]>
git.saurik.com Git - apple/xnu.git/blob - bsd/crypto/aes/gen/aesopt.h
2 ---------------------------------------------------------------------------
3 Copyright (c) 2003, Dr Brian Gladman, Worcester, UK. All rights reserved.
7 The free distribution and use of this software in both source and binary
8 form is allowed (with or without changes) provided that:
10 1. distributions of this source code include the above copyright
11 notice, this list of conditions and the following disclaimer;
13 2. distributions in binary form include the above copyright
14 notice, this list of conditions and the following disclaimer
15 in the documentation and/or other associated materials;
17 3. the copyright holder's name is not used to endorse products
18 built using this software without specific written permission.
20 ALTERNATIVELY, provided that this notice is retained in full, this product
21 may be distributed under the terms of the GNU General Public License (GPL),
22 in which case the provisions of the GPL apply INSTEAD OF those given above.
26 This software is provided 'as is' with no explicit or implied warranties
27 in respect of its properties, including, but not limited to, correctness
28 and/or fitness for purpose.
29 ---------------------------------------------------------------------------
32 My thanks go to Dag Arne Osvik for devising the schemes used here for key
33 length derivation from the form of the key schedule
35 This file contains the compilation options for AES (Rijndael) and code
36 that is common across encryption, key scheduling and table generation.
40 These source code files implement the AES algorithm Rijndael designed by
41 Joan Daemen and Vincent Rijmen. This version is designed for the standard
42 block size of 16 bytes and for key sizes of 128, 192 and 256 bits (16, 24
45 This version is designed for flexibility and speed using operations on
46 32-bit words rather than operations on bytes. It can be compiled with
47 either big or little endian internal byte order but is faster when the
48 native byte order for the processor is used.
52 The cipher interface is implemented as an array of bytes in which lower
53 AES bit sequence indexes map to higher numeric significance within bytes.
55 aes_08t (an unsigned 8-bit type)
56 aes_32t (an unsigned 32-bit type)
57 struct aes_encrypt_ctx (structure for the cipher encryption context)
58 struct aes_decrypt_ctx (structure for the cipher decryption context)
59 aes_rval the function return type
63 aes_rval aes_encrypt_key128(const unsigned char *key, aes_encrypt_ctx cx[1]);
64 aes_rval aes_encrypt_key192(const unsigned char *key, aes_encrypt_ctx cx[1]);
65 aes_rval aes_encrypt_key256(const unsigned char *key, aes_encrypt_ctx cx[1]);
66 aes_rval aes_encrypt(const unsigned char *in, unsigned char *out,
67 const aes_encrypt_ctx cx[1]);
69 aes_rval aes_decrypt_key128(const unsigned char *key, aes_decrypt_ctx cx[1]);
70 aes_rval aes_decrypt_key192(const unsigned char *key, aes_decrypt_ctx cx[1]);
71 aes_rval aes_decrypt_key256(const unsigned char *key, aes_decrypt_ctx cx[1]);
72 aes_rval aes_decrypt(const unsigned char *in, unsigned char *out,
73 const aes_decrypt_ctx cx[1]);
75 IMPORTANT NOTE: If you are using this C interface with dynamic tables make sure that
76 you call genTabs() before AES is used so that the tables are initialised.
78 C++ aes class subroutines:
80 Class AESencrypt for encryption
84 AESencrypt(const unsigned char *key) - 128 bit key
86 aes_rval key128(const unsigned char *key)
87 aes_rval key192(const unsigned char *key)
88 aes_rval key256(const unsigned char *key)
89 aes_rval encrypt(const unsigned char *in, unsigned char *out) const
91 Class AESdecrypt for encryption
94 AESdecrypt(const unsigned char *key) - 128 bit key
96 aes_rval key128(const unsigned char *key)
97 aes_rval key192(const unsigned char *key)
98 aes_rval key256(const unsigned char *key)
99 aes_rval decrypt(const unsigned char *in, unsigned char *out) const
103 The files used to provide AES (Rijndael) are
105 a. aes.h for the definitions needed for use in C.
106 b. aescpp.h for the definitions needed for use in C++.
