2 * Copyright (c) 2006 Apple Computer, Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
30 #include <kern/sched_prim.h>
31 #include <kern/kalloc.h>
32 #include <kern/assert.h>
33 #include <kern/debug.h>
34 #include <kern/locks.h>
35 #include <kern/task.h>
36 #include <kern/thread.h>
37 #include <kern/host.h>
38 #include <kern/policy_internal.h>
40 #include <IOKit/IOBSD.h>
42 #include <libkern/libkern.h>
43 #include <mach/coalition.h>
44 #include <mach/mach_time.h>
45 #include <mach/task.h>
46 #include <mach/host_priv.h>
47 #include <mach/mach_host.h>
48 #include <pexpert/pexpert.h>
49 #include <sys/coalition.h>
50 #include <sys/kern_event.h>
52 #include <sys/proc_info.h>
53 #include <sys/reason.h>
54 #include <sys/signal.h>
55 #include <sys/signalvar.h>
56 #include <sys/sysctl.h>
57 #include <sys/sysproto.h>
61 #include <vm/vm_pageout.h>
62 #include <vm/vm_protos.h>
65 #include <vm/vm_map.h>
66 #endif /* CONFIG_FREEZE */
68 #include <sys/kern_memorystatus.h>
70 #include <mach/machine/sdt.h>
72 /* For logging clarity */
73 static const char *jetsam_kill_cause_name
[] = {
75 "jettisoned" , /* kMemorystatusKilled */
76 "highwater" , /* kMemorystatusKilledHiwat */
77 "vnode-limit" , /* kMemorystatusKilledVnodes */
78 "vm-pageshortage" , /* kMemorystatusKilledVMPageShortage */
79 "vm-thrashing" , /* kMemorystatusKilledVMThrashing */
80 "fc-thrashing" , /* kMemorystatusKilledFCThrashing */
81 "per-process-limit" , /* kMemorystatusKilledPerProcessLimit */
82 "diagnostic" , /* kMemorystatusKilledDiagnostic */
83 "idle-exit" , /* kMemorystatusKilledIdleExit */
87 /* Does cause indicate vm or fc thrashing? */
89 is_thrashing(unsigned cause
)
92 case kMemorystatusKilledVMThrashing
:
93 case kMemorystatusKilledFCThrashing
:
100 /* Callback into vm_compressor.c to signal that thrashing has been mitigated. */
101 extern void vm_thrashing_jetsam_done(void);
102 #endif /* CONFIG_JETSAM */
104 /* These are very verbose printfs(), enable with
105 * MEMORYSTATUS_DEBUG_LOG
107 #if MEMORYSTATUS_DEBUG_LOG
108 #define MEMORYSTATUS_DEBUG(cond, format, ...) \
110 if (cond) { printf(format, ##__VA_ARGS__); } \
113 #define MEMORYSTATUS_DEBUG(cond, format, ...)
117 * Active / Inactive limit support
118 * proc list must be locked
120 * The SET_*** macros are used to initialize a limit
121 * for the first time.
123 * The CACHE_*** macros are use to cache the limit that will
124 * soon be in effect down in the ledgers.
127 #define SET_ACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \
129 (p)->p_memstat_memlimit_active = (limit); \
130 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_ACTIVE_EXC_TRIGGERED; \
132 (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \
134 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL; \
138 #define SET_INACTIVE_LIMITS_LOCKED(p, limit, is_fatal) \
140 (p)->p_memstat_memlimit_inactive = (limit); \
141 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_INACTIVE_EXC_TRIGGERED; \
143 (p)->p_memstat_state |= P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \
145 (p)->p_memstat_state &= ~P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL; \
149 #define CACHE_ACTIVE_LIMITS_LOCKED(p, trigger_exception) \
151 (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_active; \
152 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL) { \
153 (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \
155 (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \
157 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_ACTIVE_EXC_TRIGGERED) { \
158 trigger_exception = FALSE; \
160 trigger_exception = TRUE; \
164 #define CACHE_INACTIVE_LIMITS_LOCKED(p, trigger_exception) \
166 (p)->p_memstat_memlimit = (p)->p_memstat_memlimit_inactive; \
167 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL) { \
168 (p)->p_memstat_state |= P_MEMSTAT_FATAL_MEMLIMIT; \
170 (p)->p_memstat_state &= ~P_MEMSTAT_FATAL_MEMLIMIT; \
172 if ((p)->p_memstat_state & P_MEMSTAT_MEMLIMIT_INACTIVE_EXC_TRIGGERED) { \
173 trigger_exception = FALSE; \
175 trigger_exception = TRUE; \
180 /* General tunables */
182 unsigned long delta_percentage
= 5;
183 unsigned long critical_threshold_percentage
= 5;
184 unsigned long idle_offset_percentage
= 5;
185 unsigned long pressure_threshold_percentage
= 15;
186 unsigned long freeze_threshold_percentage
= 50;
187 unsigned long policy_more_free_offset_percentage
= 5;
189 /* General memorystatus stuff */
191 struct klist memorystatus_klist
;
192 static lck_mtx_t memorystatus_klist_mutex
;
194 static void memorystatus_klist_lock(void);
195 static void memorystatus_klist_unlock(void);
197 static uint64_t memorystatus_sysprocs_idle_delay_time
= 0;
198 static uint64_t memorystatus_apps_idle_delay_time
= 0;
201 * Memorystatus kevents
204 static int filt_memorystatusattach(struct knote
*kn
);
205 static void filt_memorystatusdetach(struct knote
*kn
);
206 static int filt_memorystatus(struct knote
*kn
, long hint
);
207 static int filt_memorystatustouch(struct knote
*kn
, struct kevent_internal_s
*kev
);
208 static int filt_memorystatusprocess(struct knote
*kn
, struct filt_process_s
*data
, struct kevent_internal_s
*kev
);
210 struct filterops memorystatus_filtops
= {
211 .f_attach
= filt_memorystatusattach
,
212 .f_detach
= filt_memorystatusdetach
,
213 .f_event
= filt_memorystatus
,
214 .f_touch
= filt_memorystatustouch
,
215 .f_process
= filt_memorystatusprocess
,
219 kMemorystatusNoPressure
= 0x1,
220 kMemorystatusPressure
= 0x2,
221 kMemorystatusLowSwap
= 0x4,
222 kMemorystatusProcLimitWarn
= 0x8,
223 kMemorystatusProcLimitCritical
= 0x10
226 /* Idle guard handling */
228 static int32_t memorystatus_scheduled_idle_demotions_sysprocs
= 0;
229 static int32_t memorystatus_scheduled_idle_demotions_apps
= 0;
231 static thread_call_t memorystatus_idle_demotion_call
;
233 static void memorystatus_perform_idle_demotion(__unused
void *spare1
, __unused
void *spare2
);
234 static void memorystatus_schedule_idle_demotion_locked(proc_t p
, boolean_t set_state
);
235 static void memorystatus_invalidate_idle_demotion_locked(proc_t p
, boolean_t clean_state
);
236 static void memorystatus_reschedule_idle_demotion_locked(void);
238 static void memorystatus_update_priority_locked(proc_t p
, int priority
, boolean_t head_insert
, boolean_t skip_demotion_check
);
240 vm_pressure_level_t
convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t
);
242 boolean_t
is_knote_registered_modify_task_pressure_bits(struct knote
*, int, task_t
, vm_pressure_level_t
, vm_pressure_level_t
);
243 void memorystatus_klist_reset_all_for_level(vm_pressure_level_t pressure_level_to_clear
);
244 void memorystatus_send_low_swap_note(void);
246 int memorystatus_wakeup
= 0;
248 unsigned int memorystatus_level
= 0;
250 static int memorystatus_list_count
= 0;
252 #define MEMSTAT_BUCKET_COUNT (JETSAM_PRIORITY_MAX + 1)
254 typedef struct memstat_bucket
{
255 TAILQ_HEAD(, proc
) list
;
259 memstat_bucket_t memstat_bucket
[MEMSTAT_BUCKET_COUNT
];
261 uint64_t memstat_idle_demotion_deadline
= 0;
263 int system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
264 int applications_aging_band
= JETSAM_PRIORITY_IDLE
;
266 #define isProcessInAgingBands(p) ((isSysProc(p) && system_procs_aging_band && (p->p_memstat_effectivepriority == system_procs_aging_band)) || (isApp(p) && applications_aging_band && (p->p_memstat_effectivepriority == applications_aging_band)))
267 #define isApp(p) (! (p->p_memstat_dirty & P_DIRTY_TRACK))
268 #define isSysProc(p) ((p->p_memstat_dirty & P_DIRTY_TRACK))
270 #define kJetsamAgingPolicyNone (0)
271 #define kJetsamAgingPolicyLegacy (1)
272 #define kJetsamAgingPolicySysProcsReclaimedFirst (2)
273 #define kJetsamAgingPolicyAppsReclaimedFirst (3)
274 #define kJetsamAgingPolicyMax kJetsamAgingPolicyAppsReclaimedFirst
276 unsigned int jetsam_aging_policy
= kJetsamAgingPolicyLegacy
;
278 extern int corpse_for_fatal_memkill
;
279 extern unsigned long total_corpses_count
;
280 extern void task_purge_all_corpses(void);
284 /* Keeping around for future use if we need a utility that can do this OR an app that needs a dynamic adjustment. */
287 sysctl_set_jetsam_aging_policy SYSCTL_HANDLER_ARGS
289 #pragma unused(oidp, arg1, arg2)
291 int error
= 0, val
= 0;
292 memstat_bucket_t
*old_bucket
= 0;
293 int old_system_procs_aging_band
= 0, new_system_procs_aging_band
= 0;
294 int old_applications_aging_band
= 0, new_applications_aging_band
= 0;
295 proc_t p
= NULL
, next_proc
= NULL
;
298 error
= sysctl_io_number(req
, jetsam_aging_policy
, sizeof(int), &val
, NULL
);
299 if (error
|| !req
->newptr
) {
303 if ((val
< 0) || (val
> kJetsamAgingPolicyMax
)) {
304 printf("jetsam: ordering policy sysctl has invalid value - %d\n", val
);
309 * We need to synchronize with any potential adding/removal from aging bands
310 * that might be in progress currently. We use the proc_list_lock() just for
311 * consistency with all the routines dealing with 'aging' processes. We need
312 * a lighterweight lock.
316 old_system_procs_aging_band
= system_procs_aging_band
;
317 old_applications_aging_band
= applications_aging_band
;
321 case kJetsamAgingPolicyNone
:
322 new_system_procs_aging_band
= JETSAM_PRIORITY_IDLE
;
323 new_applications_aging_band
= JETSAM_PRIORITY_IDLE
;
326 case kJetsamAgingPolicyLegacy
:
328 * Legacy behavior where some daemons get a 10s protection once and only before the first clean->dirty->clean transition before going into IDLE band.
330 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
331 new_applications_aging_band
= JETSAM_PRIORITY_IDLE
;
334 case kJetsamAgingPolicySysProcsReclaimedFirst
:
335 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
336 new_applications_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
339 case kJetsamAgingPolicyAppsReclaimedFirst
:
340 new_system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
341 new_applications_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
348 if (old_system_procs_aging_band
&& (old_system_procs_aging_band
!= new_system_procs_aging_band
)) {
350 old_bucket
= &memstat_bucket
[old_system_procs_aging_band
];
351 p
= TAILQ_FIRST(&old_bucket
->list
);
355 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
358 if (new_system_procs_aging_band
== JETSAM_PRIORITY_IDLE
) {
359 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
362 memorystatus_update_priority_locked(p
, new_system_procs_aging_band
, false, true);
370 if (old_applications_aging_band
&& (old_applications_aging_band
!= new_applications_aging_band
)) {
372 old_bucket
= &memstat_bucket
[old_applications_aging_band
];
373 p
= TAILQ_FIRST(&old_bucket
->list
);
377 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
380 if (new_applications_aging_band
== JETSAM_PRIORITY_IDLE
) {
381 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
384 memorystatus_update_priority_locked(p
, new_applications_aging_band
, false, true);
392 jetsam_aging_policy
= val
;
393 system_procs_aging_band
= new_system_procs_aging_band
;
394 applications_aging_band
= new_applications_aging_band
;
401 SYSCTL_PROC(_kern
, OID_AUTO
, set_jetsam_aging_policy
, CTLTYPE_INT
|CTLFLAG_RW
,
402 0, 0, sysctl_set_jetsam_aging_policy
, "I", "Jetsam Aging Policy");
406 sysctl_jetsam_set_sysprocs_idle_delay_time SYSCTL_HANDLER_ARGS
408 #pragma unused(oidp, arg1, arg2)
410 int error
= 0, val
= 0, old_time_in_secs
= 0;
411 uint64_t old_time_in_ns
= 0;
413 absolutetime_to_nanoseconds(memorystatus_sysprocs_idle_delay_time
, &old_time_in_ns
);
414 old_time_in_secs
= old_time_in_ns
/ NSEC_PER_SEC
;
416 error
= sysctl_io_number(req
, old_time_in_secs
, sizeof(int), &val
, NULL
);
417 if (error
|| !req
->newptr
) {
421 if ((val
< 0) || (val
> INT32_MAX
)) {
422 printf("jetsam: new idle delay interval has invalid value.\n");
426 nanoseconds_to_absolutetime((uint64_t)val
* NSEC_PER_SEC
, &memorystatus_sysprocs_idle_delay_time
);
431 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_sysprocs_idle_delay_time
, CTLTYPE_INT
|CTLFLAG_RW
,
432 0, 0, sysctl_jetsam_set_sysprocs_idle_delay_time
, "I", "Aging window for system processes");
436 sysctl_jetsam_set_apps_idle_delay_time SYSCTL_HANDLER_ARGS
438 #pragma unused(oidp, arg1, arg2)
440 int error
= 0, val
= 0, old_time_in_secs
= 0;
441 uint64_t old_time_in_ns
= 0;
443 absolutetime_to_nanoseconds(memorystatus_apps_idle_delay_time
, &old_time_in_ns
);
444 old_time_in_secs
= old_time_in_ns
/ NSEC_PER_SEC
;
446 error
= sysctl_io_number(req
, old_time_in_secs
, sizeof(int), &val
, NULL
);
447 if (error
|| !req
->newptr
) {
451 if ((val
< 0) || (val
> INT32_MAX
)) {
452 printf("jetsam: new idle delay interval has invalid value.\n");
456 nanoseconds_to_absolutetime((uint64_t)val
* NSEC_PER_SEC
, &memorystatus_apps_idle_delay_time
);
461 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_apps_idle_delay_time
, CTLTYPE_INT
|CTLFLAG_RW
,
462 0, 0, sysctl_jetsam_set_apps_idle_delay_time
, "I", "Aging window for applications");
464 SYSCTL_INT(_kern
, OID_AUTO
, jetsam_aging_policy
, CTLTYPE_INT
|CTLFLAG_RD
, &jetsam_aging_policy
, 0, "");
466 static unsigned int memorystatus_dirty_count
= 0;
468 SYSCTL_INT(_kern
, OID_AUTO
, max_task_pmem
, CTLFLAG_RD
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
, &max_task_footprint_mb
, 0, "");
472 memorystatus_get_level(__unused
struct proc
*p
, struct memorystatus_get_level_args
*args
, __unused
int *ret
)
474 user_addr_t level
= 0;
478 if (copyout(&memorystatus_level
, level
, sizeof(memorystatus_level
)) != 0) {
485 static proc_t
memorystatus_get_first_proc_locked(unsigned int *bucket_index
, boolean_t search
);
486 static proc_t
memorystatus_get_next_proc_locked(unsigned int *bucket_index
, proc_t p
, boolean_t search
);
488 static void memorystatus_thread(void *param __unused
, wait_result_t wr __unused
);
492 static int memorystatus_highwater_enabled
= 1; /* Update the cached memlimit data. */
494 static boolean_t
proc_jetsam_state_is_active_locked(proc_t
);
495 static boolean_t
memorystatus_kill_specific_process(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
);
496 static boolean_t
memorystatus_kill_process_sync(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
);
503 static int memorystatus_cmd_set_jetsam_memory_limit(pid_t pid
, int32_t high_water_mark
, __unused
int32_t *retval
, boolean_t is_fatal_limit
);
505 static int memorystatus_cmd_set_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
507 static int memorystatus_set_memlimit_properties(pid_t pid
, memorystatus_memlimit_properties_t
*entry
);
509 static int memorystatus_cmd_get_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
511 static int memorystatus_cmd_get_memlimit_excess_np(pid_t pid
, uint32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
);
513 int proc_get_memstat_priority(proc_t
, boolean_t
);
515 static boolean_t memorystatus_idle_snapshot
= 0;
517 unsigned int memorystatus_delta
= 0;
519 static unsigned int memorystatus_available_pages_critical_base
= 0;
520 //static unsigned int memorystatus_last_foreground_pressure_pages = (unsigned int)-1;
521 static unsigned int memorystatus_available_pages_critical_idle_offset
= 0;
523 /* Jetsam Loop Detection */
524 static boolean_t memorystatus_jld_enabled
= TRUE
; /* Enables jetsam loop detection on all devices */
525 static uint32_t memorystatus_jld_eval_period_msecs
= 0; /* Init pass sets this based on device memory size */
526 static int memorystatus_jld_eval_aggressive_count
= 3; /* Raise the priority max after 'n' aggressive loops */
527 static int memorystatus_jld_eval_aggressive_priority_band_max
= 15; /* Kill aggressively up through this band */
530 * A FG app can request that the aggressive jetsam mechanism display some leniency in the FG band. This 'lenient' mode is described as:
531 * --- if aggressive jetsam kills an app in the FG band and gets back >=AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD memory, it will stop the aggressive march further into and up the jetsam bands.
534 * - Such a request is respected/acknowledged only once while that 'requesting' app is in the FG band i.e. if aggressive jetsam was
535 * needed and the 'lenient' mode was deployed then that's it for this special mode while the app is in the FG band.
537 * - If the app is still in the FG band and aggressive jetsam is needed again, there will be no stop-and-check the next time around.
539 * - Also, the transition of the 'requesting' app away from the FG band will void this special behavior.
542 #define AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD 25
543 boolean_t memorystatus_aggressive_jetsam_lenient_allowed
= FALSE
;
544 boolean_t memorystatus_aggressive_jetsam_lenient
= FALSE
;
546 #if DEVELOPMENT || DEBUG
548 * Jetsam Loop Detection tunables.
551 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_period_msecs
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_jld_eval_period_msecs
, 0, "");
552 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_aggressive_count
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_jld_eval_aggressive_count
, 0, "");
553 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jld_eval_aggressive_priority_band_max
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_jld_eval_aggressive_priority_band_max
, 0, "");
554 #endif /* DEVELOPMENT || DEBUG */
556 #if DEVELOPMENT || DEBUG
557 static unsigned int memorystatus_jetsam_panic_debug
= 0;
558 static unsigned int memorystatus_jetsam_policy_offset_pages_diagnostic
= 0;
561 static unsigned int memorystatus_jetsam_policy
= kPolicyDefault
;
562 static unsigned int memorystatus_thread_wasted_wakeup
= 0;
564 static uint32_t kill_under_pressure_cause
= 0;
567 * default jetsam snapshot support
569 static memorystatus_jetsam_snapshot_t
*memorystatus_jetsam_snapshot
;
570 #define memorystatus_jetsam_snapshot_list memorystatus_jetsam_snapshot->entries
571 static unsigned int memorystatus_jetsam_snapshot_count
= 0;
572 static unsigned int memorystatus_jetsam_snapshot_max
= 0;
573 static uint64_t memorystatus_jetsam_snapshot_last_timestamp
= 0;
574 static uint64_t memorystatus_jetsam_snapshot_timeout
= 0;
575 #define JETSAM_SNAPSHOT_TIMEOUT_SECS 30
578 * snapshot support for memstats collected at boot.
580 static memorystatus_jetsam_snapshot_t memorystatus_at_boot_snapshot
;
582 static void memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t
*od_snapshot
, uint32_t ods_list_count
);
583 static boolean_t
memorystatus_init_jetsam_snapshot_entry_locked(proc_t p
, memorystatus_jetsam_snapshot_entry_t
*entry
, uint64_t gencount
);
584 static void memorystatus_update_jetsam_snapshot_entry_locked(proc_t p
, uint32_t kill_cause
, uint64_t killtime
);
586 static void memorystatus_clear_errors(void);
587 static void memorystatus_get_task_page_counts(task_t task
, uint32_t *footprint
, uint32_t *max_footprint
, uint32_t *max_footprint_lifetime
, uint32_t *purgeable_pages
);
588 static void memorystatus_get_task_phys_footprint_page_counts(task_t task
,
589 uint64_t *internal_pages
, uint64_t *internal_compressed_pages
,
590 uint64_t *purgeable_nonvolatile_pages
, uint64_t *purgeable_nonvolatile_compressed_pages
,
591 uint64_t *alternate_accounting_pages
, uint64_t *alternate_accounting_compressed_pages
,
592 uint64_t *iokit_mapped_pages
, uint64_t *page_table_pages
);
594 static void memorystatus_get_task_memory_region_count(task_t task
, uint64_t *count
);
596 static uint32_t memorystatus_build_state(proc_t p
);
597 static void memorystatus_update_levels_locked(boolean_t critical_only
);
598 //static boolean_t memorystatus_issue_pressure_kevent(boolean_t pressured);
600 static boolean_t
memorystatus_kill_top_process(boolean_t any
, boolean_t sort_flag
, uint32_t cause
, os_reason_t jetsam_reason
, int32_t *priority
, uint32_t *errors
);
601 static boolean_t
memorystatus_kill_top_process_aggressive(boolean_t any
, uint32_t cause
, os_reason_t jetsam_reason
, int aggr_count
, int32_t priority_max
, uint32_t *errors
);
602 static boolean_t
memorystatus_kill_elevated_process(uint32_t cause
, os_reason_t jetsam_reason
, int aggr_count
, uint32_t *errors
);
603 static boolean_t
memorystatus_kill_hiwat_proc(uint32_t *errors
);
605 static boolean_t
memorystatus_kill_process_async(pid_t victim_pid
, uint32_t cause
);
607 /* Priority Band Sorting Routines */
608 static int memorystatus_sort_bucket(unsigned int bucket_index
, int sort_order
);
609 static int memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index
, int coal_sort_order
);
610 static void memorystatus_sort_by_largest_process_locked(unsigned int bucket_index
);
611 static int memorystatus_move_list_locked(unsigned int bucket_index
, pid_t
*pid_list
, int list_sz
);
614 typedef int (*cmpfunc_t
)(const void *a
, const void *b
);
615 extern void qsort(void *a
, size_t n
, size_t es
, cmpfunc_t cmp
);
616 static int memstat_asc_cmp(const void *a
, const void *b
);
618 #endif /* CONFIG_JETSAM */
622 extern unsigned int vm_page_free_count
;
623 extern unsigned int vm_page_active_count
;
624 extern unsigned int vm_page_inactive_count
;
625 extern unsigned int vm_page_throttled_count
;
626 extern unsigned int vm_page_purgeable_count
;
627 extern unsigned int vm_page_wire_count
;
628 #if CONFIG_SECLUDED_MEMORY
629 extern unsigned int vm_page_secluded_count
;
630 #endif /* CONFIG_SECLUDED_MEMORY */
632 #if VM_PRESSURE_EVENTS
634 boolean_t
memorystatus_warn_process(pid_t pid
, boolean_t exceeded
);
636 vm_pressure_level_t memorystatus_vm_pressure_level
= kVMPressureNormal
;
638 #if CONFIG_MEMORYSTATUS
639 unsigned int memorystatus_available_pages
= (unsigned int)-1;
640 unsigned int memorystatus_available_pages_pressure
= 0;
641 unsigned int memorystatus_available_pages_critical
= 0;
642 unsigned int memorystatus_frozen_count
= 0;
643 unsigned int memorystatus_suspended_count
= 0;
644 unsigned int memorystatus_policy_more_free_offset_pages
= 0;
647 * We use this flag to signal if we have any HWM offenders
648 * on the system. This way we can reduce the number of wakeups
649 * of the memorystatus_thread when the system is between the
650 * "pressure" and "critical" threshold.
652 * The (re-)setting of this variable is done without any locks
653 * or synchronization simply because it is not possible (currently)
654 * to keep track of HWM offenders that drop down below their memory
655 * limit and/or exit. So, we choose to burn a couple of wasted wakeups
656 * by allowing the unguarded modification of this variable.
658 boolean_t memorystatus_hwm_candidates
= 0;
660 static int memorystatus_send_note(int event_code
, void *data
, size_t data_length
);
661 #endif /* CONFIG_MEMORYSTATUS */
663 #endif /* VM_PRESSURE_EVENTS */
666 #if DEVELOPMENT || DEBUG
668 lck_grp_attr_t
*disconnect_page_mappings_lck_grp_attr
;
669 lck_grp_t
*disconnect_page_mappings_lck_grp
;
670 static lck_mtx_t disconnect_page_mappings_mutex
;
679 boolean_t memorystatus_freeze_enabled
= FALSE
;
680 int memorystatus_freeze_wakeup
= 0;
682 lck_grp_attr_t
*freezer_lck_grp_attr
;
683 lck_grp_t
*freezer_lck_grp
;
684 static lck_mtx_t freezer_mutex
;
686 static inline boolean_t
memorystatus_can_freeze_processes(void);
687 static boolean_t
memorystatus_can_freeze(boolean_t
*memorystatus_freeze_swap_low
);
689 static void memorystatus_freeze_thread(void *param __unused
, wait_result_t wr __unused
);
692 static unsigned int memorystatus_freeze_threshold
= 0;
694 static unsigned int memorystatus_freeze_pages_min
= 0;
695 static unsigned int memorystatus_freeze_pages_max
= 0;
697 static unsigned int memorystatus_freeze_suspended_threshold
= FREEZE_SUSPENDED_THRESHOLD_DEFAULT
;
699 static unsigned int memorystatus_freeze_daily_mb_max
= FREEZE_DAILY_MB_MAX_DEFAULT
;
702 static uint64_t memorystatus_freeze_count
= 0;
703 static uint64_t memorystatus_freeze_pageouts
= 0;
706 static throttle_interval_t throttle_intervals
[] = {
707 { 60, 8, 0, 0, { 0, 0 }, FALSE
}, /* 1 hour intermediate interval, 8x burst */
708 { 24 * 60, 1, 0, 0, { 0, 0 }, FALSE
}, /* 24 hour long interval, no burst */
711 static uint64_t memorystatus_freeze_throttle_count
= 0;
713 static unsigned int memorystatus_suspended_footprint_total
= 0; /* pages */
715 extern uint64_t vm_swap_get_free_space(void);
717 static boolean_t
memorystatus_freeze_update_throttle();
719 #endif /* CONFIG_FREEZE */
723 extern struct knote
*vm_find_knote_from_pid(pid_t
, struct klist
*);
725 #if DEVELOPMENT || DEBUG
727 static unsigned int memorystatus_debug_dump_this_bucket
= 0;
730 memorystatus_debug_dump_bucket_locked (unsigned int bucket_index
)
734 int ledger_limit
= 0;
735 unsigned int b
= bucket_index
;
736 boolean_t traverse_all_buckets
= FALSE
;
738 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
739 traverse_all_buckets
= TRUE
;
742 traverse_all_buckets
= FALSE
;
747 * footprint reported in [pages / MB ]
748 * limits reported as:
749 * L-limit proc's Ledger limit
750 * C-limit proc's Cached limit, should match Ledger
751 * A-limit proc's Active limit
752 * IA-limit proc's Inactive limit
753 * F==Fatal, NF==NonFatal
756 printf("memorystatus_debug_dump ***START*(PAGE_SIZE_64=%llu)**\n", PAGE_SIZE_64
);
757 printf("bucket [pid] [pages / MB] [state] [EP / RP] dirty deadline [L-limit / C-limit / A-limit / IA-limit] name\n");
758 p
= memorystatus_get_first_proc_locked(&b
, traverse_all_buckets
);
760 bytes
= get_task_phys_footprint(p
->task
);
761 task_get_phys_footprint_limit(p
->task
, &ledger_limit
);
762 printf("%2d [%5d] [%5lld /%3lldMB] 0x%-8x [%2d / %2d] 0x%-3x %10lld [%3d / %3d%s / %3d%s / %3d%s] %s\n",
764 (bytes
/ PAGE_SIZE_64
), /* task's footprint converted from bytes to pages */
765 (bytes
/ (1024ULL * 1024ULL)), /* task's footprint converted from bytes to MB */
766 p
->p_memstat_state
, p
->p_memstat_effectivepriority
, p
->p_memstat_requestedpriority
, p
->p_memstat_dirty
, p
->p_memstat_idledeadline
,
768 p
->p_memstat_memlimit
,
769 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"),
770 p
->p_memstat_memlimit_active
,
771 (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
? "F " : "NF"),
772 p
->p_memstat_memlimit_inactive
,
773 (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
? "F " : "NF"),
774 (*p
->p_name
? p
->p_name
: "unknown"));
775 p
= memorystatus_get_next_proc_locked(&b
, p
, traverse_all_buckets
);
777 printf("memorystatus_debug_dump ***END***\n");
781 sysctl_memorystatus_debug_dump_bucket SYSCTL_HANDLER_ARGS
783 #pragma unused(oidp, arg2)
784 int bucket_index
= 0;
786 error
= SYSCTL_OUT(req
, arg1
, sizeof(int));
787 if (error
|| !req
->newptr
) {
790 error
= SYSCTL_IN(req
, &bucket_index
, sizeof(int));
791 if (error
|| !req
->newptr
) {
794 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
796 * All jetsam buckets will be dumped.
800 * Only a single bucket will be dumped.
805 memorystatus_debug_dump_bucket_locked(bucket_index
);
807 memorystatus_debug_dump_this_bucket
= bucket_index
;
812 * Debug aid to look at jetsam buckets and proc jetsam fields.
813 * Use this sysctl to act on a particular jetsam bucket.
814 * Writing the sysctl triggers the dump.
815 * Usage: sysctl kern.memorystatus_debug_dump_this_bucket=<bucket_index>
818 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_debug_dump_this_bucket
, CTLTYPE_INT
|CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_debug_dump_this_bucket
, 0, sysctl_memorystatus_debug_dump_bucket
, "I", "");
821 /* Debug aid to aid determination of limit */
824 sysctl_memorystatus_highwater_enable SYSCTL_HANDLER_ARGS
826 #pragma unused(oidp, arg2)
829 int error
, enable
= 0;
831 error
= SYSCTL_OUT(req
, arg1
, sizeof(int));
832 if (error
|| !req
->newptr
) {
836 error
= SYSCTL_IN(req
, &enable
, sizeof(int));
837 if (error
|| !req
->newptr
) {
841 if (!(enable
== 0 || enable
== 1)) {
847 p
= memorystatus_get_first_proc_locked(&b
, TRUE
);
849 boolean_t trigger_exception
;
853 * No need to consider P_MEMSTAT_MEMLIMIT_BACKGROUND anymore.
854 * Background limits are described via the inactive limit slots.
857 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
858 CACHE_ACTIVE_LIMITS_LOCKED(p
, trigger_exception
);
860 CACHE_INACTIVE_LIMITS_LOCKED(p
, trigger_exception
);
865 * Disabling limits does not touch the stored variants.
866 * Set the cached limit fields to system_wide defaults.
868 p
->p_memstat_memlimit
= -1;
869 p
->p_memstat_state
|= P_MEMSTAT_FATAL_MEMLIMIT
;
870 trigger_exception
= TRUE
;
874 * Enforce the cached limit by writing to the ledger.
876 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, trigger_exception
);
878 p
= memorystatus_get_next_proc_locked(&b
, p
, TRUE
);
881 memorystatus_highwater_enabled
= enable
;
889 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_highwater_enabled
, CTLTYPE_INT
|CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_highwater_enabled
, 0, sysctl_memorystatus_highwater_enable
, "I", "");
891 #if VM_PRESSURE_EVENTS
894 * This routine is used for targeted notifications
895 * regardless of system memory pressure.
896 * "memnote" is the current user.
900 sysctl_memorystatus_vm_pressure_send SYSCTL_HANDLER_ARGS
902 #pragma unused(arg1, arg2)
904 int error
= 0, pid
= 0;
905 struct knote
*kn
= NULL
;
906 boolean_t found_knote
= FALSE
;
907 int fflags
= 0; /* filter flags for EVFILT_MEMORYSTATUS */
910 error
= sysctl_handle_quad(oidp
, &value
, 0, req
);
911 if (error
|| !req
->newptr
)
915 * Find the pid in the low 32 bits of value passed in.
917 pid
= (int)(value
& 0xFFFFFFFF);
920 * Find notification in the high 32 bits of the value passed in.
922 fflags
= (int)((value
>> 32) & 0xFFFFFFFF);
925 * For backwards compatibility, when no notification is
926 * passed in, default to the NOTE_MEMORYSTATUS_PRESSURE_WARN
929 fflags
= NOTE_MEMORYSTATUS_PRESSURE_WARN
;
930 // printf("memorystatus_vm_pressure_send: using default notification [0x%x]\n", fflags);
934 * See event.h ... fflags for EVFILT_MEMORYSTATUS
936 if (!((fflags
== NOTE_MEMORYSTATUS_PRESSURE_NORMAL
)||
937 (fflags
== NOTE_MEMORYSTATUS_PRESSURE_WARN
) ||
938 (fflags
== NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
) ||
939 (fflags
== NOTE_MEMORYSTATUS_LOW_SWAP
) ||
940 (fflags
== NOTE_MEMORYSTATUS_PROC_LIMIT_WARN
) ||
941 (fflags
== NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL
))) {
943 printf("memorystatus_vm_pressure_send: notification [0x%x] not supported \n", fflags
);
949 * Forcibly send pid a memorystatus notification.
