]> git.saurik.com Git - apple/xnu.git/blob - osfmk/vm/vm_pageout.c
xnu-1699.22.73.tar.gz
[apple/xnu.git] / osfmk / vm / vm_pageout.c
1 /*
2 * Copyright (c) 2000-2009 Apple Inc. All rights reserved.
3 *
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
14 *
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
17 *
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
25 *
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
27 */
28 /*
29 * @OSF_COPYRIGHT@
30 */
31 /*
32 * Mach Operating System
33 * Copyright (c) 1991,1990,1989,1988,1987 Carnegie Mellon University
34 * All Rights Reserved.
35 *
36 * Permission to use, copy, modify and distribute this software and its
37 * documentation is hereby granted, provided that both the copyright
38 * notice and this permission notice appear in all copies of the
39 * software, derivative works or modified versions, and any portions
40 * thereof, and that both notices appear in supporting documentation.
41 *
42 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
43 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR
44 * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
45 *
46 * Carnegie Mellon requests users of this software to return to
47 *
48 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
49 * School of Computer Science
50 * Carnegie Mellon University
51 * Pittsburgh PA 15213-3890
52 *
53 * any improvements or extensions that they make and grant Carnegie Mellon
54 * the rights to redistribute these changes.
55 */
56 /*
57 */
58 /*
59 * File: vm/vm_pageout.c
60 * Author: Avadis Tevanian, Jr., Michael Wayne Young
61 * Date: 1985
62 *
63 * The proverbial page-out daemon.
64 */
65
66 #include <stdint.h>
67
68 #include <debug.h>
69 #include <mach_pagemap.h>
70 #include <mach_cluster_stats.h>
71 #include <mach_kdb.h>
72 #include <advisory_pageout.h>
73
74 #include <mach/mach_types.h>
75 #include <mach/memory_object.h>
76 #include <mach/memory_object_default.h>
77 #include <mach/memory_object_control_server.h>
78 #include <mach/mach_host_server.h>
79 #include <mach/upl.h>
80 #include <mach/vm_map.h>
81 #include <mach/vm_param.h>
82 #include <mach/vm_statistics.h>
83 #include <mach/sdt.h>
84
85 #include <kern/kern_types.h>
86 #include <kern/counters.h>
87 #include <kern/host_statistics.h>
88 #include <kern/machine.h>
89 #include <kern/misc_protos.h>
90 #include <kern/sched.h>
91 #include <kern/thread.h>
92 #include <kern/xpr.h>
93 #include <kern/kalloc.h>
94
95 #include <machine/vm_tuning.h>
96 #include <machine/commpage.h>
97
98 #include <sys/kern_memorystatus.h>
99
100 #include <vm/pmap.h>
101 #include <vm/vm_fault.h>
102 #include <vm/vm_map.h>
103 #include <vm/vm_object.h>
104 #include <vm/vm_page.h>
105 #include <vm/vm_pageout.h>
106 #include <vm/vm_protos.h> /* must be last */
107 #include <vm/memory_object.h>
108 #include <vm/vm_purgeable_internal.h>
109 #include <vm/vm_shared_region.h>
110 /*
111 * ENCRYPTED SWAP:
112 */
113 #include <../bsd/crypto/aes/aes.h>
114 extern u_int32_t random(void); /* from <libkern/libkern.h> */
115
116 #if UPL_DEBUG
117 #include <libkern/OSDebug.h>
118 #endif
119
120 extern void consider_pressure_events(void);
121
122 #ifndef VM_PAGEOUT_BURST_ACTIVE_THROTTLE /* maximum iterations of the active queue to move pages to inactive */
123 #define VM_PAGEOUT_BURST_ACTIVE_THROTTLE 100
124 #endif
125
126 #ifndef VM_PAGEOUT_BURST_INACTIVE_THROTTLE /* maximum iterations of the inactive queue w/o stealing/cleaning a page */
127 #ifdef CONFIG_EMBEDDED
128 #define VM_PAGEOUT_BURST_INACTIVE_THROTTLE 1024
129 #else
130 #define VM_PAGEOUT_BURST_INACTIVE_THROTTLE 4096
131 #endif
132 #endif
133
134 #ifndef VM_PAGEOUT_DEADLOCK_RELIEF
135 #define VM_PAGEOUT_DEADLOCK_RELIEF 100 /* number of pages to move to break deadlock */
136 #endif
137
138 #ifndef VM_PAGEOUT_INACTIVE_RELIEF
139 #define VM_PAGEOUT_INACTIVE_RELIEF 50 /* minimum number of pages to move to the inactive q */
140 #endif
141
142 #ifndef VM_PAGE_LAUNDRY_MAX
143 #define VM_PAGE_LAUNDRY_MAX 128UL /* maximum pageouts on a given pageout queue */
144 #endif /* VM_PAGEOUT_LAUNDRY_MAX */
145
146 #ifndef VM_PAGEOUT_BURST_WAIT
147 #define VM_PAGEOUT_BURST_WAIT 30 /* milliseconds */
148 #endif /* VM_PAGEOUT_BURST_WAIT */
149
150 #ifndef VM_PAGEOUT_EMPTY_WAIT
151 #define VM_PAGEOUT_EMPTY_WAIT 200 /* milliseconds */
152 #endif /* VM_PAGEOUT_EMPTY_WAIT */
153
154 #ifndef VM_PAGEOUT_DEADLOCK_WAIT
155 #define VM_PAGEOUT_DEADLOCK_WAIT 300 /* milliseconds */
156 #endif /* VM_PAGEOUT_DEADLOCK_WAIT */
157
158 #ifndef VM_PAGEOUT_IDLE_WAIT
159 #define VM_PAGEOUT_IDLE_WAIT 10 /* milliseconds */
160 #endif /* VM_PAGEOUT_IDLE_WAIT */
161
162 unsigned int vm_page_speculative_q_age_ms = VM_PAGE_SPECULATIVE_Q_AGE_MS;
163 unsigned int vm_page_speculative_percentage = 5;
164
165 #ifndef VM_PAGE_SPECULATIVE_TARGET
166 #define VM_PAGE_SPECULATIVE_TARGET(total) ((total) * 1 / (100 / vm_page_speculative_percentage))
167 #endif /* VM_PAGE_SPECULATIVE_TARGET */
168
169
170 #ifndef VM_PAGE_INACTIVE_HEALTHY_LIMIT
171 #define VM_PAGE_INACTIVE_HEALTHY_LIMIT(total) ((total) * 1 / 200)
172 #endif /* VM_PAGE_INACTIVE_HEALTHY_LIMIT */
173
174
175 /*
176 * To obtain a reasonable LRU approximation, the inactive queue
177 * needs to be large enough to give pages on it a chance to be
178 * referenced a second time. This macro defines the fraction
179 * of active+inactive pages that should be inactive.
180 * The pageout daemon uses it to update vm_page_inactive_target.
181 *
182 * If vm_page_free_count falls below vm_page_free_target and
183 * vm_page_inactive_count is below vm_page_inactive_target,
184 * then the pageout daemon starts running.
185 */
186
187 #ifndef VM_PAGE_INACTIVE_TARGET
188 #define VM_PAGE_INACTIVE_TARGET(avail) ((avail) * 1 / 3)
189 #endif /* VM_PAGE_INACTIVE_TARGET */
190
191 /*
192 * Once the pageout daemon starts running, it keeps going
193 * until vm_page_free_count meets or exceeds vm_page_free_target.
194 */
195
196 #ifndef VM_PAGE_FREE_TARGET
197 #ifdef CONFIG_EMBEDDED
198 #define VM_PAGE_FREE_TARGET(free) (15 + (free) / 100)
199 #else
200 #define VM_PAGE_FREE_TARGET(free) (15 + (free) / 80)
201 #endif
202 #endif /* VM_PAGE_FREE_TARGET */
203
204 /*
205 * The pageout daemon always starts running once vm_page_free_count
206 * falls below vm_page_free_min.
207 */
208
209 #ifndef VM_PAGE_FREE_MIN
210 #ifdef CONFIG_EMBEDDED
211 #define VM_PAGE_FREE_MIN(free) (10 + (free) / 200)
212 #else
213 #define VM_PAGE_FREE_MIN(free) (10 + (free) / 100)
214 #endif
215 #endif /* VM_PAGE_FREE_MIN */
216
217 #define VM_PAGE_FREE_RESERVED_LIMIT 100
218 #define VM_PAGE_FREE_MIN_LIMIT 1500
219 #define VM_PAGE_FREE_TARGET_LIMIT 2000
220
221
222 /*
223 * When vm_page_free_count falls below vm_page_free_reserved,
224 * only vm-privileged threads can allocate pages. vm-privilege
225 * allows the pageout daemon and default pager (and any other
226 * associated threads needed for default pageout) to continue
227 * operation by dipping into the reserved pool of pages.
228 */
229
230 #ifndef VM_PAGE_FREE_RESERVED
231 #define VM_PAGE_FREE_RESERVED(n) \
232 ((unsigned) (6 * VM_PAGE_LAUNDRY_MAX) + (n))
233 #endif /* VM_PAGE_FREE_RESERVED */
234
235 /*
236 * When we dequeue pages from the inactive list, they are
237 * reactivated (ie, put back on the active queue) if referenced.
238 * However, it is possible to starve the free list if other
239 * processors are referencing pages faster than we can turn off
240 * the referenced bit. So we limit the number of reactivations
241 * we will make per call of vm_pageout_scan().
242 */
243 #define VM_PAGE_REACTIVATE_LIMIT_MAX 20000
244 #ifndef VM_PAGE_REACTIVATE_LIMIT
245 #ifdef CONFIG_EMBEDDED
246 #define VM_PAGE_REACTIVATE_LIMIT(avail) (VM_PAGE_INACTIVE_TARGET(avail) / 2)
247 #else
248 #define VM_PAGE_REACTIVATE_LIMIT(avail) (MAX((avail) * 1 / 20,VM_PAGE_REACTIVATE_LIMIT_MAX))
249 #endif
250 #endif /* VM_PAGE_REACTIVATE_LIMIT */
251 #define VM_PAGEOUT_INACTIVE_FORCE_RECLAIM 100
252
253
254 /*
255 * Exported variable used to broadcast the activation of the pageout scan
256 * Working Set uses this to throttle its use of pmap removes. In this
257 * way, code which runs within memory in an uncontested context does
258 * not keep encountering soft faults.
259 */
260
261 unsigned int vm_pageout_scan_event_counter = 0;
262
263 /*
264 * Forward declarations for internal routines.
265 */
266
267 static void vm_pageout_garbage_collect(int);
268 static void vm_pageout_iothread_continue(struct vm_pageout_queue *);
269 static void vm_pageout_iothread_external(void);
270 static void vm_pageout_iothread_internal(void);
271
272 extern void vm_pageout_continue(void);
273 extern void vm_pageout_scan(void);
274
275 static thread_t vm_pageout_external_iothread = THREAD_NULL;
276 static thread_t vm_pageout_internal_iothread = THREAD_NULL;
277
278 unsigned int vm_pageout_reserved_internal = 0;
279 unsigned int vm_pageout_reserved_really = 0;
280
281 unsigned int vm_pageout_idle_wait = 0; /* milliseconds */
282 unsigned int vm_pageout_empty_wait = 0; /* milliseconds */
283 unsigned int vm_pageout_burst_wait = 0; /* milliseconds */
284 unsigned int vm_pageout_deadlock_wait = 0; /* milliseconds */
285 unsigned int vm_pageout_deadlock_relief = 0;
286 unsigned int vm_pageout_inactive_relief = 0;
287 unsigned int vm_pageout_burst_active_throttle = 0;
288 unsigned int vm_pageout_burst_inactive_throttle = 0;
289
290 int vm_upl_wait_for_pages = 0;
291
292 /*
293 * Protection against zero fill flushing live working sets derived
294 * from existing backing store and files
295 */
296 unsigned int vm_accellerate_zf_pageout_trigger = 400;
297 unsigned int zf_queue_min_count = 100;
298 unsigned int vm_zf_queue_count = 0;
299
300 uint64_t vm_zf_count __attribute__((aligned(8))) = 0;
301
302 /*
303 * These variables record the pageout daemon's actions:
304 * how many pages it looks at and what happens to those pages.
305 * No locking needed because only one thread modifies the variables.
306 */
307
308 unsigned int vm_pageout_active = 0; /* debugging */
309 unsigned int vm_pageout_active_busy = 0; /* debugging */
310 unsigned int vm_pageout_inactive = 0; /* debugging */
311 unsigned int vm_pageout_inactive_throttled = 0; /* debugging */
312 unsigned int vm_pageout_inactive_forced = 0; /* debugging */
313 unsigned int vm_pageout_inactive_nolock = 0; /* debugging */
314 unsigned int vm_pageout_inactive_avoid = 0; /* debugging */
315 unsigned int vm_pageout_inactive_busy = 0; /* debugging */
316 unsigned int vm_pageout_inactive_error = 0; /* debugging */
317 unsigned int vm_pageout_inactive_absent = 0; /* debugging */
318 unsigned int vm_pageout_inactive_notalive = 0; /* debugging */
319 unsigned int vm_pageout_inactive_used = 0; /* debugging */
320 unsigned int vm_pageout_cache_evicted = 0; /* debugging */
321 unsigned int vm_pageout_inactive_clean = 0; /* debugging */
322 unsigned int vm_pageout_speculative_clean = 0; /* debugging */
323 unsigned int vm_pageout_inactive_dirty_internal = 0; /* debugging */
324 unsigned int vm_pageout_inactive_dirty_external = 0; /* debugging */
325 unsigned int vm_pageout_inactive_deactivated = 0; /* debugging */
326 unsigned int vm_pageout_inactive_zf = 0; /* debugging */
327 unsigned int vm_pageout_dirty_no_pager = 0; /* debugging */
328 unsigned int vm_pageout_purged_objects = 0; /* debugging */
329 unsigned int vm_stat_discard = 0; /* debugging */
330 unsigned int vm_stat_discard_sent = 0; /* debugging */
331 unsigned int vm_stat_discard_failure = 0; /* debugging */
332 unsigned int vm_stat_discard_throttle = 0; /* debugging */
333 unsigned int vm_pageout_reactivation_limit_exceeded = 0; /* debugging */
334 unsigned int vm_pageout_catch_ups = 0; /* debugging */
335 unsigned int vm_pageout_inactive_force_reclaim = 0; /* debugging */
336
337 unsigned int vm_pageout_scan_reclaimed_throttled = 0;
338 unsigned int vm_pageout_scan_active_throttled = 0;
339 unsigned int vm_pageout_scan_inactive_throttled_internal = 0;
340 unsigned int vm_pageout_scan_inactive_throttled_external = 0;
341 unsigned int vm_pageout_scan_throttle = 0; /* debugging */
342 unsigned int vm_pageout_scan_throttle_aborted = 0; /* debugging */
343 unsigned int vm_pageout_scan_burst_throttle = 0; /* debugging */
344 unsigned int vm_pageout_scan_empty_throttle = 0; /* debugging */
345 unsigned int vm_pageout_scan_deadlock_detected = 0; /* debugging */
346 unsigned int vm_pageout_scan_active_throttle_success = 0; /* debugging */
347 unsigned int vm_pageout_scan_inactive_throttle_success = 0; /* debugging */
348 unsigned int vm_pageout_inactive_external_forced_reactivate_count = 0; /* debugging */
349 unsigned int vm_page_speculative_count_drifts = 0;
350 unsigned int vm_page_speculative_count_drift_max = 0;
351
352 /*
353 * Backing store throttle when BS is exhausted
354 */
355 unsigned int vm_backing_store_low = 0;
356
357 unsigned int vm_pageout_out_of_line = 0;
358 unsigned int vm_pageout_in_place = 0;
359
360 unsigned int vm_page_steal_pageout_page = 0;
361
362 /*
363 * ENCRYPTED SWAP:
364 * counters and statistics...
365 */
366 unsigned long vm_page_decrypt_counter = 0;
367 unsigned long vm_page_decrypt_for_upl_counter = 0;
368 unsigned long vm_page_encrypt_counter = 0;
369 unsigned long vm_page_encrypt_abort_counter = 0;
370 unsigned long vm_page_encrypt_already_encrypted_counter = 0;
371 boolean_t vm_pages_encrypted = FALSE; /* are there encrypted pages ? */
372
373 struct vm_pageout_queue vm_pageout_queue_internal;
374 struct vm_pageout_queue vm_pageout_queue_external;
375
376 unsigned int vm_page_speculative_target = 0;
377
378 vm_object_t vm_pageout_scan_wants_object = VM_OBJECT_NULL;
379
380 boolean_t (* volatile consider_buffer_cache_collect)(int) = NULL;
381
382 #if DEVELOPMENT || DEBUG
383 unsigned long vm_cs_validated_resets = 0;
384 #endif
385
386 int vm_debug_events = 0;
387
388
389 /*
390 * Routine: vm_backing_store_disable
391 * Purpose:
392 * Suspend non-privileged threads wishing to extend
393 * backing store when we are low on backing store
394 * (Synchronized by caller)
395 */
396 void
397 vm_backing_store_disable(
398 boolean_t disable)
399 {
400 if(disable) {
401 vm_backing_store_low = 1;
402 } else {
403 if(vm_backing_store_low) {
404 vm_backing_store_low = 0;
405 thread_wakeup((event_t) &vm_backing_store_low);
406 }
407 }
408 }
409
410
411 #if MACH_CLUSTER_STATS
412 unsigned long vm_pageout_cluster_dirtied = 0;
413 unsigned long vm_pageout_cluster_cleaned = 0;
414 unsigned long vm_pageout_cluster_collisions = 0;
415 unsigned long vm_pageout_cluster_clusters = 0;
416 unsigned long vm_pageout_cluster_conversions = 0;
417 unsigned long vm_pageout_target_collisions = 0;
418 unsigned long vm_pageout_target_page_dirtied = 0;
419 unsigned long vm_pageout_target_page_freed = 0;
420 #define CLUSTER_STAT(clause) clause
421 #else /* MACH_CLUSTER_STATS */
422 #define CLUSTER_STAT(clause)
423 #endif /* MACH_CLUSTER_STATS */
424
425 /*
426 * Routine: vm_pageout_object_terminate
427 * Purpose:
428 * Destroy the pageout_object, and perform all of the
429 * required cleanup actions.
430 *
431 * In/Out conditions:
432 * The object must be locked, and will be returned locked.
433 */
434 void
435 vm_pageout_object_terminate(
436 vm_object_t object)
437 {
438 vm_object_t shadow_object;
439
440 /*
441 * Deal with the deallocation (last reference) of a pageout object
442 * (used for cleaning-in-place) by dropping the paging references/
443 * freeing pages in the original object.
444 */
445
446 assert(object->pageout);
447 shadow_object = object->shadow;
448 vm_object_lock(shadow_object);
449
450 while (!queue_empty(&object->memq)) {
451 vm_page_t p, m;
452 vm_object_offset_t offset;
453
454 p = (vm_page_t) queue_first(&object->memq);
455
456 assert(p->private);
457 assert(p->pageout);
458 p->pageout = FALSE;
459 assert(!p->cleaning);
460
461 offset = p->offset;
462 VM_PAGE_FREE(p);
463 p = VM_PAGE_NULL;
464
465 m = vm_page_lookup(shadow_object,
466 offset + object->vo_shadow_offset);
467
468 if(m == VM_PAGE_NULL)
469 continue;
470 assert(m->cleaning);
471 /* used as a trigger on upl_commit etc to recognize the */
472 /* pageout daemon's subseqent desire to pageout a cleaning */
473 /* page. When the bit is on the upl commit code will */
474 /* respect the pageout bit in the target page over the */
475 /* caller's page list indication */
476 m->dump_cleaning = FALSE;
477
478 assert((m->dirty) || (m->precious) ||
479 (m->busy && m->cleaning));
480
481 /*
482 * Handle the trusted pager throttle.
483 * Also decrement the burst throttle (if external).
484 */
485 vm_page_lock_queues();
486 if (m->laundry) {
487 vm_pageout_throttle_up(m);
488 }
489
490 /*
491 * Handle the "target" page(s). These pages are to be freed if
492 * successfully cleaned. Target pages are always busy, and are
493 * wired exactly once. The initial target pages are not mapped,
494 * (so cannot be referenced or modified) but converted target
495 * pages may have been modified between the selection as an
496 * adjacent page and conversion to a target.
497 */
498 if (m->pageout) {
499 assert(m->busy);
500 assert(m->wire_count == 1);
501 m->cleaning = FALSE;
502 m->encrypted_cleaning = FALSE;
503 m->pageout = FALSE;
504 #if MACH_CLUSTER_STATS
505 if (m->wanted) vm_pageout_target_collisions++;
506 #endif
507 /*
508 * Revoke all access to the page. Since the object is
509 * locked, and the page is busy, this prevents the page
510 * from being dirtied after the pmap_disconnect() call
511 * returns.
512 *
513 * Since the page is left "dirty" but "not modifed", we
514 * can detect whether the page was redirtied during
515 * pageout by checking the modify state.
516 */
517 if (pmap_disconnect(m->phys_page) & VM_MEM_MODIFIED)
518 m->dirty = TRUE;
519 else
520 m->dirty = FALSE;
521
522 if (m->dirty) {
523 CLUSTER_STAT(vm_pageout_target_page_dirtied++;)
524 vm_page_unwire(m, TRUE); /* reactivates */
525 VM_STAT_INCR(reactivations);
526 PAGE_WAKEUP_DONE(m);
527 } else {
528 CLUSTER_STAT(vm_pageout_target_page_freed++;)
529 vm_page_free(m);/* clears busy, etc. */
530 }
531 vm_page_unlock_queues();
532 continue;
533 }
534 /*
535 * Handle the "adjacent" pages. These pages were cleaned in
536 * place, and should be left alone.
537 * If prep_pin_count is nonzero, then someone is using the
538 * page, so make it active.
539 */
540 if (!m->active && !m->inactive && !m->throttled && !m->private) {
541 if (m->reference)
542 vm_page_activate(m);
543 else
544 vm_page_deactivate(m);
545 }
546 if (m->overwriting) {
547 /*
548 * the (COPY_OUT_FROM == FALSE) request_page_list case
549 */
550 if (m->busy) {
551 /*
552 * We do not re-set m->dirty !
553 * The page was busy so no extraneous activity
554 * could have occurred. COPY_INTO is a read into the
555 * new pages. CLEAN_IN_PLACE does actually write
556 * out the pages but handling outside of this code
557 * will take care of resetting dirty. We clear the
558 * modify however for the Programmed I/O case.
559 */
560 pmap_clear_modify(m->phys_page);
561
562 m->busy = FALSE;
563 m->absent = FALSE;
564 } else {
565 /*
566 * alternate (COPY_OUT_FROM == FALSE) request_page_list case
567 * Occurs when the original page was wired
568 * at the time of the list request
569 */
570 assert(VM_PAGE_WIRED(m));
571 vm_page_unwire(m, TRUE); /* reactivates */
572 }
573 m->overwriting = FALSE;
574 } else {
575 /*
576 * Set the dirty state according to whether or not the page was
577 * modified during the pageout. Note that we purposefully do
578 * NOT call pmap_clear_modify since the page is still mapped.
579 * If the page were to be dirtied between the 2 calls, this
580 * this fact would be lost. This code is only necessary to
581 * maintain statistics, since the pmap module is always
582 * consulted if m->dirty is false.
583 */
584 #if MACH_CLUSTER_STATS
585 m->dirty = pmap_is_modified(m->phys_page);
586
587 if (m->dirty) vm_pageout_cluster_dirtied++;
588 else vm_pageout_cluster_cleaned++;
589 if (m->wanted) vm_pageout_cluster_collisions++;
590 #else
591 m->dirty = 0;
592 #endif
593 }
594 if (m->encrypted_cleaning == TRUE) {
595 m->encrypted_cleaning = FALSE;
596 m->busy = FALSE;
597 }
598 m->cleaning = FALSE;
599
600 /*
601 * Wakeup any thread waiting for the page to be un-cleaning.
602 */
603 PAGE_WAKEUP(m);
604 vm_page_unlock_queues();
605 }
606 /*
607 * Account for the paging reference taken in vm_paging_object_allocate.
608 */
609 vm_object_activity_end(shadow_object);
610 vm_object_unlock(shadow_object);
611
612 assert(object->ref_count == 0);
613 assert(object->paging_in_progress == 0);
614 assert(object->activity_in_progress == 0);
615 assert(object->resident_page_count == 0);
616 return;
617 }
618
619 /*
620 * Routine: vm_pageclean_setup
621 *
622 * Purpose: setup a page to be cleaned (made non-dirty), but not
623 * necessarily flushed from the VM page cache.
624 * This is accomplished by cleaning in place.
625 *
626 * The page must not be busy, and new_object
627 * must be locked.
628 *
629 */
630 void
631 vm_pageclean_setup(
632 vm_page_t m,
633 vm_page_t new_m,
634 vm_object_t new_object,
635 vm_object_offset_t new_offset)
636 {
637 assert(!m->busy);
638 #if 0
639 assert(!m->cleaning);
640 #endif
641
642 XPR(XPR_VM_PAGEOUT,
643 "vm_pageclean_setup, obj 0x%X off 0x%X page 0x%X new 0x%X new_off 0x%X\n",
644 m->object, m->offset, m,
645 new_m, new_offset);
646
647 pmap_clear_modify(m->phys_page);
648
649 /*
650 * Mark original page as cleaning in place.
651 */
652 m->cleaning = TRUE;
653 m->dirty = TRUE;
654 m->precious = FALSE;
655
656 /*
657 * Convert the fictitious page to a private shadow of
658 * the real page.
659 */
660 assert(new_m->fictitious);
661 assert(new_m->phys_page == vm_page_fictitious_addr);
662 new_m->fictitious = FALSE;
663 new_m->private = TRUE;
664 new_m->pageout = TRUE;
665 new_m->phys_page = m->phys_page;
666
667 vm_page_lockspin_queues();
668 vm_page_wire(new_m);
669 vm_page_unlock_queues();
670
671 vm_page_insert(new_m, new_object, new_offset);
672 assert(!new_m->wanted);
673 new_m->busy = FALSE;
674 }
675
676 /*
677 * Routine: vm_pageout_initialize_page
678 * Purpose:
679 * Causes the specified page to be initialized in
680 * the appropriate memory object. This routine is used to push
681 * pages into a copy-object when they are modified in the
682 * permanent object.
683 *
684 * The page is moved to a temporary object and paged out.
685 *
686 * In/out conditions:
687 * The page in question must not be on any pageout queues.
688 * The object to which it belongs must be locked.
689 * The page must be busy, but not hold a paging reference.
690 *
691 * Implementation:
692 * Move this page to a completely new object.
693 */
694 void
695 vm_pageout_initialize_page(
696 vm_page_t m)
697 {
698 vm_object_t object;
699 vm_object_offset_t paging_offset;
700 vm_page_t holding_page;
701 memory_object_t pager;
702
703 XPR(XPR_VM_PAGEOUT,
704 "vm_pageout_initialize_page, page 0x%X\n",
705 m, 0, 0, 0, 0);
706 assert(m->busy);
707
708 /*
709 * Verify that we really want to clean this page
710 */
711 assert(!m->absent);
712 assert(!m->error);
713 assert(m->dirty);
714
715 /*
716 * Create a paging reference to let us play with the object.
717 */
718 object = m->object;
719 paging_offset = m->offset + object->paging_offset;
720
721 if (m->absent || m->error || m->restart || (!m->dirty && !m->precious)) {
722 VM_PAGE_FREE(m);
723 panic("reservation without pageout?"); /* alan */
724 vm_object_unlock(object);
725
726 return;
727 }
728
729 /*
730 * If there's no pager, then we can't clean the page. This should
731 * never happen since this should be a copy object and therefore not
732 * an external object, so the pager should always be there.
733 */
734
735 pager = object->pager;
736
737 if (pager == MEMORY_OBJECT_NULL) {
738 VM_PAGE_FREE(m);
739 panic("missing pager for copy object");
740 return;
741 }
742
743 /* set the page for future call to vm_fault_list_request */
744 vm_object_paging_begin(object);
745 holding_page = NULL;
746
747 pmap_clear_modify(m->phys_page);
748 m->dirty = TRUE;
749 m->busy = TRUE;
750 m->list_req_pending = TRUE;
751 m->cleaning = TRUE;
752 m->pageout = TRUE;
753
754 vm_page_lockspin_queues();
755 vm_page_wire(m);
756 vm_page_unlock_queues();
757
758 vm_object_unlock(object);
759
760 /*
761 * Write the data to its pager.
762 * Note that the data is passed by naming the new object,
763 * not a virtual address; the pager interface has been
764 * manipulated to use the "internal memory" data type.
765 * [The object reference from its allocation is donated
766 * to the eventual recipient.]
767 */
768 memory_object_data_initialize(pager, paging_offset, PAGE_SIZE);
769
770 vm_object_lock(object);
771 vm_object_paging_end(object);
772 }
773
774 #if MACH_CLUSTER_STATS
775 #define MAXCLUSTERPAGES 16
776 struct {
777 unsigned long pages_in_cluster;
778 unsigned long pages_at_higher_offsets;
779 unsigned long pages_at_lower_offsets;
780 } cluster_stats[MAXCLUSTERPAGES];
781 #endif /* MACH_CLUSTER_STATS */
782
783
784 /*
785 * vm_pageout_cluster:
786 *
787 * Given a page, queue it to the appropriate I/O thread,
788 * which will page it out and attempt to clean adjacent pages
789 * in the same operation.
790 *
791 * The page must be busy, and the object and queues locked. We will take a
792 * paging reference to prevent deallocation or collapse when we
793 * release the object lock back at the call site. The I/O thread
794 * is responsible for consuming this reference
795 *
796 * The page must not be on any pageout queue.
797 */
798
799 void
800 vm_pageout_cluster(vm_page_t m)
801 {
802 vm_object_t object = m->object;
803 struct vm_pageout_queue *q;
804
805
806 XPR(XPR_VM_PAGEOUT,
807 "vm_pageout_cluster, object 0x%X offset 0x%X page 0x%X\n",
808 object, m->offset, m, 0, 0);
809
810 VM_PAGE_CHECK(m);
811 #if DEBUG
812 lck_mtx_assert(&vm_page_queue_lock, LCK_MTX_ASSERT_OWNED);
813 #endif
814 vm_object_lock_assert_exclusive(object);
815
816 /*
817 * Only a certain kind of page is appreciated here.
818 */
819 assert(m->busy && (m->dirty || m->precious) && (!VM_PAGE_WIRED(m)));
820 assert(!m->cleaning && !m->pageout);
821 #ifndef CONFIG_FREEZE
822 assert(!m->inactive && !m->active);
823 assert(!m->throttled);
824 #endif
825
826 /*
827 * protect the object from collapse -
828 * locking in the object's paging_offset.
829 */
830 vm_object_paging_begin(object);
831
832 /*
833 * set the page for future call to vm_fault_list_request
834 * page should already be marked busy
835 */
836 vm_page_wire(m);
837 m->list_req_pending = TRUE;
838 m->cleaning = TRUE;
839 m->pageout = TRUE;
840
841 if (object->internal == TRUE)
842 q = &vm_pageout_queue_internal;
843 else
844 q = &vm_pageout_queue_external;
845
846 /*
847 * pgo_laundry count is tied to the laundry bit
848 */
849 m->laundry = TRUE;
850 q->pgo_laundry++;
851
852 m->pageout_queue = TRUE;
853 queue_enter(&q->pgo_pending, m, vm_page_t, pageq);
854
855 if (q->pgo_idle == TRUE) {
856 q->pgo_idle = FALSE;
857 thread_wakeup((event_t) &q->pgo_pending);
858 }
859
860 VM_PAGE_CHECK(m);
861 }
862
863
864 unsigned long vm_pageout_throttle_up_count = 0;
865
866 /*
867 * A page is back from laundry or we are stealing it back from
868 * the laundering state. See if there are some pages waiting to
869 * go to laundry and if we can let some of them go now.
870 *
871 * Object and page queues must be locked.
872 */
873 void
874 vm_pageout_throttle_up(
875 vm_page_t m)
876 {
877 struct vm_pageout_queue *q;
878
879 assert(m->object != VM_OBJECT_NULL);
880 assert(m->object != kernel_object);
881
882 vm_pageout_throttle_up_count++;
883
884 if (m->object->internal == TRUE)
885 q = &vm_pageout_queue_internal;
886 else
887 q = &vm_pageout_queue_external;
888
889 if (m->pageout_queue == TRUE) {
890
891 queue_remove(&q->pgo_pending, m, vm_page_t, pageq);
892 m->pageout_queue = FALSE;
893
894 m->pageq.next = NULL;
895 m->pageq.prev = NULL;
896
897 vm_object_paging_end(m->object);
898 }
899
900 if ( m->laundry == TRUE ) {
901
902 m->laundry = FALSE;
903 q->pgo_laundry--;
904
905 if (q->pgo_throttled == TRUE) {
906 q->pgo_throttled = FALSE;
907 thread_wakeup((event_t) &q->pgo_laundry);
908 }
909 if (q->pgo_draining == TRUE && q->pgo_laundry == 0) {
910 q->pgo_draining = FALSE;
911 thread_wakeup((event_t) (&q->pgo_laundry+1));
912 }
913 }
914 }
915
916
917 /*
918 * VM memory pressure monitoring.
919 *
920 * vm_pageout_scan() keeps track of the number of pages it considers and
921 * reclaims, in the currently active vm_pageout_stat[vm_pageout_stat_now].
922 *
923 * compute_memory_pressure() is called every second from compute_averages()
924 * and moves "vm_pageout_stat_now" forward, to start accumulating the number
925 * of recalimed pages in a new vm_pageout_stat[] bucket.
926 *
927 * mach_vm_pressure_monitor() collects past statistics about memory pressure.
928 * The caller provides the number of seconds ("nsecs") worth of statistics
929 * it wants, up to 30 seconds.
930 * It computes the number of pages reclaimed in the past "nsecs" seconds and
931 * also returns the number of pages the system still needs to reclaim at this
932 * moment in time.
933 */
934 #define VM_PAGEOUT_STAT_SIZE 31
935 struct vm_pageout_stat {
936 unsigned int considered;
937 unsigned int reclaimed;
938 } vm_pageout_stats[VM_PAGEOUT_STAT_SIZE] = {{0,0}, };
939 unsigned int vm_pageout_stat_now = 0;
940 unsigned int vm_memory_pressure = 0;
941
942 #define VM_PAGEOUT_STAT_BEFORE(i) \
943 (((i) == 0) ? VM_PAGEOUT_STAT_SIZE - 1 : (i) - 1)
944 #define VM_PAGEOUT_STAT_AFTER(i) \
945 (((i) == VM_PAGEOUT_STAT_SIZE - 1) ? 0 : (i) + 1)
946
947 /*
948 * Called from compute_averages().
