2 * Copyright (c) 1998-2016 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
30 * Copyright (c) 1982, 1986, 1988, 1991, 1993
31 * The Regents of the University of California. All rights reserved.
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
61 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
74 #include <sys/kernel.h>
75 #include <sys/sysctl.h>
76 #include <sys/syslog.h>
77 #include <sys/protosw.h>
78 #include <sys/domain.h>
79 #include <sys/queue.h>
82 #include <dev/random/randomdev.h>
84 #include <kern/kern_types.h>
85 #include <kern/simple_lock.h>
86 #include <kern/queue.h>
87 #include <kern/sched_prim.h>
88 #include <kern/backtrace.h>
89 #include <kern/cpu_number.h>
90 #include <kern/zalloc.h>
92 #include <libkern/OSAtomic.h>
93 #include <libkern/OSDebug.h>
94 #include <libkern/libkern.h>
96 #include <IOKit/IOMapper.h>
98 #include <machine/limits.h>
99 #include <machine/machine_routines.h>
102 #include <security/mac_framework.h>
105 #include <sys/mcache.h>
106 #include <net/ntstat.h>
109 * MBUF IMPLEMENTATION NOTES.
111 * There is a total of 5 per-CPU caches:
114 * This is a cache of rudimentary objects of MSIZE in size; each
115 * object represents an mbuf structure. This cache preserves only
116 * the m_type field of the mbuf during its transactions.
119 * This is a cache of rudimentary objects of MCLBYTES in size; each
120 * object represents a mcluster structure. This cache does not
121 * preserve the contents of the objects during its transactions.
124 * This is a cache of rudimentary objects of MBIGCLBYTES in size; each
125 * object represents a mbigcluster structure. This cache does not
126 * preserve the contents of the objects during its transaction.
129 * This is a cache of mbufs each having a cluster attached to it.
130 * It is backed by MC_MBUF and MC_CL rudimentary caches. Several
131 * fields of the mbuf related to the external cluster are preserved
132 * during transactions.
135 * This is a cache of mbufs each having a big cluster attached to it.
136 * It is backed by MC_MBUF and MC_BIGCL rudimentary caches. Several
137 * fields of the mbuf related to the external cluster are preserved
138 * during transactions.
142 * Allocation requests are handled first at the per-CPU (mcache) layer
143 * before falling back to the slab layer. Performance is optimal when
144 * the request is satisfied at the CPU layer because global data/lock
145 * never gets accessed. When the slab layer is entered for allocation,
146 * the slab freelist will be checked first for available objects before
147 * the VM backing store is invoked. Slab layer operations are serialized
148 * for all of the caches as the mbuf global lock is held most of the time.
149 * Allocation paths are different depending on the class of objects:
151 * a. Rudimentary object:
153 * { m_get_common(), m_clattach(), m_mclget(),
154 * m_mclalloc(), m_bigalloc(), m_copym_with_hdrs(),
155 * composite object allocation }
158 * | +-----------------------+
160 * mcache_alloc/mcache_alloc_ext() mbuf_slab_audit()
163 * [CPU cache] -------> (found?) -------+
166 * mbuf_slab_alloc() |
169 * +---------> [freelist] -------> (found?) -------+
175 * +---<<---- kmem_mb_alloc()
177 * b. Composite object:
179 * { m_getpackets_internal(), m_allocpacket_internal() }
182 * | +------ (done) ---------+
184 * mcache_alloc/mcache_alloc_ext() mbuf_cslab_audit()
187 * [CPU cache] -------> (found?) -------+
190 * mbuf_cslab_alloc() |
193 * [freelist] -------> (found?) -------+
196 * (rudimentary object) |
197 * mcache_alloc/mcache_alloc_ext() ------>>-----+
199 * Auditing notes: If auditing is enabled, buffers will be subjected to
200 * integrity checks by the audit routine. This is done by verifying their
201 * contents against DEADBEEF (free) pattern before returning them to caller.
202 * As part of this step, the routine will also record the transaction and
203 * pattern-fill the buffers with BADDCAFE (uninitialized) pattern. It will
204 * also restore any constructed data structure fields if necessary.
206 * OBJECT DEALLOCATION:
208 * Freeing an object simply involves placing it into the CPU cache; this
209 * pollutes the cache to benefit subsequent allocations. The slab layer
210 * will only be entered if the object is to be purged out of the cache.
211 * During normal operations, this happens only when the CPU layer resizes
212 * its bucket while it's adjusting to the allocation load. Deallocation
213 * paths are different depending on the class of objects:
215 * a. Rudimentary object:
217 * { m_free(), m_freem_list(), composite object deallocation }
220 * | +------ (done) ---------+
222 * mcache_free/mcache_free_ext() |
225 * mbuf_slab_audit() |
228 * [CPU cache] ---> (not purging?) -----+
234 * [freelist] ----------->>------------+
235 * (objects get purged to VM only on demand)
237 * b. Composite object:
239 * { m_free(), m_freem_list() }
242 * | +------ (done) ---------+
244 * mcache_free/mcache_free_ext() |
247 * mbuf_cslab_audit() |
250 * [CPU cache] ---> (not purging?) -----+
253 * mbuf_cslab_free() |
256 * [freelist] ---> (not purging?) -----+
259 * (rudimentary object) |
260 * mcache_free/mcache_free_ext() ------->>------+
262 * Auditing notes: If auditing is enabled, the audit routine will save
263 * any constructed data structure fields (if necessary) before filling the
264 * contents of the buffers with DEADBEEF (free) pattern and recording the
265 * transaction. Buffers that are freed (whether at CPU or slab layer) are
266 * expected to contain the free pattern.
270 * Debugging can be enabled by adding "mbuf_debug=0x3" to boot-args; this
271 * translates to the mcache flags (MCF_VERIFY | MCF_AUDIT). Additionally,
272 * the CPU layer cache can be disabled by setting the MCF_NOCPUCACHE flag,
273 * i.e. modify the boot argument parameter to "mbuf_debug=0x13". Leak
274 * detection may also be disabled by setting the MCF_NOLEAKLOG flag, e.g.
275 * "mbuf_debug=0x113". Note that debugging consumes more CPU and memory.
277 * Each object is associated with exactly one mcache_audit_t structure that
278 * contains the information related to its last buffer transaction. Given
279 * an address of an object, the audit structure can be retrieved by finding
280 * the position of the object relevant to the base address of the cluster:
282 * +------------+ +=============+
283 * | mbuf addr | | mclaudit[i] |
284 * +------------+ +=============+
286 * i = MTOBG(addr) +-------------+
287 * | +-----> | cl_audit[1] | -----> mcache_audit_t
288 * b = BGTOM(i) | +-------------+
290 * x = MCLIDX(b, addr) | +-------------+
291 * | | | cl_audit[7] |
292 * +-----------------+ +-------------+
295 * The mclaudit[] array is allocated at initialization time, but its contents
296 * get populated when the corresponding cluster is created. Because a page
297 * can be turned into NMBPG number of mbufs, we preserve enough space for the
298 * mbufs so that there is a 1-to-1 mapping between them. A page that never
299 * gets (or has not yet) turned into mbufs will use only cl_audit[0] with the
300 * remaining entries unused. For 16KB cluster, only one entry from the first
301 * page is allocated and used for the entire object.
304 /* TODO: should be in header file */
305 /* kernel translater */
306 extern vm_offset_t
kmem_mb_alloc(vm_map_t
, int, int);
307 extern ppnum_t
pmap_find_phys(pmap_t pmap
, addr64_t va
);
308 extern vm_map_t mb_map
; /* special map */
311 decl_lck_mtx_data(static, mbuf_mlock_data
);
312 static lck_mtx_t
*mbuf_mlock
= &mbuf_mlock_data
;
313 static lck_attr_t
*mbuf_mlock_attr
;
314 static lck_grp_t
*mbuf_mlock_grp
;
315 static lck_grp_attr_t
*mbuf_mlock_grp_attr
;
317 /* Back-end (common) layer */
318 static boolean_t mbuf_worker_needs_wakeup
; /* wait channel for mbuf worker */
319 static int mbuf_worker_ready
; /* worker thread is runnable */
320 static int mbuf_expand_mcl
; /* number of cluster creation requets */
321 static int mbuf_expand_big
; /* number of big cluster creation requests */
322 static int mbuf_expand_16k
; /* number of 16KB cluster creation requests */
323 static int ncpu
; /* number of CPUs */
324 static ppnum_t
*mcl_paddr
; /* Array of cluster physical addresses */
325 static ppnum_t mcl_pages
; /* Size of array (# physical pages) */
326 static ppnum_t mcl_paddr_base
; /* Handle returned by IOMapper::iovmAlloc() */
327 static mcache_t
*ref_cache
; /* Cache of cluster reference & flags */
328 static mcache_t
*mcl_audit_con_cache
; /* Audit contents cache */
329 static unsigned int mbuf_debug
; /* patchable mbuf mcache flags */
330 static unsigned int mb_normalized
; /* number of packets "normalized" */
332 #define MB_GROWTH_AGGRESSIVE 1 /* Threshold: 1/2 of total */
333 #define MB_GROWTH_NORMAL 2 /* Threshold: 3/4 of total */
336 MC_MBUF
= 0, /* Regular mbuf */
338 MC_BIGCL
, /* Large (4KB) cluster */
339 MC_16KCL
, /* Jumbo (16KB) cluster */
340 MC_MBUF_CL
, /* mbuf + cluster */
341 MC_MBUF_BIGCL
, /* mbuf + large (4KB) cluster */
342 MC_MBUF_16KCL
/* mbuf + jumbo (16KB) cluster */
345 #define MBUF_CLASS_MIN MC_MBUF
346 #define MBUF_CLASS_MAX MC_MBUF_16KCL
347 #define MBUF_CLASS_LAST MC_16KCL
348 #define MBUF_CLASS_VALID(c) \
349 ((int)(c) >= MBUF_CLASS_MIN && (int)(c) <= MBUF_CLASS_MAX)
350 #define MBUF_CLASS_COMPOSITE(c) \
351 ((int)(c) > MBUF_CLASS_LAST)
355 * mbuf specific mcache allocation request flags.
357 #define MCR_COMP MCR_USR1 /* for MC_MBUF_{CL,BIGCL,16KCL} caches */
360 * Per-cluster slab structure.
362 * A slab is a cluster control structure that contains one or more object
363 * chunks; the available chunks are chained in the slab's freelist (sl_head).
364 * Each time a chunk is taken out of the slab, the slab's reference count
365 * gets incremented. When all chunks have been taken out, the empty slab
366 * gets removed (SLF_DETACHED) from the class's slab list. A chunk that is
367 * returned to a slab causes the slab's reference count to be decremented;
368 * it also causes the slab to be reinserted back to class's slab list, if
369 * it's not already done.
371 * Compartmentalizing of the object chunks into slabs allows us to easily
372 * merge one or more slabs together when the adjacent slabs are idle, as
373 * well as to convert or move a slab from one class to another; e.g. the
374 * mbuf cluster slab can be converted to a regular cluster slab when all
375 * mbufs in the slab have been freed.
377 * A slab may also span across multiple clusters for chunks larger than
378 * a cluster's size. In this case, only the slab of the first cluster is
379 * used. The rest of the slabs are marked with SLF_PARTIAL to indicate
380 * that they are part of the larger slab.
382 * Each slab controls a page of memory.
384 typedef struct mcl_slab
{
385 struct mcl_slab
*sl_next
; /* neighboring slab */
386 u_int8_t sl_class
; /* controlling mbuf class */
387 int8_t sl_refcnt
; /* outstanding allocations */
388 int8_t sl_chunks
; /* chunks (bufs) in this slab */
389 u_int16_t sl_flags
; /* slab flags (see below) */
390 u_int16_t sl_len
; /* slab length */
391 void *sl_base
; /* base of allocated memory */
392 void *sl_head
; /* first free buffer */
393 TAILQ_ENTRY(mcl_slab
) sl_link
; /* next/prev slab on freelist */
396 #define SLF_MAPPED 0x0001 /* backed by a mapped page */
397 #define SLF_PARTIAL 0x0002 /* part of another slab */
398 #define SLF_DETACHED 0x0004 /* not in slab freelist */
401 * The array of slabs are broken into groups of arrays per 1MB of kernel
402 * memory to reduce the footprint. Each group is allocated on demand
403 * whenever a new piece of memory mapped in from the VM crosses the 1MB
406 #define NSLABSPMB ((1 << MBSHIFT) >> PAGE_SHIFT)
408 typedef struct mcl_slabg
{
409 mcl_slab_t
*slg_slab
; /* group of slabs */
413 * Number of slabs needed to control a 16KB cluster object.
415 #define NSLABSP16KB (M16KCLBYTES >> PAGE_SHIFT)
418 * Per-cluster audit structure.
421 mcache_audit_t
**cl_audit
; /* array of audits */
425 struct thread
*msa_thread
; /* thread doing transaction */
426 struct thread
*msa_pthread
; /* previous transaction thread */
427 uint32_t msa_tstamp
; /* transaction timestamp (ms) */
428 uint32_t msa_ptstamp
; /* prev transaction timestamp (ms) */
429 uint16_t msa_depth
; /* pc stack depth */
430 uint16_t msa_pdepth
; /* previous transaction pc stack */
431 void *msa_stack
[MCACHE_STACK_DEPTH
];
432 void *msa_pstack
[MCACHE_STACK_DEPTH
];
433 } mcl_scratch_audit_t
;
437 * Size of data from the beginning of an mbuf that covers m_hdr,
438 * pkthdr and m_ext structures. If auditing is enabled, we allocate
439 * a shadow mbuf structure of this size inside each audit structure,
440 * and the contents of the real mbuf gets copied into it when the mbuf
441 * is freed. This allows us to pattern-fill the mbuf for integrity
442 * check, and to preserve any constructed mbuf fields (e.g. mbuf +
443 * cluster cache case). Note that we don't save the contents of
444 * clusters when they are freed; we simply pattern-fill them.
446 u_int8_t sc_mbuf
[(MSIZE
- _MHLEN
) + sizeof (_m_ext_t
)];
447 mcl_scratch_audit_t sc_scratch
__attribute__((aligned(8)));
448 } mcl_saved_contents_t
;
450 #define AUDIT_CONTENTS_SIZE (sizeof (mcl_saved_contents_t))
452 #define MCA_SAVED_MBUF_PTR(_mca) \
453 ((struct mbuf *)(void *)((mcl_saved_contents_t *) \
454 (_mca)->mca_contents)->sc_mbuf)
455 #define MCA_SAVED_MBUF_SIZE \
456 (sizeof (((mcl_saved_contents_t *)0)->sc_mbuf))
457 #define MCA_SAVED_SCRATCH_PTR(_mca) \
458 (&((mcl_saved_contents_t *)(_mca)->mca_contents)->sc_scratch)
461 * mbuf specific mcache audit flags
463 #define MB_INUSE 0x01 /* object has not been returned to slab */
464 #define MB_COMP_INUSE 0x02 /* object has not been returned to cslab */
465 #define MB_SCVALID 0x04 /* object has valid saved contents */
468 * Each of the following two arrays hold up to nmbclusters elements.
470 static mcl_audit_t
*mclaudit
; /* array of cluster audit information */
471 static unsigned int maxclaudit
; /* max # of entries in audit table */
472 static mcl_slabg_t
**slabstbl
; /* cluster slabs table */
473 static unsigned int maxslabgrp
; /* max # of entries in slabs table */
474 static unsigned int slabgrp
; /* # of entries in slabs table */
477 int nclusters
; /* # of clusters for non-jumbo (legacy) sizes */
478 int njcl
; /* # of clusters for jumbo sizes */
479 int njclbytes
; /* size of a jumbo cluster */
480 unsigned char *mbutl
; /* first mapped cluster address */
481 unsigned char *embutl
; /* ending virtual address of mclusters */
482 int _max_linkhdr
; /* largest link-level header */
483 int _max_protohdr
; /* largest protocol header */
484 int max_hdr
; /* largest link+protocol header */
485 int max_datalen
; /* MHLEN - max_hdr */
487 static boolean_t mclverify
; /* debug: pattern-checking */
488 static boolean_t mcltrace
; /* debug: stack tracing */
489 static boolean_t mclfindleak
; /* debug: leak detection */
490 static boolean_t mclexpleak
; /* debug: expose leak info to user space */
492 static struct timeval mb_start
; /* beginning of time */
494 /* mbuf leak detection variables */
495 static struct mleak_table mleak_table
;
496 static mleak_stat_t
*mleak_stat
;
498 #define MLEAK_STAT_SIZE(n) \
499 ((size_t)(&((mleak_stat_t *)0)->ml_trace[n]))
502 mcache_obj_t
*element
; /* the alloc'ed element, NULL if unused */
503 u_int32_t trace_index
; /* mtrace index for corresponding backtrace */
504 u_int32_t count
; /* How many objects were requested */
505 u_int64_t hitcount
; /* for determining hash effectiveness */
509 u_int64_t collisions
;
513 uintptr_t addr
[MLEAK_STACK_DEPTH
];
516 /* Size must be a power of two for the zhash to be able to just mask off bits */
517 #define MLEAK_ALLOCATION_MAP_NUM 512
518 #define MLEAK_TRACE_MAP_NUM 256
521 * Sample factor for how often to record a trace. This is overwritable
522 * by the boot-arg mleak_sample_factor.
524 #define MLEAK_SAMPLE_FACTOR 500
527 * Number of top leakers recorded.
529 #define MLEAK_NUM_TRACES 5
531 #define MB_LEAK_SPACING_64 " "
532 #define MB_LEAK_SPACING_32 " "
535 #define MB_LEAK_HDR_32 "\n\
536 trace [1] trace [2] trace [3] trace [4] trace [5] \n\
537 ---------- ---------- ---------- ---------- ---------- \n\
540 #define MB_LEAK_HDR_64 "\n\
541 trace [1] trace [2] trace [3] \
542 trace [4] trace [5] \n\
543 ------------------ ------------------ ------------------ \
544 ------------------ ------------------ \n\
547 static uint32_t mleak_alloc_buckets
= MLEAK_ALLOCATION_MAP_NUM
;
548 static uint32_t mleak_trace_buckets
= MLEAK_TRACE_MAP_NUM
;
550 /* Hashmaps of allocations and their corresponding traces */
551 static struct mallocation
*mleak_allocations
;
552 static struct mtrace
*mleak_traces
;
553 static struct mtrace
*mleak_top_trace
[MLEAK_NUM_TRACES
];
555 /* Lock to protect mleak tables from concurrent modification */
556 decl_lck_mtx_data(static, mleak_lock_data
);
557 static lck_mtx_t
*mleak_lock
= &mleak_lock_data
;
558 static lck_attr_t
*mleak_lock_attr
;
559 static lck_grp_t
*mleak_lock_grp
;
560 static lck_grp_attr_t
*mleak_lock_grp_attr
;
562 /* Lock to protect the completion callback table */
563 static lck_grp_attr_t
*mbuf_tx_compl_tbl_lck_grp_attr
= NULL
;
564 static lck_attr_t
*mbuf_tx_compl_tbl_lck_attr
= NULL
;
565 static lck_grp_t
*mbuf_tx_compl_tbl_lck_grp
= NULL
;
566 decl_lck_rw_data(, mbuf_tx_compl_tbl_lck_rw_data
);
567 lck_rw_t
*mbuf_tx_compl_tbl_lock
= &mbuf_tx_compl_tbl_lck_rw_data
;
569 extern u_int32_t high_sb_max
;
571 /* The minimum number of objects that are allocated, to start. */
573 #define MINBIGCL (MINCL >> 1)
574 #define MIN16KCL (MINCL >> 2)
576 /* Low watermarks (only map in pages once free counts go below) */
577 #define MBIGCL_LOWAT MINBIGCL
578 #define M16KCL_LOWAT MIN16KCL
581 mbuf_class_t mtbl_class
; /* class type */
582 mcache_t
*mtbl_cache
; /* mcache for this buffer class */
583 TAILQ_HEAD(mcl_slhead
, mcl_slab
) mtbl_slablist
; /* slab list */
584 mcache_obj_t
*mtbl_cobjlist
; /* composite objects freelist */
585 mb_class_stat_t
*mtbl_stats
; /* statistics fetchable via sysctl */
586 u_int32_t mtbl_maxsize
; /* maximum buffer size */
587 int mtbl_minlimit
; /* minimum allowed */
588 int mtbl_maxlimit
; /* maximum allowed */
589 u_int32_t mtbl_wantpurge
; /* purge during next reclaim */
590 uint32_t mtbl_avgtotal
; /* average total on iOS */
593 #define m_class(c) mbuf_table[c].mtbl_class
594 #define m_cache(c) mbuf_table[c].mtbl_cache
595 #define m_slablist(c) mbuf_table[c].mtbl_slablist
596 #define m_cobjlist(c) mbuf_table[c].mtbl_cobjlist
597 #define m_maxsize(c) mbuf_table[c].mtbl_maxsize
598 #define m_minlimit(c) mbuf_table[c].mtbl_minlimit
599 #define m_maxlimit(c) mbuf_table[c].mtbl_maxlimit
600 #define m_wantpurge(c) mbuf_table[c].mtbl_wantpurge
601 #define m_avgtotal(c) mbuf_table[c].mtbl_avgtotal
602 #define m_cname(c) mbuf_table[c].mtbl_stats->mbcl_cname
603 #define m_size(c) mbuf_table[c].mtbl_stats->mbcl_size
604 #define m_total(c) mbuf_table[c].mtbl_stats->mbcl_total
605 #define m_active(c) mbuf_table[c].mtbl_stats->mbcl_active
606 #define m_infree(c) mbuf_table[c].mtbl_stats->mbcl_infree
607 #define m_slab_cnt(c) mbuf_table[c].mtbl_stats->mbcl_slab_cnt
608 #define m_alloc_cnt(c) mbuf_table[c].mtbl_stats->mbcl_alloc_cnt
609 #define m_free_cnt(c) mbuf_table[c].mtbl_stats->mbcl_free_cnt
610 #define m_notified(c) mbuf_table[c].mtbl_stats->mbcl_notified
611 #define m_purge_cnt(c) mbuf_table[c].mtbl_stats->mbcl_purge_cnt
612 #define m_fail_cnt(c) mbuf_table[c].mtbl_stats->mbcl_fail_cnt
613 #define m_ctotal(c) mbuf_table[c].mtbl_stats->mbcl_ctotal
614 #define m_peak(c) mbuf_table[c].mtbl_stats->mbcl_peak_reported
615 #define m_release_cnt(c) mbuf_table[c].mtbl_stats->mbcl_release_cnt
617 static mbuf_table_t mbuf_table
[] = {
619 * The caches for mbufs, regular clusters and big clusters.
620 * The average total values were based on data gathered by actual
621 * usage patterns on iOS.
623 { MC_MBUF
, NULL
, TAILQ_HEAD_INITIALIZER(m_slablist(MC_MBUF
)),
624 NULL
, NULL
, 0, 0, 0, 0, 3000 },
625 { MC_CL
, NULL
, TAILQ_HEAD_INITIALIZER(m_slablist(MC_CL
)),
626 NULL
, NULL
, 0, 0, 0, 0, 2000 },
627 { MC_BIGCL
, NULL
, TAILQ_HEAD_INITIALIZER(m_slablist(MC_BIGCL
)),
628 NULL
, NULL
, 0, 0, 0, 0, 1000 },
629 { MC_16KCL
, NULL
, TAILQ_HEAD_INITIALIZER(m_slablist(MC_16KCL
)),
630 NULL
, NULL
, 0, 0, 0, 0, 1000 },
632 * The following are special caches; they serve as intermediate
633 * caches backed by the above rudimentary caches. Each object
634 * in the cache is an mbuf with a cluster attached to it. Unlike
635 * the above caches, these intermediate caches do not directly
636 * deal with the slab structures; instead, the constructed
637 * cached elements are simply stored in the freelists.
639 { MC_MBUF_CL
, NULL
, { NULL
, NULL
}, NULL
, NULL
, 0, 0, 0, 0, 2000 },
640 { MC_MBUF_BIGCL
, NULL
, { NULL
, NULL
}, NULL
, NULL
, 0, 0, 0, 0, 1000 },
641 { MC_MBUF_16KCL
, NULL
, { NULL
, NULL
}, NULL
, NULL
, 0, 0, 0, 0, 1000 },
644 #define NELEM(a) (sizeof (a) / sizeof ((a)[0]))
646 static void *mb_waitchan
= &mbuf_table
; /* wait channel for all caches */
647 static int mb_waiters
; /* number of waiters */
649 boolean_t mb_peak_newreport
= FALSE
;
650 boolean_t mb_peak_firstreport
= FALSE
;
652 /* generate a report by default after 1 week of uptime */
653 #define MBUF_PEAK_FIRST_REPORT_THRESHOLD 604800
655 #define MB_WDT_MAXTIME 10 /* # of secs before watchdog panic */
656 static struct timeval mb_wdtstart
; /* watchdog start timestamp */
657 static char *mbuf_dump_buf
;
659 #define MBUF_DUMP_BUF_SIZE 2048
662 * mbuf watchdog is enabled by default on embedded platforms. It is
663 * also toggeable via the kern.ipc.mb_watchdog sysctl.
664 * Garbage collection is also enabled by default on embedded platforms.
665 * mb_drain_maxint controls the amount of time to wait (in seconds) before
666 * consecutive calls to m_drain().
668 static unsigned int mb_watchdog
= 0;
669 static unsigned int mb_drain_maxint
= 0;
672 static u_int32_t mb_redzone_cookie
;
673 static void m_redzone_init(struct mbuf
*);
674 static void m_redzone_verify(struct mbuf
*m
);
676 /* The following are used to serialize m_clalloc() */
677 static boolean_t mb_clalloc_busy
;
678 static void *mb_clalloc_waitchan
= &mb_clalloc_busy
;
679 static int mb_clalloc_waiters
;
681 static void mbuf_mtypes_sync(boolean_t
);
682 static int mbstat_sysctl SYSCTL_HANDLER_ARGS
;
683 static void mbuf_stat_sync(void);
684 static int mb_stat_sysctl SYSCTL_HANDLER_ARGS
;
685 static int mleak_top_trace_sysctl SYSCTL_HANDLER_ARGS
;
686 static int mleak_table_sysctl SYSCTL_HANDLER_ARGS
;
687 static char *mbuf_dump(void);
688 static void mbuf_table_init(void);
689 static inline void m_incref(struct mbuf
*);
690 static inline u_int16_t
m_decref(struct mbuf
*);
691 static int m_clalloc(const u_int32_t
, const int, const u_int32_t
);
692 static void mbuf_worker_thread_init(void);
693 static mcache_obj_t
*slab_alloc(mbuf_class_t
, int);
694 static void slab_free(mbuf_class_t
, mcache_obj_t
*);
695 static unsigned int mbuf_slab_alloc(void *, mcache_obj_t
***,
697 static void mbuf_slab_free(void *, mcache_obj_t
*, int);
698 static void mbuf_slab_audit(void *, mcache_obj_t
*, boolean_t
);
699 static void mbuf_slab_notify(void *, u_int32_t
);
700 static unsigned int cslab_alloc(mbuf_class_t
, mcache_obj_t
***,
702 static unsigned int cslab_free(mbuf_class_t
, mcache_obj_t
*, int);
703 static unsigned int mbuf_cslab_alloc(void *, mcache_obj_t
***,
705 static void mbuf_cslab_free(void *, mcache_obj_t
*, int);
706 static void mbuf_cslab_audit(void *, mcache_obj_t
*, boolean_t
);
707 static int freelist_populate(mbuf_class_t
, unsigned int, int);
708 static void freelist_init(mbuf_class_t
);
709 static boolean_t
mbuf_cached_above(mbuf_class_t
, int);
710 static boolean_t
mbuf_steal(mbuf_class_t
, unsigned int);
711 static void m_reclaim(mbuf_class_t
, unsigned int, boolean_t
);
712 static int m_howmany(int, size_t);
713 static void mbuf_worker_thread(void);
714 static void mbuf_watchdog(void);
715 static boolean_t
mbuf_sleep(mbuf_class_t
, unsigned int, int);
717 static void mcl_audit_init(void *, mcache_audit_t
**, mcache_obj_t
**,
718 size_t, unsigned int);
719 static void mcl_audit_free(void *, unsigned int);
720 static mcache_audit_t
*mcl_audit_buf2mca(mbuf_class_t
, mcache_obj_t
*);
721 static void mcl_audit_mbuf(mcache_audit_t
*, void *, boolean_t
, boolean_t
);
722 static void mcl_audit_cluster(mcache_audit_t
*, void *, size_t, boolean_t
,
724 static void mcl_audit_restore_mbuf(struct mbuf
*, mcache_audit_t
*, boolean_t
);
725 static void mcl_audit_save_mbuf(struct mbuf
*, mcache_audit_t
*);
726 static void mcl_audit_scratch(mcache_audit_t
*);
727 static void mcl_audit_mcheck_panic(struct mbuf
*);
728 static void mcl_audit_verify_nextptr(void *, mcache_audit_t
*);
730 static void mleak_activate(void);
731 static void mleak_logger(u_int32_t
, mcache_obj_t
*, boolean_t
);
732 static boolean_t
mleak_log(uintptr_t *, mcache_obj_t
*, uint32_t, int);
733 static void mleak_free(mcache_obj_t
*);
734 static void mleak_sort_traces(void);
735 static void mleak_update_stats(void);
737 static mcl_slab_t
*slab_get(void *);
738 static void slab_init(mcl_slab_t
*, mbuf_class_t
, u_int32_t
,
739 void *, void *, unsigned int, int, int);
740 static void slab_insert(mcl_slab_t
*, mbuf_class_t
);
741 static void slab_remove(mcl_slab_t
*, mbuf_class_t
);
742 static boolean_t
slab_inrange(mcl_slab_t
*, void *);
743 static void slab_nextptr_panic(mcl_slab_t
*, void *);
744 static void slab_detach(mcl_slab_t
*);
745 static boolean_t
slab_is_detached(mcl_slab_t
*);
747 static int m_copyback0(struct mbuf
**, int, int, const void *, int, int);
748 static struct mbuf
*m_split0(struct mbuf
*, int, int, int);
749 __private_extern__
void mbuf_report_peak_usage(void);
750 static boolean_t
mbuf_report_usage(mbuf_class_t
);
752 /* flags for m_copyback0 */
753 #define M_COPYBACK0_COPYBACK 0x0001 /* copyback from cp */
754 #define M_COPYBACK0_PRESERVE 0x0002 /* preserve original data */
755 #define M_COPYBACK0_COW 0x0004 /* do copy-on-write */
756 #define M_COPYBACK0_EXTEND 0x0008 /* extend chain */
759 * This flag is set for all mbufs that come out of and into the composite
760 * mbuf + cluster caches, i.e. MC_MBUF_CL and MC_MBUF_BIGCL. mbufs that
761 * are marked with such a flag have clusters attached to them, and will be
762 * treated differently when they are freed; instead of being placed back
763 * into the mbuf and cluster freelists, the composite mbuf + cluster objects
764 * are placed back into the appropriate composite cache's freelist, and the
765 * actual freeing is deferred until the composite objects are purged. At
766 * such a time, this flag will be cleared from the mbufs and the objects
767 * will be freed into their own separate freelists.
769 #define EXTF_COMPOSITE 0x1
772 * This flag indicates that the external cluster is read-only, i.e. it is
773 * or was referred to by more than one mbufs. Once set, this flag is never
776 #define EXTF_READONLY 0x2
778 * This flag indicates that the external cluster is paired with the mbuf.
779 * Pairing implies an external free routine defined which will be invoked
780 * when the reference count drops to the minimum at m_free time. This
781 * flag is never cleared.
783 #define EXTF_PAIRED 0x4
786 (EXTF_COMPOSITE | EXTF_READONLY | EXTF_PAIRED)
788 #define MEXT_RFA(m) ((m)->m_ext.ext_refflags)
789 #define MEXT_MINREF(m) (MEXT_RFA(m)->minref)
790 #define MEXT_REF(m) (MEXT_RFA(m)->refcnt)
791 #define MEXT_PREF(m) (MEXT_RFA(m)->prefcnt)
792 #define MEXT_FLAGS(m) (MEXT_RFA(m)->flags)
793 #define MEXT_PRIV(m) (MEXT_RFA(m)->priv)
794 #define MEXT_PMBUF(m) (MEXT_RFA(m)->paired)
795 #define MBUF_IS_COMPOSITE(m) \
796 (MEXT_REF(m) == MEXT_MINREF(m) && \
797 (MEXT_FLAGS(m) & EXTF_MASK) == EXTF_COMPOSITE)
799 * This macro can be used to test if the mbuf is paired to an external
800 * cluster. The test for MEXT_PMBUF being equal to the mbuf in subject
801 * is important, as EXTF_PAIRED alone is insufficient since it is immutable,
802 * and thus survives calls to m_free_paired.
804 #define MBUF_IS_PAIRED(m) \
805 (((m)->m_flags & M_EXT) && \
806 (MEXT_FLAGS(m) & EXTF_MASK) == EXTF_PAIRED && \
807 MEXT_PMBUF(m) == (m))
810 * Macros used to verify the integrity of the mbuf.
812 #define _MCHECK(m) { \
813 if ((m)->m_type != MT_FREE && !MBUF_IS_PAIRED(m)) { \
814 if (mclaudit == NULL) \
815 panic("MCHECK: m_type=%d m=%p", \
816 (u_int16_t)(m)->m_type, m); \
818 mcl_audit_mcheck_panic(m); \
822 #define MBUF_IN_MAP(addr) \
823 ((unsigned char *)(addr) >= mbutl && \
824 (unsigned char *)(addr) < embutl)
826 #define MRANGE(addr) { \
827 if (!MBUF_IN_MAP(addr)) \
828 panic("MRANGE: address out of range 0x%p", addr); \
832 * Macro version of mtod.
834 #define MTOD(m, t) ((t)((m)->m_data))
837 * Macros to obtain page index given a base cluster address
839 #define MTOPG(x) (((unsigned char *)x - mbutl) >> PAGE_SHIFT)
840 #define PGTOM(x) (mbutl + (x << PAGE_SHIFT))
843 * Macro to find the mbuf index relative to a base.
845 #define MBPAGEIDX(c, m) \
846 (((unsigned char *)(m) - (unsigned char *)(c)) >> MSIZESHIFT)
849 * Same thing for 2KB cluster index.
