed, this amount may be less than the amount
5442 * requested.
5443 */
5444 kern_return_t
5445 vm_fault_copy(
5446 vm_object_t src_object,
5447 vm_object_offset_t src_offset,
5448 vm_map_size_t *copy_size, /* INOUT */
5449 vm_object_t dst_object,
5450 vm_object_offset_t dst_offset,
5451 vm_map_t dst_map,
5452 vm_map_version_t *dst_version,
5453 int interruptible)
5454 {
5455 vm_page_t result_page;
5456
5457 vm_page_t src_page;
5458 vm_page_t src_top_page;
5459 vm_prot_t src_prot;
5460
5461 vm_page_t dst_page;
5462 vm_page_t dst_top_page;
5463 vm_prot_t dst_prot;
5464
5465 vm_map_size_t amount_left;
5466 vm_object_t old_copy_object;
5467 kern_return_t error = 0;
5468 vm_fault_return_t result;
5469
5470 vm_map_size_t part_size;
5471 struct vm_object_fault_info fault_info_src;
5472 struct vm_object_fault_info fault_info_dst;
5473
5474 /*
5475 * In order not to confuse the clustered pageins, align
5476 * the different offsets on a page boundary.
5477 */
5478
5479 #define RETURN(x) \
5480 MACRO_BEGIN \
5481 *copy_size -= amount_left; \
5482 MACRO_RETURN(x); \
5483 MACRO_END
5484
5485 amount_left = *copy_size;
5486
5487 fault_info_src.interruptible = interruptible;
5488 fault_info_src.behavior = VM_BEHAVIOR_SEQUENTIAL;
5489 fault_info_src.user_tag = 0;
5490 fault_info_src.pmap_options = 0;
5491 fault_info_src.lo_offset = vm_object_trunc_page(src_offset);
5492 fault_info_src.hi_offset = fault_info_src.lo_offset + amount_left;
5493 fault_info_src.no_cache = FALSE;
5494 fault_info_src.stealth = TRUE;
5495 fault_info_src.io_sync = FALSE;
5496 fault_info_src.cs_bypass = FALSE;
5497 fault_info_src.mark_zf_absent = FALSE;
5498 fault_info_src.batch_pmap_op = FALSE;
5499
5500 fault_info_dst.interruptible = interruptible;
5501 fault_info_dst.behavior = VM_BEHAVIOR_SEQUENTIAL;
5502 fault_info_dst.user_tag = 0;
5503 fault_info_dst.pmap_options = 0;
5504 fault_info_dst.lo_offset = vm_object_trunc_page(dst_offset);
5505 fault_info_dst.hi_offset = fault_info_dst.lo_offset + amount_left;
5506 fault_info_dst.no_cache = FALSE;
5507 fault_info_dst.stealth = TRUE;
5508 fault_info_dst.io_sync = FALSE;
5509 fault_info_dst.cs_bypass = FALSE;
5510 fault_info_dst.mark_zf_absent = FALSE;
5511 fault_info_dst.batch_pmap_op = FALSE;
5512
5513 do { /* while (amount_left > 0) */
5514 /*
5515 * There may be a deadlock if both source and destination
5516 * pages are the same. To avoid this deadlock, the copy must
5517 * start by getting the destination page in order to apply
5518 * COW semantics if any.