952 memorystatus_klist_lock();
954 SLIST_FOREACH(kn
, &memorystatus_klist
, kn_selnext
) {
955 proc_t knote_proc
= knote_get_kq(kn
)->kq_p
;
956 pid_t knote_pid
= knote_proc
->p_pid
;
958 if (knote_pid
== pid
) {
960 * Forcibly send this pid a memorystatus notification.
962 kn
->kn_fflags
= fflags
;
968 KNOTE(&memorystatus_klist
, 0);
969 printf("memorystatus_vm_pressure_send: (value 0x%llx) notification [0x%x] sent to process [%d] \n", value
, fflags
, pid
);
972 printf("memorystatus_vm_pressure_send: (value 0x%llx) notification [0x%x] not sent to process [%d] (none registered?)\n", value
, fflags
, pid
);
976 memorystatus_klist_unlock();
981 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_vm_pressure_send
, CTLTYPE_QUAD
|CTLFLAG_WR
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
,
982 0, 0, &sysctl_memorystatus_vm_pressure_send
, "Q", "");
984 #endif /* VM_PRESSURE_EVENTS */
988 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_idle_snapshot
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_idle_snapshot
, 0, "");
990 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages
, CTLFLAG_RD
|CTLFLAG_LOCKED
, &memorystatus_available_pages
, 0, "");
991 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical
, CTLFLAG_RD
|CTLFLAG_LOCKED
, &memorystatus_available_pages_critical
, 0, "");
992 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical_base
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_available_pages_critical_base
, 0, "");
993 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_critical_idle_offset
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_available_pages_critical_idle_offset
, 0, "");
994 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_policy_more_free_offset_pages
, CTLFLAG_RW
, &memorystatus_policy_more_free_offset_pages
, 0, "");
996 /* Diagnostic code */
999 kJetsamDiagnosticModeNone
= 0,
1000 kJetsamDiagnosticModeAll
= 1,
1001 kJetsamDiagnosticModeStopAtFirstActive
= 2,
1002 kJetsamDiagnosticModeCount
1003 } jetsam_diagnostic_mode
= kJetsamDiagnosticModeNone
;
1005 static int jetsam_diagnostic_suspended_one_active_proc
= 0;
1008 sysctl_jetsam_diagnostic_mode SYSCTL_HANDLER_ARGS
1010 #pragma unused(arg1, arg2)
1012 const char *diagnosticStrings
[] = {
1013 "jetsam: diagnostic mode: resetting critical level.",
1014 "jetsam: diagnostic mode: will examine all processes",
1015 "jetsam: diagnostic mode: will stop at first active process"
1018 int error
, val
= jetsam_diagnostic_mode
;
1019 boolean_t changed
= FALSE
;
1021 error
= sysctl_handle_int(oidp
, &val
, 0, req
);
1022 if (error
|| !req
->newptr
)
1024 if ((val
< 0) || (val
>= kJetsamDiagnosticModeCount
)) {
1025 printf("jetsam: diagnostic mode: invalid value - %d\n", val
);
1031 if ((unsigned int) val
!= jetsam_diagnostic_mode
) {
1032 jetsam_diagnostic_mode
= val
;
1034 memorystatus_jetsam_policy
&= ~kPolicyDiagnoseActive
;
1036 switch (jetsam_diagnostic_mode
) {
1037 case kJetsamDiagnosticModeNone
:
1038 /* Already cleared */
1040 case kJetsamDiagnosticModeAll
:
1041 memorystatus_jetsam_policy
|= kPolicyDiagnoseAll
;
1043 case kJetsamDiagnosticModeStopAtFirstActive
:
1044 memorystatus_jetsam_policy
|= kPolicyDiagnoseFirst
;
1047 /* Already validated */
1051 memorystatus_update_levels_locked(FALSE
);
1058 printf("%s\n", diagnosticStrings
[val
]);
1064 SYSCTL_PROC(_debug
, OID_AUTO
, jetsam_diagnostic_mode
, CTLTYPE_INT
|CTLFLAG_RW
|CTLFLAG_LOCKED
|CTLFLAG_ANYBODY
,
1065 &jetsam_diagnostic_mode
, 0, sysctl_jetsam_diagnostic_mode
, "I", "Jetsam Diagnostic Mode");
1067 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_jetsam_policy_offset_pages_diagnostic
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_jetsam_policy_offset_pages_diagnostic
, 0, "");
1069 #if VM_PRESSURE_EVENTS
1071 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_available_pages_pressure
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_available_pages_pressure
, 0, "");
1073 #endif /* VM_PRESSURE_EVENTS */
1075 #endif /* CONFIG_JETSAM */
1079 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_freeze_daily_mb_max
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_freeze_daily_mb_max
, 0, "");
1081 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_freeze_threshold
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_freeze_threshold
, 0, "");
1083 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_freeze_pages_min
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_freeze_pages_min
, 0, "");
1084 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_freeze_pages_max
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_freeze_pages_max
, 0, "");
1086 SYSCTL_QUAD(_kern
, OID_AUTO
, memorystatus_freeze_count
, CTLFLAG_RD
|CTLFLAG_LOCKED
, &memorystatus_freeze_count
, "");
1087 SYSCTL_QUAD(_kern
, OID_AUTO
, memorystatus_freeze_pageouts
, CTLFLAG_RD
|CTLFLAG_LOCKED
, &memorystatus_freeze_pageouts
, "");
1088 SYSCTL_QUAD(_kern
, OID_AUTO
, memorystatus_freeze_throttle_count
, CTLFLAG_RD
|CTLFLAG_LOCKED
, &memorystatus_freeze_throttle_count
, "");
1089 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_freeze_min_processes
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_freeze_suspended_threshold
, 0, "");
1091 boolean_t memorystatus_freeze_throttle_enabled
= TRUE
;
1092 SYSCTL_UINT(_kern
, OID_AUTO
, memorystatus_freeze_throttle_enabled
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_freeze_throttle_enabled
, 0, "");
1095 * Manual trigger of freeze and thaw for dev / debug kernels only.
1098 sysctl_memorystatus_freeze SYSCTL_HANDLER_ARGS
1100 #pragma unused(arg1, arg2)
1104 if (memorystatus_freeze_enabled
== FALSE
) {
1108 error
= sysctl_handle_int(oidp
, &pid
, 0, req
);
1109 if (error
|| !req
->newptr
)
1113 vm_pageout_anonymous_pages();
1118 lck_mtx_lock(&freezer_mutex
);
1122 uint32_t purgeable
, wired
, clean
, dirty
;
1124 uint32_t max_pages
= 0;
1126 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
1128 unsigned int avail_swap_space
= 0; /* in pages. */
1131 * Freezer backed by the compressor and swap file(s)
1132 * while will hold compressed data.
1134 avail_swap_space
= vm_swap_get_free_space() / PAGE_SIZE_64
;
1136 max_pages
= MIN(avail_swap_space
, memorystatus_freeze_pages_max
);
1140 * We only have the compressor without any swap.
1142 max_pages
= UINT32_MAX
- 1;
1145 error
= task_freeze(p
->task
, &purgeable
, &wired
, &clean
, &dirty
, max_pages
, &shared
, FALSE
);
1151 lck_mtx_unlock(&freezer_mutex
);
1155 lck_mtx_unlock(&freezer_mutex
);
1159 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_freeze
, CTLTYPE_INT
|CTLFLAG_WR
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
,
1160 0, 0, &sysctl_memorystatus_freeze
, "I", "");
1163 sysctl_memorystatus_available_pages_thaw SYSCTL_HANDLER_ARGS
1165 #pragma unused(arg1, arg2)
1170 if (memorystatus_freeze_enabled
== FALSE
) {
1174 error
= sysctl_handle_int(oidp
, &pid
, 0, req
);
1175 if (error
|| !req
->newptr
)
1180 error
= task_thaw(p
->task
);
1191 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_thaw
, CTLTYPE_INT
|CTLFLAG_WR
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
,
1192 0, 0, &sysctl_memorystatus_available_pages_thaw
, "I", "");
1194 #endif /* CONFIG_FREEZE */
1196 #endif /* DEVELOPMENT || DEBUG */
1198 extern kern_return_t
kernel_thread_start_priority(thread_continue_t continuation
,
1201 thread_t
*new_thread
);
1203 #if DEVELOPMENT || DEBUG
1206 sysctl_memorystatus_disconnect_page_mappings SYSCTL_HANDLER_ARGS
1208 #pragma unused(arg1, arg2)
1209 int error
= 0, pid
= 0;
1212 error
= sysctl_handle_int(oidp
, &pid
, 0, req
);
1213 if (error
|| !req
->newptr
)
1216 lck_mtx_lock(&disconnect_page_mappings_mutex
);
1219 vm_pageout_disconnect_all_pages();
1224 error
= task_disconnect_page_mappings(p
->task
);
1233 lck_mtx_unlock(&disconnect_page_mappings_mutex
);
1238 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_disconnect_page_mappings
, CTLTYPE_INT
|CTLFLAG_WR
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
,
1239 0, 0, &sysctl_memorystatus_disconnect_page_mappings
, "I", "");
1241 #endif /* DEVELOPMENT || DEBUG */
1247 * Picks the sorting routine for a given jetsam priority band.
1250 * bucket_index - jetsam priority band to be sorted.
1251 * sort_order - JETSAM_SORT_xxx from kern_memorystatus.h
1252 * Currently sort_order is only meaningful when handling
1259 static int memorystatus_sort_bucket(unsigned int bucket_index
, int sort_order
)
1261 int coal_sort_order
;
1264 * Verify the jetsam priority
1266 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
1270 #if DEVELOPMENT || DEBUG
1271 if (sort_order
== JETSAM_SORT_DEFAULT
) {
1272 coal_sort_order
= COALITION_SORT_DEFAULT
;
1274 coal_sort_order
= sort_order
; /* only used for testing scenarios */
1277 /* Verify default */
1278 if (sort_order
== JETSAM_SORT_DEFAULT
) {
1279 coal_sort_order
= COALITION_SORT_DEFAULT
;
1286 switch (bucket_index
) {
1287 case JETSAM_PRIORITY_FOREGROUND
:
1288 if (memorystatus_sort_by_largest_coalition_locked(bucket_index
, coal_sort_order
) == 0) {
1290 * Fall back to per process sorting when zero coalitions are found.
1292 memorystatus_sort_by_largest_process_locked(bucket_index
);
1296 memorystatus_sort_by_largest_process_locked(bucket_index
);
1305 * Sort processes by size for a single jetsam bucket.
1308 static void memorystatus_sort_by_largest_process_locked(unsigned int bucket_index
)
1310 proc_t p
= NULL
, insert_after_proc
= NULL
, max_proc
= NULL
;
1311 proc_t next_p
= NULL
, prev_max_proc
= NULL
;
1312 uint32_t pages
= 0, max_pages
= 0;
1313 memstat_bucket_t
*current_bucket
;
1315 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
1319 current_bucket
= &memstat_bucket
[bucket_index
];
1321 p
= TAILQ_FIRST(¤t_bucket
->list
);
1324 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
, NULL
);
1329 while ((next_p
= TAILQ_NEXT(p
, p_memstat_list
)) != NULL
) {
1330 /* traversing list until we find next largest process */
1332 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
, NULL
);
1333 if (pages
> max_pages
) {
1339 if (prev_max_proc
!= max_proc
) {
1340 /* found a larger process, place it in the list */
1341 TAILQ_REMOVE(¤t_bucket
->list
, max_proc
, p_memstat_list
);
1342 if (insert_after_proc
== NULL
) {
1343 TAILQ_INSERT_HEAD(¤t_bucket
->list
, max_proc
, p_memstat_list
);
1345 TAILQ_INSERT_AFTER(¤t_bucket
->list
, insert_after_proc
, max_proc
, p_memstat_list
);
1347 prev_max_proc
= max_proc
;
1350 insert_after_proc
= max_proc
;
1352 p
= TAILQ_NEXT(max_proc
, p_memstat_list
);
1356 #endif /* CONFIG_JETSAM */
1358 static proc_t
memorystatus_get_first_proc_locked(unsigned int *bucket_index
, boolean_t search
) {
1359 memstat_bucket_t
*current_bucket
;
1362 if ((*bucket_index
) >= MEMSTAT_BUCKET_COUNT
) {
1366 current_bucket
= &memstat_bucket
[*bucket_index
];
1367 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1368 if (!next_p
&& search
) {
1369 while (!next_p
&& (++(*bucket_index
) < MEMSTAT_BUCKET_COUNT
)) {
1370 current_bucket
= &memstat_bucket
[*bucket_index
];
1371 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1378 static proc_t
memorystatus_get_next_proc_locked(unsigned int *bucket_index
, proc_t p
, boolean_t search
) {
1379 memstat_bucket_t
*current_bucket
;
1382 if (!p
|| ((*bucket_index
) >= MEMSTAT_BUCKET_COUNT
)) {
1386 next_p
= TAILQ_NEXT(p
, p_memstat_list
);
1387 while (!next_p
&& search
&& (++(*bucket_index
) < MEMSTAT_BUCKET_COUNT
)) {
1388 current_bucket
= &memstat_bucket
[*bucket_index
];
1389 next_p
= TAILQ_FIRST(¤t_bucket
->list
);
1395 __private_extern__
void
1396 memorystatus_init(void)
1398 thread_t thread
= THREAD_NULL
;
1399 kern_return_t result
;
1403 memorystatus_freeze_pages_min
= FREEZE_PAGES_MIN
;
1404 memorystatus_freeze_pages_max
= FREEZE_PAGES_MAX
;
1407 #if DEVELOPMENT || DEBUG
1408 disconnect_page_mappings_lck_grp_attr
= lck_grp_attr_alloc_init();
1409 disconnect_page_mappings_lck_grp
= lck_grp_alloc_init("disconnect_page_mappings", disconnect_page_mappings_lck_grp_attr
);
1411 lck_mtx_init(&disconnect_page_mappings_mutex
, disconnect_page_mappings_lck_grp
, NULL
);
1414 nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS
* NSEC_PER_SEC
, &memorystatus_sysprocs_idle_delay_time
);
1415 nanoseconds_to_absolutetime((uint64_t)DEFERRED_IDLE_EXIT_TIME_SECS
* NSEC_PER_SEC
, &memorystatus_apps_idle_delay_time
);
1418 for (i
= 0; i
< MEMSTAT_BUCKET_COUNT
; i
++) {
1419 TAILQ_INIT(&memstat_bucket
[i
].list
);
1420 memstat_bucket
[i
].count
= 0;
1423 memorystatus_idle_demotion_call
= thread_call_allocate((thread_call_func_t
)memorystatus_perform_idle_demotion
, NULL
);
1425 /* Apply overrides */
1426 PE_get_default("kern.jetsam_delta", &delta_percentage
, sizeof(delta_percentage
));
1427 if (delta_percentage
== 0) {
1428 delta_percentage
= 5;
1430 assert(delta_percentage
< 100);
1431 PE_get_default("kern.jetsam_critical_threshold", &critical_threshold_percentage
, sizeof(critical_threshold_percentage
));
1432 assert(critical_threshold_percentage
< 100);
1433 PE_get_default("kern.jetsam_idle_offset", &idle_offset_percentage
, sizeof(idle_offset_percentage
));
1434 assert(idle_offset_percentage
< 100);
1435 PE_get_default("kern.jetsam_pressure_threshold", &pressure_threshold_percentage
, sizeof(pressure_threshold_percentage
));
1436 assert(pressure_threshold_percentage
< 100);
1437 PE_get_default("kern.jetsam_freeze_threshold", &freeze_threshold_percentage
, sizeof(freeze_threshold_percentage
));
1438 assert(freeze_threshold_percentage
< 100);
1440 if (!PE_parse_boot_argn("jetsam_aging_policy", &jetsam_aging_policy
,
1441 sizeof (jetsam_aging_policy
))) {
1443 if (!PE_get_default("kern.jetsam_aging_policy", &jetsam_aging_policy
,
1444 sizeof(jetsam_aging_policy
))) {
1446 jetsam_aging_policy
= kJetsamAgingPolicyLegacy
;
1450 if (jetsam_aging_policy
> kJetsamAgingPolicyMax
) {
1451 jetsam_aging_policy
= kJetsamAgingPolicyLegacy
;
1454 switch (jetsam_aging_policy
) {
1456 case kJetsamAgingPolicyNone
:
1457 system_procs_aging_band
= JETSAM_PRIORITY_IDLE
;
1458 applications_aging_band
= JETSAM_PRIORITY_IDLE
;
1461 case kJetsamAgingPolicyLegacy
:
1463 * Legacy behavior where some daemons get a 10s protection once
1464 * AND only before the first clean->dirty->clean transition before
1465 * going into IDLE band.
1467 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1468 applications_aging_band
= JETSAM_PRIORITY_IDLE
;
1471 case kJetsamAgingPolicySysProcsReclaimedFirst
:
1472 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1473 applications_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
1476 case kJetsamAgingPolicyAppsReclaimedFirst
:
1477 system_procs_aging_band
= JETSAM_PRIORITY_AGING_BAND2
;
1478 applications_aging_band
= JETSAM_PRIORITY_AGING_BAND1
;
1486 * The aging bands cannot overlap with the JETSAM_PRIORITY_ELEVATED_INACTIVE
1487 * band and must be below it in priority. This is so that we don't have to make
1488 * our 'aging' code worry about a mix of processes, some of which need to age
1489 * and some others that need to stay elevated in the jetsam bands.
1491 assert(JETSAM_PRIORITY_ELEVATED_INACTIVE
> system_procs_aging_band
);
1492 assert(JETSAM_PRIORITY_ELEVATED_INACTIVE
> applications_aging_band
);
1495 /* Take snapshots for idle-exit kills by default? First check the boot-arg... */
1496 if (!PE_parse_boot_argn("jetsam_idle_snapshot", &memorystatus_idle_snapshot
, sizeof (memorystatus_idle_snapshot
))) {
1497 /* ...no boot-arg, so check the device tree */
1498 PE_get_default("kern.jetsam_idle_snapshot", &memorystatus_idle_snapshot
, sizeof(memorystatus_idle_snapshot
));
1501 memorystatus_delta
= delta_percentage
* atop_64(max_mem
) / 100;
1502 memorystatus_available_pages_critical_idle_offset
= idle_offset_percentage
* atop_64(max_mem
) / 100;
1503 memorystatus_available_pages_critical_base
= (critical_threshold_percentage
/ delta_percentage
) * memorystatus_delta
;
1504 memorystatus_policy_more_free_offset_pages
= (policy_more_free_offset_percentage
/ delta_percentage
) * memorystatus_delta
;
1506 memorystatus_jetsam_snapshot_max
= maxproc
;
1507 memorystatus_jetsam_snapshot
=
1508 (memorystatus_jetsam_snapshot_t
*)kalloc(sizeof(memorystatus_jetsam_snapshot_t
) +
1509 sizeof(memorystatus_jetsam_snapshot_entry_t
) * memorystatus_jetsam_snapshot_max
);
1510 if (!memorystatus_jetsam_snapshot
) {
1511 panic("Could not allocate memorystatus_jetsam_snapshot");
1514 nanoseconds_to_absolutetime((uint64_t)JETSAM_SNAPSHOT_TIMEOUT_SECS
* NSEC_PER_SEC
, &memorystatus_jetsam_snapshot_timeout
);
1516 memset(&memorystatus_at_boot_snapshot
, 0, sizeof(memorystatus_jetsam_snapshot_t
));
1518 /* No contention at this point */
1519 memorystatus_update_levels_locked(FALSE
);
1521 /* Jetsam Loop Detection */
1522 if (max_mem
<= (512 * 1024 * 1024)) {
1523 /* 512 MB devices */
1524 memorystatus_jld_eval_period_msecs
= 8000; /* 8000 msecs == 8 second window */
1526 /* 1GB and larger devices */
1527 memorystatus_jld_eval_period_msecs
= 6000; /* 6000 msecs == 6 second window */
1532 memorystatus_freeze_threshold
= (freeze_threshold_percentage
/ delta_percentage
) * memorystatus_delta
;
1535 result
= kernel_thread_start_priority(memorystatus_thread
, NULL
, 95 /* MAXPRI_KERNEL */, &thread
);
1536 if (result
== KERN_SUCCESS
) {
1537 thread_deallocate(thread
);
1539 panic("Could not create memorystatus_thread");
1543 /* Centralised for the purposes of allowing panic-on-jetsam */
1545 vm_run_compactor(void);
1548 * The jetsam no frills kill call
1549 * Return: 0 on success
1550 * error code on failure (EINVAL...)
1553 jetsam_do_kill(proc_t p
, int jetsam_flags
, os_reason_t jetsam_reason
) {
1555 error
= exit_with_reason(p
, W_EXITCODE(0, SIGKILL
), (int *)NULL
, FALSE
, FALSE
, jetsam_flags
, jetsam_reason
);
1560 * Wrapper for processes exiting with memorystatus details
1563 memorystatus_do_kill(proc_t p
, uint32_t cause
, os_reason_t jetsam_reason
) {
1566 __unused pid_t victim_pid
= p
->p_pid
;
1568 KERNEL_DEBUG_CONSTANT( (BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DO_KILL
)) | DBG_FUNC_START
,
1569 victim_pid
, cause
, vm_page_free_count
, 0, 0);
1571 DTRACE_MEMORYSTATUS3(memorystatus_do_kill
, proc_t
, p
, os_reason_t
, jetsam_reason
, uint32_t, cause
);
1572 #if CONFIG_JETSAM && (DEVELOPMENT || DEBUG)
1573 if (memorystatus_jetsam_panic_debug
& (1 << cause
)) {
1574 panic("memorystatus_do_kill(): jetsam debug panic (cause: %d)", cause
);
1577 #pragma unused(cause)
1579 int jetsam_flags
= P_LTERM_JETSAM
;
1581 case kMemorystatusKilledHiwat
: jetsam_flags
|= P_JETSAM_HIWAT
; break;
1582 case kMemorystatusKilledVnodes
: jetsam_flags
|= P_JETSAM_VNODE
; break;
1583 case kMemorystatusKilledVMPageShortage
: jetsam_flags
|= P_JETSAM_VMPAGESHORTAGE
; break;
1584 case kMemorystatusKilledVMThrashing
: jetsam_flags
|= P_JETSAM_VMTHRASHING
; break;
1585 case kMemorystatusKilledFCThrashing
: jetsam_flags
|= P_JETSAM_FCTHRASHING
; break;
1586 case kMemorystatusKilledPerProcessLimit
: jetsam_flags
|= P_JETSAM_PID
; break;
1587 case kMemorystatusKilledIdleExit
: jetsam_flags
|= P_JETSAM_IDLEEXIT
; break;
1589 error
= jetsam_do_kill(p
, jetsam_flags
, jetsam_reason
);
1591 KERNEL_DEBUG_CONSTANT( (BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DO_KILL
)) | DBG_FUNC_END
,
1592 victim_pid
, cause
, vm_page_free_count
, error
, 0);
1596 return (error
== 0);
1604 memorystatus_check_levels_locked(void) {
1607 memorystatus_update_levels_locked(TRUE
);
1612 * Pin a process to a particular jetsam band when it is in the background i.e. not doing active work.
1613 * For an application: that means no longer in the FG band
1614 * For a daemon: that means no longer in its 'requested' jetsam priority band
1618 memorystatus_update_inactive_jetsam_priority_band(pid_t pid
, uint32_t op_flags
, boolean_t effective_now
)
1621 boolean_t enable
= FALSE
;
1624 if (op_flags
== MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE
) {
1626 } else if (op_flags
== MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE
) {
1635 if ((enable
&& ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) == P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
)) ||
1636 (!enable
&& ((p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) == 0))) {
1638 * No change in state.
1646 p
->p_memstat_state
|= P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
;
1647 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1649 if (effective_now
) {
1650 if (p
->p_memstat_effectivepriority
< JETSAM_PRIORITY_ELEVATED_INACTIVE
) {
1651 boolean_t trigger_exception
;
1652 CACHE_ACTIVE_LIMITS_LOCKED(p
, trigger_exception
);
1653 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, trigger_exception
);
1654 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_ELEVATED_INACTIVE
, FALSE
, FALSE
);
1657 if (isProcessInAgingBands(p
)) {
1658 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1663 p
->p_memstat_state
&= ~P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
;
1664 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1666 if (effective_now
) {
1667 if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_ELEVATED_INACTIVE
) {
1668 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1671 if (isProcessInAgingBands(p
)) {
1672 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
1690 memorystatus_perform_idle_demotion(__unused
void *spare1
, __unused
void *spare2
)
1693 uint64_t current_time
= 0, idle_delay_time
= 0;
1694 int demote_prio_band
= 0;
1695 memstat_bucket_t
*demotion_bucket
;
1697 MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion()\n");
1699 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_IDLE_DEMOTE
) | DBG_FUNC_START
, 0, 0, 0, 0, 0);
1701 current_time
= mach_absolute_time();
1705 demote_prio_band
= JETSAM_PRIORITY_IDLE
+ 1;
1707 for (; demote_prio_band
< JETSAM_PRIORITY_MAX
; demote_prio_band
++) {
1709 if (demote_prio_band
!= system_procs_aging_band
&& demote_prio_band
!= applications_aging_band
)
1712 demotion_bucket
= &memstat_bucket
[demote_prio_band
];
1713 p
= TAILQ_FIRST(&demotion_bucket
->list
);
1716 MEMORYSTATUS_DEBUG(1, "memorystatus_perform_idle_demotion() found %d\n", p
->p_pid
);
1718 assert(p
->p_memstat_idledeadline
);
1720 assert(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
);
1722 if (current_time
>= p
->p_memstat_idledeadline
) {
1724 if ((isSysProc(p
) &&
1725 ((p
->p_memstat_dirty
& (P_DIRTY_IDLE_EXIT_ENABLED
|P_DIRTY_IS_DIRTY
)) != P_DIRTY_IDLE_EXIT_ENABLED
)) || /* system proc marked dirty*/
1726 task_has_assertions((struct task
*)(p
->task
))) { /* has outstanding assertions which might indicate outstanding work too */
1727 idle_delay_time
= (isSysProc(p
)) ? memorystatus_sysprocs_idle_delay_time
: memorystatus_apps_idle_delay_time
;
1729 p
->p_memstat_idledeadline
+= idle_delay_time
;
1730 p
= TAILQ_NEXT(p
, p_memstat_list
);
1734 proc_t next_proc
= NULL
;
1736 next_proc
= TAILQ_NEXT(p
, p_memstat_list
);
1737 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
1739 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, false, true);
1746 // No further candidates
1753 memorystatus_reschedule_idle_demotion_locked();
1757 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_IDLE_DEMOTE
) | DBG_FUNC_END
, 0, 0, 0, 0, 0);
1761 memorystatus_schedule_idle_demotion_locked(proc_t p
, boolean_t set_state
)
1763 boolean_t present_in_sysprocs_aging_bucket
= FALSE
;
1764 boolean_t present_in_apps_aging_bucket
= FALSE
;
1765 uint64_t idle_delay_time
= 0;
1767 if (jetsam_aging_policy
== kJetsamAgingPolicyNone
) {
1771 if (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
) {
1773 * This process isn't going to be making the trip to the lower bands.
1778 if (isProcessInAgingBands(p
)){
1780 if (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) {
1781 assert((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) != P_DIRTY_AGING_IN_PROGRESS
);
1784 if (isSysProc(p
) && system_procs_aging_band
) {
1785 present_in_sysprocs_aging_bucket
= TRUE
;
1787 } else if (isApp(p
) && applications_aging_band
) {
1788 present_in_apps_aging_bucket
= TRUE
;
1792 assert(!present_in_sysprocs_aging_bucket
);
1793 assert(!present_in_apps_aging_bucket
);
1795 MEMORYSTATUS_DEBUG(1, "memorystatus_schedule_idle_demotion_locked: scheduling demotion to idle band for pid %d (dirty:0x%x, set_state %d, demotions %d).\n",
1796 p
->p_pid
, p
->p_memstat_dirty
, set_state
, (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
));
1799 assert((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
);
1802 idle_delay_time
= (isSysProc(p
)) ? memorystatus_sysprocs_idle_delay_time
: memorystatus_apps_idle_delay_time
;
1805 p
->p_memstat_dirty
|= P_DIRTY_AGING_IN_PROGRESS
;
1806 p
->p_memstat_idledeadline
= mach_absolute_time() + idle_delay_time
;
1809 assert(p
->p_memstat_idledeadline
);
1811 if (isSysProc(p
) && present_in_sysprocs_aging_bucket
== FALSE
) {
1812 memorystatus_scheduled_idle_demotions_sysprocs
++;
1814 } else if (isApp(p
) && present_in_apps_aging_bucket
== FALSE
) {
1815 memorystatus_scheduled_idle_demotions_apps
++;
1820 memorystatus_invalidate_idle_demotion_locked(proc_t p
, boolean_t clear_state
)
1822 boolean_t present_in_sysprocs_aging_bucket
= FALSE
;
1823 boolean_t present_in_apps_aging_bucket
= FALSE
;
1825 if (!system_procs_aging_band
&& !applications_aging_band
) {
1829 if ((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) == 0) {
1833 if (isProcessInAgingBands(p
)) {
1835 if (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) {
1836 assert((p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) == P_DIRTY_AGING_IN_PROGRESS
);
1839 if (isSysProc(p
) && system_procs_aging_band
) {
1840 assert(p
->p_memstat_effectivepriority
== system_procs_aging_band
);
1841 assert(p
->p_memstat_idledeadline
);
1842 present_in_sysprocs_aging_bucket
= TRUE
;
1844 } else if (isApp(p
) && applications_aging_band
) {
1845 assert(p
->p_memstat_effectivepriority
== applications_aging_band
);
1846 assert(p
->p_memstat_idledeadline
);
1847 present_in_apps_aging_bucket
= TRUE
;
1851 MEMORYSTATUS_DEBUG(1, "memorystatus_invalidate_idle_demotion(): invalidating demotion to idle band for pid %d (clear_state %d, demotions %d).\n",
1852 p
->p_pid
, clear_state
, (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
));
1856 p
->p_memstat_idledeadline
= 0;
1857 p
->p_memstat_dirty
&= ~P_DIRTY_AGING_IN_PROGRESS
;
1860 if (isSysProc(p
) &&present_in_sysprocs_aging_bucket
== TRUE
) {
1861 memorystatus_scheduled_idle_demotions_sysprocs
--;
1862 assert(memorystatus_scheduled_idle_demotions_sysprocs
>= 0);
1864 } else if (isApp(p
) && present_in_apps_aging_bucket
== TRUE
) {
1865 memorystatus_scheduled_idle_demotions_apps
--;
1866 assert(memorystatus_scheduled_idle_demotions_apps
>= 0);
1869 assert((memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
) >= 0);
1873 memorystatus_reschedule_idle_demotion_locked(void) {
1874 if (0 == (memorystatus_scheduled_idle_demotions_sysprocs
+ memorystatus_scheduled_idle_demotions_apps
)) {
1875 if (memstat_idle_demotion_deadline
) {
1876 /* Transitioned 1->0, so cancel next call */
1877 thread_call_cancel(memorystatus_idle_demotion_call
);
1878 memstat_idle_demotion_deadline
= 0;
1881 memstat_bucket_t
*demotion_bucket
;
1882 proc_t p
= NULL
, p1
= NULL
, p2
= NULL
;
1884 if (system_procs_aging_band
) {
1886 demotion_bucket
= &memstat_bucket
[system_procs_aging_band
];
1887 p1
= TAILQ_FIRST(&demotion_bucket
->list
);
1892 if (applications_aging_band
) {
1894 demotion_bucket
= &memstat_bucket
[applications_aging_band
];
1895 p2
= TAILQ_FIRST(&demotion_bucket
->list
);
1898 p
= (p1
->p_memstat_idledeadline
> p2
->p_memstat_idledeadline
) ? p2
: p1
;
1900 p
= (p1
== NULL
) ? p2
: p1
;
1908 assert(p
&& p
->p_memstat_idledeadline
);
1909 if (memstat_idle_demotion_deadline
!= p
->p_memstat_idledeadline
){
1910 thread_call_enter_delayed(memorystatus_idle_demotion_call
, p
->p_memstat_idledeadline
);
1911 memstat_idle_demotion_deadline
= p
->p_memstat_idledeadline
;
1922 memorystatus_add(proc_t p
, boolean_t locked
)
1924 memstat_bucket_t
*bucket
;
1926 MEMORYSTATUS_DEBUG(1, "memorystatus_list_add(): adding pid %d with priority %d.\n", p
->p_pid
, p
->p_memstat_effectivepriority
);
1932 DTRACE_MEMORYSTATUS2(memorystatus_add
, proc_t
, p
, int32_t, p
->p_memstat_effectivepriority
);
1934 /* Processes marked internal do not have priority tracked */
1935 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
1939 bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
1941 if (isSysProc(p
) && system_procs_aging_band
&& (p
->p_memstat_effectivepriority
== system_procs_aging_band
)) {
1942 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_sysprocs
- 1);
1944 } else if (isApp(p
) && applications_aging_band
&& (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
1945 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_apps
- 1);
1947 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
1949 * Entering the idle band.