851 #define CLPAGEIDX(c, m) \
852 (((unsigned char *)(m) - (unsigned char *)(c)) >> MCLSHIFT)
855 * Macro to find 4KB cluster index relative to a base
857 #define BCLPAGEIDX(c, m) \
858 (((unsigned char *)(m) - (unsigned char *)(c)) >> MBIGCLSHIFT)
861 * Macros used during mbuf and cluster initialization.
863 #define MBUF_INIT_PKTHDR(m) { \
864 (m)->m_pkthdr.rcvif = NULL; \
865 (m)->m_pkthdr.pkt_hdr = NULL; \
866 (m)->m_pkthdr.len = 0; \
867 (m)->m_pkthdr.csum_flags = 0; \
868 (m)->m_pkthdr.csum_data = 0; \
869 (m)->m_pkthdr.vlan_tag = 0; \
870 m_classifier_init(m, 0); \
876 #define MBUF_INIT(m, pkthdr, type) { \
878 (m)->m_next = (m)->m_nextpkt = NULL; \
880 (m)->m_type = type; \
881 if ((pkthdr) == 0) { \
882 (m)->m_data = (m)->m_dat; \
885 (m)->m_data = (m)->m_pktdat; \
886 (m)->m_flags = M_PKTHDR; \
887 MBUF_INIT_PKTHDR(m); \
891 #define MEXT_INIT(m, buf, size, free, arg, rfa, min, ref, pref, flag, \
893 (m)->m_data = (m)->m_ext.ext_buf = (buf); \
894 (m)->m_flags |= M_EXT; \
895 (m)->m_ext.ext_size = (size); \
896 (m)->m_ext.ext_free = (free); \
897 (m)->m_ext.ext_arg = (arg); \
898 MEXT_RFA(m) = (rfa); \
899 MEXT_MINREF(m) = (min); \
900 MEXT_REF(m) = (ref); \
901 MEXT_PREF(m) = (pref); \
902 MEXT_FLAGS(m) = (flag); \
903 MEXT_PRIV(m) = (priv); \
904 MEXT_PMBUF(m) = (pm); \
907 #define MBUF_CL_INIT(m, buf, rfa, ref, flag) \
908 MEXT_INIT(m, buf, m_maxsize(MC_CL), NULL, NULL, rfa, 0, \
909 ref, 0, flag, 0, NULL)
911 #define MBUF_BIGCL_INIT(m, buf, rfa, ref, flag) \
912 MEXT_INIT(m, buf, m_maxsize(MC_BIGCL), m_bigfree, NULL, rfa, 0, \
913 ref, 0, flag, 0, NULL)
915 #define MBUF_16KCL_INIT(m, buf, rfa, ref, flag) \
916 MEXT_INIT(m, buf, m_maxsize(MC_16KCL), m_16kfree, NULL, rfa, 0, \
917 ref, 0, flag, 0, NULL)
920 * Macro to convert BSD malloc sleep flag to mcache's
922 #define MSLEEPF(f) ((!((f) & M_DONTWAIT)) ? MCR_SLEEP : MCR_NOSLEEP)
925 * The structure that holds all mbuf class statistics exportable via sysctl.
926 * Similar to mbstat structure, the mb_stat structure is protected by the
927 * global mbuf lock. It contains additional information about the classes
928 * that allows for a more accurate view of the state of the allocator.
930 struct mb_stat
*mb_stat
;
931 struct omb_stat
*omb_stat
; /* For backwards compatibility */
933 #define MB_STAT_SIZE(n) \
934 ((size_t)(&((mb_stat_t *)0)->mbs_class[n]))
935 #define OMB_STAT_SIZE(n) \
936 ((size_t)(&((struct omb_stat *)0)->mbs_class[n]))
939 * The legacy structure holding all of the mbuf allocation statistics.
940 * The actual statistics used by the kernel are stored in the mbuf_table
941 * instead, and are updated atomically while the global mbuf lock is held.
942 * They are mirrored in mbstat to support legacy applications (e.g. netstat).
943 * Unlike before, the kernel no longer relies on the contents of mbstat for
944 * its operations (e.g. cluster expansion) because the structure is exposed
945 * to outside and could possibly be modified, therefore making it unsafe.
946 * With the exception of the mbstat.m_mtypes array (see below), all of the
947 * statistics are updated as they change.
949 struct mbstat mbstat
;
951 #define MBSTAT_MTYPES_MAX \
952 (sizeof (mbstat.m_mtypes) / sizeof (mbstat.m_mtypes[0]))
955 * Allocation statistics related to mbuf types (up to MT_MAX-1) are updated
956 * atomically and stored in a per-CPU structure which is lock-free; this is
957 * done in order to avoid writing to the global mbstat data structure which
958 * would cause false sharing. During sysctl request for kern.ipc.mbstat,
959 * the statistics across all CPUs will be converged into the mbstat.m_mtypes
960 * array and returned to the application. Any updates for types greater or
961 * equal than MT_MAX would be done atomically to the mbstat; this slows down
962 * performance but is okay since the kernel uses only up to MT_MAX-1 while
963 * anything beyond that (up to type 255) is considered a corner case.
966 unsigned int cpu_mtypes
[MT_MAX
];
967 } __attribute__((aligned(MAX_CPU_CACHE_LINE_SIZE
), packed
)) mtypes_cpu_t
;
970 mtypes_cpu_t mbs_cpu
[1];
973 static mbuf_mtypes_t
*mbuf_mtypes
; /* per-CPU statistics */
975 #define MBUF_MTYPES_SIZE(n) \
976 ((size_t)(&((mbuf_mtypes_t *)0)->mbs_cpu[n]))
978 #define MTYPES_CPU(p) \
979 ((mtypes_cpu_t *)(void *)((char *)(p) + MBUF_MTYPES_SIZE(cpu_number())))
981 #define mtype_stat_add(type, n) { \
982 if ((unsigned)(type) < MT_MAX) { \
983 mtypes_cpu_t *mbs = MTYPES_CPU(mbuf_mtypes); \
984 atomic_add_32(&mbs->cpu_mtypes[type], n); \
985 } else if ((unsigned)(type) < (unsigned)MBSTAT_MTYPES_MAX) { \
986 atomic_add_16((int16_t *)&mbstat.m_mtypes[type], n); \
990 #define mtype_stat_sub(t, n) mtype_stat_add(t, -(n))
991 #define mtype_stat_inc(t) mtype_stat_add(t, 1)
992 #define mtype_stat_dec(t) mtype_stat_sub(t, 1)
995 mbuf_mtypes_sync(boolean_t locked
)
1001 lck_mtx_assert(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
1003 bzero(&mtc
, sizeof (mtc
));
1004 for (m
= 0; m
< ncpu
; m
++) {
1005 mtypes_cpu_t
*scp
= &mbuf_mtypes
->mbs_cpu
[m
];
1008 bcopy(&scp
->cpu_mtypes
, &temp
.cpu_mtypes
,
1009 sizeof (temp
.cpu_mtypes
));
1011 for (n
= 0; n
< MT_MAX
; n
++)
1012 mtc
.cpu_mtypes
[n
] += temp
.cpu_mtypes
[n
];
1015 lck_mtx_lock(mbuf_mlock
);
1016 for (n
= 0; n
< MT_MAX
; n
++)
1017 mbstat
.m_mtypes
[n
] = mtc
.cpu_mtypes
[n
];
1019 lck_mtx_unlock(mbuf_mlock
);
1023 mbstat_sysctl SYSCTL_HANDLER_ARGS
1025 #pragma unused(oidp, arg1, arg2)
1026 mbuf_mtypes_sync(FALSE
);
1028 return (SYSCTL_OUT(req
, &mbstat
, sizeof (mbstat
)));
1032 mbuf_stat_sync(void)
1034 mb_class_stat_t
*sp
;
1039 lck_mtx_assert(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
1041 for (k
= 0; k
< NELEM(mbuf_table
); k
++) {
1043 ccp
= &cp
->mc_cpu
[0];
1044 bktsize
= ccp
->cc_bktsize
;
1045 sp
= mbuf_table
[k
].mtbl_stats
;
1047 if (cp
->mc_flags
& MCF_NOCPUCACHE
)
1048 sp
->mbcl_mc_state
= MCS_DISABLED
;
1049 else if (cp
->mc_purge_cnt
> 0)
1050 sp
->mbcl_mc_state
= MCS_PURGING
;
1051 else if (bktsize
== 0)
1052 sp
->mbcl_mc_state
= MCS_OFFLINE
;
1054 sp
->mbcl_mc_state
= MCS_ONLINE
;
1056 sp
->mbcl_mc_cached
= 0;
1057 for (m
= 0; m
< ncpu
; m
++) {
1058 ccp
= &cp
->mc_cpu
[m
];
1059 if (ccp
->cc_objs
> 0)
1060 sp
->mbcl_mc_cached
+= ccp
->cc_objs
;
1061 if (ccp
->cc_pobjs
> 0)
1062 sp
->mbcl_mc_cached
+= ccp
->cc_pobjs
;
1064 sp
->mbcl_mc_cached
+= (cp
->mc_full
.bl_total
* bktsize
);
1065 sp
->mbcl_active
= sp
->mbcl_total
- sp
->mbcl_mc_cached
-
1068 sp
->mbcl_mc_waiter_cnt
= cp
->mc_waiter_cnt
;
1069 sp
->mbcl_mc_wretry_cnt
= cp
->mc_wretry_cnt
;
1070 sp
->mbcl_mc_nwretry_cnt
= cp
->mc_nwretry_cnt
;
1072 /* Calculate total count specific to each class */
1073 sp
->mbcl_ctotal
= sp
->mbcl_total
;
1074 switch (m_class(k
)) {
1076 /* Deduct mbufs used in composite caches */
1077 sp
->mbcl_ctotal
-= (m_total(MC_MBUF_CL
) +
1078 m_total(MC_MBUF_BIGCL
));
1082 /* Deduct clusters used in composite cache */
1083 sp
->mbcl_ctotal
-= m_total(MC_MBUF_CL
);
1087 /* Deduct clusters used in composite cache */
1088 sp
->mbcl_ctotal
-= m_total(MC_MBUF_BIGCL
);
1092 /* Deduct clusters used in composite cache */
1093 sp
->mbcl_ctotal
-= m_total(MC_MBUF_16KCL
);
1103 mb_stat_sysctl SYSCTL_HANDLER_ARGS
1105 #pragma unused(oidp, arg1, arg2)
1107 int k
, statsz
, proc64
= proc_is64bit(req
->p
);
1109 lck_mtx_lock(mbuf_mlock
);
1113 struct omb_class_stat
*oc
;
1114 struct mb_class_stat
*c
;
1116 omb_stat
->mbs_cnt
= mb_stat
->mbs_cnt
;
1117 oc
= &omb_stat
->mbs_class
[0];
1118 c
= &mb_stat
->mbs_class
[0];
1119 for (k
= 0; k
< omb_stat
->mbs_cnt
; k
++, oc
++, c
++) {
1120 (void) snprintf(oc
->mbcl_cname
, sizeof (oc
->mbcl_cname
),
1121 "%s", c
->mbcl_cname
);
1122 oc
->mbcl_size
= c
->mbcl_size
;
1123 oc
->mbcl_total
= c
->mbcl_total
;
1124 oc
->mbcl_active
= c
->mbcl_active
;
1125 oc
->mbcl_infree
= c
->mbcl_infree
;
1126 oc
->mbcl_slab_cnt
= c
->mbcl_slab_cnt
;
1127 oc
->mbcl_alloc_cnt
= c
->mbcl_alloc_cnt
;
1128 oc
->mbcl_free_cnt
= c
->mbcl_free_cnt
;
1129 oc
->mbcl_notified
= c
->mbcl_notified
;
1130 oc
->mbcl_purge_cnt
= c
->mbcl_purge_cnt
;
1131 oc
->mbcl_fail_cnt
= c
->mbcl_fail_cnt
;
1132 oc
->mbcl_ctotal
= c
->mbcl_ctotal
;
1133 oc
->mbcl_release_cnt
= c
->mbcl_release_cnt
;
1134 oc
->mbcl_mc_state
= c
->mbcl_mc_state
;
1135 oc
->mbcl_mc_cached
= c
->mbcl_mc_cached
;
1136 oc
->mbcl_mc_waiter_cnt
= c
->mbcl_mc_waiter_cnt
;
1137 oc
->mbcl_mc_wretry_cnt
= c
->mbcl_mc_wretry_cnt
;
1138 oc
->mbcl_mc_nwretry_cnt
= c
->mbcl_mc_nwretry_cnt
;
1141 statsz
= OMB_STAT_SIZE(NELEM(mbuf_table
));
1144 statsz
= MB_STAT_SIZE(NELEM(mbuf_table
));
1147 lck_mtx_unlock(mbuf_mlock
);
1149 return (SYSCTL_OUT(req
, statp
, statsz
));
1153 mleak_top_trace_sysctl SYSCTL_HANDLER_ARGS
1155 #pragma unused(oidp, arg1, arg2)
1158 /* Ensure leak tracing turned on */
1159 if (!mclfindleak
|| !mclexpleak
)
1162 lck_mtx_lock(mleak_lock
);
1163 mleak_update_stats();
1164 i
= SYSCTL_OUT(req
, mleak_stat
, MLEAK_STAT_SIZE(MLEAK_NUM_TRACES
));
1165 lck_mtx_unlock(mleak_lock
);
1171 mleak_table_sysctl SYSCTL_HANDLER_ARGS
1173 #pragma unused(oidp, arg1, arg2)
1176 /* Ensure leak tracing turned on */
1177 if (!mclfindleak
|| !mclexpleak
)
1180 lck_mtx_lock(mleak_lock
);
1181 i
= SYSCTL_OUT(req
, &mleak_table
, sizeof (mleak_table
));
1182 lck_mtx_unlock(mleak_lock
);
1188 m_incref(struct mbuf
*m
)
1191 volatile UInt16
*addr
= (volatile UInt16
*)&MEXT_REF(m
);
1197 } while (!OSCompareAndSwap16(old
, new, addr
));
1200 * If cluster is shared, mark it with (sticky) EXTF_READONLY;
1201 * we don't clear the flag when the refcount goes back to the
1202 * minimum, to simplify code calling m_mclhasreference().
1204 if (new > (MEXT_MINREF(m
) + 1) && !(MEXT_FLAGS(m
) & EXTF_READONLY
))
1205 (void) OSBitOrAtomic16(EXTF_READONLY
, &MEXT_FLAGS(m
));
1208 static inline u_int16_t
1209 m_decref(struct mbuf
*m
)
1212 volatile UInt16
*addr
= (volatile UInt16
*)&MEXT_REF(m
);
1218 } while (!OSCompareAndSwap16(old
, new, addr
));
1224 mbuf_table_init(void)
1226 unsigned int b
, c
, s
;
1227 int m
, config_mbuf_jumbo
= 0;
1229 MALLOC(omb_stat
, struct omb_stat
*, OMB_STAT_SIZE(NELEM(mbuf_table
)),
1230 M_TEMP
, M_WAITOK
| M_ZERO
);
1231 VERIFY(omb_stat
!= NULL
);
1233 MALLOC(mb_stat
, mb_stat_t
*, MB_STAT_SIZE(NELEM(mbuf_table
)),
1234 M_TEMP
, M_WAITOK
| M_ZERO
);
1235 VERIFY(mb_stat
!= NULL
);
1237 mb_stat
->mbs_cnt
= NELEM(mbuf_table
);
1238 for (m
= 0; m
< NELEM(mbuf_table
); m
++)
1239 mbuf_table
[m
].mtbl_stats
= &mb_stat
->mbs_class
[m
];
1241 #if CONFIG_MBUF_JUMBO
1242 config_mbuf_jumbo
= 1;
1243 #endif /* CONFIG_MBUF_JUMBO */
1245 if (config_mbuf_jumbo
== 1 || PAGE_SIZE
== M16KCLBYTES
) {
1247 * Set aside 1/3 of the mbuf cluster map for jumbo
1248 * clusters; we do this only on platforms where jumbo
1249 * cluster pool is enabled.
1251 njcl
= nmbclusters
/ 3;
1252 njclbytes
= M16KCLBYTES
;
1256 * nclusters holds both the 2KB and 4KB pools, so ensure it's
1257 * a multiple of 4KB clusters.
1259 nclusters
= P2ROUNDDOWN(nmbclusters
- njcl
, NCLPG
);
1262 * Each jumbo cluster takes 8 2KB clusters, so make
1263 * sure that the pool size is evenly divisible by 8;
1264 * njcl is in 2KB unit, hence treated as such.
1266 njcl
= P2ROUNDDOWN(nmbclusters
- nclusters
, NCLPJCL
);
1268 /* Update nclusters with rounded down value of njcl */
1269 nclusters
= P2ROUNDDOWN(nmbclusters
- njcl
, NCLPG
);
1273 * njcl is valid only on platforms with 16KB jumbo clusters or
1274 * with 16KB pages, where it is configured to 1/3 of the pool
1275 * size. On these platforms, the remaining is used for 2KB
1276 * and 4KB clusters. On platforms without 16KB jumbo clusters,
1277 * the entire pool is used for both 2KB and 4KB clusters. A 4KB
1278 * cluster can either be splitted into 16 mbufs, or into 2 2KB
1281 * +---+---+------------ ... -----------+------- ... -------+
1282 * | c | b | s | njcl |
1283 * +---+---+------------ ... -----------+------- ... -------+
1285 * 1/32th of the shared region is reserved for pure 2KB and 4KB
1286 * clusters (1/64th each.)
1288 c
= P2ROUNDDOWN((nclusters
>> 6), NCLPG
); /* in 2KB unit */
1289 b
= P2ROUNDDOWN((nclusters
>> (6 + NCLPBGSHIFT
)), NBCLPG
); /* in 4KB unit */
1290 s
= nclusters
- (c
+ (b
<< NCLPBGSHIFT
)); /* in 2KB unit */
1293 * 1/64th (c) is reserved for 2KB clusters.
1295 m_minlimit(MC_CL
) = c
;
1296 m_maxlimit(MC_CL
) = s
+ c
; /* in 2KB unit */
1297 m_maxsize(MC_CL
) = m_size(MC_CL
) = MCLBYTES
;
1298 (void) snprintf(m_cname(MC_CL
), MAX_MBUF_CNAME
, "cl");
1301 * Another 1/64th (b) of the map is reserved for 4KB clusters.
1302 * It cannot be turned into 2KB clusters or mbufs.
1304 m_minlimit(MC_BIGCL
) = b
;
1305 m_maxlimit(MC_BIGCL
) = (s
>> NCLPBGSHIFT
) + b
; /* in 4KB unit */
1306 m_maxsize(MC_BIGCL
) = m_size(MC_BIGCL
) = MBIGCLBYTES
;
1307 (void) snprintf(m_cname(MC_BIGCL
), MAX_MBUF_CNAME
, "bigcl");
1310 * The remaining 31/32ths (s) are all-purpose (mbufs, 2KB, or 4KB)
1312 m_minlimit(MC_MBUF
) = 0;
1313 m_maxlimit(MC_MBUF
) = (s
<< NMBPCLSHIFT
); /* in mbuf unit */
1314 m_maxsize(MC_MBUF
) = m_size(MC_MBUF
) = MSIZE
;
1315 (void) snprintf(m_cname(MC_MBUF
), MAX_MBUF_CNAME
, "mbuf");
1318 * Set limits for the composite classes.
1320 m_minlimit(MC_MBUF_CL
) = 0;
1321 m_maxlimit(MC_MBUF_CL
) = m_maxlimit(MC_CL
);
1322 m_maxsize(MC_MBUF_CL
) = MCLBYTES
;
1323 m_size(MC_MBUF_CL
) = m_size(MC_MBUF
) + m_size(MC_CL
);
1324 (void) snprintf(m_cname(MC_MBUF_CL
), MAX_MBUF_CNAME
, "mbuf_cl");
1326 m_minlimit(MC_MBUF_BIGCL
) = 0;
1327 m_maxlimit(MC_MBUF_BIGCL
) = m_maxlimit(MC_BIGCL
);
1328 m_maxsize(MC_MBUF_BIGCL
) = MBIGCLBYTES
;
1329 m_size(MC_MBUF_BIGCL
) = m_size(MC_MBUF
) + m_size(MC_BIGCL
);
1330 (void) snprintf(m_cname(MC_MBUF_BIGCL
), MAX_MBUF_CNAME
, "mbuf_bigcl");
1333 * And for jumbo classes.
1335 m_minlimit(MC_16KCL
) = 0;
1336 m_maxlimit(MC_16KCL
) = (njcl
>> NCLPJCLSHIFT
); /* in 16KB unit */
1337 m_maxsize(MC_16KCL
) = m_size(MC_16KCL
) = M16KCLBYTES
;
1338 (void) snprintf(m_cname(MC_16KCL
), MAX_MBUF_CNAME
, "16kcl");
1340 m_minlimit(MC_MBUF_16KCL
) = 0;
1341 m_maxlimit(MC_MBUF_16KCL
) = m_maxlimit(MC_16KCL
);
1342 m_maxsize(MC_MBUF_16KCL
) = M16KCLBYTES
;
1343 m_size(MC_MBUF_16KCL
) = m_size(MC_MBUF
) + m_size(MC_16KCL
);
1344 (void) snprintf(m_cname(MC_MBUF_16KCL
), MAX_MBUF_CNAME
, "mbuf_16kcl");
1347 * Initialize the legacy mbstat structure.
1349 bzero(&mbstat
, sizeof (mbstat
));
1350 mbstat
.m_msize
= m_maxsize(MC_MBUF
);
1351 mbstat
.m_mclbytes
= m_maxsize(MC_CL
);
1352 mbstat
.m_minclsize
= MINCLSIZE
;
1353 mbstat
.m_mlen
= MLEN
;
1354 mbstat
.m_mhlen
= MHLEN
;
1355 mbstat
.m_bigmclbytes
= m_maxsize(MC_BIGCL
);
1358 #if defined(__LP64__)
1359 typedef struct ncl_tbl
{
1360 uint64_t nt_maxmem
; /* memory (sane) size */
1361 uint32_t nt_mbpool
; /* mbuf pool size */
1365 static ncl_tbl_t ncl_table
[] = {
1366 { (1ULL << GBSHIFT
) /* 1 GB */, (64 << MBSHIFT
) /* 64 MB */ },
1367 { (1ULL << (GBSHIFT
+ 3)) /* 8 GB */, (96 << MBSHIFT
) /* 96 MB */ },
1368 { (1ULL << (GBSHIFT
+ 4)) /* 16 GB */, (128 << MBSHIFT
) /* 128 MB */ },
1373 static ncl_tbl_t ncl_table_srv
[] = {
1374 { (1ULL << GBSHIFT
) /* 1 GB */, (96 << MBSHIFT
) /* 96 MB */ },
1375 { (1ULL << (GBSHIFT
+ 2)) /* 4 GB */, (128 << MBSHIFT
) /* 128 MB */ },
1376 { (1ULL << (GBSHIFT
+ 3)) /* 8 GB */, (160 << MBSHIFT
) /* 160 MB */ },
1377 { (1ULL << (GBSHIFT
+ 4)) /* 16 GB */, (192 << MBSHIFT
) /* 192 MB */ },
1378 { (1ULL << (GBSHIFT
+ 5)) /* 32 GB */, (256 << MBSHIFT
) /* 256 MB */ },
1379 { (1ULL << (GBSHIFT
+ 6)) /* 64 GB */, (384 << MBSHIFT
) /* 384 MB */ },
1382 #endif /* __LP64__ */
1384 __private_extern__
unsigned int
1385 mbuf_default_ncl(int server
, uint64_t mem
)
1387 #if !defined(__LP64__)
1388 #pragma unused(server)
1391 * 32-bit kernel (default to 64MB of mbuf pool for >= 1GB RAM).
1393 if ((n
= ((mem
/ 16) / MCLBYTES
)) > 32768)
1397 ncl_tbl_t
*tbl
= (server
? ncl_table_srv
: ncl_table
);
1399 * 64-bit kernel (mbuf pool size based on table).
1401 n
= tbl
[0].nt_mbpool
;
1402 for (i
= 0; tbl
[i
].nt_mbpool
!= 0; i
++) {
1403 if (mem
< tbl
[i
].nt_maxmem
)
1405 n
= tbl
[i
].nt_mbpool
;
1408 #endif /* !__LP64__ */
1412 __private_extern__
void
1416 unsigned int initmcl
= 0;
1418 thread_t thread
= THREAD_NULL
;
1420 microuptime(&mb_start
);
1423 * These MBUF_ values must be equal to their private counterparts.
1425 _CASSERT(MBUF_EXT
== M_EXT
);
1426 _CASSERT(MBUF_PKTHDR
== M_PKTHDR
);
1427 _CASSERT(MBUF_EOR
== M_EOR
);
1428 _CASSERT(MBUF_LOOP
== M_LOOP
);
1429 _CASSERT(MBUF_BCAST
== M_BCAST
);
1430 _CASSERT(MBUF_MCAST
== M_MCAST
);
1431 _CASSERT(MBUF_FRAG
== M_FRAG
);
1432 _CASSERT(MBUF_FIRSTFRAG
== M_FIRSTFRAG
);
1433 _CASSERT(MBUF_LASTFRAG
== M_LASTFRAG
);
1434 _CASSERT(MBUF_PROMISC
== M_PROMISC
);
1435 _CASSERT(MBUF_HASFCS
== M_HASFCS
);
1437 _CASSERT(MBUF_TYPE_FREE
== MT_FREE
);
1438 _CASSERT(MBUF_TYPE_DATA
== MT_DATA
);
1439 _CASSERT(MBUF_TYPE_HEADER
== MT_HEADER
);
1440 _CASSERT(MBUF_TYPE_SOCKET
== MT_SOCKET
);
1441 _CASSERT(MBUF_TYPE_PCB
== MT_PCB
);
1442 _CASSERT(MBUF_TYPE_RTABLE
== MT_RTABLE
);
1443 _CASSERT(MBUF_TYPE_HTABLE
== MT_HTABLE
);
1444 _CASSERT(MBUF_TYPE_ATABLE
== MT_ATABLE
);
1445 _CASSERT(MBUF_TYPE_SONAME
== MT_SONAME
);
1446 _CASSERT(MBUF_TYPE_SOOPTS
== MT_SOOPTS
);
1447 _CASSERT(MBUF_TYPE_FTABLE
== MT_FTABLE
);
1448 _CASSERT(MBUF_TYPE_RIGHTS
== MT_RIGHTS
);
1449 _CASSERT(MBUF_TYPE_IFADDR
== MT_IFADDR
);
1450 _CASSERT(MBUF_TYPE_CONTROL
== MT_CONTROL
);
1451 _CASSERT(MBUF_TYPE_OOBDATA
== MT_OOBDATA
);
1453 _CASSERT(MBUF_TSO_IPV4
== CSUM_TSO_IPV4
);
1454 _CASSERT(MBUF_TSO_IPV6
== CSUM_TSO_IPV6
);
1455 _CASSERT(MBUF_CSUM_REQ_SUM16
== CSUM_PARTIAL
);
1456 _CASSERT(MBUF_CSUM_TCP_SUM16
== MBUF_CSUM_REQ_SUM16
);
1457 _CASSERT(MBUF_CSUM_REQ_IP
== CSUM_IP
);
1458 _CASSERT(MBUF_CSUM_REQ_TCP
== CSUM_TCP
);
1459 _CASSERT(MBUF_CSUM_REQ_UDP
== CSUM_UDP
);
1460 _CASSERT(MBUF_CSUM_REQ_TCPIPV6
== CSUM_TCPIPV6
);
1461 _CASSERT(MBUF_CSUM_REQ_UDPIPV6
== CSUM_UDPIPV6
);
1462 _CASSERT(MBUF_CSUM_DID_IP
== CSUM_IP_CHECKED
);
1463 _CASSERT(MBUF_CSUM_IP_GOOD
== CSUM_IP_VALID
);
1464 _CASSERT(MBUF_CSUM_DID_DATA
== CSUM_DATA_VALID
);
1465 _CASSERT(MBUF_CSUM_PSEUDO_HDR
== CSUM_PSEUDO_HDR
);
1467 _CASSERT(MBUF_WAITOK
== M_WAIT
);
1468 _CASSERT(MBUF_DONTWAIT
== M_DONTWAIT
);
1469 _CASSERT(MBUF_COPYALL
== M_COPYALL
);
1471 _CASSERT(MBUF_SC2TC(MBUF_SC_BK_SYS
) == MBUF_TC_BK
);
1472 _CASSERT(MBUF_SC2TC(MBUF_SC_BK
) == MBUF_TC_BK
);
1473 _CASSERT(MBUF_SC2TC(MBUF_SC_BE
) == MBUF_TC_BE
);
1474 _CASSERT(MBUF_SC2TC(MBUF_SC_RD
) == MBUF_TC_BE
);
1475 _CASSERT(MBUF_SC2TC(MBUF_SC_OAM
) == MBUF_TC_BE
);
1476 _CASSERT(MBUF_SC2TC(MBUF_SC_AV
) == MBUF_TC_VI
);
1477 _CASSERT(MBUF_SC2TC(MBUF_SC_RV
) == MBUF_TC_VI
);
1478 _CASSERT(MBUF_SC2TC(MBUF_SC_VI
) == MBUF_TC_VI
);
1479 _CASSERT(MBUF_SC2TC(MBUF_SC_VO
) == MBUF_TC_VO
);
1480 _CASSERT(MBUF_SC2TC(MBUF_SC_CTL
) == MBUF_TC_VO
);
1482 _CASSERT(MBUF_TC2SCVAL(MBUF_TC_BK
) == SCVAL_BK
);
1483 _CASSERT(MBUF_TC2SCVAL(MBUF_TC_BE
) == SCVAL_BE
);
1484 _CASSERT(MBUF_TC2SCVAL(MBUF_TC_VI
) == SCVAL_VI
);
1485 _CASSERT(MBUF_TC2SCVAL(MBUF_TC_VO
) == SCVAL_VO
);
1487 /* Module specific scratch space (32-bit alignment requirement) */
1488 _CASSERT(!(offsetof(struct mbuf
, m_pkthdr
.pkt_mpriv
) %
1489 sizeof (uint32_t)));
1491 /* Initialize random red zone cookie value */
1492 _CASSERT(sizeof (mb_redzone_cookie
) ==
1493 sizeof (((struct pkthdr
*)0)->redzone
));
1494 read_random(&mb_redzone_cookie
, sizeof (mb_redzone_cookie
));
1496 /* Make sure we don't save more than we should */
1497 _CASSERT(MCA_SAVED_MBUF_SIZE
<= sizeof (struct mbuf
));
1499 if (nmbclusters
== 0)
1500 nmbclusters
= NMBCLUSTERS
;
1502 /* This should be a sane (at least even) value by now */
1503 VERIFY(nmbclusters
!= 0 && !(nmbclusters
& 0x1));
1505 /* Setup the mbuf table */
1508 /* Global lock for common layer */
1509 mbuf_mlock_grp_attr
= lck_grp_attr_alloc_init();
1510 mbuf_mlock_grp
= lck_grp_alloc_init("mbuf", mbuf_mlock_grp_attr
);
1511 mbuf_mlock_attr
= lck_attr_alloc_init();
1512 lck_mtx_init(mbuf_mlock
, mbuf_mlock_grp
, mbuf_mlock_attr
);
1515 * Allocate cluster slabs table:
1517 * maxslabgrp = (N * 2048) / (1024 * 1024)
1519 * Where N is nmbclusters rounded up to the nearest 512. This yields
1520 * mcl_slab_g_t units, each one representing a MB of memory.
1523 (P2ROUNDUP(nmbclusters
, (MBSIZE
>> MCLSHIFT
)) << MCLSHIFT
) >> MBSHIFT
;
1524 MALLOC(slabstbl
, mcl_slabg_t
**, maxslabgrp
* sizeof (mcl_slabg_t
*),
1525 M_TEMP
, M_WAITOK
| M_ZERO
);
1526 VERIFY(slabstbl
!= NULL
);
1529 * Allocate audit structures, if needed:
1531 * maxclaudit = (maxslabgrp * 1024 * 1024) / PAGE_SIZE
1533 * This yields mcl_audit_t units, each one representing a page.
1535 PE_parse_boot_argn("mbuf_debug", &mbuf_debug
, sizeof (mbuf_debug
));
1536 mbuf_debug
|= mcache_getflags();
1537 if (mbuf_debug
& MCF_DEBUG
) {
1540 maxclaudit
= ((maxslabgrp
<< MBSHIFT
) >> PAGE_SHIFT
);
1541 MALLOC(mclaudit
, mcl_audit_t
*, maxclaudit
* sizeof (*mclaudit
),
1542 M_TEMP
, M_WAITOK
| M_ZERO
);
1543 VERIFY(mclaudit
!= NULL
);
1544 for (l
= 0, mclad
= mclaudit
; l
< maxclaudit
; l
++) {
1545 MALLOC(mclad
[l
].cl_audit
, mcache_audit_t
**,
1546 NMBPG
* sizeof(mcache_audit_t
*),
1547 M_TEMP
, M_WAITOK
| M_ZERO
);
1548 VERIFY(mclad
[l
].cl_audit
!= NULL
);
1551 mcl_audit_con_cache
= mcache_create("mcl_audit_contents",
1552 AUDIT_CONTENTS_SIZE
, sizeof (u_int64_t
), 0, MCR_SLEEP
);
1553 VERIFY(mcl_audit_con_cache
!= NULL
);
1555 mclverify
= (mbuf_debug
& MCF_VERIFY
);
1556 mcltrace
= (mbuf_debug
& MCF_TRACE
);
1557 mclfindleak
= !(mbuf_debug
& MCF_NOLEAKLOG
);
1558 mclexpleak
= mclfindleak
&& (mbuf_debug
& MCF_EXPLEAKLOG
);
1560 /* Enable mbuf leak logging, with a lock to protect the tables */
1562 mleak_lock_grp_attr
= lck_grp_attr_alloc_init();
1563 mleak_lock_grp
= lck_grp_alloc_init("mleak_lock", mleak_lock_grp_attr
);
1564 mleak_lock_attr
= lck_attr_alloc_init();
1565 lck_mtx_init(mleak_lock
, mleak_lock_grp
, mleak_lock_attr
);
1569 /* Calculate the number of pages assigned to the cluster pool */
1570 mcl_pages
= (nmbclusters
<< MCLSHIFT
) / PAGE_SIZE
;
1571 MALLOC(mcl_paddr
, ppnum_t
*, mcl_pages
* sizeof (ppnum_t
),
1573 VERIFY(mcl_paddr
!= NULL
);
1575 /* Register with the I/O Bus mapper */
1576 mcl_paddr_base
= IOMapperIOVMAlloc(mcl_pages
);
1577 bzero((char *)mcl_paddr
, mcl_pages
* sizeof (ppnum_t
));
1579 embutl
= (mbutl
+ (nmbclusters
* MCLBYTES
));
1580 VERIFY(((embutl
- mbutl
) % MBIGCLBYTES
) == 0);
1582 /* Prime up the freelist */
1583 PE_parse_boot_argn("initmcl", &initmcl
, sizeof (initmcl
));
1585 initmcl
>>= NCLPBGSHIFT
; /* become a 4K unit */
1586 if (initmcl
> m_maxlimit(MC_BIGCL
))
1587 initmcl
= m_maxlimit(MC_BIGCL
);
1589 if (initmcl
< m_minlimit(MC_BIGCL
))
1590 initmcl
= m_minlimit(MC_BIGCL
);
1592 lck_mtx_lock(mbuf_mlock
);
1595 * For classes with non-zero minimum limits, populate their freelists
1596 * so that m_total(class) is at least m_minlimit(class).
