2 * Copyright (c) 2008 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* trees.c -- output deflated data using Huffman coding
29 * Copyright (C) 1995-2005 Jean-loup Gailly
30 * For conditions of distribution and use, see copyright notice in zlib.h
36 * The "deflation" process uses several Huffman trees. The more
37 * common source values are represented by shorter bit sequences.
39 * Each code tree is stored in a compressed form which is itself
40 * a Huffman encoding of the lengths of all the code strings (in
41 * ascending order by source values). The actual code strings are
42 * reconstructed from the lengths in the inflate process, as described
43 * in the deflate specification.
47 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
48 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
51 * Data Compression: Methods and Theory, pp. 49-50.
52 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
56 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
61 /* #define GEN_TREES_H */
69 /* ===========================================================================
74 /* Bit length codes must not exceed MAX_BL_BITS bits */
77 /* end of block literal code */
80 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
83 /* repeat a zero length 3-10 times (3 bits of repeat count) */
85 #define REPZ_11_138 18
86 /* repeat a zero length 11-138 times (7 bits of repeat count) */
88 local
const int extra_lbits
[LENGTH_CODES
] /* extra bits for each length code */
89 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
91 local
const int extra_dbits
[D_CODES
] /* extra bits for each distance code */
92 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
94 local
const int extra_blbits
[BL_CODES
]/* extra bits for each bit length code */
95 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
97 local
const uch bl_order
[BL_CODES
]
98 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
99 /* The lengths of the bit length codes are sent in order of decreasing
100 * probability, to avoid transmitting the lengths for unused bit length codes.
103 #define Buf_size (8 * 2*sizeof(char))
104 /* Number of bits used within bi_buf. (bi_buf might be implemented on
105 * more than 16 bits on some systems.)
108 /* ===========================================================================
109 * Local data. These are initialized only once.
112 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
114 #if defined(GEN_TREES_H) || !defined(STDC)
115 /* non ANSI compilers may not accept trees.h */
117 local ct_data static_ltree
[L_CODES
+2];
118 /* The static literal tree. Since the bit lengths are imposed, there is no
119 * need for the L_CODES extra codes used during heap construction. However
120 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
124 local ct_data static_dtree
[D_CODES
];
125 /* The static distance tree. (Actually a trivial tree since all codes use
129 uch _dist_code
[DIST_CODE_LEN
];
130 /* Distance codes. The first 256 values correspond to the distances
131 * 3 .. 258, the last 256 values correspond to the top 8 bits of
132 * the 15 bit distances.
135 uch _length_code
[MAX_MATCH
-MIN_MATCH
+1];
136 /* length code for each normalized match length (0 == MIN_MATCH) */
138 local
int base_length
[LENGTH_CODES
];
139 /* First normalized length for each code (0 = MIN_MATCH) */
141 local
int base_dist
[D_CODES
];
142 /* First normalized distance for each code (0 = distance of 1) */
146 #endif /* GEN_TREES_H */
148 struct static_tree_desc_s
{
149 const ct_data
*static_tree
; /* static tree or NULL */
150 const intf
*extra_bits
; /* extra bits for each code or NULL */
151 int extra_base
; /* base index for extra_bits */
152 int elems
; /* max number of elements in the tree */
153 int max_length
; /* max bit length for the codes */
156 local static_tree_desc static_l_desc
=
157 {static_ltree
, extra_lbits
, LITERALS
+1, L_CODES
, MAX_BITS
};
159 local static_tree_desc static_d_desc
=
160 {static_dtree
, extra_dbits
, 0, D_CODES
, MAX_BITS
};
162 local static_tree_desc static_bl_desc
=
163 {(const ct_data
*)0, extra_blbits
, 0, BL_CODES
, MAX_BL_BITS
};
165 /* ===========================================================================
166 * Local (static) routines in this file.
169 local
void tr_static_init
OF((void));
170 local
void init_block
OF((deflate_state
*s
));
171 local
void pqdownheap
OF((deflate_state
*s
, ct_data
*tree
, int k
));
172 local
void gen_bitlen
OF((deflate_state
*s
, tree_desc
*desc
));
173 local
void gen_codes
OF((ct_data
*tree
, int max_code
, ushf
*bl_count
));
174 local
void build_tree
OF((deflate_state
*s
, tree_desc
*desc
));
175 local
void scan_tree
OF((deflate_state
*s
, ct_data
*tree
, int max_code
));
176 local
void send_tree
OF((deflate_state
*s
, ct_data
*tree
, int max_code
));
177 local
int build_bl_tree
OF((deflate_state
*s
));
178 local
void send_all_trees
OF((deflate_state
*s
, int lcodes
, int dcodes
,
180 local
void compress_block
OF((deflate_state
*s
, ct_data
*ltree
,
182 local
void set_data_type
OF((deflate_state
*s
));
183 local
unsigned bi_reverse
OF((unsigned value
, int length
));
184 local
void bi_windup
OF((deflate_state
*s
));
185 local
void bi_flush
OF((deflate_state
*s
));
186 local
void copy_block
OF((deflate_state
*s
, charf
*buf
, unsigned len
,
190 local
void gen_trees_header
OF((void));
194 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
195 /* Send a code of the given tree. c and tree must not have side effects */
198 # define send_code(s, c, tree) \
199 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
200 send_bits(s, tree[c].Code, tree[c].Len); }
203 /* ===========================================================================
204 * Output a short LSB first on the stream.
205 * IN assertion: there is enough room in pendingBuf.