1950 * Record idle start time.
1952 p
->p_memstat_idle_start
= mach_absolute_time();
1955 TAILQ_INSERT_TAIL(&bucket
->list
, p
, p_memstat_list
);
1958 memorystatus_list_count
++;
1960 memorystatus_check_levels_locked();
1972 * Moves a process from one jetsam bucket to another.
1973 * which changes the LRU position of the process.
1975 * Monitors transition between buckets and if necessary
1976 * will update cached memory limits accordingly.
1978 * skip_demotion_check:
1979 * - if the 'jetsam aging policy' is NOT 'legacy':
1980 * When this flag is TRUE, it means we are going
1981 * to age the ripe processes out of the aging bands and into the
1982 * IDLE band and apply their inactive memory limits.
1984 * - if the 'jetsam aging policy' is 'legacy':
1985 * When this flag is TRUE, it might mean the above aging mechanism
1987 * It might be that we have a process that has used up its 'idle deferral'
1988 * stay that is given to it once per lifetime. And in this case, the process
1989 * won't be going through any aging codepaths. But we still need to apply
1990 * the right inactive limits and so we explicitly set this to TRUE if the
1991 * new priority for the process is the IDLE band.
1994 memorystatus_update_priority_locked(proc_t p
, int priority
, boolean_t head_insert
, boolean_t skip_demotion_check
)
1996 memstat_bucket_t
*old_bucket
, *new_bucket
;
1998 assert(priority
< MEMSTAT_BUCKET_COUNT
);
2000 /* Ensure that exit isn't underway, leaving the proc retained but removed from its bucket */
2001 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2005 MEMORYSTATUS_DEBUG(1, "memorystatus_update_priority_locked(): setting %s(%d) to priority %d, inserting at %s\n",
2006 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
, priority
, head_insert
? "head" : "tail");
2008 DTRACE_MEMORYSTATUS3(memorystatus_update_priority
, proc_t
, p
, int32_t, p
->p_memstat_effectivepriority
, int, priority
);
2010 #if DEVELOPMENT || DEBUG
2011 if (priority
== JETSAM_PRIORITY_IDLE
&& /* if the process is on its way into the IDLE band */
2012 skip_demotion_check
== FALSE
&& /* and it isn't via the path that will set the INACTIVE memlimits */
2013 (p
->p_memstat_dirty
& P_DIRTY_TRACK
) && /* and it has 'DIRTY' tracking enabled */
2014 ((p
->p_memstat_memlimit
!= p
->p_memstat_memlimit_inactive
) || /* and we notice that the current limit isn't the right value (inactive) */
2015 ((p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
) ? ( ! (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
)) : (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
)))) /* OR type (fatal vs non-fatal) */
2016 panic("memorystatus_update_priority_locked: on %s with 0x%x, prio: %d and %d\n", p
->p_name
, p
->p_memstat_state
, priority
, p
->p_memstat_memlimit
); /* then we must catch this */
2017 #endif /* DEVELOPMENT || DEBUG */
2019 old_bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
2021 if (skip_demotion_check
== FALSE
) {
2025 * For system processes, the memorystatus_dirty_* routines take care of adding/removing
2026 * the processes from the aging bands and balancing the demotion counts.
2027 * We can, however, override that if the process has an 'elevated inactive jetsam band' attribute.
2030 if (priority
<= JETSAM_PRIORITY_ELEVATED_INACTIVE
&& (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
)) {
2031 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
2033 assert(! (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
));
2035 } else if (isApp(p
)) {
2038 * Check to see if the application is being lowered in jetsam priority. If so, and:
2039 * - it has an 'elevated inactive jetsam band' attribute, then put it in the JETSAM_PRIORITY_ELEVATED_INACTIVE band.
2040 * - it is a normal application, then let it age in the aging band if that policy is in effect.
2043 if (priority
<= JETSAM_PRIORITY_ELEVATED_INACTIVE
&& (p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
)) {
2044 priority
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
2047 if (applications_aging_band
) {
2048 if (p
->p_memstat_effectivepriority
== applications_aging_band
) {
2049 assert(old_bucket
->count
== (memorystatus_scheduled_idle_demotions_apps
+ 1));
2052 if ((jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) && (priority
<= applications_aging_band
)) {
2053 assert(! (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
));
2054 priority
= applications_aging_band
;
2055 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2062 if ((system_procs_aging_band
&& (priority
== system_procs_aging_band
)) || (applications_aging_band
&& (priority
== applications_aging_band
))) {
2063 assert(p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
);
2066 TAILQ_REMOVE(&old_bucket
->list
, p
, p_memstat_list
);
2067 old_bucket
->count
--;
2069 new_bucket
= &memstat_bucket
[priority
];
2071 TAILQ_INSERT_HEAD(&new_bucket
->list
, p
, p_memstat_list
);
2073 TAILQ_INSERT_TAIL(&new_bucket
->list
, p
, p_memstat_list
);
2074 new_bucket
->count
++;
2076 if (memorystatus_highwater_enabled
) {
2077 boolean_t trigger_exception
;
2080 * If cached limit data is updated, then the limits
2081 * will be enforced by writing to the ledgers.
2083 boolean_t ledger_update_needed
= TRUE
;
2086 * No need to consider P_MEMSTAT_MEMLIMIT_BACKGROUND anymore.
2087 * Background limits are described via the inactive limit slots.
2089 * Here, we must update the cached memory limit if the task
2090 * is transitioning between:
2091 * active <--> inactive
2094 * dirty <--> clean is ignored
2096 * We bypass non-idle processes that have opted into dirty tracking because
2097 * a move between buckets does not imply a transition between the
2098 * dirty <--> clean state.
2101 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
2103 if (skip_demotion_check
== TRUE
&& priority
== JETSAM_PRIORITY_IDLE
) {
2104 CACHE_INACTIVE_LIMITS_LOCKED(p
, trigger_exception
);
2106 ledger_update_needed
= FALSE
;
2109 } else if ((priority
>= JETSAM_PRIORITY_FOREGROUND
) && (p
->p_memstat_effectivepriority
< JETSAM_PRIORITY_FOREGROUND
)) {
2111 * inactive --> active
2113 * assign active state
2115 CACHE_ACTIVE_LIMITS_LOCKED(p
, trigger_exception
);
2117 } else if ((priority
< JETSAM_PRIORITY_FOREGROUND
) && (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
)) {
2119 * active --> inactive
2121 * assign inactive state
2123 CACHE_INACTIVE_LIMITS_LOCKED(p
, trigger_exception
);
2126 * The transition between jetsam priority buckets apparently did
2127 * not affect active/inactive state.
2128 * This is not unusual... especially during startup when
2129 * processes are getting established in their respective bands.
2131 ledger_update_needed
= FALSE
;
2135 * Enforce the new limits by writing to the ledger
2137 if (ledger_update_needed
) {
2138 task_set_phys_footprint_limit_internal(p
->task
, (p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1, NULL
, trigger_exception
);
2140 MEMORYSTATUS_DEBUG(3, "memorystatus_update_priority_locked: new limit on pid %d (%dMB %s) priority old --> new (%d --> %d) dirty?=0x%x %s\n",
2141 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
2142 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, priority
, p
->p_memstat_dirty
,
2143 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
2148 * Record idle start or idle delta.
2150 if (p
->p_memstat_effectivepriority
== priority
) {
2152 * This process is not transitioning between
2153 * jetsam priority buckets. Do nothing.
2155 } else if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
2158 * Transitioning out of the idle priority bucket.
2159 * Record idle delta.
2161 assert(p
->p_memstat_idle_start
!= 0);
2162 now
= mach_absolute_time();
2163 if (now
> p
->p_memstat_idle_start
) {
2164 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
2166 } else if (priority
== JETSAM_PRIORITY_IDLE
) {
2168 * Transitioning into the idle priority bucket.
2169 * Record idle start.
2171 p
->p_memstat_idle_start
= mach_absolute_time();
2174 p
->p_memstat_effectivepriority
= priority
;
2176 #if CONFIG_SECLUDED_MEMORY
2177 if (secluded_for_apps
&&
2178 task_could_use_secluded_mem(p
->task
)) {
2179 task_set_can_use_secluded_mem(
2181 (priority
>= JETSAM_PRIORITY_FOREGROUND
));
2183 #endif /* CONFIG_SECLUDED_MEMORY */
2185 memorystatus_check_levels_locked();
2190 * Description: Update the jetsam priority and memory limit attributes for a given process.
2193 * p init this process's jetsam information.
2194 * priority The jetsam priority band
2195 * user_data user specific data, unused by the kernel
2196 * effective guards against race if process's update already occurred
2197 * update_memlimit When true we know this is the init step via the posix_spawn path.
2199 * memlimit_active Value in megabytes; The monitored footprint level while the
2200 * process is active. Exceeding it may result in termination
2201 * based on it's associated fatal flag.
2203 * memlimit_active_is_fatal When a process is active and exceeds its memory footprint,
2204 * this describes whether or not it should be immediately fatal.
2206 * memlimit_inactive Value in megabytes; The monitored footprint level while the
2207 * process is inactive. Exceeding it may result in termination
2208 * based on it's associated fatal flag.
2210 * memlimit_inactive_is_fatal When a process is inactive and exceeds its memory footprint,
2211 * this describes whether or not it should be immediatly fatal.
2213 * memlimit_background This process has a high-water-mark while in the background.
2214 * No longer meaningful. Background limits are described via
2215 * the inactive slots. Flag is ignored.
2218 * Returns: 0 Success
2223 memorystatus_update(proc_t p
, int priority
, uint64_t user_data
, boolean_t effective
, boolean_t update_memlimit
,
2224 int32_t memlimit_active
, boolean_t memlimit_active_is_fatal
,
2225 int32_t memlimit_inactive
, boolean_t memlimit_inactive_is_fatal
,
2226 __unused boolean_t memlimit_background
)
2229 boolean_t head_insert
= false;
2231 MEMORYSTATUS_DEBUG(1, "memorystatus_update: changing (%s) pid %d: priority %d, user_data 0x%llx\n", (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
, priority
, user_data
);
2233 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_UPDATE
) | DBG_FUNC_START
, p
->p_pid
, priority
, user_data
, effective
, 0);
2235 if (priority
== -1) {
2236 /* Use as shorthand for default priority */
2237 priority
= JETSAM_PRIORITY_DEFAULT
;
2238 } else if ((priority
== system_procs_aging_band
) || (priority
== applications_aging_band
)) {
2239 /* Both the aging bands are reserved for internal use; if requested, adjust to JETSAM_PRIORITY_IDLE. */
2240 priority
= JETSAM_PRIORITY_IDLE
;
2241 } else if (priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
2242 /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle queue */
2243 priority
= JETSAM_PRIORITY_IDLE
;
2245 } else if ((priority
< 0) || (priority
>= MEMSTAT_BUCKET_COUNT
)) {
2253 assert(!(p
->p_memstat_state
& P_MEMSTAT_INTERNAL
));
2255 if (effective
&& (p
->p_memstat_state
& P_MEMSTAT_PRIORITYUPDATED
)) {
2258 MEMORYSTATUS_DEBUG(1, "memorystatus_update: effective change specified for pid %d, but change already occurred.\n", p
->p_pid
);
2262 if ((p
->p_memstat_state
& P_MEMSTAT_TERMINATED
) || ((p
->p_listflag
& P_LIST_EXITED
) != 0)) {
2264 * This could happen when a process calling posix_spawn() is exiting on the jetsam thread.
2271 p
->p_memstat_state
|= P_MEMSTAT_PRIORITYUPDATED
;
2272 p
->p_memstat_userdata
= user_data
;
2273 p
->p_memstat_requestedpriority
= priority
;
2275 if (update_memlimit
) {
2276 boolean_t trigger_exception
;
2279 * Posix_spawn'd processes come through this path to instantiate ledger limits.
2280 * Forked processes do not come through this path, so no ledger limits exist.
2281 * (That's why forked processes can consume unlimited memory.)
2284 MEMORYSTATUS_DEBUG(3, "memorystatus_update(enter): pid %d, priority %d, dirty=0x%x, Active(%dMB %s), Inactive(%dMB, %s)\n",
2285 p
->p_pid
, priority
, p
->p_memstat_dirty
,
2286 memlimit_active
, (memlimit_active_is_fatal
? "F " : "NF"),
2287 memlimit_inactive
, (memlimit_inactive_is_fatal
? "F " : "NF"));
2289 if (memlimit_background
) {
2292 * With 2-level HWM support, we no longer honor P_MEMSTAT_MEMLIMIT_BACKGROUND.
2293 * Background limits are described via the inactive limit slots.
2296 // p->p_memstat_state |= P_MEMSTAT_MEMLIMIT_BACKGROUND;
2298 #if DEVELOPMENT || DEBUG
2299 printf("memorystatus_update: WARNING %s[%d] set unused flag P_MEMSTAT_MEMLIMIT_BACKGROUND [A==%dMB %s] [IA==%dMB %s]\n",
2300 (*p
->p_name
? p
->p_name
: "unknown"), p
->p_pid
,
2301 memlimit_active
, (memlimit_active_is_fatal
? "F " : "NF"),
2302 memlimit_inactive
, (memlimit_inactive_is_fatal
? "F " : "NF"));
2303 #endif /* DEVELOPMENT || DEBUG */
2306 if (memlimit_active
<= 0) {
2308 * This process will have a system_wide task limit when active.
2309 * System_wide task limit is always fatal.
2310 * It's quite common to see non-fatal flag passed in here.
2311 * It's not an error, we just ignore it.
2315 * For backward compatibility with some unexplained launchd behavior,
2316 * we allow a zero sized limit. But we still enforce system_wide limit
2317 * when written to the ledgers.
2320 if (memlimit_active
< 0) {
2321 memlimit_active
= -1; /* enforces system_wide task limit */
2323 memlimit_active_is_fatal
= TRUE
;
2326 if (memlimit_inactive
<= 0) {
2328 * This process will have a system_wide task limit when inactive.
2329 * System_wide task limit is always fatal.
2332 memlimit_inactive
= -1;
2333 memlimit_inactive_is_fatal
= TRUE
;
2337 * Initialize the active limit variants for this process.
2339 SET_ACTIVE_LIMITS_LOCKED(p
, memlimit_active
, memlimit_active_is_fatal
);
2342 * Initialize the inactive limit variants for this process.
2344 SET_INACTIVE_LIMITS_LOCKED(p
, memlimit_inactive
, memlimit_inactive_is_fatal
);
2347 * Initialize the cached limits for target process.
2348 * When the target process is dirty tracked, it's typically
2349 * in a clean state. Non dirty tracked processes are
2350 * typically active (Foreground or above).
2351 * But just in case, we don't make assumptions...
2354 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
2355 CACHE_ACTIVE_LIMITS_LOCKED(p
, trigger_exception
);
2357 CACHE_INACTIVE_LIMITS_LOCKED(p
, trigger_exception
);
2361 * Enforce the cached limit by writing to the ledger.
2363 if (memorystatus_highwater_enabled
) {
2365 assert(trigger_exception
== TRUE
);
2366 task_set_phys_footprint_limit_internal(p
->task
, ((p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1), NULL
, trigger_exception
);
2368 MEMORYSTATUS_DEBUG(3, "memorystatus_update: init: limit on pid %d (%dMB %s) targeting priority(%d) dirty?=0x%x %s\n",
2369 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
2370 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), priority
, p
->p_memstat_dirty
,
2371 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
2376 * We can't add to the aging bands buckets here.
2377 * But, we could be removing it from those buckets.
2378 * Check and take appropriate steps if so.
2381 if (isProcessInAgingBands(p
)) {
2383 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2384 memorystatus_update_priority_locked(p
, JETSAM_PRIORITY_IDLE
, FALSE
, TRUE
);
2386 if (jetsam_aging_policy
== kJetsamAgingPolicyLegacy
&& priority
== JETSAM_PRIORITY_IDLE
) {
2388 * Daemons with 'inactive' limits will go through the dirty tracking codepath.
2389 * This path deals with apps that may have 'inactive' limits e.g. WebContent processes.
2390 * If this is the legacy aging policy we explicitly need to apply those limits. If it
2391 * is any other aging policy, then we don't need to worry because all processes
2392 * will go through the aging bands and then the demotion thread will take care to
2393 * move them into the IDLE band and apply the required limits.
2395 memorystatus_update_priority_locked(p
, priority
, head_insert
, TRUE
);
2399 memorystatus_update_priority_locked(p
, priority
, head_insert
, FALSE
);
2405 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_UPDATE
) | DBG_FUNC_END
, ret
, 0, 0, 0, 0);
2411 memorystatus_remove(proc_t p
, boolean_t locked
)
2414 memstat_bucket_t
*bucket
;
2415 boolean_t reschedule
= FALSE
;
2417 MEMORYSTATUS_DEBUG(1, "memorystatus_list_remove: removing pid %d\n", p
->p_pid
);
2423 assert(!(p
->p_memstat_state
& P_MEMSTAT_INTERNAL
));
2425 bucket
= &memstat_bucket
[p
->p_memstat_effectivepriority
];
2427 if (isSysProc(p
) && system_procs_aging_band
&& (p
->p_memstat_effectivepriority
== system_procs_aging_band
)) {
2429 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_sysprocs
);
2432 } else if (isApp(p
) && applications_aging_band
&& (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
2434 assert(bucket
->count
== memorystatus_scheduled_idle_demotions_apps
);
2442 if (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_IDLE
) {
2443 uint64_t now
= mach_absolute_time();
2444 if (now
> p
->p_memstat_idle_start
) {
2445 p
->p_memstat_idle_delta
= now
- p
->p_memstat_idle_start
;
2449 TAILQ_REMOVE(&bucket
->list
, p
, p_memstat_list
);
2452 memorystatus_list_count
--;
2454 /* If awaiting demotion to the idle band, clean up */
2456 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2457 memorystatus_reschedule_idle_demotion_locked();
2460 memorystatus_check_levels_locked();
2463 if (p
->p_memstat_state
& (P_MEMSTAT_FROZEN
)) {
2464 memorystatus_frozen_count
--;
2467 if (p
->p_memstat_state
& P_MEMSTAT_SUSPENDED
) {
2468 memorystatus_suspended_footprint_total
-= p
->p_memstat_suspendedfootprint
;
2469 memorystatus_suspended_count
--;
2487 * Validate dirty tracking flags with process state.
2493 * The proc_list_lock is held by the caller.
2497 memorystatus_validate_track_flags(struct proc
*target_p
, uint32_t pcontrol
) {
2498 /* See that the process isn't marked for termination */
2499 if (target_p
->p_memstat_dirty
& P_DIRTY_TERMINATED
) {
2503 /* Idle exit requires that process be tracked */
2504 if ((pcontrol
& PROC_DIRTY_ALLOW_IDLE_EXIT
) &&
2505 !(pcontrol
& PROC_DIRTY_TRACK
)) {
2509 /* 'Launch in progress' tracking requires that process have enabled dirty tracking too. */
2510 if ((pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) &&
2511 !(pcontrol
& PROC_DIRTY_TRACK
)) {
2515 /* Deferral is only relevant if idle exit is specified */
2516 if ((pcontrol
& PROC_DIRTY_DEFER
) &&
2517 !(pcontrol
& PROC_DIRTY_ALLOWS_IDLE_EXIT
)) {
2525 memorystatus_update_idle_priority_locked(proc_t p
) {
2528 MEMORYSTATUS_DEBUG(1, "memorystatus_update_idle_priority_locked(): pid %d dirty 0x%X\n", p
->p_pid
, p
->p_memstat_dirty
);
2530 assert(isSysProc(p
));
2532 if ((p
->p_memstat_dirty
& (P_DIRTY_IDLE_EXIT_ENABLED
|P_DIRTY_IS_DIRTY
)) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2534 priority
= (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) ? system_procs_aging_band
: JETSAM_PRIORITY_IDLE
;
2536 priority
= p
->p_memstat_requestedpriority
;
2539 if (priority
!= p
->p_memstat_effectivepriority
) {
2541 if ((jetsam_aging_policy
== kJetsamAgingPolicyLegacy
) &&
2542 (priority
== JETSAM_PRIORITY_IDLE
)) {
2545 * This process is on its way into the IDLE band. The system is
2546 * using 'legacy' jetsam aging policy. That means, this process
2547 * has already used up its idle-deferral aging time that is given
2548 * once per its lifetime. So we need to set the INACTIVE limits
2549 * explicitly because it won't be going through the demotion paths
2550 * that take care to apply the limits appropriately.
2552 memorystatus_update_priority_locked(p
, priority
, false, true);
2555 memorystatus_update_priority_locked(p
, priority
, false, false);
2561 * Processes can opt to have their state tracked by the kernel, indicating when they are busy (dirty) or idle
2562 * (clean). They may also indicate that they support termination when idle, with the result that they are promoted
2563 * to their desired, higher, jetsam priority when dirty (and are therefore killed later), and demoted to the low
2564 * priority idle band when clean (and killed earlier, protecting higher priority procesess).
2566 * If the deferral flag is set, then newly tracked processes will be protected for an initial period (as determined by
2567 * memorystatus_sysprocs_idle_delay_time); if they go clean during this time, then they will be moved to a deferred-idle band
2568 * with a slightly higher priority, guarding against immediate termination under memory pressure and being unable to
2569 * make forward progress. Finally, when the guard expires, they will be moved to the standard, lowest-priority, idle
2570 * band. The deferral can be cleared early by clearing the appropriate flag.
2572 * The deferral timer is active only for the duration that the process is marked as guarded and clean; if the process
2573 * is marked dirty, the timer will be cancelled. Upon being subsequently marked clean, the deferment will either be
2574 * re-enabled or the guard state cleared, depending on whether the guard deadline has passed.
2578 memorystatus_dirty_track(proc_t p
, uint32_t pcontrol
) {
2579 unsigned int old_dirty
;
2580 boolean_t reschedule
= FALSE
;
2581 boolean_t already_deferred
= FALSE
;
2582 boolean_t defer_now
= FALSE
;
2585 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_TRACK
),
2586 p
->p_pid
, p
->p_memstat_dirty
, pcontrol
, 0, 0);
2590 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2592 * Process is on its way out.
2598 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
2603 if ((ret
= memorystatus_validate_track_flags(p
, pcontrol
)) != 0) {
2608 old_dirty
= p
->p_memstat_dirty
;
2610 /* These bits are cumulative, as per <rdar://problem/11159924> */
2611 if (pcontrol
& PROC_DIRTY_TRACK
) {
2612 p
->p_memstat_dirty
|= P_DIRTY_TRACK
;
2615 if (pcontrol
& PROC_DIRTY_ALLOW_IDLE_EXIT
) {
2616 p
->p_memstat_dirty
|= P_DIRTY_ALLOW_IDLE_EXIT
;
2619 if (pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) {
2620 p
->p_memstat_dirty
|= P_DIRTY_LAUNCH_IN_PROGRESS
;
2623 if (old_dirty
& P_DIRTY_AGING_IN_PROGRESS
) {
2624 already_deferred
= TRUE
;
2628 /* This can be set and cleared exactly once. */
2629 if (pcontrol
& PROC_DIRTY_DEFER
) {
2631 if ( !(old_dirty
& P_DIRTY_DEFER
)) {
2632 p
->p_memstat_dirty
|= P_DIRTY_DEFER
;
2638 MEMORYSTATUS_DEBUG(1, "memorystatus_on_track_dirty(): set idle-exit %s / defer %s / dirty %s for pid %d\n",
2639 ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) ? "Y" : "N",
2640 defer_now
? "Y" : "N",
2641 p
->p_memstat_dirty
& P_DIRTY
? "Y" : "N",
2644 /* Kick off or invalidate the idle exit deferment if there's a state transition. */
2645 if (!(p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
)) {
2646 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2648 if (defer_now
&& !already_deferred
) {
2651 * Request to defer a clean process that's idle-exit enabled
2652 * and not already in the jetsam deferred band. Most likely a
2655 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2658 } else if (!defer_now
) {
2661 * The process isn't asking for the 'aging' facility.
2662 * Could be that it is:
2665 if (already_deferred
) {
2667 * already in the aging bands. Traditionally,
2668 * some processes have tried to use this to
2669 * opt out of the 'aging' facility.
2672 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2675 * agnostic to the 'aging' facility. In that case,
2676 * we'll go ahead and opt it in because this is likely
2677 * a new launch (clean process, dirty tracking enabled)
2680 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2689 * We are trying to operate on a dirty process. Dirty processes have to
2690 * be removed from the deferred band. The question is do we reset the
2691 * deferred state or not?
2693 * This could be a legal request like:
2694 * - this process had opted into the 'aging' band
2695 * - but it's now dirty and requests to opt out.
2696 * In this case, we remove the process from the band and reset its
2697 * state too. It'll opt back in properly when needed.
2699 * OR, this request could be a user-space bug. E.g.:
2700 * - this process had opted into the 'aging' band when clean
2701 * - and, then issues another request to again put it into the band except
2702 * this time the process is dirty.
2703 * The process going dirty, as a transition in memorystatus_dirty_set(), will pull the process out of
2704 * the deferred band with its state intact. So our request below is no-op.
2705 * But we do it here anyways for coverage.
2707 * memorystatus_update_idle_priority_locked()
2708 * single-mindedly treats a dirty process as "cannot be in the aging band".
2711 if (!defer_now
&& already_deferred
) {
2712 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2716 boolean_t reset_state
= (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) ? TRUE
: FALSE
;
2718 memorystatus_invalidate_idle_demotion_locked(p
, reset_state
);
2723 memorystatus_update_idle_priority_locked(p
);
2726 memorystatus_reschedule_idle_demotion_locked();
2738 memorystatus_dirty_set(proc_t p
, boolean_t self
, uint32_t pcontrol
) {
2740 boolean_t kill
= false;
2741 boolean_t reschedule
= FALSE
;
2742 boolean_t was_dirty
= FALSE
;
2743 boolean_t now_dirty
= FALSE
;
2745 MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_set(): %d %d 0x%x 0x%x\n", self
, p
->p_pid
, pcontrol
, p
->p_memstat_dirty
);
2746 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_SET
), p
->p_pid
, self
, pcontrol
, 0, 0);
2750 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2752 * Process is on its way out.
2758 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
2763 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
)
2766 if (!(p
->p_memstat_dirty
& P_DIRTY_TRACK
)) {
2767 /* Dirty tracking not enabled */
2769 } else if (pcontrol
&& (p
->p_memstat_dirty
& P_DIRTY_TERMINATED
)) {
2771 * Process is set to be terminated and we're attempting to mark it dirty.
2772 * Set for termination and marking as clean is OK - see <rdar://problem/10594349>.
2776 int flag
= (self
== TRUE
) ? P_DIRTY
: P_DIRTY_SHUTDOWN
;
2777 if (pcontrol
&& !(p
->p_memstat_dirty
& flag
)) {
2778 /* Mark the process as having been dirtied at some point */
2779 p
->p_memstat_dirty
|= (flag
| P_DIRTY_MARKED
);
2780 memorystatus_dirty_count
++;
2782 } else if ((pcontrol
== 0) && (p
->p_memstat_dirty
& flag
)) {
2783 if ((flag
== P_DIRTY_SHUTDOWN
) && (!(p
->p_memstat_dirty
& P_DIRTY
))) {
2784 /* Clearing the dirty shutdown flag, and the process is otherwise clean - kill */
2785 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
2787 } else if ((flag
== P_DIRTY
) && (p
->p_memstat_dirty
& P_DIRTY_TERMINATED
)) {
2788 /* Kill previously terminated processes if set clean */
2791 p
->p_memstat_dirty
&= ~flag
;
2792 memorystatus_dirty_count
--;
2804 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
)
2807 if ((was_dirty
== TRUE
&& now_dirty
== FALSE
) ||
2808 (was_dirty
== FALSE
&& now_dirty
== TRUE
)) {
2810 /* Manage idle exit deferral, if applied */
2811 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
2814 * Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band OR it might be heading back
2815 * there once it's clean again. For the legacy case, this only applies if it has some protection window left.
2817 * Non-Legacy mode: P_DIRTY_AGING_IN_PROGRESS means the process is in the aging band. It will always stop over
2818 * in that band on it's way to IDLE.
2821 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
2823 * New dirty process i.e. "was_dirty == FALSE && now_dirty == TRUE"
2825 * The process will move from its aging band to its higher requested
2828 boolean_t reset_state
= (jetsam_aging_policy
!= kJetsamAgingPolicyLegacy
) ? TRUE
: FALSE
;
2830 memorystatus_invalidate_idle_demotion_locked(p
, reset_state
);
2835 * Process is back from "dirty" to "clean".
2838 if (jetsam_aging_policy
== kJetsamAgingPolicyLegacy
) {
2839 if (mach_absolute_time() >= p
->p_memstat_idledeadline
) {
2841 * The process' deadline has expired. It currently
2842 * does not reside in any of the aging buckets.
2844 * It's on its way to the JETSAM_PRIORITY_IDLE
2845 * bucket via memorystatus_update_idle_priority_locked()
2848 * So all we need to do is reset all the state on the
2849 * process that's related to the aging bucket i.e.
2850 * the AGING_IN_PROGRESS flag and the timer deadline.
2853 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
2857 * It still has some protection window left and so
2858 * we just re-arm the timer without modifying any
2859 * state on the process iff it still wants into that band.
2862 if (p
->p_memstat_dirty
& P_DIRTY_AGING_IN_PROGRESS
) {
2863 memorystatus_schedule_idle_demotion_locked(p
, FALSE
);
2869 memorystatus_schedule_idle_demotion_locked(p
, TRUE
);
2875 memorystatus_update_idle_priority_locked(p
);
2877 if (memorystatus_highwater_enabled
) {
2878 boolean_t trigger_exception
= FALSE
, ledger_update_needed
= TRUE
;
2880 * We are in this path because this process transitioned between
2881 * dirty <--> clean state. Update the cached memory limits.
2884 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
2888 CACHE_ACTIVE_LIMITS_LOCKED(p
, trigger_exception
);
2889 ledger_update_needed
= TRUE
;
2892 * process is clean...but if it has opted into pressured-exit
2893 * we don't apply the INACTIVE limit till the process has aged
2894 * out and is entering the IDLE band.
2895 * See memorystatus_update_priority_locked() for that.
2898 if (p
->p_memstat_dirty
& P_DIRTY_ALLOW_IDLE_EXIT
) {
2899 ledger_update_needed
= FALSE
;
2901 CACHE_INACTIVE_LIMITS_LOCKED(p
, trigger_exception
);
2902 ledger_update_needed
= TRUE
;
2907 * Enforce the new limits by writing to the ledger.
2909 * This is a hot path and holding the proc_list_lock while writing to the ledgers,
2910 * (where the task lock is taken) is bad. So, we temporarily drop the proc_list_lock.
2911 * We aren't traversing the jetsam bucket list here, so we should be safe.
2912 * See rdar://21394491.
2915 if (ledger_update_needed
&& proc_ref_locked(p
) == p
) {
2917 if (p
->p_memstat_memlimit
> 0) {
2918 ledger_limit
= p
->p_memstat_memlimit
;
2923 task_set_phys_footprint_limit_internal(p
->task
, ledger_limit
, NULL
, trigger_exception
);
2925 proc_rele_locked(p
);
2927 MEMORYSTATUS_DEBUG(3, "memorystatus_dirty_set: new limit on pid %d (%dMB %s) priority(%d) dirty?=0x%x %s\n",
2928 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
2929 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, p
->p_memstat_dirty
,
2930 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
2935 /* If the deferral state changed, reschedule the demotion timer */
2937 memorystatus_reschedule_idle_demotion_locked();
2942 if (proc_ref_locked(p
) == p
) {
2944 psignal(p
, SIGKILL
);
2946 proc_rele_locked(p
);
2957 memorystatus_dirty_clear(proc_t p
, uint32_t pcontrol
) {
2961 MEMORYSTATUS_DEBUG(1, "memorystatus_dirty_clear(): %d 0x%x 0x%x\n", p
->p_pid
, pcontrol
, p
->p_memstat_dirty
);
2963 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_DIRTY_CLEAR
), p
->p_pid
, pcontrol
, 0, 0, 0);
2967 if ((p
->p_listflag
& P_LIST_EXITED
) != 0) {
2969 * Process is on its way out.