1598 VERIFY(m_total(MC_BIGCL
) == 0 && m_minlimit(MC_BIGCL
) != 0);
1599 freelist_populate(m_class(MC_BIGCL
), initmcl
, M_WAIT
);
1600 VERIFY(m_total(MC_BIGCL
) >= m_minlimit(MC_BIGCL
));
1601 freelist_init(m_class(MC_CL
));
1603 for (m
= 0; m
< NELEM(mbuf_table
); m
++) {
1604 /* Make sure we didn't miss any */
1605 VERIFY(m_minlimit(m_class(m
)) == 0 ||
1606 m_total(m_class(m
)) >= m_minlimit(m_class(m
)));
1608 /* populate the initial sizes and report from there on */
1609 m_peak(m_class(m
)) = m_total(m_class(m
));
1611 mb_peak_newreport
= FALSE
;
1613 lck_mtx_unlock(mbuf_mlock
);
1615 (void) kernel_thread_start((thread_continue_t
)mbuf_worker_thread_init
,
1617 thread_deallocate(thread
);
1619 ref_cache
= mcache_create("mext_ref", sizeof (struct ext_ref
),
1622 /* Create the cache for each class */
1623 for (m
= 0; m
< NELEM(mbuf_table
); m
++) {
1624 void *allocfunc
, *freefunc
, *auditfunc
, *logfunc
;
1628 if (m_class(m
) == MC_MBUF_CL
|| m_class(m
) == MC_MBUF_BIGCL
||
1629 m_class(m
) == MC_MBUF_16KCL
) {
1630 allocfunc
= mbuf_cslab_alloc
;
1631 freefunc
= mbuf_cslab_free
;
1632 auditfunc
= mbuf_cslab_audit
;
1633 logfunc
= mleak_logger
;
1635 allocfunc
= mbuf_slab_alloc
;
1636 freefunc
= mbuf_slab_free
;
1637 auditfunc
= mbuf_slab_audit
;
1638 logfunc
= mleak_logger
;
1642 * Disable per-CPU caches for jumbo classes if there
1643 * is no jumbo cluster pool available in the system.
1644 * The cache itself is still created (but will never
1645 * be populated) since it simplifies the code.
1647 if ((m_class(m
) == MC_MBUF_16KCL
|| m_class(m
) == MC_16KCL
) &&
1649 flags
|= MCF_NOCPUCACHE
;
1652 flags
|= MCF_NOLEAKLOG
;
1654 m_cache(m
) = mcache_create_ext(m_cname(m
), m_maxsize(m
),
1655 allocfunc
, freefunc
, auditfunc
, logfunc
, mbuf_slab_notify
,
1656 (void *)(uintptr_t)m
, flags
, MCR_SLEEP
);
1660 * Allocate structure for per-CPU statistics that's aligned
1661 * on the CPU cache boundary; this code assumes that we never
1662 * uninitialize this framework, since the original address
1663 * before alignment is not saved.
1665 ncpu
= ml_get_max_cpus();
1666 MALLOC(buf
, void *, MBUF_MTYPES_SIZE(ncpu
) + CPU_CACHE_LINE_SIZE
,
1668 VERIFY(buf
!= NULL
);
1670 mbuf_mtypes
= (mbuf_mtypes_t
*)P2ROUNDUP((intptr_t)buf
,
1671 CPU_CACHE_LINE_SIZE
);
1672 bzero(mbuf_mtypes
, MBUF_MTYPES_SIZE(ncpu
));
1675 * Set the max limit on sb_max to be 1/16 th of the size of
1676 * memory allocated for mbuf clusters.
1678 high_sb_max
= (nmbclusters
<< (MCLSHIFT
- 4));
1679 if (high_sb_max
< sb_max
) {
1680 /* sb_max is too large for this configuration, scale it down */
1681 if (high_sb_max
> (1 << MBSHIFT
)) {
1682 /* We have atleast 16 M of mbuf pool */
1683 sb_max
= high_sb_max
;
1684 } else if ((nmbclusters
<< MCLSHIFT
) > (1 << MBSHIFT
)) {
1686 * If we have more than 1M of mbufpool, cap the size of
1687 * max sock buf at 1M
1689 sb_max
= high_sb_max
= (1 << MBSHIFT
);
1691 sb_max
= high_sb_max
;
1695 /* allocate space for mbuf_dump_buf */
1696 MALLOC(mbuf_dump_buf
, char *, MBUF_DUMP_BUF_SIZE
, M_TEMP
, M_WAITOK
);
1697 VERIFY(mbuf_dump_buf
!= NULL
);
1699 if (mbuf_debug
& MCF_DEBUG
) {
1700 printf("%s: MLEN %d, MHLEN %d\n", __func__
,
1701 (int)_MLEN
, (int)_MHLEN
);
1704 printf("%s: done [%d MB total pool size, (%d/%d) split]\n", __func__
,
1705 (nmbclusters
<< MCLSHIFT
) >> MBSHIFT
,
1706 (nclusters
<< MCLSHIFT
) >> MBSHIFT
,
1707 (njcl
<< MCLSHIFT
) >> MBSHIFT
);
1709 /* initialize lock form tx completion callback table */
1710 mbuf_tx_compl_tbl_lck_grp_attr
= lck_grp_attr_alloc_init();
1711 if (mbuf_tx_compl_tbl_lck_grp_attr
== NULL
) {
1712 panic("%s: lck_grp_attr_alloc_init failed", __func__
);
1715 mbuf_tx_compl_tbl_lck_grp
= lck_grp_alloc_init("mbuf_tx_compl_tbl",
1716 mbuf_tx_compl_tbl_lck_grp_attr
);
1717 if (mbuf_tx_compl_tbl_lck_grp
== NULL
) {
1718 panic("%s: lck_grp_alloc_init failed", __func__
);
1721 mbuf_tx_compl_tbl_lck_attr
= lck_attr_alloc_init();
1722 if (mbuf_tx_compl_tbl_lck_attr
== NULL
) {
1723 panic("%s: lck_attr_alloc_init failed", __func__
);
1726 lck_rw_init(mbuf_tx_compl_tbl_lock
, mbuf_tx_compl_tbl_lck_grp
,
1727 mbuf_tx_compl_tbl_lck_attr
);
1732 * Obtain a slab of object(s) from the class's freelist.
1734 static mcache_obj_t
*
1735 slab_alloc(mbuf_class_t
class, int wait
)
1740 lck_mtx_assert(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
1742 /* This should always be NULL for us */
1743 VERIFY(m_cobjlist(class) == NULL
);
1746 * Treat composite objects as having longer lifespan by using
1747 * a slab from the reverse direction, in hoping that this could
1748 * reduce the probability of fragmentation for slabs that hold
1749 * more than one buffer chunks (e.g. mbuf slabs). For other
1750 * slabs, this probably doesn't make much of a difference.
1752 if ((class == MC_MBUF
|| class == MC_CL
|| class == MC_BIGCL
)
1753 && (wait
& MCR_COMP
))
1754 sp
= (mcl_slab_t
*)TAILQ_LAST(&m_slablist(class), mcl_slhead
);
1756 sp
= (mcl_slab_t
*)TAILQ_FIRST(&m_slablist(class));
1759 VERIFY(m_infree(class) == 0 && m_slab_cnt(class) == 0);
1760 /* The slab list for this class is empty */
1764 VERIFY(m_infree(class) > 0);
1765 VERIFY(!slab_is_detached(sp
));
1766 VERIFY(sp
->sl_class
== class &&
1767 (sp
->sl_flags
& (SLF_MAPPED
| SLF_PARTIAL
)) == SLF_MAPPED
);
1769 VERIFY(slab_inrange(sp
, buf
) && sp
== slab_get(buf
));
1770 sp
->sl_head
= buf
->obj_next
;
1771 /* Increment slab reference */
1774 VERIFY(sp
->sl_head
!= NULL
|| sp
->sl_refcnt
== sp
->sl_chunks
);
1776 if (sp
->sl_head
!= NULL
&& !slab_inrange(sp
, sp
->sl_head
)) {
1777 slab_nextptr_panic(sp
, sp
->sl_head
);
1778 /* In case sl_head is in the map but not in the slab */
1779 VERIFY(slab_inrange(sp
, sp
->sl_head
));
1783 if (mclaudit
!= NULL
) {
1784 mcache_audit_t
*mca
= mcl_audit_buf2mca(class, buf
);
1785 mca
->mca_uflags
= 0;
1786 /* Save contents on mbuf objects only */
1787 if (class == MC_MBUF
)
1788 mca
->mca_uflags
|= MB_SCVALID
;
1791 if (class == MC_CL
) {
1792 mbstat
.m_clfree
= (--m_infree(MC_CL
)) + m_infree(MC_MBUF_CL
);
1794 * A 2K cluster slab can have at most NCLPG references.
1796 VERIFY(sp
->sl_refcnt
>= 1 && sp
->sl_refcnt
<= NCLPG
&&
1797 sp
->sl_chunks
== NCLPG
&& sp
->sl_len
== PAGE_SIZE
);
1798 VERIFY(sp
->sl_refcnt
< NCLPG
|| sp
->sl_head
== NULL
);
1799 } else if (class == MC_BIGCL
) {
1800 mbstat
.m_bigclfree
= (--m_infree(MC_BIGCL
)) +
1801 m_infree(MC_MBUF_BIGCL
);
1803 * A 4K cluster slab can have NBCLPG references.
1805 VERIFY(sp
->sl_refcnt
>= 1 && sp
->sl_chunks
== NBCLPG
&&
1806 sp
->sl_len
== PAGE_SIZE
&&
1807 (sp
->sl_refcnt
< NBCLPG
|| sp
->sl_head
== NULL
));
1808 } else if (class == MC_16KCL
) {
1812 --m_infree(MC_16KCL
);
1813 VERIFY(sp
->sl_refcnt
== 1 && sp
->sl_chunks
== 1 &&
1814 sp
->sl_len
== m_maxsize(class) && sp
->sl_head
== NULL
);
1816 * Increment 2nd-Nth slab reference, where N is NSLABSP16KB.
1817 * A 16KB big cluster takes NSLABSP16KB slabs, each having at
1820 for (nsp
= sp
, k
= 1; k
< NSLABSP16KB
; k
++) {
1822 /* Next slab must already be present */
1823 VERIFY(nsp
!= NULL
);
1825 VERIFY(!slab_is_detached(nsp
));
1826 VERIFY(nsp
->sl_class
== MC_16KCL
&&
1827 nsp
->sl_flags
== (SLF_MAPPED
| SLF_PARTIAL
) &&
1828 nsp
->sl_refcnt
== 1 && nsp
->sl_chunks
== 0 &&
1829 nsp
->sl_len
== 0 && nsp
->sl_base
== sp
->sl_base
&&
1830 nsp
->sl_head
== NULL
);
1833 VERIFY(class == MC_MBUF
);
1834 --m_infree(MC_MBUF
);
1836 * If auditing is turned on, this check is
1837 * deferred until later in mbuf_slab_audit().
1839 if (mclaudit
== NULL
)
1840 _MCHECK((struct mbuf
*)buf
);
1842 * Since we have incremented the reference count above,
1843 * an mbuf slab (formerly a 4KB cluster slab that was cut
1844 * up into mbufs) must have a reference count between 1
1845 * and NMBPG at this point.
1847 VERIFY(sp
->sl_refcnt
>= 1 && sp
->sl_refcnt
<= NMBPG
&&
1848 sp
->sl_chunks
== NMBPG
&&
1849 sp
->sl_len
== PAGE_SIZE
);
1850 VERIFY(sp
->sl_refcnt
< NMBPG
|| sp
->sl_head
== NULL
);
1853 /* If empty, remove this slab from the class's freelist */
1854 if (sp
->sl_head
== NULL
) {
1855 VERIFY(class != MC_MBUF
|| sp
->sl_refcnt
== NMBPG
);
1856 VERIFY(class != MC_CL
|| sp
->sl_refcnt
== NCLPG
);
1857 VERIFY(class != MC_BIGCL
|| sp
->sl_refcnt
== NBCLPG
);
1858 slab_remove(sp
, class);
1865 * Place a slab of object(s) back into a class's slab list.
1868 slab_free(mbuf_class_t
class, mcache_obj_t
*buf
)
1871 boolean_t reinit_supercl
= false;
1872 mbuf_class_t super_class
;
1874 lck_mtx_assert(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
1876 VERIFY(class != MC_16KCL
|| njcl
> 0);
1877 VERIFY(buf
->obj_next
== NULL
);
1880 VERIFY(sp
->sl_class
== class && slab_inrange(sp
, buf
) &&
1881 (sp
->sl_flags
& (SLF_MAPPED
| SLF_PARTIAL
)) == SLF_MAPPED
);
1883 /* Decrement slab reference */
1886 if (class == MC_CL
) {
1887 VERIFY(IS_P2ALIGNED(buf
, MCLBYTES
));
1889 * A slab that has been splitted for 2KB clusters can have
1890 * at most 1 outstanding reference at this point.
1892 VERIFY(sp
->sl_refcnt
>= 0 && sp
->sl_refcnt
<= (NCLPG
- 1) &&
1893 sp
->sl_chunks
== NCLPG
&& sp
->sl_len
== PAGE_SIZE
);
1894 VERIFY(sp
->sl_refcnt
< (NCLPG
- 1) ||
1895 (slab_is_detached(sp
) && sp
->sl_head
== NULL
));
1896 } else if (class == MC_BIGCL
) {
1897 VERIFY(IS_P2ALIGNED(buf
, MBIGCLBYTES
));
1899 /* A 4KB cluster slab can have NBCLPG references at most */
1900 VERIFY(sp
->sl_refcnt
>= 0 && sp
->sl_chunks
== NBCLPG
);
1901 VERIFY(sp
->sl_refcnt
< (NBCLPG
- 1) ||
1902 (slab_is_detached(sp
) && sp
->sl_head
== NULL
));
1903 } else if (class == MC_16KCL
) {
1907 * A 16KB cluster takes NSLABSP16KB slabs, all must
1908 * now have 0 reference.
1910 VERIFY(IS_P2ALIGNED(buf
, PAGE_SIZE
));
1911 VERIFY(sp
->sl_refcnt
== 0 && sp
->sl_chunks
== 1 &&
1912 sp
->sl_len
== m_maxsize(class) && sp
->sl_head
== NULL
);
1913 VERIFY(slab_is_detached(sp
));
1914 for (nsp
= sp
, k
= 1; k
< NSLABSP16KB
; k
++) {
1916 /* Next slab must already be present */
1917 VERIFY(nsp
!= NULL
);
1919 VERIFY(slab_is_detached(nsp
));
1920 VERIFY(nsp
->sl_class
== MC_16KCL
&&
1921 (nsp
->sl_flags
& (SLF_MAPPED
| SLF_PARTIAL
)) &&
1922 nsp
->sl_refcnt
== 0 && nsp
->sl_chunks
== 0 &&
1923 nsp
->sl_len
== 0 && nsp
->sl_base
== sp
->sl_base
&&
1924 nsp
->sl_head
== NULL
);
1928 * A slab that has been splitted for mbufs has at most
1929 * NMBPG reference counts. Since we have decremented
1930 * one reference above, it must now be between 0 and
1933 VERIFY(class == MC_MBUF
);
1934 VERIFY(sp
->sl_refcnt
>= 0 &&
1935 sp
->sl_refcnt
<= (NMBPG
- 1) &&
1936 sp
->sl_chunks
== NMBPG
&&
1937 sp
->sl_len
== PAGE_SIZE
);
1938 VERIFY(sp
->sl_refcnt
< (NMBPG
- 1) ||
1939 (slab_is_detached(sp
) && sp
->sl_head
== NULL
));
1943 * When auditing is enabled, ensure that the buffer still
1944 * contains the free pattern. Otherwise it got corrupted
1945 * while at the CPU cache layer.
1947 if (mclaudit
!= NULL
) {
1948 mcache_audit_t
*mca
= mcl_audit_buf2mca(class, buf
);
1950 mcache_audit_free_verify(mca
, buf
, 0,
1953 mca
->mca_uflags
&= ~MB_SCVALID
;
1956 if (class == MC_CL
) {
1957 mbstat
.m_clfree
= (++m_infree(MC_CL
)) + m_infree(MC_MBUF_CL
);
1958 buf
->obj_next
= sp
->sl_head
;
1959 } else if (class == MC_BIGCL
) {
1960 mbstat
.m_bigclfree
= (++m_infree(MC_BIGCL
)) +
1961 m_infree(MC_MBUF_BIGCL
);
1962 buf
->obj_next
= sp
->sl_head
;
1963 } else if (class == MC_16KCL
) {
1964 ++m_infree(MC_16KCL
);
1966 ++m_infree(MC_MBUF
);
1967 buf
->obj_next
= sp
->sl_head
;
1972 * If a slab has been split to either one which holds 2KB clusters,
1973 * or one which holds mbufs, turn it back to one which holds a
1974 * 4 or 16 KB cluster depending on the page size.
1976 if (m_maxsize(MC_BIGCL
) == PAGE_SIZE
) {
1977 super_class
= MC_BIGCL
;
1979 VERIFY(PAGE_SIZE
== m_maxsize(MC_16KCL
));
1980 super_class
= MC_16KCL
;
1982 if (class == MC_MBUF
&& sp
->sl_refcnt
== 0 &&
1983 m_total(class) >= (m_minlimit(class) + NMBPG
) &&
1984 m_total(super_class
) < m_maxlimit(super_class
)) {
1987 m_total(MC_MBUF
) -= NMBPG
;
1988 mbstat
.m_mbufs
= m_total(MC_MBUF
);
1989 m_infree(MC_MBUF
) -= NMBPG
;
1990 mtype_stat_add(MT_FREE
, -((unsigned)NMBPG
));
1993 struct mbuf
*m
= sp
->sl_head
;
1995 sp
->sl_head
= m
->m_next
;
1998 reinit_supercl
= true;
1999 } else if (class == MC_CL
&& sp
->sl_refcnt
== 0 &&
2000 m_total(class) >= (m_minlimit(class) + NCLPG
) &&
2001 m_total(super_class
) < m_maxlimit(super_class
)) {
2004 m_total(MC_CL
) -= NCLPG
;
2005 mbstat
.m_clusters
= m_total(MC_CL
);
2006 m_infree(MC_CL
) -= NCLPG
;
2009 union mcluster
*c
= sp
->sl_head
;
2011 sp
->sl_head
= c
->mcl_next
;
2014 reinit_supercl
= true;
2015 } else if (class == MC_BIGCL
&& super_class
!= MC_BIGCL
&&
2016 sp
->sl_refcnt
== 0 &&
2017 m_total(class) >= (m_minlimit(class) + NBCLPG
) &&
2018 m_total(super_class
) < m_maxlimit(super_class
)) {
2021 VERIFY(super_class
== MC_16KCL
);
2022 m_total(MC_BIGCL
) -= NBCLPG
;
2023 mbstat
.m_bigclusters
= m_total(MC_BIGCL
);
2024 m_infree(MC_BIGCL
) -= NBCLPG
;
2027 union mbigcluster
*bc
= sp
->sl_head
;
2029 sp
->sl_head
= bc
->mbc_next
;
2030 bc
->mbc_next
= NULL
;
2032 reinit_supercl
= true;
2035 if (reinit_supercl
) {
2036 VERIFY(sp
->sl_head
== NULL
);
2037 VERIFY(m_total(class) >= m_minlimit(class));
2038 slab_remove(sp
, class);
2040 /* Reinitialize it as a cluster for the super class */
2041 m_total(super_class
)++;
2042 m_infree(super_class
)++;
2043 VERIFY(sp
->sl_flags
== (SLF_MAPPED
| SLF_DETACHED
) &&
2044 sp
->sl_len
== PAGE_SIZE
&& sp
->sl_refcnt
== 0);
2046 slab_init(sp
, super_class
, SLF_MAPPED
, sp
->sl_base
,
2047 sp
->sl_base
, PAGE_SIZE
, 0, 1);
2049 mcache_set_pattern(MCACHE_FREE_PATTERN
,
2050 (caddr_t
)sp
->sl_base
, sp
->sl_len
);
2051 ((mcache_obj_t
*)(sp
->sl_base
))->obj_next
= NULL
;
2053 if (super_class
== MC_BIGCL
) {
2054 mbstat
.m_bigclusters
= m_total(MC_BIGCL
);
2055 mbstat
.m_bigclfree
= m_infree(MC_BIGCL
) +
2056 m_infree(MC_MBUF_BIGCL
);
2059 VERIFY(slab_is_detached(sp
));
2060 VERIFY(m_total(super_class
) <= m_maxlimit(super_class
));
2062 /* And finally switch class */
2063 class = super_class
;
2066 /* Reinsert the slab to the class's slab list */
2067 if (slab_is_detached(sp
))
2068 slab_insert(sp
, class);
2072 * Common allocator for rudimentary objects called by the CPU cache layer
2073 * during an allocation request whenever there is no available element in the
2074 * bucket layer. It returns one or more elements from the appropriate global
2075 * freelist. If the freelist is empty, it will attempt to populate it and
2076 * retry the allocation.
2079 mbuf_slab_alloc(void *arg
, mcache_obj_t
***plist
, unsigned int num
, int wait
)
2081 mbuf_class_t
class = (mbuf_class_t
)arg
;
2082 unsigned int need
= num
;
2083 mcache_obj_t
**list
= *plist
;
2085 ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class));
2088 lck_mtx_lock(mbuf_mlock
);
2091 if ((*list
= slab_alloc(class, wait
)) != NULL
) {
2092 (*list
)->obj_next
= NULL
;
2093 list
= *plist
= &(*list
)->obj_next
;
2097 * If the number of elements in freelist has
2098 * dropped below low watermark, asynchronously
2099 * populate the freelist now rather than doing
2100 * it later when we run out of elements.
2102 if (!mbuf_cached_above(class, wait
) &&
2103 m_infree(class) < (m_total(class) >> 5)) {
2104 (void) freelist_populate(class, 1,
2110 VERIFY(m_infree(class) == 0 || class == MC_CL
);
2112 (void) freelist_populate(class, 1,
2113 (wait
& MCR_NOSLEEP
) ? M_DONTWAIT
: M_WAIT
);
2115 if (m_infree(class) > 0)
2118 /* Check if there's anything at the cache layer */
2119 if (mbuf_cached_above(class, wait
))
2122 /* watchdog checkpoint */
2125 /* We have nothing and cannot block; give up */
2126 if (wait
& MCR_NOSLEEP
) {
2127 if (!(wait
& MCR_TRYHARD
)) {
2128 m_fail_cnt(class)++;
2135 * If the freelist is still empty and the caller is
2136 * willing to be blocked, sleep on the wait channel
2137 * until an element is available. Otherwise, if
2138 * MCR_TRYHARD is set, do our best to satisfy the
2139 * request without having to go to sleep.
2141 if (mbuf_worker_ready
&&
2142 mbuf_sleep(class, need
, wait
))
2145 lck_mtx_assert(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
2149 m_alloc_cnt(class) += num
- need
;
2150 lck_mtx_unlock(mbuf_mlock
);
2152 return (num
- need
);
2156 * Common de-allocator for rudimentary objects called by the CPU cache
2157 * layer when one or more elements need to be returned to the appropriate
2161 mbuf_slab_free(void *arg
, mcache_obj_t
*list
, __unused
int purged
)
2163 mbuf_class_t
class = (mbuf_class_t
)arg
;
2164 mcache_obj_t
*nlist
;
2165 unsigned int num
= 0;
2168 ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class));
2170 lck_mtx_lock(mbuf_mlock
);
2173 nlist
= list
->obj_next
;
2174 list
->obj_next
= NULL
;
2175 slab_free(class, list
);
2177 if ((list
= nlist
) == NULL
)
2180 m_free_cnt(class) += num
;
2182 if ((w
= mb_waiters
) > 0)
2185 lck_mtx_unlock(mbuf_mlock
);
2188 wakeup(mb_waitchan
);
2192 * Common auditor for rudimentary objects called by the CPU cache layer
2193 * during an allocation or free request. For the former, this is called
2194 * after the objects are obtained from either the bucket or slab layer
2195 * and before they are returned to the caller. For the latter, this is
2196 * called immediately during free and before placing the objects into
2197 * the bucket or slab layer.
2200 mbuf_slab_audit(void *arg
, mcache_obj_t
*list
, boolean_t alloc
)
2202 mbuf_class_t
class = (mbuf_class_t
)arg
;
2203 mcache_audit_t
*mca
;
2205 ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class));
2207 while (list
!= NULL
) {
2208 lck_mtx_lock(mbuf_mlock
);
2209 mca
= mcl_audit_buf2mca(class, list
);
2211 /* Do the sanity checks */
2212 if (class == MC_MBUF
) {
2213 mcl_audit_mbuf(mca
, list
, FALSE
, alloc
);
2214 ASSERT(mca
->mca_uflags
& MB_SCVALID
);
2216 mcl_audit_cluster(mca
, list
, m_maxsize(class),
2218 ASSERT(!(mca
->mca_uflags
& MB_SCVALID
));
2220 /* Record this transaction */
2222 mcache_buffer_log(mca
, list
, m_cache(class), &mb_start
);
2225 mca
->mca_uflags
|= MB_INUSE
;
2227 mca
->mca_uflags
&= ~MB_INUSE
;
2228 /* Unpair the object (unconditionally) */
2229 mca
->mca_uptr
= NULL
;
2230 lck_mtx_unlock(mbuf_mlock
);
2232 list
= list
->obj_next
;
2237 * Common notify routine for all caches. It is called by mcache when
2238 * one or more objects get freed. We use this indication to trigger
2239 * the wakeup of any sleeping threads so that they can retry their
2240 * allocation requests.
2243 mbuf_slab_notify(void *arg
, u_int32_t reason
)
2245 mbuf_class_t
class = (mbuf_class_t
)arg
;
2248 ASSERT(MBUF_CLASS_VALID(class));
2250 if (reason
!= MCN_RETRYALLOC
)
2253 lck_mtx_lock(mbuf_mlock
);
2254 if ((w
= mb_waiters
) > 0) {
2255 m_notified(class)++;
2258 lck_mtx_unlock(mbuf_mlock
);
2261 wakeup(mb_waitchan
);
2265 * Obtain object(s) from the composite class's freelist.
2268 cslab_alloc(mbuf_class_t
class, mcache_obj_t
***plist
, unsigned int num
)
2270 unsigned int need
= num
;
2271 mcl_slab_t
*sp
, *clsp
, *nsp
;
2273 mcache_obj_t
**list
= *plist
;
2277 VERIFY(class != MC_MBUF_16KCL
|| njcl
> 0);
2278 lck_mtx_assert(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
2280 /* Get what we can from the freelist */
2281 while ((*list
= m_cobjlist(class)) != NULL
) {
2284 m
= (struct mbuf
*)*list
;
2286 cl
= m
->m_ext
.ext_buf
;
2287 clsp
= slab_get(cl
);
2288 VERIFY(m
->m_flags
== M_EXT
&& cl
!= NULL
);
2289 VERIFY(MEXT_RFA(m
) != NULL
&& MBUF_IS_COMPOSITE(m
));
2291 if (class == MC_MBUF_CL
) {
2292 VERIFY(clsp
->sl_refcnt
>= 1 &&
2293 clsp
->sl_refcnt
<= NCLPG
);
2295 VERIFY(clsp
->sl_refcnt
>= 1 &&
2296 clsp
->sl_refcnt
<= NBCLPG
);
2299 if (class == MC_MBUF_16KCL
) {
2301 for (nsp
= clsp
, k
= 1; k
< NSLABSP16KB
; k
++) {
2303 /* Next slab must already be present */
2304 VERIFY(nsp
!= NULL
);
2305 VERIFY(nsp
->sl_refcnt
== 1);
2309 if ((m_cobjlist(class) = (*list
)->obj_next
) != NULL
&&
2310 !MBUF_IN_MAP(m_cobjlist(class))) {
2311 slab_nextptr_panic(sp
, m_cobjlist(class));
2314 (*list
)->obj_next
= NULL
;
2315 list
= *plist
= &(*list
)->obj_next
;
2320 m_infree(class) -= (num
- need
);
2322 return (num
- need
);
2326 * Place object(s) back into a composite class's freelist.
2329 cslab_free(mbuf_class_t
class, mcache_obj_t
*list
, int purged
)
2331 mcache_obj_t
*o
, *tail
;
2332 unsigned int num
= 0;
2333 struct mbuf
*m
, *ms
;
2334 mcache_audit_t
*mca
= NULL
;
2335 mcache_obj_t
*ref_list
= NULL
;
2336 mcl_slab_t
*clsp
, *nsp
;
2338 mbuf_class_t cl_class
;
2340 ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
2341 VERIFY(class != MC_MBUF_16KCL
|| njcl
> 0);
2342 lck_mtx_assert(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
2344 if (class == MC_MBUF_CL
) {
2346 } else if (class == MC_MBUF_BIGCL
) {
2347 cl_class
= MC_BIGCL
;
2349 VERIFY(class == MC_MBUF_16KCL
);
2350 cl_class
= MC_16KCL
;
2355 while ((m
= ms
= (struct mbuf
*)o
) != NULL
) {
2356 mcache_obj_t
*rfa
, *nexto
= o
->obj_next
;
2358 /* Do the mbuf sanity checks */
2359 if (mclaudit
!= NULL
) {
2360 mca
= mcl_audit_buf2mca(MC_MBUF
, (mcache_obj_t
*)m
);
2362 mcache_audit_free_verify(mca
, m
, 0,
2363 m_maxsize(MC_MBUF
));
2365 ms
= MCA_SAVED_MBUF_PTR(mca
);
2368 /* Do the cluster sanity checks */
2369 cl
= ms
->m_ext
.ext_buf
;
2370 clsp
= slab_get(cl
);
2372 size_t size
= m_maxsize(cl_class
);
2373 mcache_audit_free_verify(mcl_audit_buf2mca(cl_class
,
2374 (mcache_obj_t
*)cl
), cl
, 0, size
);
2376 VERIFY(ms
->m_type
== MT_FREE
);
2377 VERIFY(ms
->m_flags
== M_EXT
);
2378 VERIFY(MEXT_RFA(ms
) != NULL
&& MBUF_IS_COMPOSITE(ms
));
2379 if (cl_class
== MC_CL
) {
2380 VERIFY(clsp
->sl_refcnt
>= 1 &&
2381 clsp
->sl_refcnt
<= NCLPG
);
2383 VERIFY(clsp
->sl_refcnt
>= 1 &&
2384 clsp
->sl_refcnt
<= NBCLPG
);
2386 if (cl_class
== MC_16KCL
) {
2388 for (nsp
= clsp
, k
= 1; k
< NSLABSP16KB
; k
++) {
2390 /* Next slab must already be present */
2391 VERIFY(nsp
!= NULL
);
2392 VERIFY(nsp
->sl_refcnt
== 1);
2397 * If we're asked to purge, restore the actual mbuf using
2398 * contents of the shadow structure (if auditing is enabled)
2399 * and clear EXTF_COMPOSITE flag from the mbuf, as we are
2400 * about to free it and the attached cluster into their caches.
2403 /* Restore constructed mbuf fields */
2404 if (mclaudit
!= NULL
)
2405 mcl_audit_restore_mbuf(m
, mca
, TRUE
);
2412 MEXT_PMBUF(m
) = NULL
;
2414 rfa
= (mcache_obj_t
*)(void *)MEXT_RFA(m
);
2415 rfa
->obj_next
= ref_list
;
2419 m
->m_type
= MT_FREE
;
2420 m
->m_flags
= m
->m_len
= 0;
2421 m
->m_next
= m
->m_nextpkt
= NULL
;
2423 /* Save mbuf fields and make auditing happy */
2424 if (mclaudit
!= NULL
)
2425 mcl_audit_mbuf(mca
, o
, FALSE
, FALSE
);
2427 VERIFY(m_total(class) > 0);
2432 slab_free(MC_MBUF
, o
);
2434 /* And free the cluster */
2435 ((mcache_obj_t
*)cl
)->obj_next
= NULL
;
2436 if (class == MC_MBUF_CL
)
2437 slab_free(MC_CL
, cl
);
2438 else if (class == MC_MBUF_BIGCL
)
2439 slab_free(MC_BIGCL
, cl
);
2441 slab_free(MC_16KCL
, cl
);
2450 tail
->obj_next
= m_cobjlist(class);
2451 m_cobjlist(class) = list
;
2452 m_infree(class) += num
;
2453 } else if (ref_list
!= NULL
) {
2454 mcache_free_ext(ref_cache
, ref_list
);
2461 * Common allocator for composite objects called by the CPU cache layer
2462 * during an allocation request whenever there is no available element in
2463 * the bucket layer. It returns one or more composite elements from the
2464 * appropriate global freelist. If the freelist is empty, it will attempt
2465 * to obtain the rudimentary objects from their caches and construct them
2466 * into composite mbuf + cluster objects.
