]> git.saurik.com Git - apple/xnu.git/blob - bsd/kern/uipc_mbuf.c
xnu-3789.21.4.tar.gz
[apple/xnu.git] / bsd / kern / uipc_mbuf.c
1 /*
2 * Copyright (c) 1998-2016 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
29 /*
30 * Copyright (c) 1982, 1986, 1988, 1991, 1993
31 * The Regents of the University of California. All rights reserved.
32 *
33 * Redistribution and use in source and binary forms, with or without
34 * modification, are permitted provided that the following conditions
35 * are met:
36 * 1. Redistributions of source code must retain the above copyright
37 * notice, this list of conditions and the following disclaimer.
38 * 2. Redistributions in binary form must reproduce the above copyright
39 * notice, this list of conditions and the following disclaimer in the
40 * documentation and/or other materials provided with the distribution.
41 * 3. All advertising materials mentioning features or use of this software
42 * must display the following acknowledgement:
43 * This product includes software developed by the University of
44 * California, Berkeley and its contributors.
45 * 4. Neither the name of the University nor the names of its contributors
46 * may be used to endorse or promote products derived from this software
47 * without specific prior written permission.
48 *
49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
59 * SUCH DAMAGE.
60 *
61 * @(#)uipc_mbuf.c 8.2 (Berkeley) 1/4/94
62 */
63 /*
64 * NOTICE: This file was modified by SPARTA, Inc. in 2005 to introduce
65 * support for mandatory and extensible security protections. This notice
66 * is included in support of clause 2.2 (b) of the Apple Public License,
67 * Version 2.0.
68 */
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/malloc.h>
73 #include <sys/mbuf.h>
74 #include <sys/kernel.h>
75 #include <sys/sysctl.h>
76 #include <sys/syslog.h>
77 #include <sys/protosw.h>
78 #include <sys/domain.h>
79 #include <sys/queue.h>
80 #include <sys/proc.h>
81
82 #include <dev/random/randomdev.h>
83
84 #include <kern/kern_types.h>
85 #include <kern/simple_lock.h>
86 #include <kern/queue.h>
87 #include <kern/sched_prim.h>
88 #include <kern/backtrace.h>
89 #include <kern/cpu_number.h>
90 #include <kern/zalloc.h>
91
92 #include <libkern/OSAtomic.h>
93 #include <libkern/OSDebug.h>
94 #include <libkern/libkern.h>
95
96 #include <IOKit/IOMapper.h>
97
98 #include <machine/limits.h>
99 #include <machine/machine_routines.h>
100
101 #if CONFIG_MACF_NET
102 #include <security/mac_framework.h>
103 #endif /* MAC_NET */
104
105 #include <sys/mcache.h>
106 #include <net/ntstat.h>
107
108 /*
109 * MBUF IMPLEMENTATION NOTES.
110 *
111 * There is a total of 5 per-CPU caches:
112 *
113 * MC_MBUF:
114 * This is a cache of rudimentary objects of MSIZE in size; each
115 * object represents an mbuf structure. This cache preserves only
116 * the m_type field of the mbuf during its transactions.
117 *
118 * MC_CL:
119 * This is a cache of rudimentary objects of MCLBYTES in size; each
120 * object represents a mcluster structure. This cache does not
121 * preserve the contents of the objects during its transactions.
122 *
123 * MC_BIGCL:
124 * This is a cache of rudimentary objects of MBIGCLBYTES in size; each
125 * object represents a mbigcluster structure. This cache does not
126 * preserve the contents of the objects during its transaction.
127 *
128 * MC_MBUF_CL:
129 * This is a cache of mbufs each having a cluster attached to it.
130 * It is backed by MC_MBUF and MC_CL rudimentary caches. Several
131 * fields of the mbuf related to the external cluster are preserved
132 * during transactions.
133 *
134 * MC_MBUF_BIGCL:
135 * This is a cache of mbufs each having a big cluster attached to it.
136 * It is backed by MC_MBUF and MC_BIGCL rudimentary caches. Several
137 * fields of the mbuf related to the external cluster are preserved
138 * during transactions.
139 *
140 * OBJECT ALLOCATION:
141 *
142 * Allocation requests are handled first at the per-CPU (mcache) layer
143 * before falling back to the slab layer. Performance is optimal when
144 * the request is satisfied at the CPU layer because global data/lock
145 * never gets accessed. When the slab layer is entered for allocation,
146 * the slab freelist will be checked first for available objects before
147 * the VM backing store is invoked. Slab layer operations are serialized
148 * for all of the caches as the mbuf global lock is held most of the time.
149 * Allocation paths are different depending on the class of objects:
150 *
151 * a. Rudimentary object:
152 *
153 * { m_get_common(), m_clattach(), m_mclget(),
154 * m_mclalloc(), m_bigalloc(), m_copym_with_hdrs(),
155 * composite object allocation }
156 * | ^
157 * | |
158 * | +-----------------------+
159 * v |
160 * mcache_alloc/mcache_alloc_ext() mbuf_slab_audit()
161 * | ^
162 * v |
163 * [CPU cache] -------> (found?) -------+
164 * | |
165 * v |
166 * mbuf_slab_alloc() |
167 * | |
168 * v |
169 * +---------> [freelist] -------> (found?) -------+
170 * | |
171 * | v
172 * | m_clalloc()
173 * | |
174 * | v
175 * +---<<---- kmem_mb_alloc()
176 *
177 * b. Composite object:
178 *
179 * { m_getpackets_internal(), m_allocpacket_internal() }
180 * | ^
181 * | |
182 * | +------ (done) ---------+
183 * v |
184 * mcache_alloc/mcache_alloc_ext() mbuf_cslab_audit()
185 * | ^
186 * v |
187 * [CPU cache] -------> (found?) -------+
188 * | |
189 * v |
190 * mbuf_cslab_alloc() |
191 * | |
192 * v |
193 * [freelist] -------> (found?) -------+
194 * | |
195 * v |
196 * (rudimentary object) |
197 * mcache_alloc/mcache_alloc_ext() ------>>-----+
198 *
199 * Auditing notes: If auditing is enabled, buffers will be subjected to
200 * integrity checks by the audit routine. This is done by verifying their
201 * contents against DEADBEEF (free) pattern before returning them to caller.
202 * As part of this step, the routine will also record the transaction and
203 * pattern-fill the buffers with BADDCAFE (uninitialized) pattern. It will
204 * also restore any constructed data structure fields if necessary.
205 *
206 * OBJECT DEALLOCATION:
207 *
208 * Freeing an object simply involves placing it into the CPU cache; this
209 * pollutes the cache to benefit subsequent allocations. The slab layer
210 * will only be entered if the object is to be purged out of the cache.
211 * During normal operations, this happens only when the CPU layer resizes
212 * its bucket while it's adjusting to the allocation load. Deallocation
213 * paths are different depending on the class of objects:
214 *
215 * a. Rudimentary object:
216 *
217 * { m_free(), m_freem_list(), composite object deallocation }
218 * | ^
219 * | |
220 * | +------ (done) ---------+
221 * v |
222 * mcache_free/mcache_free_ext() |
223 * | |
224 * v |
225 * mbuf_slab_audit() |
226 * | |
227 * v |
228 * [CPU cache] ---> (not purging?) -----+
229 * | |
230 * v |
231 * mbuf_slab_free() |
232 * | |
233 * v |
234 * [freelist] ----------->>------------+
235 * (objects get purged to VM only on demand)
236 *
237 * b. Composite object:
238 *
239 * { m_free(), m_freem_list() }
240 * | ^
241 * | |
242 * | +------ (done) ---------+
243 * v |
244 * mcache_free/mcache_free_ext() |
245 * | |
246 * v |
247 * mbuf_cslab_audit() |
248 * | |
249 * v |
250 * [CPU cache] ---> (not purging?) -----+
251 * | |
252 * v |
253 * mbuf_cslab_free() |
254 * | |
255 * v |
256 * [freelist] ---> (not purging?) -----+
257 * | |
258 * v |
259 * (rudimentary object) |
260 * mcache_free/mcache_free_ext() ------->>------+
261 *
262 * Auditing notes: If auditing is enabled, the audit routine will save
263 * any constructed data structure fields (if necessary) before filling the
264 * contents of the buffers with DEADBEEF (free) pattern and recording the
265 * transaction. Buffers that are freed (whether at CPU or slab layer) are
266 * expected to contain the free pattern.
267 *
268 * DEBUGGING:
269 *
270 * Debugging can be enabled by adding "mbuf_debug=0x3" to boot-args; this
271 * translates to the mcache flags (MCF_VERIFY | MCF_AUDIT). Additionally,
272 * the CPU layer cache can be disabled by setting the MCF_NOCPUCACHE flag,
273 * i.e. modify the boot argument parameter to "mbuf_debug=0x13". Leak
274 * detection may also be disabled by setting the MCF_NOLEAKLOG flag, e.g.
275 * "mbuf_debug=0x113". Note that debugging consumes more CPU and memory.
276 *
277 * Each object is associated with exactly one mcache_audit_t structure that
278 * contains the information related to its last buffer transaction. Given
279 * an address of an object, the audit structure can be retrieved by finding
280 * the position of the object relevant to the base address of the cluster:
281 *
282 * +------------+ +=============+
283 * | mbuf addr | | mclaudit[i] |
284 * +------------+ +=============+
285 * | | cl_audit[0] |
286 * i = MTOBG(addr) +-------------+
287 * | +-----> | cl_audit[1] | -----> mcache_audit_t
288 * b = BGTOM(i) | +-------------+
289 * | | | ... |
290 * x = MCLIDX(b, addr) | +-------------+
291 * | | | cl_audit[7] |
292 * +-----------------+ +-------------+
293 * (e.g. x == 1)
294 *
295 * The mclaudit[] array is allocated at initialization time, but its contents
296 * get populated when the corresponding cluster is created. Because a page
297 * can be turned into NMBPG number of mbufs, we preserve enough space for the
298 * mbufs so that there is a 1-to-1 mapping between them. A page that never
299 * gets (or has not yet) turned into mbufs will use only cl_audit[0] with the
300 * remaining entries unused. For 16KB cluster, only one entry from the first
301 * page is allocated and used for the entire object.
302 */
303
304 /* TODO: should be in header file */
305 /* kernel translater */
306 extern vm_offset_t kmem_mb_alloc(vm_map_t, int, int);
307 extern ppnum_t pmap_find_phys(pmap_t pmap, addr64_t va);
308 extern vm_map_t mb_map; /* special map */
309
310 /* Global lock */
311 decl_lck_mtx_data(static, mbuf_mlock_data);
312 static lck_mtx_t *mbuf_mlock = &mbuf_mlock_data;
313 static lck_attr_t *mbuf_mlock_attr;
314 static lck_grp_t *mbuf_mlock_grp;
315 static lck_grp_attr_t *mbuf_mlock_grp_attr;
316
317 /* Back-end (common) layer */
318 static boolean_t mbuf_worker_needs_wakeup; /* wait channel for mbuf worker */
319 static int mbuf_worker_ready; /* worker thread is runnable */
320 static int mbuf_expand_mcl; /* number of cluster creation requets */
321 static int mbuf_expand_big; /* number of big cluster creation requests */
322 static int mbuf_expand_16k; /* number of 16KB cluster creation requests */
323 static int ncpu; /* number of CPUs */
324 static ppnum_t *mcl_paddr; /* Array of cluster physical addresses */
325 static ppnum_t mcl_pages; /* Size of array (# physical pages) */
326 static ppnum_t mcl_paddr_base; /* Handle returned by IOMapper::iovmAlloc() */
327 static mcache_t *ref_cache; /* Cache of cluster reference & flags */
328 static mcache_t *mcl_audit_con_cache; /* Audit contents cache */
329 static unsigned int mbuf_debug; /* patchable mbuf mcache flags */
330 static unsigned int mb_normalized; /* number of packets "normalized" */
331
332 #define MB_GROWTH_AGGRESSIVE 1 /* Threshold: 1/2 of total */
333 #define MB_GROWTH_NORMAL 2 /* Threshold: 3/4 of total */
334
335 typedef enum {
336 MC_MBUF = 0, /* Regular mbuf */
337 MC_CL, /* Cluster */
338 MC_BIGCL, /* Large (4KB) cluster */
339 MC_16KCL, /* Jumbo (16KB) cluster */
340 MC_MBUF_CL, /* mbuf + cluster */
341 MC_MBUF_BIGCL, /* mbuf + large (4KB) cluster */
342 MC_MBUF_16KCL /* mbuf + jumbo (16KB) cluster */
343 } mbuf_class_t;
344
345 #define MBUF_CLASS_MIN MC_MBUF
346 #define MBUF_CLASS_MAX MC_MBUF_16KCL
347 #define MBUF_CLASS_LAST MC_16KCL
348 #define MBUF_CLASS_VALID(c) \
349 ((int)(c) >= MBUF_CLASS_MIN && (int)(c) <= MBUF_CLASS_MAX)
350 #define MBUF_CLASS_COMPOSITE(c) \
351 ((int)(c) > MBUF_CLASS_LAST)
352
353
354 /*
355 * mbuf specific mcache allocation request flags.
356 */
357 #define MCR_COMP MCR_USR1 /* for MC_MBUF_{CL,BIGCL,16KCL} caches */
358
359 /*
360 * Per-cluster slab structure.
361 *
362 * A slab is a cluster control structure that contains one or more object
363 * chunks; the available chunks are chained in the slab's freelist (sl_head).
364 * Each time a chunk is taken out of the slab, the slab's reference count
365 * gets incremented. When all chunks have been taken out, the empty slab
366 * gets removed (SLF_DETACHED) from the class's slab list. A chunk that is
367 * returned to a slab causes the slab's reference count to be decremented;
368 * it also causes the slab to be reinserted back to class's slab list, if
369 * it's not already done.
370 *
371 * Compartmentalizing of the object chunks into slabs allows us to easily
372 * merge one or more slabs together when the adjacent slabs are idle, as
373 * well as to convert or move a slab from one class to another; e.g. the
374 * mbuf cluster slab can be converted to a regular cluster slab when all
375 * mbufs in the slab have been freed.
376 *
377 * A slab may also span across multiple clusters for chunks larger than
378 * a cluster's size. In this case, only the slab of the first cluster is
379 * used. The rest of the slabs are marked with SLF_PARTIAL to indicate
380 * that they are part of the larger slab.
381 *
382 * Each slab controls a page of memory.
383 */
384 typedef struct mcl_slab {
385 struct mcl_slab *sl_next; /* neighboring slab */
386 u_int8_t sl_class; /* controlling mbuf class */
387 int8_t sl_refcnt; /* outstanding allocations */
388 int8_t sl_chunks; /* chunks (bufs) in this slab */
389 u_int16_t sl_flags; /* slab flags (see below) */
390 u_int16_t sl_len; /* slab length */
391 void *sl_base; /* base of allocated memory */
392 void *sl_head; /* first free buffer */
393 TAILQ_ENTRY(mcl_slab) sl_link; /* next/prev slab on freelist */
394 } mcl_slab_t;
395
396 #define SLF_MAPPED 0x0001 /* backed by a mapped page */
397 #define SLF_PARTIAL 0x0002 /* part of another slab */
398 #define SLF_DETACHED 0x0004 /* not in slab freelist */
399
400 /*
401 * The array of slabs are broken into groups of arrays per 1MB of kernel
402 * memory to reduce the footprint. Each group is allocated on demand
403 * whenever a new piece of memory mapped in from the VM crosses the 1MB
404 * boundary.
405 */
406 #define NSLABSPMB ((1 << MBSHIFT) >> PAGE_SHIFT)
407
408 typedef struct mcl_slabg {
409 mcl_slab_t *slg_slab; /* group of slabs */
410 } mcl_slabg_t;
411
412 /*
413 * Number of slabs needed to control a 16KB cluster object.
414 */
415 #define NSLABSP16KB (M16KCLBYTES >> PAGE_SHIFT)
416
417 /*
418 * Per-cluster audit structure.
419 */
420 typedef struct {
421 mcache_audit_t **cl_audit; /* array of audits */
422 } mcl_audit_t;
423
424 typedef struct {
425 struct thread *msa_thread; /* thread doing transaction */
426 struct thread *msa_pthread; /* previous transaction thread */
427 uint32_t msa_tstamp; /* transaction timestamp (ms) */
428 uint32_t msa_ptstamp; /* prev transaction timestamp (ms) */
429 uint16_t msa_depth; /* pc stack depth */
430 uint16_t msa_pdepth; /* previous transaction pc stack */
431 void *msa_stack[MCACHE_STACK_DEPTH];
432 void *msa_pstack[MCACHE_STACK_DEPTH];
433 } mcl_scratch_audit_t;
434
435 typedef struct {
436 /*
437 * Size of data from the beginning of an mbuf that covers m_hdr,
438 * pkthdr and m_ext structures. If auditing is enabled, we allocate
439 * a shadow mbuf structure of this size inside each audit structure,
440 * and the contents of the real mbuf gets copied into it when the mbuf
441 * is freed. This allows us to pattern-fill the mbuf for integrity
442 * check, and to preserve any constructed mbuf fields (e.g. mbuf +
443 * cluster cache case). Note that we don't save the contents of
444 * clusters when they are freed; we simply pattern-fill them.
445 */
446 u_int8_t sc_mbuf[(MSIZE - _MHLEN) + sizeof (_m_ext_t)];
447 mcl_scratch_audit_t sc_scratch __attribute__((aligned(8)));
448 } mcl_saved_contents_t;
449
450 #define AUDIT_CONTENTS_SIZE (sizeof (mcl_saved_contents_t))
451
452 #define MCA_SAVED_MBUF_PTR(_mca) \
453 ((struct mbuf *)(void *)((mcl_saved_contents_t *) \
454 (_mca)->mca_contents)->sc_mbuf)
455 #define MCA_SAVED_MBUF_SIZE \
456 (sizeof (((mcl_saved_contents_t *)0)->sc_mbuf))
457 #define MCA_SAVED_SCRATCH_PTR(_mca) \
458 (&((mcl_saved_contents_t *)(_mca)->mca_contents)->sc_scratch)
459
460 /*
461 * mbuf specific mcache audit flags
462 */
463 #define MB_INUSE 0x01 /* object has not been returned to slab */
464 #define MB_COMP_INUSE 0x02 /* object has not been returned to cslab */
465 #define MB_SCVALID 0x04 /* object has valid saved contents */
466
467 /*
468 * Each of the following two arrays hold up to nmbclusters elements.
469 */
470 static mcl_audit_t *mclaudit; /* array of cluster audit information */
471 static unsigned int maxclaudit; /* max # of entries in audit table */
472 static mcl_slabg_t **slabstbl; /* cluster slabs table */
473 static unsigned int maxslabgrp; /* max # of entries in slabs table */
474 static unsigned int slabgrp; /* # of entries in slabs table */
475
476 /* Globals */
477 int nclusters; /* # of clusters for non-jumbo (legacy) sizes */
478 int njcl; /* # of clusters for jumbo sizes */
479 int njclbytes; /* size of a jumbo cluster */
480 unsigned char *mbutl; /* first mapped cluster address */
481 unsigned char *embutl; /* ending virtual address of mclusters */
482 int _max_linkhdr; /* largest link-level header */
483 int _max_protohdr; /* largest protocol header */
484 int max_hdr; /* largest link+protocol header */
485 int max_datalen; /* MHLEN - max_hdr */
486
487 static boolean_t mclverify; /* debug: pattern-checking */
488 static boolean_t mcltrace; /* debug: stack tracing */
489 static boolean_t mclfindleak; /* debug: leak detection */
490 static boolean_t mclexpleak; /* debug: expose leak info to user space */
491
492 static struct timeval mb_start; /* beginning of time */
493
494 /* mbuf leak detection variables */
495 static struct mleak_table mleak_table;
496 static mleak_stat_t *mleak_stat;
497
498 #define MLEAK_STAT_SIZE(n) \
499 ((size_t)(&((mleak_stat_t *)0)->ml_trace[n]))
500
501 struct mallocation {
502 mcache_obj_t *element; /* the alloc'ed element, NULL if unused */
503 u_int32_t trace_index; /* mtrace index for corresponding backtrace */
504 u_int32_t count; /* How many objects were requested */
505 u_int64_t hitcount; /* for determining hash effectiveness */
506 };
507
508 struct mtrace {
509 u_int64_t collisions;
510 u_int64_t hitcount;
511 u_int64_t allocs;
512 u_int64_t depth;
513 uintptr_t addr[MLEAK_STACK_DEPTH];
514 };
515
516 /* Size must be a power of two for the zhash to be able to just mask off bits */
517 #define MLEAK_ALLOCATION_MAP_NUM 512
518 #define MLEAK_TRACE_MAP_NUM 256
519
520 /*
521 * Sample factor for how often to record a trace. This is overwritable
522 * by the boot-arg mleak_sample_factor.
523 */
524 #define MLEAK_SAMPLE_FACTOR 500
525
526 /*
527 * Number of top leakers recorded.
528 */
529 #define MLEAK_NUM_TRACES 5
530
531 #define MB_LEAK_SPACING_64 " "
532 #define MB_LEAK_SPACING_32 " "
533
534
535 #define MB_LEAK_HDR_32 "\n\
536 trace [1] trace [2] trace [3] trace [4] trace [5] \n\
537 ---------- ---------- ---------- ---------- ---------- \n\
538 "
539
540 #define MB_LEAK_HDR_64 "\n\
541 trace [1] trace [2] trace [3] \
542 trace [4] trace [5] \n\
543 ------------------ ------------------ ------------------ \
544 ------------------ ------------------ \n\
545 "
546
547 static uint32_t mleak_alloc_buckets = MLEAK_ALLOCATION_MAP_NUM;
548 static uint32_t mleak_trace_buckets = MLEAK_TRACE_MAP_NUM;
549
550 /* Hashmaps of allocations and their corresponding traces */
551 static struct mallocation *mleak_allocations;
552 static struct mtrace *mleak_traces;
553 static struct mtrace *mleak_top_trace[MLEAK_NUM_TRACES];
554
555 /* Lock to protect mleak tables from concurrent modification */
556 decl_lck_mtx_data(static, mleak_lock_data);
557 static lck_mtx_t *mleak_lock = &mleak_lock_data;
558 static lck_attr_t *mleak_lock_attr;
559 static lck_grp_t *mleak_lock_grp;
560 static lck_grp_attr_t *mleak_lock_grp_attr;
561
562 /* Lock to protect the completion callback table */
563 static lck_grp_attr_t *mbuf_tx_compl_tbl_lck_grp_attr = NULL;
564 static lck_attr_t *mbuf_tx_compl_tbl_lck_attr = NULL;
565 static lck_grp_t *mbuf_tx_compl_tbl_lck_grp = NULL;
566 decl_lck_rw_data(, mbuf_tx_compl_tbl_lck_rw_data);
567 lck_rw_t *mbuf_tx_compl_tbl_lock = &mbuf_tx_compl_tbl_lck_rw_data;
568
569 extern u_int32_t high_sb_max;
570
571 /* The minimum number of objects that are allocated, to start. */
572 #define MINCL 32
573 #define MINBIGCL (MINCL >> 1)
574 #define MIN16KCL (MINCL >> 2)
575
576 /* Low watermarks (only map in pages once free counts go below) */
577 #define MBIGCL_LOWAT MINBIGCL
578 #define M16KCL_LOWAT MIN16KCL
579
580 typedef struct {
581 mbuf_class_t mtbl_class; /* class type */
582 mcache_t *mtbl_cache; /* mcache for this buffer class */
583 TAILQ_HEAD(mcl_slhead, mcl_slab) mtbl_slablist; /* slab list */
584 mcache_obj_t *mtbl_cobjlist; /* composite objects freelist */
585 mb_class_stat_t *mtbl_stats; /* statistics fetchable via sysctl */
586 u_int32_t mtbl_maxsize; /* maximum buffer size */
587 int mtbl_minlimit; /* minimum allowed */
588 int mtbl_maxlimit; /* maximum allowed */
589 u_int32_t mtbl_wantpurge; /* purge during next reclaim */
590 uint32_t mtbl_avgtotal; /* average total on iOS */
591 } mbuf_table_t;
592
593 #define m_class(c) mbuf_table[c].mtbl_class
594 #define m_cache(c) mbuf_table[c].mtbl_cache
595 #define m_slablist(c) mbuf_table[c].mtbl_slablist
596 #define m_cobjlist(c) mbuf_table[c].mtbl_cobjlist
597 #define m_maxsize(c) mbuf_table[c].mtbl_maxsize
598 #define m_minlimit(c) mbuf_table[c].mtbl_minlimit
599 #define m_maxlimit(c) mbuf_table[c].mtbl_maxlimit
600 #define m_wantpurge(c) mbuf_table[c].mtbl_wantpurge
601 #define m_avgtotal(c) mbuf_table[c].mtbl_avgtotal
602 #define m_cname(c) mbuf_table[c].mtbl_stats->mbcl_cname
603 #define m_size(c) mbuf_table[c].mtbl_stats->mbcl_size
604 #define m_total(c) mbuf_table[c].mtbl_stats->mbcl_total
605 #define m_active(c) mbuf_table[c].mtbl_stats->mbcl_active
606 #define m_infree(c) mbuf_table[c].mtbl_stats->mbcl_infree
607 #define m_slab_cnt(c) mbuf_table[c].mtbl_stats->mbcl_slab_cnt
608 #define m_alloc_cnt(c) mbuf_table[c].mtbl_stats->mbcl_alloc_cnt
609 #define m_free_cnt(c) mbuf_table[c].mtbl_stats->mbcl_free_cnt
610 #define m_notified(c) mbuf_table[c].mtbl_stats->mbcl_notified
611 #define m_purge_cnt(c) mbuf_table[c].mtbl_stats->mbcl_purge_cnt
612 #define m_fail_cnt(c) mbuf_table[c].mtbl_stats->mbcl_fail_cnt
613 #define m_ctotal(c) mbuf_table[c].mtbl_stats->mbcl_ctotal
614 #define m_peak(c) mbuf_table[c].mtbl_stats->mbcl_peak_reported
615 #define m_release_cnt(c) mbuf_table[c].mtbl_stats->mbcl_release_cnt
616
617 static mbuf_table_t mbuf_table[] = {
618 /*
619 * The caches for mbufs, regular clusters and big clusters.
620 * The average total values were based on data gathered by actual
621 * usage patterns on iOS.
622 */
623 { MC_MBUF, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_MBUF)),
624 NULL, NULL, 0, 0, 0, 0, 3000 },
625 { MC_CL, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_CL)),
626 NULL, NULL, 0, 0, 0, 0, 2000 },
627 { MC_BIGCL, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_BIGCL)),
628 NULL, NULL, 0, 0, 0, 0, 1000 },
629 { MC_16KCL, NULL, TAILQ_HEAD_INITIALIZER(m_slablist(MC_16KCL)),
630 NULL, NULL, 0, 0, 0, 0, 1000 },
631 /*
632 * The following are special caches; they serve as intermediate
633 * caches backed by the above rudimentary caches. Each object
634 * in the cache is an mbuf with a cluster attached to it. Unlike
635 * the above caches, these intermediate caches do not directly
636 * deal with the slab structures; instead, the constructed
637 * cached elements are simply stored in the freelists.
638 */
639 { MC_MBUF_CL, NULL, { NULL, NULL }, NULL, NULL, 0, 0, 0, 0, 2000 },
640 { MC_MBUF_BIGCL, NULL, { NULL, NULL }, NULL, NULL, 0, 0, 0, 0, 1000 },
641 { MC_MBUF_16KCL, NULL, { NULL, NULL }, NULL, NULL, 0, 0, 0, 0, 1000 },
642 };
643
644 #define NELEM(a) (sizeof (a) / sizeof ((a)[0]))
645
646 static void *mb_waitchan = &mbuf_table; /* wait channel for all caches */
647 static int mb_waiters; /* number of waiters */
648
649 boolean_t mb_peak_newreport = FALSE;
650 boolean_t mb_peak_firstreport = FALSE;
651
652 /* generate a report by default after 1 week of uptime */
653 #define MBUF_PEAK_FIRST_REPORT_THRESHOLD 604800
654
655 #define MB_WDT_MAXTIME 10 /* # of secs before watchdog panic */
656 static struct timeval mb_wdtstart; /* watchdog start timestamp */
657 static char *mbuf_dump_buf;
658
659 #define MBUF_DUMP_BUF_SIZE 2048
660
661 /*
662 * mbuf watchdog is enabled by default on embedded platforms. It is
663 * also toggeable via the kern.ipc.mb_watchdog sysctl.
664 * Garbage collection is also enabled by default on embedded platforms.
665 * mb_drain_maxint controls the amount of time to wait (in seconds) before
666 * consecutive calls to m_drain().
667 */
668 static unsigned int mb_watchdog = 0;
669 static unsigned int mb_drain_maxint = 0;
670
671 /* Red zone */
672 static u_int32_t mb_redzone_cookie;
673 static void m_redzone_init(struct mbuf *);
674 static void m_redzone_verify(struct mbuf *m);
675
676 /* The following are used to serialize m_clalloc() */
677 static boolean_t mb_clalloc_busy;
678 static void *mb_clalloc_waitchan = &mb_clalloc_busy;
679 static int mb_clalloc_waiters;
680
681 static void mbuf_mtypes_sync(boolean_t);
682 static int mbstat_sysctl SYSCTL_HANDLER_ARGS;
683 static void mbuf_stat_sync(void);
684 static int mb_stat_sysctl SYSCTL_HANDLER_ARGS;
685 static int mleak_top_trace_sysctl SYSCTL_HANDLER_ARGS;
686 static int mleak_table_sysctl SYSCTL_HANDLER_ARGS;
687 static char *mbuf_dump(void);
688 static void mbuf_table_init(void);
689 static inline void m_incref(struct mbuf *);
690 static inline u_int16_t m_decref(struct mbuf *);
691 static int m_clalloc(const u_int32_t, const int, const u_int32_t);
692 static void mbuf_worker_thread_init(void);
693 static mcache_obj_t *slab_alloc(mbuf_class_t, int);
694 static void slab_free(mbuf_class_t, mcache_obj_t *);
695 static unsigned int mbuf_slab_alloc(void *, mcache_obj_t ***,
696 unsigned int, int);
697 static void mbuf_slab_free(void *, mcache_obj_t *, int);
698 static void mbuf_slab_audit(void *, mcache_obj_t *, boolean_t);
699 static void mbuf_slab_notify(void *, u_int32_t);
700 static unsigned int cslab_alloc(mbuf_class_t, mcache_obj_t ***,
701 unsigned int);
702 static unsigned int cslab_free(mbuf_class_t, mcache_obj_t *, int);
703 static unsigned int mbuf_cslab_alloc(void *, mcache_obj_t ***,
704 unsigned int, int);
705 static void mbuf_cslab_free(void *, mcache_obj_t *, int);
706 static void mbuf_cslab_audit(void *, mcache_obj_t *, boolean_t);
707 static int freelist_populate(mbuf_class_t, unsigned int, int);
708 static void freelist_init(mbuf_class_t);
709 static boolean_t mbuf_cached_above(mbuf_class_t, int);
710 static boolean_t mbuf_steal(mbuf_class_t, unsigned int);
711 static void m_reclaim(mbuf_class_t, unsigned int, boolean_t);
712 static int m_howmany(int, size_t);
713 static void mbuf_worker_thread(void);
714 static void mbuf_watchdog(void);
715 static boolean_t mbuf_sleep(mbuf_class_t, unsigned int, int);
716
717 static void mcl_audit_init(void *, mcache_audit_t **, mcache_obj_t **,
718 size_t, unsigned int);
719 static void mcl_audit_free(void *, unsigned int);
720 static mcache_audit_t *mcl_audit_buf2mca(mbuf_class_t, mcache_obj_t *);
721 static void mcl_audit_mbuf(mcache_audit_t *, void *, boolean_t, boolean_t);
722 static void mcl_audit_cluster(mcache_audit_t *, void *, size_t, boolean_t,
723 boolean_t);
724 static void mcl_audit_restore_mbuf(struct mbuf *, mcache_audit_t *, boolean_t);
725 static void mcl_audit_save_mbuf(struct mbuf *, mcache_audit_t *);
726 static void mcl_audit_scratch(mcache_audit_t *);
727 static void mcl_audit_mcheck_panic(struct mbuf *);
728 static void mcl_audit_verify_nextptr(void *, mcache_audit_t *);
729
730 static void mleak_activate(void);
731 static void mleak_logger(u_int32_t, mcache_obj_t *, boolean_t);
732 static boolean_t mleak_log(uintptr_t *, mcache_obj_t *, uint32_t, int);
733 static void mleak_free(mcache_obj_t *);
734 static void mleak_sort_traces(void);
735 static void mleak_update_stats(void);
736
737 static mcl_slab_t *slab_get(void *);
738 static void slab_init(mcl_slab_t *, mbuf_class_t, u_int32_t,
739 void *, void *, unsigned int, int, int);
740 static void slab_insert(mcl_slab_t *, mbuf_class_t);
741 static void slab_remove(mcl_slab_t *, mbuf_class_t);
742 static boolean_t slab_inrange(mcl_slab_t *, void *);
743 static void slab_nextptr_panic(mcl_slab_t *, void *);
744 static void slab_detach(mcl_slab_t *);
745 static boolean_t slab_is_detached(mcl_slab_t *);
746
747 static int m_copyback0(struct mbuf **, int, int, const void *, int, int);
748 static struct mbuf *m_split0(struct mbuf *, int, int, int);
749 __private_extern__ void mbuf_report_peak_usage(void);
750 static boolean_t mbuf_report_usage(mbuf_class_t);
751
752 /* flags for m_copyback0 */
753 #define M_COPYBACK0_COPYBACK 0x0001 /* copyback from cp */
754 #define M_COPYBACK0_PRESERVE 0x0002 /* preserve original data */
755 #define M_COPYBACK0_COW 0x0004 /* do copy-on-write */
756 #define M_COPYBACK0_EXTEND 0x0008 /* extend chain */
757
758 /*
759 * This flag is set for all mbufs that come out of and into the composite
760 * mbuf + cluster caches, i.e. MC_MBUF_CL and MC_MBUF_BIGCL. mbufs that
761 * are marked with such a flag have clusters attached to them, and will be
762 * treated differently when they are freed; instead of being placed back
763 * into the mbuf and cluster freelists, the composite mbuf + cluster objects
764 * are placed back into the appropriate composite cache's freelist, and the
765 * actual freeing is deferred until the composite objects are purged. At
766 * such a time, this flag will be cleared from the mbufs and the objects
767 * will be freed into their own separate freelists.
768 */
769 #define EXTF_COMPOSITE 0x1
770
771 /*
772 * This flag indicates that the external cluster is read-only, i.e. it is
773 * or was referred to by more than one mbufs. Once set, this flag is never
774 * cleared.
775 */
776 #define EXTF_READONLY 0x2
777 /*
778 * This flag indicates that the external cluster is paired with the mbuf.
779 * Pairing implies an external free routine defined which will be invoked
780 * when the reference count drops to the minimum at m_free time. This
781 * flag is never cleared.
782 */
783 #define EXTF_PAIRED 0x4
784
785 #define EXTF_MASK \
786 (EXTF_COMPOSITE | EXTF_READONLY | EXTF_PAIRED)
787
788 #define MEXT_RFA(m) ((m)->m_ext.ext_refflags)
789 #define MEXT_MINREF(m) (MEXT_RFA(m)->minref)
790 #define MEXT_REF(m) (MEXT_RFA(m)->refcnt)
791 #define MEXT_PREF(m) (MEXT_RFA(m)->prefcnt)
792 #define MEXT_FLAGS(m) (MEXT_RFA(m)->flags)
793 #define MEXT_PRIV(m) (MEXT_RFA(m)->priv)
794 #define MEXT_PMBUF(m) (MEXT_RFA(m)->paired)
795 #define MBUF_IS_COMPOSITE(m) \
796 (MEXT_REF(m) == MEXT_MINREF(m) && \
797 (MEXT_FLAGS(m) & EXTF_MASK) == EXTF_COMPOSITE)
798 /*
799 * This macro can be used to test if the mbuf is paired to an external
800 * cluster. The test for MEXT_PMBUF being equal to the mbuf in subject
801 * is important, as EXTF_PAIRED alone is insufficient since it is immutable,
802 * and thus survives calls to m_free_paired.
803 */
804 #define MBUF_IS_PAIRED(m) \
805 (((m)->m_flags & M_EXT) && \
806 (MEXT_FLAGS(m) & EXTF_MASK) == EXTF_PAIRED && \
807 MEXT_PMBUF(m) == (m))
808
809 /*
810 * Macros used to verify the integrity of the mbuf.
811 */
812 #define _MCHECK(m) { \
813 if ((m)->m_type != MT_FREE && !MBUF_IS_PAIRED(m)) { \
814 if (mclaudit == NULL) \
815 panic("MCHECK: m_type=%d m=%p", \
816 (u_int16_t)(m)->m_type, m); \
817 else \
818 mcl_audit_mcheck_panic(m); \
819 } \
820 }
821
822 #define MBUF_IN_MAP(addr) \
823 ((unsigned char *)(addr) >= mbutl && \
824 (unsigned char *)(addr) < embutl)
825
826 #define MRANGE(addr) { \
827 if (!MBUF_IN_MAP(addr)) \
828 panic("MRANGE: address out of range 0x%p", addr); \
829 }
830
831 /*
832 * Macro version of mtod.
833 */
834 #define MTOD(m, t) ((t)((m)->m_data))
835
836 /*
837 * Macros to obtain page index given a base cluster address
838 */
839 #define MTOPG(x) (((unsigned char *)x - mbutl) >> PAGE_SHIFT)
840 #define PGTOM(x) (mbutl + (x << PAGE_SHIFT))
841
842 /*
843 * Macro to find the mbuf index relative to a base.
844 */
845 #define MBPAGEIDX(c, m) \
846 (((unsigned char *)(m) - (unsigned char *)(c)) >> MSIZESHIFT)
847
848 /*
849 * Same thing for 2KB cluster index.
850 */
851 #define CLPAGEIDX(c, m) \
852 (((unsigned char *)(m) - (unsigned char *)(c)) >> MCLSHIFT)
853
854 /*
855 * Macro to find 4KB cluster index relative to a base
856 */
857 #define BCLPAGEIDX(c, m) \
858 (((unsigned char *)(m) - (unsigned char *)(c)) >> MBIGCLSHIFT)
859
860 /*
861 * Macros used during mbuf and cluster initialization.