107 c. aesopt.h for setting compilation options (also includes common code).
108 d. aescrypt.c for encryption and decrytpion, or
109 e. aeskey.c for key scheduling.
110 f. aestab.c for table loading or generation.
111 g. aescrypt.asm for encryption and decryption using assembler code.
112 h. aescrypt.mmx.asm for encryption and decryption using MMX assembler.
114 To compile AES (Rijndael) for use in C code use aes.h and set the
115 defines here for the facilities you need (key lengths, encryption
116 and/or decryption). Do not define AES_DLL or AES_CPP. Set the options
117 for optimisations and table sizes here.
119 To compile AES (Rijndael) for use in in C++ code use aescpp.h but do
122 To compile AES (Rijndael) in C as a Dynamic Link Library DLL) use
123 aes.h and include the AES_DLL define.
125 CONFIGURATION OPTIONS (here and in aes.h)
127 a. set AES_DLL in aes.h if AES (Rijndael) is to be compiled as a DLL
128 b. You may need to set PLATFORM_BYTE_ORDER to define the byte order.
129 c. If you want the code to run in a specific internal byte order, then
130 ALGORITHM_BYTE_ORDER must be set accordingly.
131 d. set other configuration options decribed below.
134 #if !defined( _AESOPT_H )
137 #include <crypto/aes/aes.h>
139 /* CONFIGURATION - USE OF DEFINES
141 Later in this section there are a number of defines that control the
142 operation of the code. In each section, the purpose of each define is
143 explained so that the relevant form can be included or excluded by
144 setting either 1's or 0's respectively on the branches of the related
147 PLATFORM SPECIFIC INCLUDES AND BYTE ORDER IN 32-BIT WORDS
149 To obtain the highest speed on processors with 32-bit words, this code
150 needs to determine the byte order of the target machine. The following
151 block of code is an attempt to capture the most obvious ways in which
152 various environemnts define byte order. It may well fail, in which case
153 the definitions will need to be set by editing at the points marked
154 **** EDIT HERE IF NECESSARY **** below. My thanks go to Peter Gutmann
155 for his assistance with this endian detection nightmare.
158 #define BRG_LITTLE_ENDIAN 1234 /* byte 0 is least significant (i386) */
159 #define BRG_BIG_ENDIAN 4321 /* byte 0 is most significant (mc68k) */
161 #if defined(__GNUC__) || defined(__GNU_LIBRARY__)
162 # if defined(__FreeBSD__) || defined(__OpenBSD__)
163 # include <sys/endian.h>
164 # elif defined( BSD ) && BSD >= 199103
165 # include <machine/endian.h>
166 # elif defined(__APPLE__)
167 # if defined(__BIG_ENDIAN__) && !defined( BIG_ENDIAN )
169 # elif defined(__LITTLE_ENDIAN__) && !defined( LITTLE_ENDIAN )
170 # define LITTLE_ENDIAN
174 # if defined(__BEOS__)
175 # include <byteswap.h>
180 #if !defined(PLATFORM_BYTE_ORDER)
181 # if defined(LITTLE_ENDIAN) || defined(BIG_ENDIAN)
182 # if defined(LITTLE_ENDIAN) && !defined(BIG_ENDIAN)
183 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
184 # elif !defined(LITTLE_ENDIAN) && defined(BIG_ENDIAN)
185 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
186 # elif defined(BYTE_ORDER) && (BYTE_ORDER == LITTLE_ENDIAN)
187 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
188 # elif defined(BYTE_ORDER) && (BYTE_ORDER == BIG_ENDIAN)
189 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
191 # elif defined(_LITTLE_ENDIAN) || defined(_BIG_ENDIAN)
192 # if defined(_LITTLE_ENDIAN) && !defined(_BIG_ENDIAN)
193 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
194 # elif !defined(_LITTLE_ENDIAN) && defined(_BIG_ENDIAN)
195 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
196 # elif defined(_BYTE_ORDER) && (_BYTE_ORDER == _LITTLE_ENDIAN)
197 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