2469 mbuf_cslab_alloc(void *arg
, mcache_obj_t
***plist
, unsigned int needed
,
2472 mbuf_class_t
class = (mbuf_class_t
)arg
;
2473 mbuf_class_t cl_class
= 0;
2474 unsigned int num
= 0, cnum
= 0, want
= needed
;
2475 mcache_obj_t
*ref_list
= NULL
;
2476 mcache_obj_t
*mp_list
= NULL
;
2477 mcache_obj_t
*clp_list
= NULL
;
2478 mcache_obj_t
**list
;
2479 struct ext_ref
*rfa
;
2483 ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
2486 VERIFY(class != MC_MBUF_16KCL
|| njcl
> 0);
2488 /* There should not be any slab for this class */
2489 VERIFY(m_slab_cnt(class) == 0 &&
2490 m_slablist(class).tqh_first
== NULL
&&
2491 m_slablist(class).tqh_last
== NULL
);
2493 lck_mtx_lock(mbuf_mlock
);
2495 /* Try using the freelist first */
2496 num
= cslab_alloc(class, plist
, needed
);
2498 if (num
== needed
) {
2499 m_alloc_cnt(class) += num
;
2500 lck_mtx_unlock(mbuf_mlock
);
2504 lck_mtx_unlock(mbuf_mlock
);
2507 * We could not satisfy the request using the freelist alone;
2508 * allocate from the appropriate rudimentary caches and use
2509 * whatever we can get to construct the composite objects.
2514 * Mark these allocation requests as coming from a composite cache.
2515 * Also, if the caller is willing to be blocked, mark the request
2516 * with MCR_FAILOK such that we don't end up sleeping at the mbuf
2517 * slab layer waiting for the individual object when one or more
2518 * of the already-constructed composite objects are available.
2521 if (!(wait
& MCR_NOSLEEP
))
2524 /* allocate mbufs */
2525 needed
= mcache_alloc_ext(m_cache(MC_MBUF
), &mp_list
, needed
, wait
);
2527 ASSERT(mp_list
== NULL
);
2531 /* allocate clusters */
2532 if (class == MC_MBUF_CL
) {
2534 } else if (class == MC_MBUF_BIGCL
) {
2535 cl_class
= MC_BIGCL
;
2537 VERIFY(class == MC_MBUF_16KCL
);
2538 cl_class
= MC_16KCL
;
2540 needed
= mcache_alloc_ext(m_cache(cl_class
), &clp_list
, needed
, wait
);
2542 ASSERT(clp_list
== NULL
);
2546 needed
= mcache_alloc_ext(ref_cache
, &ref_list
, needed
, wait
);
2548 ASSERT(ref_list
== NULL
);
2553 * By this time "needed" is MIN(mbuf, cluster, ref). Any left
2554 * overs will get freed accordingly before we return to caller.
2556 for (cnum
= 0; cnum
< needed
; cnum
++) {
2559 m
= ms
= (struct mbuf
*)mp_list
;
2560 mp_list
= mp_list
->obj_next
;
2563 clp_list
= clp_list
->obj_next
;
2564 ((mcache_obj_t
*)cl
)->obj_next
= NULL
;
2566 rfa
= (struct ext_ref
*)ref_list
;
2567 ref_list
= ref_list
->obj_next
;
2568 ((mcache_obj_t
*)(void *)rfa
)->obj_next
= NULL
;
2571 * If auditing is enabled, construct the shadow mbuf
2572 * in the audit structure instead of in the actual one.
2573 * mbuf_cslab_audit() will take care of restoring the
2574 * contents after the integrity check.
2576 if (mclaudit
!= NULL
) {
2577 mcache_audit_t
*mca
, *cl_mca
;
2579 lck_mtx_lock(mbuf_mlock
);
2580 mca
= mcl_audit_buf2mca(MC_MBUF
, (mcache_obj_t
*)m
);
2581 ms
= MCA_SAVED_MBUF_PTR(mca
);
2582 cl_mca
= mcl_audit_buf2mca(cl_class
,
2583 (mcache_obj_t
*)cl
);
2586 * Pair them up. Note that this is done at the time
2587 * the mbuf+cluster objects are constructed. This
2588 * information should be treated as "best effort"
2589 * debugging hint since more than one mbufs can refer
2590 * to a cluster. In that case, the cluster might not
2591 * be freed along with the mbuf it was paired with.
2593 mca
->mca_uptr
= cl_mca
;
2594 cl_mca
->mca_uptr
= mca
;
2596 ASSERT(mca
->mca_uflags
& MB_SCVALID
);
2597 ASSERT(!(cl_mca
->mca_uflags
& MB_SCVALID
));
2598 lck_mtx_unlock(mbuf_mlock
);
2600 /* Technically, they are in the freelist */
2604 mcache_set_pattern(MCACHE_FREE_PATTERN
, m
,
2605 m_maxsize(MC_MBUF
));
2607 if (class == MC_MBUF_CL
)
2608 size
= m_maxsize(MC_CL
);
2609 else if (class == MC_MBUF_BIGCL
)
2610 size
= m_maxsize(MC_BIGCL
);
2612 size
= m_maxsize(MC_16KCL
);
2614 mcache_set_pattern(MCACHE_FREE_PATTERN
, cl
,
2619 MBUF_INIT(ms
, 0, MT_FREE
);
2620 if (class == MC_MBUF_16KCL
) {
2621 MBUF_16KCL_INIT(ms
, cl
, rfa
, 0, EXTF_COMPOSITE
);
2622 } else if (class == MC_MBUF_BIGCL
) {
2623 MBUF_BIGCL_INIT(ms
, cl
, rfa
, 0, EXTF_COMPOSITE
);
2625 MBUF_CL_INIT(ms
, cl
, rfa
, 0, EXTF_COMPOSITE
);
2627 VERIFY(ms
->m_flags
== M_EXT
);
2628 VERIFY(MEXT_RFA(ms
) != NULL
&& MBUF_IS_COMPOSITE(ms
));
2630 *list
= (mcache_obj_t
*)m
;
2631 (*list
)->obj_next
= NULL
;
2632 list
= *plist
= &(*list
)->obj_next
;
2637 * Free up what's left of the above.
2639 if (mp_list
!= NULL
)
2640 mcache_free_ext(m_cache(MC_MBUF
), mp_list
);
2641 if (clp_list
!= NULL
)
2642 mcache_free_ext(m_cache(cl_class
), clp_list
);
2643 if (ref_list
!= NULL
)
2644 mcache_free_ext(ref_cache
, ref_list
);
2646 lck_mtx_lock(mbuf_mlock
);
2647 if (num
> 0 || cnum
> 0) {
2648 m_total(class) += cnum
;
2649 VERIFY(m_total(class) <= m_maxlimit(class));
2650 m_alloc_cnt(class) += num
+ cnum
;
2652 if ((num
+ cnum
) < want
)
2653 m_fail_cnt(class) += (want
- (num
+ cnum
));
2654 lck_mtx_unlock(mbuf_mlock
);
2656 return (num
+ cnum
);
2660 * Common de-allocator for composite objects called by the CPU cache
2661 * layer when one or more elements need to be returned to the appropriate
2665 mbuf_cslab_free(void *arg
, mcache_obj_t
*list
, int purged
)
2667 mbuf_class_t
class = (mbuf_class_t
)arg
;
2671 ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
2673 lck_mtx_lock(mbuf_mlock
);
2675 num
= cslab_free(class, list
, purged
);
2676 m_free_cnt(class) += num
;
2678 if ((w
= mb_waiters
) > 0)
2681 lck_mtx_unlock(mbuf_mlock
);
2684 wakeup(mb_waitchan
);
2688 * Common auditor for composite objects called by the CPU cache layer
2689 * during an allocation or free request. For the former, this is called
2690 * after the objects are obtained from either the bucket or slab layer
2691 * and before they are returned to the caller. For the latter, this is
2692 * called immediately during free and before placing the objects into
2693 * the bucket or slab layer.
2696 mbuf_cslab_audit(void *arg
, mcache_obj_t
*list
, boolean_t alloc
)
2698 mbuf_class_t
class = (mbuf_class_t
)arg
, cl_class
;
2699 mcache_audit_t
*mca
;
2700 struct mbuf
*m
, *ms
;
2701 mcl_slab_t
*clsp
, *nsp
;
2705 ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
2706 if (class == MC_MBUF_CL
)
2708 else if (class == MC_MBUF_BIGCL
)
2709 cl_class
= MC_BIGCL
;
2711 cl_class
= MC_16KCL
;
2712 cl_size
= m_maxsize(cl_class
);
2714 while ((m
= ms
= (struct mbuf
*)list
) != NULL
) {
2715 lck_mtx_lock(mbuf_mlock
);
2716 /* Do the mbuf sanity checks and record its transaction */
2717 mca
= mcl_audit_buf2mca(MC_MBUF
, (mcache_obj_t
*)m
);
2718 mcl_audit_mbuf(mca
, m
, TRUE
, alloc
);
2720 mcache_buffer_log(mca
, m
, m_cache(class), &mb_start
);
2723 mca
->mca_uflags
|= MB_COMP_INUSE
;
2725 mca
->mca_uflags
&= ~MB_COMP_INUSE
;
2728 * Use the shadow mbuf in the audit structure if we are
2729 * freeing, since the contents of the actual mbuf has been
2730 * pattern-filled by the above call to mcl_audit_mbuf().
2732 if (!alloc
&& mclverify
)
2733 ms
= MCA_SAVED_MBUF_PTR(mca
);
2735 /* Do the cluster sanity checks and record its transaction */
2736 cl
= ms
->m_ext
.ext_buf
;
2737 clsp
= slab_get(cl
);
2738 VERIFY(ms
->m_flags
== M_EXT
&& cl
!= NULL
);
2739 VERIFY(MEXT_RFA(ms
) != NULL
&& MBUF_IS_COMPOSITE(ms
));
2740 if (class == MC_MBUF_CL
)
2741 VERIFY(clsp
->sl_refcnt
>= 1 &&
2742 clsp
->sl_refcnt
<= NCLPG
);
2744 VERIFY(clsp
->sl_refcnt
>= 1 &&
2745 clsp
->sl_refcnt
<= NBCLPG
);
2747 if (class == MC_MBUF_16KCL
) {
2749 for (nsp
= clsp
, k
= 1; k
< NSLABSP16KB
; k
++) {
2751 /* Next slab must already be present */
2752 VERIFY(nsp
!= NULL
);
2753 VERIFY(nsp
->sl_refcnt
== 1);
2758 mca
= mcl_audit_buf2mca(cl_class
, cl
);
2759 mcl_audit_cluster(mca
, cl
, cl_size
, alloc
, FALSE
);
2761 mcache_buffer_log(mca
, cl
, m_cache(class), &mb_start
);
2764 mca
->mca_uflags
|= MB_COMP_INUSE
;
2766 mca
->mca_uflags
&= ~MB_COMP_INUSE
;
2767 lck_mtx_unlock(mbuf_mlock
);
2769 list
= list
->obj_next
;
2774 * Allocate some number of mbuf clusters and place on cluster freelist.
2777 m_clalloc(const u_int32_t num
, const int wait
, const u_int32_t bufsize
)
2781 int numpages
= 0, large_buffer
;
2782 vm_offset_t page
= 0;
2783 mcache_audit_t
*mca_list
= NULL
;
2784 mcache_obj_t
*con_list
= NULL
;
2788 /* Set if a buffer allocation needs allocation of multiple pages */
2789 large_buffer
= ((bufsize
== m_maxsize(MC_16KCL
)) &&
2790 PAGE_SIZE
< M16KCLBYTES
);
2791 VERIFY(bufsize
== m_maxsize(MC_BIGCL
) ||
2792 bufsize
== m_maxsize(MC_16KCL
));
2794 VERIFY((bufsize
== PAGE_SIZE
) ||
2795 (bufsize
> PAGE_SIZE
&& bufsize
== m_maxsize(MC_16KCL
)));
2797 if (bufsize
== m_size(MC_BIGCL
))
2802 lck_mtx_assert(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
2805 * Multiple threads may attempt to populate the cluster map one
2806 * after another. Since we drop the lock below prior to acquiring
2807 * the physical page(s), our view of the cluster map may no longer
2808 * be accurate, and we could end up over-committing the pages beyond
2809 * the maximum allowed for each class. To prevent it, this entire
2810 * operation (including the page mapping) is serialized.
2812 while (mb_clalloc_busy
) {
2813 mb_clalloc_waiters
++;
2814 (void) msleep(mb_clalloc_waitchan
, mbuf_mlock
,
2815 (PZERO
-1), "m_clalloc", NULL
);
2816 lck_mtx_assert(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
2819 /* We are busy now; tell everyone else to go away */
2820 mb_clalloc_busy
= TRUE
;
2823 * Honor the caller's wish to block or not block. We have a way
2824 * to grow the pool asynchronously using the mbuf worker thread.
2826 i
= m_howmany(num
, bufsize
);
2827 if (i
== 0 || (wait
& M_DONTWAIT
))
2830 lck_mtx_unlock(mbuf_mlock
);
2832 size
= round_page(i
* bufsize
);
2833 page
= kmem_mb_alloc(mb_map
, size
, large_buffer
);
2836 * If we did ask for "n" 16KB physically contiguous chunks
2837 * and didn't get them, then please try again without this
2840 if (large_buffer
&& page
== 0)
2841 page
= kmem_mb_alloc(mb_map
, size
, 0);
2844 if (bufsize
== m_maxsize(MC_BIGCL
)) {
2845 /* Try for 1 page if failed */
2847 page
= kmem_mb_alloc(mb_map
, size
, 0);
2851 lck_mtx_lock(mbuf_mlock
);
2856 VERIFY(IS_P2ALIGNED(page
, PAGE_SIZE
));
2857 numpages
= size
/ PAGE_SIZE
;
2859 /* If auditing is enabled, allocate the audit structures now */
2860 if (mclaudit
!= NULL
) {
2864 * Yes, I realize this is a waste of memory for clusters
2865 * that never get transformed into mbufs, as we may end
2866 * up with NMBPG-1 unused audit structures per cluster.
2867 * But doing so tremendously simplifies the allocation
2868 * strategy, since at this point we are not holding the
2869 * mbuf lock and the caller is okay to be blocked.
2871 if (bufsize
== PAGE_SIZE
) {
2872 needed
= numpages
* NMBPG
;
2874 i
= mcache_alloc_ext(mcl_audit_con_cache
,
2875 &con_list
, needed
, MCR_SLEEP
);
2877 VERIFY(con_list
!= NULL
&& i
== needed
);
2880 * if multiple 4K pages are being used for a
2883 needed
= numpages
/ NSLABSP16KB
;
2886 i
= mcache_alloc_ext(mcache_audit_cache
,
2887 (mcache_obj_t
**)&mca_list
, needed
, MCR_SLEEP
);
2889 VERIFY(mca_list
!= NULL
&& i
== needed
);
2892 lck_mtx_lock(mbuf_mlock
);
2894 for (i
= 0; i
< numpages
; i
++, page
+= PAGE_SIZE
) {
2896 ((unsigned char *)page
- mbutl
) >> PAGE_SHIFT
;
2897 ppnum_t new_page
= pmap_find_phys(kernel_pmap
, page
);
2900 * If there is a mapper the appropriate I/O page is
2901 * returned; zero out the page to discard its past
2902 * contents to prevent exposing leftover kernel memory.
2904 VERIFY(offset
< mcl_pages
);
2905 if (mcl_paddr_base
!= 0) {
2906 bzero((void *)(uintptr_t) page
, PAGE_SIZE
);
2907 new_page
= IOMapperInsertPage(mcl_paddr_base
,
2910 mcl_paddr
[offset
] = new_page
;
2912 /* Pattern-fill this fresh page */
2914 mcache_set_pattern(MCACHE_FREE_PATTERN
,
2915 (caddr_t
)page
, PAGE_SIZE
);
2917 if (bufsize
== PAGE_SIZE
) {
2919 /* One for the entire page */
2920 sp
= slab_get((void *)page
);
2921 if (mclaudit
!= NULL
) {
2922 mcl_audit_init((void *)page
,
2923 &mca_list
, &con_list
,
2924 AUDIT_CONTENTS_SIZE
, NMBPG
);
2926 VERIFY(sp
->sl_refcnt
== 0 && sp
->sl_flags
== 0);
2927 slab_init(sp
, class, SLF_MAPPED
, (void *)page
,
2928 (void *)page
, PAGE_SIZE
, 0, 1);
2929 buf
= (mcache_obj_t
*)page
;
2930 buf
->obj_next
= NULL
;
2932 /* Insert this slab */
2933 slab_insert(sp
, class);
2935 /* Update stats now since slab_get drops the lock */
2938 VERIFY(m_total(class) <= m_maxlimit(class));
2939 if (class == MC_BIGCL
) {
2940 mbstat
.m_bigclfree
= m_infree(MC_BIGCL
) +
2941 m_infree(MC_MBUF_BIGCL
);
2942 mbstat
.m_bigclusters
= m_total(MC_BIGCL
);
2945 } else if ((bufsize
> PAGE_SIZE
) &&
2946 (i
% NSLABSP16KB
) == 0) {
2947 union m16kcluster
*m16kcl
= (union m16kcluster
*)page
;
2951 /* One for the entire 16KB */
2952 sp
= slab_get(m16kcl
);
2953 if (mclaudit
!= NULL
)
2954 mcl_audit_init(m16kcl
, &mca_list
, NULL
, 0, 1);
2956 VERIFY(sp
->sl_refcnt
== 0 && sp
->sl_flags
== 0);
2957 slab_init(sp
, MC_16KCL
, SLF_MAPPED
,
2958 m16kcl
, m16kcl
, bufsize
, 0, 1);
2959 m16kcl
->m16kcl_next
= NULL
;
2962 * 2nd-Nth page's slab is part of the first one,
2963 * where N is NSLABSP16KB.
2965 for (k
= 1; k
< NSLABSP16KB
; k
++) {
2966 nsp
= slab_get(((union mbigcluster
*)page
) + k
);
2967 VERIFY(nsp
->sl_refcnt
== 0 &&
2968 nsp
->sl_flags
== 0);
2969 slab_init(nsp
, MC_16KCL
,
2970 SLF_MAPPED
| SLF_PARTIAL
,
2971 m16kcl
, NULL
, 0, 0, 0);
2973 /* Insert this slab */
2974 slab_insert(sp
, MC_16KCL
);
2976 /* Update stats now since slab_get drops the lock */
2977 ++m_infree(MC_16KCL
);
2978 ++m_total(MC_16KCL
);
2979 VERIFY(m_total(MC_16KCL
) <= m_maxlimit(MC_16KCL
));
2983 VERIFY(mca_list
== NULL
&& con_list
== NULL
);
2985 if (!mb_peak_newreport
&& mbuf_report_usage(class))
2986 mb_peak_newreport
= TRUE
;
2988 /* We're done; let others enter */
2989 mb_clalloc_busy
= FALSE
;
2990 if (mb_clalloc_waiters
> 0) {
2991 mb_clalloc_waiters
= 0;
2992 wakeup(mb_clalloc_waitchan
);
2997 lck_mtx_assert(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
2999 /* We're done; let others enter */
3000 mb_clalloc_busy
= FALSE
;
3001 if (mb_clalloc_waiters
> 0) {
3002 mb_clalloc_waiters
= 0;
3003 wakeup(mb_clalloc_waitchan
);
3007 * When non-blocking we kick a thread if we have to grow the
3008 * pool or if the number of free clusters is less than requested.
3010 if (i
> 0 && mbuf_worker_ready
&& mbuf_worker_needs_wakeup
) {
3011 wakeup((caddr_t
)&mbuf_worker_needs_wakeup
);
3012 mbuf_worker_needs_wakeup
= FALSE
;
3014 if (class == MC_BIGCL
) {
3017 * Remember total number of 4KB clusters needed
3020 i
+= m_total(MC_BIGCL
);
3021 if (i
> mbuf_expand_big
) {
3022 mbuf_expand_big
= i
;
3025 if (m_infree(MC_BIGCL
) >= num
)
3030 * Remember total number of 16KB clusters needed
3033 i
+= m_total(MC_16KCL
);
3034 if (i
> mbuf_expand_16k
) {
3035 mbuf_expand_16k
= i
;
3038 if (m_infree(MC_16KCL
) >= num
)
3045 * Populate the global freelist of the corresponding buffer class.
3048 freelist_populate(mbuf_class_t
class, unsigned int num
, int wait
)
3050 mcache_obj_t
*o
= NULL
;
3051 int i
, numpages
= 0, count
;
3052 mbuf_class_t super_class
;
3054 VERIFY(class == MC_MBUF
|| class == MC_CL
|| class == MC_BIGCL
||
3057 lck_mtx_assert(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
3059 VERIFY(PAGE_SIZE
== m_maxsize(MC_BIGCL
) ||
3060 PAGE_SIZE
== m_maxsize(MC_16KCL
));
3062 if (m_maxsize(class) >= PAGE_SIZE
)
3063 return(m_clalloc(num
, wait
, m_maxsize(class)) != 0);
3066 * The rest of the function will allocate pages and will slice
3067 * them up into the right size
3070 numpages
= (num
* m_size(class) + PAGE_SIZE
- 1) / PAGE_SIZE
;
3072 /* Currently assume that pages are 4K or 16K */
3073 if (PAGE_SIZE
== m_maxsize(MC_BIGCL
))
3074 super_class
= MC_BIGCL
;
3076 super_class
= MC_16KCL
;
3078 i
= m_clalloc(numpages
, wait
, m_maxsize(super_class
));
3080 /* Respect the minimum limit of super class */
3081 if (m_total(super_class
) == m_maxlimit(super_class
) &&
3082 m_infree(super_class
) <= m_minlimit(super_class
))
3083 if (wait
& MCR_COMP
)
3086 /* how many objects will we cut the page into? */
3087 int numobj
= PAGE_SIZE
/ m_maxsize(class);
3089 for (count
= 0; count
< numpages
; count
++) {
3090 /* respect totals, minlimit, maxlimit */
3091 if (m_total(super_class
) <= m_minlimit(super_class
) ||
3092 m_total(class) >= m_maxlimit(class))
3095 if ((o
= slab_alloc(super_class
, wait
)) == NULL
)
3098 struct mbuf
*m
= (struct mbuf
*)o
;
3099 union mcluster
*c
= (union mcluster
*)o
;
3100 union mbigcluster
*mbc
= (union mbigcluster
*)o
;
3101 mcl_slab_t
*sp
= slab_get(o
);
3102 mcache_audit_t
*mca
= NULL
;
3105 * since one full page will be converted to MC_MBUF or
3106 * MC_CL, verify that the reference count will match that
3109 VERIFY(sp
->sl_refcnt
== 1 && slab_is_detached(sp
));
3110 VERIFY((sp
->sl_flags
& (SLF_MAPPED
| SLF_PARTIAL
)) == SLF_MAPPED
);
3112 * Make sure that the cluster is unmolested
3116 mca
= mcl_audit_buf2mca(super_class
,
3118 mcache_audit_free_verify(mca
,
3119 (mcache_obj_t
*)o
, 0, m_maxsize(super_class
));
3122 /* Reinitialize it as an mbuf or 2K or 4K slab */
3123 slab_init(sp
, class, sp
->sl_flags
,
3124 sp
->sl_base
, NULL
, PAGE_SIZE
, 0, numobj
);
3126 VERIFY(sp
->sl_head
== NULL
);
3128 VERIFY(m_total(super_class
) >= 1);
3129 m_total(super_class
)--;
3131 if (super_class
== MC_BIGCL
)
3132 mbstat
.m_bigclusters
= m_total(MC_BIGCL
);
3134 m_total(class) += numobj
;
3135 m_infree(class) += numobj
;
3137 if (!mb_peak_newreport
&& mbuf_report_usage(class))
3138 mb_peak_newreport
= TRUE
;
3141 if (class == MC_MBUF
) {
3142 mbstat
.m_mbufs
= m_total(MC_MBUF
);
3143 mtype_stat_add(MT_FREE
, NMBPG
);
3146 * If auditing is enabled, construct the
3147 * shadow mbuf in the audit structure
3148 * instead of the actual one.
3149 * mbuf_slab_audit() will take care of
3150 * restoring the contents after the
3153 if (mclaudit
!= NULL
) {
3155 mca
= mcl_audit_buf2mca(MC_MBUF
,
3157 ms
= MCA_SAVED_MBUF_PTR(mca
);
3158 ms
->m_type
= MT_FREE
;
3160 m
->m_type
= MT_FREE
;
3162 m
->m_next
= sp
->sl_head
;
3163 sp
->sl_head
= (void *)m
++;
3165 } else if (class == MC_CL
) { /* MC_CL */
3167 m_infree(MC_CL
) + m_infree(MC_MBUF_CL
);
3168 mbstat
.m_clusters
= m_total(MC_CL
);
3170 c
->mcl_next
= sp
->sl_head
;
3171 sp
->sl_head
= (void *)c
++;
3174 VERIFY(class == MC_BIGCL
);
3175 mbstat
.m_bigclusters
= m_total(MC_BIGCL
);
3176 mbstat
.m_bigclfree
= m_infree(MC_BIGCL
) +
3177 m_infree(MC_MBUF_BIGCL
);
3179 mbc
->mbc_next
= sp
->sl_head
;
3180 sp
->sl_head
= (void *)mbc
++;
3184 /* Insert into the mbuf or 2k or 4k slab list */
3185 slab_insert(sp
, class);
3187 if ((i
= mb_waiters
) > 0)
3190 wakeup(mb_waitchan
);
3192 return (count
!= 0);
3196 * For each class, initialize the freelist to hold m_minlimit() objects.
3199 freelist_init(mbuf_class_t
class)
3201 lck_mtx_assert(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
3203 VERIFY(class == MC_CL
|| class == MC_BIGCL
);
3204 VERIFY(m_total(class) == 0);
3205 VERIFY(m_minlimit(class) > 0);
3207 while (m_total(class) < m_minlimit(class))
3208 (void) freelist_populate(class, m_minlimit(class), M_WAIT
);
3210 VERIFY(m_total(class) >= m_minlimit(class));
3214 * (Inaccurately) check if it might be worth a trip back to the
3215 * mcache layer due the availability of objects there. We'll
3216 * end up back here if there's nothing up there.
3219 mbuf_cached_above(mbuf_class_t
class, int wait
)
3223 if (wait
& MCR_COMP
)
3224 return (!mcache_bkt_isempty(m_cache(MC_MBUF_CL
)) ||
3225 !mcache_bkt_isempty(m_cache(MC_MBUF_BIGCL
)));
3229 if (wait
& MCR_COMP
)
3230 return (!mcache_bkt_isempty(m_cache(MC_MBUF_CL
)));
3234 if (wait
& MCR_COMP
)
3235 return (!mcache_bkt_isempty(m_cache(MC_MBUF_BIGCL
)));
3239 if (wait
& MCR_COMP
)
3240 return (!mcache_bkt_isempty(m_cache(MC_MBUF_16KCL
)));
3253 return (!mcache_bkt_isempty(m_cache(class)));
3257 * If possible, convert constructed objects to raw ones.
3260 mbuf_steal(mbuf_class_t
class, unsigned int num
)
3262 mcache_obj_t
*top
= NULL
;
3263 mcache_obj_t
**list
= &top
;
3264 unsigned int tot
= 0;
3266 lck_mtx_assert(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
3278 /* Get the required number of constructed objects if possible */
3279 if (m_infree(class) > m_minlimit(class)) {
3280 tot
= cslab_alloc(class, &list
,
3281 MIN(num
, m_infree(class)));
3284 /* And destroy them to get back the raw objects */
3286 (void) cslab_free(class, top
, 1);
3294 return (tot
== num
);
3298 m_reclaim(mbuf_class_t
class, unsigned int num
, boolean_t comp
)
3302 lck_mtx_assert(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
3304 VERIFY(m_total(MC_CL
) <= m_maxlimit(MC_CL
));
3305 VERIFY(m_total(MC_BIGCL
) <= m_maxlimit(MC_BIGCL
));
3306 VERIFY(m_total(MC_16KCL
) <= m_maxlimit(MC_16KCL
));
3309 * This logic can be made smarter; for now, simply mark
3310 * all other related classes as potential victims.
3314 m_wantpurge(MC_CL
)++;
3315 m_wantpurge(MC_BIGCL
)++;
3316 m_wantpurge(MC_MBUF_CL
)++;
3317 m_wantpurge(MC_MBUF_BIGCL
)++;
3321 m_wantpurge(MC_MBUF
)++;
3322 m_wantpurge(MC_BIGCL
)++;
3323 m_wantpurge(MC_MBUF_BIGCL
)++;
3325 m_wantpurge(MC_MBUF_CL
)++;
3329 m_wantpurge(MC_MBUF
)++;
3330 m_wantpurge(MC_CL
)++;
3331 m_wantpurge(MC_MBUF_CL
)++;
3333 m_wantpurge(MC_MBUF_BIGCL
)++;
3338 m_wantpurge(MC_MBUF_16KCL
)++;
3347 * Run through each marked class and check if we really need to
3348 * purge (and therefore temporarily disable) the per-CPU caches
3349 * layer used by the class. If so, remember the classes since
3350 * we are going to drop the lock below prior to purging.
3352 for (m
= 0; m
< NELEM(mbuf_table
); m
++) {
3353 if (m_wantpurge(m
) > 0) {
3356 * Try hard to steal the required number of objects
3357 * from the freelist of other mbuf classes. Only
3358 * purge and disable the per-CPU caches layer when
3359 * we don't have enough; it's the last resort.
3361 if (!mbuf_steal(m
, num
))
3366 lck_mtx_unlock(mbuf_mlock
);
3369 /* signal the domains to drain */
3370 net_drain_domains();
3372 /* Sigh; we have no other choices but to ask mcache to purge */
3373 for (m
= 0; m
< NELEM(mbuf_table
); m
++) {
3374 if ((bmap
& (1 << m
)) &&
3375 mcache_purge_cache(m_cache(m
), TRUE
)) {
3376 lck_mtx_lock(mbuf_mlock
);
3379 lck_mtx_unlock(mbuf_mlock
);
3384 * Request mcache to reap extra elements from all of its caches;
3385 * note that all reaps are serialized and happen only at a fixed
3390 lck_mtx_lock(mbuf_mlock
);
3393 static inline struct mbuf
*
3394 m_get_common(int wait
, short type
, int hdr
)
3397 int mcflags
= MSLEEPF(wait
);
3399 /* Is this due to a non-blocking retry? If so, then try harder */
3400 if (mcflags
& MCR_NOSLEEP
)
3401 mcflags
|= MCR_TRYHARD
;
3403 m
= mcache_alloc(m_cache(MC_MBUF
), mcflags
);
3405 MBUF_INIT(m
, hdr
, type
);
3406 mtype_stat_inc(type
);
3407 mtype_stat_dec(MT_FREE
);
3409 if (hdr
&& mac_init_mbuf(m
, wait
) != 0) {
3413 #endif /* MAC_NET */
3419 * Space allocation routines; these are also available as macros
3420 * for critical paths.
3422 #define _M_GET(wait, type) m_get_common(wait, type, 0)
3423 #define _M_GETHDR(wait, type) m_get_common(wait, type, 1)
3424 #define _M_RETRY(wait, type) _M_GET(wait, type)
3425 #define _M_RETRYHDR(wait, type) _M_GETHDR(wait, type)
3426 #define _MGET(m, how, type) ((m) = _M_GET(how, type))
3427 #define _MGETHDR(m, how, type) ((m) = _M_GETHDR(how, type))
3430 m_get(int wait
, int type
)
3432 return (_M_GET(wait
, type
));
3436 m_gethdr(int wait
, int type
)
3438 return (_M_GETHDR(wait
, type
));
3442 m_retry(int wait
, int type
)
3444 return (_M_RETRY(wait
, type
));
3448 m_retryhdr(int wait
, int type
)
3450 return (_M_RETRYHDR(wait
, type
));
3454 m_getclr(int wait
, int type
)
3458 _MGET(m
, wait
, type
);
3460 bzero(MTOD(m
, caddr_t
), MLEN
);
3465 m_free_paired(struct mbuf
*m
)
3467 VERIFY((m
->m_flags
& M_EXT
) && (MEXT_FLAGS(m
) & EXTF_PAIRED
));
3470 if (MEXT_PMBUF(m
) == m
) {
3471 volatile UInt16
*addr
= (volatile UInt16
*)&MEXT_PREF(m
);
3472 int16_t oprefcnt
, prefcnt
;
3475 * Paired ref count might be negative in case we lose
3476 * against another thread clearing MEXT_PMBUF, in the
3477 * event it occurs after the above memory barrier sync.
3478 * In that case just ignore as things have been unpaired.
3482 prefcnt
= oprefcnt
- 1;
3483 } while (!OSCompareAndSwap16(oprefcnt
, prefcnt
, addr
));
3487 } else if (prefcnt
== 1) {
3488 (*(m
->m_ext
.ext_free
))(m
->m_ext
.ext_buf
,
3489 m
->m_ext
.ext_size
, m
->m_ext
.ext_arg
);
3491 } else if (prefcnt
== 0) {
3492 VERIFY(MBUF_IS_PAIRED(m
));
3495 * Restore minref to its natural value, so that
3496 * the caller will be able to free the cluster
3502 * Clear MEXT_PMBUF, but leave EXTF_PAIRED intact
3503 * as it is immutable. atomic_set_ptr also causes
3504 * memory barrier sync.