5519 */
5520
5521 RetryDestinationFault: ;
5522
5523 dst_prot = VM_PROT_WRITE|VM_PROT_READ;
5524
5525 vm_object_lock(dst_object);
5526 vm_object_paging_begin(dst_object);
5527
5528 if (amount_left > (vm_size_t) -1) {
5529 /* 32-bit overflow */
5530 fault_info_dst.cluster_size = (vm_size_t) (0 - PAGE_SIZE);
5531 } else {
5532 fault_info_dst.cluster_size = (vm_size_t) amount_left;
5533 assert(fault_info_dst.cluster_size == amount_left);
5534 }
5535
5536 XPR(XPR_VM_FAULT,"vm_fault_copy -> vm_fault_page\n",0,0,0,0,0);
5537 dst_page = VM_PAGE_NULL;
5538 result = vm_fault_page(dst_object,
5539 vm_object_trunc_page(dst_offset),
5540 VM_PROT_WRITE|VM_PROT_READ,
5541 FALSE,
5542 FALSE, /* page not looked up */
5543 &dst_prot, &dst_page, &dst_top_page,
5544 (int *)0,
5545 &error,
5546 dst_map->no_zero_fill,
5547 FALSE, &fault_info_dst);
5548 switch (result) {
5549 case VM_FAULT_SUCCESS:
5550 break;
5551 case VM_FAULT_RETRY:
5552 goto RetryDestinationFault;
5553 case VM_FAULT_MEMORY_SHORTAGE:
5554 if (vm_page_wait(interruptible))
5555 goto RetryDestinationFault;
5556 /* fall thru */
5557 case VM_FAULT_INTERRUPTED:
5558 RETURN(MACH_SEND_INTERRUPTED);
5559 case VM_FAULT_SUCCESS_NO_VM_PAGE:
5560 /* success but no VM page: fail the copy */
5561 vm_object_paging_end(dst_object);
5562 vm_object_unlock(dst_object);
5563 /*FALLTHROUGH*/
5564 case VM_FAULT_MEMORY_ERROR:
5565 if (error)
5566 return (error);
5567 else
5568 return(KERN_MEMORY_ERROR);
5569 default:
5570 panic("vm_fault_copy: unexpected error 0x%x from "
5571 "vm_fault_page()\n", result);
5572 }
5573 assert ((dst_prot & VM_PROT_WRITE) != VM_PROT_NONE);
5574
5575 old_copy_object = dst_page->object->copy;
5576
5577 /*
5578 * There exists the possiblity that the source and
5579 * destination page are the same. But we can't
5580 * easily determine that now. If they are the
5581 * same, the call to vm_fault_page() for the
5582 * destination page will deadlock. To prevent this we
5583 * wire the page so we can drop busy without having
5584 * the page daemon steal the page. We clean up the
5585 * top page but keep the paging reference on the object
5586 * holding the dest page so it doesn't go away.
5587 */
5588
5589 vm_page_lockspin_queues();
5590 vm_page_wire(dst_page, VM_KERN_MEMORY_OSFMK, TRUE);
5591 vm_page_unlock_queues();
5592 PAGE_WAKEUP_DONE(dst_page);
5593 vm_object_unlock(dst_page->object);
5594
5595 if (dst_top_page != VM_PAGE_NULL) {
5596 vm_object_lock(dst_object);
5597 VM_PAGE_FREE(dst_top_page);
5598 vm_object_paging_end(dst_object);
5599 vm_object_unlock(dst_object);
5600 }
5601
5602 RetrySourceFault: ;
5603
5604 if (src_object == VM_OBJECT_NULL) {
5605 /*
5606 * No source object. We will just
5607 * zero-fill the page in dst_object.
5608 */
5609 src_page = VM_PAGE_NULL;
5610 result_page = VM_PAGE_NULL;
5611 } else {
5612 vm_object_lock(src_object);
5613 src_page = vm_page_lookup(src_object,
5614 vm_object_trunc_page(src_offset));
5615 if (src_page == dst_page) {
5616 src_prot = dst_prot;
5617 result_page = VM_PAGE_NULL;
5618 } else {
5619 src_prot = VM_PROT_READ;
5620 vm_object_paging_begin(src_object);
5621
5622 if (amount_left > (vm_size_t) -1) {
5623 /* 32-bit overflow */
5624 fault_info_src.cluster_size = (vm_size_t) (0 - PAGE_SIZE);
5625 } else {
5626 fault_info_src.cluster_size = (vm_size_t) amount_left;
5627 assert(fault_info_src.cluster_size == amount_left);
5628 }
5629
5630 XPR(XPR_VM_FAULT,
5631 "vm_fault_copy(2) -> vm_fault_page\n",
5632 0,0,0,0,0);
5633 result_page = VM_PAGE_NULL;
5634 result = vm_fault_page(
5635 src_object,
5636 vm_object_trunc_page(src_offset),
5637 VM_PROT_READ, FALSE,
5638 FALSE, /* page not looked up */
5639 &src_prot,
5640 &result_page, &src_top_page,
5641 (int *)0, &error, FALSE,
5642 FALSE, &fault_info_src);
5643
5644 switch (result) {
5645 case VM_FAULT_SUCCESS:
5646 break;