207 #define put_short(s, w) { \
208 put_byte(s, (uch)((w) & 0xff)); \
209 put_byte(s, (uch)((ush)(w) >> 8)); \
212 /* ===========================================================================
213 * Send a value on a given number of bits.
214 * IN assertion: length <= 16 and value fits in length bits.
217 local
void send_bits
OF((deflate_state
*s
, int value
, int length
));
219 local
void send_bits(s
, value
, length
)
221 int value
; /* value to send */
222 int length
; /* number of bits */
224 Tracevv((stderr
," l %2d v %4x ", length
, value
));
225 Assert(length
> 0 && length
<= 15, "invalid length");
226 s
->bits_sent
+= (ulg
)length
;
228 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
229 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
230 * unused bits in value.
232 if (s
->bi_valid
> (int)Buf_size
- length
) {
233 s
->bi_buf
|= (value
<< s
->bi_valid
);
234 put_short(s
, s
->bi_buf
);
235 s
->bi_buf
= (ush
)value
>> (Buf_size
- s
->bi_valid
);
236 s
->bi_valid
+= length
- Buf_size
;
238 s
->bi_buf
|= value
<< s
->bi_valid
;
239 s
->bi_valid
+= length
;
244 #define send_bits(s, value, length) \
246 if (s->bi_valid > (int)Buf_size - len) {\
248 s->bi_buf |= (val << s->bi_valid);\
249 put_short(s, s->bi_buf);\
250 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
251 s->bi_valid += len - Buf_size;\
253 s->bi_buf |= (value) << s->bi_valid;\
260 /* the arguments must not have side effects */
262 /* ===========================================================================
263 * Initialize the various 'constant' tables.
265 local
void tr_static_init()
267 #if defined(GEN_TREES_H) || !defined(STDC)
268 static int static_init_done
= 0;
269 int n
; /* iterates over tree elements */
270 int bits
; /* bit counter */
271 int length
; /* length value */
272 int code
; /* code value */
273 int dist
; /* distance index */
274 ush bl_count
[MAX_BITS
+1];
275 /* number of codes at each bit length for an optimal tree */
277 if (static_init_done
) return;
279 /* For some embedded targets, global variables are not initialized: */
280 static_l_desc
.static_tree
= static_ltree
;
281 static_l_desc
.extra_bits
= extra_lbits
;
282 static_d_desc
.static_tree
= static_dtree
;
283 static_d_desc
.extra_bits
= extra_dbits
;
284 static_bl_desc
.extra_bits
= extra_blbits
;
286 /* Initialize the mapping length (0..255) -> length code (0..28) */
288 for (code
= 0; code
< LENGTH_CODES
-1; code
++) {
289 base_length
[code
] = length
;
290 for (n
= 0; n
< (1<<extra_lbits
[code
]); n
++) {
291 _length_code
[length
++] = (uch
)code
;
294 Assert (length
== 256, "tr_static_init: length != 256");
295 /* Note that the length 255 (match length 258) can be represented
296 * in two different ways: code 284 + 5 bits or code 285, so we
297 * overwrite length_code[255] to use the best encoding:
299 _length_code
[length
-1] = (uch
)code
;
301 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
303 for (code
= 0 ; code
< 16; code
++) {
304 base_dist
[code
] = dist
;
305 for (n
= 0; n
< (1<<extra_dbits
[code
]); n
++) {
306 _dist_code
[dist
++] = (uch
)code
;
309 Assert (dist
== 256, "tr_static_init: dist != 256");
310 dist
>>= 7; /* from now on, all distances are divided by 128 */
311 for ( ; code
< D_CODES
; code
++) {
312 base_dist
[code
] = dist
<< 7;
313 for (n
= 0; n
< (1<<(extra_dbits
[code
]-7)); n
++) {
314 _dist_code
[256 + dist
++] = (uch
)code
;
317 Assert (dist
== 256, "tr_static_init: 256+dist != 512");
319 /* Construct the codes of the static literal tree */
320 for (bits
= 0; bits
<= MAX_BITS
; bits
++) bl_count
[bits
] = 0;
322 while (n
<= 143) static_ltree
[n
++].Len
= 8, bl_count
[8]++;
323 while (n
<= 255) static_ltree
[n
++].Len
= 9, bl_count
[9]++;
324 while (n
<= 279) static_ltree
[n
++].Len
= 7, bl_count
[7]++;
325 while (n
<= 287) static_ltree
[n
++].Len
= 8, bl_count
[8]++;
326 /* Codes 286 and 287 do not exist, but we must include them in the
327 * tree construction to get a canonical Huffman tree (longest code
330 gen_codes((ct_data
*)static_ltree
, L_CODES
+1, bl_count
);
332 /* The static distance tree is trivial: */
333 for (n
= 0; n
< D_CODES
; n
++) {
334 static_dtree
[n
].Len
= 5;
335 static_dtree
[n
].Code
= bi_reverse((unsigned)n
, 5);
337 static_init_done
= 1;
342 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
345 /* ===========================================================================
346 * Genererate the file trees.h describing the static trees.