3506 atomic_set_ptr(&MEXT_PMBUF(m
), NULL
);
3508 switch (m
->m_ext
.ext_size
) {
3510 m
->m_ext
.ext_free
= NULL
;
3514 m
->m_ext
.ext_free
= m_bigfree
;
3518 m
->m_ext
.ext_free
= m_16kfree
;
3529 * Tell caller the unpair has occurred, and that the reference
3530 * count on the external cluster held for the paired mbuf should
3537 m_free(struct mbuf
*m
)
3539 struct mbuf
*n
= m
->m_next
;
3541 if (m
->m_type
== MT_FREE
)
3542 panic("m_free: freeing an already freed mbuf");
3544 if (m
->m_flags
& M_PKTHDR
) {
3545 /* Check for scratch area overflow */
3546 m_redzone_verify(m
);
3547 /* Free the aux data and tags if there is any */
3548 m_tag_delete_chain(m
, NULL
);
3550 m_do_tx_compl_callback(m
, NULL
);
3553 if (m
->m_flags
& M_EXT
) {
3555 u_int32_t composite
;
3557 if (MBUF_IS_PAIRED(m
) && m_free_paired(m
))
3560 refcnt
= m_decref(m
);
3561 composite
= (MEXT_FLAGS(m
) & EXTF_COMPOSITE
);
3563 if (refcnt
== MEXT_MINREF(m
) && !composite
) {
3564 if (m
->m_ext
.ext_free
== NULL
) {
3565 mcache_free(m_cache(MC_CL
), m
->m_ext
.ext_buf
);
3566 } else if (m
->m_ext
.ext_free
== m_bigfree
) {
3567 mcache_free(m_cache(MC_BIGCL
),
3569 } else if (m
->m_ext
.ext_free
== m_16kfree
) {
3570 mcache_free(m_cache(MC_16KCL
),
3573 (*(m
->m_ext
.ext_free
))(m
->m_ext
.ext_buf
,
3574 m
->m_ext
.ext_size
, m
->m_ext
.ext_arg
);
3576 mcache_free(ref_cache
, MEXT_RFA(m
));
3578 } else if (refcnt
== MEXT_MINREF(m
) && composite
) {
3579 VERIFY(!(MEXT_FLAGS(m
) & EXTF_PAIRED
));
3580 VERIFY(m
->m_type
!= MT_FREE
);
3582 mtype_stat_dec(m
->m_type
);
3583 mtype_stat_inc(MT_FREE
);
3585 m
->m_type
= MT_FREE
;
3588 m
->m_next
= m
->m_nextpkt
= NULL
;
3590 MEXT_FLAGS(m
) &= ~EXTF_READONLY
;
3592 /* "Free" into the intermediate cache */
3593 if (m
->m_ext
.ext_free
== NULL
) {
3594 mcache_free(m_cache(MC_MBUF_CL
), m
);
3595 } else if (m
->m_ext
.ext_free
== m_bigfree
) {
3596 mcache_free(m_cache(MC_MBUF_BIGCL
), m
);
3598 VERIFY(m
->m_ext
.ext_free
== m_16kfree
);
3599 mcache_free(m_cache(MC_MBUF_16KCL
), m
);
3605 if (m
->m_type
!= MT_FREE
) {
3606 mtype_stat_dec(m
->m_type
);
3607 mtype_stat_inc(MT_FREE
);
3610 m
->m_type
= MT_FREE
;
3611 m
->m_flags
= m
->m_len
= 0;
3612 m
->m_next
= m
->m_nextpkt
= NULL
;
3614 mcache_free(m_cache(MC_MBUF
), m
);
3619 __private_extern__
struct mbuf
*
3620 m_clattach(struct mbuf
*m
, int type
, caddr_t extbuf
,
3621 void (*extfree
)(caddr_t
, u_int
, caddr_t
), u_int extsize
, caddr_t extarg
,
3624 struct ext_ref
*rfa
= NULL
;
3627 * If pairing is requested and an existing mbuf is provided, reject
3628 * it if it's already been paired to another cluster. Otherwise,
3629 * allocate a new one or free any existing below.
3631 if ((m
!= NULL
&& MBUF_IS_PAIRED(m
)) ||
3632 (m
== NULL
&& (m
= _M_GETHDR(wait
, type
)) == NULL
))
3635 if (m
->m_flags
& M_EXT
) {
3637 u_int32_t composite
;
3639 refcnt
= m_decref(m
);
3640 composite
= (MEXT_FLAGS(m
) & EXTF_COMPOSITE
);
3641 VERIFY(!(MEXT_FLAGS(m
) & EXTF_PAIRED
) && MEXT_PMBUF(m
) == NULL
);
3642 if (refcnt
== MEXT_MINREF(m
) && !composite
) {
3643 if (m
->m_ext
.ext_free
== NULL
) {
3644 mcache_free(m_cache(MC_CL
), m
->m_ext
.ext_buf
);
3645 } else if (m
->m_ext
.ext_free
== m_bigfree
) {
3646 mcache_free(m_cache(MC_BIGCL
),
3648 } else if (m
->m_ext
.ext_free
== m_16kfree
) {
3649 mcache_free(m_cache(MC_16KCL
),
3652 (*(m
->m_ext
.ext_free
))(m
->m_ext
.ext_buf
,
3653 m
->m_ext
.ext_size
, m
->m_ext
.ext_arg
);
3655 /* Re-use the reference structure */
3657 } else if (refcnt
== MEXT_MINREF(m
) && composite
) {
3658 VERIFY(m
->m_type
!= MT_FREE
);
3660 mtype_stat_dec(m
->m_type
);
3661 mtype_stat_inc(MT_FREE
);
3663 m
->m_type
= MT_FREE
;
3666 m
->m_next
= m
->m_nextpkt
= NULL
;
3668 MEXT_FLAGS(m
) &= ~EXTF_READONLY
;
3670 /* "Free" into the intermediate cache */
3671 if (m
->m_ext
.ext_free
== NULL
) {
3672 mcache_free(m_cache(MC_MBUF_CL
), m
);
3673 } else if (m
->m_ext
.ext_free
== m_bigfree
) {
3674 mcache_free(m_cache(MC_MBUF_BIGCL
), m
);
3676 VERIFY(m
->m_ext
.ext_free
== m_16kfree
);
3677 mcache_free(m_cache(MC_MBUF_16KCL
), m
);
3680 * Allocate a new mbuf, since we didn't divorce
3681 * the composite mbuf + cluster pair above.
3683 if ((m
= _M_GETHDR(wait
, type
)) == NULL
)
3689 (rfa
= mcache_alloc(ref_cache
, MSLEEPF(wait
))) == NULL
) {
3695 MEXT_INIT(m
, extbuf
, extsize
, extfree
, extarg
, rfa
,
3696 0, 1, 0, 0, 0, NULL
);
3698 MEXT_INIT(m
, extbuf
, extsize
, extfree
, (caddr_t
)m
, rfa
,
3699 1, 1, 1, EXTF_PAIRED
, 0, m
);
3706 * Perform `fast' allocation mbuf clusters from a cache of recently-freed
3707 * clusters. (If the cache is empty, new clusters are allocated en-masse.)
3710 m_getcl(int wait
, int type
, int flags
)
3713 int mcflags
= MSLEEPF(wait
);
3714 int hdr
= (flags
& M_PKTHDR
);
3716 /* Is this due to a non-blocking retry? If so, then try harder */
3717 if (mcflags
& MCR_NOSLEEP
)
3718 mcflags
|= MCR_TRYHARD
;
3720 m
= mcache_alloc(m_cache(MC_MBUF_CL
), mcflags
);
3723 struct ext_ref
*rfa
;
3726 VERIFY(m
->m_type
== MT_FREE
&& m
->m_flags
== M_EXT
);
3727 cl
= m
->m_ext
.ext_buf
;
3730 ASSERT(cl
!= NULL
&& rfa
!= NULL
);
3731 VERIFY(MBUF_IS_COMPOSITE(m
) && m
->m_ext
.ext_free
== NULL
);
3733 flag
= MEXT_FLAGS(m
);
3735 MBUF_INIT(m
, hdr
, type
);
3736 MBUF_CL_INIT(m
, cl
, rfa
, 1, flag
);
3738 mtype_stat_inc(type
);
3739 mtype_stat_dec(MT_FREE
);
3741 if (hdr
&& mac_init_mbuf(m
, wait
) != 0) {
3745 #endif /* MAC_NET */
3750 /* m_mclget() add an mbuf cluster to a normal mbuf */
3752 m_mclget(struct mbuf
*m
, int wait
)
3754 struct ext_ref
*rfa
;
3756 if ((rfa
= mcache_alloc(ref_cache
, MSLEEPF(wait
))) == NULL
)
3759 m
->m_ext
.ext_buf
= m_mclalloc(wait
);
3760 if (m
->m_ext
.ext_buf
!= NULL
) {
3761 MBUF_CL_INIT(m
, m
->m_ext
.ext_buf
, rfa
, 1, 0);
3763 mcache_free(ref_cache
, rfa
);
3768 /* Allocate an mbuf cluster */
3770 m_mclalloc(int wait
)
3772 int mcflags
= MSLEEPF(wait
);
3774 /* Is this due to a non-blocking retry? If so, then try harder */
3775 if (mcflags
& MCR_NOSLEEP
)
3776 mcflags
|= MCR_TRYHARD
;
3778 return (mcache_alloc(m_cache(MC_CL
), mcflags
));
3781 /* Free an mbuf cluster */
3783 m_mclfree(caddr_t p
)
3785 mcache_free(m_cache(MC_CL
), p
);
3789 * mcl_hasreference() checks if a cluster of an mbuf is referenced by
3790 * another mbuf; see comments in m_incref() regarding EXTF_READONLY.
3793 m_mclhasreference(struct mbuf
*m
)
3795 if (!(m
->m_flags
& M_EXT
))
3798 ASSERT(MEXT_RFA(m
) != NULL
);
3800 return ((MEXT_FLAGS(m
) & EXTF_READONLY
) ? 1 : 0);
3803 __private_extern__ caddr_t
3804 m_bigalloc(int wait
)
3806 int mcflags
= MSLEEPF(wait
);
3808 /* Is this due to a non-blocking retry? If so, then try harder */
3809 if (mcflags
& MCR_NOSLEEP
)
3810 mcflags
|= MCR_TRYHARD
;
3812 return (mcache_alloc(m_cache(MC_BIGCL
), mcflags
));
3815 __private_extern__
void
3816 m_bigfree(caddr_t p
, __unused u_int size
, __unused caddr_t arg
)
3818 mcache_free(m_cache(MC_BIGCL
), p
);
3821 /* m_mbigget() add an 4KB mbuf cluster to a normal mbuf */
3822 __private_extern__
struct mbuf
*
3823 m_mbigget(struct mbuf
*m
, int wait
)
3825 struct ext_ref
*rfa
;
3827 if ((rfa
= mcache_alloc(ref_cache
, MSLEEPF(wait
))) == NULL
)
3830 m
->m_ext
.ext_buf
= m_bigalloc(wait
);
3831 if (m
->m_ext
.ext_buf
!= NULL
) {
3832 MBUF_BIGCL_INIT(m
, m
->m_ext
.ext_buf
, rfa
, 1, 0);
3834 mcache_free(ref_cache
, rfa
);
3839 __private_extern__ caddr_t
3840 m_16kalloc(int wait
)
3842 int mcflags
= MSLEEPF(wait
);
3844 /* Is this due to a non-blocking retry? If so, then try harder */
3845 if (mcflags
& MCR_NOSLEEP
)
3846 mcflags
|= MCR_TRYHARD
;
3848 return (mcache_alloc(m_cache(MC_16KCL
), mcflags
));
3851 __private_extern__
void
3852 m_16kfree(caddr_t p
, __unused u_int size
, __unused caddr_t arg
)
3854 mcache_free(m_cache(MC_16KCL
), p
);
3857 /* m_m16kget() add a 16KB mbuf cluster to a normal mbuf */
3858 __private_extern__
struct mbuf
*
3859 m_m16kget(struct mbuf
*m
, int wait
)
3861 struct ext_ref
*rfa
;
3863 if ((rfa
= mcache_alloc(ref_cache
, MSLEEPF(wait
))) == NULL
)
3866 m
->m_ext
.ext_buf
= m_16kalloc(wait
);
3867 if (m
->m_ext
.ext_buf
!= NULL
) {
3868 MBUF_16KCL_INIT(m
, m
->m_ext
.ext_buf
, rfa
, 1, 0);
3870 mcache_free(ref_cache
, rfa
);
3876 * "Move" mbuf pkthdr from "from" to "to".
3877 * "from" must have M_PKTHDR set, and "to" must be empty.
3880 m_copy_pkthdr(struct mbuf
*to
, struct mbuf
*from
)
3882 VERIFY(from
->m_flags
& M_PKTHDR
);
3884 /* Check for scratch area overflow */
3885 m_redzone_verify(from
);
3887 if (to
->m_flags
& M_PKTHDR
) {
3888 /* Check for scratch area overflow */
3889 m_redzone_verify(to
);
3890 /* We will be taking over the tags of 'to' */
3891 m_tag_delete_chain(to
, NULL
);
3893 to
->m_pkthdr
= from
->m_pkthdr
; /* especially tags */
3894 m_classifier_init(from
, 0); /* purge classifier info */
3895 m_tag_init(from
, 1); /* purge all tags from src */
3896 m_scratch_init(from
); /* clear src scratch area */
3897 to
->m_flags
= (from
->m_flags
& M_COPYFLAGS
) | (to
->m_flags
& M_EXT
);
3898 if ((to
->m_flags
& M_EXT
) == 0)
3899 to
->m_data
= to
->m_pktdat
;
3900 m_redzone_init(to
); /* setup red zone on dst */
3904 * Duplicate "from"'s mbuf pkthdr in "to".
3905 * "from" must have M_PKTHDR set, and "to" must be empty.
3906 * In particular, this does a deep copy of the packet tags.
3909 m_dup_pkthdr(struct mbuf
*to
, struct mbuf
*from
, int how
)
3911 VERIFY(from
->m_flags
& M_PKTHDR
);
3913 /* Check for scratch area overflow */
3914 m_redzone_verify(from
);
3916 if (to
->m_flags
& M_PKTHDR
) {
3917 /* Check for scratch area overflow */
3918 m_redzone_verify(to
);
3919 /* We will be taking over the tags of 'to' */
3920 m_tag_delete_chain(to
, NULL
);
3922 to
->m_flags
= (from
->m_flags
& M_COPYFLAGS
) | (to
->m_flags
& M_EXT
);
3923 if ((to
->m_flags
& M_EXT
) == 0)
3924 to
->m_data
= to
->m_pktdat
;
3925 to
->m_pkthdr
= from
->m_pkthdr
;
3926 m_redzone_init(to
); /* setup red zone on dst */
3927 m_tag_init(to
, 0); /* preserve dst static tags */
3928 return (m_tag_copy_chain(to
, from
, how
));
3932 m_copy_pftag(struct mbuf
*to
, struct mbuf
*from
)
3934 memcpy(m_pftag(to
), m_pftag(from
), sizeof(struct pf_mtag
));
3936 m_pftag(to
)->pftag_hdr
= NULL
;
3937 m_pftag(to
)->pftag_flags
&= ~(PF_TAG_HDR_INET
|PF_TAG_HDR_INET6
);
3942 m_classifier_init(struct mbuf
*m
, uint32_t pktf_mask
)
3944 VERIFY(m
->m_flags
& M_PKTHDR
);
3946 m
->m_pkthdr
.pkt_proto
= 0;
3947 m
->m_pkthdr
.pkt_flowsrc
= 0;
3948 m
->m_pkthdr
.pkt_flowid
= 0;
3949 m
->m_pkthdr
.pkt_flags
&= pktf_mask
; /* caller-defined mask */
3950 /* preserve service class and interface info for loopback packets */
3951 if (!(m
->m_pkthdr
.pkt_flags
& PKTF_LOOP
))
3952 (void) m_set_service_class(m
, MBUF_SC_BE
);
3953 if (!(m
->m_pkthdr
.pkt_flags
& PKTF_IFAINFO
))
3954 m
->m_pkthdr
.pkt_ifainfo
= 0;
3956 m
->m_pkthdr
.pkt_bwseq
= 0;
3957 #endif /* MEASURE_BW */
3958 m
->m_pkthdr
.pkt_timestamp
= 0;
3962 m_copy_classifier(struct mbuf
*to
, struct mbuf
*from
)
3964 VERIFY(to
->m_flags
& M_PKTHDR
);
3965 VERIFY(from
->m_flags
& M_PKTHDR
);
3967 to
->m_pkthdr
.pkt_proto
= from
->m_pkthdr
.pkt_proto
;
3968 to
->m_pkthdr
.pkt_flowsrc
= from
->m_pkthdr
.pkt_flowsrc
;
3969 to
->m_pkthdr
.pkt_flowid
= from
->m_pkthdr
.pkt_flowid
;
3970 to
->m_pkthdr
.pkt_flags
= from
->m_pkthdr
.pkt_flags
;
3971 (void) m_set_service_class(to
, from
->m_pkthdr
.pkt_svc
);
3972 to
->m_pkthdr
.pkt_ifainfo
= from
->m_pkthdr
.pkt_ifainfo
;
3974 to
->m_pkthdr
.pkt_bwseq
= from
->m_pkthdr
.pkt_bwseq
;
3975 #endif /* MEASURE_BW */
3979 * Return a list of mbuf hdrs that point to clusters. Try for num_needed;
3980 * if wantall is not set, return whatever number were available. Set up the
3981 * first num_with_pkthdrs with mbuf hdrs configured as packet headers; these
3982 * are chained on the m_nextpkt field. Any packets requested beyond this
3983 * are chained onto the last packet header's m_next field. The size of
3984 * the cluster is controlled by the parameter bufsize.
3986 __private_extern__
struct mbuf
*
3987 m_getpackets_internal(unsigned int *num_needed
, int num_with_pkthdrs
,
3988 int wait
, int wantall
, size_t bufsize
)
3991 struct mbuf
**np
, *top
;
3992 unsigned int pnum
, needed
= *num_needed
;
3993 mcache_obj_t
*mp_list
= NULL
;
3994 int mcflags
= MSLEEPF(wait
);
3996 struct ext_ref
*rfa
;
4000 ASSERT(bufsize
== m_maxsize(MC_CL
) ||
4001 bufsize
== m_maxsize(MC_BIGCL
) ||
4002 bufsize
== m_maxsize(MC_16KCL
));
4005 * Caller must first check for njcl because this
4006 * routine is internal and not exposed/used via KPI.
4008 VERIFY(bufsize
!= m_maxsize(MC_16KCL
) || njcl
> 0);
4015 * The caller doesn't want all the requested buffers; only some.
4016 * Try hard to get what we can, but don't block. This effectively
4017 * overrides MCR_SLEEP, since this thread will not go to sleep
4018 * if we can't get all the buffers.
4020 if (!wantall
|| (mcflags
& MCR_NOSLEEP
))
4021 mcflags
|= MCR_TRYHARD
;
4023 /* Allocate the composite mbuf + cluster elements from the cache */
4024 if (bufsize
== m_maxsize(MC_CL
))
4025 cp
= m_cache(MC_MBUF_CL
);
4026 else if (bufsize
== m_maxsize(MC_BIGCL
))
4027 cp
= m_cache(MC_MBUF_BIGCL
);
4029 cp
= m_cache(MC_MBUF_16KCL
);
4030 needed
= mcache_alloc_ext(cp
, &mp_list
, needed
, mcflags
);
4032 for (pnum
= 0; pnum
< needed
; pnum
++) {
4033 m
= (struct mbuf
*)mp_list
;
4034 mp_list
= mp_list
->obj_next
;
4036 VERIFY(m
->m_type
== MT_FREE
&& m
->m_flags
== M_EXT
);
4037 cl
= m
->m_ext
.ext_buf
;
4040 ASSERT(cl
!= NULL
&& rfa
!= NULL
);
4041 VERIFY(MBUF_IS_COMPOSITE(m
));
4043 flag
= MEXT_FLAGS(m
);
4045 MBUF_INIT(m
, num_with_pkthdrs
, MT_DATA
);
4046 if (bufsize
== m_maxsize(MC_16KCL
)) {
4047 MBUF_16KCL_INIT(m
, cl
, rfa
, 1, flag
);
4048 } else if (bufsize
== m_maxsize(MC_BIGCL
)) {
4049 MBUF_BIGCL_INIT(m
, cl
, rfa
, 1, flag
);
4051 MBUF_CL_INIT(m
, cl
, rfa
, 1, flag
);
4054 if (num_with_pkthdrs
> 0) {
4057 if (mac_mbuf_label_init(m
, wait
) != 0) {
4061 #endif /* MAC_NET */
4065 if (num_with_pkthdrs
> 0)
4070 ASSERT(pnum
!= *num_needed
|| mp_list
== NULL
);
4071 if (mp_list
!= NULL
)
4072 mcache_free_ext(cp
, mp_list
);
4075 mtype_stat_add(MT_DATA
, pnum
);
4076 mtype_stat_sub(MT_FREE
, pnum
);
4079 if (wantall
&& (pnum
!= *num_needed
)) {
4085 if (pnum
> *num_needed
) {
4086 printf("%s: File a radar related to <rdar://10146739>. \
4087 needed = %u, pnum = %u, num_needed = %u \n",
4088 __func__
, needed
, pnum
, *num_needed
);
4096 * Return list of mbuf linked by m_nextpkt. Try for numlist, and if
4097 * wantall is not set, return whatever number were available. The size of
4098 * each mbuf in the list is controlled by the parameter packetlen. Each
4099 * mbuf of the list may have a chain of mbufs linked by m_next. Each mbuf
4100 * in the chain is called a segment. If maxsegments is not null and the
4101 * value pointed to is not null, this specify the maximum number of segments
4102 * for a chain of mbufs. If maxsegments is zero or the value pointed to
4103 * is zero the caller does not have any restriction on the number of segments.
4104 * The actual number of segments of a mbuf chain is return in the value
4105 * pointed to by maxsegments.
4107 __private_extern__
struct mbuf
*
4108 m_allocpacket_internal(unsigned int *numlist
, size_t packetlen
,
4109 unsigned int *maxsegments
, int wait
, int wantall
, size_t wantsize
)
4111 struct mbuf
**np
, *top
, *first
= NULL
;
4112 size_t bufsize
, r_bufsize
;
4113 unsigned int num
= 0;
4114 unsigned int nsegs
= 0;
4115 unsigned int needed
, resid
;
4116 int mcflags
= MSLEEPF(wait
);
4117 mcache_obj_t
*mp_list
= NULL
, *rmp_list
= NULL
;
4118 mcache_t
*cp
= NULL
, *rcp
= NULL
;
4126 if (wantsize
== 0) {
4127 if (packetlen
<= MINCLSIZE
) {
4128 bufsize
= packetlen
;
4129 } else if (packetlen
> m_maxsize(MC_CL
)) {
4130 /* Use 4KB if jumbo cluster pool isn't available */
4131 if (packetlen
<= m_maxsize(MC_BIGCL
) || njcl
== 0)
4132 bufsize
= m_maxsize(MC_BIGCL
);
4134 bufsize
= m_maxsize(MC_16KCL
);
4136 bufsize
= m_maxsize(MC_CL
);
4138 } else if (wantsize
== m_maxsize(MC_CL
) ||
4139 wantsize
== m_maxsize(MC_BIGCL
) ||
4140 (wantsize
== m_maxsize(MC_16KCL
) && njcl
> 0)) {
4146 if (bufsize
<= MHLEN
) {
4148 } else if (bufsize
<= MINCLSIZE
) {
4149 if (maxsegments
!= NULL
&& *maxsegments
== 1) {
4150 bufsize
= m_maxsize(MC_CL
);
4155 } else if (bufsize
== m_maxsize(MC_16KCL
)) {
4157 nsegs
= ((packetlen
- 1) >> M16KCLSHIFT
) + 1;
4158 } else if (bufsize
== m_maxsize(MC_BIGCL
)) {
4159 nsegs
= ((packetlen
- 1) >> MBIGCLSHIFT
) + 1;
4161 nsegs
= ((packetlen
- 1) >> MCLSHIFT
) + 1;
4163 if (maxsegments
!= NULL
) {
4164 if (*maxsegments
&& nsegs
> *maxsegments
) {
4165 *maxsegments
= nsegs
;
4168 *maxsegments
= nsegs
;
4172 * The caller doesn't want all the requested buffers; only some.
4173 * Try hard to get what we can, but don't block. This effectively
4174 * overrides MCR_SLEEP, since this thread will not go to sleep
4175 * if we can't get all the buffers.
4177 if (!wantall
|| (mcflags
& MCR_NOSLEEP
))
4178 mcflags
|= MCR_TRYHARD
;
4181 * Simple case where all elements in the lists/chains are mbufs.
4182 * Unless bufsize is greater than MHLEN, each segment chain is made
4183 * up of exactly 1 mbuf. Otherwise, each segment chain is made up
4184 * of 2 mbufs; the second one is used for the residual data, i.e.
4185 * the remaining data that cannot fit into the first mbuf.
4187 if (bufsize
<= MINCLSIZE
) {
4188 /* Allocate the elements in one shot from the mbuf cache */
4189 ASSERT(bufsize
<= MHLEN
|| nsegs
== 2);
4190 cp
= m_cache(MC_MBUF
);
4191 needed
= mcache_alloc_ext(cp
, &mp_list
,
4192 (*numlist
) * nsegs
, mcflags
);
4195 * The number of elements must be even if we are to use an
4196 * mbuf (instead of a cluster) to store the residual data.
4197 * If we couldn't allocate the requested number of mbufs,
4198 * trim the number down (if it's odd) in order to avoid
4199 * creating a partial segment chain.
4201 if (bufsize
> MHLEN
&& (needed
& 0x1))
4204 while (num
< needed
) {
4207 m
= (struct mbuf
*)mp_list
;
4208 mp_list
= mp_list
->obj_next
;
4211 MBUF_INIT(m
, 1, MT_DATA
);
4213 if (mac_init_mbuf(m
, wait
) != 0) {
4217 #endif /* MAC_NET */
4219 if (bufsize
> MHLEN
) {
4220 /* A second mbuf for this segment chain */
4221 m
->m_next
= (struct mbuf
*)mp_list
;
4222 mp_list
= mp_list
->obj_next
;
4223 ASSERT(m
->m_next
!= NULL
);
4225 MBUF_INIT(m
->m_next
, 0, MT_DATA
);
4231 ASSERT(num
!= *numlist
|| mp_list
== NULL
);
4234 mtype_stat_add(MT_DATA
, num
);
4235 mtype_stat_sub(MT_FREE
, num
);
4239 /* We've got them all; return to caller */
4240 if (num
== *numlist
)
4247 * Complex cases where elements are made up of one or more composite
4248 * mbufs + cluster, depending on packetlen. Each N-segment chain can
4249 * be illustrated as follows:
4251 * [mbuf + cluster 1] [mbuf + cluster 2] ... [mbuf + cluster N]
4253 * Every composite mbuf + cluster element comes from the intermediate
4254 * cache (either MC_MBUF_CL or MC_MBUF_BIGCL). For space efficiency,
4255 * the last composite element will come from the MC_MBUF_CL cache,
4256 * unless the residual data is larger than 2KB where we use the
4257 * big cluster composite cache (MC_MBUF_BIGCL) instead. Residual
4258 * data is defined as extra data beyond the first element that cannot
4259 * fit into the previous element, i.e. there is no residual data if
4260 * the chain only has 1 segment.
4262 r_bufsize
= bufsize
;
4263 resid
= packetlen
> bufsize
? packetlen
% bufsize
: 0;
4265 /* There is residual data; figure out the cluster size */
4266 if (wantsize
== 0 && packetlen
> MINCLSIZE
) {
4268 * Caller didn't request that all of the segments
4269 * in the chain use the same cluster size; use the
4270 * smaller of the cluster sizes.
4272 if (njcl
> 0 && resid
> m_maxsize(MC_BIGCL
))
4273 r_bufsize
= m_maxsize(MC_16KCL
);
4274 else if (resid
> m_maxsize(MC_CL
))
4275 r_bufsize
= m_maxsize(MC_BIGCL
);
4277 r_bufsize
= m_maxsize(MC_CL
);
4279 /* Use the same cluster size as the other segments */
4287 * Attempt to allocate composite mbuf + cluster elements for
4288 * the residual data in each chain; record the number of such
4289 * elements that can be allocated so that we know how many
4290 * segment chains we can afford to create.
4292 if (r_bufsize
<= m_maxsize(MC_CL
))
4293 rcp
= m_cache(MC_MBUF_CL
);
4294 else if (r_bufsize
<= m_maxsize(MC_BIGCL
))
4295 rcp
= m_cache(MC_MBUF_BIGCL
);
4297 rcp
= m_cache(MC_MBUF_16KCL
);
4298 needed
= mcache_alloc_ext(rcp
, &rmp_list
, *numlist
, mcflags
);
4303 /* This is temporarily reduced for calculation */
4309 * Attempt to allocate the rest of the composite mbuf + cluster
4310 * elements for the number of segment chains that we need.
4312 if (bufsize
<= m_maxsize(MC_CL
))
4313 cp
= m_cache(MC_MBUF_CL
);
4314 else if (bufsize
<= m_maxsize(MC_BIGCL
))
4315 cp
= m_cache(MC_MBUF_BIGCL
);
4317 cp
= m_cache(MC_MBUF_16KCL
);
4318 needed
= mcache_alloc_ext(cp
, &mp_list
, needed
* nsegs
, mcflags
);
4320 /* Round it down to avoid creating a partial segment chain */
4321 needed
= (needed
/ nsegs
) * nsegs
;
4327 * We're about to construct the chain(s); take into account
4328 * the number of segments we have created above to hold the
4329 * residual data for each chain, as well as restore the
4330 * original count of segments per chain.
4333 needed
+= needed
/ nsegs
;
4340 struct ext_ref
*rfa
;
4345 if (nsegs
== 1 || (num
% nsegs
) != 0 || resid
== 0) {
4346 m
= (struct mbuf
*)mp_list
;
4347 mp_list
= mp_list
->obj_next
;
4349 m
= (struct mbuf
*)rmp_list
;
4350 rmp_list
= rmp_list
->obj_next
;
4353 VERIFY(m
->m_type
== MT_FREE
&& m
->m_flags
== M_EXT
);
4354 VERIFY(m
->m_ext
.ext_free
== NULL
||
4355 m
->m_ext
.ext_free
== m_bigfree
||
4356 m
->m_ext
.ext_free
== m_16kfree
);
4358 cl
= m
->m_ext
.ext_buf
;
4361 ASSERT(cl
!= NULL
&& rfa
!= NULL
);
4362 VERIFY(MBUF_IS_COMPOSITE(m
));
4364 flag
= MEXT_FLAGS(m
);
4366 pkthdr
= (nsegs
== 1 || (num
% nsegs
) == 1);
4369 MBUF_INIT(m
, pkthdr
, MT_DATA
);
4370 if (m
->m_ext
.ext_free
== m_16kfree
) {
4371 MBUF_16KCL_INIT(m
, cl
, rfa
, 1, flag
);
4372 } else if (m
->m_ext
.ext_free
== m_bigfree
) {
4373 MBUF_BIGCL_INIT(m
, cl
, rfa
, 1, flag
);
4375 MBUF_CL_INIT(m
, cl
, rfa
, 1, flag
);
4378 if (pkthdr
&& mac_init_mbuf(m
, wait
) != 0) {
4383 #endif /* MAC_NET */
4386 if ((num
% nsegs
) == 0)
4387 np
= &first
->m_nextpkt
;
4396 mtype_stat_add(MT_DATA
, num
);
4397 mtype_stat_sub(MT_FREE
, num
);
4402 /* We've got them all; return to caller */
4403 if (num
== *numlist
) {
4404 ASSERT(mp_list
== NULL
&& rmp_list
== NULL
);
4409 /* Free up what's left of the above */
4410 if (mp_list
!= NULL
)
4411 mcache_free_ext(cp
, mp_list
);
4412 if (rmp_list
!= NULL
)
4413 mcache_free_ext(rcp
, rmp_list
);
4414 if (wantall
&& top
!= NULL
) {
4423 * Best effort to get a mbuf cluster + pkthdr. Used by drivers to allocated
4424 * packets on receive ring.
4426 __private_extern__
struct mbuf
*
4427 m_getpacket_how(int wait
)
4429 unsigned int num_needed
= 1;
4431 return (m_getpackets_internal(&num_needed
, 1, wait
, 1,
4436 * Best effort to get a mbuf cluster + pkthdr. Used by drivers to allocated
4437 * packets on receive ring.
4442 unsigned int num_needed
= 1;
4444 return (m_getpackets_internal(&num_needed
, 1, M_WAIT
, 1,
4449 * Return a list of mbuf hdrs that point to clusters. Try for num_needed;
4450 * if this can't be met, return whatever number were available. Set up the
4451 * first num_with_pkthdrs with mbuf hdrs configured as packet headers. These
4452 * are chained on the m_nextpkt field. Any packets requested beyond this are
4453 * chained onto the last packet header's m_next field.
4456 m_getpackets(int num_needed
, int num_with_pkthdrs
, int how
)
4458 unsigned int n
= num_needed
;
4460 return (m_getpackets_internal(&n
, num_with_pkthdrs
, how
, 0,
4465 * Return a list of mbuf hdrs set up as packet hdrs chained together
4466 * on the m_nextpkt field
4469 m_getpackethdrs(int num_needed
, int how
)
4472 struct mbuf
**np
, *top
;
4477 while (num_needed
--) {
4478 m
= _M_RETRYHDR(how
, MT_DATA
);
4490 * Free an mbuf list (m_nextpkt) while following m_next. Returns the count
4491 * for mbufs packets freed. Used by the drivers.
4494 m_freem_list(struct mbuf
*m
)
4496 struct mbuf
*nextpkt
;
4497 mcache_obj_t
*mp_list
= NULL
;
4498 mcache_obj_t
*mcl_list
= NULL
;
4499 mcache_obj_t
*mbc_list
= NULL
;
4500 mcache_obj_t
*m16k_list
= NULL
;
4501 mcache_obj_t
*m_mcl_list
= NULL
;
4502 mcache_obj_t
*m_mbc_list
= NULL
;
4503 mcache_obj_t
*m_m16k_list
= NULL
;
4504 mcache_obj_t
*ref_list
= NULL
;
4506 int mt_free
= 0, mt_data
= 0, mt_header
= 0, mt_soname
= 0, mt_tag
= 0;
4511 nextpkt
= m
->m_nextpkt
;
4512 m
->m_nextpkt
= NULL
;
4515 struct mbuf
*next
= m
->m_next
;
4516 mcache_obj_t
*o
, *rfa
;
4517 u_int32_t composite
;
4520 if (m
->m_type
== MT_FREE
)
4521 panic("m_free: freeing an already freed mbuf");
4523 if (m
->m_flags
& M_PKTHDR
) {
4524 /* Check for scratch area overflow */
4525 m_redzone_verify(m
);
4526 /* Free the aux data and tags if there is any */
4527 m_tag_delete_chain(m
, NULL
);
4530 if (!(m
->m_flags
& M_EXT
)) {
4535 if (MBUF_IS_PAIRED(m
) && m_free_paired(m
)) {
4542 o
= (mcache_obj_t
*)(void *)m
->m_ext
.ext_buf
;
4543 refcnt
= m_decref(m
);
4544 composite
= (MEXT_FLAGS(m
) & EXTF_COMPOSITE
);
4546 if (refcnt
== MEXT_MINREF(m
) && !composite
) {
4547 if (m
->m_ext
.ext_free
== NULL
) {
4548 o
->obj_next
= mcl_list
;
4550 } else if (m
->m_ext
.ext_free
== m_bigfree
) {
4551 o
->obj_next
= mbc_list
;
4553 } else if (m
->m_ext
.ext_free
== m_16kfree
) {
4554 o
->obj_next
= m16k_list
;
4557 (*(m
->m_ext
.ext_free
))((caddr_t
)o
,
4561 rfa
= (mcache_obj_t
*)(void *)MEXT_RFA(m
);
4562 rfa
->obj_next
= ref_list
;
4565 } else if (refcnt
== MEXT_MINREF(m
) && composite
) {
4566 VERIFY(!(MEXT_FLAGS(m
) & EXTF_PAIRED
));
4567 VERIFY(m
->m_type
!= MT_FREE
);
4569 * Amortize the costs of atomic operations
4570 * by doing them at the end, if possible.