198 # elif defined(_BYTE_ORDER) && (_BYTE_ORDER == _BIG_ENDIAN)
199 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
201 # elif defined(__LITTLE_ENDIAN__) || defined(__BIG_ENDIAN__)
202 # if defined(__LITTLE_ENDIAN__) && !defined(__BIG_ENDIAN__)
203 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
204 # elif !defined(__LITTLE_ENDIAN__) && defined(__BIG_ENDIAN__)
205 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
206 # elif defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __LITTLE_ENDIAN__)
207 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
208 # elif defined(__BYTE_ORDER__) && (__BYTE_ORDER__ == __BIG_ENDIAN__)
209 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
214 /* if the platform is still unknown, try to find its byte order */
215 /* from commonly used machine defines */
217 #if !defined(PLATFORM_BYTE_ORDER)
219 #if defined( __alpha__ ) || defined( __alpha ) || defined( i386 ) || \
220 defined( __i386__ ) || defined( _M_I86 ) || defined( _M_IX86 ) || \
221 defined( __OS2__ ) || defined( sun386 ) || defined( __TURBOC__ ) || \
222 defined( vax ) || defined( vms ) || defined( VMS ) || \
224 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
226 #elif defined( AMIGA ) || defined( applec ) || defined( __AS400__ ) || \
227 defined( _CRAY ) || defined( __hppa ) || defined( __hp9000 ) || \
228 defined( ibm370 ) || defined( mc68000 ) || defined( m68k ) || \
229 defined( __MRC__ ) || defined( __MVS__ ) || defined( __MWERKS__ ) || \
230 defined( sparc ) || defined( __sparc) || defined( SYMANTEC_C ) || \
231 defined( __TANDEM ) || defined( THINK_C ) || defined( __VMCMS__ )
232 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
234 #elif 0 /* **** EDIT HERE IF NECESSARY **** */
235 # define PLATFORM_BYTE_ORDER BRG_LITTLE_ENDIAN
236 #elif 0 /* **** EDIT HERE IF NECESSARY **** */
237 # define PLATFORM_BYTE_ORDER BRG_BIG_ENDIAN
239 # error Please edit aesopt.h (line 234 or 236) to set the platform byte order
244 /* SOME LOCAL DEFINITIONS */
248 #define FOUR_TABLES 4
254 #define aes_sw32 bswap32
255 #elif defined(bswap_32)
256 #define aes_sw32 bswap_32
258 #define brot(x,n) (((aes_32t)(x) << n) | ((aes_32t)(x) >> (32 - n)))
259 #define aes_sw32(x) ((brot((x),8) & 0x00ff00ff) | (brot((x),24) & 0xff00ff00))
262 /* 1. FUNCTIONS REQUIRED
264 This implementation provides subroutines for encryption, decryption
265 and for setting the three key lengths (separately) for encryption
266 and decryption. When the assembler code is not being used the following
267 definition blocks allow the selection of the routines that are to be
268 included in the compilation.
270 #if defined( AES_ENCRYPT )
272 #define ENCRYPTION_KEY_SCHEDULE
275 #if defined( AES_DECRYPT )
277 #define DECRYPTION_KEY_SCHEDULE
280 /* 2. ASSEMBLER SUPPORT
282 This define (which can be on the command line) enables the use of the
283 assembler code routines for encryption and decryption with the C code
284 only providing key scheduling
287 /* 3. BYTE ORDER WITHIN 32 BIT WORDS
289 The fundamental data processing units in Rijndael are 8-bit bytes. The
290 input, output and key input are all enumerated arrays of bytes in which
291 bytes are numbered starting at zero and increasing to one less than the
292 number of bytes in the array in question. This enumeration is only used
293 for naming bytes and does not imply any adjacency or order relationship
294 from one byte to another. When these inputs and outputs are considered
295 as bit sequences, bits 8*n to 8*n+7 of the bit sequence are mapped to
296 byte[n] with bit 8n+i in the sequence mapped to bit 7-i within the byte.
297 In this implementation bits are numbered from 0 to 7 starting at the
298 numerically least significant end of each byte (bit n represents 2^n).