862 */
863 #define MBUF_INIT_PKTHDR(m) { \
864 (m)->m_pkthdr.rcvif = NULL; \
865 (m)->m_pkthdr.pkt_hdr = NULL; \
866 (m)->m_pkthdr.len = 0; \
867 (m)->m_pkthdr.csum_flags = 0; \
868 (m)->m_pkthdr.csum_data = 0; \
869 (m)->m_pkthdr.vlan_tag = 0; \
870 m_classifier_init(m, 0); \
871 m_tag_init(m, 1); \
872 m_scratch_init(m); \
873 m_redzone_init(m); \
874 }
875
876 #define MBUF_INIT(m, pkthdr, type) { \
877 _MCHECK(m); \
878 (m)->m_next = (m)->m_nextpkt = NULL; \
879 (m)->m_len = 0; \
880 (m)->m_type = type; \
881 if ((pkthdr) == 0) { \
882 (m)->m_data = (m)->m_dat; \
883 (m)->m_flags = 0; \
884 } else { \
885 (m)->m_data = (m)->m_pktdat; \
886 (m)->m_flags = M_PKTHDR; \
887 MBUF_INIT_PKTHDR(m); \
888 } \
889 }
890
891 #define MEXT_INIT(m, buf, size, free, arg, rfa, min, ref, pref, flag, \
892 priv, pm) { \
893 (m)->m_data = (m)->m_ext.ext_buf = (buf); \
894 (m)->m_flags |= M_EXT; \
895 (m)->m_ext.ext_size = (size); \
896 (m)->m_ext.ext_free = (free); \
897 (m)->m_ext.ext_arg = (arg); \
898 MEXT_RFA(m) = (rfa); \
899 MEXT_MINREF(m) = (min); \
900 MEXT_REF(m) = (ref); \
901 MEXT_PREF(m) = (pref); \
902 MEXT_FLAGS(m) = (flag); \
903 MEXT_PRIV(m) = (priv); \
904 MEXT_PMBUF(m) = (pm); \
905 }
906
907 #define MBUF_CL_INIT(m, buf, rfa, ref, flag) \
908 MEXT_INIT(m, buf, m_maxsize(MC_CL), NULL, NULL, rfa, 0, \
909 ref, 0, flag, 0, NULL)
910
911 #define MBUF_BIGCL_INIT(m, buf, rfa, ref, flag) \
912 MEXT_INIT(m, buf, m_maxsize(MC_BIGCL), m_bigfree, NULL, rfa, 0, \
913 ref, 0, flag, 0, NULL)
914
915 #define MBUF_16KCL_INIT(m, buf, rfa, ref, flag) \
916 MEXT_INIT(m, buf, m_maxsize(MC_16KCL), m_16kfree, NULL, rfa, 0, \
917 ref, 0, flag, 0, NULL)
918
919 /*
920 * Macro to convert BSD malloc sleep flag to mcache's
921 */
922 #define MSLEEPF(f) ((!((f) & M_DONTWAIT)) ? MCR_SLEEP : MCR_NOSLEEP)
923
924 /*
925 * The structure that holds all mbuf class statistics exportable via sysctl.
926 * Similar to mbstat structure, the mb_stat structure is protected by the
927 * global mbuf lock. It contains additional information about the classes
928 * that allows for a more accurate view of the state of the allocator.
929 */
930 struct mb_stat *mb_stat;
931 struct omb_stat *omb_stat; /* For backwards compatibility */
932
933 #define MB_STAT_SIZE(n) \
934 ((size_t)(&((mb_stat_t *)0)->mbs_class[n]))
935 #define OMB_STAT_SIZE(n) \
936 ((size_t)(&((struct omb_stat *)0)->mbs_class[n]))
937
938 /*
939 * The legacy structure holding all of the mbuf allocation statistics.
940 * The actual statistics used by the kernel are stored in the mbuf_table
941 * instead, and are updated atomically while the global mbuf lock is held.
942 * They are mirrored in mbstat to support legacy applications (e.g. netstat).
943 * Unlike before, the kernel no longer relies on the contents of mbstat for
944 * its operations (e.g. cluster expansion) because the structure is exposed
945 * to outside and could possibly be modified, therefore making it unsafe.
946 * With the exception of the mbstat.m_mtypes array (see below), all of the
947 * statistics are updated as they change.
948 */
949 struct mbstat mbstat;
950
951 #define MBSTAT_MTYPES_MAX \
952 (sizeof (mbstat.m_mtypes) / sizeof (mbstat.m_mtypes[0]))
953
954 /*
955 * Allocation statistics related to mbuf types (up to MT_MAX-1) are updated
956 * atomically and stored in a per-CPU structure which is lock-free; this is
957 * done in order to avoid writing to the global mbstat data structure which
958 * would cause false sharing. During sysctl request for kern.ipc.mbstat,
959 * the statistics across all CPUs will be converged into the mbstat.m_mtypes
960 * array and returned to the application. Any updates for types greater or
961 * equal than MT_MAX would be done atomically to the mbstat; this slows down
962 * performance but is okay since the kernel uses only up to MT_MAX-1 while
963 * anything beyond that (up to type 255) is considered a corner case.
964 */
965 typedef struct {
966 unsigned int cpu_mtypes[MT_MAX];
967 } __attribute__((aligned(MAX_CPU_CACHE_LINE_SIZE), packed)) mtypes_cpu_t;
968
969 typedef struct {
970 mtypes_cpu_t mbs_cpu[1];
971 } mbuf_mtypes_t;
972
973 static mbuf_mtypes_t *mbuf_mtypes; /* per-CPU statistics */
974
975 #define MBUF_MTYPES_SIZE(n) \
976 ((size_t)(&((mbuf_mtypes_t *)0)->mbs_cpu[n]))
977
978 #define MTYPES_CPU(p) \
979 ((mtypes_cpu_t *)(void *)((char *)(p) + MBUF_MTYPES_SIZE(cpu_number())))
980
981 #define mtype_stat_add(type, n) { \
982 if ((unsigned)(type) < MT_MAX) { \
983 mtypes_cpu_t *mbs = MTYPES_CPU(mbuf_mtypes); \
984 atomic_add_32(&mbs->cpu_mtypes[type], n); \
985 } else if ((unsigned)(type) < (unsigned)MBSTAT_MTYPES_MAX) { \
986 atomic_add_16((int16_t *)&mbstat.m_mtypes[type], n); \
987 } \
988 }
989
990 #define mtype_stat_sub(t, n) mtype_stat_add(t, -(n))
991 #define mtype_stat_inc(t) mtype_stat_add(t, 1)
992 #define mtype_stat_dec(t) mtype_stat_sub(t, 1)
993
994 static void
995 mbuf_mtypes_sync(boolean_t locked)
996 {
997 int m, n;
998 mtypes_cpu_t mtc;
999
1000 if (locked)
1001 lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
1002
1003 bzero(&mtc, sizeof (mtc));
1004 for (m = 0; m < ncpu; m++) {
1005 mtypes_cpu_t *scp = &mbuf_mtypes->mbs_cpu[m];
1006 mtypes_cpu_t temp;
1007
1008 bcopy(&scp->cpu_mtypes, &temp.cpu_mtypes,
1009 sizeof (temp.cpu_mtypes));
1010
1011 for (n = 0; n < MT_MAX; n++)
1012 mtc.cpu_mtypes[n] += temp.cpu_mtypes[n];
1013 }
1014 if (!locked)
1015 lck_mtx_lock(mbuf_mlock);
1016 for (n = 0; n < MT_MAX; n++)
1017 mbstat.m_mtypes[n] = mtc.cpu_mtypes[n];
1018 if (!locked)
1019 lck_mtx_unlock(mbuf_mlock);
1020 }
1021
1022 static int
1023 mbstat_sysctl SYSCTL_HANDLER_ARGS
1024 {
1025 #pragma unused(oidp, arg1, arg2)
1026 mbuf_mtypes_sync(FALSE);
1027
1028 return (SYSCTL_OUT(req, &mbstat, sizeof (mbstat)));
1029 }
1030
1031 static void
1032 mbuf_stat_sync(void)
1033 {
1034 mb_class_stat_t *sp;
1035 mcache_cpu_t *ccp;
1036 mcache_t *cp;
1037 int k, m, bktsize;
1038
1039 lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
1040
1041 for (k = 0; k < NELEM(mbuf_table); k++) {
1042 cp = m_cache(k);
1043 ccp = &cp->mc_cpu[0];
1044 bktsize = ccp->cc_bktsize;
1045 sp = mbuf_table[k].mtbl_stats;
1046
1047 if (cp->mc_flags & MCF_NOCPUCACHE)
1048 sp->mbcl_mc_state = MCS_DISABLED;
1049 else if (cp->mc_purge_cnt > 0)
1050 sp->mbcl_mc_state = MCS_PURGING;
1051 else if (bktsize == 0)
1052 sp->mbcl_mc_state = MCS_OFFLINE;
1053 else
1054 sp->mbcl_mc_state = MCS_ONLINE;
1055
1056 sp->mbcl_mc_cached = 0;
1057 for (m = 0; m < ncpu; m++) {
1058 ccp = &cp->mc_cpu[m];
1059 if (ccp->cc_objs > 0)
1060 sp->mbcl_mc_cached += ccp->cc_objs;
1061 if (ccp->cc_pobjs > 0)
1062 sp->mbcl_mc_cached += ccp->cc_pobjs;
1063 }
1064 sp->mbcl_mc_cached += (cp->mc_full.bl_total * bktsize);
1065 sp->mbcl_active = sp->mbcl_total - sp->mbcl_mc_cached -
1066 sp->mbcl_infree;
1067
1068 sp->mbcl_mc_waiter_cnt = cp->mc_waiter_cnt;
1069 sp->mbcl_mc_wretry_cnt = cp->mc_wretry_cnt;
1070 sp->mbcl_mc_nwretry_cnt = cp->mc_nwretry_cnt;
1071
1072 /* Calculate total count specific to each class */
1073 sp->mbcl_ctotal = sp->mbcl_total;
1074 switch (m_class(k)) {
1075 case MC_MBUF:
1076 /* Deduct mbufs used in composite caches */
1077 sp->mbcl_ctotal -= (m_total(MC_MBUF_CL) +
1078 m_total(MC_MBUF_BIGCL));
1079 break;
1080
1081 case MC_CL:
1082 /* Deduct clusters used in composite cache */
1083 sp->mbcl_ctotal -= m_total(MC_MBUF_CL);
1084 break;
1085
1086 case MC_BIGCL:
1087 /* Deduct clusters used in composite cache */
1088 sp->mbcl_ctotal -= m_total(MC_MBUF_BIGCL);
1089 break;
1090
1091 case MC_16KCL:
1092 /* Deduct clusters used in composite cache */
1093 sp->mbcl_ctotal -= m_total(MC_MBUF_16KCL);
1094 break;
1095
1096 default:
1097 break;
1098 }
1099 }
1100 }
1101
1102 static int
1103 mb_stat_sysctl SYSCTL_HANDLER_ARGS
1104 {
1105 #pragma unused(oidp, arg1, arg2)
1106 void *statp;
1107 int k, statsz, proc64 = proc_is64bit(req->p);
1108
1109 lck_mtx_lock(mbuf_mlock);
1110 mbuf_stat_sync();
1111
1112 if (!proc64) {
1113 struct omb_class_stat *oc;
1114 struct mb_class_stat *c;
1115
1116 omb_stat->mbs_cnt = mb_stat->mbs_cnt;
1117 oc = &omb_stat->mbs_class[0];
1118 c = &mb_stat->mbs_class[0];
1119 for (k = 0; k < omb_stat->mbs_cnt; k++, oc++, c++) {
1120 (void) snprintf(oc->mbcl_cname, sizeof (oc->mbcl_cname),
1121 "%s", c->mbcl_cname);
1122 oc->mbcl_size = c->mbcl_size;
1123 oc->mbcl_total = c->mbcl_total;
1124 oc->mbcl_active = c->mbcl_active;
1125 oc->mbcl_infree = c->mbcl_infree;
1126 oc->mbcl_slab_cnt = c->mbcl_slab_cnt;
1127 oc->mbcl_alloc_cnt = c->mbcl_alloc_cnt;
1128 oc->mbcl_free_cnt = c->mbcl_free_cnt;
1129 oc->mbcl_notified = c->mbcl_notified;
1130 oc->mbcl_purge_cnt = c->mbcl_purge_cnt;
1131 oc->mbcl_fail_cnt = c->mbcl_fail_cnt;
1132 oc->mbcl_ctotal = c->mbcl_ctotal;
1133 oc->mbcl_release_cnt = c->mbcl_release_cnt;
1134 oc->mbcl_mc_state = c->mbcl_mc_state;
1135 oc->mbcl_mc_cached = c->mbcl_mc_cached;
1136 oc->mbcl_mc_waiter_cnt = c->mbcl_mc_waiter_cnt;
1137 oc->mbcl_mc_wretry_cnt = c->mbcl_mc_wretry_cnt;
1138 oc->mbcl_mc_nwretry_cnt = c->mbcl_mc_nwretry_cnt;
1139 }
1140 statp = omb_stat;
1141 statsz = OMB_STAT_SIZE(NELEM(mbuf_table));
1142 } else {
1143 statp = mb_stat;
1144 statsz = MB_STAT_SIZE(NELEM(mbuf_table));
1145 }
1146
1147 lck_mtx_unlock(mbuf_mlock);
1148
1149 return (SYSCTL_OUT(req, statp, statsz));
1150 }
1151
1152 static int
1153 mleak_top_trace_sysctl SYSCTL_HANDLER_ARGS
1154 {
1155 #pragma unused(oidp, arg1, arg2)
1156 int i;
1157
1158 /* Ensure leak tracing turned on */
1159 if (!mclfindleak || !mclexpleak)
1160 return (ENXIO);
1161
1162 lck_mtx_lock(mleak_lock);
1163 mleak_update_stats();
1164 i = SYSCTL_OUT(req, mleak_stat, MLEAK_STAT_SIZE(MLEAK_NUM_TRACES));
1165 lck_mtx_unlock(mleak_lock);
1166
1167 return (i);
1168 }
1169
1170 static int
1171 mleak_table_sysctl SYSCTL_HANDLER_ARGS
1172 {
1173 #pragma unused(oidp, arg1, arg2)
1174 int i = 0;
1175
1176 /* Ensure leak tracing turned on */
1177 if (!mclfindleak || !mclexpleak)
1178 return (ENXIO);
1179
1180 lck_mtx_lock(mleak_lock);
1181 i = SYSCTL_OUT(req, &mleak_table, sizeof (mleak_table));
1182 lck_mtx_unlock(mleak_lock);
1183
1184 return (i);
1185 }
1186
1187 static inline void
1188 m_incref(struct mbuf *m)
1189 {
1190 UInt16 old, new;
1191 volatile UInt16 *addr = (volatile UInt16 *)&MEXT_REF(m);
1192
1193 do {
1194 old = *addr;
1195 new = old + 1;
1196 ASSERT(new != 0);
1197 } while (!OSCompareAndSwap16(old, new, addr));
1198
1199 /*
1200 * If cluster is shared, mark it with (sticky) EXTF_READONLY;
1201 * we don't clear the flag when the refcount goes back to the
1202 * minimum, to simplify code calling m_mclhasreference().
1203 */
1204 if (new > (MEXT_MINREF(m) + 1) && !(MEXT_FLAGS(m) & EXTF_READONLY))
1205 (void) OSBitOrAtomic16(EXTF_READONLY, &MEXT_FLAGS(m));
1206 }
1207
1208 static inline u_int16_t
1209 m_decref(struct mbuf *m)
1210 {
1211 UInt16 old, new;
1212 volatile UInt16 *addr = (volatile UInt16 *)&MEXT_REF(m);
1213
1214 do {
1215 old = *addr;
1216 new = old - 1;
1217 ASSERT(old != 0);
1218 } while (!OSCompareAndSwap16(old, new, addr));
1219
1220 return (new);
1221 }
1222
1223 static void
1224 mbuf_table_init(void)
1225 {
1226 unsigned int b, c, s;
1227 int m, config_mbuf_jumbo = 0;
1228
1229 MALLOC(omb_stat, struct omb_stat *, OMB_STAT_SIZE(NELEM(mbuf_table)),
1230 M_TEMP, M_WAITOK | M_ZERO);
1231 VERIFY(omb_stat != NULL);
1232
1233 MALLOC(mb_stat, mb_stat_t *, MB_STAT_SIZE(NELEM(mbuf_table)),
1234 M_TEMP, M_WAITOK | M_ZERO);
1235 VERIFY(mb_stat != NULL);
1236
1237 mb_stat->mbs_cnt = NELEM(mbuf_table);
1238 for (m = 0; m < NELEM(mbuf_table); m++)
1239 mbuf_table[m].mtbl_stats = &mb_stat->mbs_class[m];
1240
1241 #if CONFIG_MBUF_JUMBO
1242 config_mbuf_jumbo = 1;
1243 #endif /* CONFIG_MBUF_JUMBO */
1244
1245 if (config_mbuf_jumbo == 1 || PAGE_SIZE == M16KCLBYTES) {
1246 /*
1247 * Set aside 1/3 of the mbuf cluster map for jumbo
1248 * clusters; we do this only on platforms where jumbo
1249 * cluster pool is enabled.
1250 */
1251 njcl = nmbclusters / 3;
1252 njclbytes = M16KCLBYTES;
1253 }
1254
1255 /*
1256 * nclusters holds both the 2KB and 4KB pools, so ensure it's
1257 * a multiple of 4KB clusters.
1258 */
1259 nclusters = P2ROUNDDOWN(nmbclusters - njcl, NCLPG);
1260 if (njcl > 0) {
1261 /*
1262 * Each jumbo cluster takes 8 2KB clusters, so make
1263 * sure that the pool size is evenly divisible by 8;
1264 * njcl is in 2KB unit, hence treated as such.
1265 */
1266 njcl = P2ROUNDDOWN(nmbclusters - nclusters, NCLPJCL);
1267
1268 /* Update nclusters with rounded down value of njcl */
1269 nclusters = P2ROUNDDOWN(nmbclusters - njcl, NCLPG);
1270 }
1271
1272 /*
1273 * njcl is valid only on platforms with 16KB jumbo clusters or
1274 * with 16KB pages, where it is configured to 1/3 of the pool
1275 * size. On these platforms, the remaining is used for 2KB
1276 * and 4KB clusters. On platforms without 16KB jumbo clusters,
1277 * the entire pool is used for both 2KB and 4KB clusters. A 4KB
1278 * cluster can either be splitted into 16 mbufs, or into 2 2KB
1279 * clusters.
1280 *
1281 * +---+---+------------ ... -----------+------- ... -------+
1282 * | c | b | s | njcl |
1283 * +---+---+------------ ... -----------+------- ... -------+
1284 *
1285 * 1/32th of the shared region is reserved for pure 2KB and 4KB
1286 * clusters (1/64th each.)
1287 */
1288 c = P2ROUNDDOWN((nclusters >> 6), NCLPG); /* in 2KB unit */
1289 b = P2ROUNDDOWN((nclusters >> (6 + NCLPBGSHIFT)), NBCLPG); /* in 4KB unit */
1290 s = nclusters - (c + (b << NCLPBGSHIFT)); /* in 2KB unit */
1291
1292 /*
1293 * 1/64th (c) is reserved for 2KB clusters.
1294 */
1295 m_minlimit(MC_CL) = c;
1296 m_maxlimit(MC_CL) = s + c; /* in 2KB unit */
1297 m_maxsize(MC_CL) = m_size(MC_CL) = MCLBYTES;
1298 (void) snprintf(m_cname(MC_CL), MAX_MBUF_CNAME, "cl");
1299
1300 /*
1301 * Another 1/64th (b) of the map is reserved for 4KB clusters.
1302 * It cannot be turned into 2KB clusters or mbufs.
1303 */
1304 m_minlimit(MC_BIGCL) = b;
1305 m_maxlimit(MC_BIGCL) = (s >> NCLPBGSHIFT) + b; /* in 4KB unit */
1306 m_maxsize(MC_BIGCL) = m_size(MC_BIGCL) = MBIGCLBYTES;
1307 (void) snprintf(m_cname(MC_BIGCL), MAX_MBUF_CNAME, "bigcl");
1308
1309 /*
1310 * The remaining 31/32ths (s) are all-purpose (mbufs, 2KB, or 4KB)
1311 */
1312 m_minlimit(MC_MBUF) = 0;
1313 m_maxlimit(MC_MBUF) = (s << NMBPCLSHIFT); /* in mbuf unit */
1314 m_maxsize(MC_MBUF) = m_size(MC_MBUF) = MSIZE;
1315 (void) snprintf(m_cname(MC_MBUF), MAX_MBUF_CNAME, "mbuf");
1316
1317 /*
1318 * Set limits for the composite classes.
1319 */
1320 m_minlimit(MC_MBUF_CL) = 0;
1321 m_maxlimit(MC_MBUF_CL) = m_maxlimit(MC_CL);
1322 m_maxsize(MC_MBUF_CL) = MCLBYTES;
1323 m_size(MC_MBUF_CL) = m_size(MC_MBUF) + m_size(MC_CL);
1324 (void) snprintf(m_cname(MC_MBUF_CL), MAX_MBUF_CNAME, "mbuf_cl");
1325
1326 m_minlimit(MC_MBUF_BIGCL) = 0;
1327 m_maxlimit(MC_MBUF_BIGCL) = m_maxlimit(MC_BIGCL);
1328 m_maxsize(MC_MBUF_BIGCL) = MBIGCLBYTES;
1329 m_size(MC_MBUF_BIGCL) = m_size(MC_MBUF) + m_size(MC_BIGCL);
1330 (void) snprintf(m_cname(MC_MBUF_BIGCL), MAX_MBUF_CNAME, "mbuf_bigcl");
1331
1332 /*
1333 * And for jumbo classes.
1334 */
1335 m_minlimit(MC_16KCL) = 0;
1336 m_maxlimit(MC_16KCL) = (njcl >> NCLPJCLSHIFT); /* in 16KB unit */
1337 m_maxsize(MC_16KCL) = m_size(MC_16KCL) = M16KCLBYTES;
1338 (void) snprintf(m_cname(MC_16KCL), MAX_MBUF_CNAME, "16kcl");
1339
1340 m_minlimit(MC_MBUF_16KCL) = 0;
1341 m_maxlimit(MC_MBUF_16KCL) = m_maxlimit(MC_16KCL);
1342 m_maxsize(MC_MBUF_16KCL) = M16KCLBYTES;
1343 m_size(MC_MBUF_16KCL) = m_size(MC_MBUF) + m_size(MC_16KCL);
1344 (void) snprintf(m_cname(MC_MBUF_16KCL), MAX_MBUF_CNAME, "mbuf_16kcl");
1345
1346 /*
1347 * Initialize the legacy mbstat structure.
1348 */
1349 bzero(&mbstat, sizeof (mbstat));
1350 mbstat.m_msize = m_maxsize(MC_MBUF);
1351 mbstat.m_mclbytes = m_maxsize(MC_CL);
1352 mbstat.m_minclsize = MINCLSIZE;
1353 mbstat.m_mlen = MLEN;
1354 mbstat.m_mhlen = MHLEN;
1355 mbstat.m_bigmclbytes = m_maxsize(MC_BIGCL);
1356 }
1357
1358 #if defined(__LP64__)
1359 typedef struct ncl_tbl {
1360 uint64_t nt_maxmem; /* memory (sane) size */
1361 uint32_t nt_mbpool; /* mbuf pool size */
1362 } ncl_tbl_t;
1363
1364 /* Non-server */
1365 static ncl_tbl_t ncl_table[] = {
1366 { (1ULL << GBSHIFT) /* 1 GB */, (64 << MBSHIFT) /* 64 MB */ },
1367 { (1ULL << (GBSHIFT + 3)) /* 8 GB */, (96 << MBSHIFT) /* 96 MB */ },
1368 { (1ULL << (GBSHIFT + 4)) /* 16 GB */, (128 << MBSHIFT) /* 128 MB */ },
1369 { 0, 0 }
1370 };
1371
1372 /* Server */
1373 static ncl_tbl_t ncl_table_srv[] = {
1374 { (1ULL << GBSHIFT) /* 1 GB */, (96 << MBSHIFT) /* 96 MB */ },
1375 { (1ULL << (GBSHIFT + 2)) /* 4 GB */, (128 << MBSHIFT) /* 128 MB */ },
1376 { (1ULL << (GBSHIFT + 3)) /* 8 GB */, (160 << MBSHIFT) /* 160 MB */ },
1377 { (1ULL << (GBSHIFT + 4)) /* 16 GB */, (192 << MBSHIFT) /* 192 MB */ },
1378 { (1ULL << (GBSHIFT + 5)) /* 32 GB */, (256 << MBSHIFT) /* 256 MB */ },
1379 { (1ULL << (GBSHIFT + 6)) /* 64 GB */, (384 << MBSHIFT) /* 384 MB */ },
1380 { 0, 0 }
1381 };
1382 #endif /* __LP64__ */
1383
1384 __private_extern__ unsigned int
1385 mbuf_default_ncl(int server, uint64_t mem)
1386 {
1387 #if !defined(__LP64__)
1388 #pragma unused(server)
1389 unsigned int n;
1390 /*
1391 * 32-bit kernel (default to 64MB of mbuf pool for >= 1GB RAM).
1392 */
1393 if ((n = ((mem / 16) / MCLBYTES)) > 32768)
1394 n = 32768;
1395 #else
1396 unsigned int n, i;
1397 ncl_tbl_t *tbl = (server ? ncl_table_srv : ncl_table);
1398 /*
1399 * 64-bit kernel (mbuf pool size based on table).
1400 */
1401 n = tbl[0].nt_mbpool;
1402 for (i = 0; tbl[i].nt_mbpool != 0; i++) {
1403 if (mem < tbl[i].nt_maxmem)
1404 break;
1405 n = tbl[i].nt_mbpool;
1406 }
1407 n >>= MCLSHIFT;
1408 #endif /* !__LP64__ */
1409 return (n);
1410 }
1411
1412 __private_extern__ void
1413 mbinit(void)
1414 {
1415 unsigned int m;
1416 unsigned int initmcl = 0;
1417 void *buf;
1418 thread_t thread = THREAD_NULL;
1419
1420 microuptime(&mb_start);
1421
1422 /*
1423 * These MBUF_ values must be equal to their private counterparts.
1424 */
1425 _CASSERT(MBUF_EXT == M_EXT);
1426 _CASSERT(MBUF_PKTHDR == M_PKTHDR);
1427 _CASSERT(MBUF_EOR == M_EOR);
1428 _CASSERT(MBUF_LOOP == M_LOOP);
1429 _CASSERT(MBUF_BCAST == M_BCAST);
1430 _CASSERT(MBUF_MCAST == M_MCAST);
1431 _CASSERT(MBUF_FRAG == M_FRAG);
1432 _CASSERT(MBUF_FIRSTFRAG == M_FIRSTFRAG);
1433 _CASSERT(MBUF_LASTFRAG == M_LASTFRAG);
1434 _CASSERT(MBUF_PROMISC == M_PROMISC);
1435 _CASSERT(MBUF_HASFCS == M_HASFCS);
1436
1437 _CASSERT(MBUF_TYPE_FREE == MT_FREE);
1438 _CASSERT(MBUF_TYPE_DATA == MT_DATA);
1439 _CASSERT(MBUF_TYPE_HEADER == MT_HEADER);
1440 _CASSERT(MBUF_TYPE_SOCKET == MT_SOCKET);
1441 _CASSERT(MBUF_TYPE_PCB == MT_PCB);
1442 _CASSERT(MBUF_TYPE_RTABLE == MT_RTABLE);
1443 _CASSERT(MBUF_TYPE_HTABLE == MT_HTABLE);
1444 _CASSERT(MBUF_TYPE_ATABLE == MT_ATABLE);
1445 _CASSERT(MBUF_TYPE_SONAME == MT_SONAME);
1446 _CASSERT(MBUF_TYPE_SOOPTS == MT_SOOPTS);
1447 _CASSERT(MBUF_TYPE_FTABLE == MT_FTABLE);
1448 _CASSERT(MBUF_TYPE_RIGHTS == MT_RIGHTS);
1449 _CASSERT(MBUF_TYPE_IFADDR == MT_IFADDR);
1450 _CASSERT(MBUF_TYPE_CONTROL == MT_CONTROL);
1451 _CASSERT(MBUF_TYPE_OOBDATA == MT_OOBDATA);
1452
1453 _CASSERT(MBUF_TSO_IPV4 == CSUM_TSO_IPV4);
1454 _CASSERT(MBUF_TSO_IPV6 == CSUM_TSO_IPV6);
1455 _CASSERT(MBUF_CSUM_REQ_SUM16 == CSUM_PARTIAL);
1456 _CASSERT(MBUF_CSUM_TCP_SUM16 == MBUF_CSUM_REQ_SUM16);
1457 _CASSERT(MBUF_CSUM_REQ_IP == CSUM_IP);
1458 _CASSERT(MBUF_CSUM_REQ_TCP == CSUM_TCP);
1459 _CASSERT(MBUF_CSUM_REQ_UDP == CSUM_UDP);
1460 _CASSERT(MBUF_CSUM_REQ_TCPIPV6 == CSUM_TCPIPV6);
1461 _CASSERT(MBUF_CSUM_REQ_UDPIPV6 == CSUM_UDPIPV6);
1462 _CASSERT(MBUF_CSUM_DID_IP == CSUM_IP_CHECKED);
1463 _CASSERT(MBUF_CSUM_IP_GOOD == CSUM_IP_VALID);
1464 _CASSERT(MBUF_CSUM_DID_DATA == CSUM_DATA_VALID);
1465 _CASSERT(MBUF_CSUM_PSEUDO_HDR == CSUM_PSEUDO_HDR);
1466
1467 _CASSERT(MBUF_WAITOK == M_WAIT);
1468 _CASSERT(MBUF_DONTWAIT == M_DONTWAIT);
1469 _CASSERT(MBUF_COPYALL == M_COPYALL);
1470
1471 _CASSERT(MBUF_SC2TC(MBUF_SC_BK_SYS) == MBUF_TC_BK);
1472 _CASSERT(MBUF_SC2TC(MBUF_SC_BK) == MBUF_TC_BK);
1473 _CASSERT(MBUF_SC2TC(MBUF_SC_BE) == MBUF_TC_BE);
1474 _CASSERT(MBUF_SC2TC(MBUF_SC_RD) == MBUF_TC_BE);
1475 _CASSERT(MBUF_SC2TC(MBUF_SC_OAM) == MBUF_TC_BE);
1476 _CASSERT(MBUF_SC2TC(MBUF_SC_AV) == MBUF_TC_VI);
1477 _CASSERT(MBUF_SC2TC(MBUF_SC_RV) == MBUF_TC_VI);
1478 _CASSERT(MBUF_SC2TC(MBUF_SC_VI) == MBUF_TC_VI);
1479 _CASSERT(MBUF_SC2TC(MBUF_SC_VO) == MBUF_TC_VO);
1480 _CASSERT(MBUF_SC2TC(MBUF_SC_CTL) == MBUF_TC_VO);
1481
1482 _CASSERT(MBUF_TC2SCVAL(MBUF_TC_BK) == SCVAL_BK);
1483 _CASSERT(MBUF_TC2SCVAL(MBUF_TC_BE) == SCVAL_BE);
1484 _CASSERT(MBUF_TC2SCVAL(MBUF_TC_VI) == SCVAL_VI);
1485 _CASSERT(MBUF_TC2SCVAL(MBUF_TC_VO) == SCVAL_VO);
1486
1487 /* Module specific scratch space (32-bit alignment requirement) */
1488 _CASSERT(!(offsetof(struct mbuf, m_pkthdr.pkt_mpriv) %
1489 sizeof (uint32_t)));
1490
1491 /* Initialize random red zone cookie value */
1492 _CASSERT(sizeof (mb_redzone_cookie) ==
1493 sizeof (((struct pkthdr *)0)->redzone));
1494 read_random(&mb_redzone_cookie, sizeof (mb_redzone_cookie));
1495
1496 /* Make sure we don't save more than we should */
1497 _CASSERT(MCA_SAVED_MBUF_SIZE <= sizeof (struct mbuf));
1498
1499 if (nmbclusters == 0)
1500 nmbclusters = NMBCLUSTERS;
1501
1502 /* This should be a sane (at least even) value by now */
1503 VERIFY(nmbclusters != 0 && !(nmbclusters & 0x1));
1504
1505 /* Setup the mbuf table */
1506 mbuf_table_init();
1507
1508 /* Global lock for common layer */
1509 mbuf_mlock_grp_attr = lck_grp_attr_alloc_init();
1510 mbuf_mlock_grp = lck_grp_alloc_init("mbuf", mbuf_mlock_grp_attr);
1511 mbuf_mlock_attr = lck_attr_alloc_init();
1512 lck_mtx_init(mbuf_mlock, mbuf_mlock_grp, mbuf_mlock_attr);
1513
1514 /*
1515 * Allocate cluster slabs table:
1516 *
1517 * maxslabgrp = (N * 2048) / (1024 * 1024)
1518 *
1519 * Where N is nmbclusters rounded up to the nearest 512. This yields
1520 * mcl_slab_g_t units, each one representing a MB of memory.
1521 */
1522 maxslabgrp =
1523 (P2ROUNDUP(nmbclusters, (MBSIZE >> MCLSHIFT)) << MCLSHIFT) >> MBSHIFT;
1524 MALLOC(slabstbl, mcl_slabg_t **, maxslabgrp * sizeof (mcl_slabg_t *),
1525 M_TEMP, M_WAITOK | M_ZERO);
1526 VERIFY(slabstbl != NULL);
1527
1528 /*
1529 * Allocate audit structures, if needed:
1530 *
1531 * maxclaudit = (maxslabgrp * 1024 * 1024) / PAGE_SIZE
1532 *
1533 * This yields mcl_audit_t units, each one representing a page.
1534 */
1535 PE_parse_boot_argn("mbuf_debug", &mbuf_debug, sizeof (mbuf_debug));
1536 mbuf_debug |= mcache_getflags();
1537 if (mbuf_debug & MCF_DEBUG) {
1538 int l;
1539 mcl_audit_t *mclad;
1540 maxclaudit = ((maxslabgrp << MBSHIFT) >> PAGE_SHIFT);
1541 MALLOC(mclaudit, mcl_audit_t *, maxclaudit * sizeof (*mclaudit),
1542 M_TEMP, M_WAITOK | M_ZERO);
1543 VERIFY(mclaudit != NULL);
1544 for (l = 0, mclad = mclaudit; l < maxclaudit; l++) {
1545 MALLOC(mclad[l].cl_audit, mcache_audit_t **,
1546 NMBPG * sizeof(mcache_audit_t *),
1547 M_TEMP, M_WAITOK | M_ZERO);
1548 VERIFY(mclad[l].cl_audit != NULL);
1549 }
1550
1551 mcl_audit_con_cache = mcache_create("mcl_audit_contents",
1552 AUDIT_CONTENTS_SIZE, sizeof (u_int64_t), 0, MCR_SLEEP);
1553 VERIFY(mcl_audit_con_cache != NULL);
1554 }
1555 mclverify = (mbuf_debug & MCF_VERIFY);
1556 mcltrace = (mbuf_debug & MCF_TRACE);
1557 mclfindleak = !(mbuf_debug & MCF_NOLEAKLOG);
1558 mclexpleak = mclfindleak && (mbuf_debug & MCF_EXPLEAKLOG);
1559
1560 /* Enable mbuf leak logging, with a lock to protect the tables */
1561
1562 mleak_lock_grp_attr = lck_grp_attr_alloc_init();
1563 mleak_lock_grp = lck_grp_alloc_init("mleak_lock", mleak_lock_grp_attr);
1564 mleak_lock_attr = lck_attr_alloc_init();
1565 lck_mtx_init(mleak_lock, mleak_lock_grp, mleak_lock_attr);
1566
1567 mleak_activate();
1568
1569 /* Calculate the number of pages assigned to the cluster pool */
1570 mcl_pages = (nmbclusters << MCLSHIFT) / PAGE_SIZE;
1571 MALLOC(mcl_paddr, ppnum_t *, mcl_pages * sizeof (ppnum_t),
1572 M_TEMP, M_WAITOK);
1573 VERIFY(mcl_paddr != NULL);
1574
1575 /* Register with the I/O Bus mapper */
1576 mcl_paddr_base = IOMapperIOVMAlloc(mcl_pages);
1577 bzero((char *)mcl_paddr, mcl_pages * sizeof (ppnum_t));
1578
1579 embutl = (mbutl + (nmbclusters * MCLBYTES));
1580 VERIFY(((embutl - mbutl) % MBIGCLBYTES) == 0);
1581
1582 /* Prime up the freelist */
1583 PE_parse_boot_argn("initmcl", &initmcl, sizeof (initmcl));
1584 if (initmcl != 0) {
1585 initmcl >>= NCLPBGSHIFT; /* become a 4K unit */
1586 if (initmcl > m_maxlimit(MC_BIGCL))
1587 initmcl = m_maxlimit(MC_BIGCL);
1588 }
1589 if (initmcl < m_minlimit(MC_BIGCL))
1590 initmcl = m_minlimit(MC_BIGCL);
1591
1592 lck_mtx_lock(mbuf_mlock);
1593
1594 /*
1595 * For classes with non-zero minimum limits, populate their freelists
1596 * so that m_total(class) is at least m_minlimit(class).
1597 */
1598 VERIFY(m_total(MC_BIGCL) == 0 && m_minlimit(MC_BIGCL) != 0);
1599 freelist_populate(m_class(MC_BIGCL), initmcl, M_WAIT);
1600 VERIFY(m_total(MC_BIGCL) >= m_minlimit(MC_BIGCL));
1601 freelist_init(m_class(MC_CL));
1602
1603 for (m = 0; m < NELEM(mbuf_table); m++) {
1604 /* Make sure we didn't miss any */
1605 VERIFY(m_minlimit(m_class(m)) == 0 ||
1606 m_total(m_class(m)) >= m_minlimit(m_class(m)));
1607
1608 /* populate the initial sizes and report from there on */
1609 m_peak(m_class(m)) = m_total(m_class(m));
1610 }
1611 mb_peak_newreport = FALSE;
1612
1613 lck_mtx_unlock(mbuf_mlock);
1614
1615 (void) kernel_thread_start((thread_continue_t)mbuf_worker_thread_init,
1616 NULL, &thread);
1617 thread_deallocate(thread);
1618
1619 ref_cache = mcache_create("mext_ref", sizeof (struct ext_ref),
1620 0, 0, MCR_SLEEP);
1621
1622 /* Create the cache for each class */
1623 for (m = 0; m < NELEM(mbuf_table); m++) {
1624 void *allocfunc, *freefunc, *auditfunc, *logfunc;
1625 u_int32_t flags;
1626
1627 flags = mbuf_debug;
1628 if (m_class(m) == MC_MBUF_CL || m_class(m) == MC_MBUF_BIGCL ||
1629 m_class(m) == MC_MBUF_16KCL) {
1630 allocfunc = mbuf_cslab_alloc;
1631 freefunc = mbuf_cslab_free;
1632 auditfunc = mbuf_cslab_audit;
1633 logfunc = mleak_logger;
1634 } else {
1635 allocfunc = mbuf_slab_alloc;
1636 freefunc = mbuf_slab_free;
1637 auditfunc = mbuf_slab_audit;
1638 logfunc = mleak_logger;
1639 }
1640
1641 /*
1642 * Disable per-CPU caches for jumbo classes if there
1643 * is no jumbo cluster pool available in the system.
1644 * The cache itself is still created (but will never
1645 * be populated) since it simplifies the code.
1646 */
1647 if ((m_class(m) == MC_MBUF_16KCL || m_class(m) == MC_16KCL) &&
1648 njcl == 0)
1649 flags |= MCF_NOCPUCACHE;
1650
1651 if (!mclfindleak)
1652 flags |= MCF_NOLEAKLOG;
1653
1654 m_cache(m) = mcache_create_ext(m_cname(m), m_maxsize(m),
1655 allocfunc, freefunc, auditfunc, logfunc, mbuf_slab_notify,
1656 (void *)(uintptr_t)m, flags, MCR_SLEEP);
1657 }
1658
1659 /*
1660 * Allocate structure for per-CPU statistics that's aligned
1661 * on the CPU cache boundary; this code assumes that we never
1662 * uninitialize this framework, since the original address
1663 * before alignment is not saved.