353 # define SEPARATOR(i, last, width) \
354 ((i) == (last)? "\n};\n\n" : \
355 ((i) % (width) == (width)-1 ? ",\n" : ", "))
357 void gen_trees_header()
359 FILE *header
= fopen("trees.h", "w");
362 Assert (header
!= NULL
, "Can't open trees.h");
364 "/* header created automatically with -DGEN_TREES_H */\n\n");
366 fprintf(header
, "local const ct_data static_ltree[L_CODES+2] = {\n");
367 for (i
= 0; i
< L_CODES
+2; i
++) {
368 fprintf(header
, "{{%3u},{%3u}}%s", static_ltree
[i
].Code
,
369 static_ltree
[i
].Len
, SEPARATOR(i
, L_CODES
+1, 5));
372 fprintf(header
, "local const ct_data static_dtree[D_CODES] = {\n");
373 for (i
= 0; i
< D_CODES
; i
++) {
374 fprintf(header
, "{{%2u},{%2u}}%s", static_dtree
[i
].Code
,
375 static_dtree
[i
].Len
, SEPARATOR(i
, D_CODES
-1, 5));
378 fprintf(header
, "const uch _dist_code[DIST_CODE_LEN] = {\n");
379 for (i
= 0; i
< DIST_CODE_LEN
; i
++) {
380 fprintf(header
, "%2u%s", _dist_code
[i
],
381 SEPARATOR(i
, DIST_CODE_LEN
-1, 20));
384 fprintf(header
, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
385 for (i
= 0; i
< MAX_MATCH
-MIN_MATCH
+1; i
++) {
386 fprintf(header
, "%2u%s", _length_code
[i
],
387 SEPARATOR(i
, MAX_MATCH
-MIN_MATCH
, 20));
390 fprintf(header
, "local const int base_length[LENGTH_CODES] = {\n");
391 for (i
= 0; i
< LENGTH_CODES
; i
++) {
392 fprintf(header
, "%1u%s", base_length
[i
],
393 SEPARATOR(i
, LENGTH_CODES
-1, 20));
396 fprintf(header
, "local const int base_dist[D_CODES] = {\n");
397 for (i
= 0; i
< D_CODES
; i
++) {
398 fprintf(header
, "%5u%s", base_dist
[i
],
399 SEPARATOR(i
, D_CODES
-1, 10));
404 #endif /* GEN_TREES_H */
406 /* ===========================================================================
407 * Initialize the tree data structures for a new zlib stream.
414 s
->l_desc
.dyn_tree
= s
->dyn_ltree
;
415 s
->l_desc
.stat_desc
= &static_l_desc
;
417 s
->d_desc
.dyn_tree
= s
->dyn_dtree
;
418 s
->d_desc
.stat_desc
= &static_d_desc
;
420 s
->bl_desc
.dyn_tree
= s
->bl_tree
;
421 s
->bl_desc
.stat_desc
= &static_bl_desc
;
425 s
->last_eob_len
= 8; /* enough lookahead for inflate */
427 s
->compressed_len
= 0L;
431 /* Initialize the first block of the first file: */
435 /* ===========================================================================
436 * Initialize a new block.
438 local
void init_block(s
)
441 int n
; /* iterates over tree elements */
443 /* Initialize the trees. */
444 for (n
= 0; n
< L_CODES
; n
++) s
->dyn_ltree
[n
].Freq
= 0;
445 for (n
= 0; n
< D_CODES
; n
++) s
->dyn_dtree
[n
].Freq
= 0;
446 for (n
= 0; n
< BL_CODES
; n
++) s
->bl_tree
[n
].Freq
= 0;
448 s
->dyn_ltree
[END_BLOCK
].Freq
= 1;
449 s
->opt_len
= s
->static_len
= 0L;
450 s
->last_lit
= s
->matches
= 0;
454 /* Index within the heap array of least frequent node in the Huffman tree */
457 /* ===========================================================================
458 * Remove the smallest element from the heap and recreate the heap with
459 * one less element. Updates heap and heap_len.
461 #define pqremove(s, tree, top) \
463 top = s->heap[SMALLEST]; \
464 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
465 pqdownheap(s, tree, SMALLEST); \
468 /* ===========================================================================
469 * Compares to subtrees, using the tree depth as tie breaker when
470 * the subtrees have equal frequency. This minimizes the worst case length.
472 #define smaller(tree, n, m, depth) \
473 (tree[n].Freq < tree[m].Freq || \
474 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
476 /* ===========================================================================
477 * Restore the heap property by moving down the tree starting at node k,
478 * exchanging a node with the smallest of its two sons if necessary, stopping
479 * when the heap property is re-established (each father smaller than its
482 local
void pqdownheap(s
, tree
, k
)
484 ct_data
*tree
; /* the tree to restore */
485 int k
; /* node to move down */
488 int j
= k
<< 1; /* left son of k */
489 while (j
<= s
->heap_len
) {
490 /* Set j to the smallest of the two sons: */
491 if (j
< s
->heap_len
&&
492 smaller(tree
, s
->heap
[j
+1], s
->heap
[j
], s
->depth
)) {
495 /* Exit if v is smaller than both sons */
496 if (smaller(tree
, v
, s
->heap
[j
], s
->depth
)) break;
498 /* Exchange v with the smallest son */
499 s
->heap
[k
] = s
->heap
[j
]; k
= j
;
501 /* And continue down the tree, setting j to the left son of k */
507 /* ===========================================================================
508 * Compute the optimal bit lengths for a tree and update the total bit length
509 * for the current block.
510 * IN assertion: the fields freq and dad are set, heap[heap_max] and
511 * above are the tree nodes sorted by increasing frequency.
512 * OUT assertions: the field len is set to the optimal bit length, the
513 * array bl_count contains the frequencies for each bit length.