949 */
950 void
951 compute_memory_pressure(
952 __unused void *arg)
953 {
954 unsigned int vm_pageout_next;
955
956 vm_memory_pressure =
957 vm_pageout_stats[VM_PAGEOUT_STAT_BEFORE(vm_pageout_stat_now)].reclaimed;
958
959 commpage_set_memory_pressure( vm_memory_pressure );
960
961 /* move "now" forward */
962 vm_pageout_next = VM_PAGEOUT_STAT_AFTER(vm_pageout_stat_now);
963 vm_pageout_stats[vm_pageout_next].considered = 0;
964 vm_pageout_stats[vm_pageout_next].reclaimed = 0;
965 vm_pageout_stat_now = vm_pageout_next;
966 }
967
968 unsigned int
969 mach_vm_ctl_page_free_wanted(void)
970 {
971 unsigned int page_free_target, page_free_count, page_free_wanted;
972
973 page_free_target = vm_page_free_target;
974 page_free_count = vm_page_free_count;
975 if (page_free_target > page_free_count) {
976 page_free_wanted = page_free_target - page_free_count;
977 } else {
978 page_free_wanted = 0;
979 }
980
981 return page_free_wanted;
982 }
983
984 kern_return_t
985 mach_vm_pressure_monitor(
986 boolean_t wait_for_pressure,
987 unsigned int nsecs_monitored,
988 unsigned int *pages_reclaimed_p,
989 unsigned int *pages_wanted_p)
990 {
991 wait_result_t wr;
992 unsigned int vm_pageout_then, vm_pageout_now;
993 unsigned int pages_reclaimed;
994
995 /*
996 * We don't take the vm_page_queue_lock here because we don't want
997 * vm_pressure_monitor() to get in the way of the vm_pageout_scan()
998 * thread when it's trying to reclaim memory. We don't need fully
999 * accurate monitoring anyway...
1000 */
1001
1002 if (wait_for_pressure) {
1003 /* wait until there's memory pressure */
1004 while (vm_page_free_count >= vm_page_free_target) {
1005 wr = assert_wait((event_t) &vm_page_free_wanted,
1006 THREAD_INTERRUPTIBLE);
1007 if (wr == THREAD_WAITING) {
1008 wr = thread_block(THREAD_CONTINUE_NULL);
1009 }
1010 if (wr == THREAD_INTERRUPTED) {
1011 return KERN_ABORTED;
1012 }
1013 if (wr == THREAD_AWAKENED) {
1014 /*
1015 * The memory pressure might have already
1016 * been relieved but let's not block again
1017 * and let's report that there was memory
1018 * pressure at some point.
1019 */
1020 break;
1021 }
1022 }
1023 }
1024
1025 /* provide the number of pages the system wants to reclaim */
1026 if (pages_wanted_p != NULL) {
1027 *pages_wanted_p = mach_vm_ctl_page_free_wanted();
1028 }
1029
1030 if (pages_reclaimed_p == NULL) {
1031 return KERN_SUCCESS;
1032 }
1033
1034 /* provide number of pages reclaimed in the last "nsecs_monitored" */
1035 do {
1036 vm_pageout_now = vm_pageout_stat_now;
1037 pages_reclaimed = 0;
1038 for (vm_pageout_then =
1039 VM_PAGEOUT_STAT_BEFORE(vm_pageout_now);
1040 vm_pageout_then != vm_pageout_now &&
1041 nsecs_monitored-- != 0;
1042 vm_pageout_then =
1043 VM_PAGEOUT_STAT_BEFORE(vm_pageout_then)) {
1044 pages_reclaimed += vm_pageout_stats[vm_pageout_then].reclaimed;
1045 }
1046 } while (vm_pageout_now != vm_pageout_stat_now);
1047 *pages_reclaimed_p = pages_reclaimed;
1048
1049 return KERN_SUCCESS;
1050 }
1051
1052 /* Page States: Used below to maintain the page state
1053 before it's removed from it's Q. This saved state
1054 helps us do the right accounting in certain cases
1055 */
1056
1057 #define PAGE_STATE_SPECULATIVE 1
1058 #define PAGE_STATE_ZEROFILL 2
1059 #define PAGE_STATE_INACTIVE 3
1060 #define PAGE_STATE_INACTIVE_FIRST 4
1061
1062 #define VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m) \
1063 MACRO_BEGIN \
1064 /* \
1065 * If a "reusable" page somehow made it back into \
1066 * the active queue, it's been re-used and is not \
1067 * quite re-usable. \
1068 * If the VM object was "all_reusable", consider it \
1069 * as "all re-used" instead of converting it to \
1070 * "partially re-used", which could be expensive. \
1071 */ \
1072 if ((m)->reusable || \
1073 (m)->object->all_reusable) { \
1074 vm_object_reuse_pages((m)->object, \
1075 (m)->offset, \
1076 (m)->offset + PAGE_SIZE_64, \
1077 FALSE); \
1078 } \
1079 MACRO_END
1080
1081
1082 #define VM_PAGEOUT_DELAYED_UNLOCK_LIMIT 128
1083 #define VM_PAGEOUT_DELAYED_UNLOCK_LIMIT_MAX 1024
1084
1085 #define FCS_IDLE 0
1086 #define FCS_DELAYED 1
1087 #define FCS_DEADLOCK_DETECTED 2
1088
1089 struct flow_control {
1090 int state;
1091 mach_timespec_t ts;
1092 };
1093
1094
1095 /*
1096 * vm_pageout_scan does the dirty work for the pageout daemon.
1097 * It returns with vm_page_queue_free_lock held and
1098 * vm_page_free_wanted == 0.
1099 */
1100 void
1101 vm_pageout_scan(void)
1102 {
1103 unsigned int loop_count = 0;
1104 unsigned int inactive_burst_count = 0;
1105 unsigned int active_burst_count = 0;
1106 unsigned int reactivated_this_call;
1107 unsigned int reactivate_limit;
1108 vm_page_t local_freeq = NULL;
1109 int local_freed = 0;
1110 int delayed_unlock;
1111 int delayed_unlock_limit = 0;
1112 int refmod_state = 0;
1113 int vm_pageout_deadlock_target = 0;
1114 struct vm_pageout_queue *iq;
1115 struct vm_pageout_queue *eq;
1116 struct vm_speculative_age_q *sq;
1117 struct flow_control flow_control = { 0, { 0, 0 } };
1118 boolean_t inactive_throttled = FALSE;
1119 boolean_t try_failed;
1120 mach_timespec_t ts;
1121 unsigned int msecs = 0;
1122 vm_object_t object;
1123 vm_object_t last_object_tried;
1124 uint64_t zf_ratio;
1125 uint64_t zf_run_count;
1126 uint32_t catch_up_count = 0;
1127 uint32_t inactive_reclaim_run;
1128 boolean_t forced_reclaim;
1129 int page_prev_state = 0;
1130 int cache_evict_throttle = 0;
1131 uint32_t vm_pageout_inactive_external_forced_reactivate_limit = 0;
1132
1133 VM_DEBUG_EVENT(vm_pageout_scan, VM_PAGEOUT_SCAN, DBG_FUNC_START,
1134 vm_pageout_speculative_clean, vm_pageout_inactive_clean,
1135 vm_pageout_inactive_dirty_internal, vm_pageout_inactive_dirty_external);
1136
1137 flow_control.state = FCS_IDLE;
1138 iq = &vm_pageout_queue_internal;
1139 eq = &vm_pageout_queue_external;
1140 sq = &vm_page_queue_speculative[VM_PAGE_SPECULATIVE_AGED_Q];
1141
1142
1143 XPR(XPR_VM_PAGEOUT, "vm_pageout_scan\n", 0, 0, 0, 0, 0);
1144
1145
1146 vm_page_lock_queues();
1147 delayed_unlock = 1; /* must be nonzero if Qs are locked, 0 if unlocked */
1148
1149 /*
1150 * Calculate the max number of referenced pages on the inactive
1151 * queue that we will reactivate.
1152 */
1153 reactivated_this_call = 0;
1154 reactivate_limit = VM_PAGE_REACTIVATE_LIMIT(vm_page_active_count +
1155 vm_page_inactive_count);
1156 inactive_reclaim_run = 0;
1157
1158
1159 /*
1160 * We want to gradually dribble pages from the active queue
1161 * to the inactive queue. If we let the inactive queue get
1162 * very small, and then suddenly dump many pages into it,
1163 * those pages won't get a sufficient chance to be referenced
1164 * before we start taking them from the inactive queue.
1165 *
1166 * We must limit the rate at which we send pages to the pagers
1167 * so that we don't tie up too many pages in the I/O queues.
1168 * We implement a throttling mechanism using the laundry count
1169 * to limit the number of pages outstanding to the default
1170 * and external pagers. We can bypass the throttles and look
1171 * for clean pages if the pageout queues don't drain in a timely
1172 * fashion since this may indicate that the pageout paths are
1173 * stalled waiting for memory, which only we can provide.
1174 */
1175
1176
1177 Restart:
1178 assert(delayed_unlock!=0);
1179
1180 /*
1181 * A page is "zero-filled" if it was not paged in from somewhere,
1182 * and it belongs to an object at least VM_ZF_OBJECT_SIZE_THRESHOLD big.
1183 * Recalculate the zero-filled page ratio. We use this to apportion
1184 * victimized pages between the normal and zero-filled inactive
1185 * queues according to their relative abundance in memory. Thus if a task
1186 * is flooding memory with zf pages, we begin to hunt them down.
1187 * It would be better to throttle greedy tasks at a higher level,
1188 * but at the moment mach vm cannot do this.
1189 */
1190 {
1191 uint64_t total = vm_page_active_count + vm_page_inactive_count;
1192 uint64_t normal = total - vm_zf_count;
1193
1194 /* zf_ratio is the number of zf pages we victimize per normal page */
1195
1196 if (vm_zf_count < vm_accellerate_zf_pageout_trigger)
1197 zf_ratio = 0;
1198 else if ((vm_zf_count <= normal) || (normal == 0))
1199 zf_ratio = 1;
1200 else
1201 zf_ratio = vm_zf_count / normal;
1202
1203 zf_run_count = 0;
1204 }
1205
1206 /*
1207 * Recalculate vm_page_inactivate_target.
1208 */
1209 vm_page_inactive_target = VM_PAGE_INACTIVE_TARGET(vm_page_active_count +
1210 vm_page_inactive_count +
1211 vm_page_speculative_count);
1212 /*
1213 * don't want to wake the pageout_scan thread up everytime we fall below
1214 * the targets... set a low water mark at 0.25% below the target
1215 */
1216 vm_page_inactive_min = vm_page_inactive_target - (vm_page_inactive_target / 400);
1217
1218 if (vm_page_speculative_percentage > 50)
1219 vm_page_speculative_percentage = 50;
1220 else if (vm_page_speculative_percentage <= 0)
1221 vm_page_speculative_percentage = 1;
1222
1223 vm_page_speculative_target = VM_PAGE_SPECULATIVE_TARGET(vm_page_active_count +
1224 vm_page_inactive_count);
1225
1226 vm_pageout_inactive_external_forced_reactivate_limit = vm_page_active_count + vm_page_inactive_count;
1227
1228 object = NULL;
1229 last_object_tried = NULL;
1230 try_failed = FALSE;
1231
1232 if ((vm_page_inactive_count + vm_page_speculative_count) < VM_PAGE_INACTIVE_HEALTHY_LIMIT(vm_page_active_count))
1233 catch_up_count = vm_page_inactive_count + vm_page_speculative_count;
1234 else
1235 catch_up_count = 0;
1236
1237 for (;;) {
1238 vm_page_t m;
1239
1240 DTRACE_VM2(rev, int, 1, (uint64_t *), NULL);
1241
1242 if (delayed_unlock == 0) {
1243 vm_page_lock_queues();
1244 delayed_unlock = 1;
1245 }
1246 if (vm_upl_wait_for_pages < 0)
1247 vm_upl_wait_for_pages = 0;
1248
1249 delayed_unlock_limit = VM_PAGEOUT_DELAYED_UNLOCK_LIMIT + vm_upl_wait_for_pages;
1250
1251 if (delayed_unlock_limit > VM_PAGEOUT_DELAYED_UNLOCK_LIMIT_MAX)
1252 delayed_unlock_limit = VM_PAGEOUT_DELAYED_UNLOCK_LIMIT_MAX;
1253
1254 /*
1255 * Move pages from active to inactive if we're below the target
1256 */
1257 if ((vm_page_inactive_count + vm_page_speculative_count) >= vm_page_inactive_target)
1258 goto done_moving_active_pages;
1259
1260 if (object != NULL) {
1261 vm_object_unlock(object);
1262 object = NULL;
1263 vm_pageout_scan_wants_object = VM_OBJECT_NULL;
1264 }
1265 /*
1266 * Don't sweep through active queue more than the throttle
1267 * which should be kept relatively low
1268 */
1269 active_burst_count = MIN(vm_pageout_burst_active_throttle,
1270 vm_page_active_count);
1271
1272 VM_DEBUG_EVENT(vm_pageout_balance, VM_PAGEOUT_BALANCE, DBG_FUNC_START,
1273 vm_pageout_inactive, vm_pageout_inactive_used, vm_page_free_count, local_freed);
1274
1275 VM_DEBUG_EVENT(vm_pageout_balance, VM_PAGEOUT_BALANCE, DBG_FUNC_NONE,
1276 vm_pageout_speculative_clean, vm_pageout_inactive_clean,
1277 vm_pageout_inactive_dirty_internal, vm_pageout_inactive_dirty_external);
1278
1279 while (!queue_empty(&vm_page_queue_active) && active_burst_count--) {
1280
1281 vm_pageout_active++;
1282
1283 m = (vm_page_t) queue_first(&vm_page_queue_active);
1284
1285 assert(m->active && !m->inactive);
1286 assert(!m->laundry);
1287 assert(m->object != kernel_object);
1288 assert(m->phys_page != vm_page_guard_addr);
1289
1290 DTRACE_VM2(scan, int, 1, (uint64_t *), NULL);
1291
1292 /*
1293 * The page might be absent or busy,
1294 * but vm_page_deactivate can handle that.
1295 */
1296 vm_page_deactivate(m);
1297
1298 if (delayed_unlock++ > delayed_unlock_limit) {
1299
1300 if (local_freeq) {
1301 vm_page_unlock_queues();
1302
1303 VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_START,
1304 vm_page_free_count, local_freed, delayed_unlock_limit, 1);
1305
1306 vm_page_free_list(local_freeq, TRUE);
1307
1308 VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_END,
1309 vm_page_free_count, 0, 0, 1);
1310
1311 local_freeq = NULL;
1312 local_freed = 0;
1313 vm_page_lock_queues();
1314 } else
1315 lck_mtx_yield(&vm_page_queue_lock);
1316
1317 delayed_unlock = 1;
1318
1319 /*
1320 * continue the while loop processing
1321 * the active queue... need to hold
1322 * the page queues lock
1323 */
1324 }
1325 }
1326
1327 VM_DEBUG_EVENT(vm_pageout_balance, VM_PAGEOUT_BALANCE, DBG_FUNC_END,
1328 vm_page_active_count, vm_page_inactive_count, vm_page_speculative_count, vm_page_inactive_target);
1329
1330
1331 /**********************************************************************
1332 * above this point we're playing with the active queue
1333 * below this point we're playing with the throttling mechanisms
1334 * and the inactive queue
1335 **********************************************************************/
1336
1337 done_moving_active_pages:
1338
1339 if (vm_page_free_count + local_freed >= vm_page_free_target) {
1340 if (object != NULL) {
1341 vm_object_unlock(object);
1342 object = NULL;
1343 }
1344 vm_pageout_scan_wants_object = VM_OBJECT_NULL;
1345
1346 if (local_freeq) {
1347 vm_page_unlock_queues();
1348
1349 VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_START,
1350 vm_page_free_count, local_freed, delayed_unlock_limit, 2);
1351
1352 vm_page_free_list(local_freeq, TRUE);
1353
1354 VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_END,
1355 vm_page_free_count, local_freed, 0, 2);
1356
1357 local_freeq = NULL;
1358 local_freed = 0;
1359 vm_page_lock_queues();
1360 }
1361 /*
1362 * recalculate vm_page_inactivate_target
1363 */
1364 vm_page_inactive_target = VM_PAGE_INACTIVE_TARGET(vm_page_active_count +
1365 vm_page_inactive_count +
1366 vm_page_speculative_count);
1367 #ifndef CONFIG_EMBEDDED
1368 if (((vm_page_inactive_count + vm_page_speculative_count) < vm_page_inactive_target) &&
1369 !queue_empty(&vm_page_queue_active)) {
1370 /*
1371 * inactive target still not met... keep going
1372 * until we get the queues balanced...
1373 */
1374 continue;
1375 }
1376 #endif
1377 lck_mtx_lock(&vm_page_queue_free_lock);
1378
1379 if ((vm_page_free_count >= vm_page_free_target) &&
1380 (vm_page_free_wanted == 0) && (vm_page_free_wanted_privileged == 0)) {
1381 /*
1382 * done - we have met our target *and*
1383 * there is no one waiting for a page.
1384 */
1385 vm_page_unlock_queues();
1386
1387 thread_wakeup((event_t) &vm_pageout_garbage_collect);
1388
1389 assert(vm_pageout_scan_wants_object == VM_OBJECT_NULL);
1390
1391 VM_DEBUG_EVENT(vm_pageout_scan, VM_PAGEOUT_SCAN, DBG_FUNC_NONE,
1392 vm_pageout_inactive, vm_pageout_inactive_used, 0, 0);
1393 VM_DEBUG_EVENT(vm_pageout_scan, VM_PAGEOUT_SCAN, DBG_FUNC_END,
1394 vm_pageout_speculative_clean, vm_pageout_inactive_clean,
1395 vm_pageout_inactive_dirty_internal, vm_pageout_inactive_dirty_external);
1396
1397 return;
1398 }
1399 lck_mtx_unlock(&vm_page_queue_free_lock);
1400 }
1401
1402 /*
1403 * Before anything, we check if we have any ripe volatile
1404 * objects around. If so, try to purge the first object.
1405 * If the purge fails, fall through to reclaim a page instead.
1406 * If the purge succeeds, go back to the top and reevalute
1407 * the new memory situation.
1408 */
1409 assert (available_for_purge>=0);
1410 if (available_for_purge)
1411 {
1412 if (object != NULL) {
1413 vm_object_unlock(object);
1414 object = NULL;
1415 }
1416
1417 VM_DEBUG_EVENT(vm_pageout_purgeone, VM_PAGEOUT_PURGEONE, DBG_FUNC_START, vm_page_free_count, 0, 0, 0);
1418
1419 if (TRUE == vm_purgeable_object_purge_one()) {
1420
1421 VM_DEBUG_EVENT(vm_pageout_purgeone, VM_PAGEOUT_PURGEONE, DBG_FUNC_END, vm_page_free_count, 0, 0, 0);
1422
1423 continue;
1424 }
1425 VM_DEBUG_EVENT(vm_pageout_purgeone, VM_PAGEOUT_PURGEONE, DBG_FUNC_END, 0, 0, 0, -1);
1426 }
1427 if (queue_empty(&sq->age_q) && vm_page_speculative_count) {
1428 /*
1429 * try to pull pages from the aging bins...
1430 * see vm_page.h for an explanation of how
1431 * this mechanism works
1432 */
1433 struct vm_speculative_age_q *aq;
1434 mach_timespec_t ts_fully_aged;
1435 boolean_t can_steal = FALSE;
1436 int num_scanned_queues;
1437
1438 aq = &vm_page_queue_speculative[speculative_steal_index];
1439
1440 num_scanned_queues = 0;
1441 while (queue_empty(&aq->age_q) &&
1442 num_scanned_queues++ != VM_PAGE_MAX_SPECULATIVE_AGE_Q) {
1443
1444 speculative_steal_index++;
1445
1446 if (speculative_steal_index > VM_PAGE_MAX_SPECULATIVE_AGE_Q)
1447 speculative_steal_index = VM_PAGE_MIN_SPECULATIVE_AGE_Q;
1448
1449 aq = &vm_page_queue_speculative[speculative_steal_index];
1450 }
1451
1452 if (num_scanned_queues == VM_PAGE_MAX_SPECULATIVE_AGE_Q + 1) {
1453 /*
1454 * XXX We've scanned all the speculative
1455 * queues but still haven't found one
1456 * that is not empty, even though
1457 * vm_page_speculative_count is not 0.
1458 *
1459 * report the anomaly...
1460 */
1461 printf("vm_pageout_scan: "
1462 "all speculative queues empty "
1463 "but count=%d. Re-adjusting.\n",
1464 vm_page_speculative_count);
1465 if (vm_page_speculative_count > vm_page_speculative_count_drift_max)
1466 vm_page_speculative_count_drift_max = vm_page_speculative_count;
1467 vm_page_speculative_count_drifts++;
1468 #if 6553678
1469 Debugger("vm_pageout_scan: no speculative pages");
1470 #endif
1471 /* readjust... */
1472 vm_page_speculative_count = 0;
1473 /* ... and continue */
1474 continue;
1475 }
1476
1477 if (vm_page_speculative_count > vm_page_speculative_target)
1478 can_steal = TRUE;
1479 else {
1480 ts_fully_aged.tv_sec = (VM_PAGE_MAX_SPECULATIVE_AGE_Q * vm_page_speculative_q_age_ms) / 1000;
1481 ts_fully_aged.tv_nsec = ((VM_PAGE_MAX_SPECULATIVE_AGE_Q * vm_page_speculative_q_age_ms) % 1000)
1482 * 1000 * NSEC_PER_USEC;
1483
1484 ADD_MACH_TIMESPEC(&ts_fully_aged, &aq->age_ts);
1485
1486 clock_sec_t sec;
1487 clock_nsec_t nsec;
1488 clock_get_system_nanotime(&sec, &nsec);
1489 ts.tv_sec = (unsigned int) sec;
1490 ts.tv_nsec = nsec;
1491
1492 if (CMP_MACH_TIMESPEC(&ts, &ts_fully_aged) >= 0)
1493 can_steal = TRUE;
1494 }
1495 if (can_steal == TRUE)
1496 vm_page_speculate_ageit(aq);
1497 }
1498 if (queue_empty(&sq->age_q) && cache_evict_throttle == 0) {
1499 int pages_evicted;
1500
1501 if (object != NULL) {
1502 vm_object_unlock(object);
1503 object = NULL;
1504 }
1505 pages_evicted = vm_object_cache_evict(100, 10);
1506
1507 if (pages_evicted) {
1508
1509 vm_pageout_cache_evicted += pages_evicted;
1510
1511 VM_DEBUG_EVENT(vm_pageout_cache_evict, VM_PAGEOUT_CACHE_EVICT, DBG_FUNC_NONE,
1512 vm_page_free_count, pages_evicted, vm_pageout_cache_evicted, 0);
1513
1514 /*
1515 * we just freed up to 100 pages,
1516 * so go back to the top of the main loop
1517 * and re-evaulate the memory situation
1518 */
1519 continue;
1520 } else
1521 cache_evict_throttle = 100;
1522 }
1523 if (cache_evict_throttle)
1524 cache_evict_throttle--;
1525
1526
1527 /*
1528 * Sometimes we have to pause:
1529 * 1) No inactive pages - nothing to do.
1530 * 2) Flow control - default pageout queue is full
1531 * 3) Loop control - no acceptable pages found on the inactive queue
1532 * within the last vm_pageout_burst_inactive_throttle iterations
1533 */
1534 if (queue_empty(&vm_page_queue_inactive) && queue_empty(&vm_page_queue_zf) && queue_empty(&sq->age_q)) {
1535 vm_pageout_scan_empty_throttle++;
1536 msecs = vm_pageout_empty_wait;
1537 goto vm_pageout_scan_delay;
1538
1539 } else if (inactive_burst_count >=
1540 MIN(vm_pageout_burst_inactive_throttle,
1541 (vm_page_inactive_count +
1542 vm_page_speculative_count))) {
1543 vm_pageout_scan_burst_throttle++;
1544 msecs = vm_pageout_burst_wait;
1545 goto vm_pageout_scan_delay;
1546
1547 } else if (VM_PAGE_Q_THROTTLED(iq) &&
1548 VM_DYNAMIC_PAGING_ENABLED(memory_manager_default)) {
1549 clock_sec_t sec;
1550 clock_nsec_t nsec;
1551
1552 switch (flow_control.state) {
1553
1554 case FCS_IDLE:
1555 reset_deadlock_timer:
1556 ts.tv_sec = vm_pageout_deadlock_wait / 1000;
1557 ts.tv_nsec = (vm_pageout_deadlock_wait % 1000) * 1000 * NSEC_PER_USEC;
1558 clock_get_system_nanotime(&sec, &nsec);
1559 flow_control.ts.tv_sec = (unsigned int) sec;
1560 flow_control.ts.tv_nsec = nsec;
1561 ADD_MACH_TIMESPEC(&flow_control.ts, &ts);
1562
1563 flow_control.state = FCS_DELAYED;
1564 msecs = vm_pageout_deadlock_wait;
1565
1566 break;
1567
1568 case FCS_DELAYED:
1569 clock_get_system_nanotime(&sec, &nsec);
1570 ts.tv_sec = (unsigned int) sec;
1571 ts.tv_nsec = nsec;
1572
1573 if (CMP_MACH_TIMESPEC(&ts, &flow_control.ts) >= 0) {
1574 /*
1575 * the pageout thread for the default pager is potentially
1576 * deadlocked since the
1577 * default pager queue has been throttled for more than the
1578 * allowable time... we need to move some clean pages or dirty
1579 * pages belonging to the external pagers if they aren't throttled
1580 * vm_page_free_wanted represents the number of threads currently
1581 * blocked waiting for pages... we'll move one page for each of
1582 * these plus a fixed amount to break the logjam... once we're done
1583 * moving this number of pages, we'll re-enter the FSC_DELAYED state
1584 * with a new timeout target since we have no way of knowing
1585 * whether we've broken the deadlock except through observation
1586 * of the queue associated with the default pager... we need to
1587 * stop moving pages and allow the system to run to see what
1588 * state it settles into.
1589 */
1590 vm_pageout_deadlock_target = vm_pageout_deadlock_relief + vm_page_free_wanted + vm_page_free_wanted_privileged;
1591 vm_pageout_scan_deadlock_detected++;
1592 flow_control.state = FCS_DEADLOCK_DETECTED;
1593
1594 thread_wakeup((event_t) &vm_pageout_garbage_collect);
1595 goto consider_inactive;
1596 }
1597 /*
1598 * just resniff instead of trying
1599 * to compute a new delay time... we're going to be
1600 * awakened immediately upon a laundry completion,
1601 * so we won't wait any longer than necessary
1602 */
1603 msecs = vm_pageout_idle_wait;
1604 break;
1605
1606 case FCS_DEADLOCK_DETECTED:
1607 if (vm_pageout_deadlock_target)
1608 goto consider_inactive;
1609 goto reset_deadlock_timer;
1610
1611 }
1612 vm_pageout_scan_throttle++;
1613 iq->pgo_throttled = TRUE;
1614 vm_pageout_scan_delay:
1615 if (object != NULL) {
1616 vm_object_unlock(object);
1617 object = NULL;
1618 }
1619 vm_pageout_scan_wants_object = VM_OBJECT_NULL;
1620
1621 if (local_freeq) {
1622 vm_page_unlock_queues();
1623
1624 VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_START,
1625 vm_page_free_count, local_freed, delayed_unlock_limit, 3);
1626
1627 vm_page_free_list(local_freeq, TRUE);
1628
1629 VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_END,
1630 vm_page_free_count, local_freed, 0, 3);
1631
1632 local_freeq = NULL;
1633 local_freed = 0;
1634 vm_page_lock_queues();
1635
1636 if (flow_control.state == FCS_DELAYED &&
1637 !VM_PAGE_Q_THROTTLED(iq)) {
1638 flow_control.state = FCS_IDLE;
1639 vm_pageout_scan_throttle_aborted++;
1640 goto consider_inactive;
1641 }
1642 }
1643
1644 VM_CHECK_MEMORYSTATUS;
1645
1646 assert_wait_timeout((event_t) &iq->pgo_laundry, THREAD_INTERRUPTIBLE, msecs, 1000*NSEC_PER_USEC);
1647 counter(c_vm_pageout_scan_block++);
1648
1649 vm_page_unlock_queues();
1650
1651 assert(vm_pageout_scan_wants_object == VM_OBJECT_NULL);
1652
1653 VM_DEBUG_EVENT(vm_pageout_thread_block, VM_PAGEOUT_THREAD_BLOCK, DBG_FUNC_START,
1654 iq->pgo_laundry, iq->pgo_maxlaundry, msecs, 0);
1655
1656 thread_block(THREAD_CONTINUE_NULL);
1657
1658 VM_DEBUG_EVENT(vm_pageout_thread_block, VM_PAGEOUT_THREAD_BLOCK, DBG_FUNC_END,
1659 iq->pgo_laundry, iq->pgo_maxlaundry, msecs, 0);
1660
1661 vm_page_lock_queues();
1662 delayed_unlock = 1;
1663
1664 iq->pgo_throttled = FALSE;
1665
1666 if (loop_count >= vm_page_inactive_count)
1667 loop_count = 0;
1668 inactive_burst_count = 0;
1669
1670 goto Restart;
1671 /*NOTREACHED*/
1672 }
1673
1674
1675 flow_control.state = FCS_IDLE;
1676 consider_inactive:
1677 vm_pageout_inactive_external_forced_reactivate_limit = MIN((vm_page_active_count + vm_page_inactive_count),
1678 vm_pageout_inactive_external_forced_reactivate_limit);
1679 loop_count++;
1680 inactive_burst_count++;
1681 vm_pageout_inactive++;
1682
1683 /* Choose a victim. */
1684
1685 while (1) {
1686 m = NULL;
1687
1688 if (VM_DYNAMIC_PAGING_ENABLED(memory_manager_default)) {
1689 assert(vm_page_throttled_count == 0);
1690 assert(queue_empty(&vm_page_queue_throttled));
1691 }
1692
1693 /*
1694 * The most eligible pages are ones we paged in speculatively,
1695 * but which have not yet been touched.
1696 */
1697 if ( !queue_empty(&sq->age_q) ) {
1698 m = (vm_page_t) queue_first(&sq->age_q);
1699
1700 page_prev_state = PAGE_STATE_SPECULATIVE;
1701 break;
1702 }
1703 /*
1704 * Time for a zero-filled inactive page?
1705 */
1706 if ( ((zf_run_count < zf_ratio) && vm_zf_queue_count >= zf_queue_min_count) ||
1707 queue_empty(&vm_page_queue_inactive)) {
1708 if ( !queue_empty(&vm_page_queue_zf) ) {
1709 m = (vm_page_t) queue_first(&vm_page_queue_zf);
1710
1711 page_prev_state = PAGE_STATE_ZEROFILL;
1712 zf_run_count++;
1713 break;
1714 }
1715 }
1716 /*
1717 * It's either a normal inactive page or nothing.
1718 */
1719 if ( !queue_empty(&vm_page_queue_inactive) ) {
1720 m = (vm_page_t) queue_first(&vm_page_queue_inactive);
1721
1722 page_prev_state = PAGE_STATE_INACTIVE;
1723 zf_run_count = 0;
1724 break;
1725 }
1726
1727 panic("vm_pageout: no victim");
1728 }
1729 VM_PAGE_QUEUES_REMOVE(m);
1730
1731 assert(!m->laundry);
1732 assert(!m->private);
1733 assert(!m->fictitious);
1734 assert(m->object != kernel_object);
1735 assert(m->phys_page != vm_page_guard_addr);
1736
1737
1738 if (page_prev_state != PAGE_STATE_SPECULATIVE)
1739 vm_pageout_stats[vm_pageout_stat_now].considered++;
1740
1741 DTRACE_VM2(scan, int, 1, (uint64_t *), NULL);
1742
1743 /*
1744 * check to see if we currently are working
1745 * with the same object... if so, we've
1746 * already got the lock
1747 */
1748 if (m->object != object) {
1749 /*
1750 * the object associated with candidate page is
1751 * different from the one we were just working
1752 * with... dump the lock if we still own it
1753 */
1754 if (object != NULL) {
1755 vm_object_unlock(object);
1756 object = NULL;
1757 vm_pageout_scan_wants_object = VM_OBJECT_NULL;
1758 }
1759 /*
1760 * Try to lock object; since we've alread got the
1761 * page queues lock, we can only 'try' for this one.
1762 * if the 'try' fails, we need to do a mutex_pause
1763 * to allow the owner of the object lock a chance to
1764 * run... otherwise, we're likely to trip over this
1765 * object in the same state as we work our way through
1766 * the queue... clumps of pages associated with the same
1767 * object are fairly typical on the inactive and active queues
1768 */
1769 if (!vm_object_lock_try_scan(m->object)) {
1770 vm_page_t m_want = NULL;
1771
1772 vm_pageout_inactive_nolock++;
1773
1774 if (page_prev_state == PAGE_STATE_SPECULATIVE)
1775 page_prev_state = PAGE_STATE_INACTIVE_FIRST;
1776
1777 pmap_clear_reference(m->phys_page);
1778 m->reference = FALSE;
1779
1780 /*
1781 * m->object must be stable since we hold the page queues lock...
1782 * we can update the scan_collisions field sans the object lock
1783 * since it is a separate field and this is the only spot that does
1784 * a read-modify-write operation and it is never executed concurrently...
1785 * we can asynchronously set this field to 0 when creating a UPL, so it
1786 * is possible for the value to be a bit non-determistic, but that's ok
1787 * since it's only used as a hint
1788 */
1789 m->object->scan_collisions++;
1790
1791 if ( !queue_empty(&sq->age_q) )
1792 m_want = (vm_page_t) queue_first(&sq->age_q);
1793 else if ( ((zf_run_count < zf_ratio) && vm_zf_queue_count >= zf_queue_min_count) ||
1794 queue_empty(&vm_page_queue_inactive)) {
1795 if ( !queue_empty(&vm_page_queue_zf) )
1796 m_want = (vm_page_t) queue_first(&vm_page_queue_zf);
1797 } else if ( !queue_empty(&vm_page_queue_inactive) ) {
1798 m_want = (vm_page_t) queue_first(&vm_page_queue_inactive);
1799 }
1800 /*
1801 * this is the next object we're going to be interested in
1802 * try to make sure its available after the mutex_yield
1803 * returns control
1804 */
1805 if (m_want)
1806 vm_pageout_scan_wants_object = m_want->object;
1807
1808 /*
1809 * force us to dump any collected free pages
1810 * and to pause before moving on
1811 */
1812 try_failed = TRUE;
1813
1814 goto requeue_page;
1815 }
1816 object = m->object;
1817 vm_pageout_scan_wants_object = VM_OBJECT_NULL;
1818
1819 try_failed = FALSE;
1820 }
1821 if (catch_up_count)
1822 catch_up_count--;
1823
1824 if (m->busy) {
1825 if (m->encrypted_cleaning) {
1826 /*
1827 * ENCRYPTED SWAP:
1828 * if this page has already been picked up as
1829 * part of a page-out cluster, it will be busy
1830 * because it is being encrypted (see
1831 * vm_object_upl_request()). But we still
1832 * want to demote it from "clean-in-place"
1833 * (aka "adjacent") to "clean-and-free" (aka
1834 * "target"), so let's ignore its "busy" bit
1835 * here and proceed to check for "cleaning" a
1836 * little bit below...
1837 *
1838 * CAUTION CAUTION:
1839 * A "busy" page should still be left alone for
1840 * most purposes, so we have to be very careful
1841 * not to process that page too much.
1842 */
1843 assert(m->cleaning);
1844 goto consider_inactive_page;
1845 }
1846
1847 /*
1848 * Somebody is already playing with this page.