1664 */
1665 ncpu = ml_get_max_cpus();
1666 MALLOC(buf, void *, MBUF_MTYPES_SIZE(ncpu) + CPU_CACHE_LINE_SIZE,
1667 M_TEMP, M_WAITOK);
1668 VERIFY(buf != NULL);
1669
1670 mbuf_mtypes = (mbuf_mtypes_t *)P2ROUNDUP((intptr_t)buf,
1671 CPU_CACHE_LINE_SIZE);
1672 bzero(mbuf_mtypes, MBUF_MTYPES_SIZE(ncpu));
1673
1674 /*
1675 * Set the max limit on sb_max to be 1/16 th of the size of
1676 * memory allocated for mbuf clusters.
1677 */
1678 high_sb_max = (nmbclusters << (MCLSHIFT - 4));
1679 if (high_sb_max < sb_max) {
1680 /* sb_max is too large for this configuration, scale it down */
1681 if (high_sb_max > (1 << MBSHIFT)) {
1682 /* We have atleast 16 M of mbuf pool */
1683 sb_max = high_sb_max;
1684 } else if ((nmbclusters << MCLSHIFT) > (1 << MBSHIFT)) {
1685 /*
1686 * If we have more than 1M of mbufpool, cap the size of
1687 * max sock buf at 1M
1688 */
1689 sb_max = high_sb_max = (1 << MBSHIFT);
1690 } else {
1691 sb_max = high_sb_max;
1692 }
1693 }
1694
1695 /* allocate space for mbuf_dump_buf */
1696 MALLOC(mbuf_dump_buf, char *, MBUF_DUMP_BUF_SIZE, M_TEMP, M_WAITOK);
1697 VERIFY(mbuf_dump_buf != NULL);
1698
1699 if (mbuf_debug & MCF_DEBUG) {
1700 printf("%s: MLEN %d, MHLEN %d\n", __func__,
1701 (int)_MLEN, (int)_MHLEN);
1702 }
1703
1704 printf("%s: done [%d MB total pool size, (%d/%d) split]\n", __func__,
1705 (nmbclusters << MCLSHIFT) >> MBSHIFT,
1706 (nclusters << MCLSHIFT) >> MBSHIFT,
1707 (njcl << MCLSHIFT) >> MBSHIFT);
1708
1709 /* initialize lock form tx completion callback table */
1710 mbuf_tx_compl_tbl_lck_grp_attr = lck_grp_attr_alloc_init();
1711 if (mbuf_tx_compl_tbl_lck_grp_attr == NULL) {
1712 panic("%s: lck_grp_attr_alloc_init failed", __func__);
1713 /* NOTREACHED */
1714 }
1715 mbuf_tx_compl_tbl_lck_grp = lck_grp_alloc_init("mbuf_tx_compl_tbl",
1716 mbuf_tx_compl_tbl_lck_grp_attr);
1717 if (mbuf_tx_compl_tbl_lck_grp == NULL) {
1718 panic("%s: lck_grp_alloc_init failed", __func__);
1719 /* NOTREACHED */
1720 }
1721 mbuf_tx_compl_tbl_lck_attr = lck_attr_alloc_init();
1722 if (mbuf_tx_compl_tbl_lck_attr == NULL) {
1723 panic("%s: lck_attr_alloc_init failed", __func__);
1724 /* NOTREACHED */
1725 }
1726 lck_rw_init(mbuf_tx_compl_tbl_lock, mbuf_tx_compl_tbl_lck_grp,
1727 mbuf_tx_compl_tbl_lck_attr);
1728
1729 }
1730
1731 /*
1732 * Obtain a slab of object(s) from the class's freelist.
1733 */
1734 static mcache_obj_t *
1735 slab_alloc(mbuf_class_t class, int wait)
1736 {
1737 mcl_slab_t *sp;
1738 mcache_obj_t *buf;
1739
1740 lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
1741
1742 /* This should always be NULL for us */
1743 VERIFY(m_cobjlist(class) == NULL);
1744
1745 /*
1746 * Treat composite objects as having longer lifespan by using
1747 * a slab from the reverse direction, in hoping that this could
1748 * reduce the probability of fragmentation for slabs that hold
1749 * more than one buffer chunks (e.g. mbuf slabs). For other
1750 * slabs, this probably doesn't make much of a difference.
1751 */
1752 if ((class == MC_MBUF || class == MC_CL || class == MC_BIGCL)
1753 && (wait & MCR_COMP))
1754 sp = (mcl_slab_t *)TAILQ_LAST(&m_slablist(class), mcl_slhead);
1755 else
1756 sp = (mcl_slab_t *)TAILQ_FIRST(&m_slablist(class));
1757
1758 if (sp == NULL) {
1759 VERIFY(m_infree(class) == 0 && m_slab_cnt(class) == 0);
1760 /* The slab list for this class is empty */
1761 return (NULL);
1762 }
1763
1764 VERIFY(m_infree(class) > 0);
1765 VERIFY(!slab_is_detached(sp));
1766 VERIFY(sp->sl_class == class &&
1767 (sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED);
1768 buf = sp->sl_head;
1769 VERIFY(slab_inrange(sp, buf) && sp == slab_get(buf));
1770 sp->sl_head = buf->obj_next;
1771 /* Increment slab reference */
1772 sp->sl_refcnt++;
1773
1774 VERIFY(sp->sl_head != NULL || sp->sl_refcnt == sp->sl_chunks);
1775
1776 if (sp->sl_head != NULL && !slab_inrange(sp, sp->sl_head)) {
1777 slab_nextptr_panic(sp, sp->sl_head);
1778 /* In case sl_head is in the map but not in the slab */
1779 VERIFY(slab_inrange(sp, sp->sl_head));
1780 /* NOTREACHED */
1781 }
1782
1783 if (mclaudit != NULL) {
1784 mcache_audit_t *mca = mcl_audit_buf2mca(class, buf);
1785 mca->mca_uflags = 0;
1786 /* Save contents on mbuf objects only */
1787 if (class == MC_MBUF)
1788 mca->mca_uflags |= MB_SCVALID;
1789 }
1790
1791 if (class == MC_CL) {
1792 mbstat.m_clfree = (--m_infree(MC_CL)) + m_infree(MC_MBUF_CL);
1793 /*
1794 * A 2K cluster slab can have at most NCLPG references.
1795 */
1796 VERIFY(sp->sl_refcnt >= 1 && sp->sl_refcnt <= NCLPG &&
1797 sp->sl_chunks == NCLPG && sp->sl_len == PAGE_SIZE);
1798 VERIFY(sp->sl_refcnt < NCLPG || sp->sl_head == NULL);
1799 } else if (class == MC_BIGCL) {
1800 mbstat.m_bigclfree = (--m_infree(MC_BIGCL)) +
1801 m_infree(MC_MBUF_BIGCL);
1802 /*
1803 * A 4K cluster slab can have NBCLPG references.
1804 */
1805 VERIFY(sp->sl_refcnt >= 1 && sp->sl_chunks == NBCLPG &&
1806 sp->sl_len == PAGE_SIZE &&
1807 (sp->sl_refcnt < NBCLPG || sp->sl_head == NULL));
1808 } else if (class == MC_16KCL) {
1809 mcl_slab_t *nsp;
1810 int k;
1811
1812 --m_infree(MC_16KCL);
1813 VERIFY(sp->sl_refcnt == 1 && sp->sl_chunks == 1 &&
1814 sp->sl_len == m_maxsize(class) && sp->sl_head == NULL);
1815 /*
1816 * Increment 2nd-Nth slab reference, where N is NSLABSP16KB.
1817 * A 16KB big cluster takes NSLABSP16KB slabs, each having at
1818 * most 1 reference.
1819 */
1820 for (nsp = sp, k = 1; k < NSLABSP16KB; k++) {
1821 nsp = nsp->sl_next;
1822 /* Next slab must already be present */
1823 VERIFY(nsp != NULL);
1824 nsp->sl_refcnt++;
1825 VERIFY(!slab_is_detached(nsp));
1826 VERIFY(nsp->sl_class == MC_16KCL &&
1827 nsp->sl_flags == (SLF_MAPPED | SLF_PARTIAL) &&
1828 nsp->sl_refcnt == 1 && nsp->sl_chunks == 0 &&
1829 nsp->sl_len == 0 && nsp->sl_base == sp->sl_base &&
1830 nsp->sl_head == NULL);
1831 }
1832 } else {
1833 VERIFY(class == MC_MBUF);
1834 --m_infree(MC_MBUF);
1835 /*
1836 * If auditing is turned on, this check is
1837 * deferred until later in mbuf_slab_audit().
1838 */
1839 if (mclaudit == NULL)
1840 _MCHECK((struct mbuf *)buf);
1841 /*
1842 * Since we have incremented the reference count above,
1843 * an mbuf slab (formerly a 4KB cluster slab that was cut
1844 * up into mbufs) must have a reference count between 1
1845 * and NMBPG at this point.
1846 */
1847 VERIFY(sp->sl_refcnt >= 1 && sp->sl_refcnt <= NMBPG &&
1848 sp->sl_chunks == NMBPG &&
1849 sp->sl_len == PAGE_SIZE);
1850 VERIFY(sp->sl_refcnt < NMBPG || sp->sl_head == NULL);
1851 }
1852
1853 /* If empty, remove this slab from the class's freelist */
1854 if (sp->sl_head == NULL) {
1855 VERIFY(class != MC_MBUF || sp->sl_refcnt == NMBPG);
1856 VERIFY(class != MC_CL || sp->sl_refcnt == NCLPG);
1857 VERIFY(class != MC_BIGCL || sp->sl_refcnt == NBCLPG);
1858 slab_remove(sp, class);
1859 }
1860
1861 return (buf);
1862 }
1863
1864 /*
1865 * Place a slab of object(s) back into a class's slab list.
1866 */
1867 static void
1868 slab_free(mbuf_class_t class, mcache_obj_t *buf)
1869 {
1870 mcl_slab_t *sp;
1871 boolean_t reinit_supercl = false;
1872 mbuf_class_t super_class;
1873
1874 lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
1875
1876 VERIFY(class != MC_16KCL || njcl > 0);
1877 VERIFY(buf->obj_next == NULL);
1878
1879 sp = slab_get(buf);
1880 VERIFY(sp->sl_class == class && slab_inrange(sp, buf) &&
1881 (sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED);
1882
1883 /* Decrement slab reference */
1884 sp->sl_refcnt--;
1885
1886 if (class == MC_CL) {
1887 VERIFY(IS_P2ALIGNED(buf, MCLBYTES));
1888 /*
1889 * A slab that has been splitted for 2KB clusters can have
1890 * at most 1 outstanding reference at this point.
1891 */
1892 VERIFY(sp->sl_refcnt >= 0 && sp->sl_refcnt <= (NCLPG - 1) &&
1893 sp->sl_chunks == NCLPG && sp->sl_len == PAGE_SIZE);
1894 VERIFY(sp->sl_refcnt < (NCLPG - 1) ||
1895 (slab_is_detached(sp) && sp->sl_head == NULL));
1896 } else if (class == MC_BIGCL) {
1897 VERIFY(IS_P2ALIGNED(buf, MBIGCLBYTES));
1898
1899 /* A 4KB cluster slab can have NBCLPG references at most */
1900 VERIFY(sp->sl_refcnt >= 0 && sp->sl_chunks == NBCLPG);
1901 VERIFY(sp->sl_refcnt < (NBCLPG - 1) ||
1902 (slab_is_detached(sp) && sp->sl_head == NULL));
1903 } else if (class == MC_16KCL) {
1904 mcl_slab_t *nsp;
1905 int k;
1906 /*
1907 * A 16KB cluster takes NSLABSP16KB slabs, all must
1908 * now have 0 reference.
1909 */
1910 VERIFY(IS_P2ALIGNED(buf, PAGE_SIZE));
1911 VERIFY(sp->sl_refcnt == 0 && sp->sl_chunks == 1 &&
1912 sp->sl_len == m_maxsize(class) && sp->sl_head == NULL);
1913 VERIFY(slab_is_detached(sp));
1914 for (nsp = sp, k = 1; k < NSLABSP16KB; k++) {
1915 nsp = nsp->sl_next;
1916 /* Next slab must already be present */
1917 VERIFY(nsp != NULL);
1918 nsp->sl_refcnt--;
1919 VERIFY(slab_is_detached(nsp));
1920 VERIFY(nsp->sl_class == MC_16KCL &&
1921 (nsp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) &&
1922 nsp->sl_refcnt == 0 && nsp->sl_chunks == 0 &&
1923 nsp->sl_len == 0 && nsp->sl_base == sp->sl_base &&
1924 nsp->sl_head == NULL);
1925 }
1926 } else {
1927 /*
1928 * A slab that has been splitted for mbufs has at most
1929 * NMBPG reference counts. Since we have decremented
1930 * one reference above, it must now be between 0 and
1931 * NMBPG-1.
1932 */
1933 VERIFY(class == MC_MBUF);
1934 VERIFY(sp->sl_refcnt >= 0 &&
1935 sp->sl_refcnt <= (NMBPG - 1) &&
1936 sp->sl_chunks == NMBPG &&
1937 sp->sl_len == PAGE_SIZE);
1938 VERIFY(sp->sl_refcnt < (NMBPG - 1) ||
1939 (slab_is_detached(sp) && sp->sl_head == NULL));
1940 }
1941
1942 /*
1943 * When auditing is enabled, ensure that the buffer still
1944 * contains the free pattern. Otherwise it got corrupted
1945 * while at the CPU cache layer.
1946 */
1947 if (mclaudit != NULL) {
1948 mcache_audit_t *mca = mcl_audit_buf2mca(class, buf);
1949 if (mclverify) {
1950 mcache_audit_free_verify(mca, buf, 0,
1951 m_maxsize(class));
1952 }
1953 mca->mca_uflags &= ~MB_SCVALID;
1954 }
1955
1956 if (class == MC_CL) {
1957 mbstat.m_clfree = (++m_infree(MC_CL)) + m_infree(MC_MBUF_CL);
1958 buf->obj_next = sp->sl_head;
1959 } else if (class == MC_BIGCL) {
1960 mbstat.m_bigclfree = (++m_infree(MC_BIGCL)) +
1961 m_infree(MC_MBUF_BIGCL);
1962 buf->obj_next = sp->sl_head;
1963 } else if (class == MC_16KCL) {
1964 ++m_infree(MC_16KCL);
1965 } else {
1966 ++m_infree(MC_MBUF);
1967 buf->obj_next = sp->sl_head;
1968 }
1969 sp->sl_head = buf;
1970
1971 /*
1972 * If a slab has been split to either one which holds 2KB clusters,
1973 * or one which holds mbufs, turn it back to one which holds a
1974 * 4 or 16 KB cluster depending on the page size.
1975 */
1976 if (m_maxsize(MC_BIGCL) == PAGE_SIZE) {
1977 super_class = MC_BIGCL;
1978 } else {
1979 VERIFY(PAGE_SIZE == m_maxsize(MC_16KCL));
1980 super_class = MC_16KCL;
1981 }
1982 if (class == MC_MBUF && sp->sl_refcnt == 0 &&
1983 m_total(class) >= (m_minlimit(class) + NMBPG) &&
1984 m_total(super_class) < m_maxlimit(super_class)) {
1985 int i = NMBPG;
1986
1987 m_total(MC_MBUF) -= NMBPG;
1988 mbstat.m_mbufs = m_total(MC_MBUF);
1989 m_infree(MC_MBUF) -= NMBPG;
1990 mtype_stat_add(MT_FREE, -((unsigned)NMBPG));
1991
1992 while (i--) {
1993 struct mbuf *m = sp->sl_head;
1994 VERIFY(m != NULL);
1995 sp->sl_head = m->m_next;
1996 m->m_next = NULL;
1997 }
1998 reinit_supercl = true;
1999 } else if (class == MC_CL && sp->sl_refcnt == 0 &&
2000 m_total(class) >= (m_minlimit(class) + NCLPG) &&
2001 m_total(super_class) < m_maxlimit(super_class)) {
2002 int i = NCLPG;
2003
2004 m_total(MC_CL) -= NCLPG;
2005 mbstat.m_clusters = m_total(MC_CL);
2006 m_infree(MC_CL) -= NCLPG;
2007
2008 while (i--) {
2009 union mcluster *c = sp->sl_head;
2010 VERIFY(c != NULL);
2011 sp->sl_head = c->mcl_next;
2012 c->mcl_next = NULL;
2013 }
2014 reinit_supercl = true;
2015 } else if (class == MC_BIGCL && super_class != MC_BIGCL &&
2016 sp->sl_refcnt == 0 &&
2017 m_total(class) >= (m_minlimit(class) + NBCLPG) &&
2018 m_total(super_class) < m_maxlimit(super_class)) {
2019 int i = NBCLPG;
2020
2021 VERIFY(super_class == MC_16KCL);
2022 m_total(MC_BIGCL) -= NBCLPG;
2023 mbstat.m_bigclusters = m_total(MC_BIGCL);
2024 m_infree(MC_BIGCL) -= NBCLPG;
2025
2026 while (i--) {
2027 union mbigcluster *bc = sp->sl_head;
2028 VERIFY(bc != NULL);
2029 sp->sl_head = bc->mbc_next;
2030 bc->mbc_next = NULL;
2031 }
2032 reinit_supercl = true;
2033 }
2034
2035 if (reinit_supercl) {
2036 VERIFY(sp->sl_head == NULL);
2037 VERIFY(m_total(class) >= m_minlimit(class));
2038 slab_remove(sp, class);
2039
2040 /* Reinitialize it as a cluster for the super class */
2041 m_total(super_class)++;
2042 m_infree(super_class)++;
2043 VERIFY(sp->sl_flags == (SLF_MAPPED | SLF_DETACHED) &&
2044 sp->sl_len == PAGE_SIZE && sp->sl_refcnt == 0);
2045
2046 slab_init(sp, super_class, SLF_MAPPED, sp->sl_base,
2047 sp->sl_base, PAGE_SIZE, 0, 1);
2048 if (mclverify)
2049 mcache_set_pattern(MCACHE_FREE_PATTERN,
2050 (caddr_t)sp->sl_base, sp->sl_len);
2051 ((mcache_obj_t *)(sp->sl_base))->obj_next = NULL;
2052
2053 if (super_class == MC_BIGCL) {
2054 mbstat.m_bigclusters = m_total(MC_BIGCL);
2055 mbstat.m_bigclfree = m_infree(MC_BIGCL) +
2056 m_infree(MC_MBUF_BIGCL);
2057 }
2058
2059 VERIFY(slab_is_detached(sp));
2060 VERIFY(m_total(super_class) <= m_maxlimit(super_class));
2061
2062 /* And finally switch class */
2063 class = super_class;
2064 }
2065
2066 /* Reinsert the slab to the class's slab list */
2067 if (slab_is_detached(sp))
2068 slab_insert(sp, class);
2069 }
2070
2071 /*
2072 * Common allocator for rudimentary objects called by the CPU cache layer
2073 * during an allocation request whenever there is no available element in the
2074 * bucket layer. It returns one or more elements from the appropriate global
2075 * freelist. If the freelist is empty, it will attempt to populate it and
2076 * retry the allocation.
2077 */
2078 static unsigned int
2079 mbuf_slab_alloc(void *arg, mcache_obj_t ***plist, unsigned int num, int wait)
2080 {
2081 mbuf_class_t class = (mbuf_class_t)arg;
2082 unsigned int need = num;
2083 mcache_obj_t **list = *plist;
2084
2085 ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class));
2086 ASSERT(need > 0);
2087
2088 lck_mtx_lock(mbuf_mlock);
2089
2090 for (;;) {
2091 if ((*list = slab_alloc(class, wait)) != NULL) {
2092 (*list)->obj_next = NULL;
2093 list = *plist = &(*list)->obj_next;
2094
2095 if (--need == 0) {
2096 /*
2097 * If the number of elements in freelist has
2098 * dropped below low watermark, asynchronously
2099 * populate the freelist now rather than doing
2100 * it later when we run out of elements.
2101 */
2102 if (!mbuf_cached_above(class, wait) &&
2103 m_infree(class) < (m_total(class) >> 5)) {
2104 (void) freelist_populate(class, 1,
2105 M_DONTWAIT);
2106 }
2107 break;
2108 }
2109 } else {
2110 VERIFY(m_infree(class) == 0 || class == MC_CL);
2111
2112 (void) freelist_populate(class, 1,
2113 (wait & MCR_NOSLEEP) ? M_DONTWAIT : M_WAIT);
2114
2115 if (m_infree(class) > 0)
2116 continue;
2117
2118 /* Check if there's anything at the cache layer */
2119 if (mbuf_cached_above(class, wait))
2120 break;
2121
2122 /* watchdog checkpoint */
2123 mbuf_watchdog();
2124
2125 /* We have nothing and cannot block; give up */
2126 if (wait & MCR_NOSLEEP) {
2127 if (!(wait & MCR_TRYHARD)) {
2128 m_fail_cnt(class)++;
2129 mbstat.m_drops++;
2130 break;
2131 }
2132 }
2133
2134 /*
2135 * If the freelist is still empty and the caller is
2136 * willing to be blocked, sleep on the wait channel
2137 * until an element is available. Otherwise, if
2138 * MCR_TRYHARD is set, do our best to satisfy the
2139 * request without having to go to sleep.
2140 */
2141 if (mbuf_worker_ready &&
2142 mbuf_sleep(class, need, wait))
2143 break;
2144
2145 lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
2146 }
2147 }
2148
2149 m_alloc_cnt(class) += num - need;
2150 lck_mtx_unlock(mbuf_mlock);
2151
2152 return (num - need);
2153 }
2154
2155 /*
2156 * Common de-allocator for rudimentary objects called by the CPU cache
2157 * layer when one or more elements need to be returned to the appropriate
2158 * global freelist.
2159 */
2160 static void
2161 mbuf_slab_free(void *arg, mcache_obj_t *list, __unused int purged)
2162 {
2163 mbuf_class_t class = (mbuf_class_t)arg;
2164 mcache_obj_t *nlist;
2165 unsigned int num = 0;
2166 int w;
2167
2168 ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class));
2169
2170 lck_mtx_lock(mbuf_mlock);
2171
2172 for (;;) {
2173 nlist = list->obj_next;
2174 list->obj_next = NULL;
2175 slab_free(class, list);
2176 ++num;
2177 if ((list = nlist) == NULL)
2178 break;
2179 }
2180 m_free_cnt(class) += num;
2181
2182 if ((w = mb_waiters) > 0)
2183 mb_waiters = 0;
2184
2185 lck_mtx_unlock(mbuf_mlock);
2186
2187 if (w != 0)
2188 wakeup(mb_waitchan);
2189 }
2190
2191 /*
2192 * Common auditor for rudimentary objects called by the CPU cache layer
2193 * during an allocation or free request. For the former, this is called
2194 * after the objects are obtained from either the bucket or slab layer
2195 * and before they are returned to the caller. For the latter, this is
2196 * called immediately during free and before placing the objects into
2197 * the bucket or slab layer.
2198 */
2199 static void
2200 mbuf_slab_audit(void *arg, mcache_obj_t *list, boolean_t alloc)
2201 {
2202 mbuf_class_t class = (mbuf_class_t)arg;
2203 mcache_audit_t *mca;
2204
2205 ASSERT(MBUF_CLASS_VALID(class) && !MBUF_CLASS_COMPOSITE(class));
2206
2207 while (list != NULL) {
2208 lck_mtx_lock(mbuf_mlock);
2209 mca = mcl_audit_buf2mca(class, list);
2210
2211 /* Do the sanity checks */
2212 if (class == MC_MBUF) {
2213 mcl_audit_mbuf(mca, list, FALSE, alloc);
2214 ASSERT(mca->mca_uflags & MB_SCVALID);
2215 } else {
2216 mcl_audit_cluster(mca, list, m_maxsize(class),
2217 alloc, TRUE);
2218 ASSERT(!(mca->mca_uflags & MB_SCVALID));
2219 }
2220 /* Record this transaction */
2221 if (mcltrace)
2222 mcache_buffer_log(mca, list, m_cache(class), &mb_start);
2223
2224 if (alloc)
2225 mca->mca_uflags |= MB_INUSE;
2226 else
2227 mca->mca_uflags &= ~MB_INUSE;
2228 /* Unpair the object (unconditionally) */
2229 mca->mca_uptr = NULL;
2230 lck_mtx_unlock(mbuf_mlock);
2231
2232 list = list->obj_next;
2233 }
2234 }
2235
2236 /*
2237 * Common notify routine for all caches. It is called by mcache when
2238 * one or more objects get freed. We use this indication to trigger
2239 * the wakeup of any sleeping threads so that they can retry their
2240 * allocation requests.
2241 */
2242 static void
2243 mbuf_slab_notify(void *arg, u_int32_t reason)
2244 {
2245 mbuf_class_t class = (mbuf_class_t)arg;
2246 int w;
2247
2248 ASSERT(MBUF_CLASS_VALID(class));
2249
2250 if (reason != MCN_RETRYALLOC)
2251 return;
2252
2253 lck_mtx_lock(mbuf_mlock);
2254 if ((w = mb_waiters) > 0) {
2255 m_notified(class)++;
2256 mb_waiters = 0;
2257 }
2258 lck_mtx_unlock(mbuf_mlock);
2259
2260 if (w != 0)
2261 wakeup(mb_waitchan);
2262 }
2263
2264 /*
2265 * Obtain object(s) from the composite class's freelist.
2266 */
2267 static unsigned int
2268 cslab_alloc(mbuf_class_t class, mcache_obj_t ***plist, unsigned int num)
2269 {
2270 unsigned int need = num;
2271 mcl_slab_t *sp, *clsp, *nsp;
2272 struct mbuf *m;
2273 mcache_obj_t **list = *plist;
2274 void *cl;
2275
2276 VERIFY(need > 0);
2277 VERIFY(class != MC_MBUF_16KCL || njcl > 0);
2278 lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
2279
2280 /* Get what we can from the freelist */
2281 while ((*list = m_cobjlist(class)) != NULL) {
2282 MRANGE(*list);
2283
2284 m = (struct mbuf *)*list;
2285 sp = slab_get(m);
2286 cl = m->m_ext.ext_buf;
2287 clsp = slab_get(cl);
2288 VERIFY(m->m_flags == M_EXT && cl != NULL);
2289 VERIFY(MEXT_RFA(m) != NULL && MBUF_IS_COMPOSITE(m));
2290
2291 if (class == MC_MBUF_CL) {
2292 VERIFY(clsp->sl_refcnt >= 1 &&
2293 clsp->sl_refcnt <= NCLPG);
2294 } else {
2295 VERIFY(clsp->sl_refcnt >= 1 &&
2296 clsp->sl_refcnt <= NBCLPG);
2297 }
2298
2299 if (class == MC_MBUF_16KCL) {
2300 int k;
2301 for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) {
2302 nsp = nsp->sl_next;
2303 /* Next slab must already be present */
2304 VERIFY(nsp != NULL);
2305 VERIFY(nsp->sl_refcnt == 1);
2306 }
2307 }
2308
2309 if ((m_cobjlist(class) = (*list)->obj_next) != NULL &&
2310 !MBUF_IN_MAP(m_cobjlist(class))) {
2311 slab_nextptr_panic(sp, m_cobjlist(class));
2312 /* NOTREACHED */
2313 }
2314 (*list)->obj_next = NULL;
2315 list = *plist = &(*list)->obj_next;
2316
2317 if (--need == 0)
2318 break;
2319 }
2320 m_infree(class) -= (num - need);
2321
2322 return (num - need);
2323 }
2324
2325 /*
2326 * Place object(s) back into a composite class's freelist.
2327 */
2328 static unsigned int
2329 cslab_free(mbuf_class_t class, mcache_obj_t *list, int purged)
2330 {
2331 mcache_obj_t *o, *tail;
2332 unsigned int num = 0;
2333 struct mbuf *m, *ms;
2334 mcache_audit_t *mca = NULL;
2335 mcache_obj_t *ref_list = NULL;
2336 mcl_slab_t *clsp, *nsp;
2337 void *cl;
2338 mbuf_class_t cl_class;
2339
2340 ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
2341 VERIFY(class != MC_MBUF_16KCL || njcl > 0);
2342 lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
2343
2344 if (class == MC_MBUF_CL) {
2345 cl_class = MC_CL;
2346 } else if (class == MC_MBUF_BIGCL) {
2347 cl_class = MC_BIGCL;
2348 } else {
2349 VERIFY(class == MC_MBUF_16KCL);
2350 cl_class = MC_16KCL;
2351 }
2352
2353 o = tail = list;
2354
2355 while ((m = ms = (struct mbuf *)o) != NULL) {
2356 mcache_obj_t *rfa, *nexto = o->obj_next;
2357
2358 /* Do the mbuf sanity checks */
2359 if (mclaudit != NULL) {
2360 mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
2361 if (mclverify) {
2362 mcache_audit_free_verify(mca, m, 0,
2363 m_maxsize(MC_MBUF));
2364 }
2365 ms = MCA_SAVED_MBUF_PTR(mca);
2366 }
2367
2368 /* Do the cluster sanity checks */
2369 cl = ms->m_ext.ext_buf;
2370 clsp = slab_get(cl);
2371 if (mclverify) {
2372 size_t size = m_maxsize(cl_class);
2373 mcache_audit_free_verify(mcl_audit_buf2mca(cl_class,
2374 (mcache_obj_t *)cl), cl, 0, size);
2375 }
2376 VERIFY(ms->m_type == MT_FREE);
2377 VERIFY(ms->m_flags == M_EXT);
2378 VERIFY(MEXT_RFA(ms) != NULL && MBUF_IS_COMPOSITE(ms));
2379 if (cl_class == MC_CL) {
2380 VERIFY(clsp->sl_refcnt >= 1 &&
2381 clsp->sl_refcnt <= NCLPG);
2382 } else {
2383 VERIFY(clsp->sl_refcnt >= 1 &&
2384 clsp->sl_refcnt <= NBCLPG);
2385 }
2386 if (cl_class == MC_16KCL) {
2387 int k;
2388 for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) {
2389 nsp = nsp->sl_next;
2390 /* Next slab must already be present */
2391 VERIFY(nsp != NULL);
2392 VERIFY(nsp->sl_refcnt == 1);
2393 }
2394 }
2395
2396 /*
2397 * If we're asked to purge, restore the actual mbuf using
2398 * contents of the shadow structure (if auditing is enabled)
2399 * and clear EXTF_COMPOSITE flag from the mbuf, as we are
2400 * about to free it and the attached cluster into their caches.
2401 */
2402 if (purged) {
2403 /* Restore constructed mbuf fields */
2404 if (mclaudit != NULL)
2405 mcl_audit_restore_mbuf(m, mca, TRUE);
2406
2407 MEXT_MINREF(m) = 0;
2408 MEXT_REF(m) = 0;
2409 MEXT_PREF(m) = 0;
2410 MEXT_FLAGS(m) = 0;
2411 MEXT_PRIV(m) = 0;
2412 MEXT_PMBUF(m) = NULL;
2413
2414 rfa = (mcache_obj_t *)(void *)MEXT_RFA(m);
2415 rfa->obj_next = ref_list;
2416 ref_list = rfa;
2417 MEXT_RFA(m) = NULL;
2418
2419 m->m_type = MT_FREE;
2420 m->m_flags = m->m_len = 0;
2421 m->m_next = m->m_nextpkt = NULL;
2422
2423 /* Save mbuf fields and make auditing happy */
2424 if (mclaudit != NULL)
2425 mcl_audit_mbuf(mca, o, FALSE, FALSE);
2426
2427 VERIFY(m_total(class) > 0);
2428 m_total(class)--;
2429
2430 /* Free the mbuf */
2431 o->obj_next = NULL;
2432 slab_free(MC_MBUF, o);
2433
2434 /* And free the cluster */
2435 ((mcache_obj_t *)cl)->obj_next = NULL;
2436 if (class == MC_MBUF_CL)
2437 slab_free(MC_CL, cl);
2438 else if (class == MC_MBUF_BIGCL)
2439 slab_free(MC_BIGCL, cl);
2440 else
2441 slab_free(MC_16KCL, cl);
2442 }
2443
2444 ++num;
2445 tail = o;
2446 o = nexto;
2447 }
2448
2449 if (!purged) {
2450 tail->obj_next = m_cobjlist(class);
2451 m_cobjlist(class) = list;
2452 m_infree(class) += num;
2453 } else if (ref_list != NULL) {
2454 mcache_free_ext(ref_cache, ref_list);
2455 }
2456
2457 return (num);
2458 }
2459
2460 /*
2461 * Common allocator for composite objects called by the CPU cache layer
2462 * during an allocation request whenever there is no available element in
2463 * the bucket layer. It returns one or more composite elements from the
2464 * appropriate global freelist. If the freelist is empty, it will attempt
2465 * to obtain the rudimentary objects from their caches and construct them
2466 * into composite mbuf + cluster objects.
2467 */
2468 static unsigned int
2469 mbuf_cslab_alloc(void *arg, mcache_obj_t ***plist, unsigned int needed,
2470 int wait)
2471 {
2472 mbuf_class_t class = (mbuf_class_t)arg;
2473 mbuf_class_t cl_class = 0;
2474 unsigned int num = 0, cnum = 0, want = needed;
2475 mcache_obj_t *ref_list = NULL;
2476 mcache_obj_t *mp_list = NULL;
2477 mcache_obj_t *clp_list = NULL;
2478 mcache_obj_t **list;
2479 struct ext_ref *rfa;
2480 struct mbuf *m;
2481 void *cl;
2482
2483 ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
2484 ASSERT(needed > 0);
2485
2486 VERIFY(class != MC_MBUF_16KCL || njcl > 0);
2487
2488 /* There should not be any slab for this class */
2489 VERIFY(m_slab_cnt(class) == 0 &&
2490 m_slablist(class).tqh_first == NULL &&
2491 m_slablist(class).tqh_last == NULL);
2492
2493 lck_mtx_lock(mbuf_mlock);
2494
2495 /* Try using the freelist first */
2496 num = cslab_alloc(class, plist, needed);
2497 list = *plist;
2498 if (num == needed) {
2499 m_alloc_cnt(class) += num;
2500 lck_mtx_unlock(mbuf_mlock);
2501 return (needed);
2502 }
2503
2504 lck_mtx_unlock(mbuf_mlock);
2505
2506 /*
2507 * We could not satisfy the request using the freelist alone;
2508 * allocate from the appropriate rudimentary caches and use
2509 * whatever we can get to construct the composite objects.
2510 */
2511 needed -= num;
2512
2513 /*
2514 * Mark these allocation requests as coming from a composite cache.
2515 * Also, if the caller is willing to be blocked, mark the request
2516 * with MCR_FAILOK such that we don't end up sleeping at the mbuf
2517 * slab layer waiting for the individual object when one or more
2518 * of the already-constructed composite objects are available.
2519 */
2520 wait |= MCR_COMP;
2521 if (!(wait & MCR_NOSLEEP))
2522 wait |= MCR_FAILOK;
2523
2524 /* allocate mbufs */
2525 needed = mcache_alloc_ext(m_cache(MC_MBUF), &mp_list, needed, wait);
2526 if (needed == 0) {
2527 ASSERT(mp_list == NULL);
2528 goto fail;
2529 }
2530
2531 /* allocate clusters */
2532 if (class == MC_MBUF_CL) {
2533 cl_class = MC_CL;
2534 } else if (class == MC_MBUF_BIGCL) {
2535 cl_class = MC_BIGCL;
2536 } else {
2537 VERIFY(class == MC_MBUF_16KCL);
2538 cl_class = MC_16KCL;
2539 }
2540 needed = mcache_alloc_ext(m_cache(cl_class), &clp_list, needed, wait);
2541 if (needed == 0) {
2542 ASSERT(clp_list == NULL);
2543 goto fail;
2544 }
2545
2546 needed = mcache_alloc_ext(ref_cache, &ref_list, needed, wait);
2547 if (needed == 0) {
2548 ASSERT(ref_list == NULL);
2549 goto fail;
2550 }
2551
2552 /*
2553 * By this time "needed" is MIN(mbuf, cluster, ref). Any left
2554 * overs will get freed accordingly before we return to caller.
2555 */
2556 for (cnum = 0; cnum < needed; cnum++) {
2557 struct mbuf *ms;
2558
2559 m = ms = (struct mbuf *)mp_list;
2560 mp_list = mp_list->obj_next;
2561
2562 cl = clp_list;
2563 clp_list = clp_list->obj_next;
2564 ((mcache_obj_t *)cl)->obj_next = NULL;
2565
2566 rfa = (struct ext_ref *)ref_list;
2567 ref_list = ref_list->obj_next;
2568 ((mcache_obj_t *)(void *)rfa)->obj_next = NULL;
2569
2570 /*
2571 * If auditing is enabled, construct the shadow mbuf
2572 * in the audit structure instead of in the actual one.
2573 * mbuf_cslab_audit() will take care of restoring the
2574 * contents after the integrity check.
2575 */
2576 if (mclaudit != NULL) {
2577 mcache_audit_t *mca, *cl_mca;
2578
2579 lck_mtx_lock(mbuf_mlock);
2580 mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
2581 ms = MCA_SAVED_MBUF_PTR(mca);
2582 cl_mca = mcl_audit_buf2mca(cl_class,
2583 (mcache_obj_t *)cl);
2584
2585 /*
2586 * Pair them up. Note that this is done at the time
2587 * the mbuf+cluster objects are constructed. This
2588 * information should be treated as "best effort"
2589 * debugging hint since more than one mbufs can refer
2590 * to a cluster. In that case, the cluster might not
2591 * be freed along with the mbuf it was paired with.
2592 */
2593 mca->mca_uptr = cl_mca;
2594 cl_mca->mca_uptr = mca;
2595
2596 ASSERT(mca->mca_uflags & MB_SCVALID);
2597 ASSERT(!(cl_mca->mca_uflags & MB_SCVALID));
2598 lck_mtx_unlock(mbuf_mlock);
2599
2600 /* Technically, they are in the freelist */
2601 if (mclverify) {
2602 size_t size;
2603
2604 mcache_set_pattern(MCACHE_FREE_PATTERN, m,
2605 m_maxsize(MC_MBUF));
2606
2607 if (class == MC_MBUF_CL)
2608 size = m_maxsize(MC_CL);
2609 else if (class == MC_MBUF_BIGCL)
2610 size = m_maxsize(MC_BIGCL);
2611 else
2612 size = m_maxsize(MC_16KCL);
2613
2614 mcache_set_pattern(MCACHE_FREE_PATTERN, cl,
2615 size);
2616 }
2617 }
2618
2619 MBUF_INIT(ms, 0, MT_FREE);
2620 if (class == MC_MBUF_16KCL) {
2621 MBUF_16KCL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE);
2622 } else if (class == MC_MBUF_BIGCL) {
2623 MBUF_BIGCL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE);
2624 } else {
2625 MBUF_CL_INIT(ms, cl, rfa, 0, EXTF_COMPOSITE);
2626 }
2627 VERIFY(ms->m_flags == M_EXT);
2628 VERIFY(MEXT_RFA(ms) != NULL && MBUF_IS_COMPOSITE(ms));
2629
2630 *list = (mcache_obj_t *)m;
2631 (*list)->obj_next = NULL;
2632 list = *plist = &(*list)->obj_next;
2633 }
2634
2635 fail:
2636 /*
2637 * Free up what's left of the above.
2638 */
2639 if (mp_list != NULL)
2640 mcache_free_ext(m_cache(MC_MBUF), mp_list);
2641 if (clp_list != NULL)
2642 mcache_free_ext(m_cache(cl_class), clp_list);
2643 if (ref_list != NULL)
2644 mcache_free_ext(ref_cache, ref_list);
2645
2646 lck_mtx_lock(mbuf_mlock);
2647 if (num > 0 || cnum > 0) {
2648 m_total(class) += cnum;
2649 VERIFY(m_total(class) <= m_maxlimit(class));
2650 m_alloc_cnt(class) += num + cnum;
2651 }
2652 if ((num + cnum) < want)
2653 m_fail_cnt(class) += (want - (num + cnum));
2654 lck_mtx_unlock(mbuf_mlock);
2655
2656 return (num + cnum);
2657 }
2658
2659 /*
2660 * Common de-allocator for composite objects called by the CPU cache
2661 * layer when one or more elements need to be returned to the appropriate
2662 * global freelist.