514 * The length opt_len is updated; static_len is also updated if stree is
517 local
void gen_bitlen(s
, desc
)
519 tree_desc
*desc
; /* the tree descriptor */
521 ct_data
*tree
= desc
->dyn_tree
;
522 int max_code
= desc
->max_code
;
523 const ct_data
*stree
= desc
->stat_desc
->static_tree
;
524 const intf
*extra
= desc
->stat_desc
->extra_bits
;
525 int base
= desc
->stat_desc
->extra_base
;
526 int max_length
= desc
->stat_desc
->max_length
;
527 int h
; /* heap index */
528 int n
, m
; /* iterate over the tree elements */
529 int bits
; /* bit length */
530 int xbits
; /* extra bits */
531 ush f
; /* frequency */
532 int overflow
= 0; /* number of elements with bit length too large */
534 for (bits
= 0; bits
<= MAX_BITS
; bits
++) s
->bl_count
[bits
] = 0;
536 /* In a first pass, compute the optimal bit lengths (which may
537 * overflow in the case of the bit length tree).
539 tree
[s
->heap
[s
->heap_max
]].Len
= 0; /* root of the heap */
541 for (h
= s
->heap_max
+1; h
< HEAP_SIZE
; h
++) {
543 bits
= tree
[tree
[n
].Dad
].Len
+ 1;
544 if (bits
> max_length
) bits
= max_length
, overflow
++;
545 tree
[n
].Len
= (ush
)bits
;
546 /* We overwrite tree[n].Dad which is no longer needed */
548 if (n
> max_code
) continue; /* not a leaf node */
552 if (n
>= base
) xbits
= extra
[n
-base
];
554 s
->opt_len
+= (ulg
)f
* (bits
+ xbits
);
555 if (stree
) s
->static_len
+= (ulg
)f
* (stree
[n
].Len
+ xbits
);
557 if (overflow
== 0) return;
559 Trace((stderr
,"\nbit length overflow\n"));
560 /* This happens for example on obj2 and pic of the Calgary corpus */
562 /* Find the first bit length which could increase: */
565 while (s
->bl_count
[bits
] == 0) bits
--;
566 s
->bl_count
[bits
]--; /* move one leaf down the tree */
567 s
->bl_count
[bits
+1] += 2; /* move one overflow item as its brother */
568 s
->bl_count
[max_length
]--;
569 /* The brother of the overflow item also moves one step up,
570 * but this does not affect bl_count[max_length]
573 } while (overflow
> 0);
575 /* Now recompute all bit lengths, scanning in increasing frequency.
576 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
577 * lengths instead of fixing only the wrong ones. This idea is taken
578 * from 'ar' written by Haruhiko Okumura.)
580 for (bits
= max_length
; bits
!= 0; bits
--) {
581 n
= s
->bl_count
[bits
];
584 if (m
> max_code
) continue;
585 if ((unsigned) tree
[m
].Len
!= (unsigned) bits
) {
586 Trace((stderr
,"code %d bits %d->%d\n", m
, tree
[m
].Len
, bits
));
587 s
->opt_len
+= ((long)bits
- (long)tree
[m
].Len
)
589 tree
[m
].Len
= (ush
)bits
;
596 /* ===========================================================================
597 * Generate the codes for a given tree and bit counts (which need not be
599 * IN assertion: the array bl_count contains the bit length statistics for
600 * the given tree and the field len is set for all tree elements.
601 * OUT assertion: the field code is set for all tree elements of non
604 local
void gen_codes (tree
, max_code
, bl_count
)
605 ct_data
*tree
; /* the tree to decorate */
606 int max_code
; /* largest code with non zero frequency */
607 ushf
*bl_count
; /* number of codes at each bit length */
609 ush next_code
[MAX_BITS
+1]; /* next code value for each bit length */
610 ush code
= 0; /* running code value */
611 int bits
; /* bit index */
612 int n
; /* code index */
614 /* The distribution counts are first used to generate the code values
615 * without bit reversal.
617 for (bits
= 1; bits
<= MAX_BITS
; bits
++) {
618 next_code
[bits
] = code
= (code
+ bl_count
[bits
-1]) << 1;
620 /* Check that the bit counts in bl_count are consistent. The last code
623 Assert (code
+ bl_count
[MAX_BITS
]-1 == (1<<MAX_BITS
)-1,
624 "inconsistent bit counts");
625 Tracev((stderr
,"\ngen_codes: max_code %d ", max_code
));
627 for (n
= 0; n
<= max_code
; n
++) {
628 int len
= tree
[n
].Len
;
629 if (len
== 0) continue;
630 /* Now reverse the bits */
631 tree
[n
].Code
= bi_reverse(next_code
[len
]++, len
);
633 Tracecv(tree
!= static_ltree
, (stderr
,"\nn %3d %c l %2d c %4x (%x) ",
634 n
, (isgraph(n
) ? n
: ' '), len
, tree
[n
].Code
, next_code
[len
]-1));
638 /* ===========================================================================
639 * Construct one Huffman tree and assigns the code bit strings and lengths.
640 * Update the total bit length for the current block.
641 * IN assertion: the field freq is set for all tree elements.
642 * OUT assertions: the fields len and code are set to the optimal bit length
643 * and corresponding code. The length opt_len is updated; static_len is
644 * also updated if stree is not null. The field max_code is set.
646 local
void build_tree(s
, desc
)
648 tree_desc
*desc
; /* the tree descriptor */
650 ct_data
*tree
= desc
->dyn_tree
;
651 const ct_data
*stree
= desc
->stat_desc
->static_tree
;
652 int elems
= desc
->stat_desc
->elems
;
653 int n
, m
; /* iterate over heap elements */
654 int max_code
= -1; /* largest code with non zero frequency */
655 int node
; /* new node being created */
657 /* Construct the initial heap, with least frequent element in
658 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
659 * heap[0] is not used.