1849 * Put it back on the appropriate queue
1850 *
1851 */
1852 vm_pageout_inactive_busy++;
1853 requeue_page:
1854 switch (page_prev_state) {
1855
1856 case PAGE_STATE_SPECULATIVE:
1857 vm_page_speculate(m, FALSE);
1858 break;
1859
1860 case PAGE_STATE_ZEROFILL:
1861 m->zero_fill = TRUE;
1862 /*
1863 * fall through to add in the
1864 * inactive state
1865 */
1866 case PAGE_STATE_INACTIVE:
1867 VM_PAGE_ENQUEUE_INACTIVE(m, FALSE);
1868 break;
1869
1870 case PAGE_STATE_INACTIVE_FIRST:
1871 VM_PAGE_ENQUEUE_INACTIVE(m, TRUE);
1872 break;
1873 }
1874 goto done_with_inactivepage;
1875 }
1876
1877
1878 /*
1879 * If it's absent, in error or the object is no longer alive,
1880 * we can reclaim the page... in the no longer alive case,
1881 * there are 2 states the page can be in that preclude us
1882 * from reclaiming it - busy or cleaning - that we've already
1883 * dealt with
1884 */
1885 if (m->absent || m->error || !object->alive) {
1886
1887 if (m->absent)
1888 vm_pageout_inactive_absent++;
1889 else if (!object->alive)
1890 vm_pageout_inactive_notalive++;
1891 else
1892 vm_pageout_inactive_error++;
1893 reclaim_page:
1894 if (vm_pageout_deadlock_target) {
1895 vm_pageout_scan_inactive_throttle_success++;
1896 vm_pageout_deadlock_target--;
1897 }
1898
1899 DTRACE_VM2(dfree, int, 1, (uint64_t *), NULL);
1900
1901 if (object->internal) {
1902 DTRACE_VM2(anonfree, int, 1, (uint64_t *), NULL);
1903 } else {
1904 DTRACE_VM2(fsfree, int, 1, (uint64_t *), NULL);
1905 }
1906 vm_page_free_prepare_queues(m);
1907
1908 /*
1909 * remove page from object here since we're already
1910 * behind the object lock... defer the rest of the work
1911 * we'd normally do in vm_page_free_prepare_object
1912 * until 'vm_page_free_list' is called
1913 */
1914 if (m->tabled)
1915 vm_page_remove(m, TRUE);
1916
1917 assert(m->pageq.next == NULL &&
1918 m->pageq.prev == NULL);
1919 m->pageq.next = (queue_entry_t)local_freeq;
1920 local_freeq = m;
1921 local_freed++;
1922
1923 inactive_burst_count = 0;
1924
1925 if (page_prev_state != PAGE_STATE_SPECULATIVE)
1926 vm_pageout_stats[vm_pageout_stat_now].reclaimed++;
1927
1928 goto done_with_inactivepage;
1929 }
1930 /*
1931 * If the object is empty, the page must be reclaimed even
1932 * if dirty or used.
1933 * If the page belongs to a volatile object, we stick it back
1934 * on.
1935 */
1936 if (object->copy == VM_OBJECT_NULL) {
1937 if (object->purgable == VM_PURGABLE_EMPTY) {
1938 m->busy = TRUE;
1939 if (m->pmapped == TRUE) {
1940 /* unmap the page */
1941 refmod_state = pmap_disconnect(m->phys_page);
1942 if (refmod_state & VM_MEM_MODIFIED) {
1943 m->dirty = TRUE;
1944 }
1945 }
1946 if (m->dirty || m->precious) {
1947 /* we saved the cost of cleaning this page ! */
1948 vm_page_purged_count++;
1949 }
1950 goto reclaim_page;
1951 }
1952 if (object->purgable == VM_PURGABLE_VOLATILE) {
1953 /* if it's wired, we can't put it on our queue */
1954 assert(!VM_PAGE_WIRED(m));
1955
1956 /* just stick it back on! */
1957 reactivated_this_call++;
1958 goto reactivate_page;
1959 }
1960 }
1961
1962 consider_inactive_page:
1963 if (m->busy) {
1964 /*
1965 * CAUTION CAUTION:
1966 * A "busy" page should always be left alone, except...
1967 */
1968 if (m->cleaning && m->encrypted_cleaning) {
1969 /*
1970 * ENCRYPTED_SWAP:
1971 * We could get here with a "busy" page
1972 * if it's being encrypted during a
1973 * "clean-in-place" operation. We'll deal
1974 * with it right away by testing if it has been
1975 * referenced and either reactivating it or
1976 * promoting it from "clean-in-place" to
1977 * "clean-and-free".
1978 */
1979 } else {
1980 panic("\"busy\" page considered for pageout\n");
1981 }
1982 }
1983
1984 /*
1985 * If it's being used, reactivate.
1986 * (Fictitious pages are either busy or absent.)
1987 * First, update the reference and dirty bits
1988 * to make sure the page is unreferenced.
1989 */
1990 refmod_state = -1;
1991
1992 if (m->reference == FALSE && m->pmapped == TRUE) {
1993 refmod_state = pmap_get_refmod(m->phys_page);
1994
1995 if (refmod_state & VM_MEM_REFERENCED)
1996 m->reference = TRUE;
1997 if (refmod_state & VM_MEM_MODIFIED)
1998 m->dirty = TRUE;
1999 }
2000
2001 /*
2002 * If already cleaning this page in place and it hasn't
2003 * been recently referenced, convert from
2004 * "adjacent" to "target". We can leave the page mapped,
2005 * and upl_commit_range will determine whether
2006 * to free or reactivate.
2007 *
2008 * note: if m->encrypted_cleaning == TRUE, then
2009 * m->cleaning == TRUE
2010 * and we'll handle it here
2011 */
2012 if (m->cleaning) {
2013
2014 if (m->reference == TRUE) {
2015 reactivated_this_call++;
2016 goto reactivate_page;
2017 }
2018 m->busy = TRUE;
2019 m->pageout = TRUE;
2020 m->dump_cleaning = TRUE;
2021 vm_page_wire(m);
2022
2023 CLUSTER_STAT(vm_pageout_cluster_conversions++);
2024
2025 inactive_burst_count = 0;
2026
2027 goto done_with_inactivepage;
2028 }
2029
2030 if (m->reference || m->dirty) {
2031 /* deal with a rogue "reusable" page */
2032 VM_PAGEOUT_SCAN_HANDLE_REUSABLE_PAGE(m);
2033 }
2034
2035 if (m->reference && !m->no_cache) {
2036 /*
2037 * The page we pulled off the inactive list has
2038 * been referenced. It is possible for other
2039 * processors to be touching pages faster than we
2040 * can clear the referenced bit and traverse the
2041 * inactive queue, so we limit the number of
2042 * reactivations.
2043 */
2044 if (++reactivated_this_call >= reactivate_limit) {
2045 vm_pageout_reactivation_limit_exceeded++;
2046 } else if (catch_up_count) {
2047 vm_pageout_catch_ups++;
2048 } else if (++inactive_reclaim_run >= VM_PAGEOUT_INACTIVE_FORCE_RECLAIM) {
2049 vm_pageout_inactive_force_reclaim++;
2050 } else {
2051 uint32_t isinuse;
2052 reactivate_page:
2053 if ( !object->internal && object->pager != MEMORY_OBJECT_NULL &&
2054 vnode_pager_get_isinuse(object->pager, &isinuse) == KERN_SUCCESS && !isinuse) {
2055 /*
2056 * no explict mappings of this object exist
2057 * and it's not open via the filesystem
2058 */
2059 vm_page_deactivate(m);
2060 vm_pageout_inactive_deactivated++;
2061 } else {
2062 /*
2063 * The page was/is being used, so put back on active list.
2064 */
2065 vm_page_activate(m);
2066 VM_STAT_INCR(reactivations);
2067 }
2068 vm_pageout_inactive_used++;
2069 inactive_burst_count = 0;
2070
2071 goto done_with_inactivepage;
2072 }
2073 /*
2074 * Make sure we call pmap_get_refmod() if it
2075 * wasn't already called just above, to update
2076 * the dirty bit.
2077 */
2078 if ((refmod_state == -1) && !m->dirty && m->pmapped) {
2079 refmod_state = pmap_get_refmod(m->phys_page);
2080 if (refmod_state & VM_MEM_MODIFIED)
2081 m->dirty = TRUE;
2082 }
2083 forced_reclaim = TRUE;
2084 } else {
2085 forced_reclaim = FALSE;
2086 }
2087
2088 XPR(XPR_VM_PAGEOUT,
2089 "vm_pageout_scan, replace object 0x%X offset 0x%X page 0x%X\n",
2090 object, m->offset, m, 0,0);
2091
2092 /*
2093 * we've got a candidate page to steal...
2094 *
2095 * m->dirty is up to date courtesy of the
2096 * preceding check for m->reference... if
2097 * we get here, then m->reference had to be
2098 * FALSE (or possibly "reactivate_limit" was
2099 * exceeded), but in either case we called
2100 * pmap_get_refmod() and updated both
2101 * m->reference and m->dirty
2102 *
2103 * if it's dirty or precious we need to
2104 * see if the target queue is throtttled
2105 * it if is, we need to skip over it by moving it back
2106 * to the end of the inactive queue
2107 */
2108
2109 inactive_throttled = FALSE;
2110
2111 if (m->dirty || m->precious) {
2112 if (object->internal) {
2113 if (VM_PAGE_Q_THROTTLED(iq))
2114 inactive_throttled = TRUE;
2115 } else if (VM_PAGE_Q_THROTTLED(eq)) {
2116 inactive_throttled = TRUE;
2117 }
2118 }
2119 throttle_inactive:
2120 if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) &&
2121 object->internal && m->dirty &&
2122 (object->purgable == VM_PURGABLE_DENY ||
2123 object->purgable == VM_PURGABLE_NONVOLATILE ||
2124 object->purgable == VM_PURGABLE_VOLATILE)) {
2125 queue_enter(&vm_page_queue_throttled, m,
2126 vm_page_t, pageq);
2127 m->throttled = TRUE;
2128 vm_page_throttled_count++;
2129
2130 vm_pageout_scan_reclaimed_throttled++;
2131
2132 goto done_with_inactivepage;
2133 }
2134 if (inactive_throttled == TRUE) {
2135
2136 if (object->internal)
2137 vm_pageout_scan_inactive_throttled_internal++;
2138 else
2139 vm_pageout_scan_inactive_throttled_external++;
2140
2141 if (page_prev_state == PAGE_STATE_SPECULATIVE)
2142 page_prev_state = PAGE_STATE_INACTIVE;
2143
2144 if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) && object->internal == FALSE) {
2145 /*
2146 * a) The external pageout queue is throttled
2147 * b) We're done with the active queue and moved on to the inactive queue
2148 * c) We start noticing dirty pages and usually we would put them at the end of the inactive queue, but,
2149 * d) We don't have a default pager, and so,
2150 * e) We push these onto the active queue in an effort to cause a re-evaluation of the active queue
2151 * and get back some, possibly clean, pages.
2152 *
2153 * We also keep a count of the pages of this kind, since, these will be a good indicator of us being in a deadlock
2154 * on systems without a dynamic pager, where:
2155 * a) The external pageout thread is stuck on the truncate lock for a file that is being extended i.e. written.
2156 * b) The thread doing the writing is waiting for pages while holding the truncate lock
2157 * c) Most of the pages in the inactive queue belong to this file.
2158 */
2159
2160 vm_page_activate(m);
2161 vm_pageout_inactive_external_forced_reactivate_count++;
2162 vm_pageout_inactive_external_forced_reactivate_limit--;
2163
2164 if (vm_pageout_inactive_external_forced_reactivate_limit <= 0){
2165 vm_pageout_inactive_external_forced_reactivate_limit = vm_page_active_count + vm_page_inactive_count;
2166 #if CONFIG_EMBEDDED
2167 /*
2168 * Possible deadlock scenario so request jetsam action
2169 */
2170 assert(object);
2171 vm_object_unlock(object);
2172 object = VM_OBJECT_NULL;
2173 vm_page_unlock_queues();
2174
2175 if (jetsam_kill_top_proc(TRUE, kJetsamFlagsKilledVM) < 0){
2176 panic("vm_pageout_scan: Jetsam request failed\n");
2177 }
2178
2179 vm_page_lock_queues();
2180 delayed_unlock = 1;
2181 #endif
2182 }
2183 inactive_burst_count = 0;
2184 goto done_with_inactivepage;
2185 } else {
2186 goto requeue_page;
2187 }
2188 }
2189
2190 /*
2191 * we've got a page that we can steal...
2192 * eliminate all mappings and make sure
2193 * we have the up-to-date modified state
2194 * first take the page BUSY, so that no new
2195 * mappings can be made
2196 */
2197 m->busy = TRUE;
2198
2199 /*
2200 * if we need to do a pmap_disconnect then we
2201 * need to re-evaluate m->dirty since the pmap_disconnect
2202 * provides the true state atomically... the
2203 * page was still mapped up to the pmap_disconnect
2204 * and may have been dirtied at the last microsecond
2205 *
2206 * we also check for the page being referenced 'late'
2207 * if it was, we first need to do a WAKEUP_DONE on it
2208 * since we already set m->busy = TRUE, before
2209 * going off to reactivate it
2210 *
2211 * Note that if 'pmapped' is FALSE then the page is not
2212 * and has not been in any map, so there is no point calling
2213 * pmap_disconnect(). m->dirty and/or m->reference could
2214 * have been set in anticipation of likely usage of the page.
2215 */
2216 if (m->pmapped == TRUE) {
2217 refmod_state = pmap_disconnect(m->phys_page);
2218
2219 if (refmod_state & VM_MEM_MODIFIED)
2220 m->dirty = TRUE;
2221 if (refmod_state & VM_MEM_REFERENCED) {
2222
2223 /* If m->reference is already set, this page must have
2224 * already failed the reactivate_limit test, so don't
2225 * bump the counts twice.
2226 */
2227 if ( ! m->reference ) {
2228 m->reference = TRUE;
2229 if (forced_reclaim ||
2230 ++reactivated_this_call >= reactivate_limit)
2231 vm_pageout_reactivation_limit_exceeded++;
2232 else {
2233 PAGE_WAKEUP_DONE(m);
2234 goto reactivate_page;
2235 }
2236 }
2237 }
2238 }
2239 /*
2240 * reset our count of pages that have been reclaimed
2241 * since the last page was 'stolen'
2242 */
2243 inactive_reclaim_run = 0;
2244
2245 /*
2246 * If it's clean and not precious, we can free the page.
2247 */
2248 if (!m->dirty && !m->precious) {
2249
2250 if (page_prev_state == PAGE_STATE_SPECULATIVE)
2251 vm_pageout_speculative_clean++;
2252 else {
2253 if (page_prev_state == PAGE_STATE_ZEROFILL)
2254 vm_pageout_inactive_zf++;
2255 vm_pageout_inactive_clean++;
2256 }
2257 goto reclaim_page;
2258 }
2259
2260 /*
2261 * The page may have been dirtied since the last check
2262 * for a throttled target queue (which may have been skipped
2263 * if the page was clean then). With the dirty page
2264 * disconnected here, we can make one final check.
2265 */
2266 if (object->internal) {
2267 if (VM_PAGE_Q_THROTTLED(iq))
2268 inactive_throttled = TRUE;
2269 } else if (VM_PAGE_Q_THROTTLED(eq)) {
2270 inactive_throttled = TRUE;
2271 }
2272
2273 if (inactive_throttled == TRUE) {
2274 /*
2275 * we set busy before issuing the pmap_disconnect,
2276 * so clear it and wakeup anyone that happened upon
2277 * it in that state
2278 */
2279 PAGE_WAKEUP_DONE(m);
2280 goto throttle_inactive;
2281 }
2282
2283 vm_pageout_stats[vm_pageout_stat_now].reclaimed++;
2284
2285 vm_pageout_cluster(m);
2286
2287 if (page_prev_state == PAGE_STATE_ZEROFILL)
2288 vm_pageout_inactive_zf++;
2289 if (object->internal)
2290 vm_pageout_inactive_dirty_internal++;
2291 else
2292 vm_pageout_inactive_dirty_external++;
2293
2294 inactive_burst_count = 0;
2295
2296 done_with_inactivepage:
2297 if (delayed_unlock++ > delayed_unlock_limit || try_failed == TRUE) {
2298
2299 if (object != NULL) {
2300 vm_pageout_scan_wants_object = VM_OBJECT_NULL;
2301 vm_object_unlock(object);
2302 object = NULL;
2303 }
2304 if (local_freeq) {
2305 vm_page_unlock_queues();
2306
2307 VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_START,
2308 vm_page_free_count, local_freed, delayed_unlock_limit, 4);
2309
2310 vm_page_free_list(local_freeq, TRUE);
2311
2312 VM_DEBUG_EVENT(vm_pageout_freelist, VM_PAGEOUT_FREELIST, DBG_FUNC_END,
2313 vm_page_free_count, local_freed, 0, 4);
2314
2315 local_freeq = NULL;
2316 local_freed = 0;
2317 vm_page_lock_queues();
2318 } else
2319 lck_mtx_yield(&vm_page_queue_lock);
2320
2321 delayed_unlock = 1;
2322 }
2323 /*
2324 * back to top of pageout scan loop
2325 */
2326 }
2327 }
2328
2329
2330 int vm_page_free_count_init;
2331
2332 void
2333 vm_page_free_reserve(
2334 int pages)
2335 {
2336 int free_after_reserve;
2337
2338 vm_page_free_reserved += pages;
2339
2340 if (vm_page_free_reserved > VM_PAGE_FREE_RESERVED_LIMIT)
2341 vm_page_free_reserved = VM_PAGE_FREE_RESERVED_LIMIT;
2342
2343 free_after_reserve = vm_page_free_count_init - vm_page_free_reserved;
2344
2345 vm_page_free_min = vm_page_free_reserved +
2346 VM_PAGE_FREE_MIN(free_after_reserve);
2347
2348 if (vm_page_free_min > VM_PAGE_FREE_MIN_LIMIT)
2349 vm_page_free_min = VM_PAGE_FREE_MIN_LIMIT;
2350
2351 vm_page_free_target = vm_page_free_reserved +
2352 VM_PAGE_FREE_TARGET(free_after_reserve);
2353
2354 if (vm_page_free_target > VM_PAGE_FREE_TARGET_LIMIT)
2355 vm_page_free_target = VM_PAGE_FREE_TARGET_LIMIT;
2356
2357 if (vm_page_free_target < vm_page_free_min + 5)
2358 vm_page_free_target = vm_page_free_min + 5;
2359
2360 vm_page_throttle_limit = vm_page_free_target - (vm_page_free_target / 3);
2361 vm_page_creation_throttle = vm_page_free_target / 2;
2362 }
2363
2364 /*
2365 * vm_pageout is the high level pageout daemon.
2366 */
2367
2368 void
2369 vm_pageout_continue(void)
2370 {
2371 DTRACE_VM2(pgrrun, int, 1, (uint64_t *), NULL);
2372 vm_pageout_scan_event_counter++;
2373 vm_pageout_scan();
2374 /* we hold vm_page_queue_free_lock now */
2375 assert(vm_page_free_wanted == 0);
2376 assert(vm_page_free_wanted_privileged == 0);
2377 assert_wait((event_t) &vm_page_free_wanted, THREAD_UNINT);
2378 lck_mtx_unlock(&vm_page_queue_free_lock);
2379
2380 counter(c_vm_pageout_block++);
2381 thread_block((thread_continue_t)vm_pageout_continue);
2382 /*NOTREACHED*/
2383 }
2384
2385
2386 #ifdef FAKE_DEADLOCK
2387
2388 #define FAKE_COUNT 5000
2389
2390 int internal_count = 0;
2391 int fake_deadlock = 0;
2392
2393 #endif
2394
2395 static void
2396 vm_pageout_iothread_continue(struct vm_pageout_queue *q)
2397 {
2398 vm_page_t m = NULL;
2399 vm_object_t object;
2400 memory_object_t pager;
2401 thread_t self = current_thread();
2402
2403 if ((vm_pageout_internal_iothread != THREAD_NULL)
2404 && (self == vm_pageout_external_iothread )
2405 && (self->options & TH_OPT_VMPRIV))
2406 self->options &= ~TH_OPT_VMPRIV;
2407
2408 vm_page_lockspin_queues();
2409
2410 while ( !queue_empty(&q->pgo_pending) ) {
2411
2412 q->pgo_busy = TRUE;
2413 queue_remove_first(&q->pgo_pending, m, vm_page_t, pageq);
2414 if (m->object == slide_info.slide_object) {
2415 panic("slid page %p not allowed on this path\n", m);
2416 }
2417 VM_PAGE_CHECK(m);
2418 m->pageout_queue = FALSE;
2419 m->pageq.next = NULL;
2420 m->pageq.prev = NULL;
2421 vm_page_unlock_queues();
2422
2423 #ifdef FAKE_DEADLOCK
2424 if (q == &vm_pageout_queue_internal) {
2425 vm_offset_t addr;
2426 int pg_count;
2427
2428 internal_count++;
2429
2430 if ((internal_count == FAKE_COUNT)) {
2431
2432 pg_count = vm_page_free_count + vm_page_free_reserved;
2433
2434 if (kmem_alloc(kernel_map, &addr, PAGE_SIZE * pg_count) == KERN_SUCCESS) {
2435 kmem_free(kernel_map, addr, PAGE_SIZE * pg_count);
2436 }
2437 internal_count = 0;
2438 fake_deadlock++;
2439 }
2440 }
2441 #endif
2442 object = m->object;
2443
2444 vm_object_lock(object);
2445
2446 if (!object->pager_initialized) {
2447
2448 /*
2449 * If there is no memory object for the page, create
2450 * one and hand it to the default pager.
2451 */
2452
2453 if (!object->pager_initialized)
2454 vm_object_collapse(object,
2455 (vm_object_offset_t) 0,
2456 TRUE);
2457 if (!object->pager_initialized)
2458 vm_object_pager_create(object);
2459 if (!object->pager_initialized) {
2460 /*
2461 * Still no pager for the object.
2462 * Reactivate the page.
2463 *
2464 * Should only happen if there is no
2465 * default pager.
2466 */
2467 vm_page_lockspin_queues();
2468
2469 vm_pageout_queue_steal(m, TRUE);
2470 vm_page_activate(m);
2471 vm_pageout_dirty_no_pager++;
2472
2473 vm_page_unlock_queues();
2474
2475 /*
2476 * And we are done with it.
2477 */
2478 PAGE_WAKEUP_DONE(m);
2479
2480 vm_object_paging_end(object);
2481 vm_object_unlock(object);
2482
2483 vm_page_lockspin_queues();
2484 continue;
2485 }
2486 }
2487 pager = object->pager;
2488 if (pager == MEMORY_OBJECT_NULL) {
2489 /*
2490 * This pager has been destroyed by either
2491 * memory_object_destroy or vm_object_destroy, and
2492 * so there is nowhere for the page to go.
2493 */
2494 if (m->pageout) {
2495 /*
2496 * Just free the page... VM_PAGE_FREE takes
2497 * care of cleaning up all the state...
2498 * including doing the vm_pageout_throttle_up
2499 */
2500 VM_PAGE_FREE(m);
2501 } else {
2502 vm_page_lockspin_queues();
2503
2504 vm_pageout_queue_steal(m, TRUE);
2505 vm_page_activate(m);
2506
2507 vm_page_unlock_queues();
2508
2509 /*
2510 * And we are done with it.
2511 */
2512 PAGE_WAKEUP_DONE(m);
2513 }
2514 vm_object_paging_end(object);
2515 vm_object_unlock(object);
2516
2517 vm_page_lockspin_queues();
2518 continue;
2519 }
2520 VM_PAGE_CHECK(m);
2521 vm_object_unlock(object);
2522 /*
2523 * we expect the paging_in_progress reference to have
2524 * already been taken on the object before it was added
2525 * to the appropriate pageout I/O queue... this will
2526 * keep the object from being terminated and/or the
2527 * paging_offset from changing until the I/O has
2528 * completed... therefore no need to lock the object to
2529 * pull the paging_offset from it.
2530 *
2531 * Send the data to the pager.
2532 * any pageout clustering happens there
2533 */
2534 memory_object_data_return(pager,
2535 m->offset + object->paging_offset,
2536 PAGE_SIZE,
2537 NULL,
2538 NULL,
2539 FALSE,
2540 FALSE,
2541 0);
2542
2543 vm_object_lock(object);
2544 vm_object_paging_end(object);
2545 vm_object_unlock(object);
2546
2547 vm_page_lockspin_queues();
2548 }
2549 assert_wait((event_t) q, THREAD_UNINT);
2550
2551 if (q->pgo_throttled == TRUE && !VM_PAGE_Q_THROTTLED(q)) {
2552 q->pgo_throttled = FALSE;
2553 thread_wakeup((event_t) &q->pgo_laundry);
2554 }
2555 if (q->pgo_draining == TRUE && q->pgo_laundry == 0) {
2556 q->pgo_draining = FALSE;
2557 thread_wakeup((event_t) (&q->pgo_laundry+1));
2558 }
2559 q->pgo_busy = FALSE;
2560 q->pgo_idle = TRUE;
2561 vm_page_unlock_queues();
2562
2563 thread_block_parameter((thread_continue_t)vm_pageout_iothread_continue, (void *) &q->pgo_pending);
2564 /*NOTREACHED*/
2565 }
2566
2567
2568 static void
2569 vm_pageout_iothread_external(void)
2570 {
2571 thread_t self = current_thread();
2572
2573 self->options |= TH_OPT_VMPRIV;
2574
2575 vm_pageout_iothread_continue(&vm_pageout_queue_external);
2576 /*NOTREACHED*/
2577 }
2578
2579
2580 static void
2581 vm_pageout_iothread_internal(void)
2582 {
2583 thread_t self = current_thread();
2584
2585 self->options |= TH_OPT_VMPRIV;
2586
2587 vm_pageout_iothread_continue(&vm_pageout_queue_internal);
2588 /*NOTREACHED*/
2589 }
2590
2591 kern_return_t
2592 vm_set_buffer_cleanup_callout(boolean_t (*func)(int))
2593 {
2594 if (OSCompareAndSwapPtr(NULL, func, (void * volatile *) &consider_buffer_cache_collect)) {
2595 return KERN_SUCCESS;
2596 } else {
2597 return KERN_FAILURE; /* Already set */
2598 }
2599 }
2600
2601 static void
2602 vm_pageout_garbage_collect(int collect)
2603 {
2604 if (collect) {
2605 boolean_t buf_large_zfree = FALSE;
2606 stack_collect();
2607
2608 /*
2609 * consider_zone_gc should be last, because the other operations
2610 * might return memory to zones.
2611 */
2612 consider_machine_collect();
2613 if (consider_buffer_cache_collect != NULL) {
2614 buf_large_zfree = (*consider_buffer_cache_collect)(0);
2615 }
2616 consider_zone_gc(buf_large_zfree);
2617
2618 consider_machine_adjust();
2619 consider_pressure_events();
2620
2621 }
2622
2623 assert_wait((event_t) &vm_pageout_garbage_collect, THREAD_UNINT);
2624
2625 thread_block_parameter((thread_continue_t) vm_pageout_garbage_collect, (void *)1);
2626 /*NOTREACHED*/
2627 }
2628
2629
2630
2631 void
2632 vm_pageout(void)
2633 {
2634 thread_t self = current_thread();
2635 thread_t thread;
2636 kern_return_t result;
2637 spl_t s;
2638
2639 /*
2640 * Set thread privileges.
2641 */
2642 s = splsched();
2643 thread_lock(self);
2644 self->priority = BASEPRI_PREEMPT - 1;
2645 set_sched_pri(self, self->priority);
2646 thread_unlock(self);
2647
2648 if (!self->reserved_stack)
2649 self->reserved_stack = self->kernel_stack;
2650
2651 splx(s);
2652
2653 /*
2654 * Initialize some paging parameters.
2655 */
2656
2657 if (vm_pageout_idle_wait == 0)
2658 vm_pageout_idle_wait = VM_PAGEOUT_IDLE_WAIT;
2659
2660 if (vm_pageout_burst_wait == 0)
2661 vm_pageout_burst_wait = VM_PAGEOUT_BURST_WAIT;
2662
2663 if (vm_pageout_empty_wait == 0)
2664 vm_pageout_empty_wait = VM_PAGEOUT_EMPTY_WAIT;
2665
2666 if (vm_pageout_deadlock_wait == 0)
2667 vm_pageout_deadlock_wait = VM_PAGEOUT_DEADLOCK_WAIT;
2668
2669 if (vm_pageout_deadlock_relief == 0)
2670 vm_pageout_deadlock_relief = VM_PAGEOUT_DEADLOCK_RELIEF;
2671
2672 if (vm_pageout_inactive_relief == 0)
2673 vm_pageout_inactive_relief = VM_PAGEOUT_INACTIVE_RELIEF;
2674
2675 if (vm_pageout_burst_active_throttle == 0)
2676 vm_pageout_burst_active_throttle = VM_PAGEOUT_BURST_ACTIVE_THROTTLE;
2677
2678 if (vm_pageout_burst_inactive_throttle == 0)
2679 vm_pageout_burst_inactive_throttle = VM_PAGEOUT_BURST_INACTIVE_THROTTLE;
2680
2681 /*
2682 * Set kernel task to low backing store privileged
2683 * status
2684 */
2685 task_lock(kernel_task);
2686 kernel_task->priv_flags |= VM_BACKING_STORE_PRIV;
2687 task_unlock(kernel_task);
2688
2689 vm_page_free_count_init = vm_page_free_count;
2690
2691 /*
2692 * even if we've already called vm_page_free_reserve
2693 * call it again here to insure that the targets are
2694 * accurately calculated (it uses vm_page_free_count_init)
2695 * calling it with an arg of 0 will not change the reserve
2696 * but will re-calculate free_min and free_target
2697 */
2698 if (vm_page_free_reserved < VM_PAGE_FREE_RESERVED(processor_count)) {
2699 vm_page_free_reserve((VM_PAGE_FREE_RESERVED(processor_count)) - vm_page_free_reserved);
2700 } else
2701 vm_page_free_reserve(0);
2702
2703
2704 queue_init(&vm_pageout_queue_external.pgo_pending);
2705 vm_pageout_queue_external.pgo_maxlaundry = VM_PAGE_LAUNDRY_MAX;
2706 vm_pageout_queue_external.pgo_laundry = 0;
2707 vm_pageout_queue_external.pgo_idle = FALSE;
2708 vm_pageout_queue_external.pgo_busy = FALSE;
2709 vm_pageout_queue_external.pgo_throttled = FALSE;
2710 vm_pageout_queue_external.pgo_draining = FALSE;
2711
2712 queue_init(&vm_pageout_queue_internal.pgo_pending);
2713 vm_pageout_queue_internal.pgo_maxlaundry = 0;
2714 vm_pageout_queue_internal.pgo_laundry = 0;
2715 vm_pageout_queue_internal.pgo_idle = FALSE;
2716 vm_pageout_queue_internal.pgo_busy = FALSE;
2717 vm_pageout_queue_internal.pgo_throttled = FALSE;
2718 vm_pageout_queue_internal.pgo_draining = FALSE;
2719
2720
2721 /* internal pageout thread started when default pager registered first time */
2722 /* external pageout and garbage collection threads started here */
2723
2724 result = kernel_thread_start_priority((thread_continue_t)vm_pageout_iothread_external, NULL,
2725 BASEPRI_PREEMPT - 1,
2726 &vm_pageout_external_iothread);
2727 if (result != KERN_SUCCESS)
2728 panic("vm_pageout_iothread_external: create failed");
2729
2730 thread_deallocate(vm_pageout_external_iothread);
2731
2732 result = kernel_thread_start_priority((thread_continue_t)vm_pageout_garbage_collect, NULL,
2733 MINPRI_KERNEL,
2734 &thread);
2735 if (result != KERN_SUCCESS)
2736 panic("vm_pageout_garbage_collect: create failed");
2737
2738 thread_deallocate(thread);
2739
2740 vm_object_reaper_init();
2741
2742
2743 vm_pageout_continue();
2744
2745 /*
2746 * Unreached code!
2747 *
2748 * The vm_pageout_continue() call above never returns, so the code below is never
2749 * executed. We take advantage of this to declare several DTrace VM related probe
2750 * points that our kernel doesn't have an analog for. These are probe points that
2751 * exist in Solaris and are in the DTrace documentation, so people may have written
2752 * scripts that use them. Declaring the probe points here means their scripts will
2753 * compile and execute which we want for portability of the scripts, but since this
2754 * section of code is never reached, the probe points will simply never fire. Yes,
2755 * this is basically a hack. The problem is the DTrace probe points were chosen with
2756 * Solaris specific VM events in mind, not portability to different VM implementations.
2757 */
2758
2759 DTRACE_VM2(execfree, int, 1, (uint64_t *), NULL);
2760 DTRACE_VM2(execpgin, int, 1, (uint64_t *), NULL);
2761 DTRACE_VM2(execpgout, int, 1, (uint64_t *), NULL);
2762 DTRACE_VM2(pgswapin, int, 1, (uint64_t *), NULL);
2763 DTRACE_VM2(pgswapout, int, 1, (uint64_t *), NULL);
2764 DTRACE_VM2(swapin, int, 1, (uint64_t *), NULL);
2765 DTRACE_VM2(swapout, int, 1, (uint64_t *), NULL);
2766 /*NOTREACHED*/
2767 }
2768
2769 kern_return_t
2770 vm_pageout_internal_start(void)
2771 {
2772 kern_return_t result;
2773
2774 vm_pageout_queue_internal.pgo_maxlaundry = VM_PAGE_LAUNDRY_MAX;
2775 result = kernel_thread_start_priority((thread_continue_t)vm_pageout_iothread_internal, NULL, BASEPRI_PREEMPT - 1, &vm_pageout_internal_iothread);
2776 if (result == KERN_SUCCESS)
2777 thread_deallocate(vm_pageout_internal_iothread);
2778 return result;
2779 }
2780
2781
2782 static upl_t
2783 upl_create(int type, int flags, upl_size_t size)
2784 {
2785 upl_t upl;
2786 int page_field_size = 0;
2787 int upl_flags = 0;
2788 int upl_size = sizeof(struct upl);
2789
2790 size = round_page_32(size);
2791
2792 if (type & UPL_CREATE_LITE) {
2793 page_field_size = (atop(size) + 7) >> 3;
2794 page_field_size = (page_field_size + 3) & 0xFFFFFFFC;
2795
2796 upl_flags |= UPL_LITE;
2797 }
2798 if (type & UPL_CREATE_INTERNAL) {
2799 upl_size += (int) sizeof(struct upl_page_info) * atop(size);
2800
2801 upl_flags |= UPL_INTERNAL;
2802 }
2803 upl = (upl_t)kalloc(upl_size + page_field_size);
2804
2805 if (page_field_size)
2806 bzero((char *)upl + upl_size, page_field_size);
2807
2808 upl->flags = upl_flags | flags;
2809 upl->src_object = NULL;
2810 upl->kaddr = (vm_offset_t)0;
2811 upl->size = 0;
2812 upl->map_object = NULL;
2813 upl->ref_count = 1;
2814 upl->ext_ref_count = 0;
2815 upl->highest_page = 0;
2816 upl_lock_init(upl);
2817 upl->vector_upl = NULL;
2818 #if UPL_DEBUG
2819 upl->ubc_alias1 = 0;
2820 upl->ubc_alias2 = 0;
2821
2822 upl->upl_creator = current_thread();
2823 upl->upl_state = 0;
2824 upl->upl_commit_index = 0;
2825 bzero(&upl->upl_commit_records[0], sizeof(upl->upl_commit_records));
2826
2827 (void) OSBacktrace(&upl->upl_create_retaddr[0], UPL_DEBUG_STACK_FRAMES);
2828 #endif /* UPL_DEBUG */
2829
2830 return(upl);
2831 }
2832
2833 static void
2834 upl_destroy(upl_t upl)
2835 {
2836 int page_field_size; /* bit field in word size buf */
2837 int size;
2838
2839 if (upl->ext_ref_count) {
2840 panic("upl(%p) ext_ref_count", upl);
2841 }
2842
2843 #if UPL_DEBUG
2844 {
2845 vm_object_t object;
2846
2847 if (upl->flags & UPL_SHADOWED) {
2848 object = upl->map_object->shadow;
2849 } else {
2850 object = upl->map_object;
2851 }
2852 vm_object_lock(object);
2853 queue_remove(&object->uplq, upl, upl_t, uplq);
2854 vm_object_unlock(object);
2855 }
2856 #endif /* UPL_DEBUG */
2857 /*
2858 * drop a reference on the map_object whether or
2859 * not a pageout object is inserted
2860 */
2861 if (upl->flags & UPL_SHADOWED)
2862 vm_object_deallocate(upl->map_object);
2863
2864 if (upl->flags & UPL_DEVICE_MEMORY)
2865 size = PAGE_SIZE;
2866 else
2867 size = upl->size;
2868 page_field_size = 0;
2869
2870 if (upl->flags & UPL_LITE) {
2871 page_field_size = ((size/PAGE_SIZE) + 7) >> 3;
2872 page_field_size = (page_field_size + 3) & 0xFFFFFFFC;
2873 }
2874 upl_lock_destroy(upl);
2875 upl->vector_upl = (vector_upl_t) 0xfeedbeef;
2876 if (upl->flags & UPL_INTERNAL) {
2877 kfree(upl,
2878 sizeof(struct upl) +
2879 (sizeof(struct upl_page_info) * (size/PAGE_SIZE))
2880 + page_field_size);
2881 } else {
2882 kfree(upl, sizeof(struct upl) + page_field_size);
2883 }
2884 }
2885
2886 void
2887 upl_deallocate(upl_t upl)
2888 {
2889 if (--upl->ref_count == 0) {
2890 if(vector_upl_is_valid(upl))
2891 vector_upl_deallocate(upl);
2892 upl_destroy(upl);
2893 }
2894 }
2895
2896 #if DEVELOPMENT || DEBUG
2897 /*/*
2898 * Statistics about UPL enforcement of copy-on-write obligations.