2975 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
2980 if (!(p
->p_memstat_dirty
& P_DIRTY_TRACK
)) {
2981 /* Dirty tracking not enabled */
2986 if (!pcontrol
|| (pcontrol
& (PROC_DIRTY_LAUNCH_IN_PROGRESS
| PROC_DIRTY_DEFER
)) == 0) {
2991 if (pcontrol
& PROC_DIRTY_LAUNCH_IN_PROGRESS
) {
2992 p
->p_memstat_dirty
&= ~P_DIRTY_LAUNCH_IN_PROGRESS
;
2995 /* This can be set and cleared exactly once. */
2996 if (pcontrol
& PROC_DIRTY_DEFER
) {
2998 if (p
->p_memstat_dirty
& P_DIRTY_DEFER
) {
3000 p
->p_memstat_dirty
&= ~P_DIRTY_DEFER
;
3002 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
3003 memorystatus_update_idle_priority_locked(p
);
3004 memorystatus_reschedule_idle_demotion_locked();
3016 memorystatus_dirty_get(proc_t p
) {
3021 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
3022 ret
|= PROC_DIRTY_TRACKED
;
3023 if (p
->p_memstat_dirty
& P_DIRTY_ALLOW_IDLE_EXIT
) {
3024 ret
|= PROC_DIRTY_ALLOWS_IDLE_EXIT
;
3026 if (p
->p_memstat_dirty
& P_DIRTY
) {
3027 ret
|= PROC_DIRTY_IS_DIRTY
;
3029 if (p
->p_memstat_dirty
& P_DIRTY_LAUNCH_IN_PROGRESS
) {
3030 ret
|= PROC_DIRTY_LAUNCH_IS_IN_PROGRESS
;
3040 memorystatus_on_terminate(proc_t p
) {
3045 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
3047 if ((p
->p_memstat_dirty
& (P_DIRTY_TRACK
|P_DIRTY_IS_DIRTY
)) == P_DIRTY_TRACK
) {
3048 /* Clean; mark as terminated and issue SIGKILL */
3051 /* Dirty, terminated, or state tracking is unsupported; issue SIGTERM to allow cleanup */
3061 memorystatus_on_suspend(proc_t p
)
3065 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
, NULL
);
3069 p
->p_memstat_suspendedfootprint
= pages
;
3070 memorystatus_suspended_footprint_total
+= pages
;
3071 memorystatus_suspended_count
++;
3073 p
->p_memstat_state
|= P_MEMSTAT_SUSPENDED
;
3078 memorystatus_on_resume(proc_t p
)
3088 frozen
= (p
->p_memstat_state
& P_MEMSTAT_FROZEN
);
3090 memorystatus_frozen_count
--;
3091 p
->p_memstat_state
|= P_MEMSTAT_PRIOR_THAW
;
3094 memorystatus_suspended_footprint_total
-= p
->p_memstat_suspendedfootprint
;
3095 memorystatus_suspended_count
--;
3100 p
->p_memstat_state
&= ~(P_MEMSTAT_SUSPENDED
| P_MEMSTAT_FROZEN
);
3106 memorystatus_freeze_entry_t data
= { pid
, FALSE
, 0 };
3107 memorystatus_send_note(kMemorystatusFreezeNote
, &data
, sizeof(data
));
3113 memorystatus_on_inactivity(proc_t p
)
3117 /* Wake the freeze thread */
3118 thread_wakeup((event_t
)&memorystatus_freeze_wakeup
);
3123 * The proc_list_lock is held by the caller.
3126 memorystatus_build_state(proc_t p
) {
3127 uint32_t snapshot_state
= 0;
3130 if (p
->p_memstat_state
& P_MEMSTAT_SUSPENDED
) {
3131 snapshot_state
|= kMemorystatusSuspended
;
3133 if (p
->p_memstat_state
& P_MEMSTAT_FROZEN
) {
3134 snapshot_state
|= kMemorystatusFrozen
;
3136 if (p
->p_memstat_state
& P_MEMSTAT_PRIOR_THAW
) {
3137 snapshot_state
|= kMemorystatusWasThawed
;
3141 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
3142 snapshot_state
|= kMemorystatusTracked
;
3144 if ((p
->p_memstat_dirty
& P_DIRTY_IDLE_EXIT_ENABLED
) == P_DIRTY_IDLE_EXIT_ENABLED
) {
3145 snapshot_state
|= kMemorystatusSupportsIdleExit
;
3147 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
3148 snapshot_state
|= kMemorystatusDirty
;
3151 return snapshot_state
;
3157 kill_idle_exit_proc(void)
3159 proc_t p
, victim_p
= PROC_NULL
;
3160 uint64_t current_time
;
3161 boolean_t killed
= FALSE
;
3163 os_reason_t jetsam_reason
= OS_REASON_NULL
;
3165 /* Pick next idle exit victim. */
3166 current_time
= mach_absolute_time();
3168 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_IDLE_EXIT
);
3169 if (jetsam_reason
== OS_REASON_NULL
) {
3170 printf("kill_idle_exit_proc: failed to allocate jetsam reason\n");
3175 p
= memorystatus_get_first_proc_locked(&i
, FALSE
);
3177 /* No need to look beyond the idle band */
3178 if (p
->p_memstat_effectivepriority
!= JETSAM_PRIORITY_IDLE
) {
3182 if ((p
->p_memstat_dirty
& (P_DIRTY_ALLOW_IDLE_EXIT
|P_DIRTY_IS_DIRTY
|P_DIRTY_TERMINATED
)) == (P_DIRTY_ALLOW_IDLE_EXIT
)) {
3183 if (current_time
>= p
->p_memstat_idledeadline
) {
3184 p
->p_memstat_dirty
|= P_DIRTY_TERMINATED
;
3185 victim_p
= proc_ref_locked(p
);
3190 p
= memorystatus_get_next_proc_locked(&i
, p
, FALSE
);
3196 printf("memorystatus_thread: idle exiting pid %d [%s]\n", victim_p
->p_pid
, (*victim_p
->p_name
? victim_p
->p_name
: "(unknown)"));
3197 killed
= memorystatus_do_kill(victim_p
, kMemorystatusKilledIdleExit
, jetsam_reason
);
3198 proc_rele(victim_p
);
3200 os_reason_free(jetsam_reason
);
3209 memorystatus_thread_wake(void) {
3210 thread_wakeup((event_t
)&memorystatus_wakeup
);
3212 #endif /* CONFIG_JETSAM */
3214 extern void vm_pressure_response(void);
3217 memorystatus_thread_block(uint32_t interval_ms
, thread_continue_t continuation
)
3220 assert_wait_timeout(&memorystatus_wakeup
, THREAD_UNINT
, interval_ms
, 1000 * NSEC_PER_USEC
);
3222 assert_wait(&memorystatus_wakeup
, THREAD_UNINT
);
3225 return thread_block(continuation
);
3229 memorystatus_thread(void *param __unused
, wait_result_t wr __unused
)
3231 static boolean_t is_vm_privileged
= FALSE
;
3234 boolean_t post_snapshot
= FALSE
;
3235 uint32_t errors
= 0;
3236 uint32_t hwm_kill
= 0;
3237 boolean_t sort_flag
= TRUE
;
3238 boolean_t corpse_list_purged
= FALSE
;
3240 /* Jetsam Loop Detection - locals */
3241 memstat_bucket_t
*bucket
;
3242 int jld_bucket_count
= 0;
3243 struct timeval jld_now_tstamp
= {0,0};
3244 uint64_t jld_now_msecs
= 0;
3245 int elevated_bucket_count
= 0;
3247 /* Jetsam Loop Detection - statics */
3248 static uint64_t jld_timestamp_msecs
= 0;
3249 static int jld_idle_kill_candidates
= 0; /* Number of available processes in band 0,1 at start */
3250 static int jld_idle_kills
= 0; /* Number of procs killed during eval period */
3251 static int jld_eval_aggressive_count
= 0; /* Bumps the max priority in aggressive loop */
3252 static int32_t jld_priority_band_max
= JETSAM_PRIORITY_UI_SUPPORT
;
3255 if (is_vm_privileged
== FALSE
) {
3257 * It's the first time the thread has run, so just mark the thread as privileged and block.
3258 * This avoids a spurious pass with unset variables, as set out in <rdar://problem/9609402>.
3260 thread_wire(host_priv_self(), current_thread(), TRUE
);
3261 is_vm_privileged
= TRUE
;
3263 if (vm_restricted_to_single_processor
== TRUE
)
3264 thread_vm_bind_group_add();
3266 memorystatus_thread_block(0, memorystatus_thread
);
3271 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_SCAN
) | DBG_FUNC_START
,
3272 memorystatus_available_pages
, memorystatus_jld_enabled
, memorystatus_jld_eval_period_msecs
, memorystatus_jld_eval_aggressive_count
,0);
3275 * Jetsam aware version.
3277 * The VM pressure notification thread is working it's way through clients in parallel.
3279 * So, while the pressure notification thread is targeting processes in order of
3280 * increasing jetsam priority, we can hopefully reduce / stop it's work by killing
3281 * any processes that have exceeded their highwater mark.
3283 * If we run out of HWM processes and our available pages drops below the critical threshold, then,
3284 * we target the least recently used process in order of increasing jetsam priority (exception: the FG band).
3286 while (is_thrashing(kill_under_pressure_cause
) ||
3287 memorystatus_available_pages
<= memorystatus_available_pages_pressure
) {
3291 uint64_t jetsam_reason_code
= JETSAM_REASON_INVALID
;
3292 os_reason_t jetsam_reason
= OS_REASON_NULL
;
3294 cause
= kill_under_pressure_cause
;
3296 case kMemorystatusKilledFCThrashing
:
3297 jetsam_reason_code
= JETSAM_REASON_MEMORY_FCTHRASHING
;
3299 case kMemorystatusKilledVMThrashing
:
3300 jetsam_reason_code
= JETSAM_REASON_MEMORY_VMTHRASHING
;
3302 case kMemorystatusKilledVMPageShortage
:
3305 jetsam_reason_code
= JETSAM_REASON_MEMORY_VMPAGESHORTAGE
;
3306 cause
= kMemorystatusKilledVMPageShortage
;
3311 killed
= memorystatus_kill_hiwat_proc(&errors
);
3314 post_snapshot
= TRUE
;
3317 memorystatus_hwm_candidates
= FALSE
;
3320 /* No highwater processes to kill. Continue or stop for now? */
3321 if (!is_thrashing(kill_under_pressure_cause
) &&
3322 (memorystatus_available_pages
> memorystatus_available_pages_critical
)) {
3324 * We are _not_ out of pressure but we are above the critical threshold and there's:
3325 * - no compressor thrashing
3326 * - no more HWM processes left.
3327 * For now, don't kill any other processes.
3330 if (hwm_kill
== 0) {
3331 memorystatus_thread_wasted_wakeup
++;
3337 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, jetsam_reason_code
);
3338 if (jetsam_reason
== OS_REASON_NULL
) {
3339 printf("memorystatus_thread: failed to allocate jetsam reason\n");
3342 if (memorystatus_jld_enabled
== TRUE
) {
3345 * Jetsam Loop Detection: attempt to detect
3346 * rapid daemon relaunches in the lower bands.
3349 microuptime(&jld_now_tstamp
);
3352 * Ignore usecs in this calculation.
3353 * msecs granularity is close enough.
3355 jld_now_msecs
= (jld_now_tstamp
.tv_sec
* 1000);
3358 switch (jetsam_aging_policy
) {
3359 case kJetsamAgingPolicyLegacy
:
3360 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3361 jld_bucket_count
= bucket
->count
;
3362 bucket
= &memstat_bucket
[JETSAM_PRIORITY_AGING_BAND1
];
3363 jld_bucket_count
+= bucket
->count
;
3365 case kJetsamAgingPolicySysProcsReclaimedFirst
:
3366 case kJetsamAgingPolicyAppsReclaimedFirst
:
3367 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3368 jld_bucket_count
= bucket
->count
;
3369 bucket
= &memstat_bucket
[system_procs_aging_band
];
3370 jld_bucket_count
+= bucket
->count
;
3371 bucket
= &memstat_bucket
[applications_aging_band
];
3372 jld_bucket_count
+= bucket
->count
;
3374 case kJetsamAgingPolicyNone
:
3376 bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
3377 jld_bucket_count
= bucket
->count
;
3381 bucket
= &memstat_bucket
[JETSAM_PRIORITY_ELEVATED_INACTIVE
];
3382 elevated_bucket_count
= bucket
->count
;
3387 * memorystatus_jld_eval_period_msecs is a tunable
3388 * memorystatus_jld_eval_aggressive_count is a tunable
3389 * memorystatus_jld_eval_aggressive_priority_band_max is a tunable
3391 if ( (jld_bucket_count
== 0) ||
3392 (jld_now_msecs
> (jld_timestamp_msecs
+ memorystatus_jld_eval_period_msecs
))) {
3395 * Refresh evaluation parameters
3397 jld_timestamp_msecs
= jld_now_msecs
;
3398 jld_idle_kill_candidates
= jld_bucket_count
;
3400 jld_eval_aggressive_count
= 0;
3401 jld_priority_band_max
= JETSAM_PRIORITY_UI_SUPPORT
;
3404 if (jld_idle_kills
> jld_idle_kill_candidates
) {
3405 jld_eval_aggressive_count
++;
3407 #if DEVELOPMENT || DEBUG
3408 printf("memorystatus: aggressive%d: beginning of window: %lld ms, : timestamp now: %lld ms\n",
3409 jld_eval_aggressive_count
,
3410 jld_timestamp_msecs
,
3412 printf("memorystatus: aggressive%d: idle candidates: %d, idle kills: %d\n",
3413 jld_eval_aggressive_count
,
3414 jld_idle_kill_candidates
,
3416 #endif /* DEVELOPMENT || DEBUG */
3418 if ((jld_eval_aggressive_count
== memorystatus_jld_eval_aggressive_count
) &&
3419 (total_corpses_count
> 0) && (corpse_list_purged
== FALSE
)) {
3421 * If we reach this aggressive cycle, corpses might be causing memory pressure.
3422 * So, in an effort to avoid jetsams in the FG band, we will attempt to purge
3423 * corpse memory prior to this final march through JETSAM_PRIORITY_UI_SUPPORT.
3425 task_purge_all_corpses();
3426 corpse_list_purged
= TRUE
;
3428 else if (jld_eval_aggressive_count
> memorystatus_jld_eval_aggressive_count
) {
3430 * Bump up the jetsam priority limit (eg: the bucket index)
3431 * Enforce bucket index sanity.
3433 if ((memorystatus_jld_eval_aggressive_priority_band_max
< 0) ||
3434 (memorystatus_jld_eval_aggressive_priority_band_max
>= MEMSTAT_BUCKET_COUNT
)) {
3436 * Do nothing. Stick with the default level.
3439 jld_priority_band_max
= memorystatus_jld_eval_aggressive_priority_band_max
;
3443 /* Visit elevated processes first */
3444 while (elevated_bucket_count
) {
3446 elevated_bucket_count
--;
3449 * memorystatus_kill_elevated_process() drops a reference,
3450 * so take another one so we can continue to use this exit reason
3451 * even after it returns.
3454 os_reason_ref(jetsam_reason
);
3455 killed
= memorystatus_kill_elevated_process(
3456 kMemorystatusKilledVMThrashing
,
3458 jld_eval_aggressive_count
,
3462 post_snapshot
= TRUE
;
3463 if (memorystatus_available_pages
<= memorystatus_available_pages_pressure
) {
3465 * Still under pressure.
3466 * Find another pinned processes.
3474 * No pinned processes left to kill.
3475 * Abandon elevated band.
3482 * memorystatus_kill_top_process_aggressive() drops a reference,
3483 * so take another one so we can continue to use this exit reason
3484 * even after it returns
3486 os_reason_ref(jetsam_reason
);
3487 killed
= memorystatus_kill_top_process_aggressive(
3489 kMemorystatusKilledVMThrashing
,
3491 jld_eval_aggressive_count
,
3492 jld_priority_band_max
,
3496 /* Always generate logs after aggressive kill */
3497 post_snapshot
= TRUE
;
3505 * memorystatus_kill_top_process() drops a reference,
3506 * so take another one so we can continue to use this exit reason
3507 * even after it returns
3509 os_reason_ref(jetsam_reason
);
3512 killed
= memorystatus_kill_top_process(TRUE
, sort_flag
, cause
, jetsam_reason
, &priority
, &errors
);
3517 * Don't generate logs for steady-state idle-exit kills,
3518 * unless it is overridden for debug or by the device
3521 if ((priority
!= JETSAM_PRIORITY_IDLE
) || memorystatus_idle_snapshot
) {
3522 post_snapshot
= TRUE
;
3525 /* Jetsam Loop Detection */
3526 if (memorystatus_jld_enabled
== TRUE
) {
3527 if ((priority
== JETSAM_PRIORITY_IDLE
) || (priority
== system_procs_aging_band
) || (priority
== applications_aging_band
)) {
3531 * We've reached into bands beyond idle deferred.
3532 * We make no attempt to monitor them
3537 if ((priority
>= JETSAM_PRIORITY_UI_SUPPORT
) && (total_corpses_count
> 0) && (corpse_list_purged
== FALSE
)) {
3539 * If we have jetsammed a process in or above JETSAM_PRIORITY_UI_SUPPORT
3540 * then we attempt to relieve pressure by purging corpse memory.
3542 task_purge_all_corpses();
3543 corpse_list_purged
= TRUE
;
3548 if (memorystatus_available_pages
<= memorystatus_available_pages_critical
) {
3550 * Still under pressure and unable to kill a process - purge corpse memory
3552 if (total_corpses_count
> 0) {
3553 task_purge_all_corpses();
3554 corpse_list_purged
= TRUE
;
3557 if (memorystatus_available_pages
<= memorystatus_available_pages_critical
) {
3559 * Still under pressure and unable to kill a process - panic
3561 panic("memorystatus_jetsam_thread: no victim! available pages:%d\n", memorystatus_available_pages
);
3568 * We do not want to over-kill when thrashing has been detected.
3569 * To avoid that, we reset the flag here and notify the
3572 if (is_thrashing(kill_under_pressure_cause
)) {
3573 kill_under_pressure_cause
= 0;
3574 vm_thrashing_jetsam_done();
3577 os_reason_free(jetsam_reason
);
3580 kill_under_pressure_cause
= 0;
3583 memorystatus_clear_errors();
3586 #if VM_PRESSURE_EVENTS
3588 * LD: We used to target the foreground process first and foremost here.
3589 * Now, we target all processes, starting from the non-suspended, background
3590 * processes first. We will target foreground too.
3592 * memorystatus_update_vm_pressure(TRUE);
3594 //vm_pressure_response();
3597 if (post_snapshot
) {
3599 size_t snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
3600 sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_count
);
3601 uint64_t timestamp_now
= mach_absolute_time();
3602 memorystatus_jetsam_snapshot
->notification_time
= timestamp_now
;
3603 memorystatus_jetsam_snapshot
->js_gencount
++;
3604 if (memorystatus_jetsam_snapshot_last_timestamp
== 0 ||
3605 timestamp_now
> memorystatus_jetsam_snapshot_last_timestamp
+ memorystatus_jetsam_snapshot_timeout
) {
3607 int ret
= memorystatus_send_note(kMemorystatusSnapshotNote
, &snapshot_size
, sizeof(snapshot_size
));
3610 memorystatus_jetsam_snapshot_last_timestamp
= timestamp_now
;
3618 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_SCAN
) | DBG_FUNC_END
,
3619 memorystatus_available_pages
, 0, 0, 0, 0);
3621 #else /* CONFIG_JETSAM */
3624 * Jetsam not enabled
3627 #endif /* CONFIG_JETSAM */
3629 memorystatus_thread_block(0, memorystatus_thread
);
3635 * when an idle-exitable proc was killed
3637 * when there are no more idle-exitable procs found
3638 * when the attempt to kill an idle-exitable proc failed
3640 boolean_t
memorystatus_idle_exit_from_VM(void) {
3641 return(kill_idle_exit_proc());
3643 #endif /* !CONFIG_JETSAM */
3647 * when exceeding ledger footprint is fatal.
3649 * when exceeding ledger footprint is non fatal.
3652 memorystatus_turnoff_exception_and_get_fatalness(boolean_t warning
, const int max_footprint_mb
)
3654 proc_t p
= current_proc();
3659 is_fatal
= (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
);
3661 if (warning
== FALSE
) {
3662 boolean_t is_active
;
3663 boolean_t state_changed
= FALSE
;
3666 * We are here because a process has exceeded its ledger limit.
3667 * That is, the process is no longer in the limit warning range.
3669 * When a process exceeds its ledger limit, we want an EXC_RESOURCE
3670 * to trigger, but only once per process per limit. We enforce that
3671 * here, by identifying the active/inactive limit type. We then turn
3672 * off the exception state by marking the limit as exception triggered.
3675 is_active
= proc_jetsam_state_is_active_locked(p
);
3677 if (is_active
== TRUE
) {
3679 * turn off exceptions for active state
3681 if (!(p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_EXC_TRIGGERED
)) {
3682 p
->p_memstat_state
|= P_MEMSTAT_MEMLIMIT_ACTIVE_EXC_TRIGGERED
;
3683 state_changed
= TRUE
;
3687 * turn off exceptions for inactive state
3689 if (!(p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_EXC_TRIGGERED
)) {
3690 p
->p_memstat_state
|= P_MEMSTAT_MEMLIMIT_INACTIVE_EXC_TRIGGERED
;
3691 state_changed
= TRUE
;
3696 * The limit violation is logged here, but only once per process per limit.
3697 * This avoids excessive logging when a process consistently exceeds a soft limit.
3698 * Soft memory limit is a non-fatal high-water-mark
3699 * Hard memory limit is a fatal custom-task-limit or system-wide per-task memory limit.
3702 printf("process %d (%s) exceeded physical memory footprint, the %s%sMemoryLimit of %d MB\n",
3703 p
->p_pid
, (*p
->p_name
? p
->p_name
: "unknown"), (is_active
? "Active" : "Inactive"),
3704 (is_fatal
? "Hard" : "Soft"), max_footprint_mb
);
3714 * Callback invoked when allowable physical memory footprint exceeded
3715 * (dirty pages + IOKit mappings)
3717 * This is invoked for both advisory, non-fatal per-task high watermarks,
3718 * as well as the fatal task memory limits.
3721 memorystatus_on_ledger_footprint_exceeded(boolean_t warning
, boolean_t is_fatal
)
3723 os_reason_t jetsam_reason
= OS_REASON_NULL
;
3725 proc_t p
= current_proc();
3727 #if VM_PRESSURE_EVENTS
3728 if (warning
== TRUE
) {
3730 * This is a warning path which implies that the current process is close, but has
3731 * not yet exceeded its per-process memory limit.
3733 if (memorystatus_warn_process(p
->p_pid
, FALSE
/* not exceeded */) != TRUE
) {
3734 /* Print warning, since it's possible that task has not registered for pressure notifications */
3735 printf("task_exceeded_footprint: failed to warn the current task (%d exiting, or no handler registered?).\n", p
->p_pid
);
3739 #endif /* VM_PRESSURE_EVENTS */
3743 * If this process has no high watermark or has a fatal task limit, then we have been invoked because the task
3744 * has violated either the system-wide per-task memory limit OR its own task limit.
3746 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_PERPROCESSLIMIT
);
3747 if (jetsam_reason
== NULL
) {
3748 printf("task_exceeded footprint: failed to allocate jetsam reason\n");
3749 } else if (corpse_for_fatal_memkill
!= 0) {
3750 /* Set OS_REASON_FLAG_GENERATE_CRASH_REPORT to generate corpse */
3751 jetsam_reason
->osr_flags
|= OS_REASON_FLAG_GENERATE_CRASH_REPORT
;
3754 if (memorystatus_kill_process_sync(p
->p_pid
, kMemorystatusKilledPerProcessLimit
, jetsam_reason
) != TRUE
) {
3755 printf("task_exceeded_footprint: failed to kill the current task (exiting?).\n");
3759 * HWM offender exists. Done without locks or synchronization.
3760 * See comment near its declaration for more details.
3762 memorystatus_hwm_candidates
= TRUE
;
3764 #if VM_PRESSURE_EVENTS
3766 * The current process is not in the warning path.
3767 * This path implies the current process has exceeded a non-fatal (soft) memory limit.
3768 * Failure to send note is ignored here.
3770 (void)memorystatus_warn_process(p
->p_pid
, TRUE
/* exceeded */);
3772 #endif /* VM_PRESSURE_EVENTS */
3778 * Evaluates active vs. inactive process state.
3779 * Processes that opt into dirty tracking are evaluated
3780 * based on clean vs dirty state.
3782 * clean ==> inactive
3784 * Process that do not opt into dirty tracking are
3785 * evalulated based on priority level.
3786 * Foreground or above ==> active
3787 * Below Foreground ==> inactive
3789 * Return: TRUE if active
3794 proc_jetsam_state_is_active_locked(proc_t p
) {
3796 if (p
->p_memstat_dirty
& P_DIRTY_TRACK
) {
3798 * process has opted into dirty tracking
3799 * active state is based on dirty vs. clean
3801 if (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) {
3804 * implies active state
3810 * implies inactive state
3814 } else if (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
) {
3816 * process is Foreground or higher
3817 * implies active state
3822 * process found below Foreground
3823 * implies inactive state
3830 memorystatus_kill_process_sync(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
) {
3834 uint32_t errors
= 0;
3836 if (victim_pid
== -1) {
3837 /* No pid, so kill first process */
3838 res
= memorystatus_kill_top_process(TRUE
, TRUE
, cause
, jetsam_reason
, NULL
, &errors
);
3840 res
= memorystatus_kill_specific_process(victim_pid
, cause
, jetsam_reason
);
3844 memorystatus_clear_errors();
3848 /* Fire off snapshot notification */
3850 size_t snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) +
3851 sizeof(memorystatus_jetsam_snapshot_entry_t
) * memorystatus_jetsam_snapshot_count
;
3852 uint64_t timestamp_now
= mach_absolute_time();
3853 memorystatus_jetsam_snapshot
->notification_time
= timestamp_now
;
3854 if (memorystatus_jetsam_snapshot_last_timestamp
== 0 ||
3855 timestamp_now
> memorystatus_jetsam_snapshot_last_timestamp
+ memorystatus_jetsam_snapshot_timeout
) {
3857 int ret
= memorystatus_send_note(kMemorystatusSnapshotNote
, &snapshot_size
, sizeof(snapshot_size
));
3860 memorystatus_jetsam_snapshot_last_timestamp
= timestamp_now
;
3867 #else /* !CONFIG_JETSAM */
3869 res
= memorystatus_kill_specific_process(victim_pid
, cause
, jetsam_reason
);
3871 #endif /* CONFIG_JETSAM */
3877 * Jetsam a specific process.
3880 memorystatus_kill_specific_process(pid_t victim_pid
, uint32_t cause
, os_reason_t jetsam_reason
) {
3883 uint64_t killtime
= 0;
3885 clock_usec_t tv_usec
;
3888 /* TODO - add a victim queue and push this into the main jetsam thread */
3890 p
= proc_find(victim_pid
);
3892 os_reason_free(jetsam_reason
);
3899 if (memorystatus_jetsam_snapshot_count
== 0) {
3900 memorystatus_init_jetsam_snapshot_locked(NULL
,0);
3903 killtime
= mach_absolute_time();
3904 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
3905 tv_msec
= tv_usec
/ 1000;
3907 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
3911 printf("%lu.%02d memorystatus: specifically killing pid %d [%s] (%s %d) - memorystatus_available_pages: %d\n",
3912 (unsigned long)tv_sec
, tv_msec
, victim_pid
, (*p
->p_name
? p
->p_name
: "(unknown)"),
3913 jetsam_kill_cause_name
[cause
], p
->p_memstat_effectivepriority
, memorystatus_available_pages
);
3914 #else /* !CONFIG_JETSAM */
3917 killtime
= mach_absolute_time();
3918 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
3919 tv_msec
= tv_usec
/ 1000;
3920 printf("%lu.%02d memorystatus: specifically killing pid %d [%s] (%s %d)\n",
3921 (unsigned long)tv_sec
, tv_msec
, victim_pid
, (*p
->p_name
? p
->p_name
: "(unknown)"),
3922 jetsam_kill_cause_name
[cause
], p
->p_memstat_effectivepriority
);
3923 #endif /* CONFIG_JETSAM */
3925 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
);
3933 * Toggle the P_MEMSTAT_TERMINATED state.
3934 * Takes the proc_list_lock.
3937 proc_memstat_terminated(proc_t p
, boolean_t set
)
3939 #if DEVELOPMENT || DEBUG
3943 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
3945 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
3950 #pragma unused(p, set)
3954 #endif /* DEVELOPMENT || DEBUG */
3961 * This is invoked when cpulimits have been exceeded while in fatal mode.
3962 * The jetsam_flags do not apply as those are for memory related kills.
3963 * We call this routine so that the offending process is killed with
3964 * a non-zero exit status.
3967 jetsam_on_ledger_cpulimit_exceeded(void)
3970 int jetsam_flags
= 0; /* make it obvious */
3971 proc_t p
= current_proc();
3972 os_reason_t jetsam_reason
= OS_REASON_NULL
;
3974 printf("task_exceeded_cpulimit: killing pid %d [%s]\n",
3975 p
->p_pid
, (*p
->p_name
? p
->p_name
: "(unknown)"));
3977 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_CPULIMIT
);
3978 if (jetsam_reason
== OS_REASON_NULL
) {
3979 printf("task_exceeded_cpulimit: unable to allocate memory for jetsam reason\n");
3982 retval
= jetsam_do_kill(p
, jetsam_flags
, jetsam_reason
);
3985 printf("task_exceeded_cpulimit: failed to kill current task (exiting?).\n");
3990 memorystatus_get_task_memory_region_count(task_t task
, uint64_t *count
)
3995 *count
= get_task_memory_region_count(task
);
3999 memorystatus_get_task_page_counts(task_t task
, uint32_t *footprint
, uint32_t *max_footprint
, uint32_t *max_footprint_lifetime
, uint32_t *purgeable_pages
)
4006 pages
= (get_task_phys_footprint(task
) / PAGE_SIZE_64
);
4007 assert(((uint32_t)pages
) == pages
);
4008 *footprint
= (uint32_t)pages
;
4010 if (max_footprint
) {
4011 pages
= (get_task_phys_footprint_max(task
) / PAGE_SIZE_64
);
4012 assert(((uint32_t)pages
) == pages
);
4013 *max_footprint
= (uint32_t)pages
;
4015 if (max_footprint_lifetime
) {
4016 pages
= (get_task_resident_max(task
) / PAGE_SIZE_64
);
4017 assert(((uint32_t)pages
) == pages
);
4018 *max_footprint_lifetime
= (uint32_t)pages
;
4020 if (purgeable_pages
) {
4021 pages
= (get_task_purgeable_size(task
) / PAGE_SIZE_64
);
4022 assert(((uint32_t)pages
) == pages
);
4023 *purgeable_pages
= (uint32_t)pages
;
4028 memorystatus_get_task_phys_footprint_page_counts(task_t task
,
4029 uint64_t *internal_pages
, uint64_t *internal_compressed_pages
,
4030 uint64_t *purgeable_nonvolatile_pages
, uint64_t *purgeable_nonvolatile_compressed_pages
,
4031 uint64_t *alternate_accounting_pages
, uint64_t *alternate_accounting_compressed_pages
,
4032 uint64_t *iokit_mapped_pages
, uint64_t *page_table_pages
)
4036 if (internal_pages
) {
4037 *internal_pages
= (get_task_internal(task
) / PAGE_SIZE_64
);
4040 if (internal_compressed_pages
) {
4041 *internal_compressed_pages
= (get_task_internal_compressed(task
) / PAGE_SIZE_64
);
4044 if (purgeable_nonvolatile_pages
) {
4045 *purgeable_nonvolatile_pages
= (get_task_purgeable_nonvolatile(task
) / PAGE_SIZE_64
);
4048 if (purgeable_nonvolatile_compressed_pages
) {
4049 *purgeable_nonvolatile_compressed_pages
= (get_task_purgeable_nonvolatile_compressed(task
) / PAGE_SIZE_64
);
4052 if (alternate_accounting_pages
) {
4053 *alternate_accounting_pages
= (get_task_alternate_accounting(task
) / PAGE_SIZE_64
);
4056 if (alternate_accounting_compressed_pages
) {
4057 *alternate_accounting_compressed_pages
= (get_task_alternate_accounting_compressed(task
) / PAGE_SIZE_64
);
4060 if (iokit_mapped_pages
) {
4061 *iokit_mapped_pages
= (get_task_iokit_mapped(task
) / PAGE_SIZE_64
);
4064 if (page_table_pages
) {
4065 *page_table_pages
= (get_task_page_table(task
) / PAGE_SIZE_64
);
4070 * This routine only acts on the global jetsam event snapshot.
4071 * Updating the process's entry can race when the memorystatus_thread
4072 * has chosen to kill a process that is racing to exit on another core.
4075 memorystatus_update_jetsam_snapshot_entry_locked(proc_t p
, uint32_t kill_cause
, uint64_t killtime
)
4077 memorystatus_jetsam_snapshot_entry_t
*entry
= NULL
;
4078 memorystatus_jetsam_snapshot_t
*snapshot
= NULL
;
4079 memorystatus_jetsam_snapshot_entry_t
*snapshot_list
= NULL
;
4083 if (memorystatus_jetsam_snapshot_count
== 0) {
4085 * No active snapshot.
4092 * Sanity check as this routine should only be called
4093 * from a jetsam kill path.
4095 assert(kill_cause
!= 0 && killtime
!= 0);
4097 snapshot
= memorystatus_jetsam_snapshot
;
4098 snapshot_list
= memorystatus_jetsam_snapshot
->entries
;
4100 for (i
= 0; i
< memorystatus_jetsam_snapshot_count
; i
++) {
4101 if (snapshot_list
[i
].pid
== p
->p_pid
) {
4103 entry
= &snapshot_list
[i
];
4105 if (entry
->killed
|| entry
->jse_killtime
) {
4107 * We apparently raced on the exit path
4108 * for this process, as it's snapshot entry
4109 * has already recorded a kill.