2663 */
2664 static void
2665 mbuf_cslab_free(void *arg, mcache_obj_t *list, int purged)
2666 {
2667 mbuf_class_t class = (mbuf_class_t)arg;
2668 unsigned int num;
2669 int w;
2670
2671 ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
2672
2673 lck_mtx_lock(mbuf_mlock);
2674
2675 num = cslab_free(class, list, purged);
2676 m_free_cnt(class) += num;
2677
2678 if ((w = mb_waiters) > 0)
2679 mb_waiters = 0;
2680
2681 lck_mtx_unlock(mbuf_mlock);
2682
2683 if (w != 0)
2684 wakeup(mb_waitchan);
2685 }
2686
2687 /*
2688 * Common auditor for composite objects called by the CPU cache layer
2689 * during an allocation or free request. For the former, this is called
2690 * after the objects are obtained from either the bucket or slab layer
2691 * and before they are returned to the caller. For the latter, this is
2692 * called immediately during free and before placing the objects into
2693 * the bucket or slab layer.
2694 */
2695 static void
2696 mbuf_cslab_audit(void *arg, mcache_obj_t *list, boolean_t alloc)
2697 {
2698 mbuf_class_t class = (mbuf_class_t)arg, cl_class;
2699 mcache_audit_t *mca;
2700 struct mbuf *m, *ms;
2701 mcl_slab_t *clsp, *nsp;
2702 size_t cl_size;
2703 void *cl;
2704
2705 ASSERT(MBUF_CLASS_VALID(class) && MBUF_CLASS_COMPOSITE(class));
2706 if (class == MC_MBUF_CL)
2707 cl_class = MC_CL;
2708 else if (class == MC_MBUF_BIGCL)
2709 cl_class = MC_BIGCL;
2710 else
2711 cl_class = MC_16KCL;
2712 cl_size = m_maxsize(cl_class);
2713
2714 while ((m = ms = (struct mbuf *)list) != NULL) {
2715 lck_mtx_lock(mbuf_mlock);
2716 /* Do the mbuf sanity checks and record its transaction */
2717 mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
2718 mcl_audit_mbuf(mca, m, TRUE, alloc);
2719 if (mcltrace)
2720 mcache_buffer_log(mca, m, m_cache(class), &mb_start);
2721
2722 if (alloc)
2723 mca->mca_uflags |= MB_COMP_INUSE;
2724 else
2725 mca->mca_uflags &= ~MB_COMP_INUSE;
2726
2727 /*
2728 * Use the shadow mbuf in the audit structure if we are
2729 * freeing, since the contents of the actual mbuf has been
2730 * pattern-filled by the above call to mcl_audit_mbuf().
2731 */
2732 if (!alloc && mclverify)
2733 ms = MCA_SAVED_MBUF_PTR(mca);
2734
2735 /* Do the cluster sanity checks and record its transaction */
2736 cl = ms->m_ext.ext_buf;
2737 clsp = slab_get(cl);
2738 VERIFY(ms->m_flags == M_EXT && cl != NULL);
2739 VERIFY(MEXT_RFA(ms) != NULL && MBUF_IS_COMPOSITE(ms));
2740 if (class == MC_MBUF_CL)
2741 VERIFY(clsp->sl_refcnt >= 1 &&
2742 clsp->sl_refcnt <= NCLPG);
2743 else
2744 VERIFY(clsp->sl_refcnt >= 1 &&
2745 clsp->sl_refcnt <= NBCLPG);
2746
2747 if (class == MC_MBUF_16KCL) {
2748 int k;
2749 for (nsp = clsp, k = 1; k < NSLABSP16KB; k++) {
2750 nsp = nsp->sl_next;
2751 /* Next slab must already be present */
2752 VERIFY(nsp != NULL);
2753 VERIFY(nsp->sl_refcnt == 1);
2754 }
2755 }
2756
2757
2758 mca = mcl_audit_buf2mca(cl_class, cl);
2759 mcl_audit_cluster(mca, cl, cl_size, alloc, FALSE);
2760 if (mcltrace)
2761 mcache_buffer_log(mca, cl, m_cache(class), &mb_start);
2762
2763 if (alloc)
2764 mca->mca_uflags |= MB_COMP_INUSE;
2765 else
2766 mca->mca_uflags &= ~MB_COMP_INUSE;
2767 lck_mtx_unlock(mbuf_mlock);
2768
2769 list = list->obj_next;
2770 }
2771 }
2772
2773 /*
2774 * Allocate some number of mbuf clusters and place on cluster freelist.
2775 */
2776 static int
2777 m_clalloc(const u_int32_t num, const int wait, const u_int32_t bufsize)
2778 {
2779 int i, count = 0;
2780 vm_size_t size = 0;
2781 int numpages = 0, large_buffer;
2782 vm_offset_t page = 0;
2783 mcache_audit_t *mca_list = NULL;
2784 mcache_obj_t *con_list = NULL;
2785 mcl_slab_t *sp;
2786 mbuf_class_t class;
2787
2788 /* Set if a buffer allocation needs allocation of multiple pages */
2789 large_buffer = ((bufsize == m_maxsize(MC_16KCL)) &&
2790 PAGE_SIZE < M16KCLBYTES);
2791 VERIFY(bufsize == m_maxsize(MC_BIGCL) ||
2792 bufsize == m_maxsize(MC_16KCL));
2793
2794 VERIFY((bufsize == PAGE_SIZE) ||
2795 (bufsize > PAGE_SIZE && bufsize == m_maxsize(MC_16KCL)));
2796
2797 if (bufsize == m_size(MC_BIGCL))
2798 class = MC_BIGCL;
2799 else
2800 class = MC_16KCL;
2801
2802 lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
2803
2804 /*
2805 * Multiple threads may attempt to populate the cluster map one
2806 * after another. Since we drop the lock below prior to acquiring
2807 * the physical page(s), our view of the cluster map may no longer
2808 * be accurate, and we could end up over-committing the pages beyond
2809 * the maximum allowed for each class. To prevent it, this entire
2810 * operation (including the page mapping) is serialized.
2811 */
2812 while (mb_clalloc_busy) {
2813 mb_clalloc_waiters++;
2814 (void) msleep(mb_clalloc_waitchan, mbuf_mlock,
2815 (PZERO-1), "m_clalloc", NULL);
2816 lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
2817 }
2818
2819 /* We are busy now; tell everyone else to go away */
2820 mb_clalloc_busy = TRUE;
2821
2822 /*
2823 * Honor the caller's wish to block or not block. We have a way
2824 * to grow the pool asynchronously using the mbuf worker thread.
2825 */
2826 i = m_howmany(num, bufsize);
2827 if (i == 0 || (wait & M_DONTWAIT))
2828 goto out;
2829
2830 lck_mtx_unlock(mbuf_mlock);
2831
2832 size = round_page(i * bufsize);
2833 page = kmem_mb_alloc(mb_map, size, large_buffer);
2834
2835 /*
2836 * If we did ask for "n" 16KB physically contiguous chunks
2837 * and didn't get them, then please try again without this
2838 * restriction.
2839 */
2840 if (large_buffer && page == 0)
2841 page = kmem_mb_alloc(mb_map, size, 0);
2842
2843 if (page == 0) {
2844 if (bufsize == m_maxsize(MC_BIGCL)) {
2845 /* Try for 1 page if failed */
2846 size = PAGE_SIZE;
2847 page = kmem_mb_alloc(mb_map, size, 0);
2848 }
2849
2850 if (page == 0) {
2851 lck_mtx_lock(mbuf_mlock);
2852 goto out;
2853 }
2854 }
2855
2856 VERIFY(IS_P2ALIGNED(page, PAGE_SIZE));
2857 numpages = size / PAGE_SIZE;
2858
2859 /* If auditing is enabled, allocate the audit structures now */
2860 if (mclaudit != NULL) {
2861 int needed;
2862
2863 /*
2864 * Yes, I realize this is a waste of memory for clusters
2865 * that never get transformed into mbufs, as we may end
2866 * up with NMBPG-1 unused audit structures per cluster.
2867 * But doing so tremendously simplifies the allocation
2868 * strategy, since at this point we are not holding the
2869 * mbuf lock and the caller is okay to be blocked.
2870 */
2871 if (bufsize == PAGE_SIZE) {
2872 needed = numpages * NMBPG;
2873
2874 i = mcache_alloc_ext(mcl_audit_con_cache,
2875 &con_list, needed, MCR_SLEEP);
2876
2877 VERIFY(con_list != NULL && i == needed);
2878 } else {
2879 /*
2880 * if multiple 4K pages are being used for a
2881 * 16K cluster
2882 */
2883 needed = numpages / NSLABSP16KB;
2884 }
2885
2886 i = mcache_alloc_ext(mcache_audit_cache,
2887 (mcache_obj_t **)&mca_list, needed, MCR_SLEEP);
2888
2889 VERIFY(mca_list != NULL && i == needed);
2890 }
2891
2892 lck_mtx_lock(mbuf_mlock);
2893
2894 for (i = 0; i < numpages; i++, page += PAGE_SIZE) {
2895 ppnum_t offset =
2896 ((unsigned char *)page - mbutl) >> PAGE_SHIFT;
2897 ppnum_t new_page = pmap_find_phys(kernel_pmap, page);
2898
2899 /*
2900 * If there is a mapper the appropriate I/O page is
2901 * returned; zero out the page to discard its past
2902 * contents to prevent exposing leftover kernel memory.
2903 */
2904 VERIFY(offset < mcl_pages);
2905 if (mcl_paddr_base != 0) {
2906 bzero((void *)(uintptr_t) page, PAGE_SIZE);
2907 new_page = IOMapperInsertPage(mcl_paddr_base,
2908 offset, new_page);
2909 }
2910 mcl_paddr[offset] = new_page;
2911
2912 /* Pattern-fill this fresh page */
2913 if (mclverify) {
2914 mcache_set_pattern(MCACHE_FREE_PATTERN,
2915 (caddr_t)page, PAGE_SIZE);
2916 }
2917 if (bufsize == PAGE_SIZE) {
2918 mcache_obj_t *buf;
2919 /* One for the entire page */
2920 sp = slab_get((void *)page);
2921 if (mclaudit != NULL) {
2922 mcl_audit_init((void *)page,
2923 &mca_list, &con_list,
2924 AUDIT_CONTENTS_SIZE, NMBPG);
2925 }
2926 VERIFY(sp->sl_refcnt == 0 && sp->sl_flags == 0);
2927 slab_init(sp, class, SLF_MAPPED, (void *)page,
2928 (void *)page, PAGE_SIZE, 0, 1);
2929 buf = (mcache_obj_t *)page;
2930 buf->obj_next = NULL;
2931
2932 /* Insert this slab */
2933 slab_insert(sp, class);
2934
2935 /* Update stats now since slab_get drops the lock */
2936 ++m_infree(class);
2937 ++m_total(class);
2938 VERIFY(m_total(class) <= m_maxlimit(class));
2939 if (class == MC_BIGCL) {
2940 mbstat.m_bigclfree = m_infree(MC_BIGCL) +
2941 m_infree(MC_MBUF_BIGCL);
2942 mbstat.m_bigclusters = m_total(MC_BIGCL);
2943 }
2944 ++count;
2945 } else if ((bufsize > PAGE_SIZE) &&
2946 (i % NSLABSP16KB) == 0) {
2947 union m16kcluster *m16kcl = (union m16kcluster *)page;
2948 mcl_slab_t *nsp;
2949 int k;
2950
2951 /* One for the entire 16KB */
2952 sp = slab_get(m16kcl);
2953 if (mclaudit != NULL)
2954 mcl_audit_init(m16kcl, &mca_list, NULL, 0, 1);
2955
2956 VERIFY(sp->sl_refcnt == 0 && sp->sl_flags == 0);
2957 slab_init(sp, MC_16KCL, SLF_MAPPED,
2958 m16kcl, m16kcl, bufsize, 0, 1);
2959 m16kcl->m16kcl_next = NULL;
2960
2961 /*
2962 * 2nd-Nth page's slab is part of the first one,
2963 * where N is NSLABSP16KB.
2964 */
2965 for (k = 1; k < NSLABSP16KB; k++) {
2966 nsp = slab_get(((union mbigcluster *)page) + k);
2967 VERIFY(nsp->sl_refcnt == 0 &&
2968 nsp->sl_flags == 0);
2969 slab_init(nsp, MC_16KCL,
2970 SLF_MAPPED | SLF_PARTIAL,
2971 m16kcl, NULL, 0, 0, 0);
2972 }
2973 /* Insert this slab */
2974 slab_insert(sp, MC_16KCL);
2975
2976 /* Update stats now since slab_get drops the lock */
2977 ++m_infree(MC_16KCL);
2978 ++m_total(MC_16KCL);
2979 VERIFY(m_total(MC_16KCL) <= m_maxlimit(MC_16KCL));
2980 ++count;
2981 }
2982 }
2983 VERIFY(mca_list == NULL && con_list == NULL);
2984
2985 if (!mb_peak_newreport && mbuf_report_usage(class))
2986 mb_peak_newreport = TRUE;
2987
2988 /* We're done; let others enter */
2989 mb_clalloc_busy = FALSE;
2990 if (mb_clalloc_waiters > 0) {
2991 mb_clalloc_waiters = 0;
2992 wakeup(mb_clalloc_waitchan);
2993 }
2994
2995 return (count);
2996 out:
2997 lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
2998
2999 /* We're done; let others enter */
3000 mb_clalloc_busy = FALSE;
3001 if (mb_clalloc_waiters > 0) {
3002 mb_clalloc_waiters = 0;
3003 wakeup(mb_clalloc_waitchan);
3004 }
3005
3006 /*
3007 * When non-blocking we kick a thread if we have to grow the
3008 * pool or if the number of free clusters is less than requested.
3009 */
3010 if (i > 0 && mbuf_worker_ready && mbuf_worker_needs_wakeup) {
3011 wakeup((caddr_t)&mbuf_worker_needs_wakeup);
3012 mbuf_worker_needs_wakeup = FALSE;
3013 }
3014 if (class == MC_BIGCL) {
3015 if (i > 0) {
3016 /*
3017 * Remember total number of 4KB clusters needed
3018 * at this time.
3019 */
3020 i += m_total(MC_BIGCL);
3021 if (i > mbuf_expand_big) {
3022 mbuf_expand_big = i;
3023 }
3024 }
3025 if (m_infree(MC_BIGCL) >= num)
3026 return (1);
3027 } else {
3028 if (i > 0) {
3029 /*
3030 * Remember total number of 16KB clusters needed
3031 * at this time.
3032 */
3033 i += m_total(MC_16KCL);
3034 if (i > mbuf_expand_16k) {
3035 mbuf_expand_16k = i;
3036 }
3037 }
3038 if (m_infree(MC_16KCL) >= num)
3039 return (1);
3040 }
3041 return (0);
3042 }
3043
3044 /*
3045 * Populate the global freelist of the corresponding buffer class.
3046 */
3047 static int
3048 freelist_populate(mbuf_class_t class, unsigned int num, int wait)
3049 {
3050 mcache_obj_t *o = NULL;
3051 int i, numpages = 0, count;
3052 mbuf_class_t super_class;
3053
3054 VERIFY(class == MC_MBUF || class == MC_CL || class == MC_BIGCL ||
3055 class == MC_16KCL);
3056
3057 lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
3058
3059 VERIFY(PAGE_SIZE == m_maxsize(MC_BIGCL) ||
3060 PAGE_SIZE == m_maxsize(MC_16KCL));
3061
3062 if (m_maxsize(class) >= PAGE_SIZE)
3063 return(m_clalloc(num, wait, m_maxsize(class)) != 0);
3064
3065 /*
3066 * The rest of the function will allocate pages and will slice
3067 * them up into the right size
3068 */
3069
3070 numpages = (num * m_size(class) + PAGE_SIZE - 1) / PAGE_SIZE;
3071
3072 /* Currently assume that pages are 4K or 16K */
3073 if (PAGE_SIZE == m_maxsize(MC_BIGCL))
3074 super_class = MC_BIGCL;
3075 else
3076 super_class = MC_16KCL;
3077
3078 i = m_clalloc(numpages, wait, m_maxsize(super_class));
3079
3080 /* Respect the minimum limit of super class */
3081 if (m_total(super_class) == m_maxlimit(super_class) &&
3082 m_infree(super_class) <= m_minlimit(super_class))
3083 if (wait & MCR_COMP)
3084 return (0);
3085
3086 /* how many objects will we cut the page into? */
3087 int numobj = PAGE_SIZE / m_maxsize(class);
3088
3089 for (count = 0; count < numpages; count++) {
3090 /* respect totals, minlimit, maxlimit */
3091 if (m_total(super_class) <= m_minlimit(super_class) ||
3092 m_total(class) >= m_maxlimit(class))
3093 break;
3094
3095 if ((o = slab_alloc(super_class, wait)) == NULL)
3096 break;
3097
3098 struct mbuf *m = (struct mbuf *)o;
3099 union mcluster *c = (union mcluster *)o;
3100 union mbigcluster *mbc = (union mbigcluster *)o;
3101 mcl_slab_t *sp = slab_get(o);
3102 mcache_audit_t *mca = NULL;
3103
3104 /*
3105 * since one full page will be converted to MC_MBUF or
3106 * MC_CL, verify that the reference count will match that
3107 * assumption
3108 */
3109 VERIFY(sp->sl_refcnt == 1 && slab_is_detached(sp));
3110 VERIFY((sp->sl_flags & (SLF_MAPPED | SLF_PARTIAL)) == SLF_MAPPED);
3111 /*
3112 * Make sure that the cluster is unmolested
3113 * while in freelist
3114 */
3115 if (mclverify) {
3116 mca = mcl_audit_buf2mca(super_class,
3117 (mcache_obj_t *)o);
3118 mcache_audit_free_verify(mca,
3119 (mcache_obj_t *)o, 0, m_maxsize(super_class));
3120 }
3121
3122 /* Reinitialize it as an mbuf or 2K or 4K slab */
3123 slab_init(sp, class, sp->sl_flags,
3124 sp->sl_base, NULL, PAGE_SIZE, 0, numobj);
3125
3126 VERIFY(sp->sl_head == NULL);
3127
3128 VERIFY(m_total(super_class) >= 1);
3129 m_total(super_class)--;
3130
3131 if (super_class == MC_BIGCL)
3132 mbstat.m_bigclusters = m_total(MC_BIGCL);
3133
3134 m_total(class) += numobj;
3135 m_infree(class) += numobj;
3136
3137 if (!mb_peak_newreport && mbuf_report_usage(class))
3138 mb_peak_newreport = TRUE;
3139
3140 i = numobj;
3141 if (class == MC_MBUF) {
3142 mbstat.m_mbufs = m_total(MC_MBUF);
3143 mtype_stat_add(MT_FREE, NMBPG);
3144 while (i--) {
3145 /*
3146 * If auditing is enabled, construct the
3147 * shadow mbuf in the audit structure
3148 * instead of the actual one.
3149 * mbuf_slab_audit() will take care of
3150 * restoring the contents after the
3151 * integrity check.
3152 */
3153 if (mclaudit != NULL) {
3154 struct mbuf *ms;
3155 mca = mcl_audit_buf2mca(MC_MBUF,
3156 (mcache_obj_t *)m);
3157 ms = MCA_SAVED_MBUF_PTR(mca);
3158 ms->m_type = MT_FREE;
3159 } else {
3160 m->m_type = MT_FREE;
3161 }
3162 m->m_next = sp->sl_head;
3163 sp->sl_head = (void *)m++;
3164 }
3165 } else if (class == MC_CL) { /* MC_CL */
3166 mbstat.m_clfree =
3167 m_infree(MC_CL) + m_infree(MC_MBUF_CL);
3168 mbstat.m_clusters = m_total(MC_CL);
3169 while (i--) {
3170 c->mcl_next = sp->sl_head;
3171 sp->sl_head = (void *)c++;
3172 }
3173 } else {
3174 VERIFY(class == MC_BIGCL);
3175 mbstat.m_bigclusters = m_total(MC_BIGCL);
3176 mbstat.m_bigclfree = m_infree(MC_BIGCL) +
3177 m_infree(MC_MBUF_BIGCL);
3178 while (i--) {
3179 mbc->mbc_next = sp->sl_head;
3180 sp->sl_head = (void *)mbc++;
3181 }
3182 }
3183
3184 /* Insert into the mbuf or 2k or 4k slab list */
3185 slab_insert(sp, class);
3186
3187 if ((i = mb_waiters) > 0)
3188 mb_waiters = 0;
3189 if (i != 0)
3190 wakeup(mb_waitchan);
3191 }
3192 return (count != 0);
3193 }
3194
3195 /*
3196 * For each class, initialize the freelist to hold m_minlimit() objects.
3197 */
3198 static void
3199 freelist_init(mbuf_class_t class)
3200 {
3201 lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
3202
3203 VERIFY(class == MC_CL || class == MC_BIGCL);
3204 VERIFY(m_total(class) == 0);
3205 VERIFY(m_minlimit(class) > 0);
3206
3207 while (m_total(class) < m_minlimit(class))
3208 (void) freelist_populate(class, m_minlimit(class), M_WAIT);
3209
3210 VERIFY(m_total(class) >= m_minlimit(class));
3211 }
3212
3213 /*
3214 * (Inaccurately) check if it might be worth a trip back to the
3215 * mcache layer due the availability of objects there. We'll
3216 * end up back here if there's nothing up there.
3217 */
3218 static boolean_t
3219 mbuf_cached_above(mbuf_class_t class, int wait)
3220 {
3221 switch (class) {
3222 case MC_MBUF:
3223 if (wait & MCR_COMP)
3224 return (!mcache_bkt_isempty(m_cache(MC_MBUF_CL)) ||
3225 !mcache_bkt_isempty(m_cache(MC_MBUF_BIGCL)));
3226 break;
3227
3228 case MC_CL:
3229 if (wait & MCR_COMP)
3230 return (!mcache_bkt_isempty(m_cache(MC_MBUF_CL)));
3231 break;
3232
3233 case MC_BIGCL:
3234 if (wait & MCR_COMP)
3235 return (!mcache_bkt_isempty(m_cache(MC_MBUF_BIGCL)));
3236 break;
3237
3238 case MC_16KCL:
3239 if (wait & MCR_COMP)
3240 return (!mcache_bkt_isempty(m_cache(MC_MBUF_16KCL)));
3241 break;
3242
3243 case MC_MBUF_CL:
3244 case MC_MBUF_BIGCL:
3245 case MC_MBUF_16KCL:
3246 break;
3247
3248 default:
3249 VERIFY(0);
3250 /* NOTREACHED */
3251 }
3252
3253 return (!mcache_bkt_isempty(m_cache(class)));
3254 }
3255
3256 /*
3257 * If possible, convert constructed objects to raw ones.
3258 */
3259 static boolean_t
3260 mbuf_steal(mbuf_class_t class, unsigned int num)
3261 {
3262 mcache_obj_t *top = NULL;
3263 mcache_obj_t **list = &top;
3264 unsigned int tot = 0;
3265
3266 lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
3267
3268 switch (class) {
3269 case MC_MBUF:
3270 case MC_CL:
3271 case MC_BIGCL:
3272 case MC_16KCL:
3273 return (FALSE);
3274
3275 case MC_MBUF_CL:
3276 case MC_MBUF_BIGCL:
3277 case MC_MBUF_16KCL:
3278 /* Get the required number of constructed objects if possible */
3279 if (m_infree(class) > m_minlimit(class)) {
3280 tot = cslab_alloc(class, &list,
3281 MIN(num, m_infree(class)));
3282 }
3283
3284 /* And destroy them to get back the raw objects */
3285 if (top != NULL)
3286 (void) cslab_free(class, top, 1);
3287 break;
3288
3289 default:
3290 VERIFY(0);
3291 /* NOTREACHED */
3292 }
3293
3294 return (tot == num);
3295 }
3296
3297 static void
3298 m_reclaim(mbuf_class_t class, unsigned int num, boolean_t comp)
3299 {
3300 int m, bmap = 0;
3301
3302 lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
3303
3304 VERIFY(m_total(MC_CL) <= m_maxlimit(MC_CL));
3305 VERIFY(m_total(MC_BIGCL) <= m_maxlimit(MC_BIGCL));
3306 VERIFY(m_total(MC_16KCL) <= m_maxlimit(MC_16KCL));
3307
3308 /*
3309 * This logic can be made smarter; for now, simply mark
3310 * all other related classes as potential victims.
3311 */
3312 switch (class) {
3313 case MC_MBUF:
3314 m_wantpurge(MC_CL)++;
3315 m_wantpurge(MC_BIGCL)++;
3316 m_wantpurge(MC_MBUF_CL)++;
3317 m_wantpurge(MC_MBUF_BIGCL)++;
3318 break;
3319
3320 case MC_CL:
3321 m_wantpurge(MC_MBUF)++;
3322 m_wantpurge(MC_BIGCL)++;
3323 m_wantpurge(MC_MBUF_BIGCL)++;
3324 if (!comp)
3325 m_wantpurge(MC_MBUF_CL)++;
3326 break;
3327
3328 case MC_BIGCL:
3329 m_wantpurge(MC_MBUF)++;
3330 m_wantpurge(MC_CL)++;
3331 m_wantpurge(MC_MBUF_CL)++;
3332 if (!comp)
3333 m_wantpurge(MC_MBUF_BIGCL)++;
3334 break;
3335
3336 case MC_16KCL:
3337 if (!comp)
3338 m_wantpurge(MC_MBUF_16KCL)++;
3339 break;
3340
3341 default:
3342 VERIFY(0);
3343 /* NOTREACHED */
3344 }
3345
3346 /*
3347 * Run through each marked class and check if we really need to
3348 * purge (and therefore temporarily disable) the per-CPU caches
3349 * layer used by the class. If so, remember the classes since
3350 * we are going to drop the lock below prior to purging.
3351 */
3352 for (m = 0; m < NELEM(mbuf_table); m++) {
3353 if (m_wantpurge(m) > 0) {
3354 m_wantpurge(m) = 0;
3355 /*
3356 * Try hard to steal the required number of objects
3357 * from the freelist of other mbuf classes. Only
3358 * purge and disable the per-CPU caches layer when
3359 * we don't have enough; it's the last resort.
3360 */
3361 if (!mbuf_steal(m, num))
3362 bmap |= (1 << m);
3363 }
3364 }
3365
3366 lck_mtx_unlock(mbuf_mlock);
3367
3368 if (bmap != 0) {
3369 /* signal the domains to drain */
3370 net_drain_domains();
3371
3372 /* Sigh; we have no other choices but to ask mcache to purge */
3373 for (m = 0; m < NELEM(mbuf_table); m++) {
3374 if ((bmap & (1 << m)) &&
3375 mcache_purge_cache(m_cache(m), TRUE)) {
3376 lck_mtx_lock(mbuf_mlock);
3377 m_purge_cnt(m)++;
3378 mbstat.m_drain++;
3379 lck_mtx_unlock(mbuf_mlock);
3380 }
3381 }
3382 } else {
3383 /*
3384 * Request mcache to reap extra elements from all of its caches;
3385 * note that all reaps are serialized and happen only at a fixed
3386 * interval.
3387 */
3388 mcache_reap();
3389 }
3390 lck_mtx_lock(mbuf_mlock);
3391 }
3392
3393 static inline struct mbuf *
3394 m_get_common(int wait, short type, int hdr)
3395 {
3396 struct mbuf *m;
3397 int mcflags = MSLEEPF(wait);
3398
3399 /* Is this due to a non-blocking retry? If so, then try harder */
3400 if (mcflags & MCR_NOSLEEP)
3401 mcflags |= MCR_TRYHARD;
3402
3403 m = mcache_alloc(m_cache(MC_MBUF), mcflags);
3404 if (m != NULL) {
3405 MBUF_INIT(m, hdr, type);
3406 mtype_stat_inc(type);
3407 mtype_stat_dec(MT_FREE);
3408 #if CONFIG_MACF_NET
3409 if (hdr && mac_init_mbuf(m, wait) != 0) {
3410 m_free(m);
3411 return (NULL);
3412 }
3413 #endif /* MAC_NET */
3414 }
3415 return (m);
3416 }
3417
3418 /*
3419 * Space allocation routines; these are also available as macros
3420 * for critical paths.
3421 */
3422 #define _M_GET(wait, type) m_get_common(wait, type, 0)
3423 #define _M_GETHDR(wait, type) m_get_common(wait, type, 1)
3424 #define _M_RETRY(wait, type) _M_GET(wait, type)
3425 #define _M_RETRYHDR(wait, type) _M_GETHDR(wait, type)
3426 #define _MGET(m, how, type) ((m) = _M_GET(how, type))
3427 #define _MGETHDR(m, how, type) ((m) = _M_GETHDR(how, type))
3428
3429 struct mbuf *
3430 m_get(int wait, int type)
3431 {
3432 return (_M_GET(wait, type));
3433 }
3434
3435 struct mbuf *
3436 m_gethdr(int wait, int type)
3437 {
3438 return (_M_GETHDR(wait, type));
3439 }
3440
3441 struct mbuf *
3442 m_retry(int wait, int type)
3443 {
3444 return (_M_RETRY(wait, type));
3445 }
3446
3447 struct mbuf *
3448 m_retryhdr(int wait, int type)
3449 {
3450 return (_M_RETRYHDR(wait, type));
3451 }
3452
3453 struct mbuf *
3454 m_getclr(int wait, int type)
3455 {
3456 struct mbuf *m;
3457
3458 _MGET(m, wait, type);
3459 if (m != NULL)
3460 bzero(MTOD(m, caddr_t), MLEN);
3461 return (m);
3462 }
3463
3464 static int
3465 m_free_paired(struct mbuf *m)
3466 {
3467 VERIFY((m->m_flags & M_EXT) && (MEXT_FLAGS(m) & EXTF_PAIRED));
3468
3469 membar_sync();
3470 if (MEXT_PMBUF(m) == m) {
3471 volatile UInt16 *addr = (volatile UInt16 *)&MEXT_PREF(m);
3472 int16_t oprefcnt, prefcnt;
3473
3474 /*
3475 * Paired ref count might be negative in case we lose
3476 * against another thread clearing MEXT_PMBUF, in the
3477 * event it occurs after the above memory barrier sync.
3478 * In that case just ignore as things have been unpaired.
3479 */
3480 do {
3481 oprefcnt = *addr;
3482 prefcnt = oprefcnt - 1;
3483 } while (!OSCompareAndSwap16(oprefcnt, prefcnt, addr));
3484
3485 if (prefcnt > 1) {
3486 return (1);
3487 } else if (prefcnt == 1) {
3488 (*(m->m_ext.ext_free))(m->m_ext.ext_buf,
3489 m->m_ext.ext_size, m->m_ext.ext_arg);
3490 return (1);
3491 } else if (prefcnt == 0) {
3492 VERIFY(MBUF_IS_PAIRED(m));
3493
3494 /*
3495 * Restore minref to its natural value, so that
3496 * the caller will be able to free the cluster
3497 * as appropriate.
3498 */
3499 MEXT_MINREF(m) = 0;
3500
3501 /*
3502 * Clear MEXT_PMBUF, but leave EXTF_PAIRED intact
3503 * as it is immutable. atomic_set_ptr also causes
3504 * memory barrier sync.
3505 */
3506 atomic_set_ptr(&MEXT_PMBUF(m), NULL);
3507
3508 switch (m->m_ext.ext_size) {
3509 case MCLBYTES:
3510 m->m_ext.ext_free = NULL;
3511 break;
3512
3513 case MBIGCLBYTES:
3514 m->m_ext.ext_free = m_bigfree;
3515 break;
3516
3517 case M16KCLBYTES:
3518 m->m_ext.ext_free = m_16kfree;
3519 break;
3520
3521 default:
3522 VERIFY(0);
3523 /* NOTREACHED */
3524 }
3525 }
3526 }
3527
3528 /*
3529 * Tell caller the unpair has occurred, and that the reference
3530 * count on the external cluster held for the paired mbuf should
3531 * now be dropped.
3532 */
3533 return (0);
3534 }
3535
3536 struct mbuf *
3537 m_free(struct mbuf *m)
3538 {
3539 struct mbuf *n = m->m_next;
3540
3541 if (m->m_type == MT_FREE)
3542 panic("m_free: freeing an already freed mbuf");
3543
3544 if (m->m_flags & M_PKTHDR) {
3545 /* Check for scratch area overflow */
3546 m_redzone_verify(m);
3547 /* Free the aux data and tags if there is any */
3548 m_tag_delete_chain(m, NULL);
3549
3550 m_do_tx_compl_callback(m, NULL);
3551 }
3552
3553 if (m->m_flags & M_EXT) {
3554 u_int16_t refcnt;
3555 u_int32_t composite;
3556
3557 if (MBUF_IS_PAIRED(m) && m_free_paired(m))
3558 return (n);
3559
3560 refcnt = m_decref(m);
3561 composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE);
3562
3563 if (refcnt == MEXT_MINREF(m) && !composite) {
3564 if (m->m_ext.ext_free == NULL) {
3565 mcache_free(m_cache(MC_CL), m->m_ext.ext_buf);
3566 } else if (m->m_ext.ext_free == m_bigfree) {
3567 mcache_free(m_cache(MC_BIGCL),
3568 m->m_ext.ext_buf);
3569 } else if (m->m_ext.ext_free == m_16kfree) {
3570 mcache_free(m_cache(MC_16KCL),
3571 m->m_ext.ext_buf);
3572 } else {
3573 (*(m->m_ext.ext_free))(m->m_ext.ext_buf,
3574 m->m_ext.ext_size, m->m_ext.ext_arg);
3575 }
3576 mcache_free(ref_cache, MEXT_RFA(m));
3577 MEXT_RFA(m) = NULL;
3578 } else if (refcnt == MEXT_MINREF(m) && composite) {
3579 VERIFY(!(MEXT_FLAGS(m) & EXTF_PAIRED));
3580 VERIFY(m->m_type != MT_FREE);
3581
3582 mtype_stat_dec(m->m_type);
3583 mtype_stat_inc(MT_FREE);
3584
3585 m->m_type = MT_FREE;
3586 m->m_flags = M_EXT;
3587 m->m_len = 0;
3588 m->m_next = m->m_nextpkt = NULL;
3589
3590 MEXT_FLAGS(m) &= ~EXTF_READONLY;
3591
3592 /* "Free" into the intermediate cache */
3593 if (m->m_ext.ext_free == NULL) {
3594 mcache_free(m_cache(MC_MBUF_CL), m);
3595 } else if (m->m_ext.ext_free == m_bigfree) {
3596 mcache_free(m_cache(MC_MBUF_BIGCL), m);
3597 } else {
3598 VERIFY(m->m_ext.ext_free == m_16kfree);
3599 mcache_free(m_cache(MC_MBUF_16KCL), m);
3600 }
3601 return (n);
3602 }
3603 }
3604
3605 if (m->m_type != MT_FREE) {
3606 mtype_stat_dec(m->m_type);
3607 mtype_stat_inc(MT_FREE);
3608 }
3609
3610 m->m_type = MT_FREE;
3611 m->m_flags = m->m_len = 0;
3612 m->m_next = m->m_nextpkt = NULL;
3613
3614 mcache_free(m_cache(MC_MBUF), m);
3615
3616 return (n);
3617 }
3618
3619 __private_extern__ struct mbuf *
3620 m_clattach(struct mbuf *m, int type, caddr_t extbuf,
3621 void (*extfree)(caddr_t, u_int, caddr_t), u_int extsize, caddr_t extarg,
3622 int wait, int pair)
3623 {
3624 struct ext_ref *rfa = NULL;
3625
3626 /*
3627 * If pairing is requested and an existing mbuf is provided, reject
3628 * it if it's already been paired to another cluster. Otherwise,
3629 * allocate a new one or free any existing below.
3630 */
3631 if ((m != NULL && MBUF_IS_PAIRED(m)) ||
3632 (m == NULL && (m = _M_GETHDR(wait, type)) == NULL))
3633 return (NULL);
3634
3635 if (m->m_flags & M_EXT) {
3636 u_int16_t refcnt;
3637 u_int32_t composite;
3638
3639 refcnt = m_decref(m);
3640 composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE);
3641 VERIFY(!(MEXT_FLAGS(m) & EXTF_PAIRED) && MEXT_PMBUF(m) == NULL);
3642 if (refcnt == MEXT_MINREF(m) && !composite) {
3643 if (m->m_ext.ext_free == NULL) {
3644 mcache_free(m_cache(MC_CL), m->m_ext.ext_buf);
3645 } else if (m->m_ext.ext_free == m_bigfree) {
3646 mcache_free(m_cache(MC_BIGCL),
3647 m->m_ext.ext_buf);
3648 } else if (m->m_ext.ext_free == m_16kfree) {
3649 mcache_free(m_cache(MC_16KCL),
3650 m->m_ext.ext_buf);
3651 } else {
3652 (*(m->m_ext.ext_free))(m->m_ext.ext_buf,
3653 m->m_ext.ext_size, m->m_ext.ext_arg);
3654 }
3655 /* Re-use the reference structure */
3656 rfa = MEXT_RFA(m);
3657 } else if (refcnt == MEXT_MINREF(m) && composite) {
3658 VERIFY(m->m_type != MT_FREE);
3659
3660 mtype_stat_dec(m->m_type);
3661 mtype_stat_inc(MT_FREE);
3662
3663 m->m_type = MT_FREE;
3664 m->m_flags = M_EXT;
3665 m->m_len = 0;
3666 m->m_next = m->m_nextpkt = NULL;
3667
3668 MEXT_FLAGS(m) &= ~EXTF_READONLY;
3669
3670 /* "Free" into the intermediate cache */
3671 if (m->m_ext.ext_free == NULL) {
3672 mcache_free(m_cache(MC_MBUF_CL), m);
3673 } else if (m->m_ext.ext_free == m_bigfree) {
3674 mcache_free(m_cache(MC_MBUF_BIGCL), m);
3675 } else {
3676 VERIFY(m->m_ext.ext_free == m_16kfree);
3677 mcache_free(m_cache(MC_MBUF_16KCL), m);
3678 }
3679 /*
3680 * Allocate a new mbuf, since we didn't divorce
3681 * the composite mbuf + cluster pair above.
3682 */
3683 if ((m = _M_GETHDR(wait, type)) == NULL)
3684 return (NULL);
3685 }
3686 }
3687
3688 if (rfa == NULL &&
3689 (rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL) {
3690 m_free(m);
3691 return (NULL);
3692 }
3693
3694 if (!pair) {
3695 MEXT_INIT(m, extbuf, extsize, extfree, extarg, rfa,
3696 0, 1, 0, 0, 0, NULL);
3697 } else {
3698 MEXT_INIT(m, extbuf, extsize, extfree, (caddr_t)m, rfa,
3699 1, 1, 1, EXTF_PAIRED, 0, m);
3700 }
3701
3702 return (m);
3703 }
3704
3705 /*
3706 * Perform `fast' allocation mbuf clusters from a cache of recently-freed
3707 * clusters. (If the cache is empty, new clusters are allocated en-masse.)