2899 */
2900 unsigned long upl_cow = 0;
2901 unsigned long upl_cow_again = 0;
2902 unsigned long upl_cow_pages = 0;
2903 unsigned long upl_cow_again_pages = 0;
2904
2905 unsigned long iopl_cow = 0;
2906 unsigned long iopl_cow_pages = 0;
2907 #endif
2908
2909 /*
2910 * Routine: vm_object_upl_request
2911 * Purpose:
2912 * Cause the population of a portion of a vm_object.
2913 * Depending on the nature of the request, the pages
2914 * returned may be contain valid data or be uninitialized.
2915 * A page list structure, listing the physical pages
2916 * will be returned upon request.
2917 * This function is called by the file system or any other
2918 * supplier of backing store to a pager.
2919 * IMPORTANT NOTE: The caller must still respect the relationship
2920 * between the vm_object and its backing memory object. The
2921 * caller MUST NOT substitute changes in the backing file
2922 * without first doing a memory_object_lock_request on the
2923 * target range unless it is know that the pages are not
2924 * shared with another entity at the pager level.
2925 * Copy_in_to:
2926 * if a page list structure is present
2927 * return the mapped physical pages, where a
2928 * page is not present, return a non-initialized
2929 * one. If the no_sync bit is turned on, don't
2930 * call the pager unlock to synchronize with other
2931 * possible copies of the page. Leave pages busy
2932 * in the original object, if a page list structure
2933 * was specified. When a commit of the page list
2934 * pages is done, the dirty bit will be set for each one.
2935 * Copy_out_from:
2936 * If a page list structure is present, return
2937 * all mapped pages. Where a page does not exist
2938 * map a zero filled one. Leave pages busy in
2939 * the original object. If a page list structure
2940 * is not specified, this call is a no-op.
2941 *
2942 * Note: access of default pager objects has a rather interesting
2943 * twist. The caller of this routine, presumably the file system
2944 * page cache handling code, will never actually make a request
2945 * against a default pager backed object. Only the default
2946 * pager will make requests on backing store related vm_objects
2947 * In this way the default pager can maintain the relationship
2948 * between backing store files (abstract memory objects) and
2949 * the vm_objects (cache objects), they support.
2950 *
2951 */
2952
2953 __private_extern__ kern_return_t
2954 vm_object_upl_request(
2955 vm_object_t object,
2956 vm_object_offset_t offset,
2957 upl_size_t size,
2958 upl_t *upl_ptr,
2959 upl_page_info_array_t user_page_list,
2960 unsigned int *page_list_count,
2961 int cntrl_flags)
2962 {
2963 vm_page_t dst_page = VM_PAGE_NULL;
2964 vm_object_offset_t dst_offset;
2965 upl_size_t xfer_size;
2966 unsigned int size_in_pages;
2967 boolean_t dirty;
2968 boolean_t hw_dirty;
2969 upl_t upl = NULL;
2970 unsigned int entry;
2971 #if MACH_CLUSTER_STATS
2972 boolean_t encountered_lrp = FALSE;
2973 #endif
2974 vm_page_t alias_page = NULL;
2975 int refmod_state = 0;
2976 wpl_array_t lite_list = NULL;
2977 vm_object_t last_copy_object;
2978 struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT];
2979 struct vm_page_delayed_work *dwp;
2980 int dw_count;
2981 int dw_limit;
2982
2983 if (cntrl_flags & ~UPL_VALID_FLAGS) {
2984 /*
2985 * For forward compatibility's sake,
2986 * reject any unknown flag.
2987 */
2988 return KERN_INVALID_VALUE;
2989 }
2990 if ( (!object->internal) && (object->paging_offset != 0) )
2991 panic("vm_object_upl_request: external object with non-zero paging offset\n");
2992 if (object->phys_contiguous)
2993 panic("vm_object_upl_request: contiguous object specified\n");
2994
2995
2996 if ((size / PAGE_SIZE) > MAX_UPL_SIZE)
2997 size = MAX_UPL_SIZE * PAGE_SIZE;
2998
2999 if ( (cntrl_flags & UPL_SET_INTERNAL) && page_list_count != NULL)
3000 *page_list_count = MAX_UPL_SIZE;
3001
3002 if (cntrl_flags & UPL_SET_INTERNAL) {
3003 if (cntrl_flags & UPL_SET_LITE) {
3004
3005 upl = upl_create(UPL_CREATE_INTERNAL | UPL_CREATE_LITE, 0, size);
3006
3007 user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl));
3008 lite_list = (wpl_array_t)
3009 (((uintptr_t)user_page_list) +
3010 ((size/PAGE_SIZE) * sizeof(upl_page_info_t)));
3011 if (size == 0) {
3012 user_page_list = NULL;
3013 lite_list = NULL;
3014 }
3015 } else {
3016 upl = upl_create(UPL_CREATE_INTERNAL, 0, size);
3017
3018 user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl));
3019 if (size == 0) {
3020 user_page_list = NULL;
3021 }
3022 }
3023 } else {
3024 if (cntrl_flags & UPL_SET_LITE) {
3025
3026 upl = upl_create(UPL_CREATE_EXTERNAL | UPL_CREATE_LITE, 0, size);
3027
3028 lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl));
3029 if (size == 0) {
3030 lite_list = NULL;
3031 }
3032 } else {
3033 upl = upl_create(UPL_CREATE_EXTERNAL, 0, size);
3034 }
3035 }
3036 *upl_ptr = upl;
3037
3038 if (user_page_list)
3039 user_page_list[0].device = FALSE;
3040
3041 if (cntrl_flags & UPL_SET_LITE) {
3042 upl->map_object = object;
3043 } else {
3044 upl->map_object = vm_object_allocate(size);
3045 /*
3046 * No neeed to lock the new object: nobody else knows
3047 * about it yet, so it's all ours so far.
3048 */
3049 upl->map_object->shadow = object;
3050 upl->map_object->pageout = TRUE;
3051 upl->map_object->can_persist = FALSE;
3052 upl->map_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
3053 upl->map_object->vo_shadow_offset = offset;
3054 upl->map_object->wimg_bits = object->wimg_bits;
3055
3056 VM_PAGE_GRAB_FICTITIOUS(alias_page);
3057
3058 upl->flags |= UPL_SHADOWED;
3059 }
3060 /*
3061 * ENCRYPTED SWAP:
3062 * Just mark the UPL as "encrypted" here.
3063 * We'll actually encrypt the pages later,
3064 * in upl_encrypt(), when the caller has
3065 * selected which pages need to go to swap.
3066 */
3067 if (cntrl_flags & UPL_ENCRYPT)
3068 upl->flags |= UPL_ENCRYPTED;
3069
3070 if (cntrl_flags & UPL_FOR_PAGEOUT)
3071 upl->flags |= UPL_PAGEOUT;
3072
3073 vm_object_lock(object);
3074 vm_object_activity_begin(object);
3075
3076 /*
3077 * we can lock in the paging_offset once paging_in_progress is set
3078 */
3079 upl->size = size;
3080 upl->offset = offset + object->paging_offset;
3081
3082 #if UPL_DEBUG
3083 queue_enter(&object->uplq, upl, upl_t, uplq);
3084 #endif /* UPL_DEBUG */
3085
3086 if ((cntrl_flags & UPL_WILL_MODIFY) && object->copy != VM_OBJECT_NULL) {
3087 /*
3088 * Honor copy-on-write obligations
3089 *
3090 * The caller is gathering these pages and
3091 * might modify their contents. We need to
3092 * make sure that the copy object has its own
3093 * private copies of these pages before we let
3094 * the caller modify them.
3095 */
3096 vm_object_update(object,
3097 offset,
3098 size,
3099 NULL,
3100 NULL,
3101 FALSE, /* should_return */
3102 MEMORY_OBJECT_COPY_SYNC,
3103 VM_PROT_NO_CHANGE);
3104 #if DEVELOPMENT || DEBUG
3105 upl_cow++;
3106 upl_cow_pages += size >> PAGE_SHIFT;
3107 #endif
3108 }
3109 /*
3110 * remember which copy object we synchronized with
3111 */
3112 last_copy_object = object->copy;
3113 entry = 0;
3114
3115 xfer_size = size;
3116 dst_offset = offset;
3117 size_in_pages = size / PAGE_SIZE;
3118
3119 dwp = &dw_array[0];
3120 dw_count = 0;
3121 dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
3122
3123 if (vm_page_free_count > (vm_page_free_target + size_in_pages) ||
3124 object->resident_page_count < (MAX_UPL_SIZE * 2))
3125 object->scan_collisions = 0;
3126
3127 while (xfer_size) {
3128
3129 dwp->dw_mask = 0;
3130
3131 if ((alias_page == NULL) && !(cntrl_flags & UPL_SET_LITE)) {
3132 vm_object_unlock(object);
3133 VM_PAGE_GRAB_FICTITIOUS(alias_page);
3134 vm_object_lock(object);
3135 }
3136 if (cntrl_flags & UPL_COPYOUT_FROM) {
3137 upl->flags |= UPL_PAGE_SYNC_DONE;
3138
3139 if ( ((dst_page = vm_page_lookup(object, dst_offset)) == VM_PAGE_NULL) ||
3140 dst_page->fictitious ||
3141 dst_page->absent ||
3142 dst_page->error ||
3143 (VM_PAGE_WIRED(dst_page) && !dst_page->pageout && !dst_page->list_req_pending)) {
3144
3145 if (user_page_list)
3146 user_page_list[entry].phys_addr = 0;
3147
3148 goto try_next_page;
3149 }
3150 /*
3151 * grab this up front...
3152 * a high percentange of the time we're going to
3153 * need the hardware modification state a bit later
3154 * anyway... so we can eliminate an extra call into
3155 * the pmap layer by grabbing it here and recording it
3156 */
3157 if (dst_page->pmapped)
3158 refmod_state = pmap_get_refmod(dst_page->phys_page);
3159 else
3160 refmod_state = 0;
3161
3162 if ( (refmod_state & VM_MEM_REFERENCED) && dst_page->inactive ) {
3163 /*
3164 * page is on inactive list and referenced...
3165 * reactivate it now... this gets it out of the
3166 * way of vm_pageout_scan which would have to
3167 * reactivate it upon tripping over it
3168 */
3169 dwp->dw_mask |= DW_vm_page_activate;
3170 }
3171 if (cntrl_flags & UPL_RET_ONLY_DIRTY) {
3172 /*
3173 * we're only asking for DIRTY pages to be returned
3174 */
3175 if (dst_page->list_req_pending || !(cntrl_flags & UPL_FOR_PAGEOUT)) {
3176 /*
3177 * if we were the page stolen by vm_pageout_scan to be
3178 * cleaned (as opposed to a buddy being clustered in
3179 * or this request is not being driven by a PAGEOUT cluster
3180 * then we only need to check for the page being dirty or
3181 * precious to decide whether to return it
3182 */
3183 if (dst_page->dirty || dst_page->precious || (refmod_state & VM_MEM_MODIFIED))
3184 goto check_busy;
3185 goto dont_return;
3186 }
3187 /*
3188 * this is a request for a PAGEOUT cluster and this page
3189 * is merely along for the ride as a 'buddy'... not only
3190 * does it have to be dirty to be returned, but it also
3191 * can't have been referenced recently... note that we've
3192 * already filtered above based on whether this page is
3193 * currently on the inactive queue or it meets the page
3194 * ticket (generation count) check
3195 */
3196 if ( (cntrl_flags & UPL_CLEAN_IN_PLACE || !(refmod_state & VM_MEM_REFERENCED) || dst_page->throttled) &&
3197 ((refmod_state & VM_MEM_MODIFIED) || dst_page->dirty || dst_page->precious) ) {
3198 goto check_busy;
3199 }
3200 dont_return:
3201 /*
3202 * if we reach here, we're not to return
3203 * the page... go on to the next one
3204 */
3205 if (user_page_list)
3206 user_page_list[entry].phys_addr = 0;
3207
3208 goto try_next_page;
3209 }
3210 check_busy:
3211 if (dst_page->busy && (!(dst_page->list_req_pending && (dst_page->pageout || dst_page->cleaning)))) {
3212 if (cntrl_flags & UPL_NOBLOCK) {
3213 if (user_page_list)
3214 user_page_list[entry].phys_addr = 0;
3215
3216 goto try_next_page;
3217 }
3218 /*
3219 * someone else is playing with the
3220 * page. We will have to wait.
3221 */
3222 PAGE_SLEEP(object, dst_page, THREAD_UNINT);
3223
3224 continue;
3225 }
3226 /*
3227 * Someone else already cleaning the page?
3228 */
3229 if ((dst_page->cleaning || dst_page->absent || VM_PAGE_WIRED(dst_page)) && !dst_page->list_req_pending) {
3230 if (user_page_list)
3231 user_page_list[entry].phys_addr = 0;
3232
3233 goto try_next_page;
3234 }
3235 /*
3236 * ENCRYPTED SWAP:
3237 * The caller is gathering this page and might
3238 * access its contents later on. Decrypt the
3239 * page before adding it to the UPL, so that
3240 * the caller never sees encrypted data.
3241 */
3242 if (! (cntrl_flags & UPL_ENCRYPT) && dst_page->encrypted) {
3243 int was_busy;
3244
3245 /*
3246 * save the current state of busy
3247 * mark page as busy while decrypt
3248 * is in progress since it will drop
3249 * the object lock...
3250 */
3251 was_busy = dst_page->busy;
3252 dst_page->busy = TRUE;
3253
3254 vm_page_decrypt(dst_page, 0);
3255 vm_page_decrypt_for_upl_counter++;
3256 /*
3257 * restore to original busy state
3258 */
3259 dst_page->busy = was_busy;
3260 }
3261 if (dst_page->pageout_queue == TRUE) {
3262
3263 vm_page_lockspin_queues();
3264
3265 if (dst_page->pageout_queue == TRUE) {
3266 /*
3267 * we've buddied up a page for a clustered pageout
3268 * that has already been moved to the pageout
3269 * queue by pageout_scan... we need to remove
3270 * it from the queue and drop the laundry count
3271 * on that queue
3272 */
3273 vm_pageout_throttle_up(dst_page);
3274 }
3275 vm_page_unlock_queues();
3276 }
3277 #if MACH_CLUSTER_STATS
3278 /*
3279 * pageout statistics gathering. count
3280 * all the pages we will page out that
3281 * were not counted in the initial
3282 * vm_pageout_scan work
3283 */
3284 if (dst_page->list_req_pending)
3285 encountered_lrp = TRUE;
3286 if ((dst_page->dirty || (dst_page->object->internal && dst_page->precious)) && !dst_page->list_req_pending) {
3287 if (encountered_lrp)
3288 CLUSTER_STAT(pages_at_higher_offsets++;)
3289 else
3290 CLUSTER_STAT(pages_at_lower_offsets++;)
3291 }
3292 #endif
3293 /*
3294 * Turn off busy indication on pending
3295 * pageout. Note: we can only get here
3296 * in the request pending case.
3297 */
3298 dst_page->list_req_pending = FALSE;
3299 dst_page->busy = FALSE;
3300
3301 hw_dirty = refmod_state & VM_MEM_MODIFIED;
3302 dirty = hw_dirty ? TRUE : dst_page->dirty;
3303
3304 if (dst_page->phys_page > upl->highest_page)
3305 upl->highest_page = dst_page->phys_page;
3306
3307 if (cntrl_flags & UPL_SET_LITE) {
3308 unsigned int pg_num;
3309
3310 pg_num = (unsigned int) ((dst_offset-offset)/PAGE_SIZE);
3311 assert(pg_num == (dst_offset-offset)/PAGE_SIZE);
3312 lite_list[pg_num>>5] |= 1 << (pg_num & 31);
3313
3314 if (hw_dirty)
3315 pmap_clear_modify(dst_page->phys_page);
3316
3317 /*
3318 * Mark original page as cleaning
3319 * in place.
3320 */
3321 dst_page->cleaning = TRUE;
3322 dst_page->precious = FALSE;
3323 } else {
3324 /*
3325 * use pageclean setup, it is more
3326 * convenient even for the pageout
3327 * cases here
3328 */
3329 vm_object_lock(upl->map_object);
3330 vm_pageclean_setup(dst_page, alias_page, upl->map_object, size - xfer_size);
3331 vm_object_unlock(upl->map_object);
3332
3333 alias_page->absent = FALSE;
3334 alias_page = NULL;
3335 }
3336 #if MACH_PAGEMAP
3337 /*
3338 * Record that this page has been
3339 * written out
3340 */
3341 vm_external_state_set(object->existence_map, dst_page->offset);
3342 #endif /*MACH_PAGEMAP*/
3343 dst_page->dirty = dirty;
3344
3345 if (!dirty)
3346 dst_page->precious = TRUE;
3347
3348 if (dst_page->pageout)
3349 dst_page->busy = TRUE;
3350
3351 if ( (cntrl_flags & UPL_ENCRYPT) ) {
3352 /*
3353 * ENCRYPTED SWAP:
3354 * We want to deny access to the target page
3355 * because its contents are about to be
3356 * encrypted and the user would be very
3357 * confused to see encrypted data instead
3358 * of their data.
3359 * We also set "encrypted_cleaning" to allow
3360 * vm_pageout_scan() to demote that page
3361 * from "adjacent/clean-in-place" to
3362 * "target/clean-and-free" if it bumps into
3363 * this page during its scanning while we're
3364 * still processing this cluster.
3365 */
3366 dst_page->busy = TRUE;
3367 dst_page->encrypted_cleaning = TRUE;
3368 }
3369 if ( !(cntrl_flags & UPL_CLEAN_IN_PLACE) ) {
3370 /*
3371 * deny access to the target page
3372 * while it is being worked on
3373 */
3374 if ((!dst_page->pageout) && ( !VM_PAGE_WIRED(dst_page))) {
3375 dst_page->busy = TRUE;
3376 dst_page->pageout = TRUE;
3377
3378 dwp->dw_mask |= DW_vm_page_wire;
3379 }
3380 }
3381 } else {
3382 if ((cntrl_flags & UPL_WILL_MODIFY) && object->copy != last_copy_object) {
3383 /*
3384 * Honor copy-on-write obligations
3385 *
3386 * The copy object has changed since we
3387 * last synchronized for copy-on-write.
3388 * Another copy object might have been
3389 * inserted while we released the object's
3390 * lock. Since someone could have seen the
3391 * original contents of the remaining pages
3392 * through that new object, we have to
3393 * synchronize with it again for the remaining
3394 * pages only. The previous pages are "busy"
3395 * so they can not be seen through the new
3396 * mapping. The new mapping will see our
3397 * upcoming changes for those previous pages,
3398 * but that's OK since they couldn't see what
3399 * was there before. It's just a race anyway
3400 * and there's no guarantee of consistency or
3401 * atomicity. We just don't want new mappings
3402 * to see both the *before* and *after* pages.
3403 */
3404 if (object->copy != VM_OBJECT_NULL) {
3405 vm_object_update(
3406 object,
3407 dst_offset,/* current offset */
3408 xfer_size, /* remaining size */
3409 NULL,
3410 NULL,
3411 FALSE, /* should_return */
3412 MEMORY_OBJECT_COPY_SYNC,
3413 VM_PROT_NO_CHANGE);
3414
3415 #if DEVELOPMENT || DEBUG
3416 upl_cow_again++;
3417 upl_cow_again_pages += xfer_size >> PAGE_SHIFT;
3418 #endif
3419 }
3420 /*
3421 * remember the copy object we synced with
3422 */
3423 last_copy_object = object->copy;
3424 }
3425 dst_page = vm_page_lookup(object, dst_offset);
3426
3427 if (dst_page != VM_PAGE_NULL) {
3428
3429 if ((cntrl_flags & UPL_RET_ONLY_ABSENT)) {
3430
3431 if ( !(dst_page->absent && dst_page->list_req_pending) ) {
3432 /*
3433 * skip over pages already present in the cache
3434 */
3435 if (user_page_list)
3436 user_page_list[entry].phys_addr = 0;
3437
3438 goto try_next_page;
3439 }
3440 }
3441 if ( !(dst_page->list_req_pending) ) {
3442
3443 if (dst_page->cleaning) {
3444 /*
3445 * someone else is writing to the page... wait...
3446 */
3447 PAGE_SLEEP(object, dst_page, THREAD_UNINT);
3448
3449 continue;
3450 }
3451 } else {
3452 if (dst_page->fictitious &&
3453 dst_page->phys_page == vm_page_fictitious_addr) {
3454 assert( !dst_page->speculative);
3455 /*
3456 * dump the fictitious page
3457 */
3458 dst_page->list_req_pending = FALSE;
3459
3460 VM_PAGE_FREE(dst_page);
3461
3462 dst_page = NULL;
3463
3464 } else if (dst_page->absent) {
3465 /*
3466 * the default_pager case
3467 */
3468 dst_page->list_req_pending = FALSE;
3469 PAGE_WAKEUP_DONE(dst_page);
3470
3471 } else if (dst_page->pageout || dst_page->cleaning) {
3472 /*
3473 * page was earmarked by vm_pageout_scan
3474 * to be cleaned and stolen... we're going
3475 * to take it back since we are not attempting
3476 * to read that page and we don't want to stall
3477 * waiting for it to be cleaned for 2 reasons...
3478 * 1 - no use paging it out and back in
3479 * 2 - if we stall, we may casue a deadlock in
3480 * the FS trying to acquire the its locks
3481 * on the VNOP_PAGEOUT path presuming that
3482 * those locks are already held on the read
3483 * path before trying to create this UPL
3484 *
3485 * so undo all of the state that vm_pageout_scan
3486 * hung on this page
3487 */
3488 vm_pageout_queue_steal(dst_page, FALSE);
3489 PAGE_WAKEUP_DONE(dst_page);
3490 }
3491 }
3492 }
3493 if (dst_page == VM_PAGE_NULL) {
3494 if (object->private) {
3495 /*
3496 * This is a nasty wrinkle for users
3497 * of upl who encounter device or
3498 * private memory however, it is
3499 * unavoidable, only a fault can
3500 * resolve the actual backing
3501 * physical page by asking the
3502 * backing device.
3503 */
3504 if (user_page_list)
3505 user_page_list[entry].phys_addr = 0;
3506
3507 goto try_next_page;
3508 }
3509 if (object->scan_collisions) {
3510 /*
3511 * the pageout_scan thread is trying to steal
3512 * pages from this object, but has run into our
3513 * lock... grab 2 pages from the head of the object...
3514 * the first is freed on behalf of pageout_scan, the
3515 * 2nd is for our own use... we use vm_object_page_grab
3516 * in both cases to avoid taking pages from the free
3517 * list since we are under memory pressure and our
3518 * lock on this object is getting in the way of
3519 * relieving it
3520 */
3521 dst_page = vm_object_page_grab(object);
3522
3523 if (dst_page != VM_PAGE_NULL)
3524 vm_page_release(dst_page);
3525
3526 dst_page = vm_object_page_grab(object);
3527 }
3528 if (dst_page == VM_PAGE_NULL) {
3529 /*
3530 * need to allocate a page
3531 */
3532 dst_page = vm_page_grab();
3533 }
3534 if (dst_page == VM_PAGE_NULL) {
3535 if ( (cntrl_flags & (UPL_RET_ONLY_ABSENT | UPL_NOBLOCK)) == (UPL_RET_ONLY_ABSENT | UPL_NOBLOCK)) {
3536 /*
3537 * we don't want to stall waiting for pages to come onto the free list
3538 * while we're already holding absent pages in this UPL
3539 * the caller will deal with the empty slots
3540 */
3541 if (user_page_list)
3542 user_page_list[entry].phys_addr = 0;
3543
3544 goto try_next_page;
3545 }
3546 /*
3547 * no pages available... wait
3548 * then try again for the same
3549 * offset...
3550 */
3551 vm_object_unlock(object);
3552
3553 OSAddAtomic(size_in_pages, &vm_upl_wait_for_pages);
3554
3555 VM_DEBUG_EVENT(vm_upl_page_wait, VM_UPL_PAGE_WAIT, DBG_FUNC_START, vm_upl_wait_for_pages, 0, 0, 0);
3556
3557 VM_PAGE_WAIT();
3558 OSAddAtomic(-size_in_pages, &vm_upl_wait_for_pages);
3559
3560 VM_DEBUG_EVENT(vm_upl_page_wait, VM_UPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, 0);
3561
3562 vm_object_lock(object);
3563
3564 continue;
3565 }
3566 vm_page_insert(dst_page, object, dst_offset);
3567
3568 dst_page->absent = TRUE;
3569 dst_page->busy = FALSE;
3570
3571 if (cntrl_flags & UPL_RET_ONLY_ABSENT) {
3572 /*
3573 * if UPL_RET_ONLY_ABSENT was specified,
3574 * than we're definitely setting up a
3575 * upl for a clustered read/pagein
3576 * operation... mark the pages as clustered
3577 * so upl_commit_range can put them on the
3578 * speculative list
3579 */
3580 dst_page->clustered = TRUE;
3581 }
3582 }
3583 if (dst_page->fictitious) {
3584 panic("need corner case for fictitious page");
3585 }
3586 if (dst_page->busy) {
3587 /*
3588 * someone else is playing with the
3589 * page. We will have to wait.
3590 */
3591 PAGE_SLEEP(object, dst_page, THREAD_UNINT);
3592
3593 continue;
3594 }
3595 /*
3596 * ENCRYPTED SWAP:
3597 */
3598 if (cntrl_flags & UPL_ENCRYPT) {
3599 /*
3600 * The page is going to be encrypted when we
3601 * get it from the pager, so mark it so.
3602 */
3603 dst_page->encrypted = TRUE;
3604 } else {
3605 /*
3606 * Otherwise, the page will not contain
3607 * encrypted data.
3608 */
3609 dst_page->encrypted = FALSE;
3610 }
3611 dst_page->overwriting = TRUE;
3612
3613 if (dst_page->pmapped) {
3614 if ( !(cntrl_flags & UPL_FILE_IO))
3615 /*
3616 * eliminate all mappings from the
3617 * original object and its prodigy
3618 */
3619 refmod_state = pmap_disconnect(dst_page->phys_page);
3620 else
3621 refmod_state = pmap_get_refmod(dst_page->phys_page);
3622 } else
3623 refmod_state = 0;
3624
3625 hw_dirty = refmod_state & VM_MEM_MODIFIED;
3626 dirty = hw_dirty ? TRUE : dst_page->dirty;
3627
3628 if (cntrl_flags & UPL_SET_LITE) {
3629 unsigned int pg_num;
3630
3631 pg_num = (unsigned int) ((dst_offset-offset)/PAGE_SIZE);
3632 assert(pg_num == (dst_offset-offset)/PAGE_SIZE);
3633 lite_list[pg_num>>5] |= 1 << (pg_num & 31);
3634
3635 if (hw_dirty)
3636 pmap_clear_modify(dst_page->phys_page);
3637
3638 /*
3639 * Mark original page as cleaning
3640 * in place.
3641 */
3642 dst_page->cleaning = TRUE;
3643 dst_page->precious = FALSE;
3644 } else {
3645 /*
3646 * use pageclean setup, it is more
3647 * convenient even for the pageout
3648 * cases here
3649 */
3650 vm_object_lock(upl->map_object);
3651 vm_pageclean_setup(dst_page, alias_page, upl->map_object, size - xfer_size);
3652 vm_object_unlock(upl->map_object);
3653
3654 alias_page->absent = FALSE;
3655 alias_page = NULL;
3656 }
3657
3658 if (cntrl_flags & UPL_REQUEST_SET_DIRTY) {
3659 upl->flags &= ~UPL_CLEAR_DIRTY;
3660 upl->flags |= UPL_SET_DIRTY;
3661 dirty = TRUE;
3662 upl->flags |= UPL_SET_DIRTY;
3663 } else if (cntrl_flags & UPL_CLEAN_IN_PLACE) {
3664 /*
3665 * clean in place for read implies
3666 * that a write will be done on all
3667 * the pages that are dirty before
3668 * a upl commit is done. The caller
3669 * is obligated to preserve the
3670 * contents of all pages marked dirty
3671 */
3672 upl->flags |= UPL_CLEAR_DIRTY;
3673 }
3674 dst_page->dirty = dirty;
3675
3676 if (!dirty)
3677 dst_page->precious = TRUE;
3678
3679 if ( !VM_PAGE_WIRED(dst_page)) {
3680 /*
3681 * deny access to the target page while
3682 * it is being worked on
3683 */
3684 dst_page->busy = TRUE;
3685 } else
3686 dwp->dw_mask |= DW_vm_page_wire;
3687
3688 /*
3689 * We might be about to satisfy a fault which has been
3690 * requested. So no need for the "restart" bit.
3691 */
3692 dst_page->restart = FALSE;
3693 if (!dst_page->absent && !(cntrl_flags & UPL_WILL_MODIFY)) {
3694 /*
3695 * expect the page to be used
3696 */
3697 dwp->dw_mask |= DW_set_reference;
3698 }
3699 if (cntrl_flags & UPL_PRECIOUS) {
3700 if (dst_page->object->internal) {
3701 dst_page->dirty = TRUE;
3702 dst_page->precious = FALSE;
3703 } else {
3704 dst_page->precious = TRUE;
3705 }
3706 } else {
3707 dst_page->precious = FALSE;
3708 }
3709 }
3710 if (dst_page->busy)
3711 upl->flags |= UPL_HAS_BUSY;
3712
3713 if (dst_page->phys_page > upl->highest_page)
3714 upl->highest_page = dst_page->phys_page;
3715 if (user_page_list) {
3716 user_page_list[entry].phys_addr = dst_page->phys_page;
3717 user_page_list[entry].pageout = dst_page->pageout;
3718 user_page_list[entry].absent = dst_page->absent;
3719 user_page_list[entry].dirty = dst_page->dirty;
3720 user_page_list[entry].precious = dst_page->precious;
3721 user_page_list[entry].device = FALSE;
3722 if (dst_page->clustered == TRUE)
3723 user_page_list[entry].speculative = dst_page->speculative;
3724 else
3725 user_page_list[entry].speculative = FALSE;
3726 user_page_list[entry].cs_validated = dst_page->cs_validated;
3727 user_page_list[entry].cs_tainted = dst_page->cs_tainted;
3728 }
3729 /*
3730 * if UPL_RET_ONLY_ABSENT is set, then
3731 * we are working with a fresh page and we've
3732 * just set the clustered flag on it to
3733 * indicate that it was drug in as part of a
3734 * speculative cluster... so leave it alone
3735 */
3736 if ( !(cntrl_flags & UPL_RET_ONLY_ABSENT)) {
3737 /*
3738 * someone is explicitly grabbing this page...
3739 * update clustered and speculative state
3740 *
3741 */
3742 VM_PAGE_CONSUME_CLUSTERED(dst_page);
3743 }
3744 try_next_page:
3745 if (dwp->dw_mask) {
3746 if (dwp->dw_mask & DW_vm_page_activate)
3747 VM_STAT_INCR(reactivations);
3748
3749 VM_PAGE_ADD_DELAYED_WORK(dwp, dst_page, dw_count);
3750
3751 if (dw_count >= dw_limit) {
3752 vm_page_do_delayed_work(object, &dw_array[0], dw_count);
3753
3754 dwp = &dw_array[0];
3755 dw_count = 0;
3756 }
3757 }
3758 entry++;
3759 dst_offset += PAGE_SIZE_64;
3760 xfer_size -= PAGE_SIZE;
3761 }
3762 if (dw_count)
3763 vm_page_do_delayed_work(object, &dw_array[0], dw_count);
3764
3765 if (alias_page != NULL) {
3766 VM_PAGE_FREE(alias_page);
3767 }
3768
3769 if (page_list_count != NULL) {
3770 if (upl->flags & UPL_INTERNAL)
3771 *page_list_count = 0;
3772 else if (*page_list_count > entry)
3773 *page_list_count = entry;
3774 }
3775 #if UPL_DEBUG
3776 upl->upl_state = 1;
3777 #endif
3778 vm_object_unlock(object);
3779
3780 return KERN_SUCCESS;
3781 }
3782
3783 /* JMM - Backward compatability for now */
3784 kern_return_t
3785 vm_fault_list_request( /* forward */
3786 memory_object_control_t control,
3787 vm_object_offset_t offset,
3788 upl_size_t size,
3789 upl_t *upl_ptr,
3790 upl_page_info_t **user_page_list_ptr,
3791 unsigned int page_list_count,
3792 int cntrl_flags);
3793 kern_return_t
3794 vm_fault_list_request(
3795 memory_object_control_t control,
3796 vm_object_offset_t offset,
3797 upl_size_t size,
3798 upl_t *upl_ptr,
3799 upl_page_info_t **user_page_list_ptr,
3800 unsigned int page_list_count,
3801 int cntrl_flags)
3802 {
3803 unsigned int local_list_count;
3804 upl_page_info_t *user_page_list;
3805 kern_return_t kr;
3806
3807 if((cntrl_flags & UPL_VECTOR)==UPL_VECTOR)
3808 return KERN_INVALID_ARGUMENT;
3809
3810 if (user_page_list_ptr != NULL) {
3811 local_list_count = page_list_count;
3812 user_page_list = *user_page_list_ptr;
3813 } else {
3814 local_list_count = 0;
3815 user_page_list = NULL;
3816 }
3817 kr = memory_object_upl_request(control,
3818 offset,
3819 size,
3820 upl_ptr,
3821 user_page_list,
3822 &local_list_count,
3823 cntrl_flags);
3824
3825 if(kr != KERN_SUCCESS)
3826 return kr;
3827
3828 if ((user_page_list_ptr != NULL) && (cntrl_flags & UPL_INTERNAL)) {
3829 *user_page_list_ptr = UPL_GET_INTERNAL_PAGE_LIST(*upl_ptr);
3830 }
3831
3832 return KERN_SUCCESS;
3833 }
3834
3835
3836
3837 /*
3838 * Routine: vm_object_super_upl_request
3839 * Purpose:
3840 * Cause the population of a portion of a vm_object
3841 * in much the same way as memory_object_upl_request.