661 s
->heap_len
= 0, s
->heap_max
= HEAP_SIZE
;
663 for (n
= 0; n
< elems
; n
++) {
664 if (tree
[n
].Freq
!= 0) {
665 s
->heap
[++(s
->heap_len
)] = max_code
= n
;
672 /* The pkzip format requires that at least one distance code exists,
673 * and that at least one bit should be sent even if there is only one
674 * possible code. So to avoid special checks later on we force at least
675 * two codes of non zero frequency.
677 while (s
->heap_len
< 2) {
678 node
= s
->heap
[++(s
->heap_len
)] = (max_code
< 2 ? ++max_code
: 0);
681 s
->opt_len
--; if (stree
) s
->static_len
-= stree
[node
].Len
;
682 /* node is 0 or 1 so it does not have extra bits */
684 desc
->max_code
= max_code
;
686 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
687 * establish sub-heaps of increasing lengths:
689 for (n
= s
->heap_len
/2; n
>= 1; n
--) pqdownheap(s
, tree
, n
);
691 /* Construct the Huffman tree by repeatedly combining the least two
694 node
= elems
; /* next internal node of the tree */
696 pqremove(s
, tree
, n
); /* n = node of least frequency */
697 m
= s
->heap
[SMALLEST
]; /* m = node of next least frequency */
699 s
->heap
[--(s
->heap_max
)] = n
; /* keep the nodes sorted by frequency */
700 s
->heap
[--(s
->heap_max
)] = m
;
702 /* Create a new node father of n and m */
703 tree
[node
].Freq
= tree
[n
].Freq
+ tree
[m
].Freq
;
704 s
->depth
[node
] = (uch
)((s
->depth
[n
] >= s
->depth
[m
] ?
705 s
->depth
[n
] : s
->depth
[m
]) + 1);
706 tree
[n
].Dad
= tree
[m
].Dad
= (ush
)node
;
708 if (tree
== s
->bl_tree
) {
709 fprintf(stderr
,"\nnode %d(%d), sons %d(%d) %d(%d)",
710 node
, tree
[node
].Freq
, n
, tree
[n
].Freq
, m
, tree
[m
].Freq
);
713 /* and insert the new node in the heap */
714 s
->heap
[SMALLEST
] = node
++;
715 pqdownheap(s
, tree
, SMALLEST
);
717 } while (s
->heap_len
>= 2);
719 s
->heap
[--(s
->heap_max
)] = s
->heap
[SMALLEST
];
721 /* At this point, the fields freq and dad are set. We can now
722 * generate the bit lengths.
724 gen_bitlen(s
, (tree_desc
*)desc
);
726 /* The field len is now set, we can generate the bit codes */
727 gen_codes ((ct_data
*)tree
, max_code
, s
->bl_count
);
730 /* ===========================================================================
731 * Scan a literal or distance tree to determine the frequencies of the codes
732 * in the bit length tree.
734 local
void scan_tree (s
, tree
, max_code
)
736 ct_data
*tree
; /* the tree to be scanned */
737 int max_code
; /* and its largest code of non zero frequency */
739 int n
; /* iterates over all tree elements */
740 int prevlen
= -1; /* last emitted length */
741 int curlen
; /* length of current code */
742 int nextlen
= tree
[0].Len
; /* length of next code */
743 int count
= 0; /* repeat count of the current code */
744 int max_count
= 7; /* max repeat count */
745 int min_count
= 4; /* min repeat count */
747 if (nextlen
== 0) max_count
= 138, min_count
= 3;
748 tree
[max_code
+1].Len
= (ush
)0xffff; /* guard */
750 for (n
= 0; n
<= max_code
; n
++) {
751 curlen
= nextlen
; nextlen
= tree
[n
+1].Len
;
752 if (++count
< max_count
&& curlen
== nextlen
) {
754 } else if (count
< min_count
) {
755 s
->bl_tree
[curlen
].Freq
+= count
;
756 } else if (curlen
!= 0) {
757 if (curlen
!= prevlen
) s
->bl_tree
[curlen
].Freq
++;
758 s
->bl_tree
[REP_3_6
].Freq
++;
759 } else if (count
<= 10) {
760 s
->bl_tree
[REPZ_3_10
].Freq
++;
762 s
->bl_tree
[REPZ_11_138
].Freq
++;
764 count
= 0; prevlen
= curlen
;
766 max_count
= 138, min_count
= 3;
767 } else if (curlen
== nextlen
) {
768 max_count
= 6, min_count
= 3;
770 max_count
= 7, min_count
= 4;
775 /* ===========================================================================
776 * Send a literal or distance tree in compressed form, using the codes in
779 local
void send_tree (s
, tree
, max_code
)
781 ct_data
*tree
; /* the tree to be scanned */
782 int max_code
; /* and its largest code of non zero frequency */
784 int n
; /* iterates over all tree elements */
785 int prevlen
= -1; /* last emitted length */
786 int curlen
; /* length of current code */
787 int nextlen
= tree
[0].Len
; /* length of next code */
788 int count
= 0; /* repeat count of the current code */
789 int max_count
= 7; /* max repeat count */
790 int min_count
= 4; /* min repeat count */
792 /* tree[max_code+1].Len = -1; */ /* guard already set */
793 if (nextlen
== 0) max_count
= 138, min_count
= 3;
795 for (n
= 0; n
<= max_code
; n
++) {
796 curlen
= nextlen
; nextlen
= tree
[n
+1].Len
;
797 if (++count
< max_count
&& curlen
== nextlen
) {
799 } else if (count
< min_count
) {
800 do { send_code(s
, curlen
, s
->bl_tree
); } while (--count
!= 0);
802 } else if (curlen
!= 0) {
803 if (curlen
!= prevlen
) {
804 send_code(s
, curlen
, s
->bl_tree
); count
--;
806 Assert(count
>= 3 && count
<= 6, " 3_6?");
807 send_code(s
, REP_3_6
, s
->bl_tree
); send_bits(s
, count
-3, 2);
809 } else if (count
<= 10) {
810 send_code(s
, REPZ_3_10
, s
->bl_tree
); send_bits(s
, count
-3, 3);
813 send_code(s
, REPZ_11_138
, s
->bl_tree
); send_bits(s
, count
-11, 7);
815 count
= 0; prevlen
= curlen
;
817 max_count
= 138, min_count
= 3;
818 } else if (curlen
== nextlen
) {
819 max_count
= 6, min_count
= 3;
821 max_count
= 7, min_count
= 4;
826 /* ===========================================================================
827 * Construct the Huffman tree for the bit lengths and return the index in
828 * bl_order of the last bit length code to send.