3708 */
3709 struct mbuf *
3710 m_getcl(int wait, int type, int flags)
3711 {
3712 struct mbuf *m;
3713 int mcflags = MSLEEPF(wait);
3714 int hdr = (flags & M_PKTHDR);
3715
3716 /* Is this due to a non-blocking retry? If so, then try harder */
3717 if (mcflags & MCR_NOSLEEP)
3718 mcflags |= MCR_TRYHARD;
3719
3720 m = mcache_alloc(m_cache(MC_MBUF_CL), mcflags);
3721 if (m != NULL) {
3722 u_int16_t flag;
3723 struct ext_ref *rfa;
3724 void *cl;
3725
3726 VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT);
3727 cl = m->m_ext.ext_buf;
3728 rfa = MEXT_RFA(m);
3729
3730 ASSERT(cl != NULL && rfa != NULL);
3731 VERIFY(MBUF_IS_COMPOSITE(m) && m->m_ext.ext_free == NULL);
3732
3733 flag = MEXT_FLAGS(m);
3734
3735 MBUF_INIT(m, hdr, type);
3736 MBUF_CL_INIT(m, cl, rfa, 1, flag);
3737
3738 mtype_stat_inc(type);
3739 mtype_stat_dec(MT_FREE);
3740 #if CONFIG_MACF_NET
3741 if (hdr && mac_init_mbuf(m, wait) != 0) {
3742 m_freem(m);
3743 return (NULL);
3744 }
3745 #endif /* MAC_NET */
3746 }
3747 return (m);
3748 }
3749
3750 /* m_mclget() add an mbuf cluster to a normal mbuf */
3751 struct mbuf *
3752 m_mclget(struct mbuf *m, int wait)
3753 {
3754 struct ext_ref *rfa;
3755
3756 if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL)
3757 return (m);
3758
3759 m->m_ext.ext_buf = m_mclalloc(wait);
3760 if (m->m_ext.ext_buf != NULL) {
3761 MBUF_CL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0);
3762 } else {
3763 mcache_free(ref_cache, rfa);
3764 }
3765 return (m);
3766 }
3767
3768 /* Allocate an mbuf cluster */
3769 caddr_t
3770 m_mclalloc(int wait)
3771 {
3772 int mcflags = MSLEEPF(wait);
3773
3774 /* Is this due to a non-blocking retry? If so, then try harder */
3775 if (mcflags & MCR_NOSLEEP)
3776 mcflags |= MCR_TRYHARD;
3777
3778 return (mcache_alloc(m_cache(MC_CL), mcflags));
3779 }
3780
3781 /* Free an mbuf cluster */
3782 void
3783 m_mclfree(caddr_t p)
3784 {
3785 mcache_free(m_cache(MC_CL), p);
3786 }
3787
3788 /*
3789 * mcl_hasreference() checks if a cluster of an mbuf is referenced by
3790 * another mbuf; see comments in m_incref() regarding EXTF_READONLY.
3791 */
3792 int
3793 m_mclhasreference(struct mbuf *m)
3794 {
3795 if (!(m->m_flags & M_EXT))
3796 return (0);
3797
3798 ASSERT(MEXT_RFA(m) != NULL);
3799
3800 return ((MEXT_FLAGS(m) & EXTF_READONLY) ? 1 : 0);
3801 }
3802
3803 __private_extern__ caddr_t
3804 m_bigalloc(int wait)
3805 {
3806 int mcflags = MSLEEPF(wait);
3807
3808 /* Is this due to a non-blocking retry? If so, then try harder */
3809 if (mcflags & MCR_NOSLEEP)
3810 mcflags |= MCR_TRYHARD;
3811
3812 return (mcache_alloc(m_cache(MC_BIGCL), mcflags));
3813 }
3814
3815 __private_extern__ void
3816 m_bigfree(caddr_t p, __unused u_int size, __unused caddr_t arg)
3817 {
3818 mcache_free(m_cache(MC_BIGCL), p);
3819 }
3820
3821 /* m_mbigget() add an 4KB mbuf cluster to a normal mbuf */
3822 __private_extern__ struct mbuf *
3823 m_mbigget(struct mbuf *m, int wait)
3824 {
3825 struct ext_ref *rfa;
3826
3827 if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL)
3828 return (m);
3829
3830 m->m_ext.ext_buf = m_bigalloc(wait);
3831 if (m->m_ext.ext_buf != NULL) {
3832 MBUF_BIGCL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0);
3833 } else {
3834 mcache_free(ref_cache, rfa);
3835 }
3836 return (m);
3837 }
3838
3839 __private_extern__ caddr_t
3840 m_16kalloc(int wait)
3841 {
3842 int mcflags = MSLEEPF(wait);
3843
3844 /* Is this due to a non-blocking retry? If so, then try harder */
3845 if (mcflags & MCR_NOSLEEP)
3846 mcflags |= MCR_TRYHARD;
3847
3848 return (mcache_alloc(m_cache(MC_16KCL), mcflags));
3849 }
3850
3851 __private_extern__ void
3852 m_16kfree(caddr_t p, __unused u_int size, __unused caddr_t arg)
3853 {
3854 mcache_free(m_cache(MC_16KCL), p);
3855 }
3856
3857 /* m_m16kget() add a 16KB mbuf cluster to a normal mbuf */
3858 __private_extern__ struct mbuf *
3859 m_m16kget(struct mbuf *m, int wait)
3860 {
3861 struct ext_ref *rfa;
3862
3863 if ((rfa = mcache_alloc(ref_cache, MSLEEPF(wait))) == NULL)
3864 return (m);
3865
3866 m->m_ext.ext_buf = m_16kalloc(wait);
3867 if (m->m_ext.ext_buf != NULL) {
3868 MBUF_16KCL_INIT(m, m->m_ext.ext_buf, rfa, 1, 0);
3869 } else {
3870 mcache_free(ref_cache, rfa);
3871 }
3872 return (m);
3873 }
3874
3875 /*
3876 * "Move" mbuf pkthdr from "from" to "to".
3877 * "from" must have M_PKTHDR set, and "to" must be empty.
3878 */
3879 void
3880 m_copy_pkthdr(struct mbuf *to, struct mbuf *from)
3881 {
3882 VERIFY(from->m_flags & M_PKTHDR);
3883
3884 /* Check for scratch area overflow */
3885 m_redzone_verify(from);
3886
3887 if (to->m_flags & M_PKTHDR) {
3888 /* Check for scratch area overflow */
3889 m_redzone_verify(to);
3890 /* We will be taking over the tags of 'to' */
3891 m_tag_delete_chain(to, NULL);
3892 }
3893 to->m_pkthdr = from->m_pkthdr; /* especially tags */
3894 m_classifier_init(from, 0); /* purge classifier info */
3895 m_tag_init(from, 1); /* purge all tags from src */
3896 m_scratch_init(from); /* clear src scratch area */
3897 to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
3898 if ((to->m_flags & M_EXT) == 0)
3899 to->m_data = to->m_pktdat;
3900 m_redzone_init(to); /* setup red zone on dst */
3901 }
3902
3903 /*
3904 * Duplicate "from"'s mbuf pkthdr in "to".
3905 * "from" must have M_PKTHDR set, and "to" must be empty.
3906 * In particular, this does a deep copy of the packet tags.
3907 */
3908 static int
3909 m_dup_pkthdr(struct mbuf *to, struct mbuf *from, int how)
3910 {
3911 VERIFY(from->m_flags & M_PKTHDR);
3912
3913 /* Check for scratch area overflow */
3914 m_redzone_verify(from);
3915
3916 if (to->m_flags & M_PKTHDR) {
3917 /* Check for scratch area overflow */
3918 m_redzone_verify(to);
3919 /* We will be taking over the tags of 'to' */
3920 m_tag_delete_chain(to, NULL);
3921 }
3922 to->m_flags = (from->m_flags & M_COPYFLAGS) | (to->m_flags & M_EXT);
3923 if ((to->m_flags & M_EXT) == 0)
3924 to->m_data = to->m_pktdat;
3925 to->m_pkthdr = from->m_pkthdr;
3926 m_redzone_init(to); /* setup red zone on dst */
3927 m_tag_init(to, 0); /* preserve dst static tags */
3928 return (m_tag_copy_chain(to, from, how));
3929 }
3930
3931 void
3932 m_copy_pftag(struct mbuf *to, struct mbuf *from)
3933 {
3934 memcpy(m_pftag(to), m_pftag(from), sizeof(struct pf_mtag));
3935 #if PF_ECN
3936 m_pftag(to)->pftag_hdr = NULL;
3937 m_pftag(to)->pftag_flags &= ~(PF_TAG_HDR_INET|PF_TAG_HDR_INET6);
3938 #endif /* PF_ECN */
3939 }
3940
3941 void
3942 m_classifier_init(struct mbuf *m, uint32_t pktf_mask)
3943 {
3944 VERIFY(m->m_flags & M_PKTHDR);
3945
3946 m->m_pkthdr.pkt_proto = 0;
3947 m->m_pkthdr.pkt_flowsrc = 0;
3948 m->m_pkthdr.pkt_flowid = 0;
3949 m->m_pkthdr.pkt_flags &= pktf_mask; /* caller-defined mask */
3950 /* preserve service class and interface info for loopback packets */
3951 if (!(m->m_pkthdr.pkt_flags & PKTF_LOOP))
3952 (void) m_set_service_class(m, MBUF_SC_BE);
3953 if (!(m->m_pkthdr.pkt_flags & PKTF_IFAINFO))
3954 m->m_pkthdr.pkt_ifainfo = 0;
3955 #if MEASURE_BW
3956 m->m_pkthdr.pkt_bwseq = 0;
3957 #endif /* MEASURE_BW */
3958 m->m_pkthdr.pkt_timestamp = 0;
3959 }
3960
3961 void
3962 m_copy_classifier(struct mbuf *to, struct mbuf *from)
3963 {
3964 VERIFY(to->m_flags & M_PKTHDR);
3965 VERIFY(from->m_flags & M_PKTHDR);
3966
3967 to->m_pkthdr.pkt_proto = from->m_pkthdr.pkt_proto;
3968 to->m_pkthdr.pkt_flowsrc = from->m_pkthdr.pkt_flowsrc;
3969 to->m_pkthdr.pkt_flowid = from->m_pkthdr.pkt_flowid;
3970 to->m_pkthdr.pkt_flags = from->m_pkthdr.pkt_flags;
3971 (void) m_set_service_class(to, from->m_pkthdr.pkt_svc);
3972 to->m_pkthdr.pkt_ifainfo = from->m_pkthdr.pkt_ifainfo;
3973 #if MEASURE_BW
3974 to->m_pkthdr.pkt_bwseq = from->m_pkthdr.pkt_bwseq;
3975 #endif /* MEASURE_BW */
3976 }
3977
3978 /*
3979 * Return a list of mbuf hdrs that point to clusters. Try for num_needed;
3980 * if wantall is not set, return whatever number were available. Set up the
3981 * first num_with_pkthdrs with mbuf hdrs configured as packet headers; these
3982 * are chained on the m_nextpkt field. Any packets requested beyond this
3983 * are chained onto the last packet header's m_next field. The size of
3984 * the cluster is controlled by the parameter bufsize.
3985 */
3986 __private_extern__ struct mbuf *
3987 m_getpackets_internal(unsigned int *num_needed, int num_with_pkthdrs,
3988 int wait, int wantall, size_t bufsize)
3989 {
3990 struct mbuf *m;
3991 struct mbuf **np, *top;
3992 unsigned int pnum, needed = *num_needed;
3993 mcache_obj_t *mp_list = NULL;
3994 int mcflags = MSLEEPF(wait);
3995 u_int16_t flag;
3996 struct ext_ref *rfa;
3997 mcache_t *cp;
3998 void *cl;
3999
4000 ASSERT(bufsize == m_maxsize(MC_CL) ||
4001 bufsize == m_maxsize(MC_BIGCL) ||
4002 bufsize == m_maxsize(MC_16KCL));
4003
4004 /*
4005 * Caller must first check for njcl because this
4006 * routine is internal and not exposed/used via KPI.
4007 */
4008 VERIFY(bufsize != m_maxsize(MC_16KCL) || njcl > 0);
4009
4010 top = NULL;
4011 np = &top;
4012 pnum = 0;
4013
4014 /*
4015 * The caller doesn't want all the requested buffers; only some.
4016 * Try hard to get what we can, but don't block. This effectively
4017 * overrides MCR_SLEEP, since this thread will not go to sleep
4018 * if we can't get all the buffers.
4019 */
4020 if (!wantall || (mcflags & MCR_NOSLEEP))
4021 mcflags |= MCR_TRYHARD;
4022
4023 /* Allocate the composite mbuf + cluster elements from the cache */
4024 if (bufsize == m_maxsize(MC_CL))
4025 cp = m_cache(MC_MBUF_CL);
4026 else if (bufsize == m_maxsize(MC_BIGCL))
4027 cp = m_cache(MC_MBUF_BIGCL);
4028 else
4029 cp = m_cache(MC_MBUF_16KCL);
4030 needed = mcache_alloc_ext(cp, &mp_list, needed, mcflags);
4031
4032 for (pnum = 0; pnum < needed; pnum++) {
4033 m = (struct mbuf *)mp_list;
4034 mp_list = mp_list->obj_next;
4035
4036 VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT);
4037 cl = m->m_ext.ext_buf;
4038 rfa = MEXT_RFA(m);
4039
4040 ASSERT(cl != NULL && rfa != NULL);
4041 VERIFY(MBUF_IS_COMPOSITE(m));
4042
4043 flag = MEXT_FLAGS(m);
4044
4045 MBUF_INIT(m, num_with_pkthdrs, MT_DATA);
4046 if (bufsize == m_maxsize(MC_16KCL)) {
4047 MBUF_16KCL_INIT(m, cl, rfa, 1, flag);
4048 } else if (bufsize == m_maxsize(MC_BIGCL)) {
4049 MBUF_BIGCL_INIT(m, cl, rfa, 1, flag);
4050 } else {
4051 MBUF_CL_INIT(m, cl, rfa, 1, flag);
4052 }
4053
4054 if (num_with_pkthdrs > 0) {
4055 --num_with_pkthdrs;
4056 #if CONFIG_MACF_NET
4057 if (mac_mbuf_label_init(m, wait) != 0) {
4058 m_freem(m);
4059 break;
4060 }
4061 #endif /* MAC_NET */
4062 }
4063
4064 *np = m;
4065 if (num_with_pkthdrs > 0)
4066 np = &m->m_nextpkt;
4067 else
4068 np = &m->m_next;
4069 }
4070 ASSERT(pnum != *num_needed || mp_list == NULL);
4071 if (mp_list != NULL)
4072 mcache_free_ext(cp, mp_list);
4073
4074 if (pnum > 0) {
4075 mtype_stat_add(MT_DATA, pnum);
4076 mtype_stat_sub(MT_FREE, pnum);
4077 }
4078
4079 if (wantall && (pnum != *num_needed)) {
4080 if (top != NULL)
4081 m_freem_list(top);
4082 return (NULL);
4083 }
4084
4085 if (pnum > *num_needed) {
4086 printf("%s: File a radar related to <rdar://10146739>. \
4087 needed = %u, pnum = %u, num_needed = %u \n",
4088 __func__, needed, pnum, *num_needed);
4089 }
4090
4091 *num_needed = pnum;
4092 return (top);
4093 }
4094
4095 /*
4096 * Return list of mbuf linked by m_nextpkt. Try for numlist, and if
4097 * wantall is not set, return whatever number were available. The size of
4098 * each mbuf in the list is controlled by the parameter packetlen. Each
4099 * mbuf of the list may have a chain of mbufs linked by m_next. Each mbuf
4100 * in the chain is called a segment. If maxsegments is not null and the
4101 * value pointed to is not null, this specify the maximum number of segments
4102 * for a chain of mbufs. If maxsegments is zero or the value pointed to
4103 * is zero the caller does not have any restriction on the number of segments.
4104 * The actual number of segments of a mbuf chain is return in the value
4105 * pointed to by maxsegments.
4106 */
4107 __private_extern__ struct mbuf *
4108 m_allocpacket_internal(unsigned int *numlist, size_t packetlen,
4109 unsigned int *maxsegments, int wait, int wantall, size_t wantsize)
4110 {
4111 struct mbuf **np, *top, *first = NULL;
4112 size_t bufsize, r_bufsize;
4113 unsigned int num = 0;
4114 unsigned int nsegs = 0;
4115 unsigned int needed, resid;
4116 int mcflags = MSLEEPF(wait);
4117 mcache_obj_t *mp_list = NULL, *rmp_list = NULL;
4118 mcache_t *cp = NULL, *rcp = NULL;
4119
4120 if (*numlist == 0)
4121 return (NULL);
4122
4123 top = NULL;
4124 np = &top;
4125
4126 if (wantsize == 0) {
4127 if (packetlen <= MINCLSIZE) {
4128 bufsize = packetlen;
4129 } else if (packetlen > m_maxsize(MC_CL)) {
4130 /* Use 4KB if jumbo cluster pool isn't available */
4131 if (packetlen <= m_maxsize(MC_BIGCL) || njcl == 0)
4132 bufsize = m_maxsize(MC_BIGCL);
4133 else
4134 bufsize = m_maxsize(MC_16KCL);
4135 } else {
4136 bufsize = m_maxsize(MC_CL);
4137 }
4138 } else if (wantsize == m_maxsize(MC_CL) ||
4139 wantsize == m_maxsize(MC_BIGCL) ||
4140 (wantsize == m_maxsize(MC_16KCL) && njcl > 0)) {
4141 bufsize = wantsize;
4142 } else {
4143 return (NULL);
4144 }
4145
4146 if (bufsize <= MHLEN) {
4147 nsegs = 1;
4148 } else if (bufsize <= MINCLSIZE) {
4149 if (maxsegments != NULL && *maxsegments == 1) {
4150 bufsize = m_maxsize(MC_CL);
4151 nsegs = 1;
4152 } else {
4153 nsegs = 2;
4154 }
4155 } else if (bufsize == m_maxsize(MC_16KCL)) {
4156 VERIFY(njcl > 0);
4157 nsegs = ((packetlen - 1) >> M16KCLSHIFT) + 1;
4158 } else if (bufsize == m_maxsize(MC_BIGCL)) {
4159 nsegs = ((packetlen - 1) >> MBIGCLSHIFT) + 1;
4160 } else {
4161 nsegs = ((packetlen - 1) >> MCLSHIFT) + 1;
4162 }
4163 if (maxsegments != NULL) {
4164 if (*maxsegments && nsegs > *maxsegments) {
4165 *maxsegments = nsegs;
4166 return (NULL);
4167 }
4168 *maxsegments = nsegs;
4169 }
4170
4171 /*
4172 * The caller doesn't want all the requested buffers; only some.
4173 * Try hard to get what we can, but don't block. This effectively
4174 * overrides MCR_SLEEP, since this thread will not go to sleep
4175 * if we can't get all the buffers.
4176 */
4177 if (!wantall || (mcflags & MCR_NOSLEEP))
4178 mcflags |= MCR_TRYHARD;
4179
4180 /*
4181 * Simple case where all elements in the lists/chains are mbufs.
4182 * Unless bufsize is greater than MHLEN, each segment chain is made
4183 * up of exactly 1 mbuf. Otherwise, each segment chain is made up
4184 * of 2 mbufs; the second one is used for the residual data, i.e.
4185 * the remaining data that cannot fit into the first mbuf.
4186 */
4187 if (bufsize <= MINCLSIZE) {
4188 /* Allocate the elements in one shot from the mbuf cache */
4189 ASSERT(bufsize <= MHLEN || nsegs == 2);
4190 cp = m_cache(MC_MBUF);
4191 needed = mcache_alloc_ext(cp, &mp_list,
4192 (*numlist) * nsegs, mcflags);
4193
4194 /*
4195 * The number of elements must be even if we are to use an
4196 * mbuf (instead of a cluster) to store the residual data.
4197 * If we couldn't allocate the requested number of mbufs,
4198 * trim the number down (if it's odd) in order to avoid
4199 * creating a partial segment chain.
4200 */
4201 if (bufsize > MHLEN && (needed & 0x1))
4202 needed--;
4203
4204 while (num < needed) {
4205 struct mbuf *m;
4206
4207 m = (struct mbuf *)mp_list;
4208 mp_list = mp_list->obj_next;
4209 ASSERT(m != NULL);
4210
4211 MBUF_INIT(m, 1, MT_DATA);
4212 #if CONFIG_MACF_NET
4213 if (mac_init_mbuf(m, wait) != 0) {
4214 m_free(m);
4215 break;
4216 }
4217 #endif /* MAC_NET */
4218 num++;
4219 if (bufsize > MHLEN) {
4220 /* A second mbuf for this segment chain */
4221 m->m_next = (struct mbuf *)mp_list;
4222 mp_list = mp_list->obj_next;
4223 ASSERT(m->m_next != NULL);
4224
4225 MBUF_INIT(m->m_next, 0, MT_DATA);
4226 num++;
4227 }
4228 *np = m;
4229 np = &m->m_nextpkt;
4230 }
4231 ASSERT(num != *numlist || mp_list == NULL);
4232
4233 if (num > 0) {
4234 mtype_stat_add(MT_DATA, num);
4235 mtype_stat_sub(MT_FREE, num);
4236 }
4237 num /= nsegs;
4238
4239 /* We've got them all; return to caller */
4240 if (num == *numlist)
4241 return (top);
4242
4243 goto fail;
4244 }
4245
4246 /*
4247 * Complex cases where elements are made up of one or more composite
4248 * mbufs + cluster, depending on packetlen. Each N-segment chain can
4249 * be illustrated as follows:
4250 *
4251 * [mbuf + cluster 1] [mbuf + cluster 2] ... [mbuf + cluster N]
4252 *
4253 * Every composite mbuf + cluster element comes from the intermediate
4254 * cache (either MC_MBUF_CL or MC_MBUF_BIGCL). For space efficiency,
4255 * the last composite element will come from the MC_MBUF_CL cache,
4256 * unless the residual data is larger than 2KB where we use the
4257 * big cluster composite cache (MC_MBUF_BIGCL) instead. Residual
4258 * data is defined as extra data beyond the first element that cannot
4259 * fit into the previous element, i.e. there is no residual data if
4260 * the chain only has 1 segment.
4261 */
4262 r_bufsize = bufsize;
4263 resid = packetlen > bufsize ? packetlen % bufsize : 0;
4264 if (resid > 0) {
4265 /* There is residual data; figure out the cluster size */
4266 if (wantsize == 0 && packetlen > MINCLSIZE) {
4267 /*
4268 * Caller didn't request that all of the segments
4269 * in the chain use the same cluster size; use the
4270 * smaller of the cluster sizes.
4271 */
4272 if (njcl > 0 && resid > m_maxsize(MC_BIGCL))
4273 r_bufsize = m_maxsize(MC_16KCL);
4274 else if (resid > m_maxsize(MC_CL))
4275 r_bufsize = m_maxsize(MC_BIGCL);
4276 else
4277 r_bufsize = m_maxsize(MC_CL);
4278 } else {
4279 /* Use the same cluster size as the other segments */
4280 resid = 0;
4281 }
4282 }
4283
4284 needed = *numlist;
4285 if (resid > 0) {
4286 /*
4287 * Attempt to allocate composite mbuf + cluster elements for
4288 * the residual data in each chain; record the number of such
4289 * elements that can be allocated so that we know how many
4290 * segment chains we can afford to create.
4291 */
4292 if (r_bufsize <= m_maxsize(MC_CL))
4293 rcp = m_cache(MC_MBUF_CL);
4294 else if (r_bufsize <= m_maxsize(MC_BIGCL))
4295 rcp = m_cache(MC_MBUF_BIGCL);
4296 else
4297 rcp = m_cache(MC_MBUF_16KCL);
4298 needed = mcache_alloc_ext(rcp, &rmp_list, *numlist, mcflags);
4299
4300 if (needed == 0)
4301 goto fail;
4302
4303 /* This is temporarily reduced for calculation */
4304 ASSERT(nsegs > 1);
4305 nsegs--;
4306 }
4307
4308 /*
4309 * Attempt to allocate the rest of the composite mbuf + cluster
4310 * elements for the number of segment chains that we need.
4311 */
4312 if (bufsize <= m_maxsize(MC_CL))
4313 cp = m_cache(MC_MBUF_CL);
4314 else if (bufsize <= m_maxsize(MC_BIGCL))
4315 cp = m_cache(MC_MBUF_BIGCL);
4316 else
4317 cp = m_cache(MC_MBUF_16KCL);
4318 needed = mcache_alloc_ext(cp, &mp_list, needed * nsegs, mcflags);
4319
4320 /* Round it down to avoid creating a partial segment chain */
4321 needed = (needed / nsegs) * nsegs;
4322 if (needed == 0)
4323 goto fail;
4324
4325 if (resid > 0) {
4326 /*
4327 * We're about to construct the chain(s); take into account
4328 * the number of segments we have created above to hold the
4329 * residual data for each chain, as well as restore the
4330 * original count of segments per chain.
4331 */
4332 ASSERT(nsegs > 0);
4333 needed += needed / nsegs;
4334 nsegs++;
4335 }
4336
4337 for (;;) {
4338 struct mbuf *m;
4339 u_int16_t flag;
4340 struct ext_ref *rfa;
4341 void *cl;
4342 int pkthdr;
4343
4344 ++num;
4345 if (nsegs == 1 || (num % nsegs) != 0 || resid == 0) {
4346 m = (struct mbuf *)mp_list;
4347 mp_list = mp_list->obj_next;
4348 } else {
4349 m = (struct mbuf *)rmp_list;
4350 rmp_list = rmp_list->obj_next;
4351 }
4352 ASSERT(m != NULL);
4353 VERIFY(m->m_type == MT_FREE && m->m_flags == M_EXT);
4354 VERIFY(m->m_ext.ext_free == NULL ||
4355 m->m_ext.ext_free == m_bigfree ||
4356 m->m_ext.ext_free == m_16kfree);
4357
4358 cl = m->m_ext.ext_buf;
4359 rfa = MEXT_RFA(m);
4360
4361 ASSERT(cl != NULL && rfa != NULL);
4362 VERIFY(MBUF_IS_COMPOSITE(m));
4363
4364 flag = MEXT_FLAGS(m);
4365
4366 pkthdr = (nsegs == 1 || (num % nsegs) == 1);
4367 if (pkthdr)
4368 first = m;
4369 MBUF_INIT(m, pkthdr, MT_DATA);
4370 if (m->m_ext.ext_free == m_16kfree) {
4371 MBUF_16KCL_INIT(m, cl, rfa, 1, flag);
4372 } else if (m->m_ext.ext_free == m_bigfree) {
4373 MBUF_BIGCL_INIT(m, cl, rfa, 1, flag);
4374 } else {
4375 MBUF_CL_INIT(m, cl, rfa, 1, flag);
4376 }
4377 #if CONFIG_MACF_NET
4378 if (pkthdr && mac_init_mbuf(m, wait) != 0) {
4379 --num;
4380 m_freem(m);
4381 break;
4382 }
4383 #endif /* MAC_NET */
4384
4385 *np = m;
4386 if ((num % nsegs) == 0)
4387 np = &first->m_nextpkt;
4388 else
4389 np = &m->m_next;
4390
4391 if (num == needed)
4392 break;
4393 }
4394
4395 if (num > 0) {
4396 mtype_stat_add(MT_DATA, num);
4397 mtype_stat_sub(MT_FREE, num);
4398 }
4399
4400 num /= nsegs;
4401
4402 /* We've got them all; return to caller */
4403 if (num == *numlist) {
4404 ASSERT(mp_list == NULL && rmp_list == NULL);
4405 return (top);
4406 }
4407
4408 fail:
4409 /* Free up what's left of the above */
4410 if (mp_list != NULL)
4411 mcache_free_ext(cp, mp_list);
4412 if (rmp_list != NULL)
4413 mcache_free_ext(rcp, rmp_list);
4414 if (wantall && top != NULL) {
4415 m_freem(top);
4416 return (NULL);
4417 }
4418 *numlist = num;
4419 return (top);
4420 }
4421
4422 /*
4423 * Best effort to get a mbuf cluster + pkthdr. Used by drivers to allocated
4424 * packets on receive ring.
4425 */
4426 __private_extern__ struct mbuf *
4427 m_getpacket_how(int wait)
4428 {
4429 unsigned int num_needed = 1;
4430
4431 return (m_getpackets_internal(&num_needed, 1, wait, 1,
4432 m_maxsize(MC_CL)));
4433 }
4434
4435 /*
4436 * Best effort to get a mbuf cluster + pkthdr. Used by drivers to allocated
4437 * packets on receive ring.
4438 */
4439 struct mbuf *
4440 m_getpacket(void)
4441 {
4442 unsigned int num_needed = 1;
4443
4444 return (m_getpackets_internal(&num_needed, 1, M_WAIT, 1,
4445 m_maxsize(MC_CL)));
4446 }
4447
4448 /*
4449 * Return a list of mbuf hdrs that point to clusters. Try for num_needed;
4450 * if this can't be met, return whatever number were available. Set up the
4451 * first num_with_pkthdrs with mbuf hdrs configured as packet headers. These
4452 * are chained on the m_nextpkt field. Any packets requested beyond this are
4453 * chained onto the last packet header's m_next field.
4454 */
4455 struct mbuf *
4456 m_getpackets(int num_needed, int num_with_pkthdrs, int how)
4457 {
4458 unsigned int n = num_needed;
4459
4460 return (m_getpackets_internal(&n, num_with_pkthdrs, how, 0,
4461 m_maxsize(MC_CL)));
4462 }
4463
4464 /*
4465 * Return a list of mbuf hdrs set up as packet hdrs chained together
4466 * on the m_nextpkt field
4467 */
4468 struct mbuf *
4469 m_getpackethdrs(int num_needed, int how)
4470 {
4471 struct mbuf *m;
4472 struct mbuf **np, *top;
4473
4474 top = NULL;
4475 np = &top;
4476
4477 while (num_needed--) {
4478 m = _M_RETRYHDR(how, MT_DATA);
4479 if (m == NULL)
4480 break;
4481
4482 *np = m;
4483 np = &m->m_nextpkt;
4484 }
4485
4486 return (top);
4487 }
4488
4489 /*
4490 * Free an mbuf list (m_nextpkt) while following m_next. Returns the count
4491 * for mbufs packets freed. Used by the drivers.
4492 */
4493 int
4494 m_freem_list(struct mbuf *m)
4495 {
4496 struct mbuf *nextpkt;
4497 mcache_obj_t *mp_list = NULL;
4498 mcache_obj_t *mcl_list = NULL;
4499 mcache_obj_t *mbc_list = NULL;
4500 mcache_obj_t *m16k_list = NULL;
4501 mcache_obj_t *m_mcl_list = NULL;
4502 mcache_obj_t *m_mbc_list = NULL;
4503 mcache_obj_t *m_m16k_list = NULL;
4504 mcache_obj_t *ref_list = NULL;
4505 int pktcount = 0;
4506 int mt_free = 0, mt_data = 0, mt_header = 0, mt_soname = 0, mt_tag = 0;
4507
4508 while (m != NULL) {
4509 pktcount++;
4510
4511 nextpkt = m->m_nextpkt;
4512 m->m_nextpkt = NULL;
4513
4514 while (m != NULL) {
4515 struct mbuf *next = m->m_next;
4516 mcache_obj_t *o, *rfa;
4517 u_int32_t composite;
4518 u_int16_t refcnt;
4519
4520 if (m->m_type == MT_FREE)
4521 panic("m_free: freeing an already freed mbuf");
4522
4523 if (m->m_flags & M_PKTHDR) {
4524 /* Check for scratch area overflow */
4525 m_redzone_verify(m);
4526 /* Free the aux data and tags if there is any */
4527 m_tag_delete_chain(m, NULL);
4528 }
4529
4530 if (!(m->m_flags & M_EXT)) {
4531 mt_free++;
4532 goto simple_free;
4533 }
4534
4535 if (MBUF_IS_PAIRED(m) && m_free_paired(m)) {
4536 m = next;
4537 continue;
4538 }
4539
4540 mt_free++;
4541
4542 o = (mcache_obj_t *)(void *)m->m_ext.ext_buf;
4543 refcnt = m_decref(m);
4544 composite = (MEXT_FLAGS(m) & EXTF_COMPOSITE);
4545
4546 if (refcnt == MEXT_MINREF(m) && !composite) {
4547 if (m->m_ext.ext_free == NULL) {
4548 o->obj_next = mcl_list;
4549 mcl_list = o;
4550 } else if (m->m_ext.ext_free == m_bigfree) {
4551 o->obj_next = mbc_list;
4552 mbc_list = o;
4553 } else if (m->m_ext.ext_free == m_16kfree) {
4554 o->obj_next = m16k_list;
4555 m16k_list = o;
4556 } else {
4557 (*(m->m_ext.ext_free))((caddr_t)o,
4558 m->m_ext.ext_size,
4559 m->m_ext.ext_arg);
4560 }
4561 rfa = (mcache_obj_t *)(void *)MEXT_RFA(m);
4562 rfa->obj_next = ref_list;
4563 ref_list = rfa;
4564 MEXT_RFA(m) = NULL;
4565 } else if (refcnt == MEXT_MINREF(m) && composite) {
4566 VERIFY(!(MEXT_FLAGS(m) & EXTF_PAIRED));
4567 VERIFY(m->m_type != MT_FREE);
4568 /*
4569 * Amortize the costs of atomic operations
4570 * by doing them at the end, if possible.
4571 */
4572 if (m->m_type == MT_DATA)
4573 mt_data++;
4574 else if (m->m_type == MT_HEADER)
4575 mt_header++;
4576 else if (m->m_type == MT_SONAME)
4577 mt_soname++;
4578 else if (m->m_type == MT_TAG)
4579 mt_tag++;
4580 else
4581 mtype_stat_dec(m->m_type);
4582
4583 m->m_type = MT_FREE;
4584 m->m_flags = M_EXT;
4585 m->m_len = 0;
4586 m->m_next = m->m_nextpkt = NULL;
4587
4588 MEXT_FLAGS(m) &= ~EXTF_READONLY;
4589
4590 /* "Free" into the intermediate cache */
4591 o = (mcache_obj_t *)m;
4592 if (m->m_ext.ext_free == NULL) {
4593 o->obj_next = m_mcl_list;
4594 m_mcl_list = o;
4595 } else if (m->m_ext.ext_free == m_bigfree) {
4596 o->obj_next = m_mbc_list;
4597 m_mbc_list = o;
4598 } else {
4599 VERIFY(m->m_ext.ext_free == m_16kfree);
4600 o->obj_next = m_m16k_list;
4601 m_m16k_list = o;
4602 }
4603 m = next;
4604 continue;
4605 }
4606 simple_free:
4607 /*
4608 * Amortize the costs of atomic operations
4609 * by doing them at the end, if possible.
4610 */
4611 if (m->m_type == MT_DATA)
4612 mt_data++;
4613 else if (m->m_type == MT_HEADER)
4614 mt_header++;
4615 else if (m->m_type == MT_SONAME)
4616 mt_soname++;
4617 else if (m->m_type == MT_TAG)
4618 mt_tag++;
4619 else if (m->m_type != MT_FREE)
4620 mtype_stat_dec(m->m_type);
4621
4622 m->m_type = MT_FREE;
4623 m->m_flags = m->m_len = 0;
4624 m->m_next = m->m_nextpkt = NULL;
4625
4626 ((mcache_obj_t *)m)->obj_next = mp_list;
4627 mp_list = (mcache_obj_t *)m;
4628
4629 m = next;
4630 }
4631
4632 m = nextpkt;
4633 }
4634
4635 if (mt_free > 0)
4636 mtype_stat_add(MT_FREE, mt_free);
4637 if (mt_data > 0)
4638 mtype_stat_sub(MT_DATA, mt_data);
4639 if (mt_header > 0)
4640 mtype_stat_sub(MT_HEADER, mt_header);
4641 if (mt_soname > 0)
4642 mtype_stat_sub(MT_SONAME, mt_soname);
4643 if (mt_tag > 0)
4644 mtype_stat_sub(MT_TAG, mt_tag);
4645
4646 if (mp_list != NULL)
4647 mcache_free_ext(m_cache(MC_MBUF), mp_list);
4648 if (mcl_list != NULL)
4649 mcache_free_ext(m_cache(MC_CL), mcl_list);
4650 if (mbc_list != NULL)
4651 mcache_free_ext(m_cache(MC_BIGCL), mbc_list);
4652 if (m16k_list != NULL)
4653 mcache_free_ext(m_cache(MC_16KCL), m16k_list);
4654 if (m_mcl_list != NULL)
4655 mcache_free_ext(m_cache(MC_MBUF_CL), m_mcl_list);
4656 if (m_mbc_list != NULL)
4657 mcache_free_ext(m_cache(MC_MBUF_BIGCL), m_mbc_list);
4658 if (m_m16k_list != NULL)
4659 mcache_free_ext(m_cache(MC_MBUF_16KCL), m_m16k_list);
4660 if (ref_list != NULL)
4661 mcache_free_ext(ref_cache, ref_list);
4662
4663 return (pktcount);
4664 }
4665
4666 void
4667 m_freem(struct mbuf *m)
4668 {
4669 while (m != NULL)
4670 m = m_free(m);
4671 }
4672
4673 /*
4674 * Mbuffer utility routines.
4675 */
4676
4677 /*
4678 * Compute the amount of space available before the current start
4679 * of data in an mbuf.
4680 */
4681 int
4682 m_leadingspace(struct mbuf *m)
4683 {
4684 if (m->m_flags & M_EXT) {
4685 if (MCLHASREFERENCE(m))
4686 return (0);
4687 return (m->m_data - m->m_ext.ext_buf);
4688 }
4689 if (m->m_flags & M_PKTHDR)
4690 return (m->m_data - m->m_pktdat);
4691 return (m->m_data - m->m_dat);
4692 }
4693
4694 /*
4695 * Compute the amount of space available after the end of data in an mbuf.
4696 */
4697 int
4698 m_trailingspace(struct mbuf *m)
4699 {
4700 if (m->m_flags & M_EXT) {
4701 if (MCLHASREFERENCE(m))
4702 return (0);
4703 return (m->m_ext.ext_buf + m->m_ext.ext_size -
4704 (m->m_data + m->m_len));
4705 }
4706 return (&m->m_dat[MLEN] - (m->m_data + m->m_len));
4707 }
4708
4709 /*
4710 * Lesser-used path for M_PREPEND: allocate new mbuf to prepend to chain,
4711 * copy junk along. Does not adjust packet header length.
4712 */
4713 struct mbuf *
4714 m_prepend(struct mbuf *m, int len, int how)
4715 {
4716 struct mbuf *mn;
4717
4718 _MGET(mn, how, m->m_type);
4719 if (mn == NULL) {
4720 m_freem(m);
4721 return (NULL);
4722 }
4723 if (m->m_flags & M_PKTHDR) {
4724 M_COPY_PKTHDR(mn, m);
4725 m->m_flags &= ~M_PKTHDR;
4726 }
4727 mn->m_next = m;
4728 m = mn;
4729 if (m->m_flags & M_PKTHDR) {
4730 VERIFY(len <= MHLEN);
4731 MH_ALIGN(m, len);
4732 } else {
4733 VERIFY(len <= MLEN);
4734 M_ALIGN(m, len);
4735 }
4736 m->m_len = len;
4737 return (m);
4738 }
4739
4740 /*
4741 * Replacement for old M_PREPEND macro: allocate new mbuf to prepend to
4742 * chain, copy junk along, and adjust length.