4572 if (m
->m_type
== MT_DATA
)
4574 else if (m
->m_type
== MT_HEADER
)
4576 else if (m
->m_type
== MT_SONAME
)
4578 else if (m
->m_type
== MT_TAG
)
4581 mtype_stat_dec(m
->m_type
);
4583 m
->m_type
= MT_FREE
;
4586 m
->m_next
= m
->m_nextpkt
= NULL
;
4588 MEXT_FLAGS(m
) &= ~EXTF_READONLY
;
4590 /* "Free" into the intermediate cache */
4591 o
= (mcache_obj_t
*)m
;
4592 if (m
->m_ext
.ext_free
== NULL
) {
4593 o
->obj_next
= m_mcl_list
;
4595 } else if (m
->m_ext
.ext_free
== m_bigfree
) {
4596 o
->obj_next
= m_mbc_list
;
4599 VERIFY(m
->m_ext
.ext_free
== m_16kfree
);
4600 o
->obj_next
= m_m16k_list
;
4608 * Amortize the costs of atomic operations
4609 * by doing them at the end, if possible.
4611 if (m
->m_type
== MT_DATA
)
4613 else if (m
->m_type
== MT_HEADER
)
4615 else if (m
->m_type
== MT_SONAME
)
4617 else if (m
->m_type
== MT_TAG
)
4619 else if (m
->m_type
!= MT_FREE
)
4620 mtype_stat_dec(m
->m_type
);
4622 m
->m_type
= MT_FREE
;
4623 m
->m_flags
= m
->m_len
= 0;
4624 m
->m_next
= m
->m_nextpkt
= NULL
;
4626 ((mcache_obj_t
*)m
)->obj_next
= mp_list
;
4627 mp_list
= (mcache_obj_t
*)m
;
4636 mtype_stat_add(MT_FREE
, mt_free
);
4638 mtype_stat_sub(MT_DATA
, mt_data
);
4640 mtype_stat_sub(MT_HEADER
, mt_header
);
4642 mtype_stat_sub(MT_SONAME
, mt_soname
);
4644 mtype_stat_sub(MT_TAG
, mt_tag
);
4646 if (mp_list
!= NULL
)
4647 mcache_free_ext(m_cache(MC_MBUF
), mp_list
);
4648 if (mcl_list
!= NULL
)
4649 mcache_free_ext(m_cache(MC_CL
), mcl_list
);
4650 if (mbc_list
!= NULL
)
4651 mcache_free_ext(m_cache(MC_BIGCL
), mbc_list
);
4652 if (m16k_list
!= NULL
)
4653 mcache_free_ext(m_cache(MC_16KCL
), m16k_list
);
4654 if (m_mcl_list
!= NULL
)
4655 mcache_free_ext(m_cache(MC_MBUF_CL
), m_mcl_list
);
4656 if (m_mbc_list
!= NULL
)
4657 mcache_free_ext(m_cache(MC_MBUF_BIGCL
), m_mbc_list
);
4658 if (m_m16k_list
!= NULL
)
4659 mcache_free_ext(m_cache(MC_MBUF_16KCL
), m_m16k_list
);
4660 if (ref_list
!= NULL
)
4661 mcache_free_ext(ref_cache
, ref_list
);
4667 m_freem(struct mbuf
*m
)
4674 * Mbuffer utility routines.
4678 * Compute the amount of space available before the current start
4679 * of data in an mbuf.
4682 m_leadingspace(struct mbuf
*m
)
4684 if (m
->m_flags
& M_EXT
) {
4685 if (MCLHASREFERENCE(m
))
4687 return (m
->m_data
- m
->m_ext
.ext_buf
);
4689 if (m
->m_flags
& M_PKTHDR
)
4690 return (m
->m_data
- m
->m_pktdat
);
4691 return (m
->m_data
- m
->m_dat
);
4695 * Compute the amount of space available after the end of data in an mbuf.
4698 m_trailingspace(struct mbuf
*m
)
4700 if (m
->m_flags
& M_EXT
) {
4701 if (MCLHASREFERENCE(m
))
4703 return (m
->m_ext
.ext_buf
+ m
->m_ext
.ext_size
-
4704 (m
->m_data
+ m
->m_len
));
4706 return (&m
->m_dat
[MLEN
] - (m
->m_data
+ m
->m_len
));
4710 * Lesser-used path for M_PREPEND: allocate new mbuf to prepend to chain,
4711 * copy junk along. Does not adjust packet header length.
4714 m_prepend(struct mbuf
*m
, int len
, int how
)
4718 _MGET(mn
, how
, m
->m_type
);
4723 if (m
->m_flags
& M_PKTHDR
) {
4724 M_COPY_PKTHDR(mn
, m
);
4725 m
->m_flags
&= ~M_PKTHDR
;
4729 if (m
->m_flags
& M_PKTHDR
) {
4730 VERIFY(len
<= MHLEN
);
4733 VERIFY(len
<= MLEN
);
4741 * Replacement for old M_PREPEND macro: allocate new mbuf to prepend to
4742 * chain, copy junk along, and adjust length.
4745 m_prepend_2(struct mbuf
*m
, int len
, int how
, int align
)
4747 if (M_LEADINGSPACE(m
) >= len
&&
4748 (!align
|| IS_P2ALIGNED((m
->m_data
- len
), sizeof(u_int32_t
)))) {
4752 m
= m_prepend(m
, len
, how
);
4754 if ((m
) && (m
->m_flags
& M_PKTHDR
))
4755 m
->m_pkthdr
.len
+= len
;
4760 * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
4761 * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf.
4762 * The wait parameter is a choice of M_WAIT/M_DONTWAIT from caller.
4767 m_copym_mode(struct mbuf
*m
, int off0
, int len
, int wait
, uint32_t mode
)
4769 struct mbuf
*n
, *mhdr
= NULL
, **np
;
4774 if (off
< 0 || len
< 0)
4775 panic("m_copym: invalid offset %d or len %d", off
, len
);
4777 VERIFY((mode
!= M_COPYM_MUST_COPY_HDR
&&
4778 mode
!= M_COPYM_MUST_MOVE_HDR
) || (m
->m_flags
& M_PKTHDR
));
4780 if ((off
== 0 && (m
->m_flags
& M_PKTHDR
)) ||
4781 mode
== M_COPYM_MUST_COPY_HDR
|| mode
== M_COPYM_MUST_MOVE_HDR
) {
4786 while (off
>= m
->m_len
) {
4787 if (m
->m_next
== NULL
)
4788 panic("m_copym: invalid mbuf chain");
4797 if (len
!= M_COPYALL
)
4798 panic("m_copym: len != M_COPYALL");
4803 n
= _M_RETRYHDR(wait
, m
->m_type
);
4805 n
= _M_RETRY(wait
, m
->m_type
);
4812 if ((mode
== M_COPYM_MOVE_HDR
) ||
4813 (mode
== M_COPYM_MUST_MOVE_HDR
)) {
4814 M_COPY_PKTHDR(n
, mhdr
);
4815 } else if ((mode
== M_COPYM_COPY_HDR
) ||
4816 (mode
== M_COPYM_MUST_COPY_HDR
)) {
4817 if (m_dup_pkthdr(n
, mhdr
, wait
) == 0)
4820 if (len
== M_COPYALL
)
4821 n
->m_pkthdr
.len
-= off0
;
4823 n
->m_pkthdr
.len
= len
;
4826 * There is data to copy from the packet header mbuf
4827 * if it is empty or it is before the starting offset
4834 n
->m_len
= MIN(len
, (m
->m_len
- off
));
4835 if (m
->m_flags
& M_EXT
) {
4836 n
->m_ext
= m
->m_ext
;
4838 n
->m_data
= m
->m_data
+ off
;
4839 n
->m_flags
|= M_EXT
;
4842 * Limit to the capacity of the destination
4844 if (n
->m_flags
& M_PKTHDR
)
4845 n
->m_len
= MIN(n
->m_len
, MHLEN
);
4847 n
->m_len
= MIN(n
->m_len
, MLEN
);
4849 if (MTOD(n
, char *) + n
->m_len
> ((char *)n
) + MSIZE
)
4850 panic("%s n %p copy overflow",
4853 bcopy(MTOD(m
, caddr_t
)+off
, MTOD(n
, caddr_t
),
4854 (unsigned)n
->m_len
);
4856 if (len
!= M_COPYALL
)
4876 m_copym(struct mbuf
*m
, int off0
, int len
, int wait
)
4878 return (m_copym_mode(m
, off0
, len
, wait
, M_COPYM_MOVE_HDR
));
4882 * Equivalent to m_copym except that all necessary mbuf hdrs are allocated
4883 * within this routine also, the last mbuf and offset accessed are passed
4884 * out and can be passed back in to avoid having to rescan the entire mbuf
4885 * list (normally hung off of the socket)
4888 m_copym_with_hdrs(struct mbuf
*m0
, int off0
, int len0
, int wait
,
4889 struct mbuf
**m_lastm
, int *m_off
, uint32_t mode
)
4891 struct mbuf
*m
= m0
, *n
, **np
= NULL
;
4892 int off
= off0
, len
= len0
;
4893 struct mbuf
*top
= NULL
;
4894 int mcflags
= MSLEEPF(wait
);
4897 mcache_obj_t
*list
= NULL
;
4900 if (off
== 0 && (m
->m_flags
& M_PKTHDR
))
4903 if (m_lastm
!= NULL
&& *m_lastm
!= NULL
) {
4907 while (off
>= m
->m_len
) {
4917 len
-= MIN(len
, (n
->m_len
- ((needed
== 1) ? off
: 0)));
4924 * If the caller doesn't want to be put to sleep, mark it with
4925 * MCR_TRYHARD so that we may reclaim buffers from other places
4928 if (mcflags
& MCR_NOSLEEP
)
4929 mcflags
|= MCR_TRYHARD
;
4931 if (mcache_alloc_ext(m_cache(MC_MBUF
), &list
, needed
,
4937 n
= (struct mbuf
*)list
;
4938 list
= list
->obj_next
;
4939 ASSERT(n
!= NULL
&& m
!= NULL
);
4941 type
= (top
== NULL
) ? MT_HEADER
: m
->m_type
;
4942 MBUF_INIT(n
, (top
== NULL
), type
);
4944 if (top
== NULL
&& mac_mbuf_label_init(n
, wait
) != 0) {
4945 mtype_stat_inc(MT_HEADER
);
4946 mtype_stat_dec(MT_FREE
);
4950 #endif /* MAC_NET */
4962 if ((mode
== M_COPYM_MOVE_HDR
) ||
4963 (mode
== M_COPYM_MUST_MOVE_HDR
)) {
4964 M_COPY_PKTHDR(n
, m
);
4965 } else if ((mode
== M_COPYM_COPY_HDR
) ||
4966 (mode
== M_COPYM_MUST_COPY_HDR
)) {
4967 if (m_dup_pkthdr(n
, m
, wait
) == 0)
4970 n
->m_pkthdr
.len
= len
;
4973 n
->m_len
= MIN(len
, (m
->m_len
- off
));
4975 if (m
->m_flags
& M_EXT
) {
4976 n
->m_ext
= m
->m_ext
;
4978 n
->m_data
= m
->m_data
+ off
;
4979 n
->m_flags
|= M_EXT
;
4981 if (MTOD(n
, char *) + n
->m_len
> ((char *)n
) + MSIZE
)
4982 panic("%s n %p copy overflow",
4985 bcopy(MTOD(m
, caddr_t
)+off
, MTOD(n
, caddr_t
),
4986 (unsigned)n
->m_len
);
4991 if (m_lastm
!= NULL
&& m_off
!= NULL
) {
4992 if ((off
+ n
->m_len
) == m
->m_len
) {
4993 *m_lastm
= m
->m_next
;
4997 *m_off
= off
+ n
->m_len
;
5007 mtype_stat_inc(MT_HEADER
);
5008 mtype_stat_add(type
, needed
);
5009 mtype_stat_sub(MT_FREE
, needed
+ 1);
5011 ASSERT(list
== NULL
);
5016 mcache_free_ext(m_cache(MC_MBUF
), list
);
5024 * Copy data from an mbuf chain starting "off" bytes from the beginning,
5025 * continuing for "len" bytes, into the indicated buffer.
5028 m_copydata(struct mbuf
*m
, int off
, int len
, void *vp
)
5033 if (off
< 0 || len
< 0)
5034 panic("m_copydata: invalid offset %d or len %d", off
, len
);
5038 panic("m_copydata: invalid mbuf chain");
5046 panic("m_copydata: invalid mbuf chain");
5047 count
= MIN(m
->m_len
- off
, len
);
5048 bcopy(MTOD(m
, caddr_t
) + off
, cp
, count
);
5057 * Concatenate mbuf chain n to m. Both chains must be of the same type
5058 * (e.g. MT_DATA). Any m_pkthdr is not updated.
5061 m_cat(struct mbuf
*m
, struct mbuf
*n
)
5066 if ((m
->m_flags
& M_EXT
) ||
5067 m
->m_data
+ m
->m_len
+ n
->m_len
>= &m
->m_dat
[MLEN
]) {
5068 /* just join the two chains */
5072 /* splat the data from one into the other */
5073 bcopy(MTOD(n
, caddr_t
), MTOD(m
, caddr_t
) + m
->m_len
,
5075 m
->m_len
+= n
->m_len
;
5081 m_adj(struct mbuf
*mp
, int req_len
)
5087 if ((m
= mp
) == NULL
)
5093 while (m
!= NULL
&& len
> 0) {
5094 if (m
->m_len
<= len
) {
5105 if (m
->m_flags
& M_PKTHDR
)
5106 m
->m_pkthdr
.len
-= (req_len
- len
);
5109 * Trim from tail. Scan the mbuf chain,
5110 * calculating its length and finding the last mbuf.
5111 * If the adjustment only affects this mbuf, then just
5112 * adjust and return. Otherwise, rescan and truncate
5113 * after the remaining size.
5119 if (m
->m_next
== (struct mbuf
*)0)
5123 if (m
->m_len
>= len
) {
5126 if (m
->m_flags
& M_PKTHDR
)
5127 m
->m_pkthdr
.len
-= len
;
5134 * Correct length for chain is "count".
5135 * Find the mbuf with last data, adjust its length,
5136 * and toss data from remaining mbufs on chain.
5139 if (m
->m_flags
& M_PKTHDR
)
5140 m
->m_pkthdr
.len
= count
;
5141 for (; m
; m
= m
->m_next
) {
5142 if (m
->m_len
>= count
) {
5148 while ((m
= m
->m_next
))
5154 * Rearange an mbuf chain so that len bytes are contiguous
5155 * and in the data area of an mbuf (so that mtod and dtom
5156 * will work for a structure of size len). Returns the resulting
5157 * mbuf chain on success, frees it and returns null on failure.
5158 * If there is room, it will add up to max_protohdr-len extra bytes to the
5159 * contiguous region in an attempt to avoid being called next time.
5164 m_pullup(struct mbuf
*n
, int len
)
5171 * If first mbuf has no cluster, and has room for len bytes
5172 * without shifting current data, pullup into it,
5173 * otherwise allocate a new mbuf to prepend to the chain.
5175 if ((n
->m_flags
& M_EXT
) == 0 &&
5176 n
->m_data
+ len
< &n
->m_dat
[MLEN
] && n
->m_next
) {
5177 if (n
->m_len
>= len
)
5185 _MGET(m
, M_DONTWAIT
, n
->m_type
);
5189 if (n
->m_flags
& M_PKTHDR
) {
5190 M_COPY_PKTHDR(m
, n
);
5191 n
->m_flags
&= ~M_PKTHDR
;
5194 space
= &m
->m_dat
[MLEN
] - (m
->m_data
+ m
->m_len
);
5196 count
= MIN(MIN(MAX(len
, max_protohdr
), space
), n
->m_len
);
5197 bcopy(MTOD(n
, caddr_t
), MTOD(m
, caddr_t
) + m
->m_len
,
5207 } while (len
> 0 && n
);
5221 * Like m_pullup(), except a new mbuf is always allocated, and we allow
5222 * the amount of empty space before the data in the new mbuf to be specified
5223 * (in the event that the caller expects to prepend later).
5225 __private_extern__
int MSFail
= 0;
5227 __private_extern__
struct mbuf
*
5228 m_copyup(struct mbuf
*n
, int len
, int dstoff
)
5233 if (len
> (MHLEN
- dstoff
))
5235 MGET(m
, M_DONTWAIT
, n
->m_type
);
5239 if (n
->m_flags
& M_PKTHDR
) {
5240 m_copy_pkthdr(m
, n
);
5241 n
->m_flags
&= ~M_PKTHDR
;
5243 m
->m_data
+= dstoff
;
5244 space
= &m
->m_dat
[MLEN
] - (m
->m_data
+ m
->m_len
);
5246 count
= min(min(max(len
, max_protohdr
), space
), n
->m_len
);
5247 memcpy(mtod(m
, caddr_t
) + m
->m_len
, mtod(n
, caddr_t
),
5257 } while (len
> 0 && n
);
5271 * Partition an mbuf chain in two pieces, returning the tail --
5272 * all but the first len0 bytes. In case of failure, it returns NULL and
5273 * attempts to restore the chain to its original state.
5276 m_split(struct mbuf
*m0
, int len0
, int wait
)
5278 return (m_split0(m0
, len0
, wait
, 1));
5281 static struct mbuf
*
5282 m_split0(struct mbuf
*m0
, int len0
, int wait
, int copyhdr
)
5285 unsigned len
= len0
, remain
;
5287 for (m
= m0
; m
&& len
> m
->m_len
; m
= m
->m_next
)
5291 remain
= m
->m_len
- len
;
5292 if (copyhdr
&& (m0
->m_flags
& M_PKTHDR
)) {
5293 _MGETHDR(n
, wait
, m0
->m_type
);
5296 n
->m_pkthdr
.rcvif
= m0
->m_pkthdr
.rcvif
;
5297 n
->m_pkthdr
.len
= m0
->m_pkthdr
.len
- len0
;
5298 m0
->m_pkthdr
.len
= len0
;
5299 if (m
->m_flags
& M_EXT
)
5301 if (remain
> MHLEN
) {
5302 /* m can't be the lead packet */
5304 n
->m_next
= m_split(m
, len
, wait
);
5305 if (n
->m_next
== NULL
) {
5311 MH_ALIGN(n
, remain
);
5312 } else if (remain
== 0) {
5317 _MGET(n
, wait
, m
->m_type
);
5323 if (m
->m_flags
& M_EXT
) {
5324 n
->m_flags
|= M_EXT
;
5325 n
->m_ext
= m
->m_ext
;
5327 n
->m_data
= m
->m_data
+ len
;
5329 bcopy(MTOD(m
, caddr_t
) + len
, MTOD(n
, caddr_t
), remain
);
5333 n
->m_next
= m
->m_next
;
5339 * Routine to copy from device local memory into mbufs.
5342 m_devget(char *buf
, int totlen
, int off0
, struct ifnet
*ifp
,
5343 void (*copy
)(const void *, void *, size_t))
5346 struct mbuf
*top
= NULL
, **mp
= &top
;
5347 int off
= off0
, len
;
5355 * If 'off' is non-zero, packet is trailer-encapsulated,
5356 * so we have to skip the type and length fields.
5358 cp
+= off
+ 2 * sizeof (u_int16_t
);
5359 totlen
-= 2 * sizeof (u_int16_t
);
5361 _MGETHDR(m
, M_DONTWAIT
, MT_DATA
);
5364 m
->m_pkthdr
.rcvif
= ifp
;
5365 m
->m_pkthdr
.len
= totlen
;
5368 while (totlen
> 0) {
5370 _MGET(m
, M_DONTWAIT
, MT_DATA
);
5377 len
= MIN(totlen
, epkt
- cp
);
5378 if (len
>= MINCLSIZE
) {
5379 MCLGET(m
, M_DONTWAIT
);
5380 if (m
->m_flags
& M_EXT
) {
5381 m
->m_len
= len
= MIN(len
, m_maxsize(MC_CL
));
5383 /* give up when it's out of cluster mbufs */
5391 * Place initial small packet/header at end of mbuf.
5393 if (len
< m
->m_len
) {
5395 len
+ max_linkhdr
<= m
->m_len
)
5396 m
->m_data
+= max_linkhdr
;
5403 copy(cp
, MTOD(m
, caddr_t
), (unsigned)len
);
5405 bcopy(cp
, MTOD(m
, caddr_t
), (unsigned)len
);
5416 #ifndef MBUF_GROWTH_NORMAL_THRESH
5417 #define MBUF_GROWTH_NORMAL_THRESH 25
5421 * Cluster freelist allocation check.
5424 m_howmany(int num
, size_t bufsize
)
5427 u_int32_t m_mbclusters
, m_clusters
, m_bigclusters
, m_16kclusters
;
5428 u_int32_t m_mbfree
, m_clfree
, m_bigclfree
, m_16kclfree
;
5429 u_int32_t sumclusters
, freeclusters
;
5430 u_int32_t percent_pool
, percent_kmem
;
5431 u_int32_t mb_growth
, mb_growth_thresh
;
5433 VERIFY(bufsize
== m_maxsize(MC_BIGCL
) ||
5434 bufsize
== m_maxsize(MC_16KCL
));
5436 lck_mtx_assert(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
5438 /* Numbers in 2K cluster units */
5439 m_mbclusters
= m_total(MC_MBUF
) >> NMBPCLSHIFT
;
5440 m_clusters
= m_total(MC_CL
);
5441 m_bigclusters
= m_total(MC_BIGCL
) << NCLPBGSHIFT
;
5442 m_16kclusters
= m_total(MC_16KCL
);
5443 sumclusters
= m_mbclusters
+ m_clusters
+ m_bigclusters
;
5445 m_mbfree
= m_infree(MC_MBUF
) >> NMBPCLSHIFT
;
5446 m_clfree
= m_infree(MC_CL
);
5447 m_bigclfree
= m_infree(MC_BIGCL
) << NCLPBGSHIFT
;
5448 m_16kclfree
= m_infree(MC_16KCL
);
5449 freeclusters
= m_mbfree
+ m_clfree
+ m_bigclfree
;
5451 /* Bail if we've maxed out the mbuf memory map */
5452 if ((bufsize
== m_maxsize(MC_BIGCL
) && sumclusters
>= nclusters
) ||
5453 (njcl
> 0 && bufsize
== m_maxsize(MC_16KCL
) &&
5454 (m_16kclusters
<< NCLPJCLSHIFT
) >= njcl
)) {
5458 if (bufsize
== m_maxsize(MC_BIGCL
)) {
5460 if (m_bigclusters
< m_minlimit(MC_BIGCL
))
5461 return (m_minlimit(MC_BIGCL
) - m_bigclusters
);
5464 ((sumclusters
- freeclusters
) * 100) / sumclusters
;
5465 percent_kmem
= (sumclusters
* 100) / nclusters
;
5468 * If a light/normal user, grow conservatively (75%)
5469 * If a heavy user, grow aggressively (50%)
5471 if (percent_kmem
< MBUF_GROWTH_NORMAL_THRESH
)
5472 mb_growth
= MB_GROWTH_NORMAL
;
5474 mb_growth
= MB_GROWTH_AGGRESSIVE
;
5476 if (percent_kmem
< 5) {
5477 /* For initial allocations */
5480 /* Return if >= MBIGCL_LOWAT clusters available */
5481 if (m_infree(MC_BIGCL
) >= MBIGCL_LOWAT
&&
5482 m_total(MC_BIGCL
) >=
5483 MBIGCL_LOWAT
+ m_minlimit(MC_BIGCL
))
5486 /* Ensure at least num clusters are accessible */
5487 if (num
>= m_infree(MC_BIGCL
))
5488 i
= num
- m_infree(MC_BIGCL
);
5489 if (num
> m_total(MC_BIGCL
) - m_minlimit(MC_BIGCL
))
5490 j
= num
- (m_total(MC_BIGCL
) -
5491 m_minlimit(MC_BIGCL
));
5496 * Grow pool if percent_pool > 75 (normal growth)
5497 * or percent_pool > 50 (aggressive growth).
5499 mb_growth_thresh
= 100 - (100 / (1 << mb_growth
));
5500 if (percent_pool
> mb_growth_thresh
)
5501 j
= ((sumclusters
+ num
) >> mb_growth
) -
5506 /* Check to ensure we didn't go over limits */
5507 if (i
+ m_bigclusters
>= m_maxlimit(MC_BIGCL
))
5508 i
= m_maxlimit(MC_BIGCL
) - m_bigclusters
;
5509 if ((i
<< 1) + sumclusters
>= nclusters
)
5510 i
= (nclusters
- sumclusters
) >> 1;
5511 VERIFY((m_total(MC_BIGCL
) + i
) <= m_maxlimit(MC_BIGCL
));
5512 VERIFY(sumclusters
+ (i
<< 1) <= nclusters
);
5514 } else { /* 16K CL */
5516 /* Ensure at least num clusters are available */
5517 if (num
>= m_16kclfree
)
5518 i
= num
- m_16kclfree
;
5520 /* Always grow 16KCL pool aggressively */
5521 if (((m_16kclusters
+ num
) >> 1) > m_16kclfree
)
5522 j
= ((m_16kclusters
+ num
) >> 1) - m_16kclfree
;
5525 /* Check to ensure we don't go over limit */
5526 if (i
+ m_16kclusters
>= m_maxlimit(MC_16KCL
))
5527 i
= m_maxlimit(MC_16KCL
) - m_16kclusters
;
5528 VERIFY((m_total(MC_16KCL
) + i
) <= m_maxlimit(MC_16KCL
));
5533 * Return the number of bytes in the mbuf chain, m.
5536 m_length(struct mbuf
*m
)
5539 unsigned int pktlen
;
5541 if (m
->m_flags
& M_PKTHDR
)
5542 return (m
->m_pkthdr
.len
);
5545 for (m0
= m
; m0
!= NULL
; m0
= m0
->m_next
)
5546 pktlen
+= m0
->m_len
;
5551 * Copy data from a buffer back into the indicated mbuf chain,
5552 * starting "off" bytes from the beginning, extending the mbuf
5553 * chain if necessary.
5556 m_copyback(struct mbuf
*m0
, int off
, int len
, const void *cp
)
5559 struct mbuf
*origm
= m0
;
5569 m_copyback0(&m0
, off
, len
, cp
,
5570 M_COPYBACK0_COPYBACK
| M_COPYBACK0_EXTEND
, M_DONTWAIT
);
5573 if (error
!= 0 || (m0
!= NULL
&& origm
!= m0
))
5574 panic("m_copyback");
5579 m_copyback_cow(struct mbuf
*m0
, int off
, int len
, const void *cp
, int how
)
5583 /* don't support chain expansion */
5584 VERIFY(off
+ len
<= m_length(m0
));
5586 error
= m_copyback0(&m0
, off
, len
, cp
,
5587 M_COPYBACK0_COPYBACK
| M_COPYBACK0_COW
, how
);
5590 * no way to recover from partial success.
5591 * just free the chain.
5600 * m_makewritable: ensure the specified range writable.
5603 m_makewritable(struct mbuf
**mp
, int off
, int len
, int how
)
5608 int origlen
, reslen
;
5610 origlen
= m_length(*mp
);
5613 #if 0 /* M_COPYALL is large enough */
5614 if (len
== M_COPYALL
)
5615 len
= m_length(*mp
) - off
; /* XXX */
5618 error
= m_copyback0(mp
, off
, len
, NULL
,
5619 M_COPYBACK0_PRESERVE
| M_COPYBACK0_COW
, how
);
5623 for (n
= *mp
; n
; n
= n
->m_next
)
5625 if (origlen
!= reslen
)
5626 panic("m_makewritable: length changed");
5627 if (((*mp
)->m_flags
& M_PKTHDR
) && reslen
!= (*mp
)->m_pkthdr
.len
)
5628 panic("m_makewritable: inconsist");
5635 m_copyback0(struct mbuf
**mp0
, int off
, int len
, const void *vp
, int flags
,
5642 const char *cp
= vp
;
5644 VERIFY(mp0
!= NULL
);
5645 VERIFY(*mp0
!= NULL
);
5646 VERIFY((flags
& M_COPYBACK0_PRESERVE
) == 0 || cp
== NULL
);
5647 VERIFY((flags
& M_COPYBACK0_COPYBACK
) == 0 || cp
!= NULL
);
5650 * we don't bother to update "totlen" in the case of M_COPYBACK0_COW,
5651 * assuming that M_COPYBACK0_EXTEND and M_COPYBACK0_COW are exclusive.
5654 VERIFY((~flags
& (M_COPYBACK0_EXTEND
|M_COPYBACK0_COW
)) != 0);
5658 while (off
> (mlen
= m
->m_len
)) {
5661 if (m
->m_next
== NULL
) {
5664 if (!(flags
& M_COPYBACK0_EXTEND
))
5668 * try to make some space at the end of "m".
5672 if (off
+ len
>= MINCLSIZE
&&
5673 !(m
->m_flags
& M_EXT
) && m
->m_len
== 0) {
5676 tspace
= M_TRAILINGSPACE(m
);
5678 tspace
= MIN(tspace
, off
+ len
);
5680 bzero(mtod(m
, char *) + m
->m_len
,
5689 * need to allocate an mbuf.
5692 if (off
+ len
>= MINCLSIZE
) {
5693 n
= m_getcl(how
, m
->m_type
, 0);
5695 n
= _M_GET(how
, m
->m_type
);
5701 n
->m_len
= MIN(M_TRAILINGSPACE(n
), off
+ len
);
5702 bzero(mtod(n
, char *), MIN(n
->m_len
, off
));
5709 mlen
= m
->m_len
- off
;
5710 if (mlen
!= 0 && m_mclhasreference(m
)) {
5715 * this mbuf is read-only.
5716 * allocate a new writable mbuf and try again.
5720 if (!(flags
& M_COPYBACK0_COW
))
5721 panic("m_copyback0: read-only");
5722 #endif /* DIAGNOSTIC */
5725 * if we're going to write into the middle of
5726 * a mbuf, split it first.
5728 if (off
> 0 && len
< mlen
) {
5729 n
= m_split0(m
, off
, how
, 0);
5740 * XXX TODO coalesce into the trailingspace of
5741 * the previous mbuf when possible.
5745 * allocate a new mbuf. copy packet header if needed.
5747 n
= _M_GET(how
, m
->m_type
);
5750 if (off
== 0 && (m
->m_flags
& M_PKTHDR
)) {
5751 M_COPY_PKTHDR(n
, m
);
5754 if (len
>= MINCLSIZE
)
5755 MCLGET(n
, M_DONTWAIT
);
5757 (n
->m_flags
& M_EXT
) ? MCLBYTES
: MLEN
;
5763 * free the region which has been overwritten.
5764 * copying data from old mbufs if requested.
5766 if (flags
& M_COPYBACK0_PRESERVE
)
5767 datap
= mtod(n
, char *);
5771 VERIFY(off
== 0 || eatlen
>= mlen
);
5773 VERIFY(len
>= mlen
);
5777 m_copydata(m
, off
, mlen
, datap
);
5784 while (m
!= NULL
&& m_mclhasreference(m
) &&
5785 n
->m_type
== m
->m_type
&& eatlen
> 0) {
5786 mlen
= MIN(eatlen
, m
->m_len
);
5788 m_copydata(m
, 0, mlen
, datap
);
5795 *mp
= m
= m_free(m
);
5803 mlen
= MIN(mlen
, len
);
5804 if (flags
& M_COPYBACK0_COPYBACK
) {
5805 bcopy(cp
, mtod(m
, caddr_t
) + off
, (unsigned)mlen
);
5814 if (m
->m_next
== NULL
) {
5821 if (((m
= *mp0
)->m_flags
& M_PKTHDR
) && (m
->m_pkthdr
.len
< totlen
)) {
5822 VERIFY(flags
& M_COPYBACK0_EXTEND
);
5823 m
->m_pkthdr
.len
= totlen
;
5833 mcl_to_paddr(char *addr
)
5835 vm_offset_t base_phys
;
5837 if (!MBUF_IN_MAP(addr
))
5839 base_phys
= mcl_paddr
[atop_64(addr
- (char *)mbutl
)];
5843 return ((uint64_t)(ptoa_64(base_phys
) | ((uint64_t)addr
& PAGE_MASK
)));
5847 * Dup the mbuf chain passed in. The whole thing. No cute additional cruft.
5848 * And really copy the thing. That way, we don't "precompute" checksums
5849 * for unsuspecting consumers. Assumption: m->m_nextpkt == 0. Trick: for
5850 * small packets, don't dup into a cluster. That way received packets
5851 * don't take up too much room in the sockbuf (cf. sbspace()).
5856 m_dup(struct mbuf
*m
, int how
)
5858 struct mbuf
*n
, **np
;
5864 if (m
->m_flags
& M_PKTHDR
)
5868 * Quick check: if we have one mbuf and its data fits in an
5869 * mbuf with packet header, just copy and go.