830 local
int build_bl_tree(s
)
833 int max_blindex
; /* index of last bit length code of non zero freq */
835 /* Determine the bit length frequencies for literal and distance trees */
836 scan_tree(s
, (ct_data
*)s
->dyn_ltree
, s
->l_desc
.max_code
);
837 scan_tree(s
, (ct_data
*)s
->dyn_dtree
, s
->d_desc
.max_code
);
839 /* Build the bit length tree: */
840 build_tree(s
, (tree_desc
*)(&(s
->bl_desc
)));
841 /* opt_len now includes the length of the tree representations, except
842 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
845 /* Determine the number of bit length codes to send. The pkzip format
846 * requires that at least 4 bit length codes be sent. (appnote.txt says
847 * 3 but the actual value used is 4.)
849 for (max_blindex
= BL_CODES
-1; max_blindex
>= 3; max_blindex
--) {
850 if (s
->bl_tree
[bl_order
[max_blindex
]].Len
!= 0) break;
852 /* Update opt_len to include the bit length tree and counts */
853 s
->opt_len
+= 3*(max_blindex
+1) + 5+5+4;
854 Tracev((stderr
, "\ndyn trees: dyn %ld, stat %ld",
855 s
->opt_len
, s
->static_len
));
860 /* ===========================================================================
861 * Send the header for a block using dynamic Huffman trees: the counts, the
862 * lengths of the bit length codes, the literal tree and the distance tree.
863 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
865 local
void send_all_trees(s
, lcodes
, dcodes
, blcodes
)
867 int lcodes
, dcodes
, blcodes
; /* number of codes for each tree */
869 int rank
; /* index in bl_order */
871 Assert (lcodes
>= 257 && dcodes
>= 1 && blcodes
>= 4, "not enough codes");
872 Assert (lcodes
<= L_CODES
&& dcodes
<= D_CODES
&& blcodes
<= BL_CODES
,
874 Tracev((stderr
, "\nbl counts: "));
875 send_bits(s
, lcodes
-257, 5); /* not +255 as stated in appnote.txt */
876 send_bits(s
, dcodes
-1, 5);
877 send_bits(s
, blcodes
-4, 4); /* not -3 as stated in appnote.txt */
878 for (rank
= 0; rank
< blcodes
; rank
++) {
879 Tracev((stderr
, "\nbl code %2d ", bl_order
[rank
]));
880 send_bits(s
, s
->bl_tree
[bl_order
[rank
]].Len
, 3);
882 Tracev((stderr
, "\nbl tree: sent %ld", s
->bits_sent
));
884 send_tree(s
, (ct_data
*)s
->dyn_ltree
, lcodes
-1); /* literal tree */
885 Tracev((stderr
, "\nlit tree: sent %ld", s
->bits_sent
));
887 send_tree(s
, (ct_data
*)s
->dyn_dtree
, dcodes
-1); /* distance tree */
888 Tracev((stderr
, "\ndist tree: sent %ld", s
->bits_sent
));
891 /* ===========================================================================
892 * Send a stored block
894 void _tr_stored_block(s
, buf
, stored_len
, eof
)
896 charf
*buf
; /* input block */
897 ulg stored_len
; /* length of input block */
898 int eof
; /* true if this is the last block for a file */
900 send_bits(s
, (STORED_BLOCK
<<1)+eof
, 3); /* send block type */
902 s
->compressed_len
= (s
->compressed_len
+ 3 + 7) & (ulg
)~7L;
903 s
->compressed_len
+= (stored_len
+ 4) << 3;
905 copy_block(s
, buf
, (unsigned)stored_len
, 1); /* with header */
908 /* ===========================================================================
909 * Send one empty static block to give enough lookahead for inflate.
910 * This takes 10 bits, of which 7 may remain in the bit buffer.
911 * The current inflate code requires 9 bits of lookahead. If the
912 * last two codes for the previous block (real code plus EOB) were coded
913 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
914 * the last real code. In this case we send two empty static blocks instead
915 * of one. (There are no problems if the previous block is stored or fixed.)
916 * To simplify the code, we assume the worst case of last real code encoded
922 send_bits(s
, STATIC_TREES
<<1, 3);
923 send_code(s
, END_BLOCK
, static_ltree
);
925 s
->compressed_len
+= 10L; /* 3 for block type, 7 for EOB */
928 /* Of the 10 bits for the empty block, we have already sent
929 * (10 - bi_valid) bits. The lookahead for the last real code (before
930 * the EOB of the previous block) was thus at least one plus the length
931 * of the EOB plus what we have just sent of the empty static block.