4743 */
4744 struct mbuf *
4745 m_prepend_2(struct mbuf *m, int len, int how, int align)
4746 {
4747 if (M_LEADINGSPACE(m) >= len &&
4748 (!align || IS_P2ALIGNED((m->m_data - len), sizeof(u_int32_t)))) {
4749 m->m_data -= len;
4750 m->m_len += len;
4751 } else {
4752 m = m_prepend(m, len, how);
4753 }
4754 if ((m) && (m->m_flags & M_PKTHDR))
4755 m->m_pkthdr.len += len;
4756 return (m);
4757 }
4758
4759 /*
4760 * Make a copy of an mbuf chain starting "off0" bytes from the beginning,
4761 * continuing for "len" bytes. If len is M_COPYALL, copy to end of mbuf.
4762 * The wait parameter is a choice of M_WAIT/M_DONTWAIT from caller.
4763 */
4764 int MCFail;
4765
4766 struct mbuf *
4767 m_copym_mode(struct mbuf *m, int off0, int len, int wait, uint32_t mode)
4768 {
4769 struct mbuf *n, *mhdr = NULL, **np;
4770 int off = off0;
4771 struct mbuf *top;
4772 int copyhdr = 0;
4773
4774 if (off < 0 || len < 0)
4775 panic("m_copym: invalid offset %d or len %d", off, len);
4776
4777 VERIFY((mode != M_COPYM_MUST_COPY_HDR &&
4778 mode != M_COPYM_MUST_MOVE_HDR) || (m->m_flags & M_PKTHDR));
4779
4780 if ((off == 0 && (m->m_flags & M_PKTHDR)) ||
4781 mode == M_COPYM_MUST_COPY_HDR || mode == M_COPYM_MUST_MOVE_HDR) {
4782 mhdr = m;
4783 copyhdr = 1;
4784 }
4785
4786 while (off >= m->m_len) {
4787 if (m->m_next == NULL)
4788 panic("m_copym: invalid mbuf chain");
4789 off -= m->m_len;
4790 m = m->m_next;
4791 }
4792 np = &top;
4793 top = NULL;
4794
4795 while (len > 0) {
4796 if (m == NULL) {
4797 if (len != M_COPYALL)
4798 panic("m_copym: len != M_COPYALL");
4799 break;
4800 }
4801
4802 if (copyhdr)
4803 n = _M_RETRYHDR(wait, m->m_type);
4804 else
4805 n = _M_RETRY(wait, m->m_type);
4806 *np = n;
4807
4808 if (n == NULL)
4809 goto nospace;
4810
4811 if (copyhdr != 0) {
4812 if ((mode == M_COPYM_MOVE_HDR) ||
4813 (mode == M_COPYM_MUST_MOVE_HDR)) {
4814 M_COPY_PKTHDR(n, mhdr);
4815 } else if ((mode == M_COPYM_COPY_HDR) ||
4816 (mode == M_COPYM_MUST_COPY_HDR)) {
4817 if (m_dup_pkthdr(n, mhdr, wait) == 0)
4818 goto nospace;
4819 }
4820 if (len == M_COPYALL)
4821 n->m_pkthdr.len -= off0;
4822 else
4823 n->m_pkthdr.len = len;
4824 copyhdr = 0;
4825 /*
4826 * There is data to copy from the packet header mbuf
4827 * if it is empty or it is before the starting offset
4828 */
4829 if (mhdr != m) {
4830 np = &n->m_next;
4831 continue;
4832 }
4833 }
4834 n->m_len = MIN(len, (m->m_len - off));
4835 if (m->m_flags & M_EXT) {
4836 n->m_ext = m->m_ext;
4837 m_incref(m);
4838 n->m_data = m->m_data + off;
4839 n->m_flags |= M_EXT;
4840 } else {
4841 /*
4842 * Limit to the capacity of the destination
4843 */
4844 if (n->m_flags & M_PKTHDR)
4845 n->m_len = MIN(n->m_len, MHLEN);
4846 else
4847 n->m_len = MIN(n->m_len, MLEN);
4848
4849 if (MTOD(n, char *) + n->m_len > ((char *)n) + MSIZE)
4850 panic("%s n %p copy overflow",
4851 __func__, n);
4852
4853 bcopy(MTOD(m, caddr_t)+off, MTOD(n, caddr_t),
4854 (unsigned)n->m_len);
4855 }
4856 if (len != M_COPYALL)
4857 len -= n->m_len;
4858 off = 0;
4859 m = m->m_next;
4860 np = &n->m_next;
4861 }
4862
4863 if (top == NULL)
4864 MCFail++;
4865
4866 return (top);
4867 nospace:
4868
4869 m_freem(top);
4870 MCFail++;
4871 return (NULL);
4872 }
4873
4874
4875 struct mbuf *
4876 m_copym(struct mbuf *m, int off0, int len, int wait)
4877 {
4878 return (m_copym_mode(m, off0, len, wait, M_COPYM_MOVE_HDR));
4879 }
4880
4881 /*
4882 * Equivalent to m_copym except that all necessary mbuf hdrs are allocated
4883 * within this routine also, the last mbuf and offset accessed are passed
4884 * out and can be passed back in to avoid having to rescan the entire mbuf
4885 * list (normally hung off of the socket)
4886 */
4887 struct mbuf *
4888 m_copym_with_hdrs(struct mbuf *m0, int off0, int len0, int wait,
4889 struct mbuf **m_lastm, int *m_off, uint32_t mode)
4890 {
4891 struct mbuf *m = m0, *n, **np = NULL;
4892 int off = off0, len = len0;
4893 struct mbuf *top = NULL;
4894 int mcflags = MSLEEPF(wait);
4895 int copyhdr = 0;
4896 int type = 0;
4897 mcache_obj_t *list = NULL;
4898 int needed = 0;
4899
4900 if (off == 0 && (m->m_flags & M_PKTHDR))
4901 copyhdr = 1;
4902
4903 if (m_lastm != NULL && *m_lastm != NULL) {
4904 m = *m_lastm;
4905 off = *m_off;
4906 } else {
4907 while (off >= m->m_len) {
4908 off -= m->m_len;
4909 m = m->m_next;
4910 }
4911 }
4912
4913 n = m;
4914 while (len > 0) {
4915 needed++;
4916 ASSERT(n != NULL);
4917 len -= MIN(len, (n->m_len - ((needed == 1) ? off : 0)));
4918 n = n->m_next;
4919 }
4920 needed++;
4921 len = len0;
4922
4923 /*
4924 * If the caller doesn't want to be put to sleep, mark it with
4925 * MCR_TRYHARD so that we may reclaim buffers from other places
4926 * before giving up.
4927 */
4928 if (mcflags & MCR_NOSLEEP)
4929 mcflags |= MCR_TRYHARD;
4930
4931 if (mcache_alloc_ext(m_cache(MC_MBUF), &list, needed,
4932 mcflags) != needed)
4933 goto nospace;
4934
4935 needed = 0;
4936 while (len > 0) {
4937 n = (struct mbuf *)list;
4938 list = list->obj_next;
4939 ASSERT(n != NULL && m != NULL);
4940
4941 type = (top == NULL) ? MT_HEADER : m->m_type;
4942 MBUF_INIT(n, (top == NULL), type);
4943 #if CONFIG_MACF_NET
4944 if (top == NULL && mac_mbuf_label_init(n, wait) != 0) {
4945 mtype_stat_inc(MT_HEADER);
4946 mtype_stat_dec(MT_FREE);
4947 m_free(n);
4948 goto nospace;
4949 }
4950 #endif /* MAC_NET */
4951
4952 if (top == NULL) {
4953 top = n;
4954 np = &top->m_next;
4955 continue;
4956 } else {
4957 needed++;
4958 *np = n;
4959 }
4960
4961 if (copyhdr) {
4962 if ((mode == M_COPYM_MOVE_HDR) ||
4963 (mode == M_COPYM_MUST_MOVE_HDR)) {
4964 M_COPY_PKTHDR(n, m);
4965 } else if ((mode == M_COPYM_COPY_HDR) ||
4966 (mode == M_COPYM_MUST_COPY_HDR)) {
4967 if (m_dup_pkthdr(n, m, wait) == 0)
4968 goto nospace;
4969 }
4970 n->m_pkthdr.len = len;
4971 copyhdr = 0;
4972 }
4973 n->m_len = MIN(len, (m->m_len - off));
4974
4975 if (m->m_flags & M_EXT) {
4976 n->m_ext = m->m_ext;
4977 m_incref(m);
4978 n->m_data = m->m_data + off;
4979 n->m_flags |= M_EXT;
4980 } else {
4981 if (MTOD(n, char *) + n->m_len > ((char *)n) + MSIZE)
4982 panic("%s n %p copy overflow",
4983 __func__, n);
4984
4985 bcopy(MTOD(m, caddr_t)+off, MTOD(n, caddr_t),
4986 (unsigned)n->m_len);
4987 }
4988 len -= n->m_len;
4989
4990 if (len == 0) {
4991 if (m_lastm != NULL && m_off != NULL) {
4992 if ((off + n->m_len) == m->m_len) {
4993 *m_lastm = m->m_next;
4994 *m_off = 0;
4995 } else {
4996 *m_lastm = m;
4997 *m_off = off + n->m_len;
4998 }
4999 }
5000 break;
5001 }
5002 off = 0;
5003 m = m->m_next;
5004 np = &n->m_next;
5005 }
5006
5007 mtype_stat_inc(MT_HEADER);
5008 mtype_stat_add(type, needed);
5009 mtype_stat_sub(MT_FREE, needed + 1);
5010
5011 ASSERT(list == NULL);
5012 return (top);
5013
5014 nospace:
5015 if (list != NULL)
5016 mcache_free_ext(m_cache(MC_MBUF), list);
5017 if (top != NULL)
5018 m_freem(top);
5019 MCFail++;
5020 return (NULL);
5021 }
5022
5023 /*
5024 * Copy data from an mbuf chain starting "off" bytes from the beginning,
5025 * continuing for "len" bytes, into the indicated buffer.
5026 */
5027 void
5028 m_copydata(struct mbuf *m, int off, int len, void *vp)
5029 {
5030 unsigned count;
5031 char *cp = vp;
5032
5033 if (off < 0 || len < 0)
5034 panic("m_copydata: invalid offset %d or len %d", off, len);
5035
5036 while (off > 0) {
5037 if (m == NULL)
5038 panic("m_copydata: invalid mbuf chain");
5039 if (off < m->m_len)
5040 break;
5041 off -= m->m_len;
5042 m = m->m_next;
5043 }
5044 while (len > 0) {
5045 if (m == NULL)
5046 panic("m_copydata: invalid mbuf chain");
5047 count = MIN(m->m_len - off, len);
5048 bcopy(MTOD(m, caddr_t) + off, cp, count);
5049 len -= count;
5050 cp += count;
5051 off = 0;
5052 m = m->m_next;
5053 }
5054 }
5055
5056 /*
5057 * Concatenate mbuf chain n to m. Both chains must be of the same type
5058 * (e.g. MT_DATA). Any m_pkthdr is not updated.
5059 */
5060 void
5061 m_cat(struct mbuf *m, struct mbuf *n)
5062 {
5063 while (m->m_next)
5064 m = m->m_next;
5065 while (n) {
5066 if ((m->m_flags & M_EXT) ||
5067 m->m_data + m->m_len + n->m_len >= &m->m_dat[MLEN]) {
5068 /* just join the two chains */
5069 m->m_next = n;
5070 return;
5071 }
5072 /* splat the data from one into the other */
5073 bcopy(MTOD(n, caddr_t), MTOD(m, caddr_t) + m->m_len,
5074 (u_int)n->m_len);
5075 m->m_len += n->m_len;
5076 n = m_free(n);
5077 }
5078 }
5079
5080 void
5081 m_adj(struct mbuf *mp, int req_len)
5082 {
5083 int len = req_len;
5084 struct mbuf *m;
5085 int count;
5086
5087 if ((m = mp) == NULL)
5088 return;
5089 if (len >= 0) {
5090 /*
5091 * Trim from head.
5092 */
5093 while (m != NULL && len > 0) {
5094 if (m->m_len <= len) {
5095 len -= m->m_len;
5096 m->m_len = 0;
5097 m = m->m_next;
5098 } else {
5099 m->m_len -= len;
5100 m->m_data += len;
5101 len = 0;
5102 }
5103 }
5104 m = mp;
5105 if (m->m_flags & M_PKTHDR)
5106 m->m_pkthdr.len -= (req_len - len);
5107 } else {
5108 /*
5109 * Trim from tail. Scan the mbuf chain,
5110 * calculating its length and finding the last mbuf.
5111 * If the adjustment only affects this mbuf, then just
5112 * adjust and return. Otherwise, rescan and truncate
5113 * after the remaining size.
5114 */
5115 len = -len;
5116 count = 0;
5117 for (;;) {
5118 count += m->m_len;
5119 if (m->m_next == (struct mbuf *)0)
5120 break;
5121 m = m->m_next;
5122 }
5123 if (m->m_len >= len) {
5124 m->m_len -= len;
5125 m = mp;
5126 if (m->m_flags & M_PKTHDR)
5127 m->m_pkthdr.len -= len;
5128 return;
5129 }
5130 count -= len;
5131 if (count < 0)
5132 count = 0;
5133 /*
5134 * Correct length for chain is "count".
5135 * Find the mbuf with last data, adjust its length,
5136 * and toss data from remaining mbufs on chain.
5137 */
5138 m = mp;
5139 if (m->m_flags & M_PKTHDR)
5140 m->m_pkthdr.len = count;
5141 for (; m; m = m->m_next) {
5142 if (m->m_len >= count) {
5143 m->m_len = count;
5144 break;
5145 }
5146 count -= m->m_len;
5147 }
5148 while ((m = m->m_next))
5149 m->m_len = 0;
5150 }
5151 }
5152
5153 /*
5154 * Rearange an mbuf chain so that len bytes are contiguous
5155 * and in the data area of an mbuf (so that mtod and dtom
5156 * will work for a structure of size len). Returns the resulting
5157 * mbuf chain on success, frees it and returns null on failure.
5158 * If there is room, it will add up to max_protohdr-len extra bytes to the
5159 * contiguous region in an attempt to avoid being called next time.
5160 */
5161 int MPFail;
5162
5163 struct mbuf *
5164 m_pullup(struct mbuf *n, int len)
5165 {
5166 struct mbuf *m;
5167 int count;
5168 int space;
5169
5170 /*
5171 * If first mbuf has no cluster, and has room for len bytes
5172 * without shifting current data, pullup into it,
5173 * otherwise allocate a new mbuf to prepend to the chain.
5174 */
5175 if ((n->m_flags & M_EXT) == 0 &&
5176 n->m_data + len < &n->m_dat[MLEN] && n->m_next) {
5177 if (n->m_len >= len)
5178 return (n);
5179 m = n;
5180 n = n->m_next;
5181 len -= m->m_len;
5182 } else {
5183 if (len > MHLEN)
5184 goto bad;
5185 _MGET(m, M_DONTWAIT, n->m_type);
5186 if (m == 0)
5187 goto bad;
5188 m->m_len = 0;
5189 if (n->m_flags & M_PKTHDR) {
5190 M_COPY_PKTHDR(m, n);
5191 n->m_flags &= ~M_PKTHDR;
5192 }
5193 }
5194 space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
5195 do {
5196 count = MIN(MIN(MAX(len, max_protohdr), space), n->m_len);
5197 bcopy(MTOD(n, caddr_t), MTOD(m, caddr_t) + m->m_len,
5198 (unsigned)count);
5199 len -= count;
5200 m->m_len += count;
5201 n->m_len -= count;
5202 space -= count;
5203 if (n->m_len)
5204 n->m_data += count;
5205 else
5206 n = m_free(n);
5207 } while (len > 0 && n);
5208 if (len > 0) {
5209 (void) m_free(m);
5210 goto bad;
5211 }
5212 m->m_next = n;
5213 return (m);
5214 bad:
5215 m_freem(n);
5216 MPFail++;
5217 return (0);
5218 }
5219
5220 /*
5221 * Like m_pullup(), except a new mbuf is always allocated, and we allow
5222 * the amount of empty space before the data in the new mbuf to be specified
5223 * (in the event that the caller expects to prepend later).
5224 */
5225 __private_extern__ int MSFail = 0;
5226
5227 __private_extern__ struct mbuf *
5228 m_copyup(struct mbuf *n, int len, int dstoff)
5229 {
5230 struct mbuf *m;
5231 int count, space;
5232
5233 if (len > (MHLEN - dstoff))
5234 goto bad;
5235 MGET(m, M_DONTWAIT, n->m_type);
5236 if (m == NULL)
5237 goto bad;
5238 m->m_len = 0;
5239 if (n->m_flags & M_PKTHDR) {
5240 m_copy_pkthdr(m, n);
5241 n->m_flags &= ~M_PKTHDR;
5242 }
5243 m->m_data += dstoff;
5244 space = &m->m_dat[MLEN] - (m->m_data + m->m_len);
5245 do {
5246 count = min(min(max(len, max_protohdr), space), n->m_len);
5247 memcpy(mtod(m, caddr_t) + m->m_len, mtod(n, caddr_t),
5248 (unsigned)count);
5249 len -= count;
5250 m->m_len += count;
5251 n->m_len -= count;
5252 space -= count;
5253 if (n->m_len)
5254 n->m_data += count;
5255 else
5256 n = m_free(n);
5257 } while (len > 0 && n);
5258 if (len > 0) {
5259 (void) m_free(m);
5260 goto bad;
5261 }
5262 m->m_next = n;
5263 return (m);
5264 bad:
5265 m_freem(n);
5266 MSFail++;
5267 return (NULL);
5268 }
5269
5270 /*
5271 * Partition an mbuf chain in two pieces, returning the tail --
5272 * all but the first len0 bytes. In case of failure, it returns NULL and
5273 * attempts to restore the chain to its original state.
5274 */
5275 struct mbuf *
5276 m_split(struct mbuf *m0, int len0, int wait)
5277 {
5278 return (m_split0(m0, len0, wait, 1));
5279 }
5280
5281 static struct mbuf *
5282 m_split0(struct mbuf *m0, int len0, int wait, int copyhdr)
5283 {
5284 struct mbuf *m, *n;
5285 unsigned len = len0, remain;
5286
5287 for (m = m0; m && len > m->m_len; m = m->m_next)
5288 len -= m->m_len;
5289 if (m == NULL)
5290 return (NULL);
5291 remain = m->m_len - len;
5292 if (copyhdr && (m0->m_flags & M_PKTHDR)) {
5293 _MGETHDR(n, wait, m0->m_type);
5294 if (n == NULL)
5295 return (NULL);
5296 n->m_pkthdr.rcvif = m0->m_pkthdr.rcvif;
5297 n->m_pkthdr.len = m0->m_pkthdr.len - len0;
5298 m0->m_pkthdr.len = len0;
5299 if (m->m_flags & M_EXT)
5300 goto extpacket;
5301 if (remain > MHLEN) {
5302 /* m can't be the lead packet */
5303 MH_ALIGN(n, 0);
5304 n->m_next = m_split(m, len, wait);
5305 if (n->m_next == NULL) {
5306 (void) m_free(n);
5307 return (NULL);
5308 } else
5309 return (n);
5310 } else
5311 MH_ALIGN(n, remain);
5312 } else if (remain == 0) {
5313 n = m->m_next;
5314 m->m_next = NULL;
5315 return (n);
5316 } else {
5317 _MGET(n, wait, m->m_type);
5318 if (n == NULL)
5319 return (NULL);
5320 M_ALIGN(n, remain);
5321 }
5322 extpacket:
5323 if (m->m_flags & M_EXT) {
5324 n->m_flags |= M_EXT;
5325 n->m_ext = m->m_ext;
5326 m_incref(m);
5327 n->m_data = m->m_data + len;
5328 } else {
5329 bcopy(MTOD(m, caddr_t) + len, MTOD(n, caddr_t), remain);
5330 }
5331 n->m_len = remain;
5332 m->m_len = len;
5333 n->m_next = m->m_next;
5334 m->m_next = NULL;
5335 return (n);
5336 }
5337
5338 /*
5339 * Routine to copy from device local memory into mbufs.
5340 */
5341 struct mbuf *
5342 m_devget(char *buf, int totlen, int off0, struct ifnet *ifp,
5343 void (*copy)(const void *, void *, size_t))
5344 {
5345 struct mbuf *m;
5346 struct mbuf *top = NULL, **mp = &top;
5347 int off = off0, len;
5348 char *cp;
5349 char *epkt;
5350
5351 cp = buf;
5352 epkt = cp + totlen;
5353 if (off) {
5354 /*
5355 * If 'off' is non-zero, packet is trailer-encapsulated,
5356 * so we have to skip the type and length fields.
5357 */
5358 cp += off + 2 * sizeof (u_int16_t);
5359 totlen -= 2 * sizeof (u_int16_t);
5360 }
5361 _MGETHDR(m, M_DONTWAIT, MT_DATA);
5362 if (m == NULL)
5363 return (NULL);
5364 m->m_pkthdr.rcvif = ifp;
5365 m->m_pkthdr.len = totlen;
5366 m->m_len = MHLEN;
5367
5368 while (totlen > 0) {
5369 if (top != NULL) {
5370 _MGET(m, M_DONTWAIT, MT_DATA);
5371 if (m == NULL) {
5372 m_freem(top);
5373 return (NULL);
5374 }
5375 m->m_len = MLEN;
5376 }
5377 len = MIN(totlen, epkt - cp);
5378 if (len >= MINCLSIZE) {
5379 MCLGET(m, M_DONTWAIT);
5380 if (m->m_flags & M_EXT) {
5381 m->m_len = len = MIN(len, m_maxsize(MC_CL));
5382 } else {
5383 /* give up when it's out of cluster mbufs */
5384 if (top != NULL)
5385 m_freem(top);
5386 m_freem(m);
5387 return (NULL);
5388 }
5389 } else {
5390 /*
5391 * Place initial small packet/header at end of mbuf.
5392 */
5393 if (len < m->m_len) {
5394 if (top == NULL &&
5395 len + max_linkhdr <= m->m_len)
5396 m->m_data += max_linkhdr;
5397 m->m_len = len;
5398 } else {
5399 len = m->m_len;
5400 }
5401 }
5402 if (copy)
5403 copy(cp, MTOD(m, caddr_t), (unsigned)len);
5404 else
5405 bcopy(cp, MTOD(m, caddr_t), (unsigned)len);
5406 cp += len;
5407 *mp = m;
5408 mp = &m->m_next;
5409 totlen -= len;
5410 if (cp == epkt)
5411 cp = buf;
5412 }
5413 return (top);
5414 }
5415
5416 #ifndef MBUF_GROWTH_NORMAL_THRESH
5417 #define MBUF_GROWTH_NORMAL_THRESH 25
5418 #endif
5419
5420 /*
5421 * Cluster freelist allocation check.
5422 */
5423 static int
5424 m_howmany(int num, size_t bufsize)
5425 {
5426 int i = 0, j = 0;
5427 u_int32_t m_mbclusters, m_clusters, m_bigclusters, m_16kclusters;
5428 u_int32_t m_mbfree, m_clfree, m_bigclfree, m_16kclfree;
5429 u_int32_t sumclusters, freeclusters;
5430 u_int32_t percent_pool, percent_kmem;
5431 u_int32_t mb_growth, mb_growth_thresh;
5432
5433 VERIFY(bufsize == m_maxsize(MC_BIGCL) ||
5434 bufsize == m_maxsize(MC_16KCL));
5435
5436 lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
5437
5438 /* Numbers in 2K cluster units */
5439 m_mbclusters = m_total(MC_MBUF) >> NMBPCLSHIFT;
5440 m_clusters = m_total(MC_CL);
5441 m_bigclusters = m_total(MC_BIGCL) << NCLPBGSHIFT;
5442 m_16kclusters = m_total(MC_16KCL);
5443 sumclusters = m_mbclusters + m_clusters + m_bigclusters;
5444
5445 m_mbfree = m_infree(MC_MBUF) >> NMBPCLSHIFT;
5446 m_clfree = m_infree(MC_CL);
5447 m_bigclfree = m_infree(MC_BIGCL) << NCLPBGSHIFT;
5448 m_16kclfree = m_infree(MC_16KCL);
5449 freeclusters = m_mbfree + m_clfree + m_bigclfree;
5450
5451 /* Bail if we've maxed out the mbuf memory map */
5452 if ((bufsize == m_maxsize(MC_BIGCL) && sumclusters >= nclusters) ||
5453 (njcl > 0 && bufsize == m_maxsize(MC_16KCL) &&
5454 (m_16kclusters << NCLPJCLSHIFT) >= njcl)) {
5455 return (0);
5456 }
5457
5458 if (bufsize == m_maxsize(MC_BIGCL)) {
5459 /* Under minimum */
5460 if (m_bigclusters < m_minlimit(MC_BIGCL))
5461 return (m_minlimit(MC_BIGCL) - m_bigclusters);
5462
5463 percent_pool =
5464 ((sumclusters - freeclusters) * 100) / sumclusters;
5465 percent_kmem = (sumclusters * 100) / nclusters;
5466
5467 /*
5468 * If a light/normal user, grow conservatively (75%)
5469 * If a heavy user, grow aggressively (50%)
5470 */
5471 if (percent_kmem < MBUF_GROWTH_NORMAL_THRESH)
5472 mb_growth = MB_GROWTH_NORMAL;
5473 else
5474 mb_growth = MB_GROWTH_AGGRESSIVE;
5475
5476 if (percent_kmem < 5) {
5477 /* For initial allocations */
5478 i = num;
5479 } else {
5480 /* Return if >= MBIGCL_LOWAT clusters available */
5481 if (m_infree(MC_BIGCL) >= MBIGCL_LOWAT &&
5482 m_total(MC_BIGCL) >=
5483 MBIGCL_LOWAT + m_minlimit(MC_BIGCL))
5484 return (0);
5485
5486 /* Ensure at least num clusters are accessible */
5487 if (num >= m_infree(MC_BIGCL))
5488 i = num - m_infree(MC_BIGCL);
5489 if (num > m_total(MC_BIGCL) - m_minlimit(MC_BIGCL))
5490 j = num - (m_total(MC_BIGCL) -
5491 m_minlimit(MC_BIGCL));
5492
5493 i = MAX(i, j);
5494
5495 /*
5496 * Grow pool if percent_pool > 75 (normal growth)
5497 * or percent_pool > 50 (aggressive growth).
5498 */
5499 mb_growth_thresh = 100 - (100 / (1 << mb_growth));
5500 if (percent_pool > mb_growth_thresh)
5501 j = ((sumclusters + num) >> mb_growth) -
5502 freeclusters;
5503 i = MAX(i, j);
5504 }
5505
5506 /* Check to ensure we didn't go over limits */
5507 if (i + m_bigclusters >= m_maxlimit(MC_BIGCL))
5508 i = m_maxlimit(MC_BIGCL) - m_bigclusters;
5509 if ((i << 1) + sumclusters >= nclusters)
5510 i = (nclusters - sumclusters) >> 1;
5511 VERIFY((m_total(MC_BIGCL) + i) <= m_maxlimit(MC_BIGCL));
5512 VERIFY(sumclusters + (i << 1) <= nclusters);
5513
5514 } else { /* 16K CL */
5515 VERIFY(njcl > 0);
5516 /* Ensure at least num clusters are available */
5517 if (num >= m_16kclfree)
5518 i = num - m_16kclfree;
5519
5520 /* Always grow 16KCL pool aggressively */
5521 if (((m_16kclusters + num) >> 1) > m_16kclfree)
5522 j = ((m_16kclusters + num) >> 1) - m_16kclfree;
5523 i = MAX(i, j);
5524
5525 /* Check to ensure we don't go over limit */
5526 if (i + m_16kclusters >= m_maxlimit(MC_16KCL))
5527 i = m_maxlimit(MC_16KCL) - m_16kclusters;
5528 VERIFY((m_total(MC_16KCL) + i) <= m_maxlimit(MC_16KCL));
5529 }
5530 return (i);
5531 }
5532 /*
5533 * Return the number of bytes in the mbuf chain, m.
5534 */
5535 unsigned int
5536 m_length(struct mbuf *m)
5537 {
5538 struct mbuf *m0;
5539 unsigned int pktlen;
5540
5541 if (m->m_flags & M_PKTHDR)
5542 return (m->m_pkthdr.len);
5543
5544 pktlen = 0;
5545 for (m0 = m; m0 != NULL; m0 = m0->m_next)
5546 pktlen += m0->m_len;
5547 return (pktlen);
5548 }
5549
5550 /*
5551 * Copy data from a buffer back into the indicated mbuf chain,
5552 * starting "off" bytes from the beginning, extending the mbuf
5553 * chain if necessary.
5554 */
5555 void
5556 m_copyback(struct mbuf *m0, int off, int len, const void *cp)
5557 {
5558 #if DEBUG
5559 struct mbuf *origm = m0;
5560 int error;
5561 #endif /* DEBUG */
5562
5563 if (m0 == NULL)
5564 return;
5565
5566 #if DEBUG
5567 error =
5568 #endif /* DEBUG */
5569 m_copyback0(&m0, off, len, cp,
5570 M_COPYBACK0_COPYBACK | M_COPYBACK0_EXTEND, M_DONTWAIT);
5571
5572 #if DEBUG
5573 if (error != 0 || (m0 != NULL && origm != m0))
5574 panic("m_copyback");
5575 #endif /* DEBUG */
5576 }
5577
5578 struct mbuf *
5579 m_copyback_cow(struct mbuf *m0, int off, int len, const void *cp, int how)
5580 {
5581 int error;
5582
5583 /* don't support chain expansion */
5584 VERIFY(off + len <= m_length(m0));
5585
5586 error = m_copyback0(&m0, off, len, cp,
5587 M_COPYBACK0_COPYBACK | M_COPYBACK0_COW, how);
5588 if (error) {
5589 /*
5590 * no way to recover from partial success.
5591 * just free the chain.
5592 */
5593 m_freem(m0);
5594 return (NULL);
5595 }
5596 return (m0);
5597 }
5598
5599 /*
5600 * m_makewritable: ensure the specified range writable.
5601 */
5602 int
5603 m_makewritable(struct mbuf **mp, int off, int len, int how)
5604 {
5605 int error;
5606 #if DEBUG
5607 struct mbuf *n;
5608 int origlen, reslen;
5609
5610 origlen = m_length(*mp);
5611 #endif /* DEBUG */
5612
5613 #if 0 /* M_COPYALL is large enough */
5614 if (len == M_COPYALL)
5615 len = m_length(*mp) - off; /* XXX */
5616 #endif
5617
5618 error = m_copyback0(mp, off, len, NULL,
5619 M_COPYBACK0_PRESERVE | M_COPYBACK0_COW, how);
5620
5621 #if DEBUG
5622 reslen = 0;
5623 for (n = *mp; n; n = n->m_next)
5624 reslen += n->m_len;
5625 if (origlen != reslen)
5626 panic("m_makewritable: length changed");
5627 if (((*mp)->m_flags & M_PKTHDR) && reslen != (*mp)->m_pkthdr.len)
5628 panic("m_makewritable: inconsist");
5629 #endif /* DEBUG */
5630
5631 return (error);
5632 }
5633
5634 static int
5635 m_copyback0(struct mbuf **mp0, int off, int len, const void *vp, int flags,
5636 int how)
5637 {
5638 int mlen;
5639 struct mbuf *m, *n;
5640 struct mbuf **mp;
5641 int totlen = 0;
5642 const char *cp = vp;
5643
5644 VERIFY(mp0 != NULL);
5645 VERIFY(*mp0 != NULL);
5646 VERIFY((flags & M_COPYBACK0_PRESERVE) == 0 || cp == NULL);
5647 VERIFY((flags & M_COPYBACK0_COPYBACK) == 0 || cp != NULL);
5648
5649 /*
5650 * we don't bother to update "totlen" in the case of M_COPYBACK0_COW,
5651 * assuming that M_COPYBACK0_EXTEND and M_COPYBACK0_COW are exclusive.
5652 */
5653
5654 VERIFY((~flags & (M_COPYBACK0_EXTEND|M_COPYBACK0_COW)) != 0);
5655
5656 mp = mp0;
5657 m = *mp;
5658 while (off > (mlen = m->m_len)) {
5659 off -= mlen;
5660 totlen += mlen;
5661 if (m->m_next == NULL) {
5662 int tspace;
5663 extend:
5664 if (!(flags & M_COPYBACK0_EXTEND))
5665 goto out;
5666
5667 /*
5668 * try to make some space at the end of "m".
5669 */
5670
5671 mlen = m->m_len;
5672 if (off + len >= MINCLSIZE &&
5673 !(m->m_flags & M_EXT) && m->m_len == 0) {
5674 MCLGET(m, how);
5675 }
5676 tspace = M_TRAILINGSPACE(m);
5677 if (tspace > 0) {
5678 tspace = MIN(tspace, off + len);
5679 VERIFY(tspace > 0);
5680 bzero(mtod(m, char *) + m->m_len,
5681 MIN(off, tspace));
5682 m->m_len += tspace;
5683 off += mlen;
5684 totlen -= mlen;
5685 continue;
5686 }
5687
5688 /*
5689 * need to allocate an mbuf.
5690 */
5691
5692 if (off + len >= MINCLSIZE) {
5693 n = m_getcl(how, m->m_type, 0);
5694 } else {
5695 n = _M_GET(how, m->m_type);
5696 }
5697 if (n == NULL) {
5698 goto out;
5699 }
5700 n->m_len = 0;
5701 n->m_len = MIN(M_TRAILINGSPACE(n), off + len);
5702 bzero(mtod(n, char *), MIN(n->m_len, off));
5703 m->m_next = n;
5704 }
5705 mp = &m->m_next;
5706 m = m->m_next;
5707 }
5708 while (len > 0) {
5709 mlen = m->m_len - off;
5710 if (mlen != 0 && m_mclhasreference(m)) {
5711 char *datap;
5712 int eatlen;
5713
5714 /*
5715 * this mbuf is read-only.
5716 * allocate a new writable mbuf and try again.
5717 */
5718
5719 #if DIAGNOSTIC
5720 if (!(flags & M_COPYBACK0_COW))
5721 panic("m_copyback0: read-only");
5722 #endif /* DIAGNOSTIC */
5723
5724 /*
5725 * if we're going to write into the middle of
5726 * a mbuf, split it first.
5727 */
5728 if (off > 0 && len < mlen) {
5729 n = m_split0(m, off, how, 0);
5730 if (n == NULL)
5731 goto enobufs;
5732 m->m_next = n;
5733 mp = &m->m_next;
5734 m = n;
5735 off = 0;
5736 continue;
5737 }
5738
5739 /*
5740 * XXX TODO coalesce into the trailingspace of
5741 * the previous mbuf when possible.
5742 */
5743
5744 /*
5745 * allocate a new mbuf. copy packet header if needed.
5746 */
5747 n = _M_GET(how, m->m_type);
5748 if (n == NULL)
5749 goto enobufs;
5750 if (off == 0 && (m->m_flags & M_PKTHDR)) {
5751 M_COPY_PKTHDR(n, m);
5752 n->m_len = MHLEN;
5753 } else {
5754 if (len >= MINCLSIZE)
5755 MCLGET(n, M_DONTWAIT);
5756 n->m_len =
5757 (n->m_flags & M_EXT) ? MCLBYTES : MLEN;
5758 }
5759 if (n->m_len > len)
5760 n->m_len = len;
5761
5762 /*
5763 * free the region which has been overwritten.
5764 * copying data from old mbufs if requested.
5765 */
5766 if (flags & M_COPYBACK0_PRESERVE)
5767 datap = mtod(n, char *);
5768 else
5769 datap = NULL;
5770 eatlen = n->m_len;
5771 VERIFY(off == 0 || eatlen >= mlen);
5772 if (off > 0) {
5773 VERIFY(len >= mlen);
5774 m->m_len = off;
5775 m->m_next = n;
5776 if (datap) {
5777 m_copydata(m, off, mlen, datap);
5778 datap += mlen;
5779 }
5780 eatlen -= mlen;
5781 mp = &m->m_next;
5782 m = m->m_next;
5783 }
5784 while (m != NULL && m_mclhasreference(m) &&
5785 n->m_type == m->m_type && eatlen > 0) {
5786 mlen = MIN(eatlen, m->m_len);
5787 if (datap) {
5788 m_copydata(m, 0, mlen, datap);
5789 datap += mlen;
5790 }
5791 m->m_data += mlen;
5792 m->m_len -= mlen;
5793 eatlen -= mlen;
5794 if (m->m_len == 0)
5795 *mp = m = m_free(m);
5796 }
5797 if (eatlen > 0)
5798 n->m_len -= eatlen;
5799 n->m_next = m;
5800 *mp = m = n;
5801 continue;
5802 }
5803 mlen = MIN(mlen, len);
5804 if (flags & M_COPYBACK0_COPYBACK) {
5805 bcopy(cp, mtod(m, caddr_t) + off, (unsigned)mlen);
5806 cp += mlen;
5807 }
5808 len -= mlen;
5809 mlen += off;
5810 off = 0;
5811 totlen += mlen;
5812 if (len == 0)
5813 break;
5814 if (m->m_next == NULL) {
5815 goto extend;
5816 }
5817 mp = &m->m_next;
5818 m = m->m_next;
5819 }
5820 out:
5821 if (((m = *mp0)->m_flags & M_PKTHDR) && (m->m_pkthdr.len < totlen)) {
5822 VERIFY(flags & M_COPYBACK0_EXTEND);
5823 m->m_pkthdr.len = totlen;
5824 }
5825
5826 return (0);
5827
5828 enobufs:
5829 return (ENOBUFS);
5830 }
5831
5832 uint64_t
5833 mcl_to_paddr(char *addr)
5834 {
5835 vm_offset_t base_phys;
5836
5837 if (!MBUF_IN_MAP(addr))
5838 return (0);
5839 base_phys = mcl_paddr[atop_64(addr - (char *)mbutl)];
5840
5841 if (base_phys == 0)
5842 return (0);
5843 return ((uint64_t)(ptoa_64(base_phys) | ((uint64_t)addr & PAGE_MASK)));
5844 }
5845
5846 /*
5847 * Dup the mbuf chain passed in. The whole thing. No cute additional cruft.
5848 * And really copy the thing. That way, we don't "precompute" checksums
5849 * for unsuspecting consumers. Assumption: m->m_nextpkt == 0. Trick: for
5850 * small packets, don't dup into a cluster. That way received packets
5851 * don't take up too much room in the sockbuf (cf. sbspace()).
5852 */
5853 int MDFail;
5854
5855 struct mbuf *
5856 m_dup(struct mbuf *m, int how)
5857 {
5858 struct mbuf *n, **np;
5859 struct mbuf *top;
5860 int copyhdr = 0;
5861
5862 np = &top;
5863 top = NULL;
5864 if (m->m_flags & M_PKTHDR)
5865 copyhdr = 1;
5866
5867 /*
5868 * Quick check: if we have one mbuf and its data fits in an
5869 * mbuf with packet header, just copy and go.