5871 if (m
->m_next
== NULL
) {
5872 /* Then just move the data into an mbuf and be done... */
5874 if (m
->m_pkthdr
.len
<= MHLEN
&& m
->m_len
<= MHLEN
) {
5875 if ((n
= _M_GETHDR(how
, m
->m_type
)) == NULL
)
5877 n
->m_len
= m
->m_len
;
5878 m_dup_pkthdr(n
, m
, how
);
5879 bcopy(m
->m_data
, n
->m_data
, m
->m_len
);
5882 } else if (m
->m_len
<= MLEN
) {
5883 if ((n
= _M_GET(how
, m
->m_type
)) == NULL
)
5885 bcopy(m
->m_data
, n
->m_data
, m
->m_len
);
5886 n
->m_len
= m
->m_len
;
5892 printf("<%x: %x, %x, %x\n", m
, m
->m_flags
, m
->m_len
,
5896 n
= _M_GETHDR(how
, m
->m_type
);
5898 n
= _M_GET(how
, m
->m_type
);
5901 if (m
->m_flags
& M_EXT
) {
5902 if (m
->m_len
<= m_maxsize(MC_CL
))
5904 else if (m
->m_len
<= m_maxsize(MC_BIGCL
))
5905 n
= m_mbigget(n
, how
);
5906 else if (m
->m_len
<= m_maxsize(MC_16KCL
) && njcl
> 0)
5907 n
= m_m16kget(n
, how
);
5908 if (!(n
->m_flags
& M_EXT
)) {
5915 /* Don't use M_COPY_PKTHDR: preserve m_data */
5916 m_dup_pkthdr(n
, m
, how
);
5918 if (!(n
->m_flags
& M_EXT
))
5919 n
->m_data
= n
->m_pktdat
;
5921 n
->m_len
= m
->m_len
;
5923 * Get the dup on the same bdry as the original
5924 * Assume that the two mbufs have the same offset to data area
5925 * (up to word boundaries)
5927 bcopy(MTOD(m
, caddr_t
), MTOD(n
, caddr_t
), (unsigned)n
->m_len
);
5931 printf(">%x: %x, %x, %x\n", n
, n
->m_flags
, n
->m_len
,
5946 #define MBUF_MULTIPAGES(m) \
5947 (((m)->m_flags & M_EXT) && \
5948 ((IS_P2ALIGNED((m)->m_data, PAGE_SIZE) \
5949 && (m)->m_len > PAGE_SIZE) || \
5950 (!IS_P2ALIGNED((m)->m_data, PAGE_SIZE) && \
5951 P2ROUNDUP((m)->m_data, PAGE_SIZE) < ((uintptr_t)(m)->m_data + (m)->m_len))))
5953 static struct mbuf
*
5954 m_expand(struct mbuf
*m
, struct mbuf
**last
)
5956 struct mbuf
*top
= NULL
;
5957 struct mbuf
**nm
= &top
;
5958 uintptr_t data0
, data
;
5959 unsigned int len0
, len
;
5961 VERIFY(MBUF_MULTIPAGES(m
));
5962 VERIFY(m
->m_next
== NULL
);
5963 data0
= (uintptr_t)m
->m_data
;
5971 if (IS_P2ALIGNED(data
, PAGE_SIZE
) && len0
> PAGE_SIZE
)
5973 else if (!IS_P2ALIGNED(data
, PAGE_SIZE
) &&
5974 P2ROUNDUP(data
, PAGE_SIZE
) < (data
+ len0
))
5975 len
= P2ROUNDUP(data
, PAGE_SIZE
) - data
;
5980 VERIFY(m
->m_flags
& M_EXT
);
5981 m
->m_data
= (void *)data
;
5993 n
= _M_RETRY(M_DONTWAIT
, MT_DATA
);
6000 n
->m_ext
= m
->m_ext
;
6002 n
->m_flags
|= M_EXT
;
6009 m_normalize(struct mbuf
*m
)
6011 struct mbuf
*top
= NULL
;
6012 struct mbuf
**nm
= &top
;
6013 boolean_t expanded
= FALSE
;
6021 /* Does the data cross one or more page boundaries? */
6022 if (MBUF_MULTIPAGES(m
)) {
6024 if ((m
= m_expand(m
, &last
)) == NULL
) {
6040 atomic_add_32(&mb_normalized
, 1);
6045 * Append the specified data to the indicated mbuf chain,
6046 * Extend the mbuf chain if the new data does not fit in
6049 * Return 1 if able to complete the job; otherwise 0.
6052 m_append(struct mbuf
*m0
, int len
, caddr_t cp
)
6055 int remainder
, space
;
6057 for (m
= m0
; m
->m_next
!= NULL
; m
= m
->m_next
)
6060 space
= M_TRAILINGSPACE(m
);
6063 * Copy into available space.
6065 if (space
> remainder
)
6067 bcopy(cp
, mtod(m
, caddr_t
) + m
->m_len
, space
);
6072 while (remainder
> 0) {
6074 * Allocate a new mbuf; could check space
6075 * and allocate a cluster instead.
6077 n
= m_get(M_WAITOK
, m
->m_type
);
6080 n
->m_len
= min(MLEN
, remainder
);
6081 bcopy(cp
, mtod(n
, caddr_t
), n
->m_len
);
6083 remainder
-= n
->m_len
;
6087 if (m0
->m_flags
& M_PKTHDR
)
6088 m0
->m_pkthdr
.len
+= len
- remainder
;
6089 return (remainder
== 0);
6093 m_last(struct mbuf
*m
)
6095 while (m
->m_next
!= NULL
)
6101 m_fixhdr(struct mbuf
*m0
)
6105 VERIFY(m0
->m_flags
& M_PKTHDR
);
6107 len
= m_length2(m0
, NULL
);
6108 m0
->m_pkthdr
.len
= len
;
6113 m_length2(struct mbuf
*m0
, struct mbuf
**last
)
6119 for (m
= m0
; m
!= NULL
; m
= m
->m_next
) {
6121 if (m
->m_next
== NULL
)
6130 * Defragment a mbuf chain, returning the shortest possible chain of mbufs
6131 * and clusters. If allocation fails and this cannot be completed, NULL will
6132 * be returned, but the passed in chain will be unchanged. Upon success,
6133 * the original chain will be freed, and the new chain will be returned.
6135 * If a non-packet header is passed in, the original mbuf (chain?) will
6136 * be returned unharmed.
6138 * If offset is specfied, the first mbuf in the chain will have a leading
6139 * space of the amount stated by the "off" parameter.
6141 * This routine requires that the m_pkthdr.header field of the original
6142 * mbuf chain is cleared by the caller.
6145 m_defrag_offset(struct mbuf
*m0
, u_int32_t off
, int how
)
6147 struct mbuf
*m_new
= NULL
, *m_final
= NULL
;
6148 int progress
= 0, length
, pktlen
;
6150 if (!(m0
->m_flags
& M_PKTHDR
))
6153 VERIFY(off
< MHLEN
);
6154 m_fixhdr(m0
); /* Needed sanity check */
6156 pktlen
= m0
->m_pkthdr
.len
+ off
;
6158 m_final
= m_getcl(how
, MT_DATA
, M_PKTHDR
);
6160 m_final
= m_gethdr(how
, MT_DATA
);
6162 if (m_final
== NULL
)
6167 m_final
->m_data
+= off
;
6171 * Caller must have handled the contents pointed to by this
6172 * pointer before coming here, as otherwise it will point to
6173 * the original mbuf which will get freed upon success.
6175 VERIFY(m0
->m_pkthdr
.pkt_hdr
== NULL
);
6177 if (m_dup_pkthdr(m_final
, m0
, how
) == 0)
6182 while (progress
< pktlen
) {
6183 length
= pktlen
- progress
;
6184 if (length
> MCLBYTES
)
6186 length
-= ((m_new
== m_final
) ? off
: 0);
6188 if (m_new
== NULL
) {
6190 m_new
= m_getcl(how
, MT_DATA
, 0);
6192 m_new
= m_get(how
, MT_DATA
);
6197 m_copydata(m0
, progress
, length
, mtod(m_new
, caddr_t
));
6199 m_new
->m_len
= length
;
6200 if (m_new
!= m_final
)
6201 m_cat(m_final
, m_new
);
6214 m_defrag(struct mbuf
*m0
, int how
)
6216 return (m_defrag_offset(m0
, 0, how
));
6220 m_mchtype(struct mbuf
*m
, int t
)
6223 mtype_stat_dec(m
->m_type
);
6228 m_mtod(struct mbuf
*m
)
6230 return (MTOD(m
, void *));
6236 return ((struct mbuf
*)((uintptr_t)(x
) & ~(MSIZE
-1)));
6240 m_mcheck(struct mbuf
*m
)
6246 * Return a pointer to mbuf/offset of location in mbuf chain.
6249 m_getptr(struct mbuf
*m
, int loc
, int *off
)
6253 /* Normal end of search. */
6254 if (m
->m_len
> loc
) {
6259 if (m
->m_next
== NULL
) {
6261 /* Point at the end of valid data. */
6274 * Inform the corresponding mcache(s) that there's a waiter below.
6277 mbuf_waiter_inc(mbuf_class_t
class, boolean_t comp
)
6279 mcache_waiter_inc(m_cache(class));
6281 if (class == MC_CL
) {
6282 mcache_waiter_inc(m_cache(MC_MBUF_CL
));
6283 } else if (class == MC_BIGCL
) {
6284 mcache_waiter_inc(m_cache(MC_MBUF_BIGCL
));
6285 } else if (class == MC_16KCL
) {
6286 mcache_waiter_inc(m_cache(MC_MBUF_16KCL
));
6288 mcache_waiter_inc(m_cache(MC_MBUF_CL
));
6289 mcache_waiter_inc(m_cache(MC_MBUF_BIGCL
));
6295 * Inform the corresponding mcache(s) that there's no more waiter below.
6298 mbuf_waiter_dec(mbuf_class_t
class, boolean_t comp
)
6300 mcache_waiter_dec(m_cache(class));
6302 if (class == MC_CL
) {
6303 mcache_waiter_dec(m_cache(MC_MBUF_CL
));
6304 } else if (class == MC_BIGCL
) {
6305 mcache_waiter_dec(m_cache(MC_MBUF_BIGCL
));
6306 } else if (class == MC_16KCL
) {
6307 mcache_waiter_dec(m_cache(MC_MBUF_16KCL
));
6309 mcache_waiter_dec(m_cache(MC_MBUF_CL
));
6310 mcache_waiter_dec(m_cache(MC_MBUF_BIGCL
));
6316 * Called during slab (blocking and non-blocking) allocation. If there
6317 * is at least one waiter, and the time since the first waiter is blocked
6318 * is greater than the watchdog timeout, panic the system.
6326 if (mb_waiters
== 0 || !mb_watchdog
)
6330 since
= now
.tv_sec
- mb_wdtstart
.tv_sec
;
6331 if (since
>= MB_WDT_MAXTIME
) {
6332 panic_plain("%s: %d waiters stuck for %u secs\n%s", __func__
,
6333 mb_waiters
, since
, mbuf_dump());
6339 * Called during blocking allocation. Returns TRUE if one or more objects
6340 * are available at the per-CPU caches layer and that allocation should be
6341 * retried at that level.
6344 mbuf_sleep(mbuf_class_t
class, unsigned int num
, int wait
)
6346 boolean_t mcache_retry
= FALSE
;
6348 lck_mtx_assert(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
6350 /* Check if there's anything at the cache layer */
6351 if (mbuf_cached_above(class, wait
)) {
6352 mcache_retry
= TRUE
;
6356 /* Nothing? Then try hard to get it from somewhere */
6357 m_reclaim(class, num
, (wait
& MCR_COMP
));
6359 /* We tried hard and got something? */
6360 if (m_infree(class) > 0) {
6363 } else if (mbuf_cached_above(class, wait
)) {
6365 mcache_retry
= TRUE
;
6367 } else if (wait
& MCR_TRYHARD
) {
6368 mcache_retry
= TRUE
;
6373 * There's really nothing for us right now; inform the
6374 * cache(s) that there is a waiter below and go to sleep.
6376 mbuf_waiter_inc(class, (wait
& MCR_COMP
));
6378 VERIFY(!(wait
& MCR_NOSLEEP
));
6381 * If this is the first waiter, arm the watchdog timer. Otherwise
6382 * check if we need to panic the system due to watchdog timeout.
6384 if (mb_waiters
== 0)
6385 microuptime(&mb_wdtstart
);
6390 (void) msleep(mb_waitchan
, mbuf_mlock
, (PZERO
-1), m_cname(class), NULL
);
6392 /* We are now up; stop getting notified until next round */
6393 mbuf_waiter_dec(class, (wait
& MCR_COMP
));
6395 /* We waited and got something */
6396 if (m_infree(class) > 0) {
6399 } else if (mbuf_cached_above(class, wait
)) {
6401 mcache_retry
= TRUE
;
6404 return (mcache_retry
);
6407 __attribute__((noreturn
))
6409 mbuf_worker_thread(void)
6414 lck_mtx_lock(mbuf_mlock
);
6416 if (mbuf_expand_mcl
) {
6419 /* Adjust to current number of cluster in use */
6420 n
= mbuf_expand_mcl
-
6421 (m_total(MC_CL
) - m_infree(MC_CL
));
6422 if ((n
+ m_total(MC_CL
)) > m_maxlimit(MC_CL
))
6423 n
= m_maxlimit(MC_CL
) - m_total(MC_CL
);
6424 mbuf_expand_mcl
= 0;
6426 if (n
> 0 && freelist_populate(MC_CL
, n
, M_WAIT
) > 0)
6429 if (mbuf_expand_big
) {
6432 /* Adjust to current number of 4 KB cluster in use */
6433 n
= mbuf_expand_big
-
6434 (m_total(MC_BIGCL
) - m_infree(MC_BIGCL
));
6435 if ((n
+ m_total(MC_BIGCL
)) > m_maxlimit(MC_BIGCL
))
6436 n
= m_maxlimit(MC_BIGCL
) - m_total(MC_BIGCL
);
6437 mbuf_expand_big
= 0;
6439 if (n
> 0 && freelist_populate(MC_BIGCL
, n
, M_WAIT
) > 0)
6442 if (mbuf_expand_16k
) {
6445 /* Adjust to current number of 16 KB cluster in use */
6446 n
= mbuf_expand_16k
-
6447 (m_total(MC_16KCL
) - m_infree(MC_16KCL
));
6448 if ((n
+ m_total(MC_16KCL
)) > m_maxlimit(MC_16KCL
))
6449 n
= m_maxlimit(MC_16KCL
) - m_total(MC_16KCL
);
6450 mbuf_expand_16k
= 0;
6453 (void) freelist_populate(MC_16KCL
, n
, M_WAIT
);
6457 * Because we can run out of memory before filling the mbuf
6458 * map, we should not allocate more clusters than they are
6459 * mbufs -- otherwise we could have a large number of useless
6460 * clusters allocated.
6463 while (m_total(MC_MBUF
) <
6464 (m_total(MC_BIGCL
) + m_total(MC_CL
))) {
6465 if (freelist_populate(MC_MBUF
, 1, M_WAIT
) == 0)
6470 mbuf_worker_needs_wakeup
= TRUE
;
6471 assert_wait((caddr_t
)&mbuf_worker_needs_wakeup
,
6473 lck_mtx_unlock(mbuf_mlock
);
6474 (void) thread_block((thread_continue_t
)mbuf_worker_thread
);
6478 __attribute__((noreturn
))
6480 mbuf_worker_thread_init(void)
6482 mbuf_worker_ready
++;
6483 mbuf_worker_thread();
6492 lck_mtx_assert(mbuf_mlock
, LCK_MTX_ASSERT_OWNED
);
6494 VERIFY(MBUF_IN_MAP(buf
));
6495 ix
= ((unsigned char *)buf
- mbutl
) >> MBSHIFT
;
6496 VERIFY(ix
< maxslabgrp
);
6498 if ((slg
= slabstbl
[ix
]) == NULL
) {
6500 * In the current implementation, we never shrink the slabs
6501 * table; if we attempt to reallocate a cluster group when
6502 * it's already allocated, panic since this is a sign of a
6503 * memory corruption (slabstbl[ix] got nullified).
6506 VERIFY(ix
< slabgrp
);
6508 * Slabs expansion can only be done single threaded; when
6509 * we get here, it must be as a result of m_clalloc() which
6510 * is serialized and therefore mb_clalloc_busy must be set.
6512 VERIFY(mb_clalloc_busy
);
6513 lck_mtx_unlock(mbuf_mlock
);
6515 /* This is a new buffer; create the slabs group for it */
6516 MALLOC(slg
, mcl_slabg_t
*, sizeof (*slg
), M_TEMP
,
6518 MALLOC(slg
->slg_slab
, mcl_slab_t
*, sizeof(mcl_slab_t
) * NSLABSPMB
,
6519 M_TEMP
, M_WAITOK
| M_ZERO
);
6520 VERIFY(slg
!= NULL
&& slg
->slg_slab
!= NULL
);
6522 lck_mtx_lock(mbuf_mlock
);
6524 * No other thread could have gone into m_clalloc() after
6525 * we dropped the lock above, so verify that it's true.
6527 VERIFY(mb_clalloc_busy
);
6531 /* Chain each slab in the group to its forward neighbor */
6532 for (k
= 1; k
< NSLABSPMB
; k
++)
6533 slg
->slg_slab
[k
- 1].sl_next
= &slg
->slg_slab
[k
];
6534 VERIFY(slg
->slg_slab
[NSLABSPMB
- 1].sl_next
== NULL
);
6536 /* And chain the last slab in the previous group to this */
6538 VERIFY(slabstbl
[ix
- 1]->
6539 slg_slab
[NSLABSPMB
- 1].sl_next
== NULL
);
6540 slabstbl
[ix
- 1]->slg_slab
[NSLABSPMB
- 1].sl_next
=
6545 ix
= MTOPG(buf
) % NSLABSPMB
;
6546 VERIFY(ix
< NSLABSPMB
);
6548 return (&slg
->slg_slab
[ix
]);
6552 slab_init(mcl_slab_t
*sp
, mbuf_class_t
class, u_int32_t flags
,
6553 void *base
, void *head
, unsigned int len
, int refcnt
, int chunks
)
6555 sp
->sl_class
= class;
6556 sp
->sl_flags
= flags
;
6560 sp
->sl_refcnt
= refcnt
;
6561 sp
->sl_chunks
= chunks
;
6566 slab_insert(mcl_slab_t
*sp
, mbuf_class_t
class)
6568 VERIFY(slab_is_detached(sp
));
6569 m_slab_cnt(class)++;
6570 TAILQ_INSERT_TAIL(&m_slablist(class), sp
, sl_link
);
6571 sp
->sl_flags
&= ~SLF_DETACHED
;
6574 * If a buffer spans multiple contiguous pages then mark them as
6577 if (class == MC_16KCL
) {
6579 for (k
= 1; k
< NSLABSP16KB
; k
++) {
6581 /* Next slab must already be present */
6582 VERIFY(sp
!= NULL
&& slab_is_detached(sp
));
6583 sp
->sl_flags
&= ~SLF_DETACHED
;
6589 slab_remove(mcl_slab_t
*sp
, mbuf_class_t
class)
6592 VERIFY(!slab_is_detached(sp
));
6593 VERIFY(m_slab_cnt(class) > 0);
6594 m_slab_cnt(class)--;
6595 TAILQ_REMOVE(&m_slablist(class), sp
, sl_link
);
6597 if (class == MC_16KCL
) {
6598 for (k
= 1; k
< NSLABSP16KB
; k
++) {
6600 /* Next slab must already be present */
6602 VERIFY(!slab_is_detached(sp
));
6609 slab_inrange(mcl_slab_t
*sp
, void *buf
)
6611 return ((uintptr_t)buf
>= (uintptr_t)sp
->sl_base
&&
6612 (uintptr_t)buf
< ((uintptr_t)sp
->sl_base
+ sp
->sl_len
));
6618 slab_nextptr_panic(mcl_slab_t
*sp
, void *addr
)
6621 unsigned int chunk_len
= sp
->sl_len
/ sp
->sl_chunks
;
6622 uintptr_t buf
= (uintptr_t)sp
->sl_base
;
6624 for (i
= 0; i
< sp
->sl_chunks
; i
++, buf
+= chunk_len
) {
6625 void *next
= ((mcache_obj_t
*)buf
)->obj_next
;
6629 if (next
!= NULL
&& !MBUF_IN_MAP(next
)) {
6630 mcache_t
*cp
= m_cache(sp
->sl_class
);
6631 panic("%s: %s buffer %p in slab %p modified "
6632 "after free at offset 0: %p out of range "
6633 "[%p-%p)\n", __func__
, cp
->mc_name
,
6634 (void *)buf
, sp
, next
, mbutl
, embutl
);
6638 mcache_audit_t
*mca
= mcl_audit_buf2mca(sp
->sl_class
,
6639 (mcache_obj_t
*)buf
);
6640 mcl_audit_verify_nextptr(next
, mca
);
6646 slab_detach(mcl_slab_t
*sp
)
6648 sp
->sl_link
.tqe_next
= (mcl_slab_t
*)-1;
6649 sp
->sl_link
.tqe_prev
= (mcl_slab_t
**)-1;
6650 sp
->sl_flags
|= SLF_DETACHED
;
6654 slab_is_detached(mcl_slab_t
*sp
)
6656 return ((intptr_t)sp
->sl_link
.tqe_next
== -1 &&
6657 (intptr_t)sp
->sl_link
.tqe_prev
== -1 &&
6658 (sp
->sl_flags
& SLF_DETACHED
));
6662 mcl_audit_init(void *buf
, mcache_audit_t
**mca_list
,
6663 mcache_obj_t
**con_list
, size_t con_size
, unsigned int num
)
6665 mcache_audit_t
*mca
, *mca_tail
;
6666 mcache_obj_t
*con
= NULL
;
6667 boolean_t save_contents
= (con_list
!= NULL
);
6670 ASSERT(num
<= NMBPG
);
6671 ASSERT(con_list
== NULL
|| con_size
!= 0);
6674 VERIFY(ix
< maxclaudit
);
6676 /* Make sure we haven't been here before */
6677 for (i
= 0; i
< NMBPG
; i
++)
6678 VERIFY(mclaudit
[ix
].cl_audit
[i
] == NULL
);
6680 mca
= mca_tail
= *mca_list
;
6684 for (i
= 0; i
< num
; i
++) {
6685 mcache_audit_t
*next
;
6687 next
= mca
->mca_next
;
6688 bzero(mca
, sizeof (*mca
));
6689 mca
->mca_next
= next
;
6690 mclaudit
[ix
].cl_audit
[i
] = mca
;
6692 /* Attach the contents buffer if requested */
6693 if (save_contents
) {
6694 mcl_saved_contents_t
*msc
=
6695 (mcl_saved_contents_t
*)(void *)con
;
6697 VERIFY(msc
!= NULL
);
6698 VERIFY(IS_P2ALIGNED(msc
, sizeof (u_int64_t
)));
6699 VERIFY(con_size
== sizeof (*msc
));
6700 mca
->mca_contents_size
= con_size
;
6701 mca
->mca_contents
= msc
;
6702 con
= con
->obj_next
;
6703 bzero(mca
->mca_contents
, mca
->mca_contents_size
);
6707 mca
= mca
->mca_next
;
6713 *mca_list
= mca_tail
->mca_next
;
6714 mca_tail
->mca_next
= NULL
;
6718 mcl_audit_free(void *buf
, unsigned int num
)
6721 mcache_audit_t
*mca
, *mca_list
;
6724 VERIFY(ix
< maxclaudit
);
6726 if (mclaudit
[ix
].cl_audit
[0] != NULL
) {
6727 mca_list
= mclaudit
[ix
].cl_audit
[0];
6728 for (i
= 0; i
< num
; i
++) {
6729 mca
= mclaudit
[ix
].cl_audit
[i
];
6730 mclaudit
[ix
].cl_audit
[i
] = NULL
;
6731 if (mca
->mca_contents
)
6732 mcache_free(mcl_audit_con_cache
,
6735 mcache_free_ext(mcache_audit_cache
,
6736 (mcache_obj_t
*)mca_list
);
6741 * Given an address of a buffer (mbuf/2KB/4KB/16KB), return
6742 * the corresponding audit structure for that buffer.
6744 static mcache_audit_t
*
6745 mcl_audit_buf2mca(mbuf_class_t
class, mcache_obj_t
*mobj
)
6747 mcache_audit_t
*mca
= NULL
;
6748 int ix
= MTOPG(mobj
), m_idx
= 0;
6749 unsigned char *page_addr
;
6751 VERIFY(ix
< maxclaudit
);
6752 VERIFY(IS_P2ALIGNED(mobj
, MIN(m_maxsize(class), PAGE_SIZE
)));
6754 page_addr
= PGTOM(ix
);
6759 * For the mbuf case, find the index of the page
6760 * used by the mbuf and use that index to locate the
6761 * base address of the page. Then find out the
6762 * mbuf index relative to the page base and use
6763 * it to locate the audit structure.
6765 m_idx
= MBPAGEIDX(page_addr
, mobj
);
6766 VERIFY(m_idx
< (int)NMBPG
);
6767 mca
= mclaudit
[ix
].cl_audit
[m_idx
];
6772 * Same thing as above, but for 2KB clusters in a page.
6774 m_idx
= CLPAGEIDX(page_addr
, mobj
);
6775 VERIFY(m_idx
< (int)NCLPG
);
6776 mca
= mclaudit
[ix
].cl_audit
[m_idx
];
6780 m_idx
= BCLPAGEIDX(page_addr
, mobj
);
6781 VERIFY(m_idx
< (int)NBCLPG
);
6782 mca
= mclaudit
[ix
].cl_audit
[m_idx
];
6786 * Same as above, but only return the first element.
6788 mca
= mclaudit
[ix
].cl_audit
[0];
6800 mcl_audit_mbuf(mcache_audit_t
*mca
, void *addr
, boolean_t composite
,
6803 struct mbuf
*m
= addr
;
6804 mcache_obj_t
*next
= ((mcache_obj_t
*)m
)->obj_next
;
6806 VERIFY(mca
->mca_contents
!= NULL
&&
6807 mca
->mca_contents_size
== AUDIT_CONTENTS_SIZE
);
6810 mcl_audit_verify_nextptr(next
, mca
);
6813 /* Save constructed mbuf fields */
6814 mcl_audit_save_mbuf(m
, mca
);
6816 mcache_set_pattern(MCACHE_FREE_PATTERN
, m
,
6817 m_maxsize(MC_MBUF
));
6819 ((mcache_obj_t
*)m
)->obj_next
= next
;
6823 /* Check if the buffer has been corrupted while in freelist */
6825 mcache_audit_free_verify_set(mca
, addr
, 0, m_maxsize(MC_MBUF
));
6827 /* Restore constructed mbuf fields */
6828 mcl_audit_restore_mbuf(m
, mca
, composite
);
6832 mcl_audit_restore_mbuf(struct mbuf
*m
, mcache_audit_t
*mca
, boolean_t composite
)
6834 struct mbuf
*ms
= MCA_SAVED_MBUF_PTR(mca
);
6837 struct mbuf
*next
= m
->m_next
;
6838 VERIFY(ms
->m_flags
== M_EXT
&& MEXT_RFA(ms
) != NULL
&&
6839 MBUF_IS_COMPOSITE(ms
));
6840 VERIFY(mca
->mca_contents_size
== AUDIT_CONTENTS_SIZE
);
6842 * We could have hand-picked the mbuf fields and restore
6843 * them individually, but that will be a maintenance
6844 * headache. Instead, restore everything that was saved;
6845 * the mbuf layer will recheck and reinitialize anyway.
6847 bcopy(ms
, m
, MCA_SAVED_MBUF_SIZE
);
6851 * For a regular mbuf (no cluster attached) there's nothing
6852 * to restore other than the type field, which is expected
6855 m
->m_type
= ms
->m_type
;
6861 mcl_audit_save_mbuf(struct mbuf
*m
, mcache_audit_t
*mca
)
6863 VERIFY(mca
->mca_contents_size
== AUDIT_CONTENTS_SIZE
);
6865 bcopy(m
, MCA_SAVED_MBUF_PTR(mca
), MCA_SAVED_MBUF_SIZE
);
6869 mcl_audit_cluster(mcache_audit_t
*mca
, void *addr
, size_t size
, boolean_t alloc
,
6870 boolean_t save_next
)
6872 mcache_obj_t
*next
= ((mcache_obj_t
*)addr
)->obj_next
;
6876 mcache_set_pattern(MCACHE_FREE_PATTERN
, addr
, size
);
6879 mcl_audit_verify_nextptr(next
, mca
);
6880 ((mcache_obj_t
*)addr
)->obj_next
= next
;
6882 } else if (mclverify
) {
6883 /* Check if the buffer has been corrupted while in freelist */
6884 mcl_audit_verify_nextptr(next
, mca
);
6885 mcache_audit_free_verify_set(mca
, addr
, 0, size
);
6890 mcl_audit_scratch(mcache_audit_t
*mca
)
6892 void *stack
[MCACHE_STACK_DEPTH
+ 1];
6893 mcl_scratch_audit_t
*msa
;
6896 VERIFY(mca
->mca_contents
!= NULL
);
6897 msa
= MCA_SAVED_SCRATCH_PTR(mca
);
6899 msa
->msa_pthread
= msa
->msa_thread
;
6900 msa
->msa_thread
= current_thread();
6901 bcopy(msa
->msa_stack
, msa
->msa_pstack
, sizeof (msa
->msa_pstack
));
6902 msa
->msa_pdepth
= msa
->msa_depth
;
6903 bzero(stack
, sizeof (stack
));
6904 msa
->msa_depth
= OSBacktrace(stack
, MCACHE_STACK_DEPTH
+ 1) - 1;
6905 bcopy(&stack
[1], msa
->msa_stack
, sizeof (msa
->msa_stack
));
6907 msa
->msa_ptstamp
= msa
->msa_tstamp
;
6909 /* tstamp is in ms relative to base_ts */
6910 msa
->msa_tstamp
= ((now
.tv_usec
- mb_start
.tv_usec
) / 1000);
6911 if ((now
.tv_sec
- mb_start
.tv_sec
) > 0)
6912 msa
->msa_tstamp
+= ((now
.tv_sec
- mb_start
.tv_sec
) * 1000);
6916 mcl_audit_mcheck_panic(struct mbuf
*m
)
6918 mcache_audit_t
*mca
;
6921 mca
= mcl_audit_buf2mca(MC_MBUF
, (mcache_obj_t
*)m
);
6923 panic("mcl_audit: freed mbuf %p with type 0x%x (instead of 0x%x)\n%s\n",
6924 m
, (u_int16_t
)m
->m_type
, MT_FREE
, mcache_dump_mca(mca
));
6929 mcl_audit_verify_nextptr(void *next
, mcache_audit_t
*mca
)
6931 if (next
!= NULL
&& !MBUF_IN_MAP(next
) &&
6932 (next
!= (void *)MCACHE_FREE_PATTERN
|| !mclverify
)) {
6933 panic("mcl_audit: buffer %p modified after free at offset 0: "
6934 "%p out of range [%p-%p)\n%s\n",
6935 mca
->mca_addr
, next
, mbutl
, embutl
, mcache_dump_mca(mca
));
6940 /* This function turns on mbuf leak detection */
6942 mleak_activate(void)
6944 mleak_table
.mleak_sample_factor
= MLEAK_SAMPLE_FACTOR
;
6945 PE_parse_boot_argn("mleak_sample_factor",
6946 &mleak_table
.mleak_sample_factor
,
6947 sizeof (mleak_table
.mleak_sample_factor
));
6949 if (mleak_table
.mleak_sample_factor
== 0)
6952 if (mclfindleak
== 0)
6955 vm_size_t alloc_size
=
6956 mleak_alloc_buckets
* sizeof (struct mallocation
);
6957 vm_size_t trace_size
= mleak_trace_buckets
* sizeof (struct mtrace
);
6959 MALLOC(mleak_allocations
, struct mallocation
*, alloc_size
,
6960 M_TEMP
, M_WAITOK
| M_ZERO
);
6961 VERIFY(mleak_allocations
!= NULL
);
6963 MALLOC(mleak_traces
, struct mtrace
*, trace_size
,
6964 M_TEMP
, M_WAITOK
| M_ZERO
);
6965 VERIFY(mleak_traces
!= NULL
);
6967 MALLOC(mleak_stat
, mleak_stat_t
*, MLEAK_STAT_SIZE(MLEAK_NUM_TRACES
),
6968 M_TEMP
, M_WAITOK
| M_ZERO
);
6969 VERIFY(mleak_stat
!= NULL
);
6970 mleak_stat
->ml_cnt
= MLEAK_NUM_TRACES
;
6972 mleak_stat
->ml_isaddr64
= 1;
6973 #endif /* __LP64__ */
6977 mleak_logger(u_int32_t num
, mcache_obj_t
*addr
, boolean_t alloc
)
6981 if (mclfindleak
== 0)
6985 return (mleak_free(addr
));
6987 temp
= atomic_add_32_ov(&mleak_table
.mleak_capture
, 1);
6989 if ((temp
% mleak_table
.mleak_sample_factor
) == 0 && addr
!= NULL
) {
6990 uintptr_t bt
[MLEAK_STACK_DEPTH
];
6991 int logged
= backtrace(bt
, MLEAK_STACK_DEPTH
);
6992 mleak_log(bt
, addr
, logged
, num
);
6997 * This function records the allocation in the mleak_allocations table
6998 * and the backtrace in the mleak_traces table; if allocation slot is in use,
6999 * replace old allocation with new one if the trace slot is in use, return
7000 * (or increment refcount if same trace).
7003 mleak_log(uintptr_t *bt
, mcache_obj_t
*addr
, uint32_t depth
, int num
)
7005 struct mallocation
*allocation
;
7006 struct mtrace
*trace
;
7007 uint32_t trace_index
;
7009 /* Quit if someone else modifying the tables */
7010 if (!lck_mtx_try_lock_spin(mleak_lock
)) {
7011 mleak_table
.total_conflicts
++;
7015 allocation
= &mleak_allocations
[hashaddr((uintptr_t)addr
,
7016 mleak_alloc_buckets
)];
7017 trace_index
= hashbacktrace(bt
, depth
, mleak_trace_buckets
);
7018 trace
= &mleak_traces
[trace_index
];
7020 VERIFY(allocation
<= &mleak_allocations
[mleak_alloc_buckets
- 1]);
7021 VERIFY(trace
<= &mleak_traces
[mleak_trace_buckets
- 1]);
7023 allocation
->hitcount
++;
7027 * If the allocation bucket we want is occupied
7028 * and the occupier has the same trace, just bail.
7030 if (allocation
->element
!= NULL
&&
7031 trace_index
== allocation
->trace_index
) {
7032 mleak_table
.alloc_collisions
++;
7033 lck_mtx_unlock(mleak_lock
);
7038 * Store the backtrace in the traces array;
7039 * Size of zero = trace bucket is free.