933 if (1 + s
->last_eob_len
+ 10 - s
->bi_valid
< 9) {
934 send_bits(s
, STATIC_TREES
<<1, 3);
935 send_code(s
, END_BLOCK
, static_ltree
);
937 s
->compressed_len
+= 10L;
944 /* ===========================================================================
945 * Determine the best encoding for the current block: dynamic trees, static
946 * trees or store, and output the encoded block to the zip file.
948 void _tr_flush_block(s
, buf
, stored_len
, eof
)
950 charf
*buf
; /* input block, or NULL if too old */
951 ulg stored_len
; /* length of input block */
952 int eof
; /* true if this is the last block for a file */
954 ulg opt_lenb
, static_lenb
; /* opt_len and static_len in bytes */
955 int max_blindex
= 0; /* index of last bit length code of non zero freq */
957 /* Build the Huffman trees unless a stored block is forced */
960 /* Check if the file is binary or text */
961 if (stored_len
> 0 && s
->strm
->data_type
== Z_UNKNOWN
)
964 /* Construct the literal and distance trees */
965 build_tree(s
, (tree_desc
*)(&(s
->l_desc
)));
966 Tracev((stderr
, "\nlit data: dyn %ld, stat %ld", s
->opt_len
,
969 build_tree(s
, (tree_desc
*)(&(s
->d_desc
)));
970 Tracev((stderr
, "\ndist data: dyn %ld, stat %ld", s
->opt_len
,
972 /* At this point, opt_len and static_len are the total bit lengths of
973 * the compressed block data, excluding the tree representations.
976 /* Build the bit length tree for the above two trees, and get the index
977 * in bl_order of the last bit length code to send.
979 max_blindex
= build_bl_tree(s
);
981 /* Determine the best encoding. Compute the block lengths in bytes. */
982 opt_lenb
= (s
->opt_len
+3+7)>>3;
983 static_lenb
= (s
->static_len
+3+7)>>3;
985 Tracev((stderr
, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
986 opt_lenb
, s
->opt_len
, static_lenb
, s
->static_len
, stored_len
,
989 if (static_lenb
<= opt_lenb
) opt_lenb
= static_lenb
;
992 Assert(buf
!= (char*)0, "lost buf");
993 opt_lenb
= static_lenb
= stored_len
+ 5; /* force a stored block */
997 if (buf
!= (char*)0) { /* force stored block */
999 if (stored_len
+4 <= opt_lenb
&& buf
!= (char*)0) {
1000 /* 4: two words for the lengths */
1002 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
1003 * Otherwise we can't have processed more than WSIZE input bytes since
1004 * the last block flush, because compression would have been
1005 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
1006 * transform a block into a stored block.
1008 _tr_stored_block(s
, buf
, stored_len
, eof
);
1011 } else if (static_lenb
>= 0) { /* force static trees */
1013 } else if (s
->strategy
== Z_FIXED
|| static_lenb
== opt_lenb
) {
1015 send_bits(s
, (STATIC_TREES
<<1)+eof
, 3);
1016 compress_block(s
, (ct_data
*)static_ltree
, (ct_data
*)static_dtree
);
1018 s
->compressed_len
+= 3 + s
->static_len
;
1021 send_bits(s
, (DYN_TREES
<<1)+eof
, 3);
1022 send_all_trees(s
, s
->l_desc
.max_code
+1, s
->d_desc
.max_code
+1,
1024 compress_block(s
, (ct_data
*)s
->dyn_ltree
, (ct_data
*)s
->dyn_dtree
);
1026 s
->compressed_len
+= 3 + s
->opt_len
;
1029 Assert (s
->compressed_len
== s
->bits_sent
, "bad compressed size");
1030 /* The above check is made mod 2^32, for files larger than 512 MB
1031 * and uLong implemented on 32 bits.
1038 s
->compressed_len
+= 7; /* align on byte boundary */
1041 Tracev((stderr
,"\ncomprlen %lu(%lu) ", s
->compressed_len
>>3,
1042 s
->compressed_len
-7*eof
));
1045 /* ===========================================================================
1046 * Save the match info and tally the frequency counts. Return true if
1047 * the current block must be flushed.
