]> git.saurik.com Git - apple/xnu.git/blob - bsd/crypto/aes/gen/aesopt.h
xnu-1699.26.8.tar.gz
[apple/xnu.git] / bsd / crypto / aes / gen / aesopt.h
1 /*
2 ---------------------------------------------------------------------------
3 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
4
5 LICENSE TERMS
6
7 The free distribution and use of this software in both source and binary
8 form is allowed (with or without changes) provided that:
9
10 1. distributions of this source code include the above copyright
11 notice, this list of conditions and the following disclaimer;
12
13 2. distributions in binary form include the above copyright
14 notice, this list of conditions and the following disclaimer
15 in the documentation and/or other associated materials;
16
17 3. the copyright holder's name is not used to endorse products
18 built using this software without specific written permission.
19
20 ALTERNATIVELY, provided that this notice is retained in full, this product
21 may be distributed under the terms of the GNU General Public License (GPL),
22 in which case the provisions of the GPL apply INSTEAD OF those given above.
23
24 DISCLAIMER
25
26 This software is provided 'as is' with no explicit or implied warranties
27 in respect of its properties, including, but not limited to, correctness
28 and/or fitness for purpose.
29 ---------------------------------------------------------------------------
30 Issue 28/01/2004
31
32 My thanks go to Dag Arne Osvik for devising the schemes used here for key
33 length derivation from the form of the key schedule
34
35 This file contains the compilation options for AES (Rijndael) and code
36 that is common across encryption, key scheduling and table generation.
37
38 OPERATION
39
40 These source code files implement the AES algorithm Rijndael designed by
41 Joan Daemen and Vincent Rijmen. This version is designed for the standard
42 block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
43 and 32 bytes).
44
45 This version is designed for flexibility and speed using operations on
46 32-bit words rather than operations on bytes. It can be compiled with
47 either big or little endian internal byte order but is faster when the
48 native byte order for the processor is used.
49
50 THE CIPHER INTERFACE
51
52 The cipher interface is implemented as an array of bytes in which lower
53 AES bit sequence indexes map to higher numeric significance within bytes.
54
55 aes_08t (an unsigned 8-bit type)
56 aes_32t (an unsigned 32-bit type)
57 struct aes_encrypt_ctx (structure for the cipher encryption context)
58 struct aes_decrypt_ctx (structure for the cipher decryption context)
59 aes_rval the function return type
60
61 C subroutine calls:
62
63 aes_rval aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]);
64 aes_rval aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]);
65 aes_rval aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]);
66 aes_rval aes_encrypt(const unsigned char *in, unsigned char *out,
67 const aes_encrypt_ctx cx[1]);
68
69 aes_rval aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]);
70 aes_rval aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]);
71 aes_rval aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]);
72 aes_rval aes_decrypt(const unsigned char *in, unsigned char *out,
73 const aes_decrypt_ctx cx[1]);
74
75 IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that
76 you call genTabs() before AES is used so that the tables are initialised.
77
78 C++ aes class subroutines:
79
80 Class AESencrypt for encryption
81
82 Construtors:
83 AESencrypt(void)
84 AESencrypt(const unsigned char *key) - 128 bit key
85 Members:
86 aes_rval key128(const unsigned char *key)
87 aes_rval key192(const unsigned char *key)
88 aes_rval key256(const unsigned char *key)
89 aes_rval encrypt(const unsigned char *in, unsigned char *out) const
90
91 Class AESdecrypt for encryption
92 Construtors:
93 AESdecrypt(void)
94 AESdecrypt(const unsigned char *key) - 128 bit key
95 Members:
96 aes_rval key128(const unsigned char *key)
97 aes_rval key192(const unsigned char *key)
98 aes_rval key256(const unsigned char *key)
99 aes_rval decrypt(const unsigned char *in, unsigned char *out) const
100
101 COMPILATION
102
103 The files used to provide AES (Rijndael) are
104
105 a. aes.h for the definitions needed for use in C.
106 b. aescpp.h for the definitions needed for use in C++.
107 c. aesopt.h for setting compilation options (also includes common code).
108 d. aescrypt.c for encryption and decrytpion, or
109 e. aeskey.c for key scheduling.
110 f. aestab.c for table loading or generation.