3842 * Depending on the nature of the request, the pages
3843 * returned may be contain valid data or be uninitialized.
3844 * However, the region may be expanded up to the super
3845 * cluster size provided.
3846 */
3847
3848 __private_extern__ kern_return_t
3849 vm_object_super_upl_request(
3850 vm_object_t object,
3851 vm_object_offset_t offset,
3852 upl_size_t size,
3853 upl_size_t super_cluster,
3854 upl_t *upl,
3855 upl_page_info_t *user_page_list,
3856 unsigned int *page_list_count,
3857 int cntrl_flags)
3858 {
3859 if (object->paging_offset > offset || ((cntrl_flags & UPL_VECTOR)==UPL_VECTOR))
3860 return KERN_FAILURE;
3861
3862 assert(object->paging_in_progress);
3863 offset = offset - object->paging_offset;
3864
3865 if (super_cluster > size) {
3866
3867 vm_object_offset_t base_offset;
3868 upl_size_t super_size;
3869 vm_object_size_t super_size_64;
3870
3871 base_offset = (offset & ~((vm_object_offset_t) super_cluster - 1));
3872 super_size = (offset + size) > (base_offset + super_cluster) ? super_cluster<<1 : super_cluster;
3873 super_size_64 = ((base_offset + super_size) > object->vo_size) ? (object->vo_size - base_offset) : super_size;
3874 super_size = (upl_size_t) super_size_64;
3875 assert(super_size == super_size_64);
3876
3877 if (offset > (base_offset + super_size)) {
3878 panic("vm_object_super_upl_request: Missed target pageout"
3879 " %#llx,%#llx, %#x, %#x, %#x, %#llx\n",
3880 offset, base_offset, super_size, super_cluster,
3881 size, object->paging_offset);
3882 }
3883 /*
3884 * apparently there is a case where the vm requests a
3885 * page to be written out who's offset is beyond the
3886 * object size
3887 */
3888 if ((offset + size) > (base_offset + super_size)) {
3889 super_size_64 = (offset + size) - base_offset;
3890 super_size = (upl_size_t) super_size_64;
3891 assert(super_size == super_size_64);
3892 }
3893
3894 offset = base_offset;
3895 size = super_size;
3896 }
3897 return vm_object_upl_request(object, offset, size, upl, user_page_list, page_list_count, cntrl_flags);
3898 }
3899
3900
3901 kern_return_t
3902 vm_map_create_upl(
3903 vm_map_t map,
3904 vm_map_address_t offset,
3905 upl_size_t *upl_size,
3906 upl_t *upl,
3907 upl_page_info_array_t page_list,
3908 unsigned int *count,
3909 int *flags)
3910 {
3911 vm_map_entry_t entry;
3912 int caller_flags;
3913 int force_data_sync;
3914 int sync_cow_data;
3915 vm_object_t local_object;
3916 vm_map_offset_t local_offset;
3917 vm_map_offset_t local_start;
3918 kern_return_t ret;
3919
3920 caller_flags = *flags;
3921
3922 if (caller_flags & ~UPL_VALID_FLAGS) {
3923 /*
3924 * For forward compatibility's sake,
3925 * reject any unknown flag.
3926 */
3927 return KERN_INVALID_VALUE;
3928 }
3929 force_data_sync = (caller_flags & UPL_FORCE_DATA_SYNC);
3930 sync_cow_data = !(caller_flags & UPL_COPYOUT_FROM);
3931
3932 if (upl == NULL)
3933 return KERN_INVALID_ARGUMENT;
3934
3935 REDISCOVER_ENTRY:
3936 vm_map_lock_read(map);
3937
3938 if (vm_map_lookup_entry(map, offset, &entry)) {
3939
3940 if ((entry->vme_end - offset) < *upl_size) {
3941 *upl_size = (upl_size_t) (entry->vme_end - offset);
3942 assert(*upl_size == entry->vme_end - offset);
3943 }
3944
3945 if (caller_flags & UPL_QUERY_OBJECT_TYPE) {
3946 *flags = 0;
3947
3948 if ( !entry->is_sub_map && entry->object.vm_object != VM_OBJECT_NULL) {
3949 if (entry->object.vm_object->private)
3950 *flags = UPL_DEV_MEMORY;
3951
3952 if (entry->object.vm_object->phys_contiguous)
3953 *flags |= UPL_PHYS_CONTIG;
3954 }
3955 vm_map_unlock_read(map);
3956
3957 return KERN_SUCCESS;
3958 }
3959 if (entry->object.vm_object == VM_OBJECT_NULL || !entry->object.vm_object->phys_contiguous) {
3960 if ((*upl_size/PAGE_SIZE) > MAX_UPL_SIZE)
3961 *upl_size = MAX_UPL_SIZE * PAGE_SIZE;
3962 }
3963 /*
3964 * Create an object if necessary.
3965 */
3966 if (entry->object.vm_object == VM_OBJECT_NULL) {
3967
3968 if (vm_map_lock_read_to_write(map))
3969 goto REDISCOVER_ENTRY;
3970
3971 entry->object.vm_object = vm_object_allocate((vm_size_t)(entry->vme_end - entry->vme_start));
3972 entry->offset = 0;
3973
3974 vm_map_lock_write_to_read(map);
3975 }
3976 if (!(caller_flags & UPL_COPYOUT_FROM)) {
3977 if (!(entry->protection & VM_PROT_WRITE)) {
3978 vm_map_unlock_read(map);
3979 return KERN_PROTECTION_FAILURE;
3980 }
3981 if (entry->needs_copy) {
3982 /*
3983 * Honor copy-on-write for COPY_SYMMETRIC
3984 * strategy.
3985 */
3986 vm_map_t local_map;
3987 vm_object_t object;
3988 vm_object_offset_t new_offset;
3989 vm_prot_t prot;
3990 boolean_t wired;
3991 vm_map_version_t version;
3992 vm_map_t real_map;
3993
3994 local_map = map;
3995
3996 if (vm_map_lookup_locked(&local_map,
3997 offset, VM_PROT_WRITE,
3998 OBJECT_LOCK_EXCLUSIVE,
3999 &version, &object,
4000 &new_offset, &prot, &wired,
4001 NULL,
4002 &real_map) != KERN_SUCCESS) {
4003 vm_map_unlock_read(local_map);
4004 return KERN_FAILURE;
4005 }
4006 if (real_map != map)
4007 vm_map_unlock(real_map);
4008 vm_map_unlock_read(local_map);
4009
4010 vm_object_unlock(object);
4011
4012 goto REDISCOVER_ENTRY;
4013 }
4014 }
4015 if (entry->is_sub_map) {
4016 vm_map_t submap;
4017
4018 submap = entry->object.sub_map;
4019 local_start = entry->vme_start;
4020 local_offset = entry->offset;
4021
4022 vm_map_reference(submap);
4023 vm_map_unlock_read(map);
4024
4025 ret = vm_map_create_upl(submap,
4026 local_offset + (offset - local_start),
4027 upl_size, upl, page_list, count, flags);
4028 vm_map_deallocate(submap);
4029
4030 return ret;
4031 }
4032 if (sync_cow_data) {
4033 if (entry->object.vm_object->shadow || entry->object.vm_object->copy) {
4034 local_object = entry->object.vm_object;
4035 local_start = entry->vme_start;
4036 local_offset = entry->offset;
4037
4038 vm_object_reference(local_object);
4039 vm_map_unlock_read(map);
4040
4041 if (local_object->shadow && local_object->copy) {
4042 vm_object_lock_request(
4043 local_object->shadow,
4044 (vm_object_offset_t)
4045 ((offset - local_start) +
4046 local_offset) +
4047 local_object->vo_shadow_offset,
4048 *upl_size, FALSE,
4049 MEMORY_OBJECT_DATA_SYNC,
4050 VM_PROT_NO_CHANGE);
4051 }
4052 sync_cow_data = FALSE;
4053 vm_object_deallocate(local_object);
4054
4055 goto REDISCOVER_ENTRY;
4056 }
4057 }
4058 if (force_data_sync) {
4059 local_object = entry->object.vm_object;
4060 local_start = entry->vme_start;
4061 local_offset = entry->offset;
4062
4063 vm_object_reference(local_object);
4064 vm_map_unlock_read(map);
4065
4066 vm_object_lock_request(
4067 local_object,
4068 (vm_object_offset_t)
4069 ((offset - local_start) + local_offset),
4070 (vm_object_size_t)*upl_size, FALSE,
4071 MEMORY_OBJECT_DATA_SYNC,
4072 VM_PROT_NO_CHANGE);
4073
4074 force_data_sync = FALSE;
4075 vm_object_deallocate(local_object);
4076
4077 goto REDISCOVER_ENTRY;
4078 }
4079 if (entry->object.vm_object->private)
4080 *flags = UPL_DEV_MEMORY;
4081 else
4082 *flags = 0;
4083
4084 if (entry->object.vm_object->phys_contiguous)
4085 *flags |= UPL_PHYS_CONTIG;
4086
4087 local_object = entry->object.vm_object;
4088 local_offset = entry->offset;
4089 local_start = entry->vme_start;
4090
4091 vm_object_reference(local_object);
4092 vm_map_unlock_read(map);
4093
4094 ret = vm_object_iopl_request(local_object,
4095 (vm_object_offset_t) ((offset - local_start) + local_offset),
4096 *upl_size,
4097 upl,
4098 page_list,
4099 count,
4100 caller_flags);
4101 vm_object_deallocate(local_object);
4102
4103 return(ret);
4104 }
4105 vm_map_unlock_read(map);
4106
4107 return(KERN_FAILURE);
4108 }
4109
4110 /*
4111 * Internal routine to enter a UPL into a VM map.
4112 *
4113 * JMM - This should just be doable through the standard
4114 * vm_map_enter() API.
4115 */
4116 kern_return_t
4117 vm_map_enter_upl(
4118 vm_map_t map,
4119 upl_t upl,
4120 vm_map_offset_t *dst_addr)
4121 {
4122 vm_map_size_t size;
4123 vm_object_offset_t offset;
4124 vm_map_offset_t addr;
4125 vm_page_t m;
4126 kern_return_t kr;
4127 int isVectorUPL = 0, curr_upl=0;
4128 upl_t vector_upl = NULL;
4129 vm_offset_t vector_upl_dst_addr = 0;
4130 vm_map_t vector_upl_submap = NULL;
4131 upl_offset_t subupl_offset = 0;
4132 upl_size_t subupl_size = 0;
4133
4134 if (upl == UPL_NULL)
4135 return KERN_INVALID_ARGUMENT;
4136
4137 if((isVectorUPL = vector_upl_is_valid(upl))) {
4138 int mapped=0,valid_upls=0;
4139 vector_upl = upl;
4140
4141 upl_lock(vector_upl);
4142 for(curr_upl=0; curr_upl < MAX_VECTOR_UPL_ELEMENTS; curr_upl++) {
4143 upl = vector_upl_subupl_byindex(vector_upl, curr_upl );
4144 if(upl == NULL)
4145 continue;
4146 valid_upls++;
4147 if (UPL_PAGE_LIST_MAPPED & upl->flags)
4148 mapped++;
4149 }
4150
4151 if(mapped) {
4152 if(mapped != valid_upls)
4153 panic("Only %d of the %d sub-upls within the Vector UPL are alread mapped\n", mapped, valid_upls);
4154 else {
4155 upl_unlock(vector_upl);
4156 return KERN_FAILURE;
4157 }
4158 }
4159
4160 kr = kmem_suballoc(map, &vector_upl_dst_addr, vector_upl->size, FALSE, VM_FLAGS_ANYWHERE, &vector_upl_submap);
4161 if( kr != KERN_SUCCESS )
4162 panic("Vector UPL submap allocation failed\n");
4163 map = vector_upl_submap;
4164 vector_upl_set_submap(vector_upl, vector_upl_submap, vector_upl_dst_addr);
4165 curr_upl=0;
4166 }
4167 else
4168 upl_lock(upl);
4169
4170 process_upl_to_enter:
4171 if(isVectorUPL){
4172 if(curr_upl == MAX_VECTOR_UPL_ELEMENTS) {
4173 *dst_addr = vector_upl_dst_addr;
4174 upl_unlock(vector_upl);
4175 return KERN_SUCCESS;
4176 }
4177 upl = vector_upl_subupl_byindex(vector_upl, curr_upl++ );
4178 if(upl == NULL)
4179 goto process_upl_to_enter;
4180
4181 vector_upl_get_iostate(vector_upl, upl, &subupl_offset, &subupl_size);
4182 *dst_addr = (vm_map_offset_t)(vector_upl_dst_addr + (vm_map_offset_t)subupl_offset);
4183 } else {
4184 /*
4185 * check to see if already mapped
4186 */
4187 if (UPL_PAGE_LIST_MAPPED & upl->flags) {
4188 upl_unlock(upl);
4189 return KERN_FAILURE;
4190 }
4191 }
4192 if ((!(upl->flags & UPL_SHADOWED)) &&
4193 ((upl->flags & UPL_HAS_BUSY) ||
4194 !((upl->flags & (UPL_DEVICE_MEMORY | UPL_IO_WIRE)) || (upl->map_object->phys_contiguous)))) {
4195
4196 vm_object_t object;
4197 vm_page_t alias_page;
4198 vm_object_offset_t new_offset;
4199 unsigned int pg_num;
4200 wpl_array_t lite_list;
4201
4202 if (upl->flags & UPL_INTERNAL) {
4203 lite_list = (wpl_array_t)
4204 ((((uintptr_t)upl) + sizeof(struct upl))
4205 + ((upl->size/PAGE_SIZE) * sizeof(upl_page_info_t)));
4206 } else {
4207 lite_list = (wpl_array_t)(((uintptr_t)upl) + sizeof(struct upl));
4208 }
4209 object = upl->map_object;
4210 upl->map_object = vm_object_allocate(upl->size);
4211
4212 vm_object_lock(upl->map_object);
4213
4214 upl->map_object->shadow = object;
4215 upl->map_object->pageout = TRUE;
4216 upl->map_object->can_persist = FALSE;
4217 upl->map_object->copy_strategy = MEMORY_OBJECT_COPY_NONE;
4218 upl->map_object->vo_shadow_offset = upl->offset - object->paging_offset;
4219 upl->map_object->wimg_bits = object->wimg_bits;
4220 offset = upl->map_object->vo_shadow_offset;
4221 new_offset = 0;
4222 size = upl->size;
4223
4224 upl->flags |= UPL_SHADOWED;
4225
4226 while (size) {
4227 pg_num = (unsigned int) (new_offset / PAGE_SIZE);
4228 assert(pg_num == new_offset / PAGE_SIZE);
4229
4230 if (lite_list[pg_num>>5] & (1 << (pg_num & 31))) {
4231
4232 VM_PAGE_GRAB_FICTITIOUS(alias_page);
4233
4234 vm_object_lock(object);
4235
4236 m = vm_page_lookup(object, offset);
4237 if (m == VM_PAGE_NULL) {
4238 panic("vm_upl_map: page missing\n");
4239 }
4240
4241 /*
4242 * Convert the fictitious page to a private
4243 * shadow of the real page.
4244 */
4245 assert(alias_page->fictitious);
4246 alias_page->fictitious = FALSE;
4247 alias_page->private = TRUE;
4248 alias_page->pageout = TRUE;
4249 /*
4250 * since m is a page in the upl it must
4251 * already be wired or BUSY, so it's
4252 * safe to assign the underlying physical
4253 * page to the alias
4254 */
4255 alias_page->phys_page = m->phys_page;
4256
4257 vm_object_unlock(object);
4258
4259 vm_page_lockspin_queues();
4260 vm_page_wire(alias_page);
4261 vm_page_unlock_queues();
4262
4263 /*
4264 * ENCRYPTED SWAP:
4265 * The virtual page ("m") has to be wired in some way
4266 * here or its physical page ("m->phys_page") could
4267 * be recycled at any time.
4268 * Assuming this is enforced by the caller, we can't
4269 * get an encrypted page here. Since the encryption
4270 * key depends on the VM page's "pager" object and
4271 * the "paging_offset", we couldn't handle 2 pageable
4272 * VM pages (with different pagers and paging_offsets)
4273 * sharing the same physical page: we could end up
4274 * encrypting with one key (via one VM page) and
4275 * decrypting with another key (via the alias VM page).
4276 */
4277 ASSERT_PAGE_DECRYPTED(m);
4278
4279 vm_page_insert(alias_page, upl->map_object, new_offset);
4280
4281 assert(!alias_page->wanted);
4282 alias_page->busy = FALSE;
4283 alias_page->absent = FALSE;
4284 }
4285 size -= PAGE_SIZE;
4286 offset += PAGE_SIZE_64;
4287 new_offset += PAGE_SIZE_64;
4288 }
4289 vm_object_unlock(upl->map_object);
4290 }
4291 if (upl->flags & UPL_SHADOWED)
4292 offset = 0;
4293 else
4294 offset = upl->offset - upl->map_object->paging_offset;
4295
4296 size = upl->size;
4297
4298 vm_object_reference(upl->map_object);
4299
4300 if(!isVectorUPL) {
4301 *dst_addr = 0;
4302 /*
4303 * NEED A UPL_MAP ALIAS
4304 */
4305 kr = vm_map_enter(map, dst_addr, (vm_map_size_t)size, (vm_map_offset_t) 0,
4306 VM_FLAGS_ANYWHERE, upl->map_object, offset, FALSE,
4307 VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT);
4308
4309 if (kr != KERN_SUCCESS) {
4310 upl_unlock(upl);
4311 return(kr);
4312 }
4313 }
4314 else {
4315 kr = vm_map_enter(map, dst_addr, (vm_map_size_t)size, (vm_map_offset_t) 0,
4316 VM_FLAGS_FIXED, upl->map_object, offset, FALSE,
4317 VM_PROT_DEFAULT, VM_PROT_ALL, VM_INHERIT_DEFAULT);
4318 if(kr)
4319 panic("vm_map_enter failed for a Vector UPL\n");
4320 }
4321 vm_object_lock(upl->map_object);
4322
4323 for (addr = *dst_addr; size > 0; size -= PAGE_SIZE, addr += PAGE_SIZE) {
4324 m = vm_page_lookup(upl->map_object, offset);
4325
4326 if (m) {
4327 m->pmapped = TRUE;
4328
4329 /* CODE SIGNING ENFORCEMENT: page has been wpmapped,
4330 * but only in kernel space. If this was on a user map,
4331 * we'd have to set the wpmapped bit. */
4332 /* m->wpmapped = TRUE; */
4333 assert(map==kernel_map);
4334
4335 PMAP_ENTER(map->pmap, addr, m, VM_PROT_ALL, 0, TRUE);
4336 }
4337 offset += PAGE_SIZE_64;
4338 }
4339 vm_object_unlock(upl->map_object);
4340
4341 /*
4342 * hold a reference for the mapping
4343 */
4344 upl->ref_count++;
4345 upl->flags |= UPL_PAGE_LIST_MAPPED;
4346 upl->kaddr = (vm_offset_t) *dst_addr;
4347 assert(upl->kaddr == *dst_addr);
4348
4349 if(isVectorUPL)
4350 goto process_upl_to_enter;
4351
4352 upl_unlock(upl);
4353
4354 return KERN_SUCCESS;
4355 }
4356
4357 /*
4358 * Internal routine to remove a UPL mapping from a VM map.
4359 *
4360 * XXX - This should just be doable through a standard
4361 * vm_map_remove() operation. Otherwise, implicit clean-up
4362 * of the target map won't be able to correctly remove
4363 * these (and release the reference on the UPL). Having
4364 * to do this means we can't map these into user-space
4365 * maps yet.
4366 */
4367 kern_return_t
4368 vm_map_remove_upl(
4369 vm_map_t map,
4370 upl_t upl)
4371 {
4372 vm_address_t addr;
4373 upl_size_t size;
4374 int isVectorUPL = 0, curr_upl = 0;
4375 upl_t vector_upl = NULL;
4376
4377 if (upl == UPL_NULL)
4378 return KERN_INVALID_ARGUMENT;
4379
4380 if((isVectorUPL = vector_upl_is_valid(upl))) {
4381 int unmapped=0, valid_upls=0;
4382 vector_upl = upl;
4383 upl_lock(vector_upl);
4384 for(curr_upl=0; curr_upl < MAX_VECTOR_UPL_ELEMENTS; curr_upl++) {
4385 upl = vector_upl_subupl_byindex(vector_upl, curr_upl );
4386 if(upl == NULL)
4387 continue;
4388 valid_upls++;
4389 if (!(UPL_PAGE_LIST_MAPPED & upl->flags))
4390 unmapped++;
4391 }
4392
4393 if(unmapped) {
4394 if(unmapped != valid_upls)
4395 panic("%d of the %d sub-upls within the Vector UPL is/are not mapped\n", unmapped, valid_upls);
4396 else {
4397 upl_unlock(vector_upl);
4398 return KERN_FAILURE;
4399 }
4400 }
4401 curr_upl=0;
4402 }
4403 else
4404 upl_lock(upl);
4405
4406 process_upl_to_remove:
4407 if(isVectorUPL) {
4408 if(curr_upl == MAX_VECTOR_UPL_ELEMENTS) {
4409 vm_map_t v_upl_submap;
4410 vm_offset_t v_upl_submap_dst_addr;
4411 vector_upl_get_submap(vector_upl, &v_upl_submap, &v_upl_submap_dst_addr);
4412
4413 vm_map_remove(map, v_upl_submap_dst_addr, v_upl_submap_dst_addr + vector_upl->size, VM_MAP_NO_FLAGS);
4414 vm_map_deallocate(v_upl_submap);
4415 upl_unlock(vector_upl);
4416 return KERN_SUCCESS;
4417 }
4418
4419 upl = vector_upl_subupl_byindex(vector_upl, curr_upl++ );
4420 if(upl == NULL)
4421 goto process_upl_to_remove;
4422 }
4423
4424 if (upl->flags & UPL_PAGE_LIST_MAPPED) {
4425 addr = upl->kaddr;
4426 size = upl->size;
4427
4428 assert(upl->ref_count > 1);
4429 upl->ref_count--; /* removing mapping ref */
4430
4431 upl->flags &= ~UPL_PAGE_LIST_MAPPED;
4432 upl->kaddr = (vm_offset_t) 0;
4433
4434 if(!isVectorUPL) {
4435 upl_unlock(upl);
4436
4437 vm_map_remove(map,
4438 vm_map_trunc_page(addr),
4439 vm_map_round_page(addr + size),
4440 VM_MAP_NO_FLAGS);
4441
4442 return KERN_SUCCESS;
4443 }
4444 else {
4445 /*
4446 * If it's a Vectored UPL, we'll be removing the entire
4447 * submap anyways, so no need to remove individual UPL
4448 * element mappings from within the submap
4449 */
4450 goto process_upl_to_remove;
4451 }
4452 }
4453 upl_unlock(upl);
4454
4455 return KERN_FAILURE;
4456 }
4457
4458
4459 kern_return_t
4460 upl_commit_range(
4461 upl_t upl,
4462 upl_offset_t offset,
4463 upl_size_t size,
4464 int flags,
4465 upl_page_info_t *page_list,
4466 mach_msg_type_number_t count,
4467 boolean_t *empty)
4468 {
4469 upl_size_t xfer_size, subupl_size = size;
4470 vm_object_t shadow_object;
4471 vm_object_t object;
4472 vm_object_offset_t target_offset;
4473 upl_offset_t subupl_offset = offset;
4474 int entry;
4475 wpl_array_t lite_list;
4476 int occupied;
4477 int clear_refmod = 0;
4478 int pgpgout_count = 0;
4479 struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT];
4480 struct vm_page_delayed_work *dwp;
4481 int dw_count;
4482 int dw_limit;
4483 int isVectorUPL = 0;
4484 upl_t vector_upl = NULL;
4485 boolean_t should_be_throttled = FALSE;
4486
4487 *empty = FALSE;
4488
4489 if (upl == UPL_NULL)
4490 return KERN_INVALID_ARGUMENT;
4491
4492 if (count == 0)
4493 page_list = NULL;
4494
4495 if((isVectorUPL = vector_upl_is_valid(upl))) {
4496 vector_upl = upl;
4497 upl_lock(vector_upl);
4498 }
4499 else
4500 upl_lock(upl);
4501
4502 process_upl_to_commit:
4503
4504 if(isVectorUPL) {
4505 size = subupl_size;
4506 offset = subupl_offset;
4507 if(size == 0) {
4508 upl_unlock(vector_upl);
4509 return KERN_SUCCESS;
4510 }
4511 upl = vector_upl_subupl_byoffset(vector_upl, &offset, &size);
4512 if(upl == NULL) {
4513 upl_unlock(vector_upl);
4514 return KERN_FAILURE;
4515 }
4516 page_list = UPL_GET_INTERNAL_PAGE_LIST_SIMPLE(upl);
4517 subupl_size -= size;
4518 subupl_offset += size;
4519 }
4520
4521 #if UPL_DEBUG
4522 if (upl->upl_commit_index < UPL_DEBUG_COMMIT_RECORDS) {
4523 (void) OSBacktrace(&upl->upl_commit_records[upl->upl_commit_index].c_retaddr[0], UPL_DEBUG_STACK_FRAMES);
4524
4525 upl->upl_commit_records[upl->upl_commit_index].c_beg = offset;
4526 upl->upl_commit_records[upl->upl_commit_index].c_end = (offset + size);
4527
4528 upl->upl_commit_index++;
4529 }
4530 #endif
4531 if (upl->flags & UPL_DEVICE_MEMORY)
4532 xfer_size = 0;
4533 else if ((offset + size) <= upl->size)
4534 xfer_size = size;
4535 else {
4536 if(!isVectorUPL)
4537 upl_unlock(upl);
4538 else {
4539 upl_unlock(vector_upl);
4540 }
4541 return KERN_FAILURE;
4542 }
4543 if (upl->flags & UPL_SET_DIRTY)
4544 flags |= UPL_COMMIT_SET_DIRTY;
4545 if (upl->flags & UPL_CLEAR_DIRTY)
4546 flags |= UPL_COMMIT_CLEAR_DIRTY;
4547
4548 if (upl->flags & UPL_INTERNAL)
4549 lite_list = (wpl_array_t) ((((uintptr_t)upl) + sizeof(struct upl))
4550 + ((upl->size/PAGE_SIZE) * sizeof(upl_page_info_t)));
4551 else
4552 lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl));
4553
4554 object = upl->map_object;
4555
4556 if (upl->flags & UPL_SHADOWED) {
4557 vm_object_lock(object);
4558 shadow_object = object->shadow;
4559 } else {
4560 shadow_object = object;
4561 }
4562 entry = offset/PAGE_SIZE;
4563 target_offset = (vm_object_offset_t)offset;
4564
4565 if (upl->flags & UPL_KERNEL_OBJECT)
4566 vm_object_lock_shared(shadow_object);
4567 else
4568 vm_object_lock(shadow_object);
4569
4570 if (upl->flags & UPL_ACCESS_BLOCKED) {
4571 assert(shadow_object->blocked_access);
4572 shadow_object->blocked_access = FALSE;
4573 vm_object_wakeup(object, VM_OBJECT_EVENT_UNBLOCKED);
4574 }
4575
4576 if (shadow_object->code_signed) {
4577 /*
4578 * CODE SIGNING:
4579 * If the object is code-signed, do not let this UPL tell
4580 * us if the pages are valid or not. Let the pages be
4581 * validated by VM the normal way (when they get mapped or
4582 * copied).
4583 */
4584 flags &= ~UPL_COMMIT_CS_VALIDATED;
4585 }
4586 if (! page_list) {
4587 /*
4588 * No page list to get the code-signing info from !?
4589 */
4590 flags &= ~UPL_COMMIT_CS_VALIDATED;
4591 }
4592 if (!VM_DYNAMIC_PAGING_ENABLED(memory_manager_default) && shadow_object->internal)
4593 should_be_throttled = TRUE;
4594
4595 dwp = &dw_array[0];
4596 dw_count = 0;
4597 dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
4598
4599 while (xfer_size) {
4600 vm_page_t t, m;
4601
4602 dwp->dw_mask = 0;
4603 clear_refmod = 0;
4604
4605 m = VM_PAGE_NULL;
4606
4607 if (upl->flags & UPL_LITE) {
4608 unsigned int pg_num;
4609
4610 pg_num = (unsigned int) (target_offset/PAGE_SIZE);
4611 assert(pg_num == target_offset/PAGE_SIZE);
4612
4613 if (lite_list[pg_num>>5] & (1 << (pg_num & 31))) {
4614 lite_list[pg_num>>5] &= ~(1 << (pg_num & 31));
4615
4616 if (!(upl->flags & UPL_KERNEL_OBJECT))
4617 m = vm_page_lookup(shadow_object, target_offset + (upl->offset - shadow_object->paging_offset));
4618 }
4619 }
4620 if (upl->flags & UPL_SHADOWED) {
4621 if ((t = vm_page_lookup(object, target_offset)) != VM_PAGE_NULL) {
4622
4623 t->pageout = FALSE;
4624
4625 VM_PAGE_FREE(t);
4626
4627 if (m == VM_PAGE_NULL)
4628 m = vm_page_lookup(shadow_object, target_offset + object->vo_shadow_offset);
4629 }
4630 }
4631 if ((upl->flags & UPL_KERNEL_OBJECT) || m == VM_PAGE_NULL)
4632 goto commit_next_page;
4633
4634 if (flags & UPL_COMMIT_CS_VALIDATED) {
4635 /*
4636 * CODE SIGNING:
4637 * Set the code signing bits according to
4638 * what the UPL says they should be.
4639 */
4640 m->cs_validated = page_list[entry].cs_validated;
4641 m->cs_tainted = page_list[entry].cs_tainted;
4642 }
4643 if (upl->flags & UPL_IO_WIRE) {
4644
4645 if (page_list)
4646 page_list[entry].phys_addr = 0;
4647
4648 if (flags & UPL_COMMIT_SET_DIRTY) {
4649 m->dirty = TRUE;
4650 } else if (flags & UPL_COMMIT_CLEAR_DIRTY) {
4651 m->dirty = FALSE;
4652
4653 if (! (flags & UPL_COMMIT_CS_VALIDATED) &&
4654 m->cs_validated && !m->cs_tainted) {
4655 /*
4656 * CODE SIGNING:
4657 * This page is no longer dirty
4658 * but could have been modified,
4659 * so it will need to be
4660 * re-validated.
4661 */
4662 m->cs_validated = FALSE;
4663 #if DEVELOPMENT || DEBUG
4664 vm_cs_validated_resets++;
4665 #endif
4666 pmap_disconnect(m->phys_page);
4667 }
4668 clear_refmod |= VM_MEM_MODIFIED;
4669 }
4670 if (flags & UPL_COMMIT_INACTIVATE) {
4671 dwp->dw_mask |= DW_vm_page_deactivate_internal;
4672 clear_refmod |= VM_MEM_REFERENCED;
4673 }
4674 if (upl->flags & UPL_ACCESS_BLOCKED) {
4675 /*
4676 * We blocked access to the pages in this UPL.
4677 * Clear the "busy" bit and wake up any waiter
4678 * for this page.
4679 */
4680 dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP);
4681 }
4682 if (m->absent) {
4683 if (flags & UPL_COMMIT_FREE_ABSENT)
4684 dwp->dw_mask |= DW_vm_page_free;
4685 else {
4686 m->absent = FALSE;
4687 dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP);
4688 }
4689 } else
4690 dwp->dw_mask |= DW_vm_page_unwire;
4691
4692 goto commit_next_page;
4693 }
4694 /*
4695 * make sure to clear the hardware
4696 * modify or reference bits before
4697 * releasing the BUSY bit on this page
4698 * otherwise we risk losing a legitimate
4699 * change of state
4700 */
4701 if (flags & UPL_COMMIT_CLEAR_DIRTY) {
4702 m->dirty = FALSE;
4703
4704 if (! (flags & UPL_COMMIT_CS_VALIDATED) &&
4705 m->cs_validated && !m->cs_tainted) {
4706 /*
4707 * CODE SIGNING:
4708 * This page is no longer dirty
4709 * but could have been modified,
4710 * so it will need to be
4711 * re-validated.
4712 */
4713 m->cs_validated = FALSE;
4714 #if DEVELOPMENT || DEBUG
4715 vm_cs_validated_resets++;
4716 #endif
4717 pmap_disconnect(m->phys_page);
4718 }
4719 clear_refmod |= VM_MEM_MODIFIED;
4720 }
4721 if (page_list) {
4722 upl_page_info_t *p;
4723
4724 p = &(page_list[entry]);
4725
4726 if (p->phys_addr && p->pageout && !m->pageout) {
4727 m->busy = TRUE;
4728 m->pageout = TRUE;
4729
4730 dwp->dw_mask |= DW_vm_page_wire;
4731
4732 } else if (p->phys_addr &&
4733 !p->pageout && m->pageout &&
4734 !m->dump_cleaning) {
4735 m->pageout = FALSE;
4736 m->absent = FALSE;
4737 m->overwriting = FALSE;
4738
4739 dwp->dw_mask |= (DW_vm_page_unwire | DW_clear_busy | DW_PAGE_WAKEUP);
4740 }
4741 page_list[entry].phys_addr = 0;
4742 }
4743 m->dump_cleaning = FALSE;
4744
4745 if (m->laundry)
4746 dwp->dw_mask |= DW_vm_pageout_throttle_up;
4747
4748 if (m->pageout) {
4749 m->cleaning = FALSE;
4750 m->encrypted_cleaning = FALSE;
4751 m->pageout = FALSE;
4752 #if MACH_CLUSTER_STATS
4753 if (m->wanted) vm_pageout_target_collisions++;
4754 #endif
4755 m->dirty = FALSE;
4756
4757 if (! (flags & UPL_COMMIT_CS_VALIDATED) &&
4758 m->cs_validated && !m->cs_tainted) {
4759 /*
4760 * CODE SIGNING:
4761 * This page is no longer dirty
4762 * but could have been modified,
4763 * so it will need to be
4764 * re-validated.