5647 case VM_FAULT_RETRY:
5648 goto RetrySourceFault;
5649 case VM_FAULT_MEMORY_SHORTAGE:
5650 if (vm_page_wait(interruptible))
5651 goto RetrySourceFault;
5652 /* fall thru */
5653 case VM_FAULT_INTERRUPTED:
5654 vm_fault_copy_dst_cleanup(dst_page);
5655 RETURN(MACH_SEND_INTERRUPTED);
5656 case VM_FAULT_SUCCESS_NO_VM_PAGE:
5657 /* success but no VM page: fail */
5658 vm_object_paging_end(src_object);
5659 vm_object_unlock(src_object);
5660 /*FALLTHROUGH*/
5661 case VM_FAULT_MEMORY_ERROR:
5662 vm_fault_copy_dst_cleanup(dst_page);
5663 if (error)
5664 return (error);
5665 else
5666 return(KERN_MEMORY_ERROR);
5667 default:
5668 panic("vm_fault_copy(2): unexpected "
5669 "error 0x%x from "
5670 "vm_fault_page()\n", result);
5671 }
5672
5673
5674 assert((src_top_page == VM_PAGE_NULL) ==
5675 (result_page->object == src_object));
5676 }
5677 assert ((src_prot & VM_PROT_READ) != VM_PROT_NONE);
5678 vm_object_unlock(result_page->object);
5679 }
5680
5681 if (!vm_map_verify(dst_map, dst_version)) {
5682 if (result_page != VM_PAGE_NULL && src_page != dst_page)
5683 vm_fault_copy_cleanup(result_page, src_top_page);
5684 vm_fault_copy_dst_cleanup(dst_page);
5685 break;
5686 }
5687
5688 vm_object_lock(dst_page->object);
5689
5690 if (dst_page->object->copy != old_copy_object) {
5691 vm_object_unlock(dst_page->object);
5692 vm_map_verify_done(dst_map, dst_version);
5693 if (result_page != VM_PAGE_NULL && src_page != dst_page)
5694 vm_fault_copy_cleanup(result_page, src_top_page);
5695 vm_fault_copy_dst_cleanup(dst_page);
5696 break;
5697 }
5698 vm_object_unlock(dst_page->object);
5699
5700 /*
5701 * Copy the page, and note that it is dirty
5702 * immediately.
5703 */
5704
5705 if (!page_aligned(src_offset) ||
5706 !page_aligned(dst_offset) ||
5707 !page_aligned(amount_left)) {
5708
5709 vm_object_offset_t src_po,
5710 dst_po;
5711
5712 src_po = src_offset - vm_object_trunc_page(src_offset);
5713 dst_po = dst_offset - vm_object_trunc_page(dst_offset);
5714
5715 if (dst_po > src_po) {
5716 part_size = PAGE_SIZE - dst_po;
5717 } else {
5718 part_size = PAGE_SIZE - src_po;
5719 }
5720 if (part_size > (amount_left)){
5721 part_size = amount_left;
5722 }
5723
5724 if (result_page == VM_PAGE_NULL) {
5725 assert((vm_offset_t) dst_po == dst_po);
5726 assert((vm_size_t) part_size == part_size);
5727 vm_page_part_zero_fill(dst_page,
5728 (vm_offset_t) dst_po,
5729 (vm_size_t) part_size);
5730 } else {
5731 assert((vm_offset_t) src_po == src_po);
5732 assert((vm_offset_t) dst_po == dst_po);
5733 assert((vm_size_t) part_size == part_size);
5734 vm_page_part_copy(result_page,
5735 (vm_offset_t) src_po,
5736 dst_page,
5737 (vm_offset_t) dst_po,
5738 (vm_size_t)part_size);
5739 if(!dst_page->dirty){
5740 vm_object_lock(dst_object);
5741 SET_PAGE_DIRTY(dst_page, TRUE);
5742 vm_object_unlock(dst_page->object);
5743 }
5744
5745 }
5746 } else {
5747 part_size = PAGE_SIZE;
5748
5749 if (result_page == VM_PAGE_NULL)
5750 vm_page_zero_fill(dst_page);
5751 else{
5752 vm_object_lock(result_page->object);
5753 vm_page_copy(result_page, dst_page);
5754 vm_object_unlock(result_page->object);
5755
5756 if(!dst_page->dirty){
5757 vm_object_lock(dst_object);
5758 SET_PAGE_DIRTY(dst_page, TRUE);
5759 vm_object_unlock(dst_page->object);
5760 }
5761 }
5762
5763 }
5764
5765 /*
5766 * Unlock everything, and return
5767 */
5768
5769 vm_map_verify_done(dst_map, dst_version);
5770
5771 if (result_page != VM_PAGE_NULL && src_page != dst_page)
5772 vm_fault_copy_cleanup(result_page, src_top_page);
5773 vm_fault_copy_dst_cleanup(dst_page);
5774
5775 amount_left -= part_size;
5776 src_offset += part_size;
5777 dst_offset += part_size;
5778 } while (amount_left > 0);
5779
5780 RETURN(KERN_SUCCESS);
5781 #undef RETURN
5782
5783 /*NOTREACHED*/
5784 }
5785
5786 #if VM_FAULT_CLASSIFY
5787 /*
5788 * Temporary statistics gathering support.