300 However, Rijndael can be implemented more efficiently using 32-bit
301 words by packing bytes into words so that bytes 4*n to 4*n+3 are placed
302 into word[n]. While in principle these bytes can be assembled into words
303 in any positions, this implementation only supports the two formats in
304 which bytes in adjacent positions within words also have adjacent byte
305 numbers. This order is called big-endian if the lowest numbered bytes
306 in words have the highest numeric significance and little-endian if the
309 This code can work in either order irrespective of the order used by the
310 machine on which it runs. Normally the internal byte order will be set
311 to the order of the processor on which the code is to be run but this
312 define can be used to reverse this in special situations
314 NOTE: Assembler code versions rely on PLATFORM_BYTE_ORDER being set
316 #define ALGORITHM_BYTE_ORDER PLATFORM_BYTE_ORDER
318 /* 4. FAST INPUT/OUTPUT OPERATIONS.
320 On some machines it is possible to improve speed by transferring the
321 bytes in the input and output arrays to and from the internal 32-bit
322 variables by addressing these arrays as if they are arrays of 32-bit
323 words. On some machines this will always be possible but there may
324 be a large performance penalty if the byte arrays are not aligned on
325 the normal word boundaries. On other machines this technique will
326 lead to memory access errors when such 32-bit word accesses are not
327 properly aligned. The option SAFE_IO avoids such problems but will
328 often be slower on those machines that support misaligned access
329 (especially so if care is taken to align the input and output byte
330 arrays on 32-bit word boundaries). If SAFE_IO is not defined it is
331 assumed that access to byte arrays as if they are arrays of 32-bit
332 words will not cause problems when such accesses are misaligned.
337 The code for encryption and decrytpion cycles through a number of rounds
338 that can be implemented either in a loop or by expanding the code into a
339 long sequence of instructions, the latter producing a larger program but
340 one that will often be much faster. The latter is called loop unrolling.
341 There are also potential speed advantages in expanding two iterations in
342 a loop with half the number of iterations, which is called partial loop
343 unrolling. The following options allow partial or full loop unrolling
344 to be set independently for encryption and decryption
347 #define ENC_UNROLL FULL
349 #define ENC_UNROLL PARTIAL
351 #define ENC_UNROLL NONE
355 #define DEC_UNROLL FULL
357 #define DEC_UNROLL PARTIAL
359 #define DEC_UNROLL NONE
362 /* 6. FAST FINITE FIELD OPERATIONS
364 If this section is included, tables are used to provide faster finite
365 field arithmetic (this has no effect if FIXED_TABLES is defined).
371 /* 7. INTERNAL STATE VARIABLE FORMAT
373 The internal state of Rijndael is stored in a number of local 32-bit
374 word varaibles which can be defined either as an array or as individual
375 names variables. Include this section if you want to store these local
376 varaibles in arrays. Otherwise individual local variables will be used.
382 /* In this implementation the columns of the state array are each held in
383 32-bit words. The state array can be held in various ways: in an array
384 of words, in a number of individual word variables or in a number of
385 processor registers. The following define maps a variable name x and
386 a column number c to the way the state array variable is to be held.
387 The first define below maps the state into an array x[c] whereas the
388 second form maps the state into a number of individual variables x0,
389 x1, etc. Another form could map individual state colums to machine
399 /* 8. FIXED OR DYNAMIC TABLES
401 When this section is included the tables used by the code are compiled
402 statically into the binary file. Otherwise the subroutine gen_tabs()
403 must be called to compute them before the code is first used.
409 /* 9. TABLE ALIGNMENT
411 On some sytsems speed will be improved by aligning the AES large lookup
412 tables on particular boundaries. This define should be set to a power of
413 two giving the desired alignment. It can be left undefined if alignment
414 is not needed. This option is specific to the Microsft VC++ compiler -
415 it seems to sometimes cause trouble for the VC++ version 6 compiler.
419 /* 10. INTERNAL TABLE CONFIGURATION
421 This cipher proceeds by repeating in a number of cycles known as 'rounds'
422 which are implemented by a round function which can optionally be speeded
423 up using tables. The basic tables are each 256 32-bit words, with either
424 one or four tables being required for each round function depending on
425 how much speed is required. The encryption and decryption round functions
426 are different and the last encryption and decrytpion round functions are
427 different again making four different round functions in all.