4765 */
4766 m->cs_validated = FALSE;
4767 #if DEVELOPMENT || DEBUG
4768 vm_cs_validated_resets++;
4769 #endif
4770 pmap_disconnect(m->phys_page);
4771 }
4772
4773 if ((flags & UPL_COMMIT_SET_DIRTY) ||
4774 (m->pmapped && (pmap_disconnect(m->phys_page) & VM_MEM_MODIFIED)))
4775 m->dirty = TRUE;
4776
4777 if (m->dirty) {
4778 /*
4779 * page was re-dirtied after we started
4780 * the pageout... reactivate it since
4781 * we don't know whether the on-disk
4782 * copy matches what is now in memory
4783 */
4784 dwp->dw_mask |= (DW_vm_page_unwire | DW_clear_busy | DW_PAGE_WAKEUP);
4785
4786 if (upl->flags & UPL_PAGEOUT) {
4787 CLUSTER_STAT(vm_pageout_target_page_dirtied++;)
4788 VM_STAT_INCR(reactivations);
4789 DTRACE_VM2(pgrec, int, 1, (uint64_t *), NULL);
4790 }
4791 } else {
4792 /*
4793 * page has been successfully cleaned
4794 * go ahead and free it for other use
4795 */
4796
4797 if (m->object->internal) {
4798 DTRACE_VM2(anonpgout, int, 1, (uint64_t *), NULL);
4799 } else {
4800 DTRACE_VM2(fspgout, int, 1, (uint64_t *), NULL);
4801 }
4802 dwp->dw_mask |= DW_vm_page_free;
4803
4804 if (upl->flags & UPL_PAGEOUT) {
4805 CLUSTER_STAT(vm_pageout_target_page_freed++;)
4806
4807 if (page_list[entry].dirty) {
4808 VM_STAT_INCR(pageouts);
4809 DTRACE_VM2(pgout, int, 1, (uint64_t *), NULL);
4810 pgpgout_count++;
4811 }
4812 }
4813 }
4814 goto commit_next_page;
4815 }
4816 #if MACH_CLUSTER_STATS
4817 if (m->wpmapped)
4818 m->dirty = pmap_is_modified(m->phys_page);
4819
4820 if (m->dirty) vm_pageout_cluster_dirtied++;
4821 else vm_pageout_cluster_cleaned++;
4822 if (m->wanted) vm_pageout_cluster_collisions++;
4823 #endif
4824 m->dirty = FALSE;
4825
4826 if (! (flags & UPL_COMMIT_CS_VALIDATED) &&
4827 m->cs_validated && !m->cs_tainted) {
4828 /*
4829 * CODE SIGNING:
4830 * This page is no longer dirty
4831 * but could have been modified,
4832 * so it will need to be
4833 * re-validated.
4834 */
4835 m->cs_validated = FALSE;
4836 #if DEVELOPMENT || DEBUG
4837 vm_cs_validated_resets++;
4838 #endif
4839 pmap_disconnect(m->phys_page);
4840 }
4841
4842 if (m->overwriting) {
4843 /*
4844 * the (COPY_OUT_FROM == FALSE) request_page_list case
4845 */
4846 if (m->busy) {
4847 m->absent = FALSE;
4848
4849 dwp->dw_mask |= DW_clear_busy;
4850 } else {
4851 /*
4852 * alternate (COPY_OUT_FROM == FALSE) page_list case
4853 * Occurs when the original page was wired
4854 * at the time of the list request
4855 */
4856 assert(VM_PAGE_WIRED(m));
4857
4858 dwp->dw_mask |= DW_vm_page_unwire; /* reactivates */
4859 }
4860 m->overwriting = FALSE;
4861 }
4862 if (m->encrypted_cleaning == TRUE) {
4863 m->encrypted_cleaning = FALSE;
4864
4865 dwp->dw_mask |= DW_clear_busy;
4866 }
4867 m->cleaning = FALSE;
4868
4869 /*
4870 * It is a part of the semantic of COPYOUT_FROM
4871 * UPLs that a commit implies cache sync
4872 * between the vm page and the backing store
4873 * this can be used to strip the precious bit
4874 * as well as clean
4875 */
4876 if ((upl->flags & UPL_PAGE_SYNC_DONE) || (flags & UPL_COMMIT_CLEAR_PRECIOUS))
4877 m->precious = FALSE;
4878
4879 if (flags & UPL_COMMIT_SET_DIRTY)
4880 m->dirty = TRUE;
4881
4882 if (should_be_throttled == TRUE && !m->active && !m->inactive && !m->speculative && !m->throttled) {
4883 /*
4884 * page coming back in from being 'frozen'...
4885 * it was dirty before it was frozen, so keep it so
4886 * the vm_page_activate will notice that it really belongs
4887 * on the throttle queue and put it there
4888 */
4889 m->dirty = TRUE;
4890 dwp->dw_mask |= DW_vm_page_activate;
4891
4892 } else {
4893 if ((flags & UPL_COMMIT_INACTIVATE) && !m->clustered && !m->speculative) {
4894 dwp->dw_mask |= DW_vm_page_deactivate_internal;
4895 clear_refmod |= VM_MEM_REFERENCED;
4896 } else if (!m->active && !m->inactive && !m->speculative) {
4897
4898 if (m->clustered || (flags & UPL_COMMIT_SPECULATE))
4899 dwp->dw_mask |= DW_vm_page_speculate;
4900 else if (m->reference)
4901 dwp->dw_mask |= DW_vm_page_activate;
4902 else {
4903 dwp->dw_mask |= DW_vm_page_deactivate_internal;
4904 clear_refmod |= VM_MEM_REFERENCED;
4905 }
4906 }
4907 }
4908 if (upl->flags & UPL_ACCESS_BLOCKED) {
4909 /*
4910 * We blocked access to the pages in this URL.
4911 * Clear the "busy" bit on this page before we
4912 * wake up any waiter.
4913 */
4914 dwp->dw_mask |= DW_clear_busy;
4915 }
4916 /*
4917 * Wakeup any thread waiting for the page to be un-cleaning.
4918 */
4919 dwp->dw_mask |= DW_PAGE_WAKEUP;
4920
4921 commit_next_page:
4922 if (clear_refmod)
4923 pmap_clear_refmod(m->phys_page, clear_refmod);
4924
4925 target_offset += PAGE_SIZE_64;
4926 xfer_size -= PAGE_SIZE;
4927 entry++;
4928
4929 if (dwp->dw_mask) {
4930 if (dwp->dw_mask & ~(DW_clear_busy | DW_PAGE_WAKEUP)) {
4931 VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count);
4932
4933 if (dw_count >= dw_limit) {
4934 vm_page_do_delayed_work(shadow_object, &dw_array[0], dw_count);
4935
4936 dwp = &dw_array[0];
4937 dw_count = 0;
4938 }
4939 } else {
4940 if (dwp->dw_mask & DW_clear_busy)
4941 m->busy = FALSE;
4942
4943 if (dwp->dw_mask & DW_PAGE_WAKEUP)
4944 PAGE_WAKEUP(m);
4945 }
4946 }
4947 }
4948 if (dw_count)
4949 vm_page_do_delayed_work(shadow_object, &dw_array[0], dw_count);
4950
4951 occupied = 1;
4952
4953 if (upl->flags & UPL_DEVICE_MEMORY) {
4954 occupied = 0;
4955 } else if (upl->flags & UPL_LITE) {
4956 int pg_num;
4957 int i;
4958
4959 pg_num = upl->size/PAGE_SIZE;
4960 pg_num = (pg_num + 31) >> 5;
4961 occupied = 0;
4962
4963 for (i = 0; i < pg_num; i++) {
4964 if (lite_list[i] != 0) {
4965 occupied = 1;
4966 break;
4967 }
4968 }
4969 } else {
4970 if (queue_empty(&upl->map_object->memq))
4971 occupied = 0;
4972 }
4973 if (occupied == 0) {
4974 /*
4975 * If this UPL element belongs to a Vector UPL and is
4976 * empty, then this is the right function to deallocate
4977 * it. So go ahead set the *empty variable. The flag
4978 * UPL_COMMIT_NOTIFY_EMPTY, from the caller's point of view
4979 * should be considered relevant for the Vector UPL and not
4980 * the internal UPLs.
4981 */
4982 if ((upl->flags & UPL_COMMIT_NOTIFY_EMPTY) || isVectorUPL)
4983 *empty = TRUE;
4984
4985 if (object == shadow_object && !(upl->flags & UPL_KERNEL_OBJECT)) {
4986 /*
4987 * this is not a paging object
4988 * so we need to drop the paging reference
4989 * that was taken when we created the UPL
4990 * against this object
4991 */
4992 vm_object_activity_end(shadow_object);
4993 } else {
4994 /*
4995 * we dontated the paging reference to
4996 * the map object... vm_pageout_object_terminate
4997 * will drop this reference
4998 */
4999 }
5000 }
5001 vm_object_unlock(shadow_object);
5002 if (object != shadow_object)
5003 vm_object_unlock(object);
5004
5005 if(!isVectorUPL)
5006 upl_unlock(upl);
5007 else {
5008 /*
5009 * If we completed our operations on an UPL that is
5010 * part of a Vectored UPL and if empty is TRUE, then
5011 * we should go ahead and deallocate this UPL element.
5012 * Then we check if this was the last of the UPL elements
5013 * within that Vectored UPL. If so, set empty to TRUE
5014 * so that in ubc_upl_commit_range or ubc_upl_commit, we
5015 * can go ahead and deallocate the Vector UPL too.
5016 */
5017 if(*empty==TRUE) {
5018 *empty = vector_upl_set_subupl(vector_upl, upl, 0);
5019 upl_deallocate(upl);
5020 }
5021 goto process_upl_to_commit;
5022 }
5023
5024 if (pgpgout_count) {
5025 DTRACE_VM2(pgpgout, int, pgpgout_count, (uint64_t *), NULL);
5026 }
5027
5028 return KERN_SUCCESS;
5029 }
5030
5031 kern_return_t
5032 upl_abort_range(
5033 upl_t upl,
5034 upl_offset_t offset,
5035 upl_size_t size,
5036 int error,
5037 boolean_t *empty)
5038 {
5039 upl_size_t xfer_size, subupl_size = size;
5040 vm_object_t shadow_object;
5041 vm_object_t object;
5042 vm_object_offset_t target_offset;
5043 upl_offset_t subupl_offset = offset;
5044 int entry;
5045 wpl_array_t lite_list;
5046 int occupied;
5047 struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT];
5048 struct vm_page_delayed_work *dwp;
5049 int dw_count;
5050 int dw_limit;
5051 int isVectorUPL = 0;
5052 upl_t vector_upl = NULL;
5053
5054 *empty = FALSE;
5055
5056 if (upl == UPL_NULL)
5057 return KERN_INVALID_ARGUMENT;
5058
5059 if ( (upl->flags & UPL_IO_WIRE) && !(error & UPL_ABORT_DUMP_PAGES) )
5060 return upl_commit_range(upl, offset, size, UPL_COMMIT_FREE_ABSENT, NULL, 0, empty);
5061
5062 if((isVectorUPL = vector_upl_is_valid(upl))) {
5063 vector_upl = upl;
5064 upl_lock(vector_upl);
5065 }
5066 else
5067 upl_lock(upl);
5068
5069 process_upl_to_abort:
5070 if(isVectorUPL) {
5071 size = subupl_size;
5072 offset = subupl_offset;
5073 if(size == 0) {
5074 upl_unlock(vector_upl);
5075 return KERN_SUCCESS;
5076 }
5077 upl = vector_upl_subupl_byoffset(vector_upl, &offset, &size);
5078 if(upl == NULL) {
5079 upl_unlock(vector_upl);
5080 return KERN_FAILURE;
5081 }
5082 subupl_size -= size;
5083 subupl_offset += size;
5084 }
5085
5086 *empty = FALSE;
5087
5088 #if UPL_DEBUG
5089 if (upl->upl_commit_index < UPL_DEBUG_COMMIT_RECORDS) {
5090 (void) OSBacktrace(&upl->upl_commit_records[upl->upl_commit_index].c_retaddr[0], UPL_DEBUG_STACK_FRAMES);
5091
5092 upl->upl_commit_records[upl->upl_commit_index].c_beg = offset;
5093 upl->upl_commit_records[upl->upl_commit_index].c_end = (offset + size);
5094 upl->upl_commit_records[upl->upl_commit_index].c_aborted = 1;
5095
5096 upl->upl_commit_index++;
5097 }
5098 #endif
5099 if (upl->flags & UPL_DEVICE_MEMORY)
5100 xfer_size = 0;
5101 else if ((offset + size) <= upl->size)
5102 xfer_size = size;
5103 else {
5104 if(!isVectorUPL)
5105 upl_unlock(upl);
5106 else {
5107 upl_unlock(vector_upl);
5108 }
5109
5110 return KERN_FAILURE;
5111 }
5112 if (upl->flags & UPL_INTERNAL) {
5113 lite_list = (wpl_array_t)
5114 ((((uintptr_t)upl) + sizeof(struct upl))
5115 + ((upl->size/PAGE_SIZE) * sizeof(upl_page_info_t)));
5116 } else {
5117 lite_list = (wpl_array_t)
5118 (((uintptr_t)upl) + sizeof(struct upl));
5119 }
5120 object = upl->map_object;
5121
5122 if (upl->flags & UPL_SHADOWED) {
5123 vm_object_lock(object);
5124 shadow_object = object->shadow;
5125 } else
5126 shadow_object = object;
5127
5128 entry = offset/PAGE_SIZE;
5129 target_offset = (vm_object_offset_t)offset;
5130
5131 if (upl->flags & UPL_KERNEL_OBJECT)
5132 vm_object_lock_shared(shadow_object);
5133 else
5134 vm_object_lock(shadow_object);
5135
5136 if (upl->flags & UPL_ACCESS_BLOCKED) {
5137 assert(shadow_object->blocked_access);
5138 shadow_object->blocked_access = FALSE;
5139 vm_object_wakeup(object, VM_OBJECT_EVENT_UNBLOCKED);
5140 }
5141
5142 dwp = &dw_array[0];
5143 dw_count = 0;
5144 dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
5145
5146 if ((error & UPL_ABORT_DUMP_PAGES) && (upl->flags & UPL_KERNEL_OBJECT))
5147 panic("upl_abort_range: kernel_object being DUMPED");
5148
5149 while (xfer_size) {
5150 vm_page_t t, m;
5151
5152 dwp->dw_mask = 0;
5153
5154 m = VM_PAGE_NULL;
5155
5156 if (upl->flags & UPL_LITE) {
5157 unsigned int pg_num;
5158
5159 pg_num = (unsigned int) (target_offset/PAGE_SIZE);
5160 assert(pg_num == target_offset/PAGE_SIZE);
5161
5162
5163 if (lite_list[pg_num>>5] & (1 << (pg_num & 31))) {
5164 lite_list[pg_num>>5] &= ~(1 << (pg_num & 31));
5165
5166 if ( !(upl->flags & UPL_KERNEL_OBJECT))
5167 m = vm_page_lookup(shadow_object, target_offset +
5168 (upl->offset - shadow_object->paging_offset));
5169 }
5170 }
5171 if (upl->flags & UPL_SHADOWED) {
5172 if ((t = vm_page_lookup(object, target_offset)) != VM_PAGE_NULL) {
5173 t->pageout = FALSE;
5174
5175 VM_PAGE_FREE(t);
5176
5177 if (m == VM_PAGE_NULL)
5178 m = vm_page_lookup(shadow_object, target_offset + object->vo_shadow_offset);
5179 }
5180 }
5181 if ((upl->flags & UPL_KERNEL_OBJECT))
5182 goto abort_next_page;
5183
5184 if (m != VM_PAGE_NULL) {
5185
5186 if (m->absent) {
5187 boolean_t must_free = TRUE;
5188
5189 /*
5190 * COPYOUT = FALSE case
5191 * check for error conditions which must
5192 * be passed back to the pages customer
5193 */
5194 if (error & UPL_ABORT_RESTART) {
5195 m->restart = TRUE;
5196 m->absent = FALSE;
5197 m->unusual = TRUE;
5198 must_free = FALSE;
5199 } else if (error & UPL_ABORT_UNAVAILABLE) {
5200 m->restart = FALSE;
5201 m->unusual = TRUE;
5202 must_free = FALSE;
5203 } else if (error & UPL_ABORT_ERROR) {
5204 m->restart = FALSE;
5205 m->absent = FALSE;
5206 m->error = TRUE;
5207 m->unusual = TRUE;
5208 must_free = FALSE;
5209 }
5210 if (m->clustered) {
5211 /*
5212 * This page was a part of a speculative
5213 * read-ahead initiated by the kernel
5214 * itself. No one is expecting this
5215 * page and no one will clean up its
5216 * error state if it ever becomes valid
5217 * in the future.
5218 * We have to free it here.
5219 */
5220 must_free = TRUE;
5221 }
5222
5223 /*
5224 * ENCRYPTED SWAP:
5225 * If the page was already encrypted,
5226 * we don't really need to decrypt it
5227 * now. It will get decrypted later,
5228 * on demand, as soon as someone needs
5229 * to access its contents.
5230 */
5231
5232 m->cleaning = FALSE;
5233 m->encrypted_cleaning = FALSE;
5234
5235 if (m->overwriting && !m->busy) {
5236 /*
5237 * this shouldn't happen since
5238 * this is an 'absent' page, but
5239 * it doesn't hurt to check for
5240 * the 'alternate' method of
5241 * stabilizing the page...
5242 * we will mark 'busy' to be cleared
5243 * in the following code which will
5244 * take care of the primary stabilzation
5245 * method (i.e. setting 'busy' to TRUE)
5246 */
5247 dwp->dw_mask |= DW_vm_page_unwire;
5248 }
5249 m->overwriting = FALSE;
5250
5251 dwp->dw_mask |= (DW_clear_busy | DW_PAGE_WAKEUP);
5252
5253 if (must_free == TRUE)
5254 dwp->dw_mask |= DW_vm_page_free;
5255 else
5256 dwp->dw_mask |= DW_vm_page_activate;
5257 } else {
5258 /*
5259 * Handle the trusted pager throttle.
5260 */
5261 if (m->laundry)
5262 dwp->dw_mask |= DW_vm_pageout_throttle_up;
5263
5264 if (upl->flags & UPL_ACCESS_BLOCKED) {
5265 /*
5266 * We blocked access to the pages in this UPL.
5267 * Clear the "busy" bit and wake up any waiter
5268 * for this page.
5269 */
5270 dwp->dw_mask |= DW_clear_busy;
5271 }
5272 if (m->pageout) {
5273 assert(m->busy);
5274 assert(m->wire_count == 1);
5275 m->pageout = FALSE;
5276
5277 dwp->dw_mask |= (DW_vm_page_unwire | DW_clear_busy);
5278 }
5279 if (m->overwriting) {
5280 if (m->busy)
5281 dwp->dw_mask |= DW_clear_busy;
5282 else {
5283 /*
5284 * deal with the 'alternate' method
5285 * of stabilizing the page...
5286 * we will either free the page
5287 * or mark 'busy' to be cleared
5288 * in the following code which will
5289 * take care of the primary stabilzation
5290 * method (i.e. setting 'busy' to TRUE)
5291 */
5292 dwp->dw_mask |= DW_vm_page_unwire;
5293 }
5294 m->overwriting = FALSE;
5295 }
5296 if (m->encrypted_cleaning == TRUE) {
5297 m->encrypted_cleaning = FALSE;
5298
5299 dwp->dw_mask |= DW_clear_busy;
5300 }
5301 m->dump_cleaning = FALSE;
5302 m->cleaning = FALSE;
5303 #if MACH_PAGEMAP
5304 vm_external_state_clr(m->object->existence_map, m->offset);
5305 #endif /* MACH_PAGEMAP */
5306 if (error & UPL_ABORT_DUMP_PAGES) {
5307 pmap_disconnect(m->phys_page);
5308
5309 dwp->dw_mask |= DW_vm_page_free;
5310 } else {
5311 if (error & UPL_ABORT_REFERENCE) {
5312 /*
5313 * we've been told to explictly
5314 * reference this page... for
5315 * file I/O, this is done by
5316 * implementing an LRU on the inactive q
5317 */
5318 dwp->dw_mask |= DW_vm_page_lru;
5319 }
5320 dwp->dw_mask |= DW_PAGE_WAKEUP;
5321 }
5322 }
5323 }
5324 abort_next_page:
5325 target_offset += PAGE_SIZE_64;
5326 xfer_size -= PAGE_SIZE;
5327 entry++;
5328
5329 if (dwp->dw_mask) {
5330 if (dwp->dw_mask & ~(DW_clear_busy | DW_PAGE_WAKEUP)) {
5331 VM_PAGE_ADD_DELAYED_WORK(dwp, m, dw_count);
5332
5333 if (dw_count >= dw_limit) {
5334 vm_page_do_delayed_work(shadow_object, &dw_array[0], dw_count);
5335
5336 dwp = &dw_array[0];
5337 dw_count = 0;
5338 }
5339 } else {
5340 if (dwp->dw_mask & DW_clear_busy)
5341 m->busy = FALSE;
5342
5343 if (dwp->dw_mask & DW_PAGE_WAKEUP)
5344 PAGE_WAKEUP(m);
5345 }
5346 }
5347 }
5348 if (dw_count)
5349 vm_page_do_delayed_work(shadow_object, &dw_array[0], dw_count);
5350
5351 occupied = 1;
5352
5353 if (upl->flags & UPL_DEVICE_MEMORY) {
5354 occupied = 0;
5355 } else if (upl->flags & UPL_LITE) {
5356 int pg_num;
5357 int i;
5358
5359 pg_num = upl->size/PAGE_SIZE;
5360 pg_num = (pg_num + 31) >> 5;
5361 occupied = 0;
5362
5363 for (i = 0; i < pg_num; i++) {
5364 if (lite_list[i] != 0) {
5365 occupied = 1;
5366 break;
5367 }
5368 }
5369 } else {
5370 if (queue_empty(&upl->map_object->memq))
5371 occupied = 0;
5372 }
5373 if (occupied == 0) {
5374 /*
5375 * If this UPL element belongs to a Vector UPL and is
5376 * empty, then this is the right function to deallocate
5377 * it. So go ahead set the *empty variable. The flag
5378 * UPL_COMMIT_NOTIFY_EMPTY, from the caller's point of view
5379 * should be considered relevant for the Vector UPL and
5380 * not the internal UPLs.
5381 */
5382 if ((upl->flags & UPL_COMMIT_NOTIFY_EMPTY) || isVectorUPL)
5383 *empty = TRUE;
5384
5385 if (object == shadow_object && !(upl->flags & UPL_KERNEL_OBJECT)) {
5386 /*
5387 * this is not a paging object
5388 * so we need to drop the paging reference
5389 * that was taken when we created the UPL
5390 * against this object
5391 */
5392 vm_object_activity_end(shadow_object);
5393 } else {
5394 /*
5395 * we dontated the paging reference to
5396 * the map object... vm_pageout_object_terminate
5397 * will drop this reference
5398 */
5399 }
5400 }
5401 vm_object_unlock(shadow_object);
5402 if (object != shadow_object)
5403 vm_object_unlock(object);
5404
5405 if(!isVectorUPL)
5406 upl_unlock(upl);
5407 else {
5408 /*
5409 * If we completed our operations on an UPL that is
5410 * part of a Vectored UPL and if empty is TRUE, then
5411 * we should go ahead and deallocate this UPL element.
5412 * Then we check if this was the last of the UPL elements
5413 * within that Vectored UPL. If so, set empty to TRUE
5414 * so that in ubc_upl_abort_range or ubc_upl_abort, we
5415 * can go ahead and deallocate the Vector UPL too.
5416 */
5417 if(*empty == TRUE) {
5418 *empty = vector_upl_set_subupl(vector_upl, upl,0);
5419 upl_deallocate(upl);
5420 }
5421 goto process_upl_to_abort;
5422 }
5423
5424 return KERN_SUCCESS;
5425 }
5426
5427
5428 kern_return_t
5429 upl_abort(
5430 upl_t upl,
5431 int error)
5432 {
5433 boolean_t empty;
5434
5435 return upl_abort_range(upl, 0, upl->size, error, &empty);
5436 }
5437
5438
5439 /* an option on commit should be wire */
5440 kern_return_t
5441 upl_commit(
5442 upl_t upl,
5443 upl_page_info_t *page_list,
5444 mach_msg_type_number_t count)
5445 {
5446 boolean_t empty;
5447
5448 return upl_commit_range(upl, 0, upl->size, 0, page_list, count, &empty);
5449 }
5450
5451
5452 unsigned int vm_object_iopl_request_sleep_for_cleaning = 0;
5453
5454 kern_return_t
5455 vm_object_iopl_request(
5456 vm_object_t object,
5457 vm_object_offset_t offset,
5458 upl_size_t size,
5459 upl_t *upl_ptr,
5460 upl_page_info_array_t user_page_list,
5461 unsigned int *page_list_count,
5462 int cntrl_flags)
5463 {
5464 vm_page_t dst_page;
5465 vm_object_offset_t dst_offset;
5466 upl_size_t xfer_size;
5467 upl_t upl = NULL;
5468 unsigned int entry;
5469 wpl_array_t lite_list = NULL;
5470 int no_zero_fill = FALSE;
5471 unsigned int size_in_pages;
5472 u_int32_t psize;
5473 kern_return_t ret;
5474 vm_prot_t prot;
5475 struct vm_object_fault_info fault_info;
5476 struct vm_page_delayed_work dw_array[DEFAULT_DELAYED_WORK_LIMIT];
5477 struct vm_page_delayed_work *dwp;
5478 int dw_count;
5479 int dw_limit;
5480 int dw_index;
5481
5482 if (cntrl_flags & ~UPL_VALID_FLAGS) {
5483 /*
5484 * For forward compatibility's sake,
5485 * reject any unknown flag.
5486 */
5487 return KERN_INVALID_VALUE;
5488 }
5489 if (vm_lopage_needed == FALSE)
5490 cntrl_flags &= ~UPL_NEED_32BIT_ADDR;
5491
5492 if (cntrl_flags & UPL_NEED_32BIT_ADDR) {
5493 if ( (cntrl_flags & (UPL_SET_IO_WIRE | UPL_SET_LITE)) != (UPL_SET_IO_WIRE | UPL_SET_LITE))
5494 return KERN_INVALID_VALUE;
5495
5496 if (object->phys_contiguous) {
5497 if ((offset + object->vo_shadow_offset) >= (vm_object_offset_t)max_valid_dma_address)
5498 return KERN_INVALID_ADDRESS;
5499
5500 if (((offset + object->vo_shadow_offset) + size) >= (vm_object_offset_t)max_valid_dma_address)
5501 return KERN_INVALID_ADDRESS;
5502 }
5503 }
5504
5505 if (cntrl_flags & UPL_ENCRYPT) {
5506 /*
5507 * ENCRYPTED SWAP:
5508 * The paging path doesn't use this interface,
5509 * so we don't support the UPL_ENCRYPT flag
5510 * here. We won't encrypt the pages.
5511 */
5512 assert(! (cntrl_flags & UPL_ENCRYPT));
5513 }
5514 if (cntrl_flags & UPL_NOZEROFILL)
5515 no_zero_fill = TRUE;
5516
5517 if (cntrl_flags & UPL_COPYOUT_FROM)
5518 prot = VM_PROT_READ;
5519 else
5520 prot = VM_PROT_READ | VM_PROT_WRITE;
5521
5522 if (((size/PAGE_SIZE) > MAX_UPL_SIZE) && !object->phys_contiguous)
5523 size = MAX_UPL_SIZE * PAGE_SIZE;
5524
5525 if (cntrl_flags & UPL_SET_INTERNAL) {
5526 if (page_list_count != NULL)
5527 *page_list_count = MAX_UPL_SIZE;
5528 }
5529 if (((cntrl_flags & UPL_SET_INTERNAL) && !(object->phys_contiguous)) &&
5530 ((page_list_count != NULL) && (*page_list_count != 0) && *page_list_count < (size/page_size)))
5531 return KERN_INVALID_ARGUMENT;
5532
5533 if ((!object->internal) && (object->paging_offset != 0))
5534 panic("vm_object_iopl_request: external object with non-zero paging offset\n");
5535
5536
5537 if (object->phys_contiguous)
5538 psize = PAGE_SIZE;
5539 else
5540 psize = size;
5541
5542 if (cntrl_flags & UPL_SET_INTERNAL) {
5543 upl = upl_create(UPL_CREATE_INTERNAL | UPL_CREATE_LITE, UPL_IO_WIRE, psize);
5544
5545 user_page_list = (upl_page_info_t *) (((uintptr_t)upl) + sizeof(struct upl));
5546 lite_list = (wpl_array_t) (((uintptr_t)user_page_list) +
5547 ((psize / PAGE_SIZE) * sizeof(upl_page_info_t)));
5548 if (size == 0) {
5549 user_page_list = NULL;
5550 lite_list = NULL;
5551 }
5552 } else {
5553 upl = upl_create(UPL_CREATE_LITE, UPL_IO_WIRE, psize);
5554
5555 lite_list = (wpl_array_t) (((uintptr_t)upl) + sizeof(struct upl));
5556 if (size == 0) {
5557 lite_list = NULL;
5558 }
5559 }
5560 if (user_page_list)
5561 user_page_list[0].device = FALSE;
5562 *upl_ptr = upl;
5563
5564 upl->map_object = object;
5565 upl->size = size;
5566
5567 size_in_pages = size / PAGE_SIZE;
5568
5569 if (object == kernel_object &&
5570 !(cntrl_flags & (UPL_NEED_32BIT_ADDR | UPL_BLOCK_ACCESS))) {
5571 upl->flags |= UPL_KERNEL_OBJECT;
5572 #if UPL_DEBUG
5573 vm_object_lock(object);
5574 #else
5575 vm_object_lock_shared(object);
5576 #endif
5577 } else {
5578 vm_object_lock(object);
5579 vm_object_activity_begin(object);
5580 }
5581 /*
5582 * paging in progress also protects the paging_offset
5583 */
5584 upl->offset = offset + object->paging_offset;
5585
5586 if (cntrl_flags & UPL_BLOCK_ACCESS) {
5587 /*
5588 * The user requested that access to the pages in this URL
5589 * be blocked until the UPL is commited or aborted.
5590 */
5591 upl->flags |= UPL_ACCESS_BLOCKED;
5592 }
5593
5594 if (object->phys_contiguous) {
5595 #if UPL_DEBUG
5596 queue_enter(&object->uplq, upl, upl_t, uplq);
5597 #endif /* UPL_DEBUG */
5598
5599 if (upl->flags & UPL_ACCESS_BLOCKED) {
5600 assert(!object->blocked_access);
5601 object->blocked_access = TRUE;
5602 }
5603
5604 vm_object_unlock(object);
5605
5606 /*
5607 * don't need any shadow mappings for this one
5608 * since it is already I/O memory
5609 */
5610 upl->flags |= UPL_DEVICE_MEMORY;
5611
5612 upl->highest_page = (ppnum_t) ((offset + object->vo_shadow_offset + size - 1)>>PAGE_SHIFT);
5613
5614 if (user_page_list) {
5615 user_page_list[0].phys_addr = (ppnum_t) ((offset + object->vo_shadow_offset)>>PAGE_SHIFT);
5616 user_page_list[0].device = TRUE;
5617 }
5618 if (page_list_count != NULL) {
5619 if (upl->flags & UPL_INTERNAL)
5620 *page_list_count = 0;
5621 else
5622 *page_list_count = 1;
5623 }
5624 return KERN_SUCCESS;
5625 }
5626 if (object != kernel_object) {
5627 /*
5628 * Protect user space from future COW operations
5629 */
5630 object->true_share = TRUE;
5631
5632 if (object->copy_strategy == MEMORY_OBJECT_COPY_SYMMETRIC)
5633 object->copy_strategy = MEMORY_OBJECT_COPY_DELAY;
5634 }
5635
5636 #if UPL_DEBUG
5637 queue_enter(&object->uplq, upl, upl_t, uplq);
5638 #endif /* UPL_DEBUG */
5639
5640 if (!(cntrl_flags & UPL_COPYOUT_FROM) &&
5641 object->copy != VM_OBJECT_NULL) {
5642 /*
5643 * Honor copy-on-write obligations
5644 *
5645 * The caller is gathering these pages and
5646 * might modify their contents. We need to
5647 * make sure that the copy object has its own
5648 * private copies of these pages before we let
5649 * the caller modify them.
5650 *
5651 * NOTE: someone else could map the original object
5652 * after we've done this copy-on-write here, and they
5653 * could then see an inconsistent picture of the memory
5654 * while it's being modified via the UPL. To prevent this,
5655 * we would have to block access to these pages until the
5656 * UPL is released. We could use the UPL_BLOCK_ACCESS
5657 * code path for that...
5658 */
5659 vm_object_update(object,
5660 offset,
5661 size,
5662 NULL,
5663 NULL,
5664 FALSE, /* should_return */
5665 MEMORY_OBJECT_COPY_SYNC,
5666 VM_PROT_NO_CHANGE);
5667 #if DEVELOPMENT || DEBUG
5668 iopl_cow++;
5669 iopl_cow_pages += size >> PAGE_SHIFT;
5670 #endif
5671 }
5672
5673
5674 entry = 0;
5675
5676 xfer_size = size;
5677 dst_offset = offset;
5678
5679 fault_info.behavior = VM_BEHAVIOR_SEQUENTIAL;
5680 fault_info.user_tag = 0;
5681 fault_info.lo_offset = offset;
5682 fault_info.hi_offset = offset + xfer_size;
5683 fault_info.no_cache = FALSE;
5684 fault_info.stealth = FALSE;
5685 fault_info.io_sync = FALSE;
5686 fault_info.cs_bypass = FALSE;
5687 fault_info.mark_zf_absent = TRUE;
5688
5689 dwp = &dw_array[0];
5690 dw_count = 0;
5691 dw_limit = DELAYED_WORK_LIMIT(DEFAULT_DELAYED_WORK_LIMIT);
5692
5693 while (xfer_size) {
5694 vm_fault_return_t result;
5695 unsigned int pg_num;
5696
5697 dwp->dw_mask = 0;
5698
5699 dst_page = vm_page_lookup(object, dst_offset);
5700
5701 /*
5702 * ENCRYPTED SWAP:
5703 * If the page is encrypted, we need to decrypt it,
5704 * so force a soft page fault.
5705 */
5706 if (dst_page == VM_PAGE_NULL ||
5707 dst_page->busy ||
5708 dst_page->encrypted ||
5709 dst_page->error ||
5710 dst_page->restart ||
5711 dst_page->absent ||
5712 dst_page->fictitious) {
5713
5714 if (object == kernel_object)
5715 panic("vm_object_iopl_request: missing/bad page in kernel object\n");
5716
5717 do {
5718 vm_page_t top_page;
5719 kern_return_t error_code;
5720 int interruptible;
5721
5722 if (cntrl_flags & UPL_SET_INTERRUPTIBLE)
5723 interruptible = THREAD_ABORTSAFE;
5724 else
5725 interruptible = THREAD_UNINT;
5726
5727 fault_info.interruptible = interruptible;
5728 fault_info.cluster_size = xfer_size;
5729
5730 vm_object_paging_begin(object);
5731
5732 result = vm_fault_page(object, dst_offset,
5733 prot | VM_PROT_WRITE, FALSE,
5734 &prot, &dst_page, &top_page,
5735 (int *)0,
5736 &error_code, no_zero_fill,
5737 FALSE, &fault_info);
5738
5739 switch (result) {
5740
5741 case VM_FAULT_SUCCESS:
5742
5743 if ( !dst_page->absent) {
5744 PAGE_WAKEUP_DONE(dst_page);
5745 } else {
5746 /*
5747 * we only get back an absent page if we
5748 * requested that it not be zero-filled
5749 * because we are about to fill it via I/O
5750 *
5751 * absent pages should be left BUSY
5752 * to prevent them from being faulted
5753 * into an address space before we've
5754 * had a chance to complete the I/O on
5755 * them since they may contain info that
5756 * shouldn't be seen by the faulting task
5757 */
5758 }
5759 /*
5760 * Release paging references and
5761 * top-level placeholder page, if any.