4111 assert(entry
->killed
&& entry
->jse_killtime
);
4116 * Update the entry we just found in the snapshot.
4119 entry
->killed
= kill_cause
;
4120 entry
->jse_killtime
= killtime
;
4121 entry
->jse_gencount
= snapshot
->js_gencount
;
4122 entry
->jse_idle_delta
= p
->p_memstat_idle_delta
;
4125 * If a process has moved between bands since snapshot was
4126 * initialized, then likely these fields changed too.
4128 if (entry
->priority
!= p
->p_memstat_effectivepriority
) {
4130 strlcpy(entry
->name
, p
->p_name
, sizeof(entry
->name
));
4131 entry
->priority
= p
->p_memstat_effectivepriority
;
4132 entry
->state
= memorystatus_build_state(p
);
4133 entry
->user_data
= p
->p_memstat_userdata
;
4134 entry
->fds
= p
->p_fd
->fd_nfiles
;
4138 * Always update the page counts on a kill.
4142 uint32_t max_pages
= 0;
4143 uint32_t max_pages_lifetime
= 0;
4144 uint32_t purgeable_pages
= 0;
4146 memorystatus_get_task_page_counts(p
->task
, &pages
, &max_pages
, &max_pages_lifetime
, &purgeable_pages
);
4147 entry
->pages
= (uint64_t)pages
;
4148 entry
->max_pages
= (uint64_t)max_pages
;
4149 entry
->max_pages_lifetime
= (uint64_t)max_pages_lifetime
;
4150 entry
->purgeable_pages
= (uint64_t)purgeable_pages
;
4152 uint64_t internal_pages
= 0;
4153 uint64_t internal_compressed_pages
= 0;
4154 uint64_t purgeable_nonvolatile_pages
= 0;
4155 uint64_t purgeable_nonvolatile_compressed_pages
= 0;
4156 uint64_t alternate_accounting_pages
= 0;
4157 uint64_t alternate_accounting_compressed_pages
= 0;
4158 uint64_t iokit_mapped_pages
= 0;
4159 uint64_t page_table_pages
= 0;
4161 memorystatus_get_task_phys_footprint_page_counts(p
->task
, &internal_pages
, &internal_compressed_pages
,
4162 &purgeable_nonvolatile_pages
, &purgeable_nonvolatile_compressed_pages
,
4163 &alternate_accounting_pages
, &alternate_accounting_compressed_pages
,
4164 &iokit_mapped_pages
, &page_table_pages
);
4166 entry
->jse_internal_pages
= internal_pages
;
4167 entry
->jse_internal_compressed_pages
= internal_compressed_pages
;
4168 entry
->jse_purgeable_nonvolatile_pages
= purgeable_nonvolatile_pages
;
4169 entry
->jse_purgeable_nonvolatile_compressed_pages
= purgeable_nonvolatile_compressed_pages
;
4170 entry
->jse_alternate_accounting_pages
= alternate_accounting_pages
;
4171 entry
->jse_alternate_accounting_compressed_pages
= alternate_accounting_compressed_pages
;
4172 entry
->jse_iokit_mapped_pages
= iokit_mapped_pages
;
4173 entry
->jse_page_table_pages
= page_table_pages
;
4175 uint64_t region_count
= 0;
4176 memorystatus_get_task_memory_region_count(p
->task
, ®ion_count
);
4177 entry
->jse_memory_region_count
= region_count
;
4183 if (entry
== NULL
) {
4185 * The entry was not found in the snapshot, so the process must have
4186 * launched after the snapshot was initialized.
4187 * Let's try to append the new entry.
4189 if (memorystatus_jetsam_snapshot_count
< memorystatus_jetsam_snapshot_max
) {
4191 * A populated snapshot buffer exists
4192 * and there is room to init a new entry.
4194 assert(memorystatus_jetsam_snapshot_count
== snapshot
->entry_count
);
4196 unsigned int next
= memorystatus_jetsam_snapshot_count
;
4198 if(memorystatus_init_jetsam_snapshot_entry_locked(p
, &snapshot_list
[next
], (snapshot
->js_gencount
)) == TRUE
) {
4200 entry
= &snapshot_list
[next
];
4201 entry
->killed
= kill_cause
;
4202 entry
->jse_killtime
= killtime
;
4204 snapshot
->entry_count
= ++next
;
4205 memorystatus_jetsam_snapshot_count
= next
;
4207 if (memorystatus_jetsam_snapshot_count
>= memorystatus_jetsam_snapshot_max
) {
4209 * We just used the last slot in the snapshot buffer.
4210 * We only want to log it once... so we do it here
4211 * when we notice we've hit the max.
4213 printf("memorystatus: WARNING snapshot buffer is full, count %d\n",
4214 memorystatus_jetsam_snapshot_count
);
4221 if (entry
== NULL
) {
4223 * If we reach here, the snapshot buffer could not be updated.
4224 * Most likely, the buffer is full, in which case we would have
4225 * logged a warning in the previous call.
4227 * For now, we will stop appending snapshot entries.
4228 * When the buffer is consumed, the snapshot state will reset.
4231 MEMORYSTATUS_DEBUG(4, "memorystatus_update_jetsam_snapshot_entry_locked: failed to update pid %d, priority %d, count %d\n",
4232 p
->p_pid
, p
->p_memstat_effectivepriority
, memorystatus_jetsam_snapshot_count
);
4238 void memorystatus_pages_update(unsigned int pages_avail
)
4240 memorystatus_available_pages
= pages_avail
;
4242 #if VM_PRESSURE_EVENTS
4244 * Since memorystatus_available_pages changes, we should
4245 * re-evaluate the pressure levels on the system and
4246 * check if we need to wake the pressure thread.
4247 * We also update memorystatus_level in that routine.
4249 vm_pressure_response();
4251 if (memorystatus_available_pages
<= memorystatus_available_pages_pressure
) {
4253 if (memorystatus_hwm_candidates
|| (memorystatus_available_pages
<= memorystatus_available_pages_critical
)) {
4254 memorystatus_thread_wake();
4257 #else /* VM_PRESSURE_EVENTS */
4259 boolean_t critical
, delta
;
4261 if (!memorystatus_delta
) {
4265 critical
= (pages_avail
< memorystatus_available_pages_critical
) ? TRUE
: FALSE
;
4266 delta
= ((pages_avail
>= (memorystatus_available_pages
+ memorystatus_delta
))
4267 || (memorystatus_available_pages
>= (pages_avail
+ memorystatus_delta
))) ? TRUE
: FALSE
;
4269 if (critical
|| delta
) {
4270 unsigned int total_pages
;
4272 total_pages
= (unsigned int) atop_64(max_mem
);
4273 #if CONFIG_SECLUDED_MEMORY
4274 total_pages
-= vm_page_secluded_count
;
4275 #endif /* CONFIG_SECLUDED_MEMORY */
4276 memorystatus_level
= memorystatus_available_pages
* 100 / total_pages
;
4277 memorystatus_thread_wake();
4279 #endif /* VM_PRESSURE_EVENTS */
4283 memorystatus_init_jetsam_snapshot_entry_locked(proc_t p
, memorystatus_jetsam_snapshot_entry_t
*entry
, uint64_t gencount
)
4286 clock_usec_t tv_usec
;
4288 uint32_t max_pages
= 0;
4289 uint32_t max_pages_lifetime
= 0;
4290 uint32_t purgeable_pages
= 0;
4291 uint64_t internal_pages
= 0;
4292 uint64_t internal_compressed_pages
= 0;
4293 uint64_t purgeable_nonvolatile_pages
= 0;
4294 uint64_t purgeable_nonvolatile_compressed_pages
= 0;
4295 uint64_t alternate_accounting_pages
= 0;
4296 uint64_t alternate_accounting_compressed_pages
= 0;
4297 uint64_t iokit_mapped_pages
= 0;
4298 uint64_t page_table_pages
=0;
4299 uint64_t region_count
= 0;
4300 uint64_t cids
[COALITION_NUM_TYPES
];
4302 memset(entry
, 0, sizeof(memorystatus_jetsam_snapshot_entry_t
));
4304 entry
->pid
= p
->p_pid
;
4305 strlcpy(&entry
->name
[0], p
->p_name
, sizeof(entry
->name
));
4306 entry
->priority
= p
->p_memstat_effectivepriority
;
4308 memorystatus_get_task_page_counts(p
->task
, &pages
, &max_pages
, &max_pages_lifetime
, &purgeable_pages
);
4309 entry
->pages
= (uint64_t)pages
;
4310 entry
->max_pages
= (uint64_t)max_pages
;
4311 entry
->max_pages_lifetime
= (uint64_t)max_pages_lifetime
;
4312 entry
->purgeable_pages
= (uint64_t)purgeable_pages
;
4314 memorystatus_get_task_phys_footprint_page_counts(p
->task
, &internal_pages
, &internal_compressed_pages
,
4315 &purgeable_nonvolatile_pages
, &purgeable_nonvolatile_compressed_pages
,
4316 &alternate_accounting_pages
, &alternate_accounting_compressed_pages
,
4317 &iokit_mapped_pages
, &page_table_pages
);
4319 entry
->jse_internal_pages
= internal_pages
;
4320 entry
->jse_internal_compressed_pages
= internal_compressed_pages
;
4321 entry
->jse_purgeable_nonvolatile_pages
= purgeable_nonvolatile_pages
;
4322 entry
->jse_purgeable_nonvolatile_compressed_pages
= purgeable_nonvolatile_compressed_pages
;
4323 entry
->jse_alternate_accounting_pages
= alternate_accounting_pages
;
4324 entry
->jse_alternate_accounting_compressed_pages
= alternate_accounting_compressed_pages
;
4325 entry
->jse_iokit_mapped_pages
= iokit_mapped_pages
;
4326 entry
->jse_page_table_pages
= page_table_pages
;
4328 memorystatus_get_task_memory_region_count(p
->task
, ®ion_count
);
4329 entry
->jse_memory_region_count
= region_count
;
4331 entry
->state
= memorystatus_build_state(p
);
4332 entry
->user_data
= p
->p_memstat_userdata
;
4333 memcpy(&entry
->uuid
[0], &p
->p_uuid
[0], sizeof(p
->p_uuid
));
4334 entry
->fds
= p
->p_fd
->fd_nfiles
;
4336 absolutetime_to_microtime(get_task_cpu_time(p
->task
), &tv_sec
, &tv_usec
);
4337 entry
->cpu_time
.tv_sec
= tv_sec
;
4338 entry
->cpu_time
.tv_usec
= tv_usec
;
4340 assert(p
->p_stats
!= NULL
);
4341 entry
->jse_starttime
= p
->p_stats
->ps_start
; /* abstime process started */
4342 entry
->jse_killtime
= 0; /* abstime jetsam chose to kill process */
4343 entry
->killed
= 0; /* the jetsam kill cause */
4344 entry
->jse_gencount
= gencount
; /* indicates a pass through jetsam thread, when process was targeted to be killed */
4346 entry
->jse_idle_delta
= p
->p_memstat_idle_delta
; /* Most recent timespan spent in idle-band */
4348 proc_coalitionids(p
, cids
);
4349 entry
->jse_coalition_jetsam_id
= cids
[COALITION_TYPE_JETSAM
];
4355 memorystatus_init_snapshot_vmstats(memorystatus_jetsam_snapshot_t
*snapshot
)
4357 kern_return_t kr
= KERN_SUCCESS
;
4358 mach_msg_type_number_t count
= HOST_VM_INFO64_COUNT
;
4359 vm_statistics64_data_t vm_stat
;
4361 if ((kr
= host_statistics64(host_self(), HOST_VM_INFO64
, (host_info64_t
)&vm_stat
, &count
) != KERN_SUCCESS
)) {
4362 printf("memorystatus_init_jetsam_snapshot_stats: host_statistics64 failed with %d\n", kr
);
4363 memset(&snapshot
->stats
, 0, sizeof(snapshot
->stats
));
4365 snapshot
->stats
.free_pages
= vm_stat
.free_count
;
4366 snapshot
->stats
.active_pages
= vm_stat
.active_count
;
4367 snapshot
->stats
.inactive_pages
= vm_stat
.inactive_count
;
4368 snapshot
->stats
.throttled_pages
= vm_stat
.throttled_count
;
4369 snapshot
->stats
.purgeable_pages
= vm_stat
.purgeable_count
;
4370 snapshot
->stats
.wired_pages
= vm_stat
.wire_count
;
4372 snapshot
->stats
.speculative_pages
= vm_stat
.speculative_count
;
4373 snapshot
->stats
.filebacked_pages
= vm_stat
.external_page_count
;
4374 snapshot
->stats
.anonymous_pages
= vm_stat
.internal_page_count
;
4375 snapshot
->stats
.compressions
= vm_stat
.compressions
;
4376 snapshot
->stats
.decompressions
= vm_stat
.decompressions
;
4377 snapshot
->stats
.compressor_pages
= vm_stat
.compressor_page_count
;
4378 snapshot
->stats
.total_uncompressed_pages_in_compressor
= vm_stat
.total_uncompressed_pages_in_compressor
;
4383 * Collect vm statistics at boot.
4384 * Called only once (see kern_exec.c)
4385 * Data can be consumed at any time.
4388 memorystatus_init_at_boot_snapshot() {
4389 memorystatus_init_snapshot_vmstats(&memorystatus_at_boot_snapshot
);
4390 memorystatus_at_boot_snapshot
.entry_count
= 0;
4391 memorystatus_at_boot_snapshot
.notification_time
= 0; /* updated when consumed */
4392 memorystatus_at_boot_snapshot
.snapshot_time
= mach_absolute_time();
4396 memorystatus_init_jetsam_snapshot_locked(memorystatus_jetsam_snapshot_t
*od_snapshot
, uint32_t ods_list_count
)
4399 unsigned int b
= 0, i
= 0;
4401 memorystatus_jetsam_snapshot_t
*snapshot
= NULL
;
4402 memorystatus_jetsam_snapshot_entry_t
*snapshot_list
= NULL
;
4403 unsigned int snapshot_max
= 0;
4407 * This is an on_demand snapshot
4409 snapshot
= od_snapshot
;
4410 snapshot_list
= od_snapshot
->entries
;
4411 snapshot_max
= ods_list_count
;
4414 * This is a jetsam event snapshot
4416 snapshot
= memorystatus_jetsam_snapshot
;
4417 snapshot_list
= memorystatus_jetsam_snapshot
->entries
;
4418 snapshot_max
= memorystatus_jetsam_snapshot_max
;
4422 * Init the snapshot header information
4424 memorystatus_init_snapshot_vmstats(snapshot
);
4425 snapshot
->snapshot_time
= mach_absolute_time();
4426 snapshot
->notification_time
= 0;
4427 snapshot
->js_gencount
= 0;
4429 next_p
= memorystatus_get_first_proc_locked(&b
, TRUE
);
4432 next_p
= memorystatus_get_next_proc_locked(&b
, p
, TRUE
);
4434 if (FALSE
== memorystatus_init_jetsam_snapshot_entry_locked(p
, &snapshot_list
[i
], snapshot
->js_gencount
)) {
4438 MEMORYSTATUS_DEBUG(0, "jetsam snapshot pid %d, uuid = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
4440 p
->p_uuid
[0], p
->p_uuid
[1], p
->p_uuid
[2], p
->p_uuid
[3], p
->p_uuid
[4], p
->p_uuid
[5], p
->p_uuid
[6], p
->p_uuid
[7],
4441 p
->p_uuid
[8], p
->p_uuid
[9], p
->p_uuid
[10], p
->p_uuid
[11], p
->p_uuid
[12], p
->p_uuid
[13], p
->p_uuid
[14], p
->p_uuid
[15]);
4443 if (++i
== snapshot_max
) {
4448 snapshot
->entry_count
= i
;
4451 /* update the system buffer count */
4452 memorystatus_jetsam_snapshot_count
= i
;
4456 #if DEVELOPMENT || DEBUG
4459 memorystatus_cmd_set_panic_bits(user_addr_t buffer
, uint32_t buffer_size
) {
4461 memorystatus_jetsam_panic_options_t debug
;
4463 if (buffer_size
!= sizeof(memorystatus_jetsam_panic_options_t
)) {
4467 ret
= copyin(buffer
, &debug
, buffer_size
);
4472 /* Panic bits match kMemorystatusKilled* enum */
4473 memorystatus_jetsam_panic_debug
= (memorystatus_jetsam_panic_debug
& ~debug
.mask
) | (debug
.data
& debug
.mask
);
4475 /* Copyout new value */
4476 debug
.data
= memorystatus_jetsam_panic_debug
;
4477 ret
= copyout(&debug
, buffer
, sizeof(memorystatus_jetsam_panic_options_t
));
4483 * Triggers a sort_order on a specified jetsam priority band.
4484 * This is for testing only, used to force a path through the sort
4488 memorystatus_cmd_test_jetsam_sort(int priority
, int sort_order
) {
4492 unsigned int bucket_index
= 0;
4494 if (priority
== -1) {
4495 /* Use as shorthand for default priority */
4496 bucket_index
= JETSAM_PRIORITY_DEFAULT
;
4498 bucket_index
= (unsigned int)priority
;
4501 error
= memorystatus_sort_bucket(bucket_index
, sort_order
);
4506 #endif /* DEVELOPMENT || DEBUG */
4509 * Jetsam the first process in the queue.
4512 memorystatus_kill_top_process(boolean_t any
, boolean_t sort_flag
, uint32_t cause
, os_reason_t jetsam_reason
,
4513 int32_t *priority
, uint32_t *errors
)
4516 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
4517 boolean_t new_snapshot
= FALSE
, killed
= FALSE
;
4521 uint64_t killtime
= 0;
4523 clock_usec_t tv_usec
;
4526 #ifndef CONFIG_FREEZE
4530 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
4531 memorystatus_available_pages
, 0, 0, 0, 0);
4534 if (sort_flag
== TRUE
) {
4535 (void)memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND
, JETSAM_SORT_DEFAULT
);
4540 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
4542 #if DEVELOPMENT || DEBUG
4544 int procSuspendedForDiagnosis
;
4545 #endif /* DEVELOPMENT || DEBUG */
4548 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
4550 #if DEVELOPMENT || DEBUG
4551 activeProcess
= p
->p_memstat_state
& P_MEMSTAT_FOREGROUND
;
4552 procSuspendedForDiagnosis
= p
->p_memstat_state
& P_MEMSTAT_DIAG_SUSPENDED
;
4553 #endif /* DEVELOPMENT || DEBUG */
4556 aPid_ep
= p
->p_memstat_effectivepriority
;
4558 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
4559 continue; /* with lock held */
4562 #if DEVELOPMENT || DEBUG
4563 if ((memorystatus_jetsam_policy
& kPolicyDiagnoseActive
) && procSuspendedForDiagnosis
) {
4564 printf("jetsam: continuing after ignoring proc suspended already for diagnosis - %d\n", aPid
);
4567 #endif /* DEVELOPMENT || DEBUG */
4569 if (cause
== kMemorystatusKilledVnodes
)
4572 * If the system runs out of vnodes, we systematically jetsam
4573 * processes in hopes of stumbling onto a vnode gain that helps
4574 * the system recover. The process that happens to trigger
4575 * this path has no known relationship to the vnode consumption.
4576 * We attempt to safeguard that process e.g: do not jetsam it.
4579 if (p
== current_proc()) {
4580 /* do not jetsam the current process */
4587 boolean_t reclaim_proc
= !(p
->p_memstat_state
& (P_MEMSTAT_LOCKED
| P_MEMSTAT_NORECLAIM
));
4588 if (any
|| reclaim_proc
) {
4600 * Capture a snapshot if none exists and:
4601 * - priority was not requested (this is something other than an ambient kill)
4602 * - the priority was requested *and* the targeted process is not at idle priority
4604 if ((memorystatus_jetsam_snapshot_count
== 0) &&
4605 (memorystatus_idle_snapshot
|| ((!priority
) || (priority
&& (aPid_ep
!= JETSAM_PRIORITY_IDLE
))))) {
4606 memorystatus_init_jetsam_snapshot_locked(NULL
,0);
4607 new_snapshot
= TRUE
;
4611 * Mark as terminated so that if exit1() indicates success, but the process (for example)
4612 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
4613 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
4614 * acquisition of the proc lock.
4616 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
4618 killtime
= mach_absolute_time();
4619 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
4620 tv_msec
= tv_usec
/ 1000;
4622 #if DEVELOPMENT || DEBUG
4623 if ((memorystatus_jetsam_policy
& kPolicyDiagnoseActive
) && activeProcess
) {
4624 MEMORYSTATUS_DEBUG(1, "jetsam: suspending pid %d [%s] (active) for diagnosis - memory_status_level: %d\n",
4625 aPid
, (*p
->p_name
? p
->p_name
: "(unknown)"), memorystatus_level
);
4626 memorystatus_update_jetsam_snapshot_entry_locked(p
, kMemorystatusKilledDiagnostic
, killtime
);
4627 p
->p_memstat_state
|= P_MEMSTAT_DIAG_SUSPENDED
;
4628 if (memorystatus_jetsam_policy
& kPolicyDiagnoseFirst
) {
4629 jetsam_diagnostic_suspended_one_active_proc
= 1;
4630 printf("jetsam: returning after suspending first active proc - %d\n", aPid
);
4633 p
= proc_ref_locked(p
);
4636 task_suspend(p
->task
);
4638 *priority
= aPid_ep
;
4646 #endif /* DEVELOPMENT || DEBUG */
4648 /* Shift queue, update stats */
4649 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
4651 if (proc_ref_locked(p
) == p
) {
4653 printf("%lu.%02d memorystatus: %s %d [%s] (%s %d) - memorystatus_available_pages: %d\n",
4654 (unsigned long)tv_sec
, tv_msec
,
4655 ((aPid_ep
== JETSAM_PRIORITY_IDLE
) ? "idle exiting pid" : "jetsam killing top process pid"),
4656 aPid
, (*p
->p_name
? p
->p_name
: "(unknown)"),
4657 jetsam_kill_cause_name
[cause
], aPid_ep
, memorystatus_available_pages
);
4660 * memorystatus_do_kill() drops a reference, so take another one so we can
4661 * continue to use this exit reason even after memorystatus_do_kill()
4664 os_reason_ref(jetsam_reason
);
4666 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
);
4671 *priority
= aPid_ep
;
4679 * Failure - first unwind the state,
4680 * then fall through to restart the search.
4683 proc_rele_locked(p
);
4684 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
4685 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
4690 * Failure - restart the search.
4692 * We might have raced with "p" exiting on another core, resulting in no
4693 * ref on "p". Or, we may have failed to kill "p".
4695 * Either way, we fall thru to here, leaving the proc in the
4696 * P_MEMSTAT_TERMINATED state.
4698 * And, we hold the the proc_list_lock at this point.
4702 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
4710 os_reason_free(jetsam_reason
);
4712 /* Clear snapshot if freshly captured and no target was found */
4713 if (new_snapshot
&& !killed
) {
4715 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
4719 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
4720 memorystatus_available_pages
, killed
? aPid
: 0, kill_count
, 0, 0);
4726 * Jetsam aggressively
4729 memorystatus_kill_top_process_aggressive(boolean_t any
, uint32_t cause
, os_reason_t jetsam_reason
, int aggr_count
,
4730 int32_t priority_max
, uint32_t *errors
)
4733 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
4734 boolean_t new_snapshot
= FALSE
, killed
= FALSE
;
4737 int32_t aPid_ep
= 0;
4738 unsigned int memorystatus_level_snapshot
= 0;
4739 uint64_t killtime
= 0;
4741 clock_usec_t tv_usec
;
4746 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
4747 memorystatus_available_pages
, priority_max
, 0, 0, 0);
4749 memorystatus_sort_bucket(JETSAM_PRIORITY_FOREGROUND
, JETSAM_SORT_DEFAULT
);
4753 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
4755 #if DEVELOPMENT || DEBUG
4757 int procSuspendedForDiagnosis
;
4758 #endif /* DEVELOPMENT || DEBUG */
4760 if ((unsigned int)(next_p
->p_memstat_effectivepriority
) != i
) {
4763 * We have raced with next_p running on another core, as it has
4764 * moved to a different jetsam priority band. This means we have
4765 * lost our place in line while traversing the jetsam list. We
4766 * attempt to recover by rewinding to the beginning of the band
4767 * we were already traversing. By doing this, we do not guarantee
4768 * that no process escapes this aggressive march, but we can make
4769 * skipping an entire range of processes less likely. (PR-21069019)
4772 MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: rewinding %s moved from band %d --> %d\n",
4773 aggr_count
, (*next_p
->p_name
? next_p
->p_name
: "unknown"), i
, next_p
->p_memstat_effectivepriority
);
4775 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
4780 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
4782 if (p
->p_memstat_effectivepriority
> priority_max
) {
4784 * Bail out of this killing spree if we have
4785 * reached beyond the priority_max jetsam band.
4786 * That is, we kill up to and through the
4787 * priority_max jetsam band.
4793 #if DEVELOPMENT || DEBUG
4794 activeProcess
= p
->p_memstat_state
& P_MEMSTAT_FOREGROUND
;
4795 procSuspendedForDiagnosis
= p
->p_memstat_state
& P_MEMSTAT_DIAG_SUSPENDED
;
4796 #endif /* DEVELOPMENT || DEBUG */
4799 aPid_ep
= p
->p_memstat_effectivepriority
;
4801 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
4805 #if DEVELOPMENT || DEBUG
4806 if ((memorystatus_jetsam_policy
& kPolicyDiagnoseActive
) && procSuspendedForDiagnosis
) {
4807 printf("jetsam: continuing after ignoring proc suspended already for diagnosis - %d\n", aPid
);
4810 #endif /* DEVELOPMENT || DEBUG */
4813 * Capture a snapshot if none exists.
4815 if (memorystatus_jetsam_snapshot_count
== 0) {
4816 memorystatus_init_jetsam_snapshot_locked(NULL
,0);
4817 new_snapshot
= TRUE
;
4821 * Mark as terminated so that if exit1() indicates success, but the process (for example)
4822 * is blocked in task_exception_notify(), it'll be skipped if encountered again - see
4823 * <rdar://problem/13553476>. This is cheaper than examining P_LEXIT, which requires the
4824 * acquisition of the proc lock.
4826 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
4828 killtime
= mach_absolute_time();
4829 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
4830 tv_msec
= tv_usec
/ 1000;
4832 /* Shift queue, update stats */
4833 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
4836 * In order to kill the target process, we will drop the proc_list_lock.
4837 * To guaranteee that p and next_p don't disappear out from under the lock,
4838 * we must take a ref on both.
4839 * If we cannot get a reference, then it's likely we've raced with
4840 * that process exiting on another core.
4842 if (proc_ref_locked(p
) == p
) {
4844 while (next_p
&& (proc_ref_locked(next_p
) != next_p
)) {
4848 * We must have raced with next_p exiting on another core.
4849 * Recover by getting the next eligible process in the band.
4852 MEMORYSTATUS_DEBUG(1, "memorystatus: aggressive%d: skipping %d [%s] (exiting?)\n",
4853 aggr_count
, next_p
->p_pid
, (*next_p
->p_name
? next_p
->p_name
: "(unknown)"));
4856 next_p
= memorystatus_get_next_proc_locked(&i
, temp_p
, TRUE
);
4861 printf("%lu.%01d memorystatus: aggressive%d: %s %d [%s] (%s %d) - memorystatus_available_pages: %d\n",
4862 (unsigned long)tv_sec
, tv_msec
, aggr_count
,
4863 ((aPid_ep
== JETSAM_PRIORITY_IDLE
) ? "idle exiting pid" : "jetsam killing pid"),
4864 aPid
, (*p
->p_name
? p
->p_name
: "(unknown)"),
4865 jetsam_kill_cause_name
[cause
], aPid_ep
, memorystatus_available_pages
);
4867 memorystatus_level_snapshot
= memorystatus_level
;
4870 * memorystatus_do_kill() drops a reference, so take another one so we can
4871 * continue to use this exit reason even after memorystatus_do_kill()
4874 os_reason_ref(jetsam_reason
);
4875 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
);
4885 * Continue the killing spree.
4889 proc_rele_locked(next_p
);
4892 if (aPid_ep
== JETSAM_PRIORITY_FOREGROUND
&& memorystatus_aggressive_jetsam_lenient
== TRUE
) {
4893 if (memorystatus_level
> memorystatus_level_snapshot
&& ((memorystatus_level
- memorystatus_level_snapshot
) >= AGGRESSIVE_JETSAM_LENIENT_MODE_THRESHOLD
)) {
4894 #if DEVELOPMENT || DEBUG
4895 printf("Disabling Lenient mode after one-time deployment.\n");
4896 #endif /* DEVELOPMENT || DEBUG */
4897 memorystatus_aggressive_jetsam_lenient
= FALSE
;
4906 * Failure - first unwind the state,
4907 * then fall through to restart the search.
4910 proc_rele_locked(p
);
4912 proc_rele_locked(next_p
);
4914 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
4915 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
4921 * Failure - restart the search at the beginning of
4922 * the band we were already traversing.
4924 * We might have raced with "p" exiting on another core, resulting in no
4925 * ref on "p". Or, we may have failed to kill "p".
4927 * Either way, we fall thru to here, leaving the proc in the
4928 * P_MEMSTAT_TERMINATED or P_MEMSTAT_ERROR state.
4930 * And, we hold the the proc_list_lock at this point.
4933 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
4939 os_reason_free(jetsam_reason
);
4941 /* Clear snapshot if freshly captured and no target was found */
4942 if (new_snapshot
&& (kill_count
== 0)) {
4943 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
4946 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
4947 memorystatus_available_pages
, killed
? aPid
: 0, kill_count
, 0, 0);
4949 if (kill_count
> 0) {
4958 memorystatus_kill_hiwat_proc(uint32_t *errors
)
4961 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
4962 boolean_t new_snapshot
= FALSE
, killed
= FALSE
;
4966 uint64_t killtime
= 0;
4968 clock_usec_t tv_usec
;
4970 os_reason_t jetsam_reason
= OS_REASON_NULL
;
4971 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM_HIWAT
) | DBG_FUNC_START
,
4972 memorystatus_available_pages
, 0, 0, 0, 0);
4974 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_HIGHWATER
);
4975 if (jetsam_reason
== OS_REASON_NULL
) {
4976 printf("memorystatus_kill_hiwat_proc: failed to allocate exit reason\n");
4981 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
4983 uint64_t footprint_in_bytes
= 0;
4984 uint64_t memlimit_in_bytes
= 0;
4988 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
4991 aPid_ep
= p
->p_memstat_effectivepriority
;
4993 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
4997 /* skip if no limit set */
4998 if (p
->p_memstat_memlimit
<= 0) {
5004 * No need to consider P_MEMSTAT_MEMLIMIT_BACKGROUND anymore.
5005 * Background limits are described via the inactive limit slots.
5006 * Their fatal/non-fatal setting will drive whether or not to be
5007 * considered in this kill path.
5010 /* skip if a currently inapplicable limit is encountered */
5011 if ((p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_BACKGROUND
) && (p
->p_memstat_effectivepriority
>= JETSAM_PRIORITY_FOREGROUND
)) {
5015 footprint_in_bytes
= get_task_phys_footprint(p
->task
);
5016 memlimit_in_bytes
= (((uint64_t)p
->p_memstat_memlimit
) * 1024ULL * 1024ULL); /* convert MB to bytes */
5017 skip
= (footprint_in_bytes
<= memlimit_in_bytes
);
5019 #if DEVELOPMENT || DEBUG
5020 if (!skip
&& (memorystatus_jetsam_policy
& kPolicyDiagnoseActive
)) {
5021 if (p
->p_memstat_state
& P_MEMSTAT_DIAG_SUSPENDED
) {
5025 #endif /* DEVELOPMENT || DEBUG */
5029 if (p
->p_memstat_state
& P_MEMSTAT_LOCKED
) {
5040 #if DEVELOPMENT || DEBUG
5041 MEMORYSTATUS_DEBUG(1, "jetsam: %s pid %d [%s] - %lld Mb > 1 (%d Mb)\n",
5042 (memorystatus_jetsam_policy
& kPolicyDiagnoseActive
) ? "suspending": "killing",
5043 aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
5044 (footprint_in_bytes
/ (1024ULL * 1024ULL)), /* converted bytes to MB */
5045 p
->p_memstat_memlimit
);
5046 #endif /* DEVELOPMENT || DEBUG */
5048 if (memorystatus_jetsam_snapshot_count
== 0) {
5049 memorystatus_init_jetsam_snapshot_locked(NULL
,0);
5050 new_snapshot
= TRUE
;
5053 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5055 killtime
= mach_absolute_time();
5056 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
5057 tv_msec
= tv_usec
/ 1000;
5059 #if DEVELOPMENT || DEBUG
5060 if (memorystatus_jetsam_policy
& kPolicyDiagnoseActive
) {
5061 MEMORYSTATUS_DEBUG(1, "jetsam: pid %d suspended for diagnosis - memorystatus_available_pages: %d\n", aPid
, memorystatus_available_pages
);
5062 memorystatus_update_jetsam_snapshot_entry_locked(p
, kMemorystatusKilledDiagnostic
, killtime
);
5063 p
->p_memstat_state
|= P_MEMSTAT_DIAG_SUSPENDED
;
5065 p
= proc_ref_locked(p
);
5068 task_suspend(p
->task
);
5075 #endif /* DEVELOPMENT || DEBUG */
5077 memorystatus_update_jetsam_snapshot_entry_locked(p
, kMemorystatusKilledHiwat
, killtime
);
5079 if (proc_ref_locked(p
) == p
) {
5082 printf("%lu.%02d memorystatus: jetsam killing pid %d [%s] (highwater %d) - memorystatus_available_pages: %d\n",
5083 (unsigned long)tv_sec
, tv_msec
, aPid
, (*p
->p_name
? p
->p_name
: "(unknown)"), aPid_ep
, memorystatus_available_pages
);
5086 * memorystatus_do_kill drops a reference, so take another one so we can
5087 * continue to use this exit reason even after memorystatus_do_kill()
5090 os_reason_ref(jetsam_reason
);
5092 killed
= memorystatus_do_kill(p
, kMemorystatusKilledHiwat
, jetsam_reason
);
5102 * Failure - first unwind the state,
5103 * then fall through to restart the search.