111 g. aescrypt.asm for encryption and decryption using assembler code.
112 h. aescrypt.mmx.asm for encryption and decryption using MMX assembler.
113
114 To compile AES (Rijndael) for use in C code use aes.h and set the
115 defines here for the facilities you need (key lengths, encryption
116 and/or decryption). Do not define AES_DLL or AES_CPP. Set the options
117 for optimisations and table sizes here.
118
119 To compile AES (Rijndael) for use in in C++ code use aescpp.h but do
120 not define AES_DLL
121
122 To compile AES (Rijndael) in C as a Dynamic Link Library DLL) use
123 aes.h and include the AES_DLL define.
124
125 CONFIGURATION OPTIONS (here and in aes.h)
126
127 a. set AES_DLL in aes.h if AES (Rijndael) is to be compiled as a DLL
128 b. You may need to set PLATFORM_BYTE_ORDER to define the byte order.
129 c. If you want the code to run in a specific internal byte order, then
130 ALGORITHM_BYTE_ORDER must be set accordingly.
131 d. set other configuration options decribed below.
132 */
133
134 #if !defined( _AESOPT_H )
135 #define _AESOPT_H
136
137 #include <crypto/aes/aes.h>
138
139 /* CONFIGURATION - USE OF DEFINES
140
141 Later in this section there are a number of defines that control the
142 operation of the code. In each section, the purpose of each define is
143 explained so that the relevant form can be included or excluded by
144 setting either 1's or 0's respectively on the branches of the related
145 #if clauses.
146
147 PLATFORM SPECIFIC INCLUDES AND BYTE ORDER IN 32-BIT WORDS
148
149 To obtain the highest speed on processors with 32-bit words, this code
150 needs to determine the byte order of the target machine. The following
151 block of code is an attempt to capture the most obvious ways in which
152 various environemnts define byte order. It may well fail, in which case
153 the definitions will need to be set by editing at the points marked
154 **** EDIT HERE IF NECESSARY **** below. My thanks go to Peter Gutmann
155 for his assistance with this endian detection nightmare.
156 */
157
158 #define BRG_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
159 #define BRG_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
160
161 #if defined(__GNUC__) || defined(__GNU_LIBRARY__)
162 # if defined(__FreeBSD__) || defined(__OpenBSD__)
163 # include <sys/endian.h>
164 # elif defined( BSD ) && BSD >= 199103
165 # include <machine/endian.h>
166 # elif defined(__APPLE__)
167 # if defined(__BIG_ENDIAN__) && !defined( BIG_ENDIAN )
168 # define BIG_ENDIAN
169 # elif defined(__LITTLE_ENDIAN__) && !defined( LITTLE_ENDIAN )
170 # define LITTLE_ENDIAN
171 # endif
172 # else
173 # include <endian.h>
174 # if defined(__BEOS__)
175 # include <byteswap.h>
176 # endif
177 # endif
178 #endif
179
180 #if !defined(PLATFORM_BYTE_ORDER)
181 # if defined(LITTLE_ENDIAN) || defined(BIG_ENDIAN)
182 # if defined(LITTLE_ENDIAN) && !defined(BIG_ENDIAN)
183 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
184 # elif !defined(LITTLE_ENDIAN) && defined(BIG_ENDIAN)
185 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
186 # elif defined(BYTE_ORDER) && (BYTE_ORDER == LITTLE_ENDIAN)
187 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
188 # elif defined(BYTE_ORDER) && (BYTE_ORDER == BIG_ENDIAN)
189 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
190 # endif
191 # elif defined(_LITTLE_ENDIAN) || defined(_BIG_ENDIAN)
192 # if defined(_LITTLE_ENDIAN) && !defined(_BIG_ENDIAN)
193 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
194 # elif !defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN)
195 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
196 # elif defined(_BYTE_ORDER) && (_BYTE_ORDER == _LITTLE_ENDIAN)
197 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
198 # elif defined(_BYTE_ORDER) && (_BYTE_ORDER == _BIG_ENDIAN)
199 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
200 # endif
201 # elif defined(__LITTLE_ENDIAN__) || defined(__BIG_ENDIAN__)
202 # if defined(__LITTLE_ENDIAN__) && !defined(__BIG_ENDIAN__)
203 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
204 # elif !defined(__LITTLE_ENDIAN__) && defined(__BIG_ENDIAN__)
205 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