5762 */
5763 if (top_page != VM_PAGE_NULL) {
5764 vm_object_t local_object;
5765
5766 local_object = top_page->object;
5767
5768 if (top_page->object != dst_page->object) {
5769 vm_object_lock(local_object);
5770 VM_PAGE_FREE(top_page);
5771 vm_object_paging_end(local_object);
5772 vm_object_unlock(local_object);
5773 } else {
5774 VM_PAGE_FREE(top_page);
5775 vm_object_paging_end(local_object);
5776 }
5777 }
5778 vm_object_paging_end(object);
5779 break;
5780
5781 case VM_FAULT_RETRY:
5782 vm_object_lock(object);
5783 break;
5784
5785 case VM_FAULT_MEMORY_SHORTAGE:
5786 OSAddAtomic(size_in_pages, &vm_upl_wait_for_pages);
5787
5788 VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_START, vm_upl_wait_for_pages, 0, 0, 0);
5789
5790 if (vm_page_wait(interruptible)) {
5791 OSAddAtomic(-size_in_pages, &vm_upl_wait_for_pages);
5792
5793 VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, 0);
5794 vm_object_lock(object);
5795
5796 break;
5797 }
5798 OSAddAtomic(-size_in_pages, &vm_upl_wait_for_pages);
5799
5800 VM_DEBUG_EVENT(vm_iopl_page_wait, VM_IOPL_PAGE_WAIT, DBG_FUNC_END, vm_upl_wait_for_pages, 0, 0, -1);
5801
5802 /* fall thru */
5803
5804 case VM_FAULT_INTERRUPTED:
5805 error_code = MACH_SEND_INTERRUPTED;
5806 case VM_FAULT_MEMORY_ERROR:
5807 memory_error:
5808 ret = (error_code ? error_code: KERN_MEMORY_ERROR);
5809
5810 vm_object_lock(object);
5811 goto return_err;
5812
5813 case VM_FAULT_SUCCESS_NO_VM_PAGE:
5814 /* success but no page: fail */
5815 vm_object_paging_end(object);
5816 vm_object_unlock(object);
5817 goto memory_error;
5818
5819 default:
5820 panic("vm_object_iopl_request: unexpected error"
5821 " 0x%x from vm_fault_page()\n", result);
5822 }
5823 } while (result != VM_FAULT_SUCCESS);
5824
5825 }
5826 if (upl->flags & UPL_KERNEL_OBJECT)
5827 goto record_phys_addr;
5828
5829 if (dst_page->cleaning) {
5830 /*
5831 * Someone else is cleaning this page in place.as
5832 * In theory, we should be able to proceed and use this
5833 * page but they'll probably end up clearing the "busy"
5834 * bit on it in upl_commit_range() but they didn't set
5835 * it, so they would clear our "busy" bit and open
5836 * us to race conditions.
5837 * We'd better wait for the cleaning to complete and
5838 * then try again.
5839 */
5840 vm_object_iopl_request_sleep_for_cleaning++;
5841 PAGE_SLEEP(object, dst_page, THREAD_UNINT);
5842 continue;
5843 }
5844 if ( (cntrl_flags & UPL_NEED_32BIT_ADDR) &&
5845 dst_page->phys_page >= (max_valid_dma_address >> PAGE_SHIFT) ) {
5846 vm_page_t low_page;
5847 int refmod;
5848
5849 /*
5850 * support devices that can't DMA above 32 bits
5851 * by substituting pages from a pool of low address
5852 * memory for any pages we find above the 4G mark
5853 * can't substitute if the page is already wired because
5854 * we don't know whether that physical address has been
5855 * handed out to some other 64 bit capable DMA device to use
5856 */
5857 if (VM_PAGE_WIRED(dst_page)) {
5858 ret = KERN_PROTECTION_FAILURE;
5859 goto return_err;
5860 }
5861 low_page = vm_page_grablo();
5862
5863 if (low_page == VM_PAGE_NULL) {
5864 ret = KERN_RESOURCE_SHORTAGE;
5865 goto return_err;
5866 }
5867 /*
5868 * from here until the vm_page_replace completes
5869 * we musn't drop the object lock... we don't
5870 * want anyone refaulting this page in and using
5871 * it after we disconnect it... we want the fault
5872 * to find the new page being substituted.
5873 */
5874 if (dst_page->pmapped)
5875 refmod = pmap_disconnect(dst_page->phys_page);
5876 else
5877 refmod = 0;
5878
5879 if (!dst_page->absent)
5880 vm_page_copy(dst_page, low_page);
5881
5882 low_page->reference = dst_page->reference;
5883 low_page->dirty = dst_page->dirty;
5884 low_page->absent = dst_page->absent;
5885
5886 if (refmod & VM_MEM_REFERENCED)
5887 low_page->reference = TRUE;
5888 if (refmod & VM_MEM_MODIFIED)
5889 low_page->dirty = TRUE;
5890
5891 vm_page_replace(low_page, object, dst_offset);
5892
5893 dst_page = low_page;
5894 /*
5895 * vm_page_grablo returned the page marked
5896 * BUSY... we don't need a PAGE_WAKEUP_DONE
5897 * here, because we've never dropped the object lock
5898 */
5899 if ( !dst_page->absent)
5900 dst_page->busy = FALSE;
5901 }
5902 if ( !dst_page->busy)
5903 dwp->dw_mask |= DW_vm_page_wire;
5904
5905 if (cntrl_flags & UPL_BLOCK_ACCESS) {
5906 /*
5907 * Mark the page "busy" to block any future page fault
5908 * on this page in addition to wiring it.
5909 * We'll also remove the mapping
5910 * of all these pages before leaving this routine.
5911 */
5912 assert(!dst_page->fictitious);
5913 dst_page->busy = TRUE;
5914 }
5915 /*
5916 * expect the page to be used
5917 * page queues lock must be held to set 'reference'
5918 */
5919 dwp->dw_mask |= DW_set_reference;
5920
5921 if (!(cntrl_flags & UPL_COPYOUT_FROM))
5922 dst_page->dirty = TRUE;
5923 record_phys_addr:
5924 if (dst_page->busy)
5925 upl->flags |= UPL_HAS_BUSY;
5926
5927 pg_num = (unsigned int) ((dst_offset-offset)/PAGE_SIZE);
5928 assert(pg_num == (dst_offset-offset)/PAGE_SIZE);
5929 lite_list[pg_num>>5] |= 1 << (pg_num & 31);
5930
5931 if (dst_page->phys_page > upl->highest_page)
5932 upl->highest_page = dst_page->phys_page;
5933
5934 if (user_page_list) {
5935 user_page_list[entry].phys_addr = dst_page->phys_page;
5936 user_page_list[entry].pageout = dst_page->pageout;
5937 user_page_list[entry].absent = dst_page->absent;
5938 user_page_list[entry].dirty = dst_page->dirty;
5939 user_page_list[entry].precious = dst_page->precious;
5940 user_page_list[entry].device = FALSE;
5941 if (dst_page->clustered == TRUE)
5942 user_page_list[entry].speculative = dst_page->speculative;
5943 else
5944 user_page_list[entry].speculative = FALSE;
5945 user_page_list[entry].cs_validated = dst_page->cs_validated;
5946 user_page_list[entry].cs_tainted = dst_page->cs_tainted;
5947 }
5948 if (object != kernel_object) {
5949 /*
5950 * someone is explicitly grabbing this page...
5951 * update clustered and speculative state
5952 *
5953 */
5954 VM_PAGE_CONSUME_CLUSTERED(dst_page);
5955 }
5956 entry++;
5957 dst_offset += PAGE_SIZE_64;
5958 xfer_size -= PAGE_SIZE;
5959
5960 if (dwp->dw_mask) {
5961 VM_PAGE_ADD_DELAYED_WORK(dwp, dst_page, dw_count);
5962
5963 if (dw_count >= dw_limit) {
5964 vm_page_do_delayed_work(object, &dw_array[0], dw_count);
5965
5966 dwp = &dw_array[0];
5967 dw_count = 0;
5968 }
5969 }
5970 }
5971 if (dw_count)
5972 vm_page_do_delayed_work(object, &dw_array[0], dw_count);
5973
5974 if (page_list_count != NULL) {
5975 if (upl->flags & UPL_INTERNAL)
5976 *page_list_count = 0;
5977 else if (*page_list_count > entry)
5978 *page_list_count = entry;
5979 }
5980 vm_object_unlock(object);
5981
5982 if (cntrl_flags & UPL_BLOCK_ACCESS) {
5983 /*
5984 * We've marked all the pages "busy" so that future
5985 * page faults will block.
5986 * Now remove the mapping for these pages, so that they
5987 * can't be accessed without causing a page fault.
5988 */
5989 vm_object_pmap_protect(object, offset, (vm_object_size_t)size,
5990 PMAP_NULL, 0, VM_PROT_NONE);
5991 assert(!object->blocked_access);
5992 object->blocked_access = TRUE;
5993 }
5994 return KERN_SUCCESS;
5995
5996 return_err:
5997 dw_index = 0;
5998
5999 for (; offset < dst_offset; offset += PAGE_SIZE) {
6000 boolean_t need_unwire;
6001
6002 dst_page = vm_page_lookup(object, offset);
6003
6004 if (dst_page == VM_PAGE_NULL)
6005 panic("vm_object_iopl_request: Wired page missing. \n");
6006
6007 /*
6008 * if we've already processed this page in an earlier
6009 * dw_do_work, we need to undo the wiring... we will
6010 * leave the dirty and reference bits on if they
6011 * were set, since we don't have a good way of knowing
6012 * what the previous state was and we won't get here
6013 * under any normal circumstances... we will always
6014 * clear BUSY and wakeup any waiters via vm_page_free
6015 * or PAGE_WAKEUP_DONE
6016 */
6017 need_unwire = TRUE;
6018
6019 if (dw_count) {
6020 if (dw_array[dw_index].dw_m == dst_page) {
6021 /*
6022 * still in the deferred work list
6023 * which means we haven't yet called
6024 * vm_page_wire on this page
6025 */
6026 need_unwire = FALSE;
6027
6028 dw_index++;
6029 dw_count--;
6030 }
6031 }
6032 vm_page_lock_queues();
6033
6034 if (dst_page->absent) {
6035 vm_page_free(dst_page);
6036
6037 need_unwire = FALSE;
6038 } else {
6039 if (need_unwire == TRUE)
6040 vm_page_unwire(dst_page, TRUE);
6041
6042 PAGE_WAKEUP_DONE(dst_page);
6043 }
6044 vm_page_unlock_queues();
6045
6046 if (need_unwire == TRUE)
6047 VM_STAT_INCR(reactivations);
6048 }
6049 #if UPL_DEBUG
6050 upl->upl_state = 2;
6051 #endif
6052 if (! (upl->flags & UPL_KERNEL_OBJECT)) {
6053 vm_object_activity_end(object);
6054 }
6055 vm_object_unlock(object);
6056 upl_destroy(upl);
6057
6058 return ret;
6059 }
6060
6061 kern_return_t
6062 upl_transpose(
6063 upl_t upl1,
6064 upl_t upl2)
6065 {
6066 kern_return_t retval;
6067 boolean_t upls_locked;
6068 vm_object_t object1, object2;
6069
6070 if (upl1 == UPL_NULL || upl2 == UPL_NULL || upl1 == upl2 || ((upl1->flags & UPL_VECTOR)==UPL_VECTOR) || ((upl2->flags & UPL_VECTOR)==UPL_VECTOR)) {
6071 return KERN_INVALID_ARGUMENT;
6072 }
6073
6074 upls_locked = FALSE;
6075
6076 /*
6077 * Since we need to lock both UPLs at the same time,
6078 * avoid deadlocks by always taking locks in the same order.
6079 */
6080 if (upl1 < upl2) {
6081 upl_lock(upl1);
6082 upl_lock(upl2);
6083 } else {
6084 upl_lock(upl2);
6085 upl_lock(upl1);
6086 }
6087 upls_locked = TRUE; /* the UPLs will need to be unlocked */
6088
6089 object1 = upl1->map_object;
6090 object2 = upl2->map_object;
6091
6092 if (upl1->offset != 0 || upl2->offset != 0 ||
6093 upl1->size != upl2->size) {
6094 /*
6095 * We deal only with full objects, not subsets.
6096 * That's because we exchange the entire backing store info
6097 * for the objects: pager, resident pages, etc... We can't do
6098 * only part of it.
6099 */
6100 retval = KERN_INVALID_VALUE;
6101 goto done;
6102 }
6103
6104 /*
6105 * Tranpose the VM objects' backing store.
6106 */
6107 retval = vm_object_transpose(object1, object2,
6108 (vm_object_size_t) upl1->size);
6109
6110 if (retval == KERN_SUCCESS) {
6111 /*
6112 * Make each UPL point to the correct VM object, i.e. the
6113 * object holding the pages that the UPL refers to...
6114 */
6115 #if UPL_DEBUG
6116 queue_remove(&object1->uplq, upl1, upl_t, uplq);
6117 queue_remove(&object2->uplq, upl2, upl_t, uplq);
6118 #endif
6119 upl1->map_object = object2;
6120 upl2->map_object = object1;
6121 #if UPL_DEBUG
6122 queue_enter(&object1->uplq, upl2, upl_t, uplq);
6123 queue_enter(&object2->uplq, upl1, upl_t, uplq);
6124 #endif
6125 }
6126
6127 done:
6128 /*
6129 * Cleanup.
6130 */
6131 if (upls_locked) {
6132 upl_unlock(upl1);
6133 upl_unlock(upl2);
6134 upls_locked = FALSE;
6135 }
6136
6137 return retval;
6138 }
6139
6140 /*
6141 * ENCRYPTED SWAP:
6142 *
6143 * Rationale: the user might have some encrypted data on disk (via
6144 * FileVault or any other mechanism). That data is then decrypted in
6145 * memory, which is safe as long as the machine is secure. But that
6146 * decrypted data in memory could be paged out to disk by the default
6147 * pager. The data would then be stored on disk in clear (not encrypted)
6148 * and it could be accessed by anyone who gets physical access to the
6149 * disk (if the laptop or the disk gets stolen for example). This weakens
6150 * the security offered by FileVault.
6151 *
6152 * Solution: the default pager will optionally request that all the
6153 * pages it gathers for pageout be encrypted, via the UPL interfaces,
6154 * before it sends this UPL to disk via the vnode_pageout() path.
6155 *
6156 * Notes:
6157 *
6158 * To avoid disrupting the VM LRU algorithms, we want to keep the
6159 * clean-in-place mechanisms, which allow us to send some extra pages to
6160 * swap (clustering) without actually removing them from the user's
6161 * address space. We don't want the user to unknowingly access encrypted
6162 * data, so we have to actually remove the encrypted pages from the page
6163 * table. When the user accesses the data, the hardware will fail to
6164 * locate the virtual page in its page table and will trigger a page
6165 * fault. We can then decrypt the page and enter it in the page table
6166 * again. Whenever we allow the user to access the contents of a page,
6167 * we have to make sure it's not encrypted.
6168 *
6169 *
6170 */
6171 /*
6172 * ENCRYPTED SWAP:
6173 * Reserve of virtual addresses in the kernel address space.
6174 * We need to map the physical pages in the kernel, so that we
6175 * can call the encryption/decryption routines with a kernel
6176 * virtual address. We keep this pool of pre-allocated kernel
6177 * virtual addresses so that we don't have to scan the kernel's
6178 * virtual address space each time we need to encrypt or decrypt
6179 * a physical page.
6180 * It would be nice to be able to encrypt and decrypt in physical
6181 * mode but that might not always be more efficient...
6182 */
6183 decl_simple_lock_data(,vm_paging_lock)
6184 #define VM_PAGING_NUM_PAGES 64
6185 vm_map_offset_t vm_paging_base_address = 0;
6186 boolean_t vm_paging_page_inuse[VM_PAGING_NUM_PAGES] = { FALSE, };
6187 int vm_paging_max_index = 0;
6188 int vm_paging_page_waiter = 0;
6189 int vm_paging_page_waiter_total = 0;
6190 unsigned long vm_paging_no_kernel_page = 0;
6191 unsigned long vm_paging_objects_mapped = 0;
6192 unsigned long vm_paging_pages_mapped = 0;
6193 unsigned long vm_paging_objects_mapped_slow = 0;
6194 unsigned long vm_paging_pages_mapped_slow = 0;
6195
6196 void
6197 vm_paging_map_init(void)
6198 {
6199 kern_return_t kr;
6200 vm_map_offset_t page_map_offset;
6201 vm_map_entry_t map_entry;
6202
6203 assert(vm_paging_base_address == 0);
6204
6205 /*
6206 * Initialize our pool of pre-allocated kernel
6207 * virtual addresses.
6208 */
6209 page_map_offset = 0;
6210 kr = vm_map_find_space(kernel_map,
6211 &page_map_offset,
6212 VM_PAGING_NUM_PAGES * PAGE_SIZE,
6213 0,
6214 0,
6215 &map_entry);
6216 if (kr != KERN_SUCCESS) {
6217 panic("vm_paging_map_init: kernel_map full\n");
6218 }
6219 map_entry->object.vm_object = kernel_object;
6220 map_entry->offset = page_map_offset;
6221 map_entry->protection = VM_PROT_NONE;
6222 map_entry->max_protection = VM_PROT_NONE;
6223 map_entry->permanent = TRUE;
6224 vm_object_reference(kernel_object);
6225 vm_map_unlock(kernel_map);
6226
6227 assert(vm_paging_base_address == 0);
6228 vm_paging_base_address = page_map_offset;
6229 }
6230
6231 /*
6232 * ENCRYPTED SWAP:
6233 * vm_paging_map_object:
6234 * Maps part of a VM object's pages in the kernel
6235 * virtual address space, using the pre-allocated
6236 * kernel virtual addresses, if possible.
6237 * Context:
6238 * The VM object is locked. This lock will get
6239 * dropped and re-acquired though, so the caller
6240 * must make sure the VM object is kept alive
6241 * (by holding a VM map that has a reference
6242 * on it, for example, or taking an extra reference).
6243 * The page should also be kept busy to prevent
6244 * it from being reclaimed.
6245 */
6246 kern_return_t
6247 vm_paging_map_object(
6248 vm_map_offset_t *address,
6249 vm_page_t page,
6250 vm_object_t object,
6251 vm_object_offset_t offset,
6252 vm_map_size_t *size,
6253 vm_prot_t protection,
6254 boolean_t can_unlock_object)
6255 {
6256 kern_return_t kr;
6257 vm_map_offset_t page_map_offset;
6258 vm_map_size_t map_size;
6259 vm_object_offset_t object_offset;
6260 int i;
6261
6262
6263 if (page != VM_PAGE_NULL && *size == PAGE_SIZE) {
6264 assert(page->busy);
6265 /*
6266 * Use one of the pre-allocated kernel virtual addresses
6267 * and just enter the VM page in the kernel address space
6268 * at that virtual address.
6269 */
6270 simple_lock(&vm_paging_lock);
6271
6272 /*
6273 * Try and find an available kernel virtual address
6274 * from our pre-allocated pool.
6275 */
6276 page_map_offset = 0;
6277 for (;;) {
6278 for (i = 0; i < VM_PAGING_NUM_PAGES; i++) {
6279 if (vm_paging_page_inuse[i] == FALSE) {
6280 page_map_offset =
6281 vm_paging_base_address +
6282 (i * PAGE_SIZE);
6283 break;
6284 }
6285 }
6286 if (page_map_offset != 0) {
6287 /* found a space to map our page ! */
6288 break;
6289 }
6290
6291 if (can_unlock_object) {
6292 /*
6293 * If we can afford to unlock the VM object,
6294 * let's take the slow path now...
6295 */
6296 break;
6297 }
6298 /*
6299 * We can't afford to unlock the VM object, so
6300 * let's wait for a space to become available...
6301 */
6302 vm_paging_page_waiter_total++;
6303 vm_paging_page_waiter++;
6304 thread_sleep_fast_usimple_lock(&vm_paging_page_waiter,
6305 &vm_paging_lock,
6306 THREAD_UNINT);
6307 vm_paging_page_waiter--;
6308 /* ... and try again */
6309 }
6310
6311 if (page_map_offset != 0) {
6312 /*
6313 * We found a kernel virtual address;
6314 * map the physical page to that virtual address.
6315 */
6316 if (i > vm_paging_max_index) {
6317 vm_paging_max_index = i;
6318 }
6319 vm_paging_page_inuse[i] = TRUE;
6320 simple_unlock(&vm_paging_lock);
6321
6322 page->pmapped = TRUE;
6323
6324 /*
6325 * Keep the VM object locked over the PMAP_ENTER
6326 * and the actual use of the page by the kernel,
6327 * or this pmap mapping might get undone by a
6328 * vm_object_pmap_protect() call...
6329 */
6330 PMAP_ENTER(kernel_pmap,
6331 page_map_offset,
6332 page,
6333 protection,
6334 0,
6335 TRUE);
6336 vm_paging_objects_mapped++;
6337 vm_paging_pages_mapped++;
6338 *address = page_map_offset;
6339
6340 /* all done and mapped, ready to use ! */
6341 return KERN_SUCCESS;
6342 }
6343
6344 /*
6345 * We ran out of pre-allocated kernel virtual
6346 * addresses. Just map the page in the kernel
6347 * the slow and regular way.
6348 */
6349 vm_paging_no_kernel_page++;
6350 simple_unlock(&vm_paging_lock);
6351 }
6352
6353 if (! can_unlock_object) {
6354 return KERN_NOT_SUPPORTED;
6355 }
6356
6357 object_offset = vm_object_trunc_page(offset);
6358 map_size = vm_map_round_page(*size);
6359
6360 /*
6361 * Try and map the required range of the object
6362 * in the kernel_map
6363 */
6364
6365 vm_object_reference_locked(object); /* for the map entry */
6366 vm_object_unlock(object);
6367
6368 kr = vm_map_enter(kernel_map,
6369 address,
6370 map_size,
6371 0,
6372 VM_FLAGS_ANYWHERE,
6373 object,
6374 object_offset,
6375 FALSE,
6376 protection,
6377 VM_PROT_ALL,
6378 VM_INHERIT_NONE);
6379 if (kr != KERN_SUCCESS) {
6380 *address = 0;
6381 *size = 0;
6382 vm_object_deallocate(object); /* for the map entry */
6383 vm_object_lock(object);
6384 return kr;
6385 }
6386
6387 *size = map_size;
6388
6389 /*
6390 * Enter the mapped pages in the page table now.
6391 */
6392 vm_object_lock(object);
6393 /*
6394 * VM object must be kept locked from before PMAP_ENTER()
6395 * until after the kernel is done accessing the page(s).
6396 * Otherwise, the pmap mappings in the kernel could be
6397 * undone by a call to vm_object_pmap_protect().
6398 */
6399
6400 for (page_map_offset = 0;
6401 map_size != 0;
6402 map_size -= PAGE_SIZE_64, page_map_offset += PAGE_SIZE_64) {
6403
6404 page = vm_page_lookup(object, offset + page_map_offset);
6405 if (page == VM_PAGE_NULL) {
6406 printf("vm_paging_map_object: no page !?");
6407 vm_object_unlock(object);
6408 kr = vm_map_remove(kernel_map, *address, *size,
6409 VM_MAP_NO_FLAGS);
6410 assert(kr == KERN_SUCCESS);
6411 *address = 0;
6412 *size = 0;
6413 vm_object_lock(object);
6414 return KERN_MEMORY_ERROR;
6415 }
6416 page->pmapped = TRUE;
6417
6418 //assert(pmap_verify_free(page->phys_page));
6419 PMAP_ENTER(kernel_pmap,
6420 *address + page_map_offset,
6421 page,
6422 protection,
6423 0,
6424 TRUE);
6425 }
6426
6427 vm_paging_objects_mapped_slow++;
6428 vm_paging_pages_mapped_slow += (unsigned long) (map_size / PAGE_SIZE_64);
6429
6430 return KERN_SUCCESS;
6431 }
6432
6433 /*
6434 * ENCRYPTED SWAP:
6435 * vm_paging_unmap_object:
6436 * Unmaps part of a VM object's pages from the kernel
6437 * virtual address space.
6438 * Context:
6439 * The VM object is locked. This lock will get
6440 * dropped and re-acquired though.
6441 */
6442 void
6443 vm_paging_unmap_object(
6444 vm_object_t object,
6445 vm_map_offset_t start,
6446 vm_map_offset_t end)
6447 {
6448 kern_return_t kr;
6449 int i;
6450
6451 if ((vm_paging_base_address == 0) ||
6452 (start < vm_paging_base_address) ||
6453 (end > (vm_paging_base_address
6454 + (VM_PAGING_NUM_PAGES * PAGE_SIZE)))) {
6455 /*
6456 * We didn't use our pre-allocated pool of
6457 * kernel virtual address. Deallocate the
6458 * virtual memory.
6459 */
6460 if (object != VM_OBJECT_NULL) {
6461 vm_object_unlock(object);
6462 }
6463 kr = vm_map_remove(kernel_map, start, end, VM_MAP_NO_FLAGS);
6464 if (object != VM_OBJECT_NULL) {
6465 vm_object_lock(object);
6466 }
6467 assert(kr == KERN_SUCCESS);
6468 } else {
6469 /*
6470 * We used a kernel virtual address from our
6471 * pre-allocated pool. Put it back in the pool
6472 * for next time.
6473 */
6474 assert(end - start == PAGE_SIZE);
6475 i = (int) ((start - vm_paging_base_address) >> PAGE_SHIFT);
6476 assert(i >= 0 && i < VM_PAGING_NUM_PAGES);
6477
6478 /* undo the pmap mapping */
6479 pmap_remove(kernel_pmap, start, end);
6480
6481 simple_lock(&vm_paging_lock);
6482 vm_paging_page_inuse[i] = FALSE;
6483 if (vm_paging_page_waiter) {
6484 thread_wakeup(&vm_paging_page_waiter);
6485 }
6486 simple_unlock(&vm_paging_lock);
6487 }
6488 }
6489
6490 #if CRYPTO
6491 /*
6492 * Encryption data.
6493 * "iv" is the "initial vector". Ideally, we want to
6494 * have a different one for each page we encrypt, so that
6495 * crackers can't find encryption patterns too easily.
6496 */
6497 #define SWAP_CRYPT_AES_KEY_SIZE 128 /* XXX 192 and 256 don't work ! */
6498 boolean_t swap_crypt_ctx_initialized = FALSE;
6499 aes_32t swap_crypt_key[8]; /* big enough for a 256 key */
6500 aes_ctx swap_crypt_ctx;
6501 const unsigned char swap_crypt_null_iv[AES_BLOCK_SIZE] = {0xa, };
6502
6503 #if DEBUG
6504 boolean_t swap_crypt_ctx_tested = FALSE;
6505 unsigned char swap_crypt_test_page_ref[4096] __attribute__((aligned(4096)));
6506 unsigned char swap_crypt_test_page_encrypt[4096] __attribute__((aligned(4096)));
6507 unsigned char swap_crypt_test_page_decrypt[4096] __attribute__((aligned(4096)));
6508 #endif /* DEBUG */
6509
6510 /*
6511 * Initialize the encryption context: key and key size.
6512 */
6513 void swap_crypt_ctx_initialize(void); /* forward */
6514 void
6515 swap_crypt_ctx_initialize(void)
6516 {
6517 unsigned int i;
6518
6519 /*
6520 * No need for locking to protect swap_crypt_ctx_initialized
6521 * because the first use of encryption will come from the
6522 * pageout thread (we won't pagein before there's been a pageout)
6523 * and there's only one pageout thread.
6524 */
6525 if (swap_crypt_ctx_initialized == FALSE) {
6526 for (i = 0;
6527 i < (sizeof (swap_crypt_key) /
6528 sizeof (swap_crypt_key[0]));
6529 i++) {
6530 swap_crypt_key[i] = random();
6531 }
6532 aes_encrypt_key((const unsigned char *) swap_crypt_key,
6533 SWAP_CRYPT_AES_KEY_SIZE,
6534 &swap_crypt_ctx.encrypt);
6535 aes_decrypt_key((const unsigned char *) swap_crypt_key,
6536 SWAP_CRYPT_AES_KEY_SIZE,
6537 &swap_crypt_ctx.decrypt);
6538 swap_crypt_ctx_initialized = TRUE;
6539 }
6540
6541 #if DEBUG
6542 /*
6543 * Validate the encryption algorithms.
6544 */
6545 if (swap_crypt_ctx_tested == FALSE) {
6546 /* initialize */
6547 for (i = 0; i < 4096; i++) {
6548 swap_crypt_test_page_ref[i] = (char) i;
6549 }
6550 /* encrypt */
6551 aes_encrypt_cbc(swap_crypt_test_page_ref,
6552 swap_crypt_null_iv,
6553 PAGE_SIZE / AES_BLOCK_SIZE,
6554 swap_crypt_test_page_encrypt,
6555 &swap_crypt_ctx.encrypt);
6556 /* decrypt */
6557 aes_decrypt_cbc(swap_crypt_test_page_encrypt,
6558 swap_crypt_null_iv,
6559 PAGE_SIZE / AES_BLOCK_SIZE,
6560 swap_crypt_test_page_decrypt,
6561 &swap_crypt_ctx.decrypt);
6562 /* compare result with original */
6563 for (i = 0; i < 4096; i ++) {
6564 if (swap_crypt_test_page_decrypt[i] !=
6565 swap_crypt_test_page_ref[i]) {
6566 panic("encryption test failed");
6567 }
6568 }
6569
6570 /* encrypt again */
6571 aes_encrypt_cbc(swap_crypt_test_page_decrypt,
6572 swap_crypt_null_iv,
6573 PAGE_SIZE / AES_BLOCK_SIZE,
6574 swap_crypt_test_page_decrypt,
6575 &swap_crypt_ctx.encrypt);
6576 /* decrypt in place */
6577 aes_decrypt_cbc(swap_crypt_test_page_decrypt,
6578 swap_crypt_null_iv,
6579 PAGE_SIZE / AES_BLOCK_SIZE,
6580 swap_crypt_test_page_decrypt,
6581 &swap_crypt_ctx.decrypt);
6582 for (i = 0; i < 4096; i ++) {
6583 if (swap_crypt_test_page_decrypt[i] !=
6584 swap_crypt_test_page_ref[i]) {
6585 panic("in place encryption test failed");
6586 }
6587 }
6588
6589 swap_crypt_ctx_tested = TRUE;
6590 }
6591 #endif /* DEBUG */
6592 }
6593
6594 /*
6595 * ENCRYPTED SWAP:
6596 * vm_page_encrypt:
6597 * Encrypt the given page, for secure paging.
6598 * The page might already be mapped at kernel virtual
6599 * address "kernel_mapping_offset". Otherwise, we need
6600 * to map it.
6601 *
6602 * Context:
6603 * The page's object is locked, but this lock will be released
6604 * and re-acquired.
6605 * The page is busy and not accessible by users (not entered in any pmap).
6606 */
6607 void
6608 vm_page_encrypt(
6609 vm_page_t page,
6610 vm_map_offset_t kernel_mapping_offset)
6611 {
6612 kern_return_t kr;
6613 vm_map_size_t kernel_mapping_size;
6614 vm_offset_t kernel_vaddr;
6615 union {
6616 unsigned char aes_iv[AES_BLOCK_SIZE];
6617 struct {
6618 memory_object_t pager_object;
6619 vm_object_offset_t paging_offset;
6620 } vm;
6621 } encrypt_iv;
6622
6623 if (! vm_pages_encrypted) {
6624 vm_pages_encrypted = TRUE;
6625 }
6626
6627 assert(page->busy);
6628 assert(page->dirty || page->precious);
6629
6630 if (page->encrypted) {
6631 /*
6632 * Already encrypted: no need to do it again.
6633 */
6634 vm_page_encrypt_already_encrypted_counter++;
6635 return;
6636 }
6637 ASSERT_PAGE_DECRYPTED(page);
6638
6639 /*
6640 * Take a paging-in-progress reference to keep the object
6641 * alive even if we have to unlock it (in vm_paging_map_object()
6642 * for example)...
6643 */
6644 vm_object_paging_begin(page->object);
6645
6646 if (kernel_mapping_offset == 0) {
6647 /*
6648 * The page hasn't already been mapped in kernel space
6649 * by the caller. Map it now, so that we can access
6650 * its contents and encrypt them.
6651 */
6652 kernel_mapping_size = PAGE_SIZE;
6653 kr = vm_paging_map_object(&kernel_mapping_offset,
6654 page,
6655 page->object,
6656 page->offset,
6657 &kernel_mapping_size,
6658 VM_PROT_READ | VM_PROT_WRITE,
6659 FALSE);
6660 if (kr != KERN_SUCCESS) {
6661 panic("vm_page_encrypt: "
6662 "could not map page in kernel: 0x%x\n",
6663 kr);
6664 }
6665 } else {
6666 kernel_mapping_size = 0;
6667 }
6668 kernel_vaddr = CAST_DOWN(vm_offset_t, kernel_mapping_offset);
6669
6670 if (swap_crypt_ctx_initialized == FALSE) {
6671 swap_crypt_ctx_initialize();
6672 }
6673 assert(swap_crypt_ctx_initialized);
6674
6675 /*
6676 * Prepare an "initial vector" for the encryption.
6677 * We use the "pager" and the "paging_offset" for that
6678 * page to obfuscate the encrypted data a bit more and
6679 * prevent crackers from finding patterns that they could
6680 * use to break the key.
6681 */
6682 bzero(&encrypt_iv.aes_iv[0], sizeof (encrypt_iv.aes_iv));
6683 encrypt_iv.vm.pager_object = page->object->pager;
6684 encrypt_iv.vm.paging_offset =
6685 page->object->paging_offset + page->offset;
6686
6687 /* encrypt the "initial vector" */
6688 aes_encrypt_cbc((const unsigned char *) &encrypt_iv.aes_iv[0],
6689 swap_crypt_null_iv,
6690 1,
6691 &encrypt_iv.aes_iv[0],
6692 &swap_crypt_ctx.encrypt);
6693
6694 /*
6695 * Encrypt the page.
6696 */
6697 aes_encrypt_cbc((const unsigned char *) kernel_vaddr,
6698 &encrypt_iv.aes_iv[0],
6699 PAGE_SIZE / AES_BLOCK_SIZE,
6700 (unsigned char *) kernel_vaddr,
6701 &swap_crypt_ctx.encrypt);
6702
6703 vm_page_encrypt_counter++;
6704
6705 /*
6706 * Unmap the page from the kernel's address space,
6707 * if we had to map it ourselves. Otherwise, let
6708 * the caller undo the mapping if needed.
6709 */
6710 if (kernel_mapping_size != 0) {
6711 vm_paging_unmap_object(page->object,
6712 kernel_mapping_offset,
6713 kernel_mapping_offset + kernel_mapping_size);
6714 }
6715
6716 /*
6717 * Clear the "reference" and "modified" bits.
6718 * This should clean up any impact the encryption had
6719 * on them.
6720 * The page was kept busy and disconnected from all pmaps,
6721 * so it can't have been referenced or modified from user
6722 * space.
6723 * The software bits will be reset later after the I/O
6724 * has completed (in upl_commit_range()).
6725 */
6726 pmap_clear_refmod(page->phys_page, VM_MEM_REFERENCED | VM_MEM_MODIFIED);
6727
6728 page->encrypted = TRUE;
6729
6730 vm_object_paging_end(page->object);
6731 }
6732
6733 /*
6734 * ENCRYPTED SWAP:
6735 * vm_page_decrypt:
6736 * Decrypt the given page.
6737 * The page might already be mapped at kernel virtual
6738 * address "kernel_mapping_offset". Otherwise, we need
6739 * to map it.
6740 *
6741 * Context:
6742 * The page's VM object is locked but will be unlocked and relocked.
6743 * The page is busy and not accessible by users (not entered in any pmap).