5870 */
5871 if (m->m_next == NULL) {
5872 /* Then just move the data into an mbuf and be done... */
5873 if (copyhdr) {
5874 if (m->m_pkthdr.len <= MHLEN && m->m_len <= MHLEN) {
5875 if ((n = _M_GETHDR(how, m->m_type)) == NULL)
5876 return (NULL);
5877 n->m_len = m->m_len;
5878 m_dup_pkthdr(n, m, how);
5879 bcopy(m->m_data, n->m_data, m->m_len);
5880 return (n);
5881 }
5882 } else if (m->m_len <= MLEN) {
5883 if ((n = _M_GET(how, m->m_type)) == NULL)
5884 return (NULL);
5885 bcopy(m->m_data, n->m_data, m->m_len);
5886 n->m_len = m->m_len;
5887 return (n);
5888 }
5889 }
5890 while (m != NULL) {
5891 #if BLUE_DEBUG
5892 printf("<%x: %x, %x, %x\n", m, m->m_flags, m->m_len,
5893 m->m_data);
5894 #endif
5895 if (copyhdr)
5896 n = _M_GETHDR(how, m->m_type);
5897 else
5898 n = _M_GET(how, m->m_type);
5899 if (n == NULL)
5900 goto nospace;
5901 if (m->m_flags & M_EXT) {
5902 if (m->m_len <= m_maxsize(MC_CL))
5903 MCLGET(n, how);
5904 else if (m->m_len <= m_maxsize(MC_BIGCL))
5905 n = m_mbigget(n, how);
5906 else if (m->m_len <= m_maxsize(MC_16KCL) && njcl > 0)
5907 n = m_m16kget(n, how);
5908 if (!(n->m_flags & M_EXT)) {
5909 (void) m_free(n);
5910 goto nospace;
5911 }
5912 }
5913 *np = n;
5914 if (copyhdr) {
5915 /* Don't use M_COPY_PKTHDR: preserve m_data */
5916 m_dup_pkthdr(n, m, how);
5917 copyhdr = 0;
5918 if (!(n->m_flags & M_EXT))
5919 n->m_data = n->m_pktdat;
5920 }
5921 n->m_len = m->m_len;
5922 /*
5923 * Get the dup on the same bdry as the original
5924 * Assume that the two mbufs have the same offset to data area
5925 * (up to word boundaries)
5926 */
5927 bcopy(MTOD(m, caddr_t), MTOD(n, caddr_t), (unsigned)n->m_len);
5928 m = m->m_next;
5929 np = &n->m_next;
5930 #if BLUE_DEBUG
5931 printf(">%x: %x, %x, %x\n", n, n->m_flags, n->m_len,
5932 n->m_data);
5933 #endif
5934 }
5935
5936 if (top == NULL)
5937 MDFail++;
5938 return (top);
5939
5940 nospace:
5941 m_freem(top);
5942 MDFail++;
5943 return (NULL);
5944 }
5945
5946 #define MBUF_MULTIPAGES(m) \
5947 (((m)->m_flags & M_EXT) && \
5948 ((IS_P2ALIGNED((m)->m_data, PAGE_SIZE) \
5949 && (m)->m_len > PAGE_SIZE) || \
5950 (!IS_P2ALIGNED((m)->m_data, PAGE_SIZE) && \
5951 P2ROUNDUP((m)->m_data, PAGE_SIZE) < ((uintptr_t)(m)->m_data + (m)->m_len))))
5952
5953 static struct mbuf *
5954 m_expand(struct mbuf *m, struct mbuf **last)
5955 {
5956 struct mbuf *top = NULL;
5957 struct mbuf **nm = &top;
5958 uintptr_t data0, data;
5959 unsigned int len0, len;
5960
5961 VERIFY(MBUF_MULTIPAGES(m));
5962 VERIFY(m->m_next == NULL);
5963 data0 = (uintptr_t)m->m_data;
5964 len0 = m->m_len;
5965 *last = top;
5966
5967 for (;;) {
5968 struct mbuf *n;
5969
5970 data = data0;
5971 if (IS_P2ALIGNED(data, PAGE_SIZE) && len0 > PAGE_SIZE)
5972 len = PAGE_SIZE;
5973 else if (!IS_P2ALIGNED(data, PAGE_SIZE) &&
5974 P2ROUNDUP(data, PAGE_SIZE) < (data + len0))
5975 len = P2ROUNDUP(data, PAGE_SIZE) - data;
5976 else
5977 len = len0;
5978
5979 VERIFY(len > 0);
5980 VERIFY(m->m_flags & M_EXT);
5981 m->m_data = (void *)data;
5982 m->m_len = len;
5983
5984 *nm = *last = m;
5985 nm = &m->m_next;
5986 m->m_next = NULL;
5987
5988 data0 += len;
5989 len0 -= len;
5990 if (len0 == 0)
5991 break;
5992
5993 n = _M_RETRY(M_DONTWAIT, MT_DATA);
5994 if (n == NULL) {
5995 m_freem(top);
5996 top = *last = NULL;
5997 break;
5998 }
5999
6000 n->m_ext = m->m_ext;
6001 m_incref(m);
6002 n->m_flags |= M_EXT;
6003 m = n;
6004 }
6005 return (top);
6006 }
6007
6008 struct mbuf *
6009 m_normalize(struct mbuf *m)
6010 {
6011 struct mbuf *top = NULL;
6012 struct mbuf **nm = &top;
6013 boolean_t expanded = FALSE;
6014
6015 while (m != NULL) {
6016 struct mbuf *n;
6017
6018 n = m->m_next;
6019 m->m_next = NULL;
6020
6021 /* Does the data cross one or more page boundaries? */
6022 if (MBUF_MULTIPAGES(m)) {
6023 struct mbuf *last;
6024 if ((m = m_expand(m, &last)) == NULL) {
6025 m_freem(n);
6026 m_freem(top);
6027 top = NULL;
6028 break;
6029 }
6030 *nm = m;
6031 nm = &last->m_next;
6032 expanded = TRUE;
6033 } else {
6034 *nm = m;
6035 nm = &m->m_next;
6036 }
6037 m = n;
6038 }
6039 if (expanded)
6040 atomic_add_32(&mb_normalized, 1);
6041 return (top);
6042 }
6043
6044 /*
6045 * Append the specified data to the indicated mbuf chain,
6046 * Extend the mbuf chain if the new data does not fit in
6047 * existing space.
6048 *
6049 * Return 1 if able to complete the job; otherwise 0.
6050 */
6051 int
6052 m_append(struct mbuf *m0, int len, caddr_t cp)
6053 {
6054 struct mbuf *m, *n;
6055 int remainder, space;
6056
6057 for (m = m0; m->m_next != NULL; m = m->m_next)
6058 ;
6059 remainder = len;
6060 space = M_TRAILINGSPACE(m);
6061 if (space > 0) {
6062 /*
6063 * Copy into available space.
6064 */
6065 if (space > remainder)
6066 space = remainder;
6067 bcopy(cp, mtod(m, caddr_t) + m->m_len, space);
6068 m->m_len += space;
6069 cp += space;
6070 remainder -= space;
6071 }
6072 while (remainder > 0) {
6073 /*
6074 * Allocate a new mbuf; could check space
6075 * and allocate a cluster instead.
6076 */
6077 n = m_get(M_WAITOK, m->m_type);
6078 if (n == NULL)
6079 break;
6080 n->m_len = min(MLEN, remainder);
6081 bcopy(cp, mtod(n, caddr_t), n->m_len);
6082 cp += n->m_len;
6083 remainder -= n->m_len;
6084 m->m_next = n;
6085 m = n;
6086 }
6087 if (m0->m_flags & M_PKTHDR)
6088 m0->m_pkthdr.len += len - remainder;
6089 return (remainder == 0);
6090 }
6091
6092 struct mbuf *
6093 m_last(struct mbuf *m)
6094 {
6095 while (m->m_next != NULL)
6096 m = m->m_next;
6097 return (m);
6098 }
6099
6100 unsigned int
6101 m_fixhdr(struct mbuf *m0)
6102 {
6103 u_int len;
6104
6105 VERIFY(m0->m_flags & M_PKTHDR);
6106
6107 len = m_length2(m0, NULL);
6108 m0->m_pkthdr.len = len;
6109 return (len);
6110 }
6111
6112 unsigned int
6113 m_length2(struct mbuf *m0, struct mbuf **last)
6114 {
6115 struct mbuf *m;
6116 u_int len;
6117
6118 len = 0;
6119 for (m = m0; m != NULL; m = m->m_next) {
6120 len += m->m_len;
6121 if (m->m_next == NULL)
6122 break;
6123 }
6124 if (last != NULL)
6125 *last = m;
6126 return (len);
6127 }
6128
6129 /*
6130 * Defragment a mbuf chain, returning the shortest possible chain of mbufs
6131 * and clusters. If allocation fails and this cannot be completed, NULL will
6132 * be returned, but the passed in chain will be unchanged. Upon success,
6133 * the original chain will be freed, and the new chain will be returned.
6134 *
6135 * If a non-packet header is passed in, the original mbuf (chain?) will
6136 * be returned unharmed.
6137 *
6138 * If offset is specfied, the first mbuf in the chain will have a leading
6139 * space of the amount stated by the "off" parameter.
6140 *
6141 * This routine requires that the m_pkthdr.header field of the original
6142 * mbuf chain is cleared by the caller.
6143 */
6144 struct mbuf *
6145 m_defrag_offset(struct mbuf *m0, u_int32_t off, int how)
6146 {
6147 struct mbuf *m_new = NULL, *m_final = NULL;
6148 int progress = 0, length, pktlen;
6149
6150 if (!(m0->m_flags & M_PKTHDR))
6151 return (m0);
6152
6153 VERIFY(off < MHLEN);
6154 m_fixhdr(m0); /* Needed sanity check */
6155
6156 pktlen = m0->m_pkthdr.len + off;
6157 if (pktlen > MHLEN)
6158 m_final = m_getcl(how, MT_DATA, M_PKTHDR);
6159 else
6160 m_final = m_gethdr(how, MT_DATA);
6161
6162 if (m_final == NULL)
6163 goto nospace;
6164
6165 if (off > 0) {
6166 pktlen -= off;
6167 m_final->m_data += off;
6168 }
6169
6170 /*
6171 * Caller must have handled the contents pointed to by this
6172 * pointer before coming here, as otherwise it will point to
6173 * the original mbuf which will get freed upon success.
6174 */
6175 VERIFY(m0->m_pkthdr.pkt_hdr == NULL);
6176
6177 if (m_dup_pkthdr(m_final, m0, how) == 0)
6178 goto nospace;
6179
6180 m_new = m_final;
6181
6182 while (progress < pktlen) {
6183 length = pktlen - progress;
6184 if (length > MCLBYTES)
6185 length = MCLBYTES;
6186 length -= ((m_new == m_final) ? off : 0);
6187
6188 if (m_new == NULL) {
6189 if (length > MLEN)
6190 m_new = m_getcl(how, MT_DATA, 0);
6191 else
6192 m_new = m_get(how, MT_DATA);
6193 if (m_new == NULL)
6194 goto nospace;
6195 }
6196
6197 m_copydata(m0, progress, length, mtod(m_new, caddr_t));
6198 progress += length;
6199 m_new->m_len = length;
6200 if (m_new != m_final)
6201 m_cat(m_final, m_new);
6202 m_new = NULL;
6203 }
6204 m_freem(m0);
6205 m0 = m_final;
6206 return (m0);
6207 nospace:
6208 if (m_final)
6209 m_freem(m_final);
6210 return (NULL);
6211 }
6212
6213 struct mbuf *
6214 m_defrag(struct mbuf *m0, int how)
6215 {
6216 return (m_defrag_offset(m0, 0, how));
6217 }
6218
6219 void
6220 m_mchtype(struct mbuf *m, int t)
6221 {
6222 mtype_stat_inc(t);
6223 mtype_stat_dec(m->m_type);
6224 (m)->m_type = t;
6225 }
6226
6227 void *
6228 m_mtod(struct mbuf *m)
6229 {
6230 return (MTOD(m, void *));
6231 }
6232
6233 struct mbuf *
6234 m_dtom(void *x)
6235 {
6236 return ((struct mbuf *)((uintptr_t)(x) & ~(MSIZE-1)));
6237 }
6238
6239 void
6240 m_mcheck(struct mbuf *m)
6241 {
6242 _MCHECK(m);
6243 }
6244
6245 /*
6246 * Return a pointer to mbuf/offset of location in mbuf chain.
6247 */
6248 struct mbuf *
6249 m_getptr(struct mbuf *m, int loc, int *off)
6250 {
6251
6252 while (loc >= 0) {
6253 /* Normal end of search. */
6254 if (m->m_len > loc) {
6255 *off = loc;
6256 return (m);
6257 } else {
6258 loc -= m->m_len;
6259 if (m->m_next == NULL) {
6260 if (loc == 0) {
6261 /* Point at the end of valid data. */
6262 *off = m->m_len;
6263 return (m);
6264 }
6265 return (NULL);
6266 }
6267 m = m->m_next;
6268 }
6269 }
6270 return (NULL);
6271 }
6272
6273 /*
6274 * Inform the corresponding mcache(s) that there's a waiter below.
6275 */
6276 static void
6277 mbuf_waiter_inc(mbuf_class_t class, boolean_t comp)
6278 {
6279 mcache_waiter_inc(m_cache(class));
6280 if (comp) {
6281 if (class == MC_CL) {
6282 mcache_waiter_inc(m_cache(MC_MBUF_CL));
6283 } else if (class == MC_BIGCL) {
6284 mcache_waiter_inc(m_cache(MC_MBUF_BIGCL));
6285 } else if (class == MC_16KCL) {
6286 mcache_waiter_inc(m_cache(MC_MBUF_16KCL));
6287 } else {
6288 mcache_waiter_inc(m_cache(MC_MBUF_CL));
6289 mcache_waiter_inc(m_cache(MC_MBUF_BIGCL));
6290 }
6291 }
6292 }
6293
6294 /*
6295 * Inform the corresponding mcache(s) that there's no more waiter below.
6296 */
6297 static void
6298 mbuf_waiter_dec(mbuf_class_t class, boolean_t comp)
6299 {
6300 mcache_waiter_dec(m_cache(class));
6301 if (comp) {
6302 if (class == MC_CL) {
6303 mcache_waiter_dec(m_cache(MC_MBUF_CL));
6304 } else if (class == MC_BIGCL) {
6305 mcache_waiter_dec(m_cache(MC_MBUF_BIGCL));
6306 } else if (class == MC_16KCL) {
6307 mcache_waiter_dec(m_cache(MC_MBUF_16KCL));
6308 } else {
6309 mcache_waiter_dec(m_cache(MC_MBUF_CL));
6310 mcache_waiter_dec(m_cache(MC_MBUF_BIGCL));
6311 }
6312 }
6313 }
6314
6315 /*
6316 * Called during slab (blocking and non-blocking) allocation. If there
6317 * is at least one waiter, and the time since the first waiter is blocked
6318 * is greater than the watchdog timeout, panic the system.
6319 */
6320 static void
6321 mbuf_watchdog(void)
6322 {
6323 struct timeval now;
6324 unsigned int since;
6325
6326 if (mb_waiters == 0 || !mb_watchdog)
6327 return;
6328
6329 microuptime(&now);
6330 since = now.tv_sec - mb_wdtstart.tv_sec;
6331 if (since >= MB_WDT_MAXTIME) {
6332 panic_plain("%s: %d waiters stuck for %u secs\n%s", __func__,
6333 mb_waiters, since, mbuf_dump());
6334 /* NOTREACHED */
6335 }
6336 }
6337
6338 /*
6339 * Called during blocking allocation. Returns TRUE if one or more objects
6340 * are available at the per-CPU caches layer and that allocation should be
6341 * retried at that level.
6342 */
6343 static boolean_t
6344 mbuf_sleep(mbuf_class_t class, unsigned int num, int wait)
6345 {
6346 boolean_t mcache_retry = FALSE;
6347
6348 lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
6349
6350 /* Check if there's anything at the cache layer */
6351 if (mbuf_cached_above(class, wait)) {
6352 mcache_retry = TRUE;
6353 goto done;
6354 }
6355
6356 /* Nothing? Then try hard to get it from somewhere */
6357 m_reclaim(class, num, (wait & MCR_COMP));
6358
6359 /* We tried hard and got something? */
6360 if (m_infree(class) > 0) {
6361 mbstat.m_wait++;
6362 goto done;
6363 } else if (mbuf_cached_above(class, wait)) {
6364 mbstat.m_wait++;
6365 mcache_retry = TRUE;
6366 goto done;
6367 } else if (wait & MCR_TRYHARD) {
6368 mcache_retry = TRUE;
6369 goto done;
6370 }
6371
6372 /*
6373 * There's really nothing for us right now; inform the
6374 * cache(s) that there is a waiter below and go to sleep.
6375 */
6376 mbuf_waiter_inc(class, (wait & MCR_COMP));
6377
6378 VERIFY(!(wait & MCR_NOSLEEP));
6379
6380 /*
6381 * If this is the first waiter, arm the watchdog timer. Otherwise
6382 * check if we need to panic the system due to watchdog timeout.
6383 */
6384 if (mb_waiters == 0)
6385 microuptime(&mb_wdtstart);
6386 else
6387 mbuf_watchdog();
6388
6389 mb_waiters++;
6390 (void) msleep(mb_waitchan, mbuf_mlock, (PZERO-1), m_cname(class), NULL);
6391
6392 /* We are now up; stop getting notified until next round */
6393 mbuf_waiter_dec(class, (wait & MCR_COMP));
6394
6395 /* We waited and got something */
6396 if (m_infree(class) > 0) {
6397 mbstat.m_wait++;
6398 goto done;
6399 } else if (mbuf_cached_above(class, wait)) {
6400 mbstat.m_wait++;
6401 mcache_retry = TRUE;
6402 }
6403 done:
6404 return (mcache_retry);
6405 }
6406
6407 __attribute__((noreturn))
6408 static void
6409 mbuf_worker_thread(void)
6410 {
6411 int mbuf_expand;
6412
6413 while (1) {
6414 lck_mtx_lock(mbuf_mlock);
6415 mbuf_expand = 0;
6416 if (mbuf_expand_mcl) {
6417 int n;
6418
6419 /* Adjust to current number of cluster in use */
6420 n = mbuf_expand_mcl -
6421 (m_total(MC_CL) - m_infree(MC_CL));
6422 if ((n + m_total(MC_CL)) > m_maxlimit(MC_CL))
6423 n = m_maxlimit(MC_CL) - m_total(MC_CL);
6424 mbuf_expand_mcl = 0;
6425
6426 if (n > 0 && freelist_populate(MC_CL, n, M_WAIT) > 0)
6427 mbuf_expand++;
6428 }
6429 if (mbuf_expand_big) {
6430 int n;
6431
6432 /* Adjust to current number of 4 KB cluster in use */
6433 n = mbuf_expand_big -
6434 (m_total(MC_BIGCL) - m_infree(MC_BIGCL));
6435 if ((n + m_total(MC_BIGCL)) > m_maxlimit(MC_BIGCL))
6436 n = m_maxlimit(MC_BIGCL) - m_total(MC_BIGCL);
6437 mbuf_expand_big = 0;
6438
6439 if (n > 0 && freelist_populate(MC_BIGCL, n, M_WAIT) > 0)
6440 mbuf_expand++;
6441 }
6442 if (mbuf_expand_16k) {
6443 int n;
6444
6445 /* Adjust to current number of 16 KB cluster in use */
6446 n = mbuf_expand_16k -
6447 (m_total(MC_16KCL) - m_infree(MC_16KCL));
6448 if ((n + m_total(MC_16KCL)) > m_maxlimit(MC_16KCL))
6449 n = m_maxlimit(MC_16KCL) - m_total(MC_16KCL);
6450 mbuf_expand_16k = 0;
6451
6452 if (n > 0)
6453 (void) freelist_populate(MC_16KCL, n, M_WAIT);
6454 }
6455
6456 /*
6457 * Because we can run out of memory before filling the mbuf
6458 * map, we should not allocate more clusters than they are
6459 * mbufs -- otherwise we could have a large number of useless
6460 * clusters allocated.
6461 */
6462 if (mbuf_expand) {
6463 while (m_total(MC_MBUF) <
6464 (m_total(MC_BIGCL) + m_total(MC_CL))) {
6465 if (freelist_populate(MC_MBUF, 1, M_WAIT) == 0)
6466 break;
6467 }
6468 }
6469
6470 mbuf_worker_needs_wakeup = TRUE;
6471 assert_wait((caddr_t)&mbuf_worker_needs_wakeup,
6472 THREAD_UNINT);
6473 lck_mtx_unlock(mbuf_mlock);
6474 (void) thread_block((thread_continue_t)mbuf_worker_thread);
6475 }
6476 }
6477
6478 __attribute__((noreturn))
6479 static void
6480 mbuf_worker_thread_init(void)
6481 {
6482 mbuf_worker_ready++;
6483 mbuf_worker_thread();
6484 }
6485
6486 static mcl_slab_t *
6487 slab_get(void *buf)
6488 {
6489 mcl_slabg_t *slg;
6490 unsigned int ix, k;
6491
6492 lck_mtx_assert(mbuf_mlock, LCK_MTX_ASSERT_OWNED);
6493
6494 VERIFY(MBUF_IN_MAP(buf));
6495 ix = ((unsigned char *)buf - mbutl) >> MBSHIFT;
6496 VERIFY(ix < maxslabgrp);
6497
6498 if ((slg = slabstbl[ix]) == NULL) {
6499 /*
6500 * In the current implementation, we never shrink the slabs
6501 * table; if we attempt to reallocate a cluster group when
6502 * it's already allocated, panic since this is a sign of a
6503 * memory corruption (slabstbl[ix] got nullified).
6504 */
6505 ++slabgrp;
6506 VERIFY(ix < slabgrp);
6507 /*
6508 * Slabs expansion can only be done single threaded; when
6509 * we get here, it must be as a result of m_clalloc() which
6510 * is serialized and therefore mb_clalloc_busy must be set.
6511 */
6512 VERIFY(mb_clalloc_busy);
6513 lck_mtx_unlock(mbuf_mlock);
6514
6515 /* This is a new buffer; create the slabs group for it */
6516 MALLOC(slg, mcl_slabg_t *, sizeof (*slg), M_TEMP,
6517 M_WAITOK | M_ZERO);
6518 MALLOC(slg->slg_slab, mcl_slab_t *, sizeof(mcl_slab_t) * NSLABSPMB,
6519 M_TEMP, M_WAITOK | M_ZERO);
6520 VERIFY(slg != NULL && slg->slg_slab != NULL);
6521
6522 lck_mtx_lock(mbuf_mlock);
6523 /*
6524 * No other thread could have gone into m_clalloc() after
6525 * we dropped the lock above, so verify that it's true.
6526 */
6527 VERIFY(mb_clalloc_busy);
6528
6529 slabstbl[ix] = slg;
6530
6531 /* Chain each slab in the group to its forward neighbor */
6532 for (k = 1; k < NSLABSPMB; k++)
6533 slg->slg_slab[k - 1].sl_next = &slg->slg_slab[k];
6534 VERIFY(slg->slg_slab[NSLABSPMB - 1].sl_next == NULL);
6535
6536 /* And chain the last slab in the previous group to this */
6537 if (ix > 0) {
6538 VERIFY(slabstbl[ix - 1]->
6539 slg_slab[NSLABSPMB - 1].sl_next == NULL);
6540 slabstbl[ix - 1]->slg_slab[NSLABSPMB - 1].sl_next =
6541 &slg->slg_slab[0];
6542 }
6543 }
6544
6545 ix = MTOPG(buf) % NSLABSPMB;
6546 VERIFY(ix < NSLABSPMB);
6547
6548 return (&slg->slg_slab[ix]);
6549 }
6550
6551 static void
6552 slab_init(mcl_slab_t *sp, mbuf_class_t class, u_int32_t flags,
6553 void *base, void *head, unsigned int len, int refcnt, int chunks)
6554 {
6555 sp->sl_class = class;
6556 sp->sl_flags = flags;
6557 sp->sl_base = base;
6558 sp->sl_head = head;
6559 sp->sl_len = len;
6560 sp->sl_refcnt = refcnt;
6561 sp->sl_chunks = chunks;
6562 slab_detach(sp);
6563 }
6564
6565 static void
6566 slab_insert(mcl_slab_t *sp, mbuf_class_t class)
6567 {
6568 VERIFY(slab_is_detached(sp));
6569 m_slab_cnt(class)++;
6570 TAILQ_INSERT_TAIL(&m_slablist(class), sp, sl_link);
6571 sp->sl_flags &= ~SLF_DETACHED;
6572
6573 /*
6574 * If a buffer spans multiple contiguous pages then mark them as
6575 * detached too
6576 */
6577 if (class == MC_16KCL) {
6578 int k;
6579 for (k = 1; k < NSLABSP16KB; k++) {
6580 sp = sp->sl_next;
6581 /* Next slab must already be present */
6582 VERIFY(sp != NULL && slab_is_detached(sp));
6583 sp->sl_flags &= ~SLF_DETACHED;
6584 }
6585 }
6586 }
6587
6588 static void
6589 slab_remove(mcl_slab_t *sp, mbuf_class_t class)
6590 {
6591 int k;
6592 VERIFY(!slab_is_detached(sp));
6593 VERIFY(m_slab_cnt(class) > 0);
6594 m_slab_cnt(class)--;
6595 TAILQ_REMOVE(&m_slablist(class), sp, sl_link);
6596 slab_detach(sp);
6597 if (class == MC_16KCL) {
6598 for (k = 1; k < NSLABSP16KB; k++) {
6599 sp = sp->sl_next;
6600 /* Next slab must already be present */
6601 VERIFY(sp != NULL);
6602 VERIFY(!slab_is_detached(sp));
6603 slab_detach(sp);
6604 }
6605 }
6606 }
6607
6608 static boolean_t
6609 slab_inrange(mcl_slab_t *sp, void *buf)
6610 {
6611 return ((uintptr_t)buf >= (uintptr_t)sp->sl_base &&
6612 (uintptr_t)buf < ((uintptr_t)sp->sl_base + sp->sl_len));
6613 }
6614
6615 #undef panic
6616
6617 static void
6618 slab_nextptr_panic(mcl_slab_t *sp, void *addr)
6619 {
6620 int i;
6621 unsigned int chunk_len = sp->sl_len / sp->sl_chunks;
6622 uintptr_t buf = (uintptr_t)sp->sl_base;
6623
6624 for (i = 0; i < sp->sl_chunks; i++, buf += chunk_len) {
6625 void *next = ((mcache_obj_t *)buf)->obj_next;
6626 if (next != addr)
6627 continue;
6628 if (!mclverify) {
6629 if (next != NULL && !MBUF_IN_MAP(next)) {
6630 mcache_t *cp = m_cache(sp->sl_class);
6631 panic("%s: %s buffer %p in slab %p modified "
6632 "after free at offset 0: %p out of range "
6633 "[%p-%p)\n", __func__, cp->mc_name,
6634 (void *)buf, sp, next, mbutl, embutl);
6635 /* NOTREACHED */
6636 }
6637 } else {
6638 mcache_audit_t *mca = mcl_audit_buf2mca(sp->sl_class,
6639 (mcache_obj_t *)buf);
6640 mcl_audit_verify_nextptr(next, mca);
6641 }
6642 }
6643 }
6644
6645 static void
6646 slab_detach(mcl_slab_t *sp)
6647 {
6648 sp->sl_link.tqe_next = (mcl_slab_t *)-1;
6649 sp->sl_link.tqe_prev = (mcl_slab_t **)-1;
6650 sp->sl_flags |= SLF_DETACHED;
6651 }
6652
6653 static boolean_t
6654 slab_is_detached(mcl_slab_t *sp)
6655 {
6656 return ((intptr_t)sp->sl_link.tqe_next == -1 &&
6657 (intptr_t)sp->sl_link.tqe_prev == -1 &&
6658 (sp->sl_flags & SLF_DETACHED));
6659 }
6660
6661 static void
6662 mcl_audit_init(void *buf, mcache_audit_t **mca_list,
6663 mcache_obj_t **con_list, size_t con_size, unsigned int num)
6664 {
6665 mcache_audit_t *mca, *mca_tail;
6666 mcache_obj_t *con = NULL;
6667 boolean_t save_contents = (con_list != NULL);
6668 unsigned int i, ix;
6669
6670 ASSERT(num <= NMBPG);
6671 ASSERT(con_list == NULL || con_size != 0);
6672
6673 ix = MTOPG(buf);
6674 VERIFY(ix < maxclaudit);
6675
6676 /* Make sure we haven't been here before */
6677 for (i = 0; i < NMBPG; i++)
6678 VERIFY(mclaudit[ix].cl_audit[i] == NULL);
6679
6680 mca = mca_tail = *mca_list;
6681 if (save_contents)
6682 con = *con_list;
6683
6684 for (i = 0; i < num; i++) {
6685 mcache_audit_t *next;
6686
6687 next = mca->mca_next;
6688 bzero(mca, sizeof (*mca));
6689 mca->mca_next = next;
6690 mclaudit[ix].cl_audit[i] = mca;
6691
6692 /* Attach the contents buffer if requested */
6693 if (save_contents) {
6694 mcl_saved_contents_t *msc =
6695 (mcl_saved_contents_t *)(void *)con;
6696
6697 VERIFY(msc != NULL);
6698 VERIFY(IS_P2ALIGNED(msc, sizeof (u_int64_t)));
6699 VERIFY(con_size == sizeof (*msc));
6700 mca->mca_contents_size = con_size;
6701 mca->mca_contents = msc;
6702 con = con->obj_next;
6703 bzero(mca->mca_contents, mca->mca_contents_size);
6704 }
6705
6706 mca_tail = mca;
6707 mca = mca->mca_next;
6708 }
6709
6710 if (save_contents)
6711 *con_list = con;
6712
6713 *mca_list = mca_tail->mca_next;
6714 mca_tail->mca_next = NULL;
6715 }
6716
6717 static void
6718 mcl_audit_free(void *buf, unsigned int num)
6719 {
6720 unsigned int i, ix;
6721 mcache_audit_t *mca, *mca_list;
6722
6723 ix = MTOPG(buf);
6724 VERIFY(ix < maxclaudit);
6725
6726 if (mclaudit[ix].cl_audit[0] != NULL) {
6727 mca_list = mclaudit[ix].cl_audit[0];
6728 for (i = 0; i < num; i++) {
6729 mca = mclaudit[ix].cl_audit[i];
6730 mclaudit[ix].cl_audit[i] = NULL;
6731 if (mca->mca_contents)
6732 mcache_free(mcl_audit_con_cache,
6733 mca->mca_contents);
6734 }
6735 mcache_free_ext(mcache_audit_cache,
6736 (mcache_obj_t *)mca_list);
6737 }
6738 }
6739
6740 /*
6741 * Given an address of a buffer (mbuf/2KB/4KB/16KB), return
6742 * the corresponding audit structure for that buffer.
6743 */
6744 static mcache_audit_t *
6745 mcl_audit_buf2mca(mbuf_class_t class, mcache_obj_t *mobj)
6746 {
6747 mcache_audit_t *mca = NULL;
6748 int ix = MTOPG(mobj), m_idx = 0;
6749 unsigned char *page_addr;
6750
6751 VERIFY(ix < maxclaudit);
6752 VERIFY(IS_P2ALIGNED(mobj, MIN(m_maxsize(class), PAGE_SIZE)));
6753
6754 page_addr = PGTOM(ix);
6755
6756 switch (class) {
6757 case MC_MBUF:
6758 /*
6759 * For the mbuf case, find the index of the page
6760 * used by the mbuf and use that index to locate the
6761 * base address of the page. Then find out the
6762 * mbuf index relative to the page base and use
6763 * it to locate the audit structure.
6764 */
6765 m_idx = MBPAGEIDX(page_addr, mobj);
6766 VERIFY(m_idx < (int)NMBPG);
6767 mca = mclaudit[ix].cl_audit[m_idx];
6768 break;
6769
6770 case MC_CL:
6771 /*
6772 * Same thing as above, but for 2KB clusters in a page.
6773 */
6774 m_idx = CLPAGEIDX(page_addr, mobj);
6775 VERIFY(m_idx < (int)NCLPG);
6776 mca = mclaudit[ix].cl_audit[m_idx];
6777 break;
6778
6779 case MC_BIGCL:
6780 m_idx = BCLPAGEIDX(page_addr, mobj);
6781 VERIFY(m_idx < (int)NBCLPG);
6782 mca = mclaudit[ix].cl_audit[m_idx];
6783 break;
6784 case MC_16KCL:
6785 /*
6786 * Same as above, but only return the first element.
6787 */
6788 mca = mclaudit[ix].cl_audit[0];
6789 break;
6790
6791 default:
6792 VERIFY(0);
6793 /* NOTREACHED */
6794 }
6795
6796 return (mca);
6797 }
6798
6799 static void
6800 mcl_audit_mbuf(mcache_audit_t *mca, void *addr, boolean_t composite,
6801 boolean_t alloc)
6802 {
6803 struct mbuf *m = addr;
6804 mcache_obj_t *next = ((mcache_obj_t *)m)->obj_next;
6805
6806 VERIFY(mca->mca_contents != NULL &&
6807 mca->mca_contents_size == AUDIT_CONTENTS_SIZE);
6808
6809 if (mclverify)
6810 mcl_audit_verify_nextptr(next, mca);
6811
6812 if (!alloc) {
6813 /* Save constructed mbuf fields */
6814 mcl_audit_save_mbuf(m, mca);
6815 if (mclverify) {
6816 mcache_set_pattern(MCACHE_FREE_PATTERN, m,
6817 m_maxsize(MC_MBUF));
6818 }
6819 ((mcache_obj_t *)m)->obj_next = next;
6820 return;
6821 }
6822
6823 /* Check if the buffer has been corrupted while in freelist */
6824 if (mclverify) {
6825 mcache_audit_free_verify_set(mca, addr, 0, m_maxsize(MC_MBUF));
6826 }
6827 /* Restore constructed mbuf fields */
6828 mcl_audit_restore_mbuf(m, mca, composite);
6829 }
6830
6831 static void
6832 mcl_audit_restore_mbuf(struct mbuf *m, mcache_audit_t *mca, boolean_t composite)
6833 {
6834 struct mbuf *ms = MCA_SAVED_MBUF_PTR(mca);
6835
6836 if (composite) {
6837 struct mbuf *next = m->m_next;
6838 VERIFY(ms->m_flags == M_EXT && MEXT_RFA(ms) != NULL &&
6839 MBUF_IS_COMPOSITE(ms));
6840 VERIFY(mca->mca_contents_size == AUDIT_CONTENTS_SIZE);
6841 /*
6842 * We could have hand-picked the mbuf fields and restore
6843 * them individually, but that will be a maintenance
6844 * headache. Instead, restore everything that was saved;
6845 * the mbuf layer will recheck and reinitialize anyway.
6846 */
6847 bcopy(ms, m, MCA_SAVED_MBUF_SIZE);
6848 m->m_next = next;
6849 } else {
6850 /*
6851 * For a regular mbuf (no cluster attached) there's nothing
6852 * to restore other than the type field, which is expected
6853 * to be MT_FREE.
6854 */
6855 m->m_type = ms->m_type;
6856 }
6857 _MCHECK(m);
6858 }
6859
6860 static void
6861 mcl_audit_save_mbuf(struct mbuf *m, mcache_audit_t *mca)
6862 {
6863 VERIFY(mca->mca_contents_size == AUDIT_CONTENTS_SIZE);
6864 _MCHECK(m);
6865 bcopy(m, MCA_SAVED_MBUF_PTR(mca), MCA_SAVED_MBUF_SIZE);
6866 }
6867
6868 static void
6869 mcl_audit_cluster(mcache_audit_t *mca, void *addr, size_t size, boolean_t alloc,
6870 boolean_t save_next)
6871 {
6872 mcache_obj_t *next = ((mcache_obj_t *)addr)->obj_next;
6873
6874 if (!alloc) {
6875 if (mclverify) {
6876 mcache_set_pattern(MCACHE_FREE_PATTERN, addr, size);
6877 }
6878 if (save_next) {
6879 mcl_audit_verify_nextptr(next, mca);
6880 ((mcache_obj_t *)addr)->obj_next = next;
6881 }
6882 } else if (mclverify) {
6883 /* Check if the buffer has been corrupted while in freelist */
6884 mcl_audit_verify_nextptr(next, mca);
6885 mcache_audit_free_verify_set(mca, addr, 0, size);
6886 }
6887 }
6888
6889 static void
6890 mcl_audit_scratch(mcache_audit_t *mca)
6891 {
6892 void *stack[MCACHE_STACK_DEPTH + 1];
6893 mcl_scratch_audit_t *msa;
6894 struct timeval now;
6895
6896 VERIFY(mca->mca_contents != NULL);
6897 msa = MCA_SAVED_SCRATCH_PTR(mca);
6898
6899 msa->msa_pthread = msa->msa_thread;
6900 msa->msa_thread = current_thread();
6901 bcopy(msa->msa_stack, msa->msa_pstack, sizeof (msa->msa_pstack));
6902 msa->msa_pdepth = msa->msa_depth;
6903 bzero(stack, sizeof (stack));
6904 msa->msa_depth = OSBacktrace(stack, MCACHE_STACK_DEPTH + 1) - 1;
6905 bcopy(&stack[1], msa->msa_stack, sizeof (msa->msa_stack));
6906
6907 msa->msa_ptstamp = msa->msa_tstamp;
6908 microuptime(&now);
6909 /* tstamp is in ms relative to base_ts */
6910 msa->msa_tstamp = ((now.tv_usec - mb_start.tv_usec) / 1000);
6911 if ((now.tv_sec - mb_start.tv_sec) > 0)
6912 msa->msa_tstamp += ((now.tv_sec - mb_start.tv_sec) * 1000);
6913 }
6914
6915 static void
6916 mcl_audit_mcheck_panic(struct mbuf *m)
6917 {
6918 mcache_audit_t *mca;
6919
6920 MRANGE(m);
6921 mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
6922
6923 panic("mcl_audit: freed mbuf %p with type 0x%x (instead of 0x%x)\n%s\n",
6924 m, (u_int16_t)m->m_type, MT_FREE, mcache_dump_mca(mca));
6925 /* NOTREACHED */
6926 }
6927
6928 static void
6929 mcl_audit_verify_nextptr(void *next, mcache_audit_t *mca)
6930 {
6931 if (next != NULL && !MBUF_IN_MAP(next) &&
6932 (next != (void *)MCACHE_FREE_PATTERN || !mclverify)) {
6933 panic("mcl_audit: buffer %p modified after free at offset 0: "
6934 "%p out of range [%p-%p)\n%s\n",
6935 mca->mca_addr, next, mbutl, embutl, mcache_dump_mca(mca));
6936 /* NOTREACHED */
6937 }
6938 }
6939
6940 /* This function turns on mbuf leak detection */
6941 static void
6942 mleak_activate(void)
6943 {
6944 mleak_table.mleak_sample_factor = MLEAK_SAMPLE_FACTOR;
6945 PE_parse_boot_argn("mleak_sample_factor",
6946 &mleak_table.mleak_sample_factor,
6947 sizeof (mleak_table.mleak_sample_factor));
6948
6949 if (mleak_table.mleak_sample_factor == 0)
6950 mclfindleak = 0;
6951
6952 if (mclfindleak == 0)
6953 return;
6954
6955 vm_size_t alloc_size =
6956 mleak_alloc_buckets * sizeof (struct mallocation);
6957 vm_size_t trace_size = mleak_trace_buckets * sizeof (struct mtrace);
6958
6959 MALLOC(mleak_allocations, struct mallocation *, alloc_size,
6960 M_TEMP, M_WAITOK | M_ZERO);
6961 VERIFY(mleak_allocations != NULL);
6962
6963 MALLOC(mleak_traces, struct mtrace *, trace_size,
6964 M_TEMP, M_WAITOK | M_ZERO);
6965 VERIFY(mleak_traces != NULL);
6966
6967 MALLOC(mleak_stat, mleak_stat_t *, MLEAK_STAT_SIZE(MLEAK_NUM_TRACES),
6968 M_TEMP, M_WAITOK | M_ZERO);
6969 VERIFY(mleak_stat != NULL);
6970 mleak_stat->ml_cnt = MLEAK_NUM_TRACES;
6971 #ifdef __LP64__
6972 mleak_stat->ml_isaddr64 = 1;
6973 #endif /* __LP64__ */
6974 }
6975
6976 static void
6977 mleak_logger(u_int32_t num, mcache_obj_t *addr, boolean_t alloc)
6978 {
6979 int temp;
6980
6981 if (mclfindleak == 0)
6982 return;
6983
6984 if (!alloc)
6985 return (mleak_free(addr));
6986
6987 temp = atomic_add_32_ov(&mleak_table.mleak_capture, 1);
6988
6989 if ((temp % mleak_table.mleak_sample_factor) == 0 && addr != NULL) {
6990 uintptr_t bt[MLEAK_STACK_DEPTH];
6991 int logged = backtrace(bt, MLEAK_STACK_DEPTH);
6992 mleak_log(bt, addr, logged, num);
6993 }
6994 }
6995
6996 /*
6997 * This function records the allocation in the mleak_allocations table
6998 * and the backtrace in the mleak_traces table; if allocation slot is in use,
6999 * replace old allocation with new one if the trace slot is in use, return
7000 * (or increment refcount if same trace).