430 1. Normal encryption and decryption rounds can each use either 0, 1
431 or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
432 2. The last encryption and decryption rounds can also use either 0, 1
433 or 4 tables and table spaces of 0, 1024 or 4096 bytes each.
435 Include or exclude the appropriate definitions below to set the number
436 of tables used by this implementation.
439 #if 1 /* set tables for the normal encryption round */
440 #define ENC_ROUND FOUR_TABLES
442 #define ENC_ROUND ONE_TABLE
444 #define ENC_ROUND NO_TABLES
447 #if 1 /* set tables for the last encryption round */
448 #define LAST_ENC_ROUND FOUR_TABLES
450 #define LAST_ENC_ROUND ONE_TABLE
452 #define LAST_ENC_ROUND NO_TABLES
455 #if 1 /* set tables for the normal decryption round */
456 #define DEC_ROUND FOUR_TABLES
458 #define DEC_ROUND ONE_TABLE
460 #define DEC_ROUND NO_TABLES
463 #if 1 /* set tables for the last decryption round */
464 #define LAST_DEC_ROUND FOUR_TABLES
466 #define LAST_DEC_ROUND ONE_TABLE
468 #define LAST_DEC_ROUND NO_TABLES
471 /* The decryption key schedule can be speeded up with tables in the same
472 way that the round functions can. Include or exclude the following
473 defines to set this requirement.
476 #define KEY_SCHED FOUR_TABLES
478 #define KEY_SCHED ONE_TABLE
480 #define KEY_SCHED NO_TABLES
483 /* 11. TABLE POINTER CACHING
485 Normally tables are referenced directly, Enable this option if you wish to
486 cache pointers to the tables in the encrypt/decrypt code. Note that this
487 only works if you are using FOUR_TABLES for the ROUND you enable this for.
490 #define ENC_ROUND_CACHE_TABLES
493 #define LAST_ENC_ROUND_CACHE_TABLES
496 #define DEC_ROUND_CACHE_TABLES
499 #define LAST_DEC_ROUND_CACHE_TABLES
503 /* END OF CONFIGURATION OPTIONS */
505 #define RC_LENGTH (5 * (AES_BLOCK_SIZE / 4 - 2))
507 /* Disable or report errors on some combinations of options */
509 #if ENC_ROUND == NO_TABLES && LAST_ENC_ROUND != NO_TABLES
510 #undef LAST_ENC_ROUND
511 #define LAST_ENC_ROUND NO_TABLES
512 #elif ENC_ROUND == ONE_TABLE && LAST_ENC_ROUND == FOUR_TABLES
513 #undef LAST_ENC_ROUND
514 #define LAST_ENC_ROUND ONE_TABLE
517 #if ENC_ROUND == NO_TABLES && ENC_UNROLL != NONE
519 #define ENC_UNROLL NONE
522 #if DEC_ROUND == NO_TABLES && LAST_DEC_ROUND != NO_TABLES
523 #undef LAST_DEC_ROUND
524 #define LAST_DEC_ROUND NO_TABLES
525 #elif DEC_ROUND == ONE_TABLE && LAST_DEC_ROUND == FOUR_TABLES
526 #undef LAST_DEC_ROUND
527 #define LAST_DEC_ROUND ONE_TABLE
530 #if DEC_ROUND == NO_TABLES && DEC_UNROLL != NONE
532 #define DEC_UNROLL NONE
535 /* upr(x,n): rotates bytes within words by n positions, moving bytes to
536 higher index positions with wrap around into low positions
537 ups(x,n): moves bytes by n positions to higher index positions in