206 # elif defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __LITTLE_ENDIAN__)
207 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
208 # elif defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __BIG_ENDIAN__)
209 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
210 # endif
211 # endif
212 #endif
213
214 /* if the platform is still unknown, try to find its byte order */
215 /* from commonly used machine defines */
216
217 #if !defined(PLATFORM_BYTE_ORDER)
218
219 #if defined( __alpha__ ) || defined( __alpha ) || defined( i386 ) || \
220 defined( __i386__ ) || defined( _M_I86 ) || defined( _M_IX86 ) || \
221 defined( __OS2__ ) || defined( sun386 ) || defined( __TURBOC__ ) || \
222 defined( vax ) || defined( vms ) || defined( VMS ) || \
223 defined( __VMS )
224 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
225
226 #elif defined( AMIGA ) || defined( applec ) || defined( __AS400__ ) || \
227 defined( _CRAY ) || defined( __hppa ) || defined( __hp9000 ) || \
228 defined( ibm370 ) || defined( mc68000 ) || defined( m68k ) || \
229 defined( __MRC__ ) || defined( __MVS__ ) || defined( __MWERKS__ ) || \
230 defined( sparc ) || defined( __sparc) || defined( SYMANTEC_C ) || \
231 defined( __TANDEM ) || defined( THINK_C ) || defined( __VMCMS__ )
232 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
233
234 #elif 0 /* **** EDIT HERE IF NECESSARY **** */
235 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
236 #elif 0 /* **** EDIT HERE IF NECESSARY **** */
237 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
238 #else
239 # error Please edit aesopt.h (line 234 or 236) to set the platform byte order
240 #endif
241
242 #endif
243
244 /* SOME LOCAL DEFINITIONS */
245
246 #define NO_TABLES 0
247 #define ONE_TABLE 1
248 #define FOUR_TABLES 4
249 #define NONE 0
250 #define PARTIAL 1
251 #define FULL 2
252
253 #if defined(bswap32)
254 #define aes_sw32 bswap32
255 #elif defined(bswap_32)
256 #define aes_sw32 bswap_32
257 #else
258 #define brot(x,n) (((aes_32t)(x) << n) | ((aes_32t)(x) >> (32 - n)))
259 #define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00))
260 #endif
261
262 /* 1. FUNCTIONS REQUIRED
263
264 This implementation provides subroutines for encryption, decryption
265 and for setting the three key lengths (separately) for encryption
266 and decryption. When the assembler code is not being used the following
267 definition blocks allow the selection of the routines that are to be
268 included in the compilation.
269 */
270 #if defined( AES_ENCRYPT )
271 #define ENCRYPTION
272 #define ENCRYPTION_KEY_SCHEDULE
273 #endif
274
275 #if defined( AES_DECRYPT )
276 #define DECRYPTION
277 #define DECRYPTION_KEY_SCHEDULE
278 #endif
279
280 /* 2. ASSEMBLER SUPPORT
281
282 This define (which can be on the command line) enables the use of the
283 assembler code routines for encryption and decryption with the C code
284 only providing key scheduling
285 */
286
287 /* 3. BYTE ORDER WITHIN 32 BIT WORDS
288
289 The fundamental data processing units in Rijndael are 8-bit bytes. The
290 input, output and key input are all enumerated arrays of bytes in which
291 bytes are numbered starting at zero and increasing to one less than the
292 number of bytes in the array in question. This enumeration is only used
293 for naming bytes and does not imply any adjacency or order relationship
294 from one byte to another. When these inputs and outputs are considered
295 as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
296 byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
297 In this implementation bits are numbered from 0 to 7 starting at the
298 numerically least significant end of each byte (bit n represents 2^n).
299
300 However, Rijndael can be implemented more efficiently using 32-bit
301 words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
302 into word[n]. While in principle these bytes can be assembled into words
303 in any positions, this implementation only supports the two formats in
304 which bytes in adjacent positions within words also have adjacent byte
305 numbers. This order is called big-endian if the lowest numbered bytes
306 in words have the highest numeric significance and little-endian if the
307 opposite applies.