7001 */
7002 static boolean_t
7003 mleak_log(uintptr_t *bt, mcache_obj_t *addr, uint32_t depth, int num)
7004 {
7005 struct mallocation *allocation;
7006 struct mtrace *trace;
7007 uint32_t trace_index;
7008
7009 /* Quit if someone else modifying the tables */
7010 if (!lck_mtx_try_lock_spin(mleak_lock)) {
7011 mleak_table.total_conflicts++;
7012 return (FALSE);
7013 }
7014
7015 allocation = &mleak_allocations[hashaddr((uintptr_t)addr,
7016 mleak_alloc_buckets)];
7017 trace_index = hashbacktrace(bt, depth, mleak_trace_buckets);
7018 trace = &mleak_traces[trace_index];
7019
7020 VERIFY(allocation <= &mleak_allocations[mleak_alloc_buckets - 1]);
7021 VERIFY(trace <= &mleak_traces[mleak_trace_buckets - 1]);
7022
7023 allocation->hitcount++;
7024 trace->hitcount++;
7025
7026 /*
7027 * If the allocation bucket we want is occupied
7028 * and the occupier has the same trace, just bail.
7029 */
7030 if (allocation->element != NULL &&
7031 trace_index == allocation->trace_index) {
7032 mleak_table.alloc_collisions++;
7033 lck_mtx_unlock(mleak_lock);
7034 return (TRUE);
7035 }
7036
7037 /*
7038 * Store the backtrace in the traces array;
7039 * Size of zero = trace bucket is free.
7040 */
7041 if (trace->allocs > 0 &&
7042 bcmp(trace->addr, bt, (depth * sizeof (uintptr_t))) != 0) {
7043 /* Different, unique trace, but the same hash! Bail out. */
7044 trace->collisions++;
7045 mleak_table.trace_collisions++;
7046 lck_mtx_unlock(mleak_lock);
7047 return (TRUE);
7048 } else if (trace->allocs > 0) {
7049 /* Same trace, already added, so increment refcount */
7050 trace->allocs++;
7051 } else {
7052 /* Found an unused trace bucket, so record the trace here */
7053 if (trace->depth != 0) {
7054 /* this slot previously used but not currently in use */
7055 mleak_table.trace_overwrites++;
7056 }
7057 mleak_table.trace_recorded++;
7058 trace->allocs = 1;
7059 memcpy(trace->addr, bt, (depth * sizeof (uintptr_t)));
7060 trace->depth = depth;
7061 trace->collisions = 0;
7062 }
7063
7064 /* Step 2: Store the allocation record in the allocations array */
7065 if (allocation->element != NULL) {
7066 /*
7067 * Replace an existing allocation. No need to preserve
7068 * because only a subset of the allocations are being
7069 * recorded anyway.
7070 */
7071 mleak_table.alloc_collisions++;
7072 } else if (allocation->trace_index != 0) {
7073 mleak_table.alloc_overwrites++;
7074 }
7075 allocation->element = addr;
7076 allocation->trace_index = trace_index;
7077 allocation->count = num;
7078 mleak_table.alloc_recorded++;
7079 mleak_table.outstanding_allocs++;
7080
7081 lck_mtx_unlock(mleak_lock);
7082 return (TRUE);
7083 }
7084
7085 static void
7086 mleak_free(mcache_obj_t *addr)
7087 {
7088 while (addr != NULL) {
7089 struct mallocation *allocation = &mleak_allocations
7090 [hashaddr((uintptr_t)addr, mleak_alloc_buckets)];
7091
7092 if (allocation->element == addr &&
7093 allocation->trace_index < mleak_trace_buckets) {
7094 lck_mtx_lock_spin(mleak_lock);
7095 if (allocation->element == addr &&
7096 allocation->trace_index < mleak_trace_buckets) {
7097 struct mtrace *trace;
7098 trace = &mleak_traces[allocation->trace_index];
7099 /* allocs = 0 means trace bucket is unused */
7100 if (trace->allocs > 0)
7101 trace->allocs--;
7102 if (trace->allocs == 0)
7103 trace->depth = 0;
7104 /* NULL element means alloc bucket is unused */
7105 allocation->element = NULL;
7106 mleak_table.outstanding_allocs--;
7107 }
7108 lck_mtx_unlock(mleak_lock);
7109 }
7110 addr = addr->obj_next;
7111 }
7112 }
7113
7114 static void
7115 mleak_sort_traces()
7116 {
7117 int i, j, k;
7118 struct mtrace *swap;
7119
7120 for(i = 0; i < MLEAK_NUM_TRACES; i++)
7121 mleak_top_trace[i] = NULL;
7122
7123 for(i = 0, j = 0; j < MLEAK_NUM_TRACES && i < mleak_trace_buckets; i++)
7124 {
7125 if (mleak_traces[i].allocs <= 0)
7126 continue;
7127
7128 mleak_top_trace[j] = &mleak_traces[i];
7129 for (k = j; k > 0; k--) {
7130 if (mleak_top_trace[k]->allocs <=
7131 mleak_top_trace[k-1]->allocs)
7132 break;
7133
7134 swap = mleak_top_trace[k-1];
7135 mleak_top_trace[k-1] = mleak_top_trace[k];
7136 mleak_top_trace[k] = swap;
7137 }
7138 j++;
7139 }
7140
7141 j--;
7142 for(; i < mleak_trace_buckets; i++) {
7143 if (mleak_traces[i].allocs <= mleak_top_trace[j]->allocs)
7144 continue;
7145
7146 mleak_top_trace[j] = &mleak_traces[i];
7147
7148 for (k = j; k > 0; k--) {
7149 if (mleak_top_trace[k]->allocs <=
7150 mleak_top_trace[k-1]->allocs)
7151 break;
7152
7153 swap = mleak_top_trace[k-1];
7154 mleak_top_trace[k-1] = mleak_top_trace[k];
7155 mleak_top_trace[k] = swap;
7156 }
7157 }
7158 }
7159
7160 static void
7161 mleak_update_stats()
7162 {
7163 mleak_trace_stat_t *mltr;
7164 int i;
7165
7166 VERIFY(mleak_stat != NULL);
7167 #ifdef __LP64__
7168 VERIFY(mleak_stat->ml_isaddr64);
7169 #else
7170 VERIFY(!mleak_stat->ml_isaddr64);
7171 #endif /* !__LP64__ */
7172 VERIFY(mleak_stat->ml_cnt == MLEAK_NUM_TRACES);
7173
7174 mleak_sort_traces();
7175
7176 mltr = &mleak_stat->ml_trace[0];
7177 bzero(mltr, sizeof (*mltr) * MLEAK_NUM_TRACES);
7178 for (i = 0; i < MLEAK_NUM_TRACES; i++) {
7179 int j;
7180
7181 if (mleak_top_trace[i] == NULL ||
7182 mleak_top_trace[i]->allocs == 0)
7183 continue;
7184
7185 mltr->mltr_collisions = mleak_top_trace[i]->collisions;
7186 mltr->mltr_hitcount = mleak_top_trace[i]->hitcount;
7187 mltr->mltr_allocs = mleak_top_trace[i]->allocs;
7188 mltr->mltr_depth = mleak_top_trace[i]->depth;
7189
7190 VERIFY(mltr->mltr_depth <= MLEAK_STACK_DEPTH);
7191 for (j = 0; j < mltr->mltr_depth; j++)
7192 mltr->mltr_addr[j] = mleak_top_trace[i]->addr[j];
7193
7194 mltr++;
7195 }
7196 }
7197
7198 static struct mbtypes {
7199 int mt_type;
7200 const char *mt_name;
7201 } mbtypes[] = {
7202 { MT_DATA, "data" },
7203 { MT_OOBDATA, "oob data" },
7204 { MT_CONTROL, "ancillary data" },
7205 { MT_HEADER, "packet headers" },
7206 { MT_SOCKET, "socket structures" },
7207 { MT_PCB, "protocol control blocks" },
7208 { MT_RTABLE, "routing table entries" },
7209 { MT_HTABLE, "IMP host table entries" },
7210 { MT_ATABLE, "address resolution tables" },
7211 { MT_FTABLE, "fragment reassembly queue headers" },
7212 { MT_SONAME, "socket names and addresses" },
7213 { MT_SOOPTS, "socket options" },
7214 { MT_RIGHTS, "access rights" },
7215 { MT_IFADDR, "interface addresses" },
7216 { MT_TAG, "packet tags" },
7217 { 0, NULL }
7218 };
7219
7220 #define MBUF_DUMP_BUF_CHK() { \
7221 clen -= k; \
7222 if (clen < 1) \
7223 goto done; \
7224 c += k; \
7225 }
7226
7227 static char *
7228 mbuf_dump(void)
7229 {
7230 unsigned long totmem = 0, totfree = 0, totmbufs, totused, totpct;
7231 u_int32_t m_mbufs = 0, m_clfree = 0, m_bigclfree = 0;
7232 u_int32_t m_mbufclfree = 0, m_mbufbigclfree = 0;
7233 u_int32_t m_16kclusters = 0, m_16kclfree = 0, m_mbuf16kclfree = 0;
7234 int nmbtypes = sizeof (mbstat.m_mtypes) / sizeof (short);
7235 uint8_t seen[256];
7236 struct mbtypes *mp;
7237 mb_class_stat_t *sp;
7238 mleak_trace_stat_t *mltr;
7239 char *c = mbuf_dump_buf;
7240 int i, k, clen = MBUF_DUMP_BUF_SIZE;
7241
7242 mbuf_dump_buf[0] = '\0';
7243
7244 /* synchronize all statistics in the mbuf table */
7245 mbuf_stat_sync();
7246 mbuf_mtypes_sync(TRUE);
7247
7248 sp = &mb_stat->mbs_class[0];
7249 for (i = 0; i < mb_stat->mbs_cnt; i++, sp++) {
7250 u_int32_t mem;
7251
7252 if (m_class(i) == MC_MBUF) {
7253 m_mbufs = sp->mbcl_active;
7254 } else if (m_class(i) == MC_CL) {
7255 m_clfree = sp->mbcl_total - sp->mbcl_active;
7256 } else if (m_class(i) == MC_BIGCL) {
7257 m_bigclfree = sp->mbcl_total - sp->mbcl_active;
7258 } else if (njcl > 0 && m_class(i) == MC_16KCL) {
7259 m_16kclfree = sp->mbcl_total - sp->mbcl_active;
7260 m_16kclusters = sp->mbcl_total;
7261 } else if (m_class(i) == MC_MBUF_CL) {
7262 m_mbufclfree = sp->mbcl_total - sp->mbcl_active;
7263 } else if (m_class(i) == MC_MBUF_BIGCL) {
7264 m_mbufbigclfree = sp->mbcl_total - sp->mbcl_active;
7265 } else if (njcl > 0 && m_class(i) == MC_MBUF_16KCL) {
7266 m_mbuf16kclfree = sp->mbcl_total - sp->mbcl_active;
7267 }
7268
7269 mem = sp->mbcl_ctotal * sp->mbcl_size;
7270 totmem += mem;
7271 totfree += (sp->mbcl_mc_cached + sp->mbcl_infree) *
7272 sp->mbcl_size;
7273
7274 }
7275
7276 /* adjust free counts to include composite caches */
7277 m_clfree += m_mbufclfree;
7278 m_bigclfree += m_mbufbigclfree;
7279 m_16kclfree += m_mbuf16kclfree;
7280
7281 totmbufs = 0;
7282 for (mp = mbtypes; mp->mt_name != NULL; mp++)
7283 totmbufs += mbstat.m_mtypes[mp->mt_type];
7284 if (totmbufs > m_mbufs)
7285 totmbufs = m_mbufs;
7286 k = snprintf(c, clen, "%lu/%u mbufs in use:\n", totmbufs, m_mbufs);
7287 MBUF_DUMP_BUF_CHK();
7288
7289 bzero(&seen, sizeof (seen));
7290 for (mp = mbtypes; mp->mt_name != NULL; mp++) {
7291 if (mbstat.m_mtypes[mp->mt_type] != 0) {
7292 seen[mp->mt_type] = 1;
7293 k = snprintf(c, clen, "\t%u mbufs allocated to %s\n",
7294 mbstat.m_mtypes[mp->mt_type], mp->mt_name);
7295 MBUF_DUMP_BUF_CHK();
7296 }
7297 }
7298 seen[MT_FREE] = 1;
7299 for (i = 0; i < nmbtypes; i++)
7300 if (!seen[i] && mbstat.m_mtypes[i] != 0) {
7301 k = snprintf(c, clen, "\t%u mbufs allocated to "
7302 "<mbuf type %d>\n", mbstat.m_mtypes[i], i);
7303 MBUF_DUMP_BUF_CHK();
7304 }
7305 if ((m_mbufs - totmbufs) > 0) {
7306 k = snprintf(c, clen, "\t%lu mbufs allocated to caches\n",
7307 m_mbufs - totmbufs);
7308 MBUF_DUMP_BUF_CHK();
7309 }
7310 k = snprintf(c, clen, "%u/%u mbuf 2KB clusters in use\n"
7311 "%u/%u mbuf 4KB clusters in use\n",
7312 (unsigned int)(mbstat.m_clusters - m_clfree),
7313 (unsigned int)mbstat.m_clusters,
7314 (unsigned int)(mbstat.m_bigclusters - m_bigclfree),
7315 (unsigned int)mbstat.m_bigclusters);
7316 MBUF_DUMP_BUF_CHK();
7317
7318 if (njcl > 0) {
7319 k = snprintf(c, clen, "%u/%u mbuf %uKB clusters in use\n",
7320 m_16kclusters - m_16kclfree, m_16kclusters,
7321 njclbytes / 1024);
7322 MBUF_DUMP_BUF_CHK();
7323 }
7324 totused = totmem - totfree;
7325 if (totmem == 0) {
7326 totpct = 0;
7327 } else if (totused < (ULONG_MAX / 100)) {
7328 totpct = (totused * 100) / totmem;
7329 } else {
7330 u_long totmem1 = totmem / 100;
7331 u_long totused1 = totused / 100;
7332 totpct = (totused1 * 100) / totmem1;
7333 }
7334 k = snprintf(c, clen, "%lu KB allocated to network (approx. %lu%% "
7335 "in use)\n", totmem / 1024, totpct);
7336 MBUF_DUMP_BUF_CHK();
7337
7338 /* mbuf leak detection statistics */
7339 mleak_update_stats();
7340
7341 k = snprintf(c, clen, "\nmbuf leak detection table:\n");
7342 MBUF_DUMP_BUF_CHK();
7343 k = snprintf(c, clen, "\ttotal captured: %u (one per %u)\n",
7344 mleak_table.mleak_capture / mleak_table.mleak_sample_factor,
7345 mleak_table.mleak_sample_factor);
7346 MBUF_DUMP_BUF_CHK();
7347 k = snprintf(c, clen, "\ttotal allocs outstanding: %llu\n",
7348 mleak_table.outstanding_allocs);
7349 MBUF_DUMP_BUF_CHK();
7350 k = snprintf(c, clen, "\tnew hash recorded: %llu allocs, %llu traces\n",
7351 mleak_table.alloc_recorded, mleak_table.trace_recorded);
7352 MBUF_DUMP_BUF_CHK();
7353 k = snprintf(c, clen, "\thash collisions: %llu allocs, %llu traces\n",
7354 mleak_table.alloc_collisions, mleak_table.trace_collisions);
7355 MBUF_DUMP_BUF_CHK();
7356 k = snprintf(c, clen, "\toverwrites: %llu allocs, %llu traces\n",
7357 mleak_table.alloc_overwrites, mleak_table.trace_overwrites);
7358 MBUF_DUMP_BUF_CHK();
7359 k = snprintf(c, clen, "\tlock conflicts: %llu\n\n",
7360 mleak_table.total_conflicts);
7361 MBUF_DUMP_BUF_CHK();
7362
7363 k = snprintf(c, clen, "top %d outstanding traces:\n",
7364 mleak_stat->ml_cnt);
7365 MBUF_DUMP_BUF_CHK();
7366 for (i = 0; i < mleak_stat->ml_cnt; i++) {
7367 mltr = &mleak_stat->ml_trace[i];
7368 k = snprintf(c, clen, "[%d] %llu outstanding alloc(s), "
7369 "%llu hit(s), %llu collision(s)\n", (i + 1),
7370 mltr->mltr_allocs, mltr->mltr_hitcount,
7371 mltr->mltr_collisions);
7372 MBUF_DUMP_BUF_CHK();
7373 }
7374
7375 if (mleak_stat->ml_isaddr64)
7376 k = snprintf(c, clen, MB_LEAK_HDR_64);
7377 else
7378 k = snprintf(c, clen, MB_LEAK_HDR_32);
7379 MBUF_DUMP_BUF_CHK();
7380
7381 for (i = 0; i < MLEAK_STACK_DEPTH; i++) {
7382 int j;
7383 k = snprintf(c, clen, "%2d: ", (i + 1));
7384 MBUF_DUMP_BUF_CHK();
7385 for (j = 0; j < mleak_stat->ml_cnt; j++) {
7386 mltr = &mleak_stat->ml_trace[j];
7387 if (i < mltr->mltr_depth) {
7388 if (mleak_stat->ml_isaddr64) {
7389 k = snprintf(c, clen, "0x%0llx ",
7390 (uint64_t)VM_KERNEL_UNSLIDE(
7391 mltr->mltr_addr[i]));
7392 } else {
7393 k = snprintf(c, clen,
7394 "0x%08x ",
7395 (uint32_t)VM_KERNEL_UNSLIDE(
7396 mltr->mltr_addr[i]));
7397 }
7398 } else {
7399 if (mleak_stat->ml_isaddr64)
7400 k = snprintf(c, clen,
7401 MB_LEAK_SPACING_64);
7402 else
7403 k = snprintf(c, clen,
7404 MB_LEAK_SPACING_32);
7405 }
7406 MBUF_DUMP_BUF_CHK();
7407 }
7408 k = snprintf(c, clen, "\n");
7409 MBUF_DUMP_BUF_CHK();
7410 }
7411 done:
7412 return (mbuf_dump_buf);
7413 }
7414
7415 #undef MBUF_DUMP_BUF_CHK
7416
7417 /*
7418 * Convert between a regular and a packet header mbuf. Caller is responsible
7419 * for setting or clearing M_PKTHDR; this routine does the rest of the work.
7420 */
7421 int
7422 m_reinit(struct mbuf *m, int hdr)
7423 {
7424 int ret = 0;
7425
7426 if (hdr) {
7427 VERIFY(!(m->m_flags & M_PKTHDR));
7428 if (!(m->m_flags & M_EXT) &&
7429 (m->m_data != m->m_dat || m->m_len > 0)) {
7430 /*
7431 * If there's no external cluster attached and the
7432 * mbuf appears to contain user data, we cannot
7433 * safely convert this to a packet header mbuf,
7434 * as the packet header structure might overlap
7435 * with the data.
7436 */
7437 printf("%s: cannot set M_PKTHDR on altered mbuf %llx, "
7438 "m_data %llx (expected %llx), "
7439 "m_len %d (expected 0)\n",
7440 __func__,
7441 (uint64_t)VM_KERNEL_ADDRPERM(m),
7442 (uint64_t)VM_KERNEL_ADDRPERM(m->m_data),
7443 (uint64_t)VM_KERNEL_ADDRPERM(m->m_dat), m->m_len);
7444 ret = EBUSY;
7445 } else {
7446 VERIFY((m->m_flags & M_EXT) || m->m_data == m->m_dat);
7447 m->m_flags |= M_PKTHDR;
7448 MBUF_INIT_PKTHDR(m);
7449 }
7450 } else {
7451 /* Check for scratch area overflow */
7452 m_redzone_verify(m);
7453 /* Free the aux data and tags if there is any */
7454 m_tag_delete_chain(m, NULL);
7455 m->m_flags &= ~M_PKTHDR;
7456 }
7457
7458 return (ret);
7459 }
7460
7461 int
7462 m_ext_set_prop(struct mbuf *m, uint32_t o, uint32_t n)
7463 {
7464 ASSERT(m->m_flags & M_EXT);
7465 return (atomic_test_set_32(&MEXT_PRIV(m), o, n));
7466 }
7467
7468 uint32_t
7469 m_ext_get_prop(struct mbuf *m)
7470 {
7471 ASSERT(m->m_flags & M_EXT);
7472 return (MEXT_PRIV(m));
7473 }
7474
7475 int
7476 m_ext_paired_is_active(struct mbuf *m)
7477 {
7478 return (MBUF_IS_PAIRED(m) ? (MEXT_PREF(m) > MEXT_MINREF(m)) : 1);
7479 }
7480
7481 void
7482 m_ext_paired_activate(struct mbuf *m)
7483 {
7484 struct ext_ref *rfa;
7485 int hdr, type;
7486 caddr_t extbuf;
7487 void *extfree;
7488 u_int extsize;
7489
7490 VERIFY(MBUF_IS_PAIRED(m));
7491 VERIFY(MEXT_REF(m) == MEXT_MINREF(m));
7492 VERIFY(MEXT_PREF(m) == MEXT_MINREF(m));
7493
7494 hdr = (m->m_flags & M_PKTHDR);
7495 type = m->m_type;
7496 extbuf = m->m_ext.ext_buf;
7497 extfree = m->m_ext.ext_free;
7498 extsize = m->m_ext.ext_size;
7499 rfa = MEXT_RFA(m);
7500
7501 VERIFY(extbuf != NULL && rfa != NULL);
7502
7503 /*
7504 * Safe to reinitialize packet header tags, since it's
7505 * already taken care of at m_free() time. Similar to
7506 * what's done in m_clattach() for the cluster. Bump
7507 * up MEXT_PREF to indicate activation.
7508 */
7509 MBUF_INIT(m, hdr, type);
7510 MEXT_INIT(m, extbuf, extsize, extfree, (caddr_t)m, rfa,
7511 1, 1, 2, EXTF_PAIRED, MEXT_PRIV(m), m);
7512 }
7513
7514 void
7515 m_scratch_init(struct mbuf *m)
7516 {
7517 struct pkthdr *pkt = &m->m_pkthdr;
7518
7519 VERIFY(m->m_flags & M_PKTHDR);
7520
7521 /* See comments in <rdar://problem/14040693> */
7522 if (pkt->pkt_flags & PKTF_PRIV_GUARDED) {
7523 panic_plain("Invalid attempt to modify guarded module-private "
7524 "area: mbuf %p, pkt_flags 0x%x\n", m, pkt->pkt_flags);
7525 /* NOTREACHED */
7526 }
7527
7528 bzero(&pkt->pkt_mpriv, sizeof (pkt->pkt_mpriv));
7529 }
7530
7531 /*
7532 * This routine is reserved for mbuf_get_driver_scratch(); clients inside
7533 * xnu that intend on utilizing the module-private area should directly
7534 * refer to the pkt_mpriv structure in the pkthdr. They are also expected
7535 * to set and clear PKTF_PRIV_GUARDED, while owning the packet and prior
7536 * to handing it off to another module, respectively.
7537 */
7538 u_int32_t
7539 m_scratch_get(struct mbuf *m, u_int8_t **p)
7540 {
7541 struct pkthdr *pkt = &m->m_pkthdr;
7542
7543 VERIFY(m->m_flags & M_PKTHDR);
7544
7545 /* See comments in <rdar://problem/14040693> */
7546 if (pkt->pkt_flags & PKTF_PRIV_GUARDED) {
7547 panic_plain("Invalid attempt to access guarded module-private "
7548 "area: mbuf %p, pkt_flags 0x%x\n", m, pkt->pkt_flags);
7549 /* NOTREACHED */
7550 }
7551
7552 if (mcltrace) {
7553 mcache_audit_t *mca;
7554
7555 lck_mtx_lock(mbuf_mlock);
7556 mca = mcl_audit_buf2mca(MC_MBUF, (mcache_obj_t *)m);
7557 if (mca->mca_uflags & MB_SCVALID)
7558 mcl_audit_scratch(mca);
7559 lck_mtx_unlock(mbuf_mlock);
7560 }
7561
7562 *p = (u_int8_t *)&pkt->pkt_mpriv;
7563 return (sizeof (pkt->pkt_mpriv));
7564 }
7565
7566 static void
7567 m_redzone_init(struct mbuf *m)
7568 {
7569 VERIFY(m->m_flags & M_PKTHDR);
7570 /*
7571 * Each mbuf has a unique red zone pattern, which is a XOR
7572 * of the red zone cookie and the address of the mbuf.
7573 */
7574 m->m_pkthdr.redzone = ((u_int32_t)(uintptr_t)m) ^ mb_redzone_cookie;
7575 }
7576
7577 static void
7578 m_redzone_verify(struct mbuf *m)
7579 {
7580 u_int32_t mb_redzone;
7581
7582 VERIFY(m->m_flags & M_PKTHDR);
7583
7584 mb_redzone = ((u_int32_t)(uintptr_t)m) ^ mb_redzone_cookie;
7585 if (m->m_pkthdr.redzone != mb_redzone) {
7586 panic("mbuf %p redzone violation with value 0x%x "
7587 "(instead of 0x%x, using cookie 0x%x)\n",
7588 m, m->m_pkthdr.redzone, mb_redzone, mb_redzone_cookie);
7589 /* NOTREACHED */
7590 }
7591 }
7592
7593 /*
7594 * Send a report of mbuf usage if the usage is at least 6% of max limit
7595 * or if there has been at least 3% increase since the last report.
7596 *
7597 * The values 6% and 3% are chosen so that we can do simple arithmetic
7598 * with shift operations.
7599 */
7600 static boolean_t
7601 mbuf_report_usage(mbuf_class_t cl)
7602 {
7603 /* if a report is already in progress, nothing to do */
7604 if (mb_peak_newreport)
7605 return (TRUE);
7606
7607 if (m_total(cl) > m_peak(cl) &&
7608 m_total(cl) >= (m_maxlimit(cl) >> 4) &&
7609 (m_total(cl) - m_peak(cl)) >= (m_peak(cl) >> 5))
7610 return (TRUE);
7611 return (FALSE);
7612 }
7613
7614 __private_extern__ void
7615 mbuf_report_peak_usage(void)
7616 {
7617 int i = 0;
7618 u_int64_t uptime;
7619 struct nstat_sysinfo_data ns_data;
7620 uint32_t memreleased = 0;
7621
7622 uptime = net_uptime();
7623 lck_mtx_lock(mbuf_mlock);
7624
7625 /* Generate an initial report after 1 week of uptime */
7626 if (!mb_peak_firstreport &&
7627 uptime > MBUF_PEAK_FIRST_REPORT_THRESHOLD) {
7628 mb_peak_newreport = TRUE;
7629 mb_peak_firstreport = TRUE;
7630 }
7631
7632 if (!mb_peak_newreport) {
7633 lck_mtx_unlock(mbuf_mlock);
7634 return;
7635 }
7636
7637 /*
7638 * Since a report is being generated before 1 week,
7639 * we do not need to force another one later
7640 */
7641 if (uptime < MBUF_PEAK_FIRST_REPORT_THRESHOLD)
7642 mb_peak_firstreport = TRUE;
7643
7644 for (i = 0; i < NELEM(mbuf_table); i++) {
7645 m_peak(m_class(i)) = m_total(m_class(i));
7646 memreleased += m_release_cnt(i);
7647 m_release_cnt(i) = 0;
7648 }
7649 mb_peak_newreport = FALSE;
7650 lck_mtx_unlock(mbuf_mlock);
7651
7652 bzero(&ns_data, sizeof(ns_data));
7653 ns_data.flags = NSTAT_SYSINFO_MBUF_STATS;
7654 ns_data.u.mb_stats.total_256b = m_peak(MC_MBUF);
7655 ns_data.u.mb_stats.total_2kb = m_peak(MC_CL);
7656 ns_data.u.mb_stats.total_4kb = m_peak(MC_BIGCL);
7657 ns_data.u.mb_stats.total_16kb = m_peak(MC_16KCL);
7658 ns_data.u.mb_stats.sbmb_total = total_sbmb_cnt_peak;
7659 ns_data.u.mb_stats.sb_atmbuflimit = sbmb_limreached;
7660 ns_data.u.mb_stats.draincnt = mbstat.m_drain;
7661 ns_data.u.mb_stats.memreleased = memreleased;
7662 ns_data.u.mb_stats.sbmb_floor = total_sbmb_cnt_floor;
7663
7664 nstat_sysinfo_send_data(&ns_data);
7665
7666 /*
7667 * Reset the floor whenever we report a new
7668 * peak to track the trend (increase peek usage
7669 * is not a leak if mbufs get released
7670 * between reports and the floor stays low)
7671 */
7672 total_sbmb_cnt_floor = total_sbmb_cnt_peak;
7673 }
7674
7675 /*
7676 * Called by the VM when there's memory pressure.
7677 */
7678 __private_extern__ void
7679 m_drain(void)
7680 {
7681 mbuf_class_t mc;
7682 mcl_slab_t *sp, *sp_tmp, *nsp;
7683 unsigned int num, k, interval, released = 0;
7684 unsigned long total_mem = 0, use_mem = 0;
7685 boolean_t ret, purge_caches = FALSE;
7686 ppnum_t offset;
7687 mcache_obj_t *obj;
7688 unsigned long per;
7689 static uint64_t last_drain = 0;
7690 static unsigned char scratch[32];
7691 static ppnum_t scratch_pa = 0;
7692
7693 if (mb_drain_maxint == 0 || mb_waiters)
7694 return;
7695 if (scratch_pa == 0) {
7696 bzero(scratch, sizeof(scratch));
7697 scratch_pa = pmap_find_phys(kernel_pmap, (addr64_t)scratch);
7698 VERIFY(scratch_pa);
7699 } else if (mclverify) {
7700 /*
7701 * Panic if a driver wrote to our scratch memory.
7702 */
7703 for (k = 0; k < sizeof(scratch); k++)
7704 if (scratch[k])
7705 panic("suspect DMA to freed address");
7706 }
7707 /*
7708 * Don't free memory too often as that could cause excessive
7709 * waiting times for mbufs. Purge caches if we were asked to drain
7710 * in the last 5 minutes.
7711 */
7712 lck_mtx_lock(mbuf_mlock);
7713 if (last_drain == 0) {
7714 last_drain = net_uptime();
7715 lck_mtx_unlock(mbuf_mlock);
7716 return;
7717 }
7718 interval = net_uptime() - last_drain;
7719 if (interval <= mb_drain_maxint) {
7720 lck_mtx_unlock(mbuf_mlock);
7721 return;
7722 }
7723 if (interval <= mb_drain_maxint * 5)
7724 purge_caches = TRUE;
7725 last_drain = net_uptime();
7726 /*
7727 * Don't free any memory if we're using 60% or more.
7728 */
7729 for (mc = 0; mc < NELEM(mbuf_table); mc++) {
7730 total_mem += m_total(mc) * m_maxsize(mc);
7731 use_mem += m_active(mc) * m_maxsize(mc);
7732 }
7733 per = (use_mem * 100) / total_mem;
7734 if (per >= 60) {
7735 lck_mtx_unlock(mbuf_mlock);
7736 return;
7737 }
7738 /*
7739 * Purge all the caches. This effectively disables
7740 * caching for a few seconds, but the mbuf worker thread will
7741 * re-enable them again.
7742 */
7743 if (purge_caches == TRUE)
7744 for (mc = 0; mc < NELEM(mbuf_table); mc++) {
7745 if (m_total(mc) < m_avgtotal(mc))
7746 continue;
7747 lck_mtx_unlock(mbuf_mlock);
7748 ret = mcache_purge_cache(m_cache(mc), FALSE);
7749 lck_mtx_lock(mbuf_mlock);
7750 if (ret == TRUE)
7751 m_purge_cnt(mc)++;
7752 }
7753 /*
7754 * Move the objects from the composite class freelist to
7755 * the rudimentary slabs list, but keep at least 10% of the average
7756 * total in the freelist.
7757 */
7758 for (mc = 0; mc < NELEM(mbuf_table); mc++) {
7759 while (m_cobjlist(mc) &&
7760 m_total(mc) < m_avgtotal(mc) &&
7761 m_infree(mc) > 0.1 * m_avgtotal(mc) + m_minlimit(mc)) {
7762 obj = m_cobjlist(mc);
7763 m_cobjlist(mc) = obj->obj_next;
7764 obj->obj_next = NULL;
7765 num = cslab_free(mc, obj, 1);
7766 VERIFY(num == 1);
7767 m_free_cnt(mc)++;
7768 m_infree(mc)--;
7769 /* cslab_free() handles m_total */
7770 }
7771 }
7772 /*
7773 * Free the buffers present in the slab list up to 10% of the total
7774 * average per class.
7775 *
7776 * We walk the list backwards in an attempt to reduce fragmentation.
7777 */
7778 for (mc = NELEM(mbuf_table) - 1; (int)mc >= 0; mc--) {
7779 TAILQ_FOREACH_SAFE(sp, &m_slablist(mc), sl_link, sp_tmp) {
7780 /*
7781 * Process only unused slabs occupying memory.
7782 */
7783 if (sp->sl_refcnt != 0 || sp->sl_len == 0 ||
7784 sp->sl_base == NULL)
7785 continue;
7786 if (m_total(mc) < m_avgtotal(mc) ||
7787 m_infree(mc) < 0.1 * m_avgtotal(mc) + m_minlimit(mc))
7788 break;
7789 slab_remove(sp, mc);
7790 switch (mc) {
7791 case MC_MBUF:
7792 m_infree(mc) -= NMBPG;
7793 m_total(mc) -= NMBPG;
7794 if (mclaudit != NULL)
7795 mcl_audit_free(sp->sl_base, NMBPG);
7796 break;
7797 case MC_CL:
7798 m_infree(mc) -= NCLPG;
7799 m_total(mc) -= NCLPG;
7800 if (mclaudit != NULL)
7801 mcl_audit_free(sp->sl_base, NMBPG);
7802 break;
7803 case MC_BIGCL:
7804 {
7805 m_infree(mc) -= NBCLPG;
7806 m_total(mc) -= NBCLPG;
7807 if (mclaudit != NULL)
7808 mcl_audit_free(sp->sl_base, NMBPG);
7809 break;
7810 }
7811 case MC_16KCL:
7812 m_infree(mc)--;
7813 m_total(mc)--;
7814 for (nsp = sp, k = 1; k < NSLABSP16KB; k++) {
7815 nsp = nsp->sl_next;
7816 VERIFY(nsp->sl_refcnt == 0 &&
7817 nsp->sl_base != NULL &&
7818 nsp->sl_len == 0);
7819 slab_init(nsp, 0, 0, NULL, NULL, 0, 0,
7820 0);
7821 nsp->sl_flags = 0;
7822 }
7823 if (mclaudit != NULL)
7824 mcl_audit_free(sp->sl_base, 1);
7825 break;
7826 default:
7827 /*
7828 * The composite classes have their own
7829 * freelist (m_cobjlist), so we only
7830 * process rudimentary classes here.
7831 */
7832 VERIFY(0);
7833 }
7834 m_release_cnt(mc) += m_size(mc);
7835 released += m_size(mc);
7836 VERIFY(sp->sl_base != NULL &&
7837 sp->sl_len >= PAGE_SIZE);
7838 offset = MTOPG(sp->sl_base);
7839 /*
7840 * Make sure the IOMapper points to a valid, but
7841 * bogus, address. This should prevent further DMA
7842 * accesses to freed memory.
7843 */
7844 IOMapperInsertPage(mcl_paddr_base, offset, scratch_pa);
7845 mcl_paddr[offset] = 0;
7846 kmem_free(mb_map, (vm_offset_t)sp->sl_base,
7847 sp->sl_len);
7848 slab_init(sp, 0, 0, NULL, NULL, 0, 0, 0);
7849 sp->sl_flags = 0;
7850 }
7851 }
7852 mbstat.m_drain++;
7853 mbstat.m_bigclusters = m_total(MC_BIGCL);
7854 mbstat.m_clusters = m_total(MC_CL);
7855 mbstat.m_mbufs = m_total(MC_MBUF);
7856 mbuf_stat_sync();
7857 mbuf_mtypes_sync(TRUE);
7858 lck_mtx_unlock(mbuf_mlock);
7859 }
7860
7861 static int
7862 m_drain_force_sysctl SYSCTL_HANDLER_ARGS
7863 {
7864 #pragma unused(arg1, arg2)
7865 int val = 0, err;
7866
7867 err = sysctl_handle_int(oidp, &val, 0, req);
7868 if (err != 0 || req->newptr == USER_ADDR_NULL)
7869 return (err);
7870 if (val)
7871 m_drain();
7872
7873 return (err);
7874 }
7875
7876 SYSCTL_DECL(_kern_ipc);
7877 SYSCTL_PROC(_kern_ipc, KIPC_MBSTAT, mbstat,
7878 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
7879 0, 0, mbstat_sysctl, "S,mbstat", "");
7880 SYSCTL_PROC(_kern_ipc, OID_AUTO, mb_stat,
7881 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
7882 0, 0, mb_stat_sysctl, "S,mb_stat", "");
7883 SYSCTL_PROC(_kern_ipc, OID_AUTO, mleak_top_trace,
7884 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
7885 0, 0, mleak_top_trace_sysctl, "S,mb_top_trace", "");
7886 SYSCTL_PROC(_kern_ipc, OID_AUTO, mleak_table,
7887 CTLTYPE_STRUCT | CTLFLAG_RD | CTLFLAG_LOCKED,
7888 0, 0, mleak_table_sysctl, "S,mleak_table", "");
7889 SYSCTL_INT(_kern_ipc, OID_AUTO, mleak_sample_factor,
7890 CTLFLAG_RW | CTLFLAG_LOCKED, &mleak_table.mleak_sample_factor, 0, "");
7891 SYSCTL_INT(_kern_ipc, OID_AUTO, mb_normalized,
7892 CTLFLAG_RD | CTLFLAG_LOCKED, &mb_normalized, 0, "");
7893 SYSCTL_INT(_kern_ipc, OID_AUTO, mb_watchdog,
7894 CTLFLAG_RW | CTLFLAG_LOCKED, &mb_watchdog, 0, "");
7895 SYSCTL_PROC(_kern_ipc, OID_AUTO, mb_drain_force,
7896 CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_LOCKED, NULL, 0,
7897 m_drain_force_sysctl, "I",
7898 "Forces the mbuf garbage collection to run");
7899 SYSCTL_INT(_kern_ipc, OID_AUTO, mb_drain_maxint,
7900 CTLFLAG_RW | CTLFLAG_LOCKED, &mb_drain_maxint, 0,
7901 "Minimum time interval between garbage collection");