538 words but without wrap around
539 bval(x,n): extracts a byte from a word
541 NOTE: The definitions given here are intended only for use with
542 unsigned variables and with shift counts that are compile
546 #if (ALGORITHM_BYTE_ORDER == BRG_LITTLE_ENDIAN)
547 #define upr(x,n) (((aes_32t)(x) << (8 * (n))) | ((aes_32t)(x) >> (32 - 8 * (n))))
548 #define ups(x,n) ((aes_32t) (x) << (8 * (n)))
549 #define bval(x,n) ((aes_08t)((x) >> (8 * (n))))
550 #define bytes2word(b0, b1, b2, b3) \
551 (((aes_32t)(b3) << 24) | ((aes_32t)(b2) << 16) | ((aes_32t)(b1) << 8) | (b0))
554 #if (ALGORITHM_BYTE_ORDER == BRG_BIG_ENDIAN)
555 #define upr(x,n) (((aes_32t)(x) >> (8 * (n))) | ((aes_32t)(x) << (32 - 8 * (n))))
556 #define ups(x,n) ((aes_32t) (x) >> (8 * (n))))
557 #define bval(x,n) ((aes_08t)((x) >> (24 - 8 * (n))))
558 #define bytes2word(b0, b1, b2, b3) \
559 (((aes_32t)(b0) << 24) | ((aes_32t)(b1) << 16) | ((aes_32t)(b2) << 8) | (b3))
564 #define word_in(x,c) bytes2word(((aes_08t*)(x)+4*c)[0], ((aes_08t*)(x)+4*c)[1], \
565 ((aes_08t*)(x)+4*c)[2], ((aes_08t*)(x)+4*c)[3])
566 #define word_out(x,c,v) { ((aes_08t*)(x)+4*c)[0] = bval(v,0); ((aes_08t*)(x)+4*c)[1] = bval(v,1); \
567 ((aes_08t*)(x)+4*c)[2] = bval(v,2); ((aes_08t*)(x)+4*c)[3] = bval(v,3); }
569 #elif (ALGORITHM_BYTE_ORDER == PLATFORM_BYTE_ORDER)
571 #define word_in(x,c) (*((const aes_32t*)(x)+(c)))
572 #define word_out(x,c,v) (*((aes_32t*)(x)+(c)) = (v))
576 #define word_in(x,c) aes_sw32(*((const aes_32t*)(x)+(c)))
577 #define word_out(x,c,v) (*((aes_32t*)(x)+(c)) = aes_sw32(v))
581 /* the finite field modular polynomial and elements */
586 /* multiply four bytes in GF(2^8) by 'x' {02} in parallel */
588 #define m1 0x80808080
589 #define m2 0x7f7f7f7f
590 #define gf_mulx(x) ((((x) & m2) << 1) ^ ((((x) & m1) >> 7) * BPOLY))
592 /* The following defines provide alternative definitions of gf_mulx that might
593 give improved performance if a fast 32-bit multiply is not available. Note
594 that a temporary variable u needs to be defined where gf_mulx is used.
596 #define gf_mulx(x) (u = (x) & m1, u |= (u >> 1), ((x) & m2) << 1) ^ ((u >> 3) | (u >> 6))
597 #define m4 (0x01010101 * BPOLY)
598 #define gf_mulx(x) (u = (x) & m1, ((x) & m2) << 1) ^ ((u - (u >> 7)) & m4)
601 /* Work out which tables are needed for the different options */
603 #if defined( AES_ASM )
604 #if defined( ENC_ROUND )
607 #define ENC_ROUND FOUR_TABLES
608 #if defined( LAST_ENC_ROUND )
609 #undef LAST_ENC_ROUND
611 #define LAST_ENC_ROUND FOUR_TABLES
612 #if defined( DEC_ROUND )
615 #define DEC_ROUND FOUR_TABLES
616 #if defined( LAST_DEC_ROUND )
617 #undef LAST_DEC_ROUND
619 #define LAST_DEC_ROUND FOUR_TABLES
620 #if defined( KEY_SCHED )
622 #define KEY_SCHED FOUR_TABLES
626 #if defined(ENCRYPTION) || defined(AES_ASM)