308
309 This code can work in either order irrespective of the order used by the
310 machine on which it runs. Normally the internal byte order will be set
311 to the order of the processor on which the code is to be run but this
312 define can be used to reverse this in special situations
313
314 NOTE: Assembler code versions rely on PLATFORM_BYTE_ORDER being set
315 */
316 #define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
317
318 /* 4. FAST INPUT/OUTPUT OPERATIONS.
319
320 On some machines it is possible to improve speed by transferring the
321 bytes in the input and output arrays to and from the internal 32-bit
322 variables by addressing these arrays as if they are arrays of 32-bit
323 words. On some machines this will always be possible but there may
324 be a large performance penalty if the byte arrays are not aligned on
325 the normal word boundaries. On other machines this technique will
326 lead to memory access errors when such 32-bit word accesses are not
327 properly aligned. The option SAFE_IO avoids such problems but will
328 often be slower on those machines that support misaligned access
329 (especially so if care is taken to align the input and output byte
330 arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
331 assumed that access to byte arrays as if they are arrays of 32-bit
332 words will not cause problems when such accesses are misaligned.
333 */
334
335 /* 5. LOOP UNROLLING
336
337 The code for encryption and decrytpion cycles through a number of rounds
338 that can be implemented either in a loop or by expanding the code into a
339 long sequence of instructions, the latter producing a larger program but
340 one that will often be much faster. The latter is called loop unrolling.
341 There are also potential speed advantages in expanding two iterations in
342 a loop with half the number of iterations, which is called partial loop
343 unrolling. The following options allow partial or full loop unrolling
344 to be set independently for encryption and decryption
345 */
346 #if 1
347 #define ENC_UNROLL FULL
348 #elif 0
349 #define ENC_UNROLL PARTIAL
350 #else
351 #define ENC_UNROLL NONE
352 #endif
353
354 #if 1
355 #define DEC_UNROLL FULL
356 #elif 0
357 #define DEC_UNROLL PARTIAL
358 #else
359 #define DEC_UNROLL NONE
360 #endif
361
362 /* 6. FAST FINITE FIELD OPERATIONS
363
364 If this section is included, tables are used to provide faster finite
365 field arithmetic (this has no effect if FIXED_TABLES is defined).
366 */
367 #if 1
368 #define FF_TABLES
369 #endif
370
371 /* 7. INTERNAL STATE VARIABLE FORMAT
372
373 The internal state of Rijndael is stored in a number of local 32-bit
374 word varaibles which can be defined either as an array or as individual
375 names variables. Include this section if you want to store these local
376 varaibles in arrays. Otherwise individual local variables will be used.
377 */
378 #if 0
379 #define ARRAYS
380 #endif
381
382 /* In this implementation the columns of the state array are each held in
383 32-bit words. The state array can be held in various ways: in an array
384 of words, in a number of individual word variables or in a number of
385 processor registers. The following define maps a variable name x and
386 a column number c to the way the state array variable is to be held.
387 The first define below maps the state into an array x[c] whereas the
388 second form maps the state into a number of individual variables x0,
389 x1, etc. Another form could map individual state colums to machine
390 register names.
391 */
392
393 #if defined(ARRAYS)
394 #define s(x,c) x[c]
395 #else
396 #define s(x,c) x##c
397 #endif
398
399 /* 8. FIXED OR DYNAMIC TABLES
400
401 When this section is included the tables used by the code are compiled
402 statically into the binary file. Otherwise the subroutine gen_tabs()
403 must be called to compute them before the code is first used.
404 */
405 #if 1
406 #define FIXED_TABLES
407 #endif
408
409 /* 9. TABLE ALIGNMENT
410
411 On some sytsems speed will be improved by aligning the AES large lookup
412 tables on particular boundaries. This define should be set to a power of
413 two giving the desired alignment. It can be left undefined if alignment
414 is not needed. This option is specific to the Microsft VC++ compiler -
415 it seems to sometimes cause trouble for the VC++ version 6 compiler.
416 */
417
418
419 /* 10. INTERNAL TABLE CONFIGURATION
420
421 This cipher proceeds by repeating in a number of cycles known as 'rounds'
422 which are implemented by a round function which can optionally be speeded
423 up using tables. The basic tables are each 256 32-bit words, with either
424 one or four tables being required for each round function depending on
425 how much speed is required. The encryption and decryption round functions
426 are different and the last encryption and decrytpion round functions are
427 different again making four different round functions in all.