5789 */
5790
5791 /*
5792 * Statistics arrays:
5793 */
5794 #define VM_FAULT_TYPES_MAX 5
5795 #define VM_FAULT_LEVEL_MAX 8
5796
5797 int vm_fault_stats[VM_FAULT_TYPES_MAX][VM_FAULT_LEVEL_MAX];
5798
5799 #define VM_FAULT_TYPE_ZERO_FILL 0
5800 #define VM_FAULT_TYPE_MAP_IN 1
5801 #define VM_FAULT_TYPE_PAGER 2
5802 #define VM_FAULT_TYPE_COPY 3
5803 #define VM_FAULT_TYPE_OTHER 4
5804
5805
5806 void
5807 vm_fault_classify(vm_object_t object,
5808 vm_object_offset_t offset,
5809 vm_prot_t fault_type)
5810 {
5811 int type, level = 0;
5812 vm_page_t m;
5813
5814 while (TRUE) {
5815 m = vm_page_lookup(object, offset);
5816 if (m != VM_PAGE_NULL) {
5817 if (m->busy || m->error || m->restart || m->absent) {
5818 type = VM_FAULT_TYPE_OTHER;
5819 break;
5820 }
5821 if (((fault_type & VM_PROT_WRITE) == 0) ||
5822 ((level == 0) && object->copy == VM_OBJECT_NULL)) {
5823 type = VM_FAULT_TYPE_MAP_IN;
5824 break;
5825 }
5826 type = VM_FAULT_TYPE_COPY;
5827 break;
5828 }
5829 else {
5830 if (object->pager_created) {
5831 type = VM_FAULT_TYPE_PAGER;
5832 break;
5833 }
5834 if (object->shadow == VM_OBJECT_NULL) {
5835 type = VM_FAULT_TYPE_ZERO_FILL;
5836 break;
5837 }
5838
5839 offset += object->vo_shadow_offset;
5840 object = object->shadow;
5841 level++;
5842 continue;
5843 }
5844 }
5845
5846 if (level > VM_FAULT_LEVEL_MAX)
5847 level = VM_FAULT_LEVEL_MAX;
5848
5849 vm_fault_stats[type][level] += 1;
5850
5851 return;
5852 }
5853
5854 /* cleanup routine to call from debugger */
5855
5856 void
5857 vm_fault_classify_init(void)
5858 {
5859 int type, level;
5860
5861 for (type = 0; type < VM_FAULT_TYPES_MAX; type++) {
5862 for (level = 0; level < VM_FAULT_LEVEL_MAX; level++) {
5863 vm_fault_stats[type][level] = 0;
5864 }
5865 }
5866
5867 return;
5868 }
5869 #endif /* VM_FAULT_CLASSIFY */
5870
5871 vm_offset_t
5872 kdp_lightweight_fault(vm_map_t map, vm_offset_t cur_target_addr, uint32_t *fault_results)
5873 {
5874 #pragma unused(map, cur_target_addr, fault_results)
5875
5876 return 0;
5877 #if 0
5878 vm_map_entry_t entry;
5879 vm_object_t object;
5880 vm_offset_t object_offset;
5881 vm_page_t m;
5882 int compressor_external_state, compressed_count_delta;
5883 int compressor_flags = (C_DONT_BLOCK | C_KEEP | C_KDP);
5884 int my_fault_type = VM_PROT_READ;
5885 kern_return_t kr;
5886
5887
5888 if (not_in_kdp) {
5889 panic("kdp_lightweight_fault called from outside of debugger context");
5890 }
5891
5892 assert(map != VM_MAP_NULL);
5893
5894 assert((cur_target_addr & PAGE_MASK) == 0);
5895 if ((cur_target_addr & PAGE_MASK) != 0) {
5896 return 0;
5897 }
5898
5899 if (kdp_lck_rw_lock_is_acquired_exclusive(&map->lock)) {
5900 return 0;
5901 }
5902
5903 if (!vm_map_lookup_entry(map, cur_target_addr, &entry)) {
5904 return 0;
5905 }
5906
5907 if (entry->is_sub_map) {
5908 return 0;
5909 }
5910