5106 proc_rele_locked(p
);
5107 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5108 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
5113 * Failure - restart the search.
5115 * We might have raced with "p" exiting on another core, resulting in no
5116 * ref on "p". Or, we may have failed to kill "p".
5118 * Either way, we fall thru to here, leaving the proc in the
5119 * P_MEMSTAT_TERMINATED state.
5121 * And, we hold the the proc_list_lock at this point.
5125 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5133 os_reason_free(jetsam_reason
);
5135 /* Clear snapshot if freshly captured and no target was found */
5136 if (new_snapshot
&& !killed
) {
5138 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
5142 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM_HIWAT
) | DBG_FUNC_END
,
5143 memorystatus_available_pages
, killed
? aPid
: 0, kill_count
, 0, 0);
5149 * Jetsam a process pinned in the elevated band.
5151 * Return: true -- at least one pinned process was jetsammed
5152 * false -- no pinned process was jetsammed
5155 memorystatus_kill_elevated_process(uint32_t cause
, os_reason_t jetsam_reason
, int aggr_count
, uint32_t *errors
)
5158 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5159 boolean_t new_snapshot
= FALSE
, killed
= FALSE
;
5161 unsigned int i
= JETSAM_PRIORITY_ELEVATED_INACTIVE
;
5163 uint64_t killtime
= 0;
5165 clock_usec_t tv_usec
;
5169 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_START
,
5170 memorystatus_available_pages
, 0, 0, 0, 0);
5174 next_p
= memorystatus_get_first_proc_locked(&i
, FALSE
);
5178 next_p
= memorystatus_get_next_proc_locked(&i
, p
, FALSE
);
5181 aPid_ep
= p
->p_memstat_effectivepriority
;
5184 * Only pick a process pinned in this elevated band
5186 if (!(p
->p_memstat_state
& P_MEMSTAT_USE_ELEVATED_INACTIVE_BAND
)) {
5190 if (p
->p_memstat_state
& (P_MEMSTAT_ERROR
| P_MEMSTAT_TERMINATED
)) {
5195 if (p
->p_memstat_state
& P_MEMSTAT_LOCKED
) {
5200 #if DEVELOPMENT || DEBUG
5201 MEMORYSTATUS_DEBUG(1, "jetsam: elevated%d process pid %d [%s] - memorystatus_available_pages: %d\n",
5203 aPid
, (*p
->p_name
? p
->p_name
: "unknown"),
5204 memorystatus_available_pages
);
5205 #endif /* DEVELOPMENT || DEBUG */
5207 if (memorystatus_jetsam_snapshot_count
== 0) {
5208 memorystatus_init_jetsam_snapshot_locked(NULL
,0);
5209 new_snapshot
= TRUE
;
5212 p
->p_memstat_state
|= P_MEMSTAT_TERMINATED
;
5214 killtime
= mach_absolute_time();
5215 absolutetime_to_microtime(killtime
, &tv_sec
, &tv_usec
);
5216 tv_msec
= tv_usec
/ 1000;
5218 memorystatus_update_jetsam_snapshot_entry_locked(p
, cause
, killtime
);
5220 if (proc_ref_locked(p
) == p
) {
5224 printf("%lu.%01d memorystatus: elevated%d: jetsam killing pid %d [%s] (%s %d) - memorystatus_available_pages: %d\n",
5225 (unsigned long)tv_sec
, tv_msec
,
5227 aPid
, (*p
->p_name
? p
->p_name
: "(unknown)"),
5228 jetsam_kill_cause_name
[cause
], aPid_ep
, memorystatus_available_pages
);
5231 * memorystatus_do_kill drops a reference, so take another one so we can
5232 * continue to use this exit reason even after memorystatus_do_kill()
5235 os_reason_ref(jetsam_reason
);
5236 killed
= memorystatus_do_kill(p
, cause
, jetsam_reason
);
5246 * Failure - first unwind the state,
5247 * then fall through to restart the search.
5250 proc_rele_locked(p
);
5251 p
->p_memstat_state
&= ~P_MEMSTAT_TERMINATED
;
5252 p
->p_memstat_state
|= P_MEMSTAT_ERROR
;
5257 * Failure - restart the search.
5259 * We might have raced with "p" exiting on another core, resulting in no
5260 * ref on "p". Or, we may have failed to kill "p".
5262 * Either way, we fall thru to here, leaving the proc in the
5263 * P_MEMSTAT_TERMINATED state or P_MEMSTAT_ERROR state.
5265 * And, we hold the the proc_list_lock at this point.
5268 next_p
= memorystatus_get_first_proc_locked(&i
, FALSE
);
5274 os_reason_free(jetsam_reason
);
5276 /* Clear snapshot if freshly captured and no target was found */
5277 if (new_snapshot
&& (kill_count
== 0)) {
5279 memorystatus_jetsam_snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
5283 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_JETSAM
) | DBG_FUNC_END
,
5284 memorystatus_available_pages
, killed
? aPid
: 0, kill_count
, 0, 0);
5290 memorystatus_kill_process_async(pid_t victim_pid
, uint32_t cause
) {
5292 * TODO: allow a general async path
5294 * NOTE: If a new async kill cause is added, make sure to update memorystatus_thread() to
5295 * add the appropriate exit reason code mapping.
5297 if ((victim_pid
!= -1) || (cause
!= kMemorystatusKilledVMPageShortage
&& cause
!= kMemorystatusKilledVMThrashing
&&
5298 cause
!= kMemorystatusKilledFCThrashing
)) {
5302 kill_under_pressure_cause
= cause
;
5303 memorystatus_thread_wake();
5308 memorystatus_kill_on_VM_page_shortage(boolean_t async
) {
5310 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMPageShortage
);
5312 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_VMPAGESHORTAGE
);
5313 if (jetsam_reason
== OS_REASON_NULL
) {
5314 printf("memorystatus_kill_on_VM_page_shortage -- sync: failed to allocate jetsam reason\n");
5317 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMPageShortage
, jetsam_reason
);
5322 memorystatus_kill_on_VM_thrashing(boolean_t async
) {
5324 return memorystatus_kill_process_async(-1, kMemorystatusKilledVMThrashing
);
5326 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_VMTHRASHING
);
5327 if (jetsam_reason
== OS_REASON_NULL
) {
5328 printf("memorystatus_kill_on_VM_thrashing -- sync: failed to allocate jetsam reason\n");
5331 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVMThrashing
, jetsam_reason
);
5336 memorystatus_kill_on_FC_thrashing(boolean_t async
) {
5340 return memorystatus_kill_process_async(-1, kMemorystatusKilledFCThrashing
);
5342 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_MEMORY_FCTHRASHING
);
5343 if (jetsam_reason
== OS_REASON_NULL
) {
5344 printf("memorystatus_kill_on_FC_thrashing -- sync: failed to allocate jetsam reason\n");
5347 return memorystatus_kill_process_sync(-1, kMemorystatusKilledFCThrashing
, jetsam_reason
);
5352 memorystatus_kill_on_vnode_limit(void) {
5353 os_reason_t jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_VNODE
);
5354 if (jetsam_reason
== OS_REASON_NULL
) {
5355 printf("memorystatus_kill_on_vnode_limit: failed to allocate jetsam reason\n");
5358 return memorystatus_kill_process_sync(-1, kMemorystatusKilledVnodes
, jetsam_reason
);
5361 #endif /* CONFIG_JETSAM */
5365 __private_extern__
void
5366 memorystatus_freeze_init(void)
5368 kern_return_t result
;
5371 freezer_lck_grp_attr
= lck_grp_attr_alloc_init();
5372 freezer_lck_grp
= lck_grp_alloc_init("freezer", freezer_lck_grp_attr
);
5374 lck_mtx_init(&freezer_mutex
, freezer_lck_grp
, NULL
);
5376 result
= kernel_thread_start(memorystatus_freeze_thread
, NULL
, &thread
);
5377 if (result
== KERN_SUCCESS
) {
5378 thread_deallocate(thread
);
5380 panic("Could not create memorystatus_freeze_thread");
5385 * Synchronously freeze the passed proc. Called with a reference to the proc held.
5387 * Returns EINVAL or the value returned by task_freeze().
5390 memorystatus_freeze_process_sync(proc_t p
)
5394 boolean_t memorystatus_freeze_swap_low
= FALSE
;
5396 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_FREEZE
) | DBG_FUNC_START
,
5397 memorystatus_available_pages
, 0, 0, 0, 0);
5399 lck_mtx_lock(&freezer_mutex
);
5405 if (memorystatus_freeze_enabled
== FALSE
) {
5409 if (!memorystatus_can_freeze(&memorystatus_freeze_swap_low
)) {
5413 if (memorystatus_freeze_update_throttle()) {
5414 printf("memorystatus_freeze_process_sync: in throttle, ignorning freeze\n");
5415 memorystatus_freeze_throttle_count
++;
5422 uint32_t purgeable
, wired
, clean
, dirty
, state
;
5423 uint32_t max_pages
, pages
, i
;
5427 state
= p
->p_memstat_state
;
5429 /* Ensure the process is eligible for freezing */
5430 if ((state
& (P_MEMSTAT_TERMINATED
| P_MEMSTAT_LOCKED
| P_MEMSTAT_FROZEN
)) || !(state
& P_MEMSTAT_SUSPENDED
)) {
5435 /* Only freeze processes meeting our minimum resident page criteria */
5436 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
, NULL
);
5437 if (pages
< memorystatus_freeze_pages_min
) {
5442 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
5444 unsigned int avail_swap_space
= 0; /* in pages. */
5447 * Freezer backed by the compressor and swap file(s)
5448 * while will hold compressed data.
5450 avail_swap_space
= vm_swap_get_free_space() / PAGE_SIZE_64
;
5452 max_pages
= MIN(avail_swap_space
, memorystatus_freeze_pages_max
);
5454 if (max_pages
< memorystatus_freeze_pages_min
) {
5460 * We only have the compressor without any swap.
5462 max_pages
= UINT32_MAX
- 1;
5465 /* Mark as locked temporarily to avoid kill */
5466 p
->p_memstat_state
|= P_MEMSTAT_LOCKED
;
5469 ret
= task_freeze(p
->task
, &purgeable
, &wired
, &clean
, &dirty
, max_pages
, &shared
, FALSE
);
5471 DTRACE_MEMORYSTATUS6(memorystatus_freeze
, proc_t
, p
, unsigned int, memorystatus_available_pages
, boolean_t
, purgeable
, unsigned int, wired
, uint32_t, clean
, uint32_t, dirty
);
5473 MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_process_sync: task_freeze %s for pid %d [%s] - "
5474 "memorystatus_pages: %d, purgeable: %d, wired: %d, clean: %d, dirty: %d, max_pages %d, shared %d\n",
5475 (ret
== KERN_SUCCESS
) ? "SUCCEEDED" : "FAILED", aPid
, (*p
->p_name
? p
->p_name
: "(unknown)"),
5476 memorystatus_available_pages
, purgeable
, wired
, clean
, dirty
, max_pages
, shared
);
5479 p
->p_memstat_state
&= ~P_MEMSTAT_LOCKED
;
5481 if (ret
== KERN_SUCCESS
) {
5482 memorystatus_freeze_entry_t data
= { aPid
, TRUE
, dirty
};
5484 memorystatus_frozen_count
++;
5486 p
->p_memstat_state
|= (P_MEMSTAT_FROZEN
| (shared
? 0: P_MEMSTAT_NORECLAIM
));
5488 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
5490 for (i
= 0; i
< sizeof(throttle_intervals
) / sizeof(struct throttle_interval_t
); i
++) {
5491 throttle_intervals
[i
].pageouts
+= dirty
;
5495 memorystatus_freeze_pageouts
+= dirty
;
5496 memorystatus_freeze_count
++;
5500 memorystatus_send_note(kMemorystatusFreezeNote
, &data
, sizeof(data
));
5507 lck_mtx_unlock(&freezer_mutex
);
5508 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_FREEZE
) | DBG_FUNC_END
,
5509 memorystatus_available_pages
, aPid
, 0, 0, 0);
5515 memorystatus_freeze_top_process(boolean_t
*memorystatus_freeze_swap_low
)
5519 proc_t p
= PROC_NULL
, next_p
= PROC_NULL
;
5522 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_FREEZE
) | DBG_FUNC_START
,
5523 memorystatus_available_pages
, 0, 0, 0, 0);
5527 next_p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
5530 uint32_t purgeable
, wired
, clean
, dirty
;
5533 uint32_t max_pages
= 0;
5537 next_p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
5540 state
= p
->p_memstat_state
;
5542 /* Ensure the process is eligible for freezing */
5543 if ((state
& (P_MEMSTAT_TERMINATED
| P_MEMSTAT_LOCKED
| P_MEMSTAT_FROZEN
)) || !(state
& P_MEMSTAT_SUSPENDED
)) {
5544 continue; // with lock held
5547 /* Only freeze processes meeting our minimum resident page criteria */
5548 memorystatus_get_task_page_counts(p
->task
, &pages
, NULL
, NULL
, NULL
);
5549 if (pages
< memorystatus_freeze_pages_min
) {
5550 continue; // with lock held
5553 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
5555 /* Ensure there's enough free space to freeze this process. */
5557 unsigned int avail_swap_space
= 0; /* in pages. */
5560 * Freezer backed by the compressor and swap file(s)
5561 * while will hold compressed data.
5563 avail_swap_space
= vm_swap_get_free_space() / PAGE_SIZE_64
;
5565 max_pages
= MIN(avail_swap_space
, memorystatus_freeze_pages_max
);
5567 if (max_pages
< memorystatus_freeze_pages_min
) {
5568 *memorystatus_freeze_swap_low
= TRUE
;
5574 * We only have the compressor pool.
5576 max_pages
= UINT32_MAX
- 1;
5579 /* Mark as locked temporarily to avoid kill */
5580 p
->p_memstat_state
|= P_MEMSTAT_LOCKED
;
5582 p
= proc_ref_locked(p
);
5588 kr
= task_freeze(p
->task
, &purgeable
, &wired
, &clean
, &dirty
, max_pages
, &shared
, FALSE
);
5590 MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_top_process: task_freeze %s for pid %d [%s] - "
5591 "memorystatus_pages: %d, purgeable: %d, wired: %d, clean: %d, dirty: %d, max_pages %d, shared %d\n",
5592 (kr
== KERN_SUCCESS
) ? "SUCCEEDED" : "FAILED", aPid
, (*p
->p_name
? p
->p_name
: "(unknown)"),
5593 memorystatus_available_pages
, purgeable
, wired
, clean
, dirty
, max_pages
, shared
);
5596 p
->p_memstat_state
&= ~P_MEMSTAT_LOCKED
;
5599 if (KERN_SUCCESS
== kr
) {
5600 memorystatus_freeze_entry_t data
= { aPid
, TRUE
, dirty
};
5602 memorystatus_frozen_count
++;
5604 p
->p_memstat_state
|= (P_MEMSTAT_FROZEN
| (shared
? 0: P_MEMSTAT_NORECLAIM
));
5606 if (VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
5608 for (i
= 0; i
< sizeof(throttle_intervals
) / sizeof(struct throttle_interval_t
); i
++) {
5609 throttle_intervals
[i
].pageouts
+= dirty
;
5613 memorystatus_freeze_pageouts
+= dirty
;
5614 memorystatus_freeze_count
++;
5618 memorystatus_send_note(kMemorystatusFreezeNote
, &data
, sizeof(data
));
5620 /* Return KERN_SUCESS */
5634 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_FREEZE
) | DBG_FUNC_END
,
5635 memorystatus_available_pages
, aPid
, 0, 0, 0);
5640 static inline boolean_t
5641 memorystatus_can_freeze_processes(void)
5647 if (memorystatus_suspended_count
) {
5648 uint32_t average_resident_pages
, estimated_processes
;
5650 /* Estimate the number of suspended processes we can fit */
5651 average_resident_pages
= memorystatus_suspended_footprint_total
/ memorystatus_suspended_count
;
5652 estimated_processes
= memorystatus_suspended_count
+
5653 ((memorystatus_available_pages
- memorystatus_available_pages_critical
) / average_resident_pages
);
5655 /* If it's predicted that no freeze will occur, lower the threshold temporarily */
5656 if (estimated_processes
<= FREEZE_SUSPENDED_THRESHOLD_DEFAULT
) {
5657 memorystatus_freeze_suspended_threshold
= FREEZE_SUSPENDED_THRESHOLD_LOW
;
5659 memorystatus_freeze_suspended_threshold
= FREEZE_SUSPENDED_THRESHOLD_DEFAULT
;
5662 MEMORYSTATUS_DEBUG(1, "memorystatus_can_freeze_processes: %d suspended processes, %d average resident pages / process, %d suspended processes estimated\n",
5663 memorystatus_suspended_count
, average_resident_pages
, estimated_processes
);
5665 if ((memorystatus_suspended_count
- memorystatus_frozen_count
) > memorystatus_freeze_suspended_threshold
) {
5680 memorystatus_can_freeze(boolean_t
*memorystatus_freeze_swap_low
)
5682 boolean_t can_freeze
= TRUE
;
5684 /* Only freeze if we're sufficiently low on memory; this holds off freeze right
5685 after boot, and is generally is a no-op once we've reached steady state. */
5686 if (memorystatus_available_pages
> memorystatus_freeze_threshold
) {
5690 /* Check minimum suspended process threshold. */
5691 if (!memorystatus_can_freeze_processes()) {
5694 assert(VM_CONFIG_COMPRESSOR_IS_PRESENT
);
5696 if ( !VM_CONFIG_FREEZER_SWAP_IS_ACTIVE
) {
5698 * In-core compressor used for freezing WITHOUT on-disk swap support.
5700 if (vm_compressor_low_on_space()) {
5701 if (*memorystatus_freeze_swap_low
) {
5702 *memorystatus_freeze_swap_low
= TRUE
;
5708 if (*memorystatus_freeze_swap_low
) {
5709 *memorystatus_freeze_swap_low
= FALSE
;
5716 * Freezing WITH on-disk swap support.
5718 * In-core compressor fronts the swap.
5720 if (vm_swap_low_on_space()) {
5721 if (*memorystatus_freeze_swap_low
) {
5722 *memorystatus_freeze_swap_low
= TRUE
;
5734 memorystatus_freeze_update_throttle_interval(mach_timespec_t
*ts
, struct throttle_interval_t
*interval
)
5736 unsigned int freeze_daily_pageouts_max
= memorystatus_freeze_daily_mb_max
* (1024 * 1024 / PAGE_SIZE
);
5737 if (CMP_MACH_TIMESPEC(ts
, &interval
->ts
) >= 0) {
5738 if (!interval
->max_pageouts
) {
5739 interval
->max_pageouts
= (interval
->burst_multiple
* (((uint64_t)interval
->mins
* freeze_daily_pageouts_max
) / (24 * 60)));
5741 printf("memorystatus_freeze_update_throttle_interval: %d minute throttle timeout, resetting\n", interval
->mins
);
5743 interval
->ts
.tv_sec
= interval
->mins
* 60;
5744 interval
->ts
.tv_nsec
= 0;
5745 ADD_MACH_TIMESPEC(&interval
->ts
, ts
);
5746 /* Since we update the throttle stats pre-freeze, adjust for overshoot here */
5747 if (interval
->pageouts
> interval
->max_pageouts
) {
5748 interval
->pageouts
-= interval
->max_pageouts
;
5750 interval
->pageouts
= 0;
5752 interval
->throttle
= FALSE
;
5753 } else if (!interval
->throttle
&& interval
->pageouts
>= interval
->max_pageouts
) {
5754 printf("memorystatus_freeze_update_throttle_interval: %d minute pageout limit exceeded; enabling throttle\n", interval
->mins
);
5755 interval
->throttle
= TRUE
;
5758 MEMORYSTATUS_DEBUG(1, "memorystatus_freeze_update_throttle_interval: throttle updated - %d frozen (%d max) within %dm; %dm remaining; throttle %s\n",
5759 interval
->pageouts
, interval
->max_pageouts
, interval
->mins
, (interval
->ts
.tv_sec
- ts
->tv_sec
) / 60,
5760 interval
->throttle
? "on" : "off");
5764 memorystatus_freeze_update_throttle(void)
5770 boolean_t throttled
= FALSE
;
5772 #if DEVELOPMENT || DEBUG
5773 if (!memorystatus_freeze_throttle_enabled
)
5777 clock_get_system_nanotime(&sec
, &nsec
);
5781 /* Check freeze pageouts over multiple intervals and throttle if we've exceeded our budget.
5783 * This ensures that periods of inactivity can't be used as 'credit' towards freeze if the device has
5784 * remained dormant for a long period. We do, however, allow increased thresholds for shorter intervals in
5785 * order to allow for bursts of activity.
5787 for (i
= 0; i
< sizeof(throttle_intervals
) / sizeof(struct throttle_interval_t
); i
++) {
5788 memorystatus_freeze_update_throttle_interval(&ts
, &throttle_intervals
[i
]);
5789 if (throttle_intervals
[i
].throttle
== TRUE
)
5797 memorystatus_freeze_thread(void *param __unused
, wait_result_t wr __unused
)
5799 static boolean_t memorystatus_freeze_swap_low
= FALSE
;
5801 lck_mtx_lock(&freezer_mutex
);
5802 if (memorystatus_freeze_enabled
) {
5803 if (memorystatus_can_freeze(&memorystatus_freeze_swap_low
)) {
5804 /* Only freeze if we've not exceeded our pageout budgets.*/
5805 if (!memorystatus_freeze_update_throttle()) {
5806 memorystatus_freeze_top_process(&memorystatus_freeze_swap_low
);
5808 printf("memorystatus_freeze_thread: in throttle, ignoring freeze\n");
5809 memorystatus_freeze_throttle_count
++; /* Throttled, update stats */
5813 lck_mtx_unlock(&freezer_mutex
);
5815 assert_wait((event_t
) &memorystatus_freeze_wakeup
, THREAD_UNINT
);
5816 thread_block((thread_continue_t
) memorystatus_freeze_thread
);
5819 #endif /* CONFIG_FREEZE */
5821 #if VM_PRESSURE_EVENTS
5823 #if CONFIG_MEMORYSTATUS
5826 memorystatus_send_note(int event_code
, void *data
, size_t data_length
) {
5828 struct kev_msg ev_msg
;
5830 ev_msg
.vendor_code
= KEV_VENDOR_APPLE
;
5831 ev_msg
.kev_class
= KEV_SYSTEM_CLASS
;
5832 ev_msg
.kev_subclass
= KEV_MEMORYSTATUS_SUBCLASS
;
5834 ev_msg
.event_code
= event_code
;
5836 ev_msg
.dv
[0].data_length
= data_length
;
5837 ev_msg
.dv
[0].data_ptr
= data
;
5838 ev_msg
.dv
[1].data_length
= 0;
5840 ret
= kev_post_msg(&ev_msg
);
5842 printf("%s: kev_post_msg() failed, err %d\n", __func__
, ret
);
5849 memorystatus_warn_process(pid_t pid
, boolean_t limit_exceeded
) {
5851 boolean_t ret
= FALSE
;
5852 boolean_t found_knote
= FALSE
;
5853 struct knote
*kn
= NULL
;
5856 * See comment in sysctl_memorystatus_vm_pressure_send.
5859 memorystatus_klist_lock();
5861 SLIST_FOREACH(kn
, &memorystatus_klist
, kn_selnext
) {
5862 proc_t knote_proc
= knote_get_kq(kn
)->kq_p
;
5863 pid_t knote_pid
= knote_proc
->p_pid
;
5865 if (knote_pid
== pid
) {
5867 * By setting the "fflags" here, we are forcing
5868 * a process to deal with the case where it's
5869 * bumping up into its memory limits. If we don't
5870 * do this here, we will end up depending on the
5871 * system pressure snapshot evaluation in
5872 * filt_memorystatus().
5875 if (!limit_exceeded
) {
5878 * Processes on desktop are not expecting to handle a system-wide
5879 * critical or system-wide warning notification from this path.
5880 * Intentionally set only the unambiguous limit warning here.
5883 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_WARN
) {
5884 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN
;
5890 * Send this notification when a process has exceeded a soft limit.
5892 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL
) {
5893 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL
;
5901 KNOTE(&memorystatus_klist
, 0);
5905 memorystatus_klist_unlock();
5911 * Can only be set by the current task on itself.
5914 memorystatus_low_mem_privileged_listener(uint32_t op_flags
)
5916 boolean_t set_privilege
= FALSE
;
5918 * Need an entitlement check here?
5920 if (op_flags
== MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_ENABLE
) {
5921 set_privilege
= TRUE
;
5922 } else if (op_flags
== MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_DISABLE
) {
5923 set_privilege
= FALSE
;
5928 return (task_low_mem_privileged_listener(current_task(), set_privilege
, NULL
));
5932 memorystatus_send_pressure_note(pid_t pid
) {
5933 MEMORYSTATUS_DEBUG(1, "memorystatus_send_pressure_note(): pid %d\n", pid
);
5934 return memorystatus_send_note(kMemorystatusPressureNote
, &pid
, sizeof(pid
));
5938 memorystatus_send_low_swap_note(void) {
5940 struct knote
*kn
= NULL
;
5942 memorystatus_klist_lock();
5943 SLIST_FOREACH(kn
, &memorystatus_klist
, kn_selnext
) {
5944 /* We call is_knote_registered_modify_task_pressure_bits to check if the sfflags for the
5945 * current note contain NOTE_MEMORYSTATUS_LOW_SWAP. Once we find one note in the memorystatus_klist
5946 * that has the NOTE_MEMORYSTATUS_LOW_SWAP flags in its sfflags set, we call KNOTE with
5947 * kMemoryStatusLowSwap as the hint to process and update all knotes on the memorystatus_klist accordingly. */
5948 if (is_knote_registered_modify_task_pressure_bits(kn
, NOTE_MEMORYSTATUS_LOW_SWAP
, NULL
, 0, 0) == TRUE
) {
5949 KNOTE(&memorystatus_klist
, kMemorystatusLowSwap
);
5954 memorystatus_klist_unlock();
5958 memorystatus_bg_pressure_eligible(proc_t p
) {
5959 boolean_t eligible
= FALSE
;
5963 MEMORYSTATUS_DEBUG(1, "memorystatus_bg_pressure_eligible: pid %d, state 0x%x\n", p
->p_pid
, p
->p_memstat_state
);
5965 /* Foreground processes have already been dealt with at this point, so just test for eligibility */
5966 if (!(p
->p_memstat_state
& (P_MEMSTAT_TERMINATED
| P_MEMSTAT_LOCKED
| P_MEMSTAT_SUSPENDED
| P_MEMSTAT_FROZEN
))) {
5976 memorystatus_is_foreground_locked(proc_t p
) {
5977 return ((p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_FOREGROUND
) ||
5978 (p
->p_memstat_effectivepriority
== JETSAM_PRIORITY_FOREGROUND_SUPPORT
));
5982 * This is meant for stackshot and kperf -- it does not take the proc_list_lock
5983 * to access the p_memstat_dirty field.
5986 memorystatus_proc_is_dirty_unsafe(void *v
)
5991 proc_t p
= (proc_t
)v
;
5992 return (p
->p_memstat_dirty
& P_DIRTY_IS_DIRTY
) != 0;
5995 #endif /* CONFIG_MEMORYSTATUS */
5998 * Trigger levels to test the mechanism.
5999 * Can be used via a sysctl.
6001 #define TEST_LOW_MEMORY_TRIGGER_ONE 1
6002 #define TEST_LOW_MEMORY_TRIGGER_ALL 2
6003 #define TEST_PURGEABLE_TRIGGER_ONE 3
6004 #define TEST_PURGEABLE_TRIGGER_ALL 4
6005 #define TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE 5
6006 #define TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL 6
6008 boolean_t memorystatus_manual_testing_on
= FALSE
;
6009 vm_pressure_level_t memorystatus_manual_testing_level
= kVMPressureNormal
;
6011 extern struct knote
*
6012 vm_pressure_select_optimal_candidate_to_notify(struct klist
*, int, boolean_t
);
6015 * This value is the threshold that a process must meet to be considered for scavenging.
6017 #define VM_PRESSURE_MINIMUM_RSIZE 10 /* MB */
6019 #define VM_PRESSURE_NOTIFY_WAIT_PERIOD 10000 /* milliseconds */
6022 #define VM_PRESSURE_DEBUG(cond, format, ...) \
6024 if (cond) { printf(format, ##__VA_ARGS__); } \
6027 #define VM_PRESSURE_DEBUG(cond, format, ...)
6030 #define INTER_NOTIFICATION_DELAY (250000) /* .25 second */
6032 void memorystatus_on_pageout_scan_end(void) {
6039 * knote_pressure_level - to check if the knote is registered for this notification level.
6041 * task - task whose bits we'll be modifying
6043 * pressure_level_to_clear - if the task has been notified of this past level, clear that notification bit so that if/when we revert to that level, the task will be notified again.
6045 * pressure_level_to_set - the task is about to be notified of this new level. Update the task's bit notification information appropriately.
6050 is_knote_registered_modify_task_pressure_bits(struct knote
*kn_max
, int knote_pressure_level
, task_t task
, vm_pressure_level_t pressure_level_to_clear
, vm_pressure_level_t pressure_level_to_set
)
6052 if (kn_max
->kn_sfflags
& knote_pressure_level
) {
6054 if (pressure_level_to_clear
&& task_has_been_notified(task
, pressure_level_to_clear
) == TRUE
) {
6056 task_clear_has_been_notified(task
, pressure_level_to_clear
);
6059 task_mark_has_been_notified(task
, pressure_level_to_set
);
6067 memorystatus_klist_reset_all_for_level(vm_pressure_level_t pressure_level_to_clear
)
6069 struct knote
*kn
= NULL
;
6071 memorystatus_klist_lock();
6072 SLIST_FOREACH(kn
, &memorystatus_klist
, kn_selnext
) {
6074 proc_t p
= PROC_NULL
;
6075 struct task
* t
= TASK_NULL
;
6077 p
= knote_get_kq(kn
)->kq_p
;
6079 if (p
!= proc_ref_locked(p
)) {
6086 t
= (struct task
*)(p
->task
);
6088 task_clear_has_been_notified(t
, pressure_level_to_clear
);
6093 memorystatus_klist_unlock();
6096 extern kern_return_t
vm_pressure_notify_dispatch_vm_clients(boolean_t target_foreground_process
);
6099 vm_pressure_select_optimal_candidate_to_notify(struct klist
*candidate_list
, int level
, boolean_t target_foreground_process
);
6102 * Used by the vm_pressure_thread which is
6103 * signalled from within vm_pageout_scan().
6105 static void vm_dispatch_memory_pressure(void);
6106 void consider_vm_pressure_events(void);
6108 void consider_vm_pressure_events(void)
6110 vm_dispatch_memory_pressure();
6112 static void vm_dispatch_memory_pressure(void)
6114 memorystatus_update_vm_pressure(FALSE
);
6117 extern vm_pressure_level_t
6118 convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t
);
6121 vm_pressure_select_optimal_candidate_to_notify(struct klist
*candidate_list
, int level
, boolean_t target_foreground_process
)
6123 struct knote
*kn
= NULL
, *kn_max
= NULL
;
6124 uint64_t resident_max
= 0; /* MB */
6125 struct timeval curr_tstamp
= {0, 0};
6126 int elapsed_msecs
= 0;
6127 int selected_task_importance
= 0;
6128 static int pressure_snapshot
= -1;
6129 boolean_t pressure_increase
= FALSE
;
6131 if (pressure_snapshot
== -1) {
6135 pressure_snapshot
= level
;
6136 pressure_increase
= TRUE
;
6139 if (level
>= pressure_snapshot
) {
6140 pressure_increase
= TRUE
;
6142 pressure_increase
= FALSE
;
6145 pressure_snapshot
= level
;
6148 if (pressure_increase
== TRUE
) {
6150 * We'll start by considering the largest
6151 * unimportant task in our list.
6153 selected_task_importance
= INT_MAX
;
6156 * We'll start by considering the largest
6157 * important task in our list.