428
429 This means that:
430 1. Normal encryption and decryption rounds can each use either 0, 1
431 or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
432 2. The last encryption and decryption rounds can also use either 0, 1
433 or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
434
435 Include or exclude the appropriate definitions below to set the number
436 of tables used by this implementation.
437 */
438
439 #if 1 /* set tables for the normal encryption round */
440 #define ENC_ROUND FOUR_TABLES
441 #elif 0
442 #define ENC_ROUND ONE_TABLE
443 #else
444 #define ENC_ROUND NO_TABLES
445 #endif
446
447 #if 1 /* set tables for the last encryption round */
448 #define LAST_ENC_ROUND FOUR_TABLES
449 #elif 0
450 #define LAST_ENC_ROUND ONE_TABLE
451 #else
452 #define LAST_ENC_ROUND NO_TABLES
453 #endif
454
455 #if 1 /* set tables for the normal decryption round */
456 #define DEC_ROUND FOUR_TABLES
457 #elif 0
458 #define DEC_ROUND ONE_TABLE
459 #else
460 #define DEC_ROUND NO_TABLES
461 #endif
462
463 #if 1 /* set tables for the last decryption round */
464 #define LAST_DEC_ROUND FOUR_TABLES
465 #elif 0
466 #define LAST_DEC_ROUND ONE_TABLE
467 #else
468 #define LAST_DEC_ROUND NO_TABLES
469 #endif
470
471 /* The decryption key schedule can be speeded up with tables in the same
472 way that the round functions can. Include or exclude the following
473 defines to set this requirement.
474 */
475 #if 1
476 #define KEY_SCHED FOUR_TABLES
477 #elif 0
478 #define KEY_SCHED ONE_TABLE
479 #else
480 #define KEY_SCHED NO_TABLES
481 #endif
482
483 /* 11. TABLE POINTER CACHING
484
485 Normally tables are referenced directly, Enable this option if you wish to
486 cache pointers to the tables in the encrypt/decrypt code. Note that this
487 only works if you are using FOUR_TABLES for the ROUND you enable this for.
488 */
489 #if 1
490 #define ENC_ROUND_CACHE_TABLES
491 #endif
492 #if 1
493 #define LAST_ENC_ROUND_CACHE_TABLES
494 #endif
495 #if 1
496 #define DEC_ROUND_CACHE_TABLES
497 #endif
498 #if 1
499 #define LAST_DEC_ROUND_CACHE_TABLES
500 #endif
501
502
503 /* END OF CONFIGURATION OPTIONS */
504
505 #define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2))
506
507 /* Disable or report errors on some combinations of options */
508
509 #if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
510 #undef LAST_ENC_ROUND
511 #define LAST_ENC_ROUND NO_TABLES
512 #elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
513 #undef LAST_ENC_ROUND
514 #define LAST_ENC_ROUND ONE_TABLE
515 #endif
516
517 #if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
518 #undef ENC_UNROLL
519 #define ENC_UNROLL NONE
520 #endif
521
522 #if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
523 #undef LAST_DEC_ROUND
524 #define LAST_DEC_ROUND NO_TABLES
525 #elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
526 #undef LAST_DEC_ROUND
527 #define LAST_DEC_ROUND ONE_TABLE
528 #endif
529
530 #if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
531 #undef DEC_UNROLL
532 #define DEC_UNROLL NONE
533 #endif
534
535 /* upr(x,n): rotates bytes within words by n positions, moving bytes to
536 higher index positions with wrap around into low positions
537 ups(x,n): moves bytes by n positions to higher index positions in