5911 object = VME_OBJECT(entry);
5912 if (object == VM_OBJECT_NULL) {
5913 return 0;
5914 }
5915
5916 object_offset = cur_target_addr - entry->vme_start + VME_OFFSET(entry);
5917
5918 while (TRUE) {
5919 if (kdp_lck_rw_lock_is_acquired_exclusive(&object->Lock)) {
5920 return 0;
5921 }
5922
5923 if (object->pager_created && (object->paging_in_progress ||
5924 object->activity_in_progress)) {
5925 return 0;
5926 }
5927
5928 m = kdp_vm_page_lookup(object, object_offset);
5929
5930 if (m != VM_PAGE_NULL) {
5931
5932 if ((object->wimg_bits & VM_WIMG_MASK) != VM_WIMG_DEFAULT) {
5933 return 0;
5934 }
5935
5936 if (m->laundry || m->busy || m->pageout || m->absent || m->error || m->cleaning ||
5937 m->overwriting || m->restart || m->unusual) {
5938 return 0;
5939 }
5940
5941 assert(!m->private);
5942 if (m->private) {
5943 return 0;
5944 }
5945
5946 assert(!m->fictitious);
5947 if (m->fictitious) {
5948 return 0;
5949 }
5950
5951 assert(!m->encrypted);
5952 if (m->encrypted) {
5953 return 0;
5954 }
5955
5956 assert(!m->encrypted_cleaning);
5957 if (m->encrypted_cleaning) {
5958 return 0;
5959 }
5960
5961 assert(!m->compressor);
5962 if (m->compressor) {
5963 return 0;
5964 }
5965
5966 if (fault_results) {
5967 *fault_results |= kThreadFaultedBT;
5968 }
5969 return ptoa(m->phys_page);
5970 }
5971
5972 compressor_external_state = VM_EXTERNAL_STATE_UNKNOWN;
5973
5974 if (object->pager_created && MUST_ASK_PAGER(object, object_offset, compressor_external_state)) {
5975 if (compressor_external_state == VM_EXTERNAL_STATE_EXISTS) {
5976 kr = vm_compressor_pager_get(object->pager, (object_offset + object->paging_offset),
5977 kdp_compressor_decompressed_page_ppnum, &my_fault_type,
5978 compressor_flags, &compressed_count_delta);
5979 if (kr == KERN_SUCCESS) {
5980 if (fault_results) {
5981 *fault_results |= kThreadDecompressedBT;
5982 }
5983 return kdp_compressor_decompressed_page_paddr;
5984 } else {
5985 return 0;
5986 }
5987 }
5988 }
5989
5990 if (object->shadow == VM_OBJECT_NULL) {
5991 return 0;
5992 }
5993
5994 object_offset += object->vo_shadow_offset;
5995 object = object->shadow;
5996 }
5997 #endif /* 0 */
5998 }
5999
6000
6001 #define CODE_SIGNING_CHUNK_SIZE 4096
6002 void
6003 vm_page_validate_cs_mapped(
6004 vm_page_t page,
6005 const void *kaddr)
6006 {
6007 vm_object_t object;
6008 vm_object_offset_t offset, offset_in_page;
6009 kern_return_t kr;
6010 memory_object_t pager;
6011 void *blobs;
6012 boolean_t validated;
6013 unsigned tainted;
6014 int num_chunks, num_chunks_validated;
6015
6016 assert(page->busy);
6017 vm_object_lock_assert_exclusive(page->object);
6018
6019 if (page->wpmapped && !page->cs_tainted) {
6020 /*
6021 * This page was mapped for "write" access sometime in the
6022 * past and could still be modifiable in the future.
6023 * Consider it tainted.