7041 if (trace
->allocs
> 0 &&
7042 bcmp(trace
->addr
, bt
, (depth
* sizeof (uintptr_t))) != 0) {
7043 /* Different, unique trace, but the same hash! Bail out. */
7044 trace
->collisions
++;
7045 mleak_table
.trace_collisions
++;
7046 lck_mtx_unlock(mleak_lock
);
7048 } else if (trace
->allocs
> 0) {
7049 /* Same trace, already added, so increment refcount */
7052 /* Found an unused trace bucket, so record the trace here */
7053 if (trace
->depth
!= 0) {
7054 /* this slot previously used but not currently in use */
7055 mleak_table
.trace_overwrites
++;
7057 mleak_table
.trace_recorded
++;
7059 memcpy(trace
->addr
, bt
, (depth
* sizeof (uintptr_t)));
7060 trace
->depth
= depth
;
7061 trace
->collisions
= 0;
7064 /* Step 2: Store the allocation record in the allocations array */
7065 if (allocation
->element
!= NULL
) {
7067 * Replace an existing allocation. No need to preserve
7068 * because only a subset of the allocations are being
7071 mleak_table
.alloc_collisions
++;
7072 } else if (allocation
->trace_index
!= 0) {
7073 mleak_table
.alloc_overwrites
++;
7075 allocation
->element
= addr
;
7076 allocation
->trace_index
= trace_index
;
7077 allocation
->count
= num
;
7078 mleak_table
.alloc_recorded
++;
7079 mleak_table
.outstanding_allocs
++;
7081 lck_mtx_unlock(mleak_lock
);
7086 mleak_free(mcache_obj_t
*addr
)
7088 while (addr
!= NULL
) {
7089 struct mallocation
*allocation
= &mleak_allocations
7090 [hashaddr((uintptr_t)addr
, mleak_alloc_buckets
)];
7092 if (allocation
->element
== addr
&&
7093 allocation
->trace_index
< mleak_trace_buckets
) {
7094 lck_mtx_lock_spin(mleak_lock
);
7095 if (allocation
->element
== addr
&&
7096 allocation
->trace_index
< mleak_trace_buckets
) {
7097 struct mtrace
*trace
;
7098 trace
= &mleak_traces
[allocation
->trace_index
];
7099 /* allocs = 0 means trace bucket is unused */
7100 if (trace
->allocs
> 0)
7102 if (trace
->allocs
== 0)
7104 /* NULL element means alloc bucket is unused */
7105 allocation
->element
= NULL
;
7106 mleak_table
.outstanding_allocs
--;
7108 lck_mtx_unlock(mleak_lock
);
7110 addr
= addr
->obj_next
;
7118 struct mtrace
*swap
;
7120 for(i
= 0; i
< MLEAK_NUM_TRACES
; i
++)
7121 mleak_top_trace
[i
] = NULL
;
7123 for(i
= 0, j
= 0; j
< MLEAK_NUM_TRACES
&& i
< mleak_trace_buckets
; i
++)
7125 if (mleak_traces
[i
].allocs
<= 0)
7128 mleak_top_trace
[j
] = &mleak_traces
[i
];
7129 for (k
= j
; k
> 0; k
--) {
7130 if (mleak_top_trace
[k
]->allocs
<=
7131 mleak_top_trace
[k
-1]->allocs
)
7134 swap
= mleak_top_trace
[k
-1];
7135 mleak_top_trace
[k
-1] = mleak_top_trace
[k
];
7136 mleak_top_trace
[k
] = swap
;
7142 for(; i
< mleak_trace_buckets
; i
++) {
7143 if (mleak_traces
[i
].allocs
<= mleak_top_trace
[j
]->allocs
)
7146 mleak_top_trace
[j
] = &mleak_traces
[i
];
7148 for (k
= j
; k
> 0; k
--) {
7149 if (mleak_top_trace
[k
]->allocs
<=
7150 mleak_top_trace
[k
-1]->allocs
)
7153 swap
= mleak_top_trace
[k
-1];
7154 mleak_top_trace
[k
-1] = mleak_top_trace
[k
];
7155 mleak_top_trace
[k
] = swap
;
7161 mleak_update_stats()
7163 mleak_trace_stat_t
*mltr
;
7166 VERIFY(mleak_stat
!= NULL
);
7168 VERIFY(mleak_stat
->ml_isaddr64
);
7170 VERIFY(!mleak_stat
->ml_isaddr64
);
7171 #endif /* !__LP64__ */
7172 VERIFY(mleak_stat
->ml_cnt
== MLEAK_NUM_TRACES
);
7174 mleak_sort_traces();
7176 mltr
= &mleak_stat
->ml_trace
[0];
7177 bzero(mltr
, sizeof (*mltr
) * MLEAK_NUM_TRACES
);
7178 for (i
= 0; i
< MLEAK_NUM_TRACES
; i
++) {
7181 if (mleak_top_trace
[i
] == NULL
||
7182 mleak_top_trace
[i
]->allocs
== 0)
7185 mltr
->mltr_collisions
= mleak_top_trace
[i
]->collisions
;
7186 mltr
->mltr_hitcount
= mleak_top_trace
[i
]->hitcount
;
7187 mltr
->mltr_allocs
= mleak_top_trace
[i
]->allocs
;
7188 mltr
->mltr_depth
= mleak_top_trace
[i
]->depth
;
7190 VERIFY(mltr
->mltr_depth
<= MLEAK_STACK_DEPTH
);
7191 for (j
= 0; j
< mltr
->mltr_depth
; j
++)
7192 mltr
->mltr_addr
[j
] = mleak_top_trace
[i
]->addr
[j
];
7198 static struct mbtypes
{
7200 const char *mt_name
;
7202 { MT_DATA
, "data" },
7203 { MT_OOBDATA
, "oob data" },
7204 { MT_CONTROL
, "ancillary data" },
7205 { MT_HEADER
, "packet headers" },
7206 { MT_SOCKET
, "socket structures" },
7207 { MT_PCB
, "protocol control blocks" },
7208 { MT_RTABLE
, "routing table entries" },
7209 { MT_HTABLE
, "IMP host table entries" },
7210 { MT_ATABLE
, "address resolution tables" },
7211 { MT_FTABLE
, "fragment reassembly queue headers" },
7212 { MT_SONAME
, "socket names and addresses" },
7213 { MT_SOOPTS
, "socket options" },
7214 { MT_RIGHTS
, "access rights" },
7215 { MT_IFADDR
, "interface addresses" },
7216 { MT_TAG
, "packet tags" },
7220 #define MBUF_DUMP_BUF_CHK() { \
7230 unsigned long totmem
= 0, totfree
= 0, totmbufs
, totused
, totpct
;
7231 u_int32_t m_mbufs
= 0, m_clfree
= 0, m_bigclfree
= 0;
7232 u_int32_t m_mbufclfree
= 0, m_mbufbigclfree
= 0;
7233 u_int32_t m_16kclusters
= 0, m_16kclfree
= 0, m_mbuf16kclfree
= 0;
7234 int nmbtypes
= sizeof (mbstat
.m_mtypes
) / sizeof (short);
7237 mb_class_stat_t
*sp
;
7238 mleak_trace_stat_t
*mltr
;
7239 char *c
= mbuf_dump_buf
;
7240 int i
, k
, clen
= MBUF_DUMP_BUF_SIZE
;
7242 mbuf_dump_buf
[0] = '\0';
7244 /* synchronize all statistics in the mbuf table */
7246 mbuf_mtypes_sync(TRUE
);
7248 sp
= &mb_stat
->mbs_class
[0];
7249 for (i
= 0; i
< mb_stat
->mbs_cnt
; i
++, sp
++) {
7252 if (m_class(i
) == MC_MBUF
) {
7253 m_mbufs
= sp
->mbcl_active
;
7254 } else if (m_class(i
) == MC_CL
) {
7255 m_clfree
= sp
->mbcl_total
- sp
->mbcl_active
;
7256 } else if (m_class(i
) == MC_BIGCL
) {
7257 m_bigclfree
= sp
->mbcl_total
- sp
->mbcl_active
;
7258 } else if (njcl
> 0 && m_class(i
) == MC_16KCL
) {
7259 m_16kclfree
= sp
->mbcl_total
- sp
->mbcl_active
;
7260 m_16kclusters
= sp
->mbcl_total
;
7261 } else if (m_class(i
) == MC_MBUF_CL
) {
7262 m_mbufclfree
= sp
->mbcl_total
- sp
->mbcl_active
;
7263 } else if (m_class(i
) == MC_MBUF_BIGCL
) {
7264 m_mbufbigclfree
= sp
->mbcl_total
- sp
->mbcl_active
;
7265 } else if (njcl
> 0 && m_class(i
) == MC_MBUF_16KCL
) {
7266 m_mbuf16kclfree
= sp
->mbcl_total
- sp
->mbcl_active
;
7269 mem
= sp
->mbcl_ctotal
* sp
->mbcl_size
;
7271 totfree
+= (sp
->mbcl_mc_cached
+ sp
->mbcl_infree
) *
7276 /* adjust free counts to include composite caches */
7277 m_clfree
+= m_mbufclfree
;
7278 m_bigclfree
+= m_mbufbigclfree
;
7279 m_16kclfree
+= m_mbuf16kclfree
;
7282 for (mp
= mbtypes
; mp
->mt_name
!= NULL
; mp
++)
7283 totmbufs
+= mbstat
.m_mtypes
[mp
->mt_type
];
7284 if (totmbufs
> m_mbufs
)
7286 k
= snprintf(c
, clen
, "%lu/%u mbufs in use:\n", totmbufs
, m_mbufs
);
7287 MBUF_DUMP_BUF_CHK();
7289 bzero(&seen
, sizeof (seen
));
7290 for (mp
= mbtypes
; mp
->mt_name
!= NULL
; mp
++) {
7291 if (mbstat
.m_mtypes
[mp
->mt_type
] != 0) {
7292 seen
[mp
->mt_type
] = 1;
7293 k
= snprintf(c
, clen
, "\t%u mbufs allocated to %s\n",
7294 mbstat
.m_mtypes
[mp
->mt_type
], mp
->mt_name
);
7295 MBUF_DUMP_BUF_CHK();
7299 for (i
= 0; i
< nmbtypes
; i
++)
7300 if (!seen
[i
] && mbstat
.m_mtypes
[i
] != 0) {
7301 k
= snprintf(c
, clen
, "\t%u mbufs allocated to "
7302 "<mbuf type %d>\n", mbstat
.m_mtypes
[i
], i
);
7303 MBUF_DUMP_BUF_CHK();
7305 if ((m_mbufs
- totmbufs
) > 0) {
7306 k
= snprintf(c
, clen
, "\t%lu mbufs allocated to caches\n",
7307 m_mbufs
- totmbufs
);
7308 MBUF_DUMP_BUF_CHK();
7310 k
= snprintf(c
, clen
, "%u/%u mbuf 2KB clusters in use\n"
7311 "%u/%u mbuf 4KB clusters in use\n",
7312 (unsigned int)(mbstat
.m_clusters
- m_clfree
),
7313 (unsigned int)mbstat
.m_clusters
,
7314 (unsigned int)(mbstat
.m_bigclusters
- m_bigclfree
),
7315 (unsigned int)mbstat
.m_bigclusters
);
7316 MBUF_DUMP_BUF_CHK();
7319 k
= snprintf(c
, clen
, "%u/%u mbuf %uKB clusters in use\n",
7320 m_16kclusters
- m_16kclfree
, m_16kclusters
,
7322 MBUF_DUMP_BUF_CHK();
7324 totused
= totmem
- totfree
;
7327 } else if (totused
< (ULONG_MAX
/ 100)) {
7328 totpct
= (totused
* 100) / totmem
;
7330 u_long totmem1
= totmem
/ 100;
7331 u_long totused1
= totused
/ 100;
7332 totpct
= (totused1
* 100) / totmem1
;
7334 k
= snprintf(c
, clen
, "%lu KB allocated to network (approx. %lu%% "
7335 "in use)\n", totmem
/ 1024, totpct
);
7336 MBUF_DUMP_BUF_CHK();
7338 /* mbuf leak detection statistics */
7339 mleak_update_stats();
7341 k
= snprintf(c
, clen
, "\nmbuf leak detection table:\n");
7342 MBUF_DUMP_BUF_CHK();
7343 k
= snprintf(c
, clen
, "\ttotal captured: %u (one per %u)\n",
7344 mleak_table
.mleak_capture
/ mleak_table
.mleak_sample_factor
,
7345 mleak_table
.mleak_sample_factor
);
7346 MBUF_DUMP_BUF_CHK();
7347 k
= snprintf(c
, clen
, "\ttotal allocs outstanding: %llu\n",
7348 mleak_table
.outstanding_allocs
);
7349 MBUF_DUMP_BUF_CHK();
7350 k
= snprintf(c
, clen
, "\tnew hash recorded: %llu allocs, %llu traces\n",
7351 mleak_table
.alloc_recorded
, mleak_table
.trace_recorded
);
7352 MBUF_DUMP_BUF_CHK();
7353 k
= snprintf(c
, clen
, "\thash collisions: %llu allocs, %llu traces\n",
7354 mleak_table
.alloc_collisions
, mleak_table
.trace_collisions
);
7355 MBUF_DUMP_BUF_CHK();
7356 k
= snprintf(c
, clen
, "\toverwrites: %llu allocs, %llu traces\n",
7357 mleak_table
.alloc_overwrites
, mleak_table
.trace_overwrites
);
7358 MBUF_DUMP_BUF_CHK();
7359 k
= snprintf(c
, clen
, "\tlock conflicts: %llu\n\n",
7360 mleak_table
.total_conflicts
);
7361 MBUF_DUMP_BUF_CHK();
7363 k
= snprintf(c
, clen
, "top %d outstanding traces:\n",
7364 mleak_stat
->ml_cnt
);
7365 MBUF_DUMP_BUF_CHK();
7366 for (i
= 0; i
< mleak_stat
->ml_cnt
; i
++) {
7367 mltr
= &mleak_stat
->ml_trace
[i
];
7368 k
= snprintf(c
, clen
, "[%d] %llu outstanding alloc(s), "
7369 "%llu hit(s), %llu collision(s)\n", (i
+ 1),
7370 mltr
->mltr_allocs
, mltr
->mltr_hitcount
,
7371 mltr
->mltr_collisions
);
7372 MBUF_DUMP_BUF_CHK();
7375 if (mleak_stat
->ml_isaddr64
)
7376 k
= snprintf(c
, clen
, MB_LEAK_HDR_64
);
7378 k
= snprintf(c
, clen
, MB_LEAK_HDR_32
);
7379 MBUF_DUMP_BUF_CHK();
7381 for (i
= 0; i
< MLEAK_STACK_DEPTH
; i
++) {
7383 k
= snprintf(c
, clen
, "%2d: ", (i
+ 1));
7384 MBUF_DUMP_BUF_CHK();
7385 for (j
= 0; j
< mleak_stat
->ml_cnt
; j
++) {
7386 mltr
= &mleak_stat
->ml_trace
[j
];
7387 if (i
< mltr
->mltr_depth
) {
7388 if (mleak_stat
->ml_isaddr64
) {
7389 k
= snprintf(c
, clen
, "0x%0llx ",
7390 (uint64_t)VM_KERNEL_UNSLIDE(
7391 mltr
->mltr_addr
[i
]));
7393 k
= snprintf(c
, clen
,
7395 (uint32_t)VM_KERNEL_UNSLIDE(
7396 mltr
->mltr_addr
[i
]));
7399 if (mleak_stat
->ml_isaddr64
)
7400 k
= snprintf(c
, clen
,
7401 MB_LEAK_SPACING_64
);
7403 k
= snprintf(c
, clen
,
7404 MB_LEAK_SPACING_32
);
7406 MBUF_DUMP_BUF_CHK();
7408 k
= snprintf(c
, clen
, "\n");
7409 MBUF_DUMP_BUF_CHK();
7412 return (mbuf_dump_buf
);
7415 #undef MBUF_DUMP_BUF_CHK
7418 * Convert between a regular and a packet header mbuf. Caller is responsible
7419 * for setting or clearing M_PKTHDR; this routine does the rest of the work.
7422 m_reinit(struct mbuf
*m
, int hdr
)
7427 VERIFY(!(m
->m_flags
& M_PKTHDR
));
7428 if (!(m
->m_flags
& M_EXT
) &&
7429 (m
->m_data
!= m
->m_dat
|| m
->m_len
> 0)) {
7431 * If there's no external cluster attached and the
7432 * mbuf appears to contain user data, we cannot
7433 * safely convert this to a packet header mbuf,
7434 * as the packet header structure might overlap
7437 printf("%s: cannot set M_PKTHDR on altered mbuf %llx, "
7438 "m_data %llx (expected %llx), "
7439 "m_len %d (expected 0)\n",
7441 (uint64_t)VM_KERNEL_ADDRPERM(m
),
7442 (uint64_t)VM_KERNEL_ADDRPERM(m
->m_data
),
7443 (uint64_t)VM_KERNEL_ADDRPERM(m
->m_dat
), m
->m_len
);
7446 VERIFY((m
->m_flags
& M_EXT
) || m
->m_data
== m
->m_dat
);
7447 m
->m_flags
|= M_PKTHDR
;
7448 MBUF_INIT_PKTHDR(m
);
7451 /* Check for scratch area overflow */
7452 m_redzone_verify(m
);
7453 /* Free the aux data and tags if there is any */
7454 m_tag_delete_chain(m
, NULL
);
7455 m
->m_flags
&= ~M_PKTHDR
;
7462 m_ext_set_prop(struct mbuf
*m
, uint32_t o
, uint32_t n
)
7464 ASSERT(m
->m_flags
& M_EXT
);
7465 return (atomic_test_set_32(&MEXT_PRIV(m
), o
, n
));
7469 m_ext_get_prop(struct mbuf
*m
)
7471 ASSERT(m
->m_flags
& M_EXT
);
7472 return (MEXT_PRIV(m
));
7476 m_ext_paired_is_active(struct mbuf
*m
)
7478 return (MBUF_IS_PAIRED(m
) ? (MEXT_PREF(m
) > MEXT_MINREF(m
)) : 1);
7482 m_ext_paired_activate(struct mbuf
*m
)
7484 struct ext_ref
*rfa
;
7490 VERIFY(MBUF_IS_PAIRED(m
));
7491 VERIFY(MEXT_REF(m
) == MEXT_MINREF(m
));
7492 VERIFY(MEXT_PREF(m
) == MEXT_MINREF(m
));
7494 hdr
= (m
->m_flags
& M_PKTHDR
);
7496 extbuf
= m
->m_ext
.ext_buf
;
7497 extfree
= m
->m_ext
.ext_free
;
7498 extsize
= m
->m_ext
.ext_size
;
7501 VERIFY(extbuf
!= NULL
&& rfa
!= NULL
);
7504 * Safe to reinitialize packet header tags, since it's
7505 * already taken care of at m_free() time. Similar to
7506 * what's done in m_clattach() for the cluster. Bump
7507 * up MEXT_PREF to indicate activation.
7509 MBUF_INIT(m
, hdr
, type
);
7510 MEXT_INIT(m
, extbuf
, extsize
, extfree
, (caddr_t
)m
, rfa
,
7511 1, 1, 2, EXTF_PAIRED
, MEXT_PRIV(m
), m
);
7515 m_scratch_init(struct mbuf
*m
)
7517 struct pkthdr
*pkt
= &m
->m_pkthdr
;
7519 VERIFY(m
->m_flags
& M_PKTHDR
);
7521 /* See comments in <rdar://problem/14040693> */
7522 if (pkt
->pkt_flags
& PKTF_PRIV_GUARDED
) {
7523 panic_plain("Invalid attempt to modify guarded module-private "
7524 "area: mbuf %p, pkt_flags 0x%x\n", m
, pkt
->pkt_flags
);
7528 bzero(&pkt
->pkt_mpriv
, sizeof (pkt
->pkt_mpriv
));
7532 * This routine is reserved for mbuf_get_driver_scratch(); clients inside
7533 * xnu that intend on utilizing the module-private area should directly
7534 * refer to the pkt_mpriv structure in the pkthdr. They are also expected
7535 * to set and clear PKTF_PRIV_GUARDED, while owning the packet and prior
7536 * to handing it off to another module, respectively.
7539 m_scratch_get(struct mbuf
*m
, u_int8_t
**p
)
7541 struct pkthdr
*pkt
= &m
->m_pkthdr
;
7543 VERIFY(m
->m_flags
& M_PKTHDR
);
7545 /* See comments in <rdar://problem/14040693> */
7546 if (pkt
->pkt_flags
& PKTF_PRIV_GUARDED
) {
7547 panic_plain("Invalid attempt to access guarded module-private "
7548 "area: mbuf %p, pkt_flags 0x%x\n", m
, pkt
->pkt_flags
);
7553 mcache_audit_t
*mca
;
7555 lck_mtx_lock(mbuf_mlock
);
7556 mca
= mcl_audit_buf2mca(MC_MBUF
, (mcache_obj_t
*)m
);
7557 if (mca
->mca_uflags
& MB_SCVALID
)
7558 mcl_audit_scratch(mca
);
7559 lck_mtx_unlock(mbuf_mlock
);
7562 *p
= (u_int8_t
*)&pkt
->pkt_mpriv
;
7563 return (sizeof (pkt
->pkt_mpriv
));
7567 m_redzone_init(struct mbuf
*m
)
7569 VERIFY(m
->m_flags
& M_PKTHDR
);
7571 * Each mbuf has a unique red zone pattern, which is a XOR
7572 * of the red zone cookie and the address of the mbuf.
7574 m
->m_pkthdr
.redzone
= ((u_int32_t
)(uintptr_t)m
) ^ mb_redzone_cookie
;
7578 m_redzone_verify(struct mbuf
*m
)
7580 u_int32_t mb_redzone
;
7582 VERIFY(m
->m_flags
& M_PKTHDR
);
7584 mb_redzone
= ((u_int32_t
)(uintptr_t)m
) ^ mb_redzone_cookie
;
7585 if (m
->m_pkthdr
.redzone
!= mb_redzone
) {
7586 panic("mbuf %p redzone violation with value 0x%x "
7587 "(instead of 0x%x, using cookie 0x%x)\n",
7588 m
, m
->m_pkthdr
.redzone
, mb_redzone
, mb_redzone_cookie
);
7594 * Send a report of mbuf usage if the usage is at least 6% of max limit
7595 * or if there has been at least 3% increase since the last report.
7597 * The values 6% and 3% are chosen so that we can do simple arithmetic
7598 * with shift operations.
7601 mbuf_report_usage(mbuf_class_t cl
)
7603 /* if a report is already in progress, nothing to do */
7604 if (mb_peak_newreport
)
7607 if (m_total(cl
) > m_peak(cl
) &&
7608 m_total(cl
) >= (m_maxlimit(cl
) >> 4) &&
7609 (m_total(cl
) - m_peak(cl
)) >= (m_peak(cl
) >> 5))
7614 __private_extern__
void
7615 mbuf_report_peak_usage(void)
7619 struct nstat_sysinfo_data ns_data
;
7620 uint32_t memreleased
= 0;
7622 uptime
= net_uptime();
7623 lck_mtx_lock(mbuf_mlock
);
7625 /* Generate an initial report after 1 week of uptime */
7626 if (!mb_peak_firstreport
&&
7627 uptime
> MBUF_PEAK_FIRST_REPORT_THRESHOLD
) {
7628 mb_peak_newreport
= TRUE
;
7629 mb_peak_firstreport
= TRUE
;
7632 if (!mb_peak_newreport
) {
7633 lck_mtx_unlock(mbuf_mlock
);
7638 * Since a report is being generated before 1 week,
7639 * we do not need to force another one later
7641 if (uptime
< MBUF_PEAK_FIRST_REPORT_THRESHOLD
)
7642 mb_peak_firstreport
= TRUE
;
7644 for (i
= 0; i
< NELEM(mbuf_table
); i
++) {
7645 m_peak(m_class(i
)) = m_total(m_class(i
));
7646 memreleased
+= m_release_cnt(i
);
7647 m_release_cnt(i
) = 0;
7649 mb_peak_newreport
= FALSE
;
7650 lck_mtx_unlock(mbuf_mlock
);
7652 bzero(&ns_data
, sizeof(ns_data
));
7653 ns_data
.flags
= NSTAT_SYSINFO_MBUF_STATS
;
7654 ns_data
.u
.mb_stats
.total_256b
= m_peak(MC_MBUF
);
7655 ns_data
.u
.mb_stats
.total_2kb
= m_peak(MC_CL
);
7656 ns_data
.u
.mb_stats
.total_4kb
= m_peak(MC_BIGCL
);
7657 ns_data
.u
.mb_stats
.total_16kb
= m_peak(MC_16KCL
);
7658 ns_data
.u
.mb_stats
.sbmb_total
= total_sbmb_cnt_peak
;
7659 ns_data
.u
.mb_stats
.sb_atmbuflimit
= sbmb_limreached
;
7660 ns_data
.u
.mb_stats
.draincnt
= mbstat
.m_drain
;
7661 ns_data
.u
.mb_stats
.memreleased
= memreleased
;
7662 ns_data
.u
.mb_stats
.sbmb_floor
= total_sbmb_cnt_floor
;
7664 nstat_sysinfo_send_data(&ns_data
);
7667 * Reset the floor whenever we report a new
7668 * peak to track the trend (increase peek usage
7669 * is not a leak if mbufs get released
7670 * between reports and the floor stays low)
7672 total_sbmb_cnt_floor
= total_sbmb_cnt_peak
;
7676 * Called by the VM when there's memory pressure.
7678 __private_extern__
void
7682 mcl_slab_t
*sp
, *sp_tmp
, *nsp
;
7683 unsigned int num
, k
, interval
, released
= 0;
7684 unsigned long total_mem
= 0, use_mem
= 0;
7685 boolean_t ret
, purge_caches
= FALSE
;
7689 static uint64_t last_drain
= 0;
7690 static unsigned char scratch
[32];
7691 static ppnum_t scratch_pa
= 0;
7693 if (mb_drain_maxint
== 0 || mb_waiters
)
7695 if (scratch_pa
== 0) {
7696 bzero(scratch
, sizeof(scratch
));
7697 scratch_pa
= pmap_find_phys(kernel_pmap
, (addr64_t
)scratch
);
7699 } else if (mclverify
) {
7701 * Panic if a driver wrote to our scratch memory.
7703 for (k
= 0; k
< sizeof(scratch
); k
++)
7705 panic("suspect DMA to freed address");
7708 * Don't free memory too often as that could cause excessive
7709 * waiting times for mbufs. Purge caches if we were asked to drain
7710 * in the last 5 minutes.
7712 lck_mtx_lock(mbuf_mlock
);
7713 if (last_drain
== 0) {
7714 last_drain
= net_uptime();
7715 lck_mtx_unlock(mbuf_mlock
);
7718 interval
= net_uptime() - last_drain
;
7719 if (interval
<= mb_drain_maxint
) {
7720 lck_mtx_unlock(mbuf_mlock
);
7723 if (interval
<= mb_drain_maxint
* 5)
7724 purge_caches
= TRUE
;
7725 last_drain
= net_uptime();
7727 * Don't free any memory if we're using 60% or more.
7729 for (mc
= 0; mc
< NELEM(mbuf_table
); mc
++) {
7730 total_mem
+= m_total(mc
) * m_maxsize(mc
);
7731 use_mem
+= m_active(mc
) * m_maxsize(mc
);
7733 per
= (use_mem
* 100) / total_mem
;
7735 lck_mtx_unlock(mbuf_mlock
);
7739 * Purge all the caches. This effectively disables
7740 * caching for a few seconds, but the mbuf worker thread will
7741 * re-enable them again.
7743 if (purge_caches
== TRUE
)
7744 for (mc
= 0; mc
< NELEM(mbuf_table
); mc
++) {
7745 if (m_total(mc
) < m_avgtotal(mc
))
7747 lck_mtx_unlock(mbuf_mlock
);
7748 ret
= mcache_purge_cache(m_cache(mc
), FALSE
);
7749 lck_mtx_lock(mbuf_mlock
);
7754 * Move the objects from the composite class freelist to
7755 * the rudimentary slabs list, but keep at least 10% of the average
7756 * total in the freelist.
7758 for (mc
= 0; mc
< NELEM(mbuf_table
); mc
++) {
7759 while (m_cobjlist(mc
) &&
7760 m_total(mc
) < m_avgtotal(mc
) &&
7761 m_infree(mc
) > 0.1 * m_avgtotal(mc
) + m_minlimit(mc
)) {
7762 obj
= m_cobjlist(mc
);
7763 m_cobjlist(mc
) = obj
->obj_next
;
7764 obj
->obj_next
= NULL
;
7765 num
= cslab_free(mc
, obj
, 1);
7769 /* cslab_free() handles m_total */
7773 * Free the buffers present in the slab list up to 10% of the total
7774 * average per class.
7776 * We walk the list backwards in an attempt to reduce fragmentation.
7778 for (mc
= NELEM(mbuf_table
) - 1; (int)mc
>= 0; mc
--) {
7779 TAILQ_FOREACH_SAFE(sp
, &m_slablist(mc
), sl_link
, sp_tmp
) {
7781 * Process only unused slabs occupying memory.
7783 if (sp
->sl_refcnt
!= 0 || sp
->sl_len
== 0 ||
7784 sp
->sl_base
== NULL
)
7786 if (m_total(mc
) < m_avgtotal(mc
) ||
7787 m_infree(mc
) < 0.1 * m_avgtotal(mc
) + m_minlimit(mc
))
7789 slab_remove(sp
, mc
);
7792 m_infree(mc
) -= NMBPG
;
7793 m_total(mc
) -= NMBPG
;
7794 if (mclaudit
!= NULL
)
7795 mcl_audit_free(sp
->sl_base
, NMBPG
);
7798 m_infree(mc
) -= NCLPG
;
7799 m_total(mc
) -= NCLPG
;
7800 if (mclaudit
!= NULL
)
7801 mcl_audit_free(sp
->sl_base
, NMBPG
);
7805 m_infree(mc
) -= NBCLPG
;
7806 m_total(mc
) -= NBCLPG
;
7807 if (mclaudit
!= NULL
)
7808 mcl_audit_free(sp
->sl_base
, NMBPG
);
7814 for (nsp
= sp
, k
= 1; k
< NSLABSP16KB
; k
++) {
7816 VERIFY(nsp
->sl_refcnt
== 0 &&
7817 nsp
->sl_base
!= NULL
&&
7819 slab_init(nsp
, 0, 0, NULL
, NULL
, 0, 0,
7823 if (mclaudit
!= NULL
)
7824 mcl_audit_free(sp
->sl_base
, 1);
7828 * The composite classes have their own
7829 * freelist (m_cobjlist), so we only
7830 * process rudimentary classes here.
7834 m_release_cnt(mc
) += m_size(mc
);
7835 released
+= m_size(mc
);
7836 VERIFY(sp
->sl_base
!= NULL
&&
7837 sp
->sl_len
>= PAGE_SIZE
);
7838 offset
= MTOPG(sp
->sl_base
);
7840 * Make sure the IOMapper points to a valid, but
7841 * bogus, address. This should prevent further DMA
7842 * accesses to freed memory.
7844 IOMapperInsertPage(mcl_paddr_base
, offset
, scratch_pa
);
7845 mcl_paddr
[offset
] = 0;
7846 kmem_free(mb_map
, (vm_offset_t
)sp
->sl_base
,
7848 slab_init(sp
, 0, 0, NULL
, NULL
, 0, 0, 0);
7853 mbstat
.m_bigclusters
= m_total(MC_BIGCL
);
7854 mbstat
.m_clusters
= m_total(MC_CL
);
7855 mbstat
.m_mbufs
= m_total(MC_MBUF
);
7857 mbuf_mtypes_sync(TRUE
);
7858 lck_mtx_unlock(mbuf_mlock
);
7862 m_drain_force_sysctl SYSCTL_HANDLER_ARGS
7864 #pragma unused(arg1, arg2)
7867 err
= sysctl_handle_int(oidp
, &val
, 0, req
);
7868 if (err
!= 0 || req
->newptr
== USER_ADDR_NULL
)
7876 SYSCTL_DECL(_kern_ipc
);
7877 SYSCTL_PROC(_kern_ipc
, KIPC_MBSTAT
, mbstat
,
7878 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
7879 0, 0, mbstat_sysctl
, "S,mbstat", "");
7880 SYSCTL_PROC(_kern_ipc
, OID_AUTO
, mb_stat
,
7881 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
7882 0, 0, mb_stat_sysctl
, "S,mb_stat", "");
7883 SYSCTL_PROC(_kern_ipc
, OID_AUTO
, mleak_top_trace
,
7884 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
7885 0, 0, mleak_top_trace_sysctl
, "S,mb_top_trace", "");
7886 SYSCTL_PROC(_kern_ipc
, OID_AUTO
, mleak_table
,
7887 CTLTYPE_STRUCT
| CTLFLAG_RD
| CTLFLAG_LOCKED
,
7888 0, 0, mleak_table_sysctl
, "S,mleak_table", "");
7889 SYSCTL_INT(_kern_ipc
, OID_AUTO
, mleak_sample_factor
,
7890 CTLFLAG_RW
| CTLFLAG_LOCKED
, &mleak_table
.mleak_sample_factor
, 0, "");
7891 SYSCTL_INT(_kern_ipc
, OID_AUTO
, mb_normalized
,
7892 CTLFLAG_RD
| CTLFLAG_LOCKED
, &mb_normalized
, 0, "");
7893 SYSCTL_INT(_kern_ipc
, OID_AUTO
, mb_watchdog
,
7894 CTLFLAG_RW
| CTLFLAG_LOCKED
, &mb_watchdog
, 0, "");
7895 SYSCTL_PROC(_kern_ipc
, OID_AUTO
, mb_drain_force
,
7896 CTLTYPE_INT
| CTLFLAG_RW
| CTLFLAG_LOCKED
, NULL
, 0,
7897 m_drain_force_sysctl
, "I",
7898 "Forces the mbuf garbage collection to run");
7899 SYSCTL_INT(_kern_ipc
, OID_AUTO
, mb_drain_maxint
,
7900 CTLFLAG_RW
| CTLFLAG_LOCKED
, &mb_drain_maxint
, 0,
7901 "Minimum time interval between garbage collection");