538 words but without wrap around
539 bval(x,n): extracts a byte from a word
540
541 NOTE: The definitions given here are intended only for use with
542 unsigned variables and with shift counts that are compile
543 time constants
544 */
545
546 #if (ALGORITHM_BYTE_ORDER == BRG_LITTLE_ENDIAN)
547 #define upr(x,n) (((aes_32t)(x) << (8 * (n))) | ((aes_32t)(x) >> (32 - 8 * (n))))
548 #define ups(x,n) ((aes_32t) (x) << (8 * (n)))
549 #define bval(x,n) ((aes_08t)((x) >> (8 * (n))))
550 #define bytes2word(b0, b1, b2, b3) \
551 (((aes_32t)(b3) << 24) | ((aes_32t)(b2) << 16) | ((aes_32t)(b1) << 8) | (b0))
552 #endif
553
554 #if (ALGORITHM_BYTE_ORDER == BRG_BIG_ENDIAN)
555 #define upr(x,n) (((aes_32t)(x) >> (8 * (n))) | ((aes_32t)(x) << (32 - 8 * (n))))
556 #define ups(x,n) ((aes_32t) (x) >> (8 * (n))))
557 #define bval(x,n) ((aes_08t)((x) >> (24 - 8 * (n))))
558 #define bytes2word(b0, b1, b2, b3) \
559 (((aes_32t)(b0) << 24) | ((aes_32t)(b1) << 16) | ((aes_32t)(b2) << 8) | (b3))
560 #endif
561
562 #if defined(SAFE_IO)
563
564 #define word_in(x,c) bytes2word(((aes_08t*)(x)+4*c)[0], ((aes_08t*)(x)+4*c)[1], \
565 ((aes_08t*)(x)+4*c)[2], ((aes_08t*)(x)+4*c)[3])
566 #define word_out(x,c,v) { ((aes_08t*)(x)+4*c)[0] = bval(v,0); ((aes_08t*)(x)+4*c)[1] = bval(v,1); \
567 ((aes_08t*)(x)+4*c)[2] = bval(v,2); ((aes_08t*)(x)+4*c)[3] = bval(v,3); }
568
569 #elif (ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER)
570
571 #define word_in(x,c) (*((const aes_32t*)(x)+(c)))
572 #define word_out(x,c,v) (*((aes_32t*)(x)+(c)) = (v))
573
574 #else
575
576 #define word_in(x,c) aes_sw32(*((const aes_32t*)(x)+(c)))
577 #define word_out(x,c,v) (*((aes_32t*)(x)+(c)) = aes_sw32(v))
578
579 #endif
580
581 /* the finite field modular polynomial and elements */
582
583 #define WPOLY 0x011b
584 #define BPOLY 0x1b
585
586 /* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
587
588 #define m1 0x80808080
589 #define m2 0x7f7f7f7f
590 #define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))
591
592 /* The following defines provide alternative definitions of gf_mulx that might
593 give improved performance if a fast 32-bit multiply is not available. Note
594 that a temporary variable u needs to be defined where gf_mulx is used.
595
596 #define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6))
597 #define m4 (0x01010101 * BPOLY)
598 #define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4)
599 */
600
601 /* Work out which tables are needed for the different options */
602
603 #if defined( AES_ASM )
604 #if defined( ENC_ROUND )
605 #undef ENC_ROUND
606 #endif
607 #define ENC_ROUND FOUR_TABLES
608 #if defined( LAST_ENC_ROUND )
609 #undef LAST_ENC_ROUND
610 #endif
611 #define LAST_ENC_ROUND FOUR_TABLES
612 #if defined( DEC_ROUND )
613 #undef DEC_ROUND
614 #endif
615 #define DEC_ROUND FOUR_TABLES
616 #if defined( LAST_DEC_ROUND )
617 #undef LAST_DEC_ROUND
618 #endif
619 #define LAST_DEC_ROUND FOUR_TABLES
620 #if defined( KEY_SCHED )
621 #undef KEY_SCHED
622 #define KEY_SCHED FOUR_TABLES
623 #endif
624 #endif
625
626 #if defined(ENCRYPTION) || defined(AES_ASM)
627 #if ENC_ROUND == ONE_TABLE
628 #define FT1_SET
629 #elif ENC_ROUND == FOUR_TABLES
630 #define FT4_SET
631 #else