6024 * [ If the page was already found to be "tainted", no
6025 * need to re-validate. ]
6026 */
6027 page->cs_validated = TRUE;
6028 page->cs_tainted = TRUE;
6029 if (cs_debug) {
6030 printf("CODESIGNING: vm_page_validate_cs: "
6031 "page %p obj %p off 0x%llx "
6032 "was modified\n",
6033 page, page->object, page->offset);
6034 }
6035 vm_cs_validated_dirtied++;
6036 }
6037
6038 if (page->cs_validated || page->cs_tainted) {
6039 return;
6040 }
6041
6042 vm_cs_validates++;
6043
6044 object = page->object;
6045 assert(object->code_signed);
6046 offset = page->offset;
6047
6048 if (!object->alive || object->terminating || object->pager == NULL) {
6049 /*
6050 * The object is terminating and we don't have its pager
6051 * so we can't validate the data...
6052 */
6053 return;
6054 }
6055 /*
6056 * Since we get here to validate a page that was brought in by
6057 * the pager, we know that this pager is all setup and ready
6058 * by now.
6059 */
6060 assert(!object->internal);
6061 assert(object->pager != NULL);
6062 assert(object->pager_ready);
6063
6064 pager = object->pager;
6065 assert(object->paging_in_progress);
6066 kr = vnode_pager_get_object_cs_blobs(pager, &blobs);
6067 if (kr != KERN_SUCCESS) {
6068 blobs = NULL;
6069 }
6070
6071 /* verify the SHA1 hash for this page */
6072 num_chunks_validated = 0;
6073 for (offset_in_page = 0, num_chunks = 0;
6074 offset_in_page < PAGE_SIZE_64;
6075 offset_in_page += CODE_SIGNING_CHUNK_SIZE, num_chunks++) {
6076 tainted = 0;
6077 validated = cs_validate_page(blobs,
6078 pager,
6079 (object->paging_offset +
6080 offset +
6081 offset_in_page),
6082 (const void *)((const char *)kaddr
6083 + offset_in_page),
6084 &tainted);
6085 if (validated) {
6086 num_chunks_validated++;
6087 }
6088 if (tainted & CS_VALIDATE_TAINTED) {
6089 page->cs_tainted = TRUE;
6090 }
6091 if (tainted & CS_VALIDATE_NX) {
6092 page->cs_nx = TRUE;
6093 }
6094 }
6095 /* page is validated only if all its chunks are */
6096 if (num_chunks_validated == num_chunks) {
6097 page->cs_validated = TRUE;
6098 }
6099 }
6100
6101 void
6102 vm_page_validate_cs(
6103 vm_page_t page)
6104 {
6105 vm_object_t object;
6106 vm_object_offset_t offset;
6107 vm_map_offset_t koffset;
6108 vm_map_size_t ksize;
6109 vm_offset_t kaddr;
6110 kern_return_t kr;
6111 boolean_t busy_page;
6112 boolean_t need_unmap;
6113
6114 vm_object_lock_assert_held(page->object);
6115
6116 if (page->wpmapped && !page->cs_tainted) {
6117 vm_object_lock_assert_exclusive(page->object);
6118
6119 /*
6120 * This page was mapped for "write" access sometime in the
6121 * past and could still be modifiable in the future.
6122 * Consider it tainted.
6123 * [ If the page was already found to be "tainted", no
6124 * need to re-validate. ]
6125 */
6126 page->cs_validated = TRUE;
6127 page->cs_tainted = TRUE;
6128 if (cs_debug) {
6129 printf("CODESIGNING: vm_page_validate_cs: "
6130 "page %p obj %p off 0x%llx "
6131 "was modified\n",
6132 page, page->object, page->offset);
6133 }
6134 vm_cs_validated_dirtied++;
6135 }
6136
6137 if (page->cs_validated || page->cs_tainted) {
6138 return;
6139 }
6140
6141 if (page->slid) {
6142 panic("vm_page_validate_cs(%p): page is slid\n", page);
6143 }
6144 assert(!page->slid);
6145
6146 #if CHECK_CS_VALIDATION_BITMAP
6147 if ( vnode_pager_cs_check_validation_bitmap( page->object->pager, trunc_page(page->offset + page->object->paging_offset), CS_BITMAP_CHECK ) == KERN_SUCCESS) {
6148 page->cs_validated = TRUE;
6149 page->cs_tainted = FALSE;
6150 vm_cs_bitmap_validated++;
6151 return;
6152 }
6153 #endif
6154 vm_object_lock_assert_exclusive(page->object);
6155
6156 object = page->object;
6157 assert(object->code_signed);
6158 offset = page->offset;
6159
6160 busy_page = page->busy;
6161 if (!busy_page) {
6162 /* keep page busy while we map (and unlock) the VM object */
6163 page->busy = TRUE;
6164 }
6165
6166 /*
6167 * Take a paging reference on the VM object
6168 * to protect it from collapse or bypass,
6169 * and keep it from disappearing too.