6744 */
6745 void
6746 vm_page_decrypt(
6747 vm_page_t page,
6748 vm_map_offset_t kernel_mapping_offset)
6749 {
6750 kern_return_t kr;
6751 vm_map_size_t kernel_mapping_size;
6752 vm_offset_t kernel_vaddr;
6753 union {
6754 unsigned char aes_iv[AES_BLOCK_SIZE];
6755 struct {
6756 memory_object_t pager_object;
6757 vm_object_offset_t paging_offset;
6758 } vm;
6759 } decrypt_iv;
6760 boolean_t was_dirty;
6761
6762 assert(page->busy);
6763 assert(page->encrypted);
6764
6765 was_dirty = page->dirty;
6766
6767 /*
6768 * Take a paging-in-progress reference to keep the object
6769 * alive even if we have to unlock it (in vm_paging_map_object()
6770 * for example)...
6771 */
6772 vm_object_paging_begin(page->object);
6773
6774 if (kernel_mapping_offset == 0) {
6775 /*
6776 * The page hasn't already been mapped in kernel space
6777 * by the caller. Map it now, so that we can access
6778 * its contents and decrypt them.
6779 */
6780 kernel_mapping_size = PAGE_SIZE;
6781 kr = vm_paging_map_object(&kernel_mapping_offset,
6782 page,
6783 page->object,
6784 page->offset,
6785 &kernel_mapping_size,
6786 VM_PROT_READ | VM_PROT_WRITE,
6787 FALSE);
6788 if (kr != KERN_SUCCESS) {
6789 panic("vm_page_decrypt: "
6790 "could not map page in kernel: 0x%x\n",
6791 kr);
6792 }
6793 } else {
6794 kernel_mapping_size = 0;
6795 }
6796 kernel_vaddr = CAST_DOWN(vm_offset_t, kernel_mapping_offset);
6797
6798 assert(swap_crypt_ctx_initialized);
6799
6800 /*
6801 * Prepare an "initial vector" for the decryption.
6802 * It has to be the same as the "initial vector" we
6803 * used to encrypt that page.
6804 */
6805 bzero(&decrypt_iv.aes_iv[0], sizeof (decrypt_iv.aes_iv));
6806 decrypt_iv.vm.pager_object = page->object->pager;
6807 decrypt_iv.vm.paging_offset =
6808 page->object->paging_offset + page->offset;
6809
6810 /* encrypt the "initial vector" */
6811 aes_encrypt_cbc((const unsigned char *) &decrypt_iv.aes_iv[0],
6812 swap_crypt_null_iv,
6813 1,
6814 &decrypt_iv.aes_iv[0],
6815 &swap_crypt_ctx.encrypt);
6816
6817 /*
6818 * Decrypt the page.
6819 */
6820 aes_decrypt_cbc((const unsigned char *) kernel_vaddr,
6821 &decrypt_iv.aes_iv[0],
6822 PAGE_SIZE / AES_BLOCK_SIZE,
6823 (unsigned char *) kernel_vaddr,
6824 &swap_crypt_ctx.decrypt);
6825 vm_page_decrypt_counter++;
6826
6827 /*
6828 * Unmap the page from the kernel's address space,
6829 * if we had to map it ourselves. Otherwise, let
6830 * the caller undo the mapping if needed.
6831 */
6832 if (kernel_mapping_size != 0) {
6833 vm_paging_unmap_object(page->object,
6834 kernel_vaddr,
6835 kernel_vaddr + PAGE_SIZE);
6836 }
6837
6838 if (was_dirty) {
6839 /*
6840 * The pager did not specify that the page would be
6841 * clean when it got paged in, so let's not clean it here
6842 * either.
6843 */
6844 } else {
6845 /*
6846 * After decryption, the page is actually still clean.
6847 * It was encrypted as part of paging, which "cleans"
6848 * the "dirty" pages.
6849 * Noone could access it after it was encrypted
6850 * and the decryption doesn't count.
6851 */
6852 page->dirty = FALSE;
6853 assert (page->cs_validated == FALSE);
6854 pmap_clear_refmod(page->phys_page, VM_MEM_MODIFIED | VM_MEM_REFERENCED);
6855 }
6856 page->encrypted = FALSE;
6857
6858 /*
6859 * We've just modified the page's contents via the data cache and part
6860 * of the new contents might still be in the cache and not yet in RAM.
6861 * Since the page is now available and might get gathered in a UPL to
6862 * be part of a DMA transfer from a driver that expects the memory to
6863 * be coherent at this point, we have to flush the data cache.
6864 */
6865 pmap_sync_page_attributes_phys(page->phys_page);
6866 /*
6867 * Since the page is not mapped yet, some code might assume that it
6868 * doesn't need to invalidate the instruction cache when writing to
6869 * that page. That code relies on "pmapped" being FALSE, so that the
6870 * caches get synchronized when the page is first mapped.
6871 */
6872 assert(pmap_verify_free(page->phys_page));
6873 page->pmapped = FALSE;
6874 page->wpmapped = FALSE;
6875
6876 vm_object_paging_end(page->object);
6877 }
6878
6879 #if DEVELOPMENT || DEBUG
6880 unsigned long upl_encrypt_upls = 0;
6881 unsigned long upl_encrypt_pages = 0;
6882 #endif
6883
6884 /*
6885 * ENCRYPTED SWAP:
6886 *
6887 * upl_encrypt:
6888 * Encrypts all the pages in the UPL, within the specified range.
6889 *
6890 */
6891 void
6892 upl_encrypt(
6893 upl_t upl,
6894 upl_offset_t crypt_offset,
6895 upl_size_t crypt_size)
6896 {
6897 upl_size_t upl_size, subupl_size=crypt_size;
6898 upl_offset_t offset_in_upl, subupl_offset=crypt_offset;
6899 vm_object_t upl_object;
6900 vm_object_offset_t upl_offset;
6901 vm_page_t page;
6902 vm_object_t shadow_object;
6903 vm_object_offset_t shadow_offset;
6904 vm_object_offset_t paging_offset;
6905 vm_object_offset_t base_offset;
6906 int isVectorUPL = 0;
6907 upl_t vector_upl = NULL;
6908
6909 if((isVectorUPL = vector_upl_is_valid(upl)))
6910 vector_upl = upl;
6911
6912 process_upl_to_encrypt:
6913 if(isVectorUPL) {
6914 crypt_size = subupl_size;
6915 crypt_offset = subupl_offset;
6916 upl = vector_upl_subupl_byoffset(vector_upl, &crypt_offset, &crypt_size);
6917 if(upl == NULL)
6918 panic("upl_encrypt: Accessing a sub-upl that doesn't exist\n");
6919 subupl_size -= crypt_size;
6920 subupl_offset += crypt_size;
6921 }
6922
6923 #if DEVELOPMENT || DEBUG
6924 upl_encrypt_upls++;
6925 upl_encrypt_pages += crypt_size / PAGE_SIZE;
6926 #endif
6927 upl_object = upl->map_object;
6928 upl_offset = upl->offset;
6929 upl_size = upl->size;
6930
6931 vm_object_lock(upl_object);
6932
6933 /*
6934 * Find the VM object that contains the actual pages.
6935 */
6936 if (upl_object->pageout) {
6937 shadow_object = upl_object->shadow;
6938 /*
6939 * The offset in the shadow object is actually also
6940 * accounted for in upl->offset. It possibly shouldn't be
6941 * this way, but for now don't account for it twice.
6942 */
6943 shadow_offset = 0;
6944 assert(upl_object->paging_offset == 0); /* XXX ? */
6945 vm_object_lock(shadow_object);
6946 } else {
6947 shadow_object = upl_object;
6948 shadow_offset = 0;
6949 }
6950
6951 paging_offset = shadow_object->paging_offset;
6952 vm_object_paging_begin(shadow_object);
6953
6954 if (shadow_object != upl_object)
6955 vm_object_unlock(upl_object);
6956
6957
6958 base_offset = shadow_offset;
6959 base_offset += upl_offset;
6960 base_offset += crypt_offset;
6961 base_offset -= paging_offset;
6962
6963 assert(crypt_offset + crypt_size <= upl_size);
6964
6965 for (offset_in_upl = 0;
6966 offset_in_upl < crypt_size;
6967 offset_in_upl += PAGE_SIZE) {
6968 page = vm_page_lookup(shadow_object,
6969 base_offset + offset_in_upl);
6970 if (page == VM_PAGE_NULL) {
6971 panic("upl_encrypt: "
6972 "no page for (obj=%p,off=0x%llx+0x%x)!\n",
6973 shadow_object,
6974 base_offset,
6975 offset_in_upl);
6976 }
6977 /*
6978 * Disconnect the page from all pmaps, so that nobody can
6979 * access it while it's encrypted. After that point, all
6980 * accesses to this page will cause a page fault and block
6981 * while the page is busy being encrypted. After the
6982 * encryption completes, any access will cause a
6983 * page fault and the page gets decrypted at that time.
6984 */
6985 pmap_disconnect(page->phys_page);
6986 vm_page_encrypt(page, 0);
6987
6988 if (vm_object_lock_avoid(shadow_object)) {
6989 /*
6990 * Give vm_pageout_scan() a chance to convert more
6991 * pages from "clean-in-place" to "clean-and-free",
6992 * if it's interested in the same pages we selected
6993 * in this cluster.
6994 */
6995 vm_object_unlock(shadow_object);
6996 mutex_pause(2);
6997 vm_object_lock(shadow_object);
6998 }
6999 }
7000
7001 vm_object_paging_end(shadow_object);
7002 vm_object_unlock(shadow_object);
7003
7004 if(isVectorUPL && subupl_size)
7005 goto process_upl_to_encrypt;
7006 }
7007
7008 #else /* CRYPTO */
7009 void
7010 upl_encrypt(
7011 __unused upl_t upl,
7012 __unused upl_offset_t crypt_offset,
7013 __unused upl_size_t crypt_size)
7014 {
7015 }
7016
7017 void
7018 vm_page_encrypt(
7019 __unused vm_page_t page,
7020 __unused vm_map_offset_t kernel_mapping_offset)
7021 {
7022 }
7023
7024 void
7025 vm_page_decrypt(
7026 __unused vm_page_t page,
7027 __unused vm_map_offset_t kernel_mapping_offset)
7028 {
7029 }
7030
7031 #endif /* CRYPTO */
7032
7033 void
7034 vm_pageout_queue_steal(vm_page_t page, boolean_t queues_locked)
7035 {
7036 boolean_t pageout;
7037
7038 pageout = page->pageout;
7039
7040 page->list_req_pending = FALSE;
7041 page->cleaning = FALSE;
7042 page->pageout = FALSE;
7043
7044 if (!queues_locked) {
7045 vm_page_lockspin_queues();
7046 }
7047
7048 /*
7049 * need to drop the laundry count...
7050 * we may also need to remove it
7051 * from the I/O paging queue...
7052 * vm_pageout_throttle_up handles both cases
7053 *
7054 * the laundry and pageout_queue flags are cleared...
7055 */
7056 vm_pageout_throttle_up(page);
7057
7058 if (pageout == TRUE) {
7059 /*
7060 * toss the wire count we picked up
7061 * when we intially set this page up
7062 * to be cleaned...
7063 */
7064 vm_page_unwire(page, TRUE);
7065 }
7066 vm_page_steal_pageout_page++;
7067
7068 if (!queues_locked) {
7069 vm_page_unlock_queues();
7070 }
7071 }
7072
7073 upl_t
7074 vector_upl_create(vm_offset_t upl_offset)
7075 {
7076 int vector_upl_size = sizeof(struct _vector_upl);
7077 int i=0;
7078 upl_t upl;
7079 vector_upl_t vector_upl = (vector_upl_t)kalloc(vector_upl_size);
7080
7081 upl = upl_create(0,UPL_VECTOR,0);
7082 upl->vector_upl = vector_upl;
7083 upl->offset = upl_offset;
7084 vector_upl->size = 0;
7085 vector_upl->offset = upl_offset;
7086 vector_upl->invalid_upls=0;
7087 vector_upl->num_upls=0;
7088 vector_upl->pagelist = NULL;
7089
7090 for(i=0; i < MAX_VECTOR_UPL_ELEMENTS ; i++) {
7091 vector_upl->upl_iostates[i].size = 0;
7092 vector_upl->upl_iostates[i].offset = 0;
7093
7094 }
7095 return upl;
7096 }
7097
7098 void
7099 vector_upl_deallocate(upl_t upl)
7100 {
7101 if(upl) {
7102 vector_upl_t vector_upl = upl->vector_upl;
7103 if(vector_upl) {
7104 if(vector_upl->invalid_upls != vector_upl->num_upls)
7105 panic("Deallocating non-empty Vectored UPL\n");
7106 kfree(vector_upl->pagelist,(sizeof(struct upl_page_info)*(vector_upl->size/PAGE_SIZE)));
7107 vector_upl->invalid_upls=0;
7108 vector_upl->num_upls = 0;
7109 vector_upl->pagelist = NULL;
7110 vector_upl->size = 0;
7111 vector_upl->offset = 0;
7112 kfree(vector_upl, sizeof(struct _vector_upl));
7113 vector_upl = (vector_upl_t)0xdeadbeef;
7114 }
7115 else
7116 panic("vector_upl_deallocate was passed a non-vectored upl\n");
7117 }
7118 else
7119 panic("vector_upl_deallocate was passed a NULL upl\n");
7120 }
7121
7122 boolean_t
7123 vector_upl_is_valid(upl_t upl)
7124 {
7125 if(upl && ((upl->flags & UPL_VECTOR)==UPL_VECTOR)) {
7126 vector_upl_t vector_upl = upl->vector_upl;
7127 if(vector_upl == NULL || vector_upl == (vector_upl_t)0xdeadbeef || vector_upl == (vector_upl_t)0xfeedbeef)
7128 return FALSE;
7129 else
7130 return TRUE;
7131 }
7132 return FALSE;
7133 }
7134
7135 boolean_t
7136 vector_upl_set_subupl(upl_t upl,upl_t subupl, uint32_t io_size)
7137 {
7138 if(vector_upl_is_valid(upl)) {
7139 vector_upl_t vector_upl = upl->vector_upl;
7140
7141 if(vector_upl) {
7142 if(subupl) {
7143 if(io_size) {
7144 if(io_size < PAGE_SIZE)
7145 io_size = PAGE_SIZE;
7146 subupl->vector_upl = (void*)vector_upl;
7147 vector_upl->upl_elems[vector_upl->num_upls++] = subupl;
7148 vector_upl->size += io_size;
7149 upl->size += io_size;
7150 }
7151 else {
7152 uint32_t i=0,invalid_upls=0;
7153 for(i = 0; i < vector_upl->num_upls; i++) {
7154 if(vector_upl->upl_elems[i] == subupl)
7155 break;
7156 }
7157 if(i == vector_upl->num_upls)
7158 panic("Trying to remove sub-upl when none exists");
7159
7160 vector_upl->upl_elems[i] = NULL;
7161 invalid_upls = hw_atomic_add(&(vector_upl)->invalid_upls, 1);
7162 if(invalid_upls == vector_upl->num_upls)
7163 return TRUE;
7164 else
7165 return FALSE;
7166 }
7167 }
7168 else
7169 panic("vector_upl_set_subupl was passed a NULL upl element\n");
7170 }
7171 else
7172 panic("vector_upl_set_subupl was passed a non-vectored upl\n");
7173 }
7174 else
7175 panic("vector_upl_set_subupl was passed a NULL upl\n");
7176
7177 return FALSE;
7178 }
7179
7180 void
7181 vector_upl_set_pagelist(upl_t upl)
7182 {
7183 if(vector_upl_is_valid(upl)) {
7184 uint32_t i=0;
7185 vector_upl_t vector_upl = upl->vector_upl;
7186
7187 if(vector_upl) {
7188 vm_offset_t pagelist_size=0, cur_upl_pagelist_size=0;
7189
7190 vector_upl->pagelist = (upl_page_info_array_t)kalloc(sizeof(struct upl_page_info)*(vector_upl->size/PAGE_SIZE));
7191
7192 for(i=0; i < vector_upl->num_upls; i++) {
7193 cur_upl_pagelist_size = sizeof(struct upl_page_info) * vector_upl->upl_elems[i]->size/PAGE_SIZE;
7194 bcopy(UPL_GET_INTERNAL_PAGE_LIST_SIMPLE(vector_upl->upl_elems[i]), (char*)vector_upl->pagelist + pagelist_size, cur_upl_pagelist_size);
7195 pagelist_size += cur_upl_pagelist_size;
7196 if(vector_upl->upl_elems[i]->highest_page > upl->highest_page)
7197 upl->highest_page = vector_upl->upl_elems[i]->highest_page;
7198 }
7199 assert( pagelist_size == (sizeof(struct upl_page_info)*(vector_upl->size/PAGE_SIZE)) );
7200 }
7201 else
7202 panic("vector_upl_set_pagelist was passed a non-vectored upl\n");
7203 }
7204 else
7205 panic("vector_upl_set_pagelist was passed a NULL upl\n");
7206
7207 }
7208
7209 upl_t
7210 vector_upl_subupl_byindex(upl_t upl, uint32_t index)
7211 {
7212 if(vector_upl_is_valid(upl)) {
7213 vector_upl_t vector_upl = upl->vector_upl;
7214 if(vector_upl) {
7215 if(index < vector_upl->num_upls)
7216 return vector_upl->upl_elems[index];
7217 }
7218 else
7219 panic("vector_upl_subupl_byindex was passed a non-vectored upl\n");
7220 }
7221 return NULL;
7222 }
7223
7224 upl_t
7225 vector_upl_subupl_byoffset(upl_t upl, upl_offset_t *upl_offset, upl_size_t *upl_size)
7226 {
7227 if(vector_upl_is_valid(upl)) {
7228 uint32_t i=0;
7229 vector_upl_t vector_upl = upl->vector_upl;
7230
7231 if(vector_upl) {
7232 upl_t subupl = NULL;
7233 vector_upl_iostates_t subupl_state;
7234
7235 for(i=0; i < vector_upl->num_upls; i++) {
7236 subupl = vector_upl->upl_elems[i];
7237 subupl_state = vector_upl->upl_iostates[i];
7238 if( *upl_offset <= (subupl_state.offset + subupl_state.size - 1)) {
7239 /* We could have been passed an offset/size pair that belongs
7240 * to an UPL element that has already been committed/aborted.
7241 * If so, return NULL.
7242 */
7243 if(subupl == NULL)
7244 return NULL;
7245 if((subupl_state.offset + subupl_state.size) < (*upl_offset + *upl_size)) {
7246 *upl_size = (subupl_state.offset + subupl_state.size) - *upl_offset;
7247 if(*upl_size > subupl_state.size)
7248 *upl_size = subupl_state.size;
7249 }
7250 if(*upl_offset >= subupl_state.offset)
7251 *upl_offset -= subupl_state.offset;
7252 else if(i)
7253 panic("Vector UPL offset miscalculation\n");
7254 return subupl;
7255 }
7256 }
7257 }
7258 else
7259 panic("vector_upl_subupl_byoffset was passed a non-vectored UPL\n");
7260 }
7261 return NULL;
7262 }
7263
7264 void
7265 vector_upl_get_submap(upl_t upl, vm_map_t *v_upl_submap, vm_offset_t *submap_dst_addr)
7266 {
7267 *v_upl_submap = NULL;
7268
7269 if(vector_upl_is_valid(upl)) {
7270 vector_upl_t vector_upl = upl->vector_upl;
7271 if(vector_upl) {
7272 *v_upl_submap = vector_upl->submap;
7273 *submap_dst_addr = vector_upl->submap_dst_addr;
7274 }
7275 else
7276 panic("vector_upl_get_submap was passed a non-vectored UPL\n");
7277 }
7278 else
7279 panic("vector_upl_get_submap was passed a null UPL\n");
7280 }
7281
7282 void
7283 vector_upl_set_submap(upl_t upl, vm_map_t submap, vm_offset_t submap_dst_addr)
7284 {
7285 if(vector_upl_is_valid(upl)) {
7286 vector_upl_t vector_upl = upl->vector_upl;
7287 if(vector_upl) {
7288 vector_upl->submap = submap;
7289 vector_upl->submap_dst_addr = submap_dst_addr;
7290 }
7291 else
7292 panic("vector_upl_get_submap was passed a non-vectored UPL\n");
7293 }
7294 else
7295 panic("vector_upl_get_submap was passed a NULL UPL\n");
7296 }
7297
7298 void
7299 vector_upl_set_iostate(upl_t upl, upl_t subupl, upl_offset_t offset, upl_size_t size)
7300 {
7301 if(vector_upl_is_valid(upl)) {
7302 uint32_t i = 0;
7303 vector_upl_t vector_upl = upl->vector_upl;
7304
7305 if(vector_upl) {
7306 for(i = 0; i < vector_upl->num_upls; i++) {
7307 if(vector_upl->upl_elems[i] == subupl)
7308 break;
7309 }
7310
7311 if(i == vector_upl->num_upls)
7312 panic("setting sub-upl iostate when none exists");
7313
7314 vector_upl->upl_iostates[i].offset = offset;
7315 if(size < PAGE_SIZE)
7316 size = PAGE_SIZE;
7317 vector_upl->upl_iostates[i].size = size;
7318 }
7319 else
7320 panic("vector_upl_set_iostate was passed a non-vectored UPL\n");
7321 }
7322 else
7323 panic("vector_upl_set_iostate was passed a NULL UPL\n");
7324 }
7325
7326 void
7327 vector_upl_get_iostate(upl_t upl, upl_t subupl, upl_offset_t *offset, upl_size_t *size)
7328 {
7329 if(vector_upl_is_valid(upl)) {
7330 uint32_t i = 0;
7331 vector_upl_t vector_upl = upl->vector_upl;
7332
7333 if(vector_upl) {
7334 for(i = 0; i < vector_upl->num_upls; i++) {
7335 if(vector_upl->upl_elems[i] == subupl)
7336 break;
7337 }
7338
7339 if(i == vector_upl->num_upls)
7340 panic("getting sub-upl iostate when none exists");
7341
7342 *offset = vector_upl->upl_iostates[i].offset;
7343 *size = vector_upl->upl_iostates[i].size;
7344 }
7345 else
7346 panic("vector_upl_get_iostate was passed a non-vectored UPL\n");
7347 }
7348 else
7349 panic("vector_upl_get_iostate was passed a NULL UPL\n");
7350 }
7351
7352 void
7353 vector_upl_get_iostate_byindex(upl_t upl, uint32_t index, upl_offset_t *offset, upl_size_t *size)
7354 {
7355 if(vector_upl_is_valid(upl)) {
7356 vector_upl_t vector_upl = upl->vector_upl;
7357 if(vector_upl) {
7358 if(index < vector_upl->num_upls) {
7359 *offset = vector_upl->upl_iostates[index].offset;
7360 *size = vector_upl->upl_iostates[index].size;
7361 }
7362 else
7363 *offset = *size = 0;
7364 }
7365 else
7366 panic("vector_upl_get_iostate_byindex was passed a non-vectored UPL\n");
7367 }
7368 else
7369 panic("vector_upl_get_iostate_byindex was passed a NULL UPL\n");
7370 }
7371
7372 upl_page_info_t *
7373 upl_get_internal_vectorupl_pagelist(upl_t upl)
7374 {
7375 return ((vector_upl_t)(upl->vector_upl))->pagelist;
7376 }
7377
7378 void *
7379 upl_get_internal_vectorupl(upl_t upl)
7380 {
7381 return upl->vector_upl;
7382 }
7383
7384 vm_size_t
7385 upl_get_internal_pagelist_offset(void)
7386 {
7387 return sizeof(struct upl);
7388 }
7389
7390 void
7391 upl_clear_dirty(
7392 upl_t upl,
7393 boolean_t value)
7394 {
7395 if (value) {
7396 upl->flags |= UPL_CLEAR_DIRTY;
7397 } else {
7398 upl->flags &= ~UPL_CLEAR_DIRTY;
7399 }
7400 }
7401
7402 void
7403 upl_set_referenced(
7404 upl_t upl,
7405 boolean_t value)
7406 {
7407 upl_lock(upl);
7408 if (value) {
7409 upl->ext_ref_count++;
7410 } else {
7411 if (!upl->ext_ref_count) {
7412 panic("upl_set_referenced not %p\n", upl);
7413 }
7414 upl->ext_ref_count--;
7415 }
7416 upl_unlock(upl);
7417 }
7418
7419 boolean_t
7420 vm_page_is_slideable(vm_page_t m)
7421 {
7422 boolean_t result = FALSE;
7423 vm_object_t slide_object = slide_info.slide_object;
7424 mach_vm_offset_t start = slide_info.start;
7425 mach_vm_offset_t end = slide_info.end;
7426
7427 /* make sure our page belongs to the one object allowed to do this */
7428 if (slide_object == VM_OBJECT_NULL) {
7429 return result;
7430 }
7431
7432 /*Should we traverse down the chain?*/
7433 if (m->object != slide_object) {
7434 return result;
7435 }
7436
7437 if(!m->slid && (start <= m->offset && end > m->offset)) {
7438 result = TRUE;
7439 }
7440 return result;
7441 }
7442
7443 int vm_page_slide_counter = 0;
7444 int vm_page_slide_errors = 0;
7445 kern_return_t
7446 vm_page_slide(
7447 vm_page_t page,
7448 vm_map_offset_t kernel_mapping_offset)
7449 {
7450 kern_return_t kr;
7451 vm_map_size_t kernel_mapping_size;
7452 vm_offset_t kernel_vaddr;
7453 uint32_t pageIndex = 0;
7454
7455 assert(!page->slid);
7456
7457 /*
7458 * Take a paging-in-progress reference to keep the object
7459 * alive even if we have to unlock it (in vm_paging_map_object()
7460 * for example)...
7461 */
7462 vm_object_paging_begin(page->object);
7463
7464 if (kernel_mapping_offset == 0) {
7465 /*
7466 * The page hasn't already been mapped in kernel space
7467 * by the caller. Map it now, so that we can access
7468 * its contents and decrypt them.
7469 */
7470 kernel_mapping_size = PAGE_SIZE;
7471 kr = vm_paging_map_object(&kernel_mapping_offset,
7472 page,
7473 page->object,
7474 page->offset,
7475 &kernel_mapping_size,
7476 VM_PROT_READ | VM_PROT_WRITE,
7477 FALSE);
7478 if (kr != KERN_SUCCESS) {
7479 panic("vm_page_slide: "
7480 "could not map page in kernel: 0x%x\n",
7481 kr);
7482 }
7483 } else {
7484 kernel_mapping_size = 0;
7485 }
7486 kernel_vaddr = CAST_DOWN(vm_offset_t, kernel_mapping_offset);
7487
7488 /*
7489 * Slide the pointers on the page.
7490 */
7491
7492 /*assert that slide_file_info.start/end are page-aligned?*/
7493
7494 pageIndex = (uint32_t)((page->offset - slide_info.start)/PAGE_SIZE);
7495 kr = vm_shared_region_slide(kernel_vaddr, pageIndex);
7496 vm_page_slide_counter++;
7497
7498 /*
7499 * Unmap the page from the kernel's address space,
7500 */
7501 if (kernel_mapping_size != 0) {
7502 vm_paging_unmap_object(page->object,
7503 kernel_vaddr,
7504 kernel_vaddr + PAGE_SIZE);
7505 }
7506
7507 page->dirty = FALSE;
7508 pmap_clear_refmod(page->phys_page, VM_MEM_MODIFIED | VM_MEM_REFERENCED);
7509
7510 if (kr == KERN_SUCCESS) {
7511 page->slid = TRUE;
7512 } else {
7513 page->error = TRUE;
7514 vm_page_slide_errors++;
7515 }
7516
7517 vm_object_paging_end(page->object);
7518
7519 return kr;
7520 }
7521
7522
7523 #ifdef MACH_BSD
7524
7525 boolean_t upl_device_page(upl_page_info_t *upl)
7526 {
7527 return(UPL_DEVICE_PAGE(upl));
7528 }
7529 boolean_t upl_page_present(upl_page_info_t *upl, int index)
7530 {
7531 return(UPL_PAGE_PRESENT(upl, index));
7532 }
7533 boolean_t upl_speculative_page(upl_page_info_t *upl, int index)
7534 {
7535 return(UPL_SPECULATIVE_PAGE(upl, index));
7536 }
7537 boolean_t upl_dirty_page(upl_page_info_t *upl, int index)
7538 {
7539 return(UPL_DIRTY_PAGE(upl, index));
7540 }
7541 boolean_t upl_valid_page(upl_page_info_t *upl, int index)
7542 {
7543 return(UPL_VALID_PAGE(upl, index));
7544 }
7545 ppnum_t upl_phys_page(upl_page_info_t *upl, int index)
7546 {
7547 return(UPL_PHYS_PAGE(upl, index));
7548 }
7549
7550
7551 void
7552 vm_countdirtypages(void)
7553 {
7554 vm_page_t m;
7555 int dpages;
7556 int pgopages;
7557 int precpages;
7558
7559
7560 dpages=0;
7561 pgopages=0;
7562 precpages=0;
7563
7564 vm_page_lock_queues();
7565 m = (vm_page_t) queue_first(&vm_page_queue_inactive);
7566 do {
7567 if (m ==(vm_page_t )0) break;
7568
7569 if(m->dirty) dpages++;
7570 if(m->pageout) pgopages++;
7571 if(m->precious) precpages++;
7572
7573 assert(m->object != kernel_object);
7574 m = (vm_page_t) queue_next(&m->pageq);
7575 if (m ==(vm_page_t )0) break;
7576
7577 } while (!queue_end(&vm_page_queue_inactive,(queue_entry_t) m));
7578 vm_page_unlock_queues();
7579
7580 vm_page_lock_queues();
7581 m = (vm_page_t) queue_first(&vm_page_queue_throttled);
7582 do {
7583 if (m ==(vm_page_t )0) break;
7584
7585 dpages++;
7586 assert(m->dirty);
7587 assert(!m->pageout);
7588 assert(m->object != kernel_object);
7589 m = (vm_page_t) queue_next(&m->pageq);
7590 if (m ==(vm_page_t )0) break;
7591
7592 } while (!queue_end(&vm_page_queue_throttled,(queue_entry_t) m));
7593 vm_page_unlock_queues();
7594
7595 vm_page_lock_queues();
7596 m = (vm_page_t) queue_first(&vm_page_queue_zf);
7597 do {
7598 if (m ==(vm_page_t )0) break;
7599
7600 if(m->dirty) dpages++;
7601 if(m->pageout) pgopages++;
7602 if(m->precious) precpages++;
7603
7604 assert(m->object != kernel_object);
7605 m = (vm_page_t) queue_next(&m->pageq);
7606 if (m ==(vm_page_t )0) break;
7607
7608 } while (!queue_end(&vm_page_queue_zf,(queue_entry_t) m));
7609 vm_page_unlock_queues();
7610
7611 printf("IN Q: %d : %d : %d\n", dpages, pgopages, precpages);
7612
7613 dpages=0;
7614 pgopages=0;
7615 precpages=0;
7616
7617 vm_page_lock_queues();
7618 m = (vm_page_t) queue_first(&vm_page_queue_active);
7619
7620 do {
7621 if(m == (vm_page_t )0) break;
7622 if(m->dirty) dpages++;
7623 if(m->pageout) pgopages++;
7624 if(m->precious) precpages++;
7625
7626 assert(m->object != kernel_object);
7627 m = (vm_page_t) queue_next(&m->pageq);
7628 if(m == (vm_page_t )0) break;
7629
7630 } while (!queue_end(&vm_page_queue_active,(queue_entry_t) m));
7631 vm_page_unlock_queues();
7632
7633 printf("AC Q: %d : %d : %d\n", dpages, pgopages, precpages);
7634
7635 }
7636 #endif /* MACH_BSD */
7637
7638 ppnum_t upl_get_highest_page(
7639 upl_t upl)
7640 {
7641 return upl->highest_page;
7642 }
7643
7644 upl_size_t upl_get_size(
7645 upl_t upl)
7646 {
7647 return upl->size;
7648 }
7649
7650 #if UPL_DEBUG
7651 kern_return_t upl_ubc_alias_set(upl_t upl, uintptr_t alias1, uintptr_t alias2)
7652 {
7653 upl->ubc_alias1 = alias1;
7654 upl->ubc_alias2 = alias2;
7655 return KERN_SUCCESS;
7656 }
7657 int upl_ubc_alias_get(upl_t upl, uintptr_t * al, uintptr_t * al2)
7658 {
7659 if(al)
7660 *al = upl->ubc_alias1;
7661 if(al2)
7662 *al2 = upl->ubc_alias2;
7663 return KERN_SUCCESS;
7664 }
7665 #endif /* UPL_DEBUG */
7666
7667
7668
7669 #if MACH_KDB
7670 #include <ddb/db_output.h>
7671 #include <ddb/db_print.h>
7672 #include <vm/vm_print.h>
7673
7674 #define printf kdbprintf
7675 void db_pageout(void);
7676
7677 void
7678 db_vm(void)
7679 {
7680
7681 iprintf("VM Statistics:\n");
7682 db_indent += 2;
7683 iprintf("pages:\n");
7684 db_indent += 2;
7685 iprintf("activ %5d inact %5d free %5d",
7686 vm_page_active_count, vm_page_inactive_count,
7687 vm_page_free_count);
7688 printf(" wire %5d gobbl %5d\n",
7689 vm_page_wire_count, vm_page_gobble_count);
7690 db_indent -= 2;
7691 iprintf("target:\n");
7692 db_indent += 2;
7693 iprintf("min %5d inact %5d free %5d",
7694 vm_page_free_min, vm_page_inactive_target,
7695 vm_page_free_target);
7696 printf(" resrv %5d\n", vm_page_free_reserved);
7697 db_indent -= 2;
7698 iprintf("pause:\n");
7699 db_pageout();
7700 db_indent -= 2;
7701 }
7702
7703 #if MACH_COUNTERS
7704 extern int c_laundry_pages_freed;
7705 #endif /* MACH_COUNTERS */
7706
7707 void
7708 db_pageout(void)
7709 {
7710 iprintf("Pageout Statistics:\n");
7711 db_indent += 2;
7712 iprintf("active %5d inactv %5d\n",
7713 vm_pageout_active, vm_pageout_inactive);
7714 iprintf("nolock %5d avoid %5d busy %5d absent %5d\n",
7715 vm_pageout_inactive_nolock, vm_pageout_inactive_avoid,
7716 vm_pageout_inactive_busy, vm_pageout_inactive_absent);
7717 iprintf("used %5d clean %5d dirty(internal) %5d dirty(external) %5d\n",
7718 vm_pageout_inactive_used, vm_pageout_inactive_clean,
7719 vm_pageout_inactive_dirty_internal, vm_pageout_inactive_dirty_external);
7720 #if MACH_COUNTERS
7721 iprintf("laundry_pages_freed %d\n", c_laundry_pages_freed);
7722 #endif /* MACH_COUNTERS */
7723 #if MACH_CLUSTER_STATS
7724 iprintf("Cluster Statistics:\n");
7725 db_indent += 2;
7726 iprintf("dirtied %5d cleaned %5d collisions %5d\n",
7727 vm_pageout_cluster_dirtied, vm_pageout_cluster_cleaned,
7728 vm_pageout_cluster_collisions);
7729 iprintf("clusters %5d conversions %5d\n",
7730 vm_pageout_cluster_clusters, vm_pageout_cluster_conversions);
7731 db_indent -= 2;
7732 iprintf("Target Statistics:\n");
7733 db_indent += 2;
7734 iprintf("collisions %5d page_dirtied %5d page_freed %5d\n",
7735 vm_pageout_target_collisions, vm_pageout_target_page_dirtied,
7736 vm_pageout_target_page_freed);
7737 db_indent -= 2;
7738 #endif /* MACH_CLUSTER_STATS */
7739 db_indent -= 2;
7740 }
7741
7742 #endif /* MACH_KDB */