6159 selected_task_importance
= 0;
6162 microuptime(&curr_tstamp
);
6164 SLIST_FOREACH(kn
, candidate_list
, kn_selnext
) {
6166 uint64_t resident_size
= 0; /* MB */
6167 proc_t p
= PROC_NULL
;
6168 struct task
* t
= TASK_NULL
;
6169 int curr_task_importance
= 0;
6170 boolean_t consider_knote
= FALSE
;
6171 boolean_t privileged_listener
= FALSE
;
6173 p
= knote_get_kq(kn
)->kq_p
;
6175 if (p
!= proc_ref_locked(p
)) {
6182 #if CONFIG_MEMORYSTATUS
6183 if (target_foreground_process
== TRUE
&& !memorystatus_is_foreground_locked(p
)) {
6185 * Skip process not marked foreground.
6190 #endif /* CONFIG_MEMORYSTATUS */
6192 t
= (struct task
*)(p
->task
);
6194 timevalsub(&curr_tstamp
, &p
->vm_pressure_last_notify_tstamp
);
6195 elapsed_msecs
= curr_tstamp
.tv_sec
* 1000 + curr_tstamp
.tv_usec
/ 1000;
6197 vm_pressure_level_t dispatch_level
= convert_internal_pressure_level_to_dispatch_level(level
);
6199 if ((kn
->kn_sfflags
& dispatch_level
) == 0) {
6204 #if CONFIG_MEMORYSTATUS
6205 if (target_foreground_process
== FALSE
&& !memorystatus_bg_pressure_eligible(p
)) {
6206 VM_PRESSURE_DEBUG(1, "[vm_pressure] skipping process %d\n", p
->p_pid
);
6210 #endif /* CONFIG_MEMORYSTATUS */
6212 curr_task_importance
= task_importance_estimate(t
);
6215 * Privileged listeners are only considered in the multi-level pressure scheme
6216 * AND only if the pressure is increasing.
6220 if (task_has_been_notified(t
, level
) == FALSE
) {
6223 * Is this a privileged listener?
6225 if (task_low_mem_privileged_listener(t
, FALSE
, &privileged_listener
) == 0) {
6227 if (privileged_listener
) {
6237 } else if (level
== 0) {
6240 * Task wasn't notified when the pressure was increasing and so
6241 * no need to notify it that the pressure is decreasing.
6243 if ((task_has_been_notified(t
, kVMPressureWarning
) == FALSE
) && (task_has_been_notified(t
, kVMPressureCritical
) == FALSE
)) {
6250 * We don't want a small process to block large processes from
6251 * being notified again. <rdar://problem/7955532>
6253 resident_size
= (get_task_phys_footprint(t
))/(1024*1024ULL); /* MB */
6255 if (resident_size
>= VM_PRESSURE_MINIMUM_RSIZE
) {
6259 * Warning or Critical Pressure.
6261 if (pressure_increase
) {
6262 if ((curr_task_importance
< selected_task_importance
) ||
6263 ((curr_task_importance
== selected_task_importance
) && (resident_size
> resident_max
))) {
6266 * We have found a candidate process which is:
6267 * a) at a lower importance than the current selected process
6269 * b) has importance equal to that of the current selected process but is larger
6272 consider_knote
= TRUE
;
6275 if ((curr_task_importance
> selected_task_importance
) ||
6276 ((curr_task_importance
== selected_task_importance
) && (resident_size
> resident_max
))) {
6279 * We have found a candidate process which is:
6280 * a) at a higher importance than the current selected process
6282 * b) has importance equal to that of the current selected process but is larger
6285 consider_knote
= TRUE
;
6288 } else if (level
== 0) {
6290 * Pressure back to normal.
6292 if ((curr_task_importance
> selected_task_importance
) ||
6293 ((curr_task_importance
== selected_task_importance
) && (resident_size
> resident_max
))) {
6295 consider_knote
= TRUE
;
6299 if (consider_knote
) {
6300 resident_max
= resident_size
;
6302 selected_task_importance
= curr_task_importance
;
6303 consider_knote
= FALSE
; /* reset for the next candidate */
6306 /* There was no candidate with enough resident memory to scavenge */
6307 VM_PRESSURE_DEBUG(0, "[vm_pressure] threshold failed for pid %d with %llu resident...\n", p
->p_pid
, resident_size
);
6314 VM_DEBUG_CONSTANT_EVENT(vm_pressure_event
, VM_PRESSURE_EVENT
, DBG_FUNC_NONE
, knote_get_kq(kn_max
)->kq_p
->p_pid
, resident_max
, 0, 0);
6315 VM_PRESSURE_DEBUG(1, "[vm_pressure] sending event to pid %d with %llu resident\n", knote_get_kq(kn_max
)->kq_p
->p_pid
, resident_max
);
6321 #define VM_PRESSURE_DECREASED_SMOOTHING_PERIOD 5000 /* milliseconds */
6322 #define WARNING_NOTIFICATION_RESTING_PERIOD 25 /* seconds */
6323 #define CRITICAL_NOTIFICATION_RESTING_PERIOD 25 /* seconds */
6325 uint64_t next_warning_notification_sent_at_ts
= 0;
6326 uint64_t next_critical_notification_sent_at_ts
= 0;
6329 memorystatus_update_vm_pressure(boolean_t target_foreground_process
)
6331 struct knote
*kn_max
= NULL
;
6332 struct knote
*kn_cur
= NULL
, *kn_temp
= NULL
; /* for safe list traversal */
6333 pid_t target_pid
= -1;
6334 struct klist dispatch_klist
= { NULL
};
6335 proc_t target_proc
= PROC_NULL
;
6336 struct task
*task
= NULL
;
6337 boolean_t found_candidate
= FALSE
;
6339 static vm_pressure_level_t level_snapshot
= kVMPressureNormal
;
6340 static vm_pressure_level_t prev_level_snapshot
= kVMPressureNormal
;
6341 boolean_t smoothing_window_started
= FALSE
;
6342 struct timeval smoothing_window_start_tstamp
= {0, 0};
6343 struct timeval curr_tstamp
= {0, 0};
6344 int elapsed_msecs
= 0;
6345 uint64_t curr_ts
= mach_absolute_time();
6348 #define MAX_IDLE_KILLS 100 /* limit the number of idle kills allowed */
6350 int idle_kill_counter
= 0;
6353 * On desktop we take this opportunity to free up memory pressure
6354 * by immediately killing idle exitable processes. We use a delay
6355 * to avoid overkill. And we impose a max counter as a fail safe
6356 * in case daemons re-launch too fast.
6358 while ((memorystatus_vm_pressure_level
!= kVMPressureNormal
) && (idle_kill_counter
< MAX_IDLE_KILLS
)) {
6359 if (memorystatus_idle_exit_from_VM() == FALSE
) {
6360 /* No idle exitable processes left to kill */
6363 idle_kill_counter
++;
6365 if (memorystatus_manual_testing_on
== TRUE
) {
6367 * Skip the delay when testing
6368 * the pressure notification scheme.
6371 delay(1000000); /* 1 second */
6374 #endif /* !CONFIG_JETSAM */
6376 if (level_snapshot
!= kVMPressureNormal
) {
6379 * Check to see if we are still in the 'resting' period
6380 * after having notified all clients interested in
6381 * a particular pressure level.
6384 level_snapshot
= memorystatus_vm_pressure_level
;
6386 if (level_snapshot
== kVMPressureWarning
|| level_snapshot
== kVMPressureUrgent
) {
6388 if (curr_ts
< next_warning_notification_sent_at_ts
) {
6389 delay(INTER_NOTIFICATION_DELAY
* 4 /* 1 sec */);
6390 return KERN_SUCCESS
;
6392 } else if (level_snapshot
== kVMPressureCritical
) {
6394 if (curr_ts
< next_critical_notification_sent_at_ts
) {
6395 delay(INTER_NOTIFICATION_DELAY
* 4 /* 1 sec */);
6396 return KERN_SUCCESS
;
6404 * There is a race window here. But it's not clear
6405 * how much we benefit from having extra synchronization.
6407 level_snapshot
= memorystatus_vm_pressure_level
;
6409 if (prev_level_snapshot
> level_snapshot
) {
6411 * Pressure decreased? Let's take a little breather
6412 * and see if this condition stays.
6414 if (smoothing_window_started
== FALSE
) {
6416 smoothing_window_started
= TRUE
;
6417 microuptime(&smoothing_window_start_tstamp
);
6420 microuptime(&curr_tstamp
);
6421 timevalsub(&curr_tstamp
, &smoothing_window_start_tstamp
);
6422 elapsed_msecs
= curr_tstamp
.tv_sec
* 1000 + curr_tstamp
.tv_usec
/ 1000;
6424 if (elapsed_msecs
< VM_PRESSURE_DECREASED_SMOOTHING_PERIOD
) {
6426 delay(INTER_NOTIFICATION_DELAY
);
6431 prev_level_snapshot
= level_snapshot
;
6432 smoothing_window_started
= FALSE
;
6434 memorystatus_klist_lock();
6435 kn_max
= vm_pressure_select_optimal_candidate_to_notify(&memorystatus_klist
, level_snapshot
, target_foreground_process
);
6437 if (kn_max
== NULL
) {
6438 memorystatus_klist_unlock();
6441 * No more level-based clients to notify.
6443 * Start the 'resting' window within which clients will not be re-notified.
6446 if (level_snapshot
!= kVMPressureNormal
) {
6447 if (level_snapshot
== kVMPressureWarning
|| level_snapshot
== kVMPressureUrgent
) {
6448 nanoseconds_to_absolutetime(WARNING_NOTIFICATION_RESTING_PERIOD
* NSEC_PER_SEC
, &curr_ts
);
6449 next_warning_notification_sent_at_ts
= mach_absolute_time() + curr_ts
;
6451 memorystatus_klist_reset_all_for_level(kVMPressureWarning
);
6454 if (level_snapshot
== kVMPressureCritical
) {
6455 nanoseconds_to_absolutetime(CRITICAL_NOTIFICATION_RESTING_PERIOD
* NSEC_PER_SEC
, &curr_ts
);
6456 next_critical_notification_sent_at_ts
= mach_absolute_time() + curr_ts
;
6458 memorystatus_klist_reset_all_for_level(kVMPressureCritical
);
6461 return KERN_FAILURE
;
6464 target_proc
= knote_get_kq(kn_max
)->kq_p
;
6467 if (target_proc
!= proc_ref_locked(target_proc
)) {
6468 target_proc
= PROC_NULL
;
6470 memorystatus_klist_unlock();
6475 target_pid
= target_proc
->p_pid
;
6477 task
= (struct task
*)(target_proc
->task
);
6479 if (level_snapshot
!= kVMPressureNormal
) {
6481 if (level_snapshot
== kVMPressureWarning
|| level_snapshot
== kVMPressureUrgent
) {
6483 if (is_knote_registered_modify_task_pressure_bits(kn_max
, NOTE_MEMORYSTATUS_PRESSURE_WARN
, task
, 0, kVMPressureWarning
) == TRUE
) {
6484 found_candidate
= TRUE
;
6487 if (level_snapshot
== kVMPressureCritical
) {
6489 if (is_knote_registered_modify_task_pressure_bits(kn_max
, NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
, task
, 0, kVMPressureCritical
) == TRUE
) {
6490 found_candidate
= TRUE
;
6495 if (kn_max
->kn_sfflags
& NOTE_MEMORYSTATUS_PRESSURE_NORMAL
) {
6497 task_clear_has_been_notified(task
, kVMPressureWarning
);
6498 task_clear_has_been_notified(task
, kVMPressureCritical
);
6500 found_candidate
= TRUE
;
6504 if (found_candidate
== FALSE
) {
6505 proc_rele(target_proc
);
6506 memorystatus_klist_unlock();
6510 SLIST_FOREACH_SAFE(kn_cur
, &memorystatus_klist
, kn_selnext
, kn_temp
) {
6512 int knote_pressure_level
= convert_internal_pressure_level_to_dispatch_level(level_snapshot
);
6514 if (is_knote_registered_modify_task_pressure_bits(kn_cur
, knote_pressure_level
, task
, 0, level_snapshot
) == TRUE
) {
6515 proc_t knote_proc
= knote_get_kq(kn_cur
)->kq_p
;
6516 pid_t knote_pid
= knote_proc
->p_pid
;
6517 if (knote_pid
== target_pid
) {
6518 KNOTE_DETACH(&memorystatus_klist
, kn_cur
);
6519 KNOTE_ATTACH(&dispatch_klist
, kn_cur
);
6524 KNOTE(&dispatch_klist
, (level_snapshot
!= kVMPressureNormal
) ? kMemorystatusPressure
: kMemorystatusNoPressure
);
6526 SLIST_FOREACH_SAFE(kn_cur
, &dispatch_klist
, kn_selnext
, kn_temp
) {
6527 KNOTE_DETACH(&dispatch_klist
, kn_cur
);
6528 KNOTE_ATTACH(&memorystatus_klist
, kn_cur
);
6531 memorystatus_klist_unlock();
6533 microuptime(&target_proc
->vm_pressure_last_notify_tstamp
);
6534 proc_rele(target_proc
);
6536 if (memorystatus_manual_testing_on
== TRUE
&& target_foreground_process
== TRUE
) {
6540 if (memorystatus_manual_testing_on
== TRUE
) {
6542 * Testing out the pressure notification scheme.
6543 * No need for delays etc.
6547 uint32_t sleep_interval
= INTER_NOTIFICATION_DELAY
;
6549 unsigned int page_delta
= 0;
6550 unsigned int skip_delay_page_threshold
= 0;
6552 assert(memorystatus_available_pages_pressure
>= memorystatus_available_pages_critical_base
);
6554 page_delta
= (memorystatus_available_pages_pressure
- memorystatus_available_pages_critical_base
) / 2;
6555 skip_delay_page_threshold
= memorystatus_available_pages_pressure
- page_delta
;
6557 if (memorystatus_available_pages
<= skip_delay_page_threshold
) {
6559 * We are nearing the critcal mark fast and can't afford to wait between
6564 #endif /* CONFIG_JETSAM */
6566 if (sleep_interval
) {
6567 delay(sleep_interval
);
6572 return KERN_SUCCESS
;
6576 convert_internal_pressure_level_to_dispatch_level(vm_pressure_level_t internal_pressure_level
)
6578 vm_pressure_level_t dispatch_level
= NOTE_MEMORYSTATUS_PRESSURE_NORMAL
;
6580 switch (internal_pressure_level
) {
6582 case kVMPressureNormal
:
6584 dispatch_level
= NOTE_MEMORYSTATUS_PRESSURE_NORMAL
;
6588 case kVMPressureWarning
:
6589 case kVMPressureUrgent
:
6591 dispatch_level
= NOTE_MEMORYSTATUS_PRESSURE_WARN
;
6595 case kVMPressureCritical
:
6597 dispatch_level
= NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
;
6605 return dispatch_level
;
6609 sysctl_memorystatus_vm_pressure_level SYSCTL_HANDLER_ARGS
6611 #pragma unused(arg1, arg2, oidp)
6612 vm_pressure_level_t dispatch_level
= convert_internal_pressure_level_to_dispatch_level(memorystatus_vm_pressure_level
);
6614 return SYSCTL_OUT(req
, &dispatch_level
, sizeof(dispatch_level
));
6617 #if DEBUG || DEVELOPMENT
6619 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_vm_pressure_level
, CTLTYPE_INT
|CTLFLAG_RD
|CTLFLAG_LOCKED
,
6620 0, 0, &sysctl_memorystatus_vm_pressure_level
, "I", "");
6622 #else /* DEBUG || DEVELOPMENT */
6624 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_vm_pressure_level
, CTLTYPE_INT
|CTLFLAG_RD
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
,
6625 0, 0, &sysctl_memorystatus_vm_pressure_level
, "I", "");
6627 #endif /* DEBUG || DEVELOPMENT */
6629 extern int memorystatus_purge_on_warning
;
6630 extern int memorystatus_purge_on_critical
;
6633 sysctl_memorypressure_manual_trigger SYSCTL_HANDLER_ARGS
6635 #pragma unused(arg1, arg2)
6639 int pressure_level
= 0;
6640 int trigger_request
= 0;
6643 error
= sysctl_handle_int(oidp
, &level
, 0, req
);
6644 if (error
|| !req
->newptr
) {
6648 memorystatus_manual_testing_on
= TRUE
;
6650 trigger_request
= (level
>> 16) & 0xFFFF;
6651 pressure_level
= (level
& 0xFFFF);
6653 if (trigger_request
< TEST_LOW_MEMORY_TRIGGER_ONE
||
6654 trigger_request
> TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL
) {
6657 switch (pressure_level
) {
6658 case NOTE_MEMORYSTATUS_PRESSURE_NORMAL
:
6659 case NOTE_MEMORYSTATUS_PRESSURE_WARN
:
6660 case NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
:
6667 * The pressure level is being set from user-space.
6668 * And user-space uses the constants in sys/event.h
6669 * So we translate those events to our internal levels here.
6671 if (pressure_level
== NOTE_MEMORYSTATUS_PRESSURE_NORMAL
) {
6673 memorystatus_manual_testing_level
= kVMPressureNormal
;
6676 } else if (pressure_level
== NOTE_MEMORYSTATUS_PRESSURE_WARN
) {
6678 memorystatus_manual_testing_level
= kVMPressureWarning
;
6679 force_purge
= memorystatus_purge_on_warning
;
6681 } else if (pressure_level
== NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
) {
6683 memorystatus_manual_testing_level
= kVMPressureCritical
;
6684 force_purge
= memorystatus_purge_on_critical
;
6687 memorystatus_vm_pressure_level
= memorystatus_manual_testing_level
;
6689 /* purge according to the new pressure level */
6690 switch (trigger_request
) {
6691 case TEST_PURGEABLE_TRIGGER_ONE
:
6692 case TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE
:
6693 if (force_purge
== 0) {
6694 /* no purging requested */
6697 vm_purgeable_object_purge_one_unlocked(force_purge
);
6699 case TEST_PURGEABLE_TRIGGER_ALL
:
6700 case TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL
:
6701 if (force_purge
== 0) {
6702 /* no purging requested */
6705 while (vm_purgeable_object_purge_one_unlocked(force_purge
));
6709 if ((trigger_request
== TEST_LOW_MEMORY_TRIGGER_ONE
) ||
6710 (trigger_request
== TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ONE
)) {
6712 memorystatus_update_vm_pressure(TRUE
);
6715 if ((trigger_request
== TEST_LOW_MEMORY_TRIGGER_ALL
) ||
6716 (trigger_request
== TEST_LOW_MEMORY_PURGEABLE_TRIGGER_ALL
)) {
6718 while (memorystatus_update_vm_pressure(FALSE
) == KERN_SUCCESS
) {
6723 if (pressure_level
== NOTE_MEMORYSTATUS_PRESSURE_NORMAL
) {
6724 memorystatus_manual_testing_on
= FALSE
;
6730 SYSCTL_PROC(_kern
, OID_AUTO
, memorypressure_manual_trigger
, CTLTYPE_INT
|CTLFLAG_WR
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
,
6731 0, 0, &sysctl_memorypressure_manual_trigger
, "I", "");
6734 extern int memorystatus_purge_on_warning
;
6735 extern int memorystatus_purge_on_urgent
;
6736 extern int memorystatus_purge_on_critical
;
6738 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_purge_on_warning
, CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_purge_on_warning
, 0, "");
6739 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_purge_on_urgent
, CTLTYPE_INT
|CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_purge_on_urgent
, 0, "");
6740 SYSCTL_INT(_kern
, OID_AUTO
, memorystatus_purge_on_critical
, CTLTYPE_INT
|CTLFLAG_RW
|CTLFLAG_LOCKED
, &memorystatus_purge_on_critical
, 0, "");
6743 #endif /* VM_PRESSURE_EVENTS */
6745 /* Return both allocated and actual size, since there's a race between allocation and list compilation */
6747 memorystatus_get_priority_list(memorystatus_priority_entry_t
**list_ptr
, size_t *buffer_size
, size_t *list_size
, boolean_t size_only
)
6749 uint32_t list_count
, i
= 0;
6750 memorystatus_priority_entry_t
*list_entry
;
6753 list_count
= memorystatus_list_count
;
6754 *list_size
= sizeof(memorystatus_priority_entry_t
) * list_count
;
6756 /* Just a size check? */
6761 /* Otherwise, validate the size of the buffer */
6762 if (*buffer_size
< *list_size
) {
6766 *list_ptr
= (memorystatus_priority_entry_t
*)kalloc(*list_size
);
6771 memset(*list_ptr
, 0, *list_size
);
6773 *buffer_size
= *list_size
;
6776 list_entry
= *list_ptr
;
6780 p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6781 while (p
&& (*list_size
< *buffer_size
)) {
6782 list_entry
->pid
= p
->p_pid
;
6783 list_entry
->priority
= p
->p_memstat_effectivepriority
;
6784 list_entry
->user_data
= p
->p_memstat_userdata
;
6787 * No need to consider P_MEMSTAT_MEMLIMIT_BACKGROUND anymore.
6788 * Background limits are described via the inactive limit slots.
6789 * So, here, the cached limit should always be valid.
6792 if (p
->p_memstat_memlimit
<= 0) {
6793 task_get_phys_footprint_limit(p
->task
, &list_entry
->limit
);
6795 list_entry
->limit
= p
->p_memstat_memlimit
;
6798 list_entry
->state
= memorystatus_build_state(p
);
6801 *list_size
+= sizeof(memorystatus_priority_entry_t
);
6803 p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
6808 MEMORYSTATUS_DEBUG(1, "memorystatus_get_priority_list: returning %lu for size\n", (unsigned long)*list_size
);
6814 memorystatus_cmd_get_priority_list(user_addr_t buffer
, size_t buffer_size
, int32_t *retval
) {
6816 boolean_t size_only
;
6817 memorystatus_priority_entry_t
*list
= NULL
;
6820 size_only
= ((buffer
== USER_ADDR_NULL
) ? TRUE
: FALSE
);
6822 error
= memorystatus_get_priority_list(&list
, &buffer_size
, &list_size
, size_only
);
6828 error
= copyout(list
, buffer
, list_size
);
6832 *retval
= list_size
;
6837 kfree(list
, buffer_size
);
6846 memorystatus_clear_errors(void)
6851 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CLEAR_ERRORS
) | DBG_FUNC_START
, 0, 0, 0, 0, 0);
6855 p
= memorystatus_get_first_proc_locked(&i
, TRUE
);
6857 if (p
->p_memstat_state
& P_MEMSTAT_ERROR
) {
6858 p
->p_memstat_state
&= ~P_MEMSTAT_ERROR
;
6860 p
= memorystatus_get_next_proc_locked(&i
, p
, TRUE
);
6865 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_CLEAR_ERRORS
) | DBG_FUNC_END
, 0, 0, 0, 0, 0);
6869 memorystatus_update_levels_locked(boolean_t critical_only
) {
6871 memorystatus_available_pages_critical
= memorystatus_available_pages_critical_base
;
6874 * If there's an entry in the first bucket, we have idle processes.
6877 memstat_bucket_t
*first_bucket
= &memstat_bucket
[JETSAM_PRIORITY_IDLE
];
6878 if (first_bucket
->count
) {
6879 memorystatus_available_pages_critical
+= memorystatus_available_pages_critical_idle_offset
;
6881 if (memorystatus_available_pages_critical
> memorystatus_available_pages_pressure
) {
6883 * The critical threshold must never exceed the pressure threshold
6885 memorystatus_available_pages_critical
= memorystatus_available_pages_pressure
;
6889 #if DEBUG || DEVELOPMENT
6890 if (memorystatus_jetsam_policy
& kPolicyDiagnoseActive
) {
6891 memorystatus_available_pages_critical
+= memorystatus_jetsam_policy_offset_pages_diagnostic
;
6893 if (memorystatus_available_pages_critical
> memorystatus_available_pages_pressure
) {
6895 * The critical threshold must never exceed the pressure threshold
6897 memorystatus_available_pages_critical
= memorystatus_available_pages_pressure
;
6902 if (memorystatus_jetsam_policy
& kPolicyMoreFree
) {
6903 memorystatus_available_pages_critical
+= memorystatus_policy_more_free_offset_pages
;
6906 if (critical_only
) {
6910 #if VM_PRESSURE_EVENTS
6911 memorystatus_available_pages_pressure
= (pressure_threshold_percentage
/ delta_percentage
) * memorystatus_delta
;
6912 #if DEBUG || DEVELOPMENT
6913 if (memorystatus_jetsam_policy
& kPolicyDiagnoseActive
) {
6914 memorystatus_available_pages_pressure
+= memorystatus_jetsam_policy_offset_pages_diagnostic
;
6921 sysctl_kern_memorystatus_policy_more_free SYSCTL_HANDLER_ARGS
6923 #pragma unused(arg1, arg2, oidp)
6924 int error
= 0, more_free
= 0;
6927 * TODO: Enable this privilege check?
6929 * error = priv_check_cred(kauth_cred_get(), PRIV_VM_JETSAM, 0);
6934 error
= sysctl_handle_int(oidp
, &more_free
, 0, req
);
6935 if (error
|| !req
->newptr
)
6938 if ((more_free
&& ((memorystatus_jetsam_policy
& kPolicyMoreFree
) == kPolicyMoreFree
)) ||
6939 (!more_free
&& ((memorystatus_jetsam_policy
& kPolicyMoreFree
) == 0))) {
6942 * No change in state.
6950 memorystatus_jetsam_policy
|= kPolicyMoreFree
;
6952 memorystatus_jetsam_policy
&= ~kPolicyMoreFree
;
6955 memorystatus_update_levels_locked(TRUE
);
6961 SYSCTL_PROC(_kern
, OID_AUTO
, memorystatus_policy_more_free
, CTLTYPE_INT
|CTLFLAG_WR
|CTLFLAG_LOCKED
|CTLFLAG_MASKED
,
6962 0, 0, &sysctl_kern_memorystatus_policy_more_free
, "I", "");
6965 * Get the at_boot snapshot
6968 memorystatus_get_at_boot_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
) {
6969 size_t input_size
= *snapshot_size
;
6972 * The at_boot snapshot has no entry list.
6974 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
);
6981 * Validate the size of the snapshot buffer
6983 if (input_size
< *snapshot_size
) {
6988 * Update the notification_time only
6990 memorystatus_at_boot_snapshot
.notification_time
= mach_absolute_time();
6991 *snapshot
= &memorystatus_at_boot_snapshot
;
6993 MEMORYSTATUS_DEBUG(7, "memorystatus_get_at_boot_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%d)\n",
6994 (long)input_size
, (long)*snapshot_size
, 0);
6999 memorystatus_get_on_demand_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
) {
7000 size_t input_size
= *snapshot_size
;
7001 uint32_t ods_list_count
= memorystatus_list_count
;
7002 memorystatus_jetsam_snapshot_t
*ods
= NULL
; /* The on_demand snapshot buffer */
7004 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (ods_list_count
));
7011 * Validate the size of the snapshot buffer.
7012 * This is inherently racey. May want to revisit
7013 * this error condition and trim the output when
7016 if (input_size
< *snapshot_size
) {
7021 * Allocate and initialize a snapshot buffer.
7023 ods
= (memorystatus_jetsam_snapshot_t
*)kalloc(*snapshot_size
);
7028 memset(ods
, 0, *snapshot_size
);
7031 memorystatus_init_jetsam_snapshot_locked(ods
, ods_list_count
);
7035 * Return the kernel allocated, on_demand buffer.
7036 * The caller of this routine will copy the data out
7037 * to user space and then free the kernel allocated
7042 MEMORYSTATUS_DEBUG(7, "memorystatus_get_on_demand_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
7043 (long)input_size
, (long)*snapshot_size
, (long)ods_list_count
);
7049 memorystatus_get_jetsam_snapshot(memorystatus_jetsam_snapshot_t
**snapshot
, size_t *snapshot_size
, boolean_t size_only
) {
7050 size_t input_size
= *snapshot_size
;
7052 if (memorystatus_jetsam_snapshot_count
> 0) {
7053 *snapshot_size
= sizeof(memorystatus_jetsam_snapshot_t
) + (sizeof(memorystatus_jetsam_snapshot_entry_t
) * (memorystatus_jetsam_snapshot_count
));
7062 if (input_size
< *snapshot_size
) {
7066 *snapshot
= memorystatus_jetsam_snapshot
;
7068 MEMORYSTATUS_DEBUG(7, "memorystatus_get_jetsam_snapshot: returned inputsize (%ld), snapshot_size(%ld), listcount(%ld)\n",
7069 (long)input_size
, (long)*snapshot_size
, (long)memorystatus_jetsam_snapshot_count
);
7076 memorystatus_cmd_get_jetsam_snapshot(int32_t flags
, user_addr_t buffer
, size_t buffer_size
, int32_t *retval
) {
7078 boolean_t size_only
;
7079 boolean_t is_default_snapshot
= FALSE
;
7080 boolean_t is_on_demand_snapshot
= FALSE
;
7081 boolean_t is_at_boot_snapshot
= FALSE
;
7082 memorystatus_jetsam_snapshot_t
*snapshot
;
7084 size_only
= ((buffer
== USER_ADDR_NULL
) ? TRUE
: FALSE
);
7088 is_default_snapshot
= TRUE
;
7089 error
= memorystatus_get_jetsam_snapshot(&snapshot
, &buffer_size
, size_only
);
7091 if (flags
& ~(MEMORYSTATUS_SNAPSHOT_ON_DEMAND
| MEMORYSTATUS_SNAPSHOT_AT_BOOT
)) {
7093 * Unsupported bit set in flag.
7098 if ((flags
& (MEMORYSTATUS_SNAPSHOT_ON_DEMAND
| MEMORYSTATUS_SNAPSHOT_AT_BOOT
)) ==
7099 (MEMORYSTATUS_SNAPSHOT_ON_DEMAND
| MEMORYSTATUS_SNAPSHOT_AT_BOOT
)) {
7101 * Can't have both set at the same time.
7106 if (flags
& MEMORYSTATUS_SNAPSHOT_ON_DEMAND
) {
7107 is_on_demand_snapshot
= TRUE
;
7109 * When not requesting the size only, the following call will allocate
7110 * an on_demand snapshot buffer, which is freed below.
7112 error
= memorystatus_get_on_demand_snapshot(&snapshot
, &buffer_size
, size_only
);
7114 } else if (flags
& MEMORYSTATUS_SNAPSHOT_AT_BOOT
) {
7115 is_at_boot_snapshot
= TRUE
;
7116 error
= memorystatus_get_at_boot_snapshot(&snapshot
, &buffer_size
, size_only
);
7119 * Invalid flag setting.
7130 * Copy the data out to user space and clear the snapshot buffer.
7131 * If working with the jetsam snapshot,
7132 * clearing the buffer means, reset the count.
7133 * If working with an on_demand snapshot
7134 * clearing the buffer means, free it.
7135 * If working with the at_boot snapshot
7136 * there is nothing to clear or update.
7139 if ((error
= copyout(snapshot
, buffer
, buffer_size
)) == 0) {
7140 if (is_default_snapshot
) {
7142 * The jetsam snapshot is never freed, its count is simply reset.
7145 snapshot
->entry_count
= memorystatus_jetsam_snapshot_count
= 0;
7146 memorystatus_jetsam_snapshot_last_timestamp
= 0;
7151 if (is_on_demand_snapshot
) {
7153 * The on_demand snapshot is always freed,
7154 * even if the copyout failed.
7157 kfree(snapshot
, buffer_size
);
7163 *retval
= buffer_size
;
7170 * Routine: memorystatus_cmd_grp_set_properties
7171 * Purpose: Update properties for a group of processes.
7173 * Supported Properties:
7175 * Move each process out of its effective priority
7176 * band and into a new priority band.
7177 * Maintains relative order from lowest to highest priority.
7178 * In single band, maintains relative order from head to tail.
7180 * eg: before [effectivepriority | pid]
7182 * [17 | p55, p67, p19 ]
7187 * after [ new band | pid]
7188 * [ xxx | p71, p82, p25, p103, p10, p55, p67, p19, p101]
7190 * Returns: 0 on success, else non-zero.
7192 * Caveat: We know there is a race window regarding recycled pids.
7193 * A process could be killed before the kernel can act on it here.
7194 * If a pid cannot be found in any of the jetsam priority bands,
7195 * then we simply ignore it. No harm.
7196 * But, if the pid has been recycled then it could be an issue.
7197 * In that scenario, we might move an unsuspecting process to the new
7198 * priority band. It's not clear how the kernel can safeguard
7199 * against this, but it would be an extremely rare case anyway.
7200 * The caller of this api might avoid such race conditions by
7201 * ensuring that the processes passed in the pid list are suspended.