627 #if ENC_ROUND == ONE_TABLE
629 #elif ENC_ROUND == FOUR_TABLES
634 #if LAST_ENC_ROUND == ONE_TABLE
636 #elif LAST_ENC_ROUND == FOUR_TABLES
638 #elif !defined(SBX_SET)
643 #if defined(DECRYPTION) || defined(AES_ASM)
644 #if DEC_ROUND == ONE_TABLE
646 #elif DEC_ROUND == FOUR_TABLES
651 #if LAST_DEC_ROUND == ONE_TABLE
653 #elif LAST_DEC_ROUND == FOUR_TABLES
655 #elif !defined(ISB_SET)
660 #if defined(ENCRYPTION_KEY_SCHEDULE) || defined(DECRYPTION_KEY_SCHEDULE)
661 #if KEY_SCHED == ONE_TABLE
664 #elif KEY_SCHED == FOUR_TABLES
667 #elif !defined(SBX_SET)
672 /* generic definitions of Rijndael macros that use tables */
674 #define no_table(x,box,vf,rf,c) bytes2word( \
675 box[bval(vf(x,0,c),rf(0,c))], \
676 box[bval(vf(x,1,c),rf(1,c))], \
677 box[bval(vf(x,2,c),rf(2,c))], \
678 box[bval(vf(x,3,c),rf(3,c))])
680 #define one_table(x,op,tab,vf,rf,c) \
681 ( tab[bval(vf(x,0,c),rf(0,c))] \
682 ^ op(tab[bval(vf(x,1,c),rf(1,c))],1) \
683 ^ op(tab[bval(vf(x,2,c),rf(2,c))],2) \
684 ^ op(tab[bval(vf(x,3,c),rf(3,c))],3))
686 #define four_tables(x,tab,vf,rf,c) \
687 ( tab[0][bval(vf(x,0,c),rf(0,c))] \
688 ^ tab[1][bval(vf(x,1,c),rf(1,c))] \
689 ^ tab[2][bval(vf(x,2,c),rf(2,c))] \
690 ^ tab[3][bval(vf(x,3,c),rf(3,c))])
692 #define four_cached_tables(x,tab,vf,rf,c) \
693 ( tab##0[bval(vf(x,0,c),rf(0,c))] \
694 ^ tab##1[bval(vf(x,1,c),rf(1,c))] \
695 ^ tab##2[bval(vf(x,2,c),rf(2,c))] \
696 ^ tab##3[bval(vf(x,3,c),rf(3,c))])
698 #define vf1(x,r,c) (x)
700 #define rf2(r,c) ((8+r-c)&3)
702 /* perform forward and inverse column mix operation on four bytes in long word x in */
703 /* parallel. NOTE: x must be a simple variable, NOT an expression in these macros. */
705 #if defined(FM4_SET) /* not currently used */
706 #define fwd_mcol(x) four_tables(x,t_use(f,m),vf1,rf1,0)
707 #elif defined(FM1_SET) /* not currently used */
708 #define fwd_mcol(x) one_table(x,upr,t_use(f,m),vf1,rf1,0)
710 #define dec_fmvars aes_32t g2
711 #define fwd_mcol(x) (g2 = gf_mulx(x), g2 ^ upr((x) ^ g2, 3) ^ upr((x), 2) ^ upr((x), 1))
715 #define inv_mcol(x) four_tables(x,t_use(i,m),vf1,rf1,0)
716 #elif defined(IM1_SET)
717 #define inv_mcol(x) one_table(x,upr,t_use(i,m),vf1,rf1,0)
719 #define dec_imvars aes_32t g2, g4, g9
720 #define inv_mcol(x) (g2 = gf_mulx(x), g4 = gf_mulx(g2), g9 = (x) ^ gf_mulx(g4), g4 ^= g9, \
721 (x) ^ g2 ^ g4 ^ upr(g2 ^ g9, 3) ^ upr(g4, 2) ^ upr(g9, 1))
725 #define ls_box(x,c) four_tables(x,t_use(f,l),vf1,rf2,c)
726 #elif defined(LS4_SET)
727 #define ls_box(x,c) four_tables(x,t_use(l,s),vf1,rf2,c)
728 #elif defined(FL1_SET)
729 #define ls_box(x,c) one_table(x,upr,t_use(f,l),vf1,rf2,c)
730 #elif defined(LS1_SET)
731 #define ls_box(x,c) one_table(x,upr,t_use(l,s),vf1,rf2,c)
733 #define ls_box(x,c) no_table(x,t_use(s,box),vf1,rf2,c)