6170 */
6171 vm_object_paging_begin(object);
6172
6173 /* map the page in the kernel address space */
6174 ksize = PAGE_SIZE_64;
6175 koffset = 0;
6176 need_unmap = FALSE;
6177 kr = vm_paging_map_object(page,
6178 object,
6179 offset,
6180 VM_PROT_READ,
6181 FALSE, /* can't unlock object ! */
6182 &ksize,
6183 &koffset,
6184 &need_unmap);
6185 if (kr != KERN_SUCCESS) {
6186 panic("vm_page_validate_cs: could not map page: 0x%x\n", kr);
6187 }
6188 kaddr = CAST_DOWN(vm_offset_t, koffset);
6189
6190 /* validate the mapped page */
6191 vm_page_validate_cs_mapped(page, (const void *) kaddr);
6192
6193 #if CHECK_CS_VALIDATION_BITMAP
6194 if ( page->cs_validated == TRUE && page->cs_tainted == FALSE ) {
6195 vnode_pager_cs_check_validation_bitmap( object->pager, trunc_page( offset + object->paging_offset), CS_BITMAP_SET );
6196 }
6197 #endif
6198 assert(page->busy);
6199 assert(object == page->object);
6200 vm_object_lock_assert_exclusive(object);
6201
6202 if (!busy_page) {
6203 PAGE_WAKEUP_DONE(page);
6204 }
6205 if (need_unmap) {
6206 /* unmap the map from the kernel address space */
6207 vm_paging_unmap_object(object, koffset, koffset + ksize);
6208 koffset = 0;
6209 ksize = 0;
6210 kaddr = 0;
6211 }
6212 vm_object_paging_end(object);
6213 }
6214
6215 void
6216 vm_page_validate_cs_mapped_chunk(
6217 vm_page_t page,
6218 const void *kaddr,
6219 vm_offset_t chunk_offset,
6220 boolean_t *validated_p,
6221 unsigned *tainted_p)
6222 {
6223 vm_object_t object;
6224 vm_object_offset_t offset, offset_in_page;
6225 kern_return_t kr;
6226 memory_object_t pager;
6227 void *blobs;
6228 boolean_t validated;
6229 unsigned tainted;
6230
6231 *validated_p = FALSE;
6232 *tainted_p = 0;
6233
6234 assert(page->busy);
6235 vm_object_lock_assert_exclusive(page->object);
6236
6237 object = page->object;
6238 assert(object->code_signed);
6239 offset = page->offset;
6240
6241 if (!object->alive || object->terminating || object->pager == NULL) {
6242 /*
6243 * The object is terminating and we don't have its pager
6244 * so we can't validate the data...
6245 */
6246 return;
6247 }
6248 /*
6249 * Since we get here to validate a page that was brought in by
6250 * the pager, we know that this pager is all setup and ready
6251 * by now.
6252 */
6253 assert(!object->internal);
6254 assert(object->pager != NULL);
6255 assert(object->pager_ready);
6256
6257 pager = object->pager;
6258 assert(object->paging_in_progress);
6259 kr = vnode_pager_get_object_cs_blobs(pager, &blobs);
6260 if (kr != KERN_SUCCESS) {
6261 blobs = NULL;
6262 }
6263
6264 /* verify the signature for this chunk */
6265 offset_in_page = chunk_offset;
6266 assert(offset_in_page < PAGE_SIZE);
6267 assert((offset_in_page & (CODE_SIGNING_CHUNK_SIZE-1)) == 0);
6268
6269 tainted = 0;
6270 validated = cs_validate_page(blobs,
6271 pager,
6272 (object->paging_offset +
6273 offset +
6274 offset_in_page),
6275 (const void *)((const char *)kaddr
6276 + offset_in_page),
6277 &tainted);
6278 if (validated) {
6279 *validated_p = TRUE;
6280 }
6281 if (tainted) {
6282 *tainted_p = tainted;
6283 }
6284 }