632 #define SBX_SET
633 #endif
634 #if LAST_ENC_ROUND == ONE_TABLE
635 #define FL1_SET
636 #elif LAST_ENC_ROUND == FOUR_TABLES
637 #define FL4_SET
638 #elif !defined(SBX_SET)
639 #define SBX_SET
640 #endif
641 #endif
642
643 #if defined(DECRYPTION) || defined(AES_ASM)
644 #if DEC_ROUND == ONE_TABLE
645 #define IT1_SET
646 #elif DEC_ROUND == FOUR_TABLES
647 #define IT4_SET
648 #else
649 #define ISB_SET
650 #endif
651 #if LAST_DEC_ROUND == ONE_TABLE
652 #define IL1_SET
653 #elif LAST_DEC_ROUND == FOUR_TABLES
654 #define IL4_SET
655 #elif !defined(ISB_SET)
656 #define ISB_SET
657 #endif
658 #endif
659
660 #if defined(ENCRYPTION_KEY_SCHEDULE) || defined(DECRYPTION_KEY_SCHEDULE)
661 #if KEY_SCHED == ONE_TABLE
662 #define LS1_SET
663 #define IM1_SET
664 #elif KEY_SCHED == FOUR_TABLES
665 #define LS4_SET
666 #define IM4_SET
667 #elif !defined(SBX_SET)
668 #define SBX_SET
669 #endif
670 #endif
671
672 /* generic definitions of Rijndael macros that use tables */
673
674 #define no_table(x,box,vf,rf,c) bytes2word( \
675 box[bval(vf(x,0,c),rf(0,c))], \
676 box[bval(vf(x,1,c),rf(1,c))], \
677 box[bval(vf(x,2,c),rf(2,c))], \
678 box[bval(vf(x,3,c),rf(3,c))])
679
680 #define one_table(x,op,tab,vf,rf,c) \
681 ( tab[bval(vf(x,0,c),rf(0,c))] \
682 ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \
683 ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \
684 ^ op(tab[bval(vf(x,3,c),rf(3,c))],3))
685
686 #define four_tables(x,tab,vf,rf,c) \
687 ( tab[0][bval(vf(x,0,c),rf(0,c))] \
688 ^ tab[1][bval(vf(x,1,c),rf(1,c))] \
689 ^ tab[2][bval(vf(x,2,c),rf(2,c))] \
690 ^ tab[3][bval(vf(x,3,c),rf(3,c))])
691
692 #define four_cached_tables(x,tab,vf,rf,c) \
693 ( tab##0[bval(vf(x,0,c),rf(0,c))] \
694 ^ tab##1[bval(vf(x,1,c),rf(1,c))] \
695 ^ tab##2[bval(vf(x,2,c),rf(2,c))] \
696 ^ tab##3[bval(vf(x,3,c),rf(3,c))])
697
698 #define vf1(x,r,c) (x)
699 #define rf1(r,c) (r)
700 #define rf2(r,c) ((8+r-c)&3)
701
702 /* perform forward and inverse column mix operation on four bytes in long word x in */
703 /* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */
704
705 #if defined(FM4_SET) /* not currently used */
706 #define fwd_mcol(x) four_tables(x,t_use(f,m),vf1,rf1,0)
707 #elif defined(FM1_SET) /* not currently used */
708 #define fwd_mcol(x) one_table(x,upr,t_use(f,m),vf1,rf1,0)
709 #else
710 #define dec_fmvars aes_32t g2
711 #define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1))
712 #endif
713
714 #if defined(IM4_SET)
715 #define inv_mcol(x) four_tables(x,t_use(i,m),vf1,rf1,0)
716 #elif defined(IM1_SET)
717 #define inv_mcol(x) one_table(x,upr,t_use(i,m),vf1,rf1,0)
718 #else
719 #define dec_imvars aes_32t g2, g4, g9
720 #define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \
721 (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1))
722 #endif
723
724 #if defined(FL4_SET)
725 #define ls_box(x,c) four_tables(x,t_use(f,l),vf1,rf2,c)
726 #elif defined(LS4_SET)
727 #define ls_box(x,c) four_tables(x,t_use(l,s),vf1,rf2,c)
728 #elif defined(FL1_SET)
729 #define ls_box(x,c) one_table(x,upr,t_use(f,l),vf1,rf2,c)
730 #elif defined(LS1_SET)
731 #define ls_box(x,c) one_table(x,upr,t_use(l,s),vf1,rf2,c)
732 #else
733 #define ls_box(x,c) no_table(x,t_use(s,box),vf1,rf2,c)
734 #endif
735
736 #endif