7205 /* This internal structure can expand when we add support for more properties */
7206 typedef struct memorystatus_internal_properties
7209 int32_t priority
; /* see memorytstatus_priority_entry_t : priority */
7210 } memorystatus_internal_properties_t
;
7214 memorystatus_cmd_grp_set_properties(int32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
) {
7216 #pragma unused (flags)
7219 * We only handle setting priority
7224 memorystatus_priority_entry_t
*entries
= NULL
;
7225 uint32_t entry_count
= 0;
7227 /* This will be the ordered proc list */
7228 memorystatus_internal_properties_t
*table
= NULL
;
7229 size_t table_size
= 0;
7230 uint32_t table_count
= 0;
7233 uint32_t bucket_index
= 0;
7234 boolean_t head_insert
;
7235 int32_t new_priority
;
7240 if ((buffer
== USER_ADDR_NULL
) || (buffer_size
== 0) || ((buffer_size
% sizeof(memorystatus_priority_entry_t
)) != 0)) {
7245 entry_count
= (buffer_size
/ sizeof(memorystatus_priority_entry_t
));
7246 if ((entries
= (memorystatus_priority_entry_t
*)kalloc(buffer_size
)) == NULL
) {
7251 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_START
, entry_count
, 0, 0, 0, 0);
7253 if ((error
= copyin(buffer
, entries
, buffer_size
)) != 0) {
7257 /* Verify sanity of input priorities */
7258 for (i
=0; i
< entry_count
; i
++) {
7259 if (entries
[i
].priority
== -1) {
7260 /* Use as shorthand for default priority */
7261 entries
[i
].priority
= JETSAM_PRIORITY_DEFAULT
;
7262 } else if ((entries
[i
].priority
== system_procs_aging_band
) || (entries
[i
].priority
== applications_aging_band
)) {
7263 /* Both the aging bands are reserved for internal use;
7264 * if requested, adjust to JETSAM_PRIORITY_IDLE. */
7265 entries
[i
].priority
= JETSAM_PRIORITY_IDLE
;
7266 } else if (entries
[i
].priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
7267 /* JETSAM_PRIORITY_IDLE_HEAD inserts at the head of the idle
7269 /* Deal with this later */
7270 } else if ((entries
[i
].priority
< 0) || (entries
[i
].priority
>= MEMSTAT_BUCKET_COUNT
)) {
7277 table_size
= sizeof(memorystatus_internal_properties_t
) * entry_count
;
7278 if ( (table
= (memorystatus_internal_properties_t
*)kalloc(table_size
)) == NULL
) {
7282 memset(table
, 0, table_size
);
7286 * For each jetsam bucket entry, spin through the input property list.
7287 * When a matching pid is found, populate an adjacent table with the
7288 * appropriate proc pointer and new property values.
7289 * This traversal automatically preserves order from lowest
7290 * to highest priority.
7297 /* Create the ordered table */
7298 p
= memorystatus_get_first_proc_locked(&bucket_index
, TRUE
);
7299 while (p
&& (table_count
< entry_count
)) {
7300 for (i
=0; i
< entry_count
; i
++ ) {
7301 if (p
->p_pid
== entries
[i
].pid
) {
7302 /* Build the table data */
7303 table
[table_count
].proc
= p
;
7304 table
[table_count
].priority
= entries
[i
].priority
;
7309 p
= memorystatus_get_next_proc_locked(&bucket_index
, p
, TRUE
);
7312 /* We now have ordered list of procs ready to move */
7313 for (i
=0; i
< table_count
; i
++) {
7317 /* Allow head inserts -- but relative order is now */
7318 if (table
[i
].priority
== JETSAM_PRIORITY_IDLE_HEAD
) {
7319 new_priority
= JETSAM_PRIORITY_IDLE
;
7322 new_priority
= table
[i
].priority
;
7323 head_insert
= false;
7327 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
7332 * Take appropriate steps if moving proc out of
7333 * either of the aging bands.
7335 if ((p
->p_memstat_effectivepriority
== system_procs_aging_band
) || (p
->p_memstat_effectivepriority
== applications_aging_band
)) {
7336 memorystatus_invalidate_idle_demotion_locked(p
, TRUE
);
7339 memorystatus_update_priority_locked(p
, new_priority
, head_insert
, false);
7345 * if (table_count != entry_count)
7346 * then some pids were not found in a jetsam band.
7347 * harmless but interesting...
7349 KERNEL_DEBUG_CONSTANT(BSDDBG_CODE(DBG_BSD_MEMSTAT
, BSD_MEMSTAT_GRP_SET_PROP
) | DBG_FUNC_END
, entry_count
, table_count
, 0, 0, 0);
7353 kfree(entries
, buffer_size
);
7355 kfree(table
, table_size
);
7362 * This routine is used to update a process's jetsam priority position and stored user_data.
7363 * It is not used for the setting of memory limits, which is why the last 6 args to the
7364 * memorystatus_update() call are 0 or FALSE.
7368 memorystatus_cmd_set_priority_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
) {
7370 memorystatus_priority_properties_t mpp_entry
;
7372 /* Validate inputs */
7373 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_priority_properties_t
))) {
7377 error
= copyin(buffer
, &mpp_entry
, buffer_size
);
7387 if (p
->p_memstat_state
& P_MEMSTAT_INTERNAL
) {
7392 error
= memorystatus_update(p
, mpp_entry
.priority
, mpp_entry
.user_data
, FALSE
, FALSE
, 0, 0, FALSE
, FALSE
, FALSE
);
7400 memorystatus_cmd_set_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
) {
7402 memorystatus_memlimit_properties_t mmp_entry
;
7404 /* Validate inputs */
7405 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_memlimit_properties_t
))) {
7409 error
= copyin(buffer
, &mmp_entry
, buffer_size
);
7412 error
= memorystatus_set_memlimit_properties(pid
, &mmp_entry
);
7419 * When getting the memlimit settings, we can't simply call task_get_phys_footprint_limit().
7420 * That gets the proc's cached memlimit and there is no guarantee that the active/inactive
7421 * limits will be the same in the no-limit case. Instead we convert limits <= 0 using
7422 * task_convert_phys_footprint_limit(). It computes the same limit value that would be written
7423 * to the task's ledgers via task_set_phys_footprint_limit().
7426 memorystatus_cmd_get_memlimit_properties(pid_t pid
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
) {
7428 memorystatus_memlimit_properties_t mmp_entry
;
7430 /* Validate inputs */
7431 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(memorystatus_memlimit_properties_t
))) {
7435 memset (&mmp_entry
, 0, sizeof(memorystatus_memlimit_properties_t
));
7437 proc_t p
= proc_find(pid
);
7443 * Get the active limit and attributes.
7444 * No locks taken since we hold a reference to the proc.
7447 if (p
->p_memstat_memlimit_active
> 0 ) {
7448 mmp_entry
.memlimit_active
= p
->p_memstat_memlimit_active
;
7450 task_convert_phys_footprint_limit(-1, &mmp_entry
.memlimit_active
);
7453 if (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_ACTIVE_FATAL
) {
7454 mmp_entry
.memlimit_active_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7458 * Get the inactive limit and attributes
7460 if (p
->p_memstat_memlimit_inactive
<= 0) {
7461 task_convert_phys_footprint_limit(-1, &mmp_entry
.memlimit_inactive
);
7463 mmp_entry
.memlimit_inactive
= p
->p_memstat_memlimit_inactive
;
7465 if (p
->p_memstat_state
& P_MEMSTAT_MEMLIMIT_INACTIVE_FATAL
) {
7466 mmp_entry
.memlimit_inactive_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7470 error
= copyout(&mmp_entry
, buffer
, buffer_size
);
7477 * SPI for kbd - pr24956468
7478 * This is a very simple snapshot that calculates how much a
7479 * process's phys_footprint exceeds a specific memory limit.
7480 * Only the inactive memory limit is supported for now.
7481 * The delta is returned as bytes in excess or zero.
7484 memorystatus_cmd_get_memlimit_excess_np(pid_t pid
, uint32_t flags
, user_addr_t buffer
, size_t buffer_size
, __unused
int32_t *retval
) {
7486 uint64_t footprint_in_bytes
= 0;
7487 uint64_t delta_in_bytes
= 0;
7488 int32_t memlimit_mb
= 0;
7489 uint64_t memlimit_bytes
= 0;
7491 /* Validate inputs */
7492 if ((pid
== 0) || (buffer
== USER_ADDR_NULL
) || (buffer_size
!= sizeof(uint64_t)) || (flags
!= 0)) {
7496 proc_t p
= proc_find(pid
);
7502 * Get the inactive limit.
7503 * No locks taken since we hold a reference to the proc.
7506 if (p
->p_memstat_memlimit_inactive
<= 0) {
7507 task_convert_phys_footprint_limit(-1, &memlimit_mb
);
7509 memlimit_mb
= p
->p_memstat_memlimit_inactive
;
7512 footprint_in_bytes
= get_task_phys_footprint(p
->task
);
7516 memlimit_bytes
= memlimit_mb
* 1024 * 1024; /* MB to bytes */
7519 * Computed delta always returns >= 0 bytes
7521 if (footprint_in_bytes
> memlimit_bytes
) {
7522 delta_in_bytes
= footprint_in_bytes
- memlimit_bytes
;
7525 error
= copyout(&delta_in_bytes
, buffer
, sizeof(delta_in_bytes
));
7532 memorystatus_cmd_get_pressure_status(int32_t *retval
) {
7535 /* Need privilege for check */
7536 error
= priv_check_cred(kauth_cred_get(), PRIV_VM_PRESSURE
, 0);
7541 /* Inherently racy, so it's not worth taking a lock here */
7542 *retval
= (kVMPressureNormal
!= memorystatus_vm_pressure_level
) ? 1 : 0;
7548 memorystatus_get_pressure_status_kdp() {
7549 return (kVMPressureNormal
!= memorystatus_vm_pressure_level
) ? 1 : 0;
7553 * Every process, including a P_MEMSTAT_INTERNAL process (currently only pid 1), is allowed to set a HWM.
7555 * This call is inflexible -- it does not distinguish between active/inactive, fatal/non-fatal
7556 * So, with 2-level HWM preserving previous behavior will map as follows.
7557 * - treat the limit passed in as both an active and inactive limit.
7558 * - treat the is_fatal_limit flag as though it applies to both active and inactive limits.
7560 * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK
7561 * - the is_fatal_limit is FALSE, meaning the active and inactive limits are non-fatal/soft
7562 * - so mapping is (active/non-fatal, inactive/non-fatal)
7564 * When invoked via MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT
7565 * - the is_fatal_limit is TRUE, meaning the process's active and inactive limits are fatal/hard
7566 * - so mapping is (active/fatal, inactive/fatal)
7570 memorystatus_cmd_set_jetsam_memory_limit(pid_t pid
, int32_t high_water_mark
, __unused
int32_t *retval
, boolean_t is_fatal_limit
) {
7572 memorystatus_memlimit_properties_t entry
;
7574 entry
.memlimit_active
= high_water_mark
;
7575 entry
.memlimit_active_attr
= 0;
7576 entry
.memlimit_inactive
= high_water_mark
;
7577 entry
.memlimit_inactive_attr
= 0;
7579 if (is_fatal_limit
== TRUE
) {
7580 entry
.memlimit_active_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7581 entry
.memlimit_inactive_attr
|= MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
;
7584 error
= memorystatus_set_memlimit_properties(pid
, &entry
);
7589 memorystatus_set_memlimit_properties(pid_t pid
, memorystatus_memlimit_properties_t
*entry
) {
7591 int32_t memlimit_active
;
7592 boolean_t memlimit_active_is_fatal
;
7593 int32_t memlimit_inactive
;
7594 boolean_t memlimit_inactive_is_fatal
;
7595 uint32_t valid_attrs
= 0;
7598 proc_t p
= proc_find(pid
);
7604 * Check for valid attribute flags.
7606 valid_attrs
|= (MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
);
7607 if ((entry
->memlimit_active_attr
& (~valid_attrs
)) != 0) {
7611 if ((entry
->memlimit_inactive_attr
& (~valid_attrs
)) != 0) {
7617 * Setup the active memlimit properties
7619 memlimit_active
= entry
->memlimit_active
;
7620 if (entry
->memlimit_active_attr
& MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
) {
7621 memlimit_active_is_fatal
= TRUE
;
7623 memlimit_active_is_fatal
= FALSE
;
7627 * Setup the inactive memlimit properties
7629 memlimit_inactive
= entry
->memlimit_inactive
;
7630 if (entry
->memlimit_inactive_attr
& MEMORYSTATUS_MEMLIMIT_ATTR_FATAL
) {
7631 memlimit_inactive_is_fatal
= TRUE
;
7633 memlimit_inactive_is_fatal
= FALSE
;
7637 * Setting a limit of <= 0 implies that the process has no
7638 * high-water-mark and has no per-task-limit. That means
7639 * the system_wide task limit is in place, which by the way,
7643 if (memlimit_active
<= 0) {
7645 * Enforce the fatal system_wide task limit while process is active.
7647 memlimit_active
= -1;
7648 memlimit_active_is_fatal
= TRUE
;
7651 if (memlimit_inactive
<= 0) {
7653 * Enforce the fatal system_wide task limit while process is inactive.
7655 memlimit_inactive
= -1;
7656 memlimit_inactive_is_fatal
= TRUE
;
7662 * Store the active limit variants in the proc.
7664 SET_ACTIVE_LIMITS_LOCKED(p
, memlimit_active
, memlimit_active_is_fatal
);
7667 * Store the inactive limit variants in the proc.
7669 SET_INACTIVE_LIMITS_LOCKED(p
, memlimit_inactive
, memlimit_inactive_is_fatal
);
7672 * Enforce appropriate limit variant by updating the cached values
7673 * and writing the ledger.
7674 * Limit choice is based on process active/inactive state.
7677 if (memorystatus_highwater_enabled
) {
7678 boolean_t trigger_exception
;
7680 * No need to consider P_MEMSTAT_MEMLIMIT_BACKGROUND anymore.
7681 * Background limits are described via the inactive limit slots.
7684 if (proc_jetsam_state_is_active_locked(p
) == TRUE
) {
7685 CACHE_ACTIVE_LIMITS_LOCKED(p
, trigger_exception
);
7687 CACHE_INACTIVE_LIMITS_LOCKED(p
, trigger_exception
);
7690 /* Enforce the limit by writing to the ledgers */
7691 assert(trigger_exception
== TRUE
);
7692 error
= (task_set_phys_footprint_limit_internal(p
->task
, ((p
->p_memstat_memlimit
> 0) ? p
->p_memstat_memlimit
: -1), NULL
, trigger_exception
) == 0) ? 0 : EINVAL
;
7694 MEMORYSTATUS_DEBUG(3, "memorystatus_set_memlimit_properties: new limit on pid %d (%dMB %s) current priority (%d) dirty_state?=0x%x %s\n",
7695 p
->p_pid
, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1),
7696 (p
->p_memstat_state
& P_MEMSTAT_FATAL_MEMLIMIT
? "F " : "NF"), p
->p_memstat_effectivepriority
, p
->p_memstat_dirty
,
7697 (p
->p_memstat_dirty
? ((p
->p_memstat_dirty
& P_DIRTY
) ? "isdirty" : "isclean") : ""));
7698 DTRACE_MEMORYSTATUS2(memorystatus_set_memlimit
, proc_t
, p
, int32_t, (p
->p_memstat_memlimit
> 0 ? p
->p_memstat_memlimit
: -1));
7708 * Returns the jetsam priority (effective or requested) of the process
7709 * associated with this task.
7712 proc_get_memstat_priority(proc_t p
, boolean_t effective_priority
)
7715 if (effective_priority
) {
7716 return p
->p_memstat_effectivepriority
;
7718 return p
->p_memstat_requestedpriority
;
7724 #endif /* CONFIG_JETSAM */
7727 memorystatus_control(struct proc
*p __unused
, struct memorystatus_control_args
*args
, int *ret
) {
7729 os_reason_t jetsam_reason
= OS_REASON_NULL
;
7733 #pragma unused(jetsam_reason)
7736 /* Need to be root or have entitlement */
7737 if (!kauth_cred_issuser(kauth_cred_get()) && !IOTaskHasEntitlement(current_task(), MEMORYSTATUS_ENTITLEMENT
)) {
7744 * Do not enforce it for snapshots.
7746 if (args
->command
!= MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT
) {
7747 if (args
->buffersize
> MEMORYSTATUS_BUFFERSIZE_MAX
) {
7753 switch (args
->command
) {
7754 case MEMORYSTATUS_CMD_GET_PRIORITY_LIST
:
7755 error
= memorystatus_cmd_get_priority_list(args
->buffer
, args
->buffersize
, ret
);
7758 case MEMORYSTATUS_CMD_SET_PRIORITY_PROPERTIES
:
7759 error
= memorystatus_cmd_set_priority_properties(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
7761 case MEMORYSTATUS_CMD_SET_MEMLIMIT_PROPERTIES
:
7762 error
= memorystatus_cmd_set_memlimit_properties(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
7764 case MEMORYSTATUS_CMD_GET_MEMLIMIT_PROPERTIES
:
7765 error
= memorystatus_cmd_get_memlimit_properties(args
->pid
, args
->buffer
, args
->buffersize
, ret
);
7767 case MEMORYSTATUS_CMD_GET_MEMLIMIT_EXCESS
:
7768 error
= memorystatus_cmd_get_memlimit_excess_np(args
->pid
, args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7770 case MEMORYSTATUS_CMD_GRP_SET_PROPERTIES
:
7771 error
= memorystatus_cmd_grp_set_properties((int32_t)args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7773 case MEMORYSTATUS_CMD_GET_JETSAM_SNAPSHOT
:
7774 error
= memorystatus_cmd_get_jetsam_snapshot((int32_t)args
->flags
, args
->buffer
, args
->buffersize
, ret
);
7776 case MEMORYSTATUS_CMD_GET_PRESSURE_STATUS
:
7777 error
= memorystatus_cmd_get_pressure_status(ret
);
7779 case MEMORYSTATUS_CMD_SET_JETSAM_HIGH_WATER_MARK
:
7781 * This call does not distinguish between active and inactive limits.
7782 * Default behavior in 2-level HWM world is to set both.
7783 * Non-fatal limit is also assumed for both.
7785 error
= memorystatus_cmd_set_jetsam_memory_limit(args
->pid
, (int32_t)args
->flags
, ret
, FALSE
);
7787 case MEMORYSTATUS_CMD_SET_JETSAM_TASK_LIMIT
:
7789 * This call does not distinguish between active and inactive limits.
7790 * Default behavior in 2-level HWM world is to set both.
7791 * Fatal limit is also assumed for both.
7793 error
= memorystatus_cmd_set_jetsam_memory_limit(args
->pid
, (int32_t)args
->flags
, ret
, TRUE
);
7796 #if DEVELOPMENT || DEBUG
7797 case MEMORYSTATUS_CMD_TEST_JETSAM
:
7798 jetsam_reason
= os_reason_create(OS_REASON_JETSAM
, JETSAM_REASON_GENERIC
);
7799 if (jetsam_reason
== OS_REASON_NULL
) {
7800 printf("memorystatus_control: failed to allocate jetsam reason\n");
7803 error
= memorystatus_kill_process_sync(args
->pid
, kMemorystatusKilled
, jetsam_reason
) ? 0 : EINVAL
;
7805 case MEMORYSTATUS_CMD_TEST_JETSAM_SORT
:
7806 error
= memorystatus_cmd_test_jetsam_sort(args
->pid
, (int32_t)args
->flags
);
7808 case MEMORYSTATUS_CMD_SET_JETSAM_PANIC_BITS
:
7809 error
= memorystatus_cmd_set_panic_bits(args
->buffer
, args
->buffersize
);
7811 #else /* DEVELOPMENT || DEBUG */
7812 #pragma unused(jetsam_reason)
7813 #endif /* DEVELOPMENT || DEBUG */
7814 case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_ENABLE
:
7815 if (memorystatus_aggressive_jetsam_lenient_allowed
== FALSE
) {
7816 #if DEVELOPMENT || DEBUG
7817 printf("Enabling Lenient Mode\n");
7818 #endif /* DEVELOPMENT || DEBUG */
7820 memorystatus_aggressive_jetsam_lenient_allowed
= TRUE
;
7821 memorystatus_aggressive_jetsam_lenient
= TRUE
;
7825 case MEMORYSTATUS_CMD_AGGRESSIVE_JETSAM_LENIENT_MODE_DISABLE
:
7826 #if DEVELOPMENT || DEBUG
7827 printf("Disabling Lenient mode\n");
7828 #endif /* DEVELOPMENT || DEBUG */
7829 memorystatus_aggressive_jetsam_lenient_allowed
= FALSE
;
7830 memorystatus_aggressive_jetsam_lenient
= FALSE
;
7833 #endif /* CONFIG_JETSAM */
7834 case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_ENABLE
:
7835 case MEMORYSTATUS_CMD_PRIVILEGED_LISTENER_DISABLE
:
7836 error
= memorystatus_low_mem_privileged_listener(args
->command
);
7840 case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_ENABLE
:
7841 case MEMORYSTATUS_CMD_ELEVATED_INACTIVEJETSAMPRIORITY_DISABLE
:
7842 error
= memorystatus_update_inactive_jetsam_priority_band(args
->pid
, args
->command
, args
->flags
? TRUE
: FALSE
);
7844 #endif /* CONFIG_JETSAM */
7856 filt_memorystatusattach(struct knote
*kn
)
7860 kn
->kn_flags
|= EV_CLEAR
;
7861 error
= memorystatus_knote_register(kn
);
7863 kn
->kn_flags
= EV_ERROR
;
7864 kn
->kn_data
= error
;
7870 filt_memorystatusdetach(struct knote
*kn
)
7872 memorystatus_knote_unregister(kn
);
7876 filt_memorystatus(struct knote
*kn __unused
, long hint
)
7880 case kMemorystatusNoPressure
:
7881 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PRESSURE_NORMAL
) {
7882 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PRESSURE_NORMAL
;
7885 case kMemorystatusPressure
:
7886 if (memorystatus_vm_pressure_level
== kVMPressureWarning
|| memorystatus_vm_pressure_level
== kVMPressureUrgent
) {
7887 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PRESSURE_WARN
) {
7888 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PRESSURE_WARN
;
7890 } else if (memorystatus_vm_pressure_level
== kVMPressureCritical
) {
7892 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
) {
7893 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
;
7897 case kMemorystatusLowSwap
:
7898 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_LOW_SWAP
) {
7899 kn
->kn_fflags
= NOTE_MEMORYSTATUS_LOW_SWAP
;
7903 case kMemorystatusProcLimitWarn
:
7904 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_WARN
) {
7905 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PROC_LIMIT_WARN
;
7909 case kMemorystatusProcLimitCritical
:
7910 if (kn
->kn_sfflags
& NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL
) {
7911 kn
->kn_fflags
= NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL
;
7920 return (kn
->kn_fflags
!= 0);
7924 filt_memorystatustouch(struct knote
*kn
, struct kevent_internal_s
*kev
)
7928 memorystatus_klist_lock();
7931 * copy in new kevent settings
7932 * (saving the "desired" data and fflags).
7934 kn
->kn_sfflags
= kev
->fflags
;
7936 if ((kn
->kn_status
& KN_UDATA_SPECIFIC
) == 0)
7937 kn
->kn_udata
= kev
->udata
;
7940 * reset the output flags based on a
7941 * combination of the old events and
7942 * the new desired event list.
7944 //kn->kn_fflags &= kn->kn_sfflags;
7946 res
= (kn
->kn_fflags
!= 0);
7948 memorystatus_klist_unlock();
7954 filt_memorystatusprocess(struct knote
*kn
, struct filt_process_s
*data
, struct kevent_internal_s
*kev
)
7956 #pragma unused(data)
7959 memorystatus_klist_lock();
7960 res
= (kn
->kn_fflags
!= 0);
7962 *kev
= kn
->kn_kevent
;
7963 kn
->kn_flags
|= EV_CLEAR
; /* automatic */
7967 memorystatus_klist_unlock();
7973 memorystatus_klist_lock(void) {
7974 lck_mtx_lock(&memorystatus_klist_mutex
);
7978 memorystatus_klist_unlock(void) {
7979 lck_mtx_unlock(&memorystatus_klist_mutex
);
7983 memorystatus_kevent_init(lck_grp_t
*grp
, lck_attr_t
*attr
) {
7984 lck_mtx_init(&memorystatus_klist_mutex
, grp
, attr
);
7985 klist_init(&memorystatus_klist
);
7989 memorystatus_knote_register(struct knote
*kn
) {
7992 memorystatus_klist_lock();
7994 if (kn
->kn_sfflags
& (NOTE_MEMORYSTATUS_PRESSURE_NORMAL
| NOTE_MEMORYSTATUS_PRESSURE_WARN
|
7995 NOTE_MEMORYSTATUS_PRESSURE_CRITICAL
| NOTE_MEMORYSTATUS_LOW_SWAP
|
7996 NOTE_MEMORYSTATUS_PROC_LIMIT_WARN
| NOTE_MEMORYSTATUS_PROC_LIMIT_CRITICAL
)) {
7998 KNOTE_ATTACH(&memorystatus_klist
, kn
);
8004 memorystatus_klist_unlock();
8010 memorystatus_knote_unregister(struct knote
*kn __unused
) {
8011 memorystatus_klist_lock();
8012 KNOTE_DETACH(&memorystatus_klist
, kn
);
8013 memorystatus_klist_unlock();
8018 #if CONFIG_JETSAM && VM_PRESSURE_EVENTS
8020 memorystatus_issue_pressure_kevent(boolean_t pressured
) {
8021 memorystatus_klist_lock();
8022 KNOTE(&memorystatus_klist
, pressured
? kMemorystatusPressure
: kMemorystatusNoPressure
);
8023 memorystatus_klist_unlock();
8026 #endif /* CONFIG_JETSAM && VM_PRESSURE_EVENTS */
8030 /* Coalition support */
8032 /* sorting info for a particular priority bucket */
8033 typedef struct memstat_sort_info
{
8034 coalition_t msi_coal
;
8035 uint64_t msi_page_count
;
8038 } memstat_sort_info_t
;
8041 * qsort from smallest page count to largest page count
8043 * return < 0 for a < b
8047 static int memstat_asc_cmp(const void *a
, const void *b
)
8049 const memstat_sort_info_t
*msA
= (const memstat_sort_info_t
*)a
;
8050 const memstat_sort_info_t
*msB
= (const memstat_sort_info_t
*)b
;
8052 return (int)((uint64_t)msA
->msi_page_count
- (uint64_t)msB
->msi_page_count
);
8056 * Return the number of pids rearranged during this sort.
8059 memorystatus_sort_by_largest_coalition_locked(unsigned int bucket_index
, int coal_sort_order
)
8061 #define MAX_SORT_PIDS 80
8062 #define MAX_COAL_LEADERS 10
8064 unsigned int b
= bucket_index
;
8068 coalition_t coal
= COALITION_NULL
;
8070 int total_pids_moved
= 0;
8074 * The system is typically under memory pressure when in this
8075 * path, hence, we want to avoid dynamic memory allocation.
8077 memstat_sort_info_t leaders
[MAX_COAL_LEADERS
];
8078 pid_t pid_list
[MAX_SORT_PIDS
];
8080 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
8085 * Clear the array that holds coalition leader information
8087 for (i
=0; i
< MAX_COAL_LEADERS
; i
++) {
8088 leaders
[i
].msi_coal
= COALITION_NULL
;
8089 leaders
[i
].msi_page_count
= 0; /* will hold total coalition page count */
8090 leaders
[i
].msi_pid
= 0; /* will hold coalition leader pid */
8091 leaders
[i
].msi_ntasks
= 0; /* will hold the number of tasks in a coalition */
8094 p
= memorystatus_get_first_proc_locked(&b
, FALSE
);
8096 if (coalition_is_leader(p
->task
, COALITION_TYPE_JETSAM
, &coal
)) {
8097 if (nleaders
< MAX_COAL_LEADERS
) {
8098 int coal_ntasks
= 0;
8099 uint64_t coal_page_count
= coalition_get_page_count(coal
, &coal_ntasks
);
8100 leaders
[nleaders
].msi_coal
= coal
;
8101 leaders
[nleaders
].msi_page_count
= coal_page_count
;
8102 leaders
[nleaders
].msi_pid
= p
->p_pid
; /* the coalition leader */
8103 leaders
[nleaders
].msi_ntasks
= coal_ntasks
;
8107 * We've hit MAX_COAL_LEADERS meaning we can handle no more coalitions.
8108 * Abandoned coalitions will linger at the tail of the priority band
8109 * when this sort session ends.
8110 * TODO: should this be an assert?
8112 printf("%s: WARNING: more than %d leaders in priority band [%d]\n",
8113 __FUNCTION__
, MAX_COAL_LEADERS
, bucket_index
);
8117 p
=memorystatus_get_next_proc_locked(&b
, p
, FALSE
);
8120 if (nleaders
== 0) {
8121 /* Nothing to sort */
8126 * Sort the coalition leader array, from smallest coalition page count
8127 * to largest coalition page count. When inserted in the priority bucket,
8128 * smallest coalition is handled first, resulting in the last to be jetsammed.
8131 qsort(leaders
, nleaders
, sizeof(memstat_sort_info_t
), memstat_asc_cmp
);
8135 for (i
= 0; i
< nleaders
; i
++) {
8136 printf("%s: coal_leader[%d of %d] pid[%d] pages[%llu] ntasks[%d]\n",
8137 __FUNCTION__
, i
, nleaders
, leaders
[i
].msi_pid
, leaders
[i
].msi_page_count
,
8138 leaders
[i
].msi_ntasks
);
8143 * During coalition sorting, processes in a priority band are rearranged
8144 * by being re-inserted at the head of the queue. So, when handling a
8145 * list, the first process that gets moved to the head of the queue,
8146 * ultimately gets pushed toward the queue tail, and hence, jetsams last.
8148 * So, for example, the coalition leader is expected to jetsam last,
8149 * after its coalition members. Therefore, the coalition leader is
8150 * inserted at the head of the queue first.
8152 * After processing a coalition, the jetsam order is as follows:
8153 * undefs(jetsam first), extensions, xpc services, leader(jetsam last)
8157 * Coalition members are rearranged in the priority bucket here,
8158 * based on their coalition role.
8160 total_pids_moved
= 0;
8161 for (i
=0; i
< nleaders
; i
++) {
8163 /* a bit of bookkeeping */
8166 /* Coalition leaders are jetsammed last, so move into place first */
8167 pid_list
[0] = leaders
[i
].msi_pid
;
8168 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
, 1);
8170 /* xpc services should jetsam after extensions */
8171 ntasks
= coalition_get_pid_list (leaders
[i
].msi_coal
, COALITION_ROLEMASK_XPC
,
8172 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
8175 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
8176 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
8179 /* extensions should jetsam after unmarked processes */
8180 ntasks
= coalition_get_pid_list (leaders
[i
].msi_coal
, COALITION_ROLEMASK_EXT
,
8181 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
8184 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
8185 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
8188 /* undefined coalition members should be the first to jetsam */
8189 ntasks
= coalition_get_pid_list (leaders
[i
].msi_coal
, COALITION_ROLEMASK_UNDEF
,
8190 coal_sort_order
, pid_list
, MAX_SORT_PIDS
);
8193 pids_moved
+= memorystatus_move_list_locked(bucket_index
, pid_list
,
8194 (ntasks
<= MAX_SORT_PIDS
? ntasks
: MAX_SORT_PIDS
));
8198 if (pids_moved
== leaders
[i
].msi_ntasks
) {
8200 * All the pids in the coalition were found in this band.
8202 printf("%s: pids_moved[%d] equal total coalition ntasks[%d] \n", __FUNCTION__
,
8203 pids_moved
, leaders
[i
].msi_ntasks
);
8204 } else if (pids_moved
> leaders
[i
].msi_ntasks
) {
8206 * Apparently new coalition members showed up during the sort?
8208 printf("%s: pids_moved[%d] were greater than expected coalition ntasks[%d] \n", __FUNCTION__
,
8209 pids_moved
, leaders
[i
].msi_ntasks
);
8212 * Apparently not all the pids in the coalition were found in this band?
8214 printf("%s: pids_moved[%d] were less than expected coalition ntasks[%d] \n", __FUNCTION__
,
8215 pids_moved
, leaders
[i
].msi_ntasks
);
8219 total_pids_moved
+= pids_moved
;
8223 return(total_pids_moved
);
8228 * Traverse a list of pids, searching for each within the priority band provided.
8229 * If pid is found, move it to the front of the priority band.
8230 * Never searches outside the priority band provided.
8233 * bucket_index - jetsam priority band.
8234 * pid_list - pointer to a list of pids.
8235 * list_sz - number of pids in the list.
8237 * Pid list ordering is important in that,
8238 * pid_list[n] is expected to jetsam ahead of pid_list[n+1].
8239 * The sort_order is set by the coalition default.
8242 * the number of pids found and hence moved within the priority band.
8245 memorystatus_move_list_locked(unsigned int bucket_index
, pid_t
*pid_list
, int list_sz
)
8247 memstat_bucket_t
*current_bucket
;
8251 if ((pid_list
== NULL
) || (list_sz
<= 0)) {
8255 if (bucket_index
>= MEMSTAT_BUCKET_COUNT
) {
8259 current_bucket
= &memstat_bucket
[bucket_index
];
8260 for (i
=0; i
< list_sz
; i
++) {
8261 unsigned int b
= bucket_index
;
8263 proc_t aProc
= NULL
;
8267 list_index
= ((list_sz
- 1) - i
);
8268 aPid
= pid_list
[list_index
];
8270 /* never search beyond bucket_index provided */
8271 p
= memorystatus_get_first_proc_locked(&b
, FALSE
);
8273 if (p
->p_pid
== aPid
) {
8277 p
= memorystatus_get_next_proc_locked(&b
, p
, FALSE
);
8280 if (aProc
== NULL
) {
8281 /* pid not found in this band, just skip it */
8284 TAILQ_REMOVE(¤t_bucket
->list
, aProc
, p_memstat_list
);
8285 TAILQ_INSERT_HEAD(¤t_bucket
->list
, aProc
, p_memstat_list
);
8291 #endif /* CONFIG_JETSAM */