1049 int _tr_tally (s
, dist
, lc
)
1051 unsigned dist
; /* distance of matched string */
1052 unsigned lc
; /* match length-MIN_MATCH or unmatched char (if dist==0) */
1054 s
->d_buf
[s
->last_lit
] = (ush
)dist
;
1055 s
->l_buf
[s
->last_lit
++] = (uch
)lc
;
1057 /* lc is the unmatched char */
1058 s
->dyn_ltree
[lc
].Freq
++;
1061 /* Here, lc is the match length - MIN_MATCH */
1062 dist
--; /* dist = match distance - 1 */
1063 Assert((ush
)dist
< (ush
)MAX_DIST(s
) &&
1064 (ush
)lc
<= (ush
)(MAX_MATCH
-MIN_MATCH
) &&
1065 (ush
)d_code(dist
) < (ush
)D_CODES
, "_tr_tally: bad match");
1067 s
->dyn_ltree
[_length_code
[lc
]+LITERALS
+1].Freq
++;
1068 s
->dyn_dtree
[d_code(dist
)].Freq
++;
1071 #ifdef TRUNCATE_BLOCK
1072 /* Try to guess if it is profitable to stop the current block here */
1073 if ((s
->last_lit
& 0x1fff) == 0 && s
->level
> 2) {
1074 /* Compute an upper bound for the compressed length */
1075 ulg out_length
= (ulg
)s
->last_lit
*8L;
1076 ulg in_length
= (ulg
)((long)s
->strstart
- s
->block_start
);
1078 for (dcode
= 0; dcode
< D_CODES
; dcode
++) {
1079 out_length
+= (ulg
)s
->dyn_dtree
[dcode
].Freq
*
1080 (5L+extra_dbits
[dcode
]);
1083 Tracev((stderr
,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1084 s
->last_lit
, in_length
, out_length
,
1085 100L - out_length
*100L/in_length
));
1086 if (s
->matches
< s
->last_lit
/2 && out_length
< in_length
/2) return 1;
1089 return (s
->last_lit
== s
->lit_bufsize
-1);
1090 /* We avoid equality with lit_bufsize because of wraparound at 64K
1091 * on 16 bit machines and because stored blocks are restricted to
1096 /* ===========================================================================
1097 * Send the block data compressed using the given Huffman trees
1099 local
void compress_block(s
, ltree
, dtree
)
1101 ct_data
*ltree
; /* literal tree */
1102 ct_data
*dtree
; /* distance tree */
1104 unsigned dist
; /* distance of matched string */
1105 int lc
; /* match length or unmatched char (if dist == 0) */
1106 unsigned lx
= 0; /* running index in l_buf */
1107 unsigned code
; /* the code to send */
1108 int extra
; /* number of extra bits to send */
1110 if (s
->last_lit
!= 0) do {
1111 dist
= s
->d_buf
[lx
];
1112 lc
= s
->l_buf
[lx
++];
1114 send_code(s
, lc
, ltree
); /* send a literal byte */
1115 Tracecv(isgraph(lc
), (stderr
," '%c' ", lc
));
1117 /* Here, lc is the match length - MIN_MATCH */
1118 code
= _length_code
[lc
];
1119 send_code(s
, code
+LITERALS
+1, ltree
); /* send the length code */
1120 extra
= extra_lbits
[code
];
1122 lc
-= base_length
[code
];
1123 send_bits(s
, lc
, extra
); /* send the extra length bits */
1125 dist
--; /* dist is now the match distance - 1 */
1126 code
= d_code(dist
);
1127 Assert (code
< D_CODES
, "bad d_code");
1129 send_code(s
, code
, dtree
); /* send the distance code */
1130 extra
= extra_dbits
[code
];
1132 dist
-= base_dist
[code
];
1133 send_bits(s
, dist
, extra
); /* send the extra distance bits */
1135 } /* literal or match pair ? */
1137 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1138 Assert((uInt
)(s
->pending
) < s
->lit_bufsize
+ 2*lx
,
1139 "pendingBuf overflow");
1141 } while (lx
< s
->last_lit
);
1143 send_code(s
, END_BLOCK
, ltree
);
1144 s
->last_eob_len
= ltree
[END_BLOCK
].Len
;
1147 /* ===========================================================================
1148 * Set the data type to BINARY or TEXT, using a crude approximation:
1149 * set it to Z_TEXT if all symbols are either printable characters (33 to 255)
1150 * or white spaces (9 to 13, or 32); or set it to Z_BINARY otherwise.
1151 * IN assertion: the fields Freq of dyn_ltree are set.
1153 local
void set_data_type(s
)
1158 for (n
= 0; n
< 9; n
++)
1159 if (s
->dyn_ltree
[n
].Freq
!= 0)
1162 for (n
= 14; n
< 32; n
++)
1163 if (s
->dyn_ltree
[n
].Freq
!= 0)
1165 s
->strm
->data_type
= (n
== 32) ? Z_TEXT
: Z_BINARY
;
1168 /* ===========================================================================
1169 * Reverse the first len bits of a code, using straightforward code (a faster
1170 * method would use a table)
1171 * IN assertion: 1 <= len <= 15
1173 local
unsigned bi_reverse(code
, len
)
1174 unsigned code
; /* the value to invert */
1175 int len
; /* its bit length */
1177 register unsigned res
= 0;
1180 code
>>= 1, res
<<= 1;
1181 } while (--len
> 0);
1185 /* ===========================================================================
1186 * Flush the bit buffer, keeping at most 7 bits in it.
1188 local
void bi_flush(s
)
1191 if (s
->bi_valid
== 16) {
1192 put_short(s
, s
->bi_buf
);
1195 } else if (s
->bi_valid
>= 8) {
1196 put_byte(s
, (Byte
)s
->bi_buf
);
1202 /* ===========================================================================
1203 * Flush the bit buffer and align the output on a byte boundary
1205 local
void bi_windup(s
)
1208 if (s
->bi_valid
> 8) {
1209 put_short(s
, s
->bi_buf
);
1210 } else if (s
->bi_valid
> 0) {
1211 put_byte(s
, (Byte
)s
->bi_buf
);
1216 s
->bits_sent
= (s
->bits_sent
+7) & ~7;
1220 /* ===========================================================================
1221 * Copy a stored block, storing first the length and its
1222 * one's complement if requested.
1224 local
void copy_block(s
, buf
, len
, header
)
1226 charf
*buf
; /* the input data */
1227 unsigned len
; /* its length */
1228 int header
; /* true if block header must be written */
1230 bi_windup(s
); /* align on byte boundary */
1231 s
->last_eob_len
= 8; /* enough lookahead for inflate */
1234 put_short(s
, (ush
)len
);
1235 put_short(s
, (ush
)~len
);
1237 s
->bits_sent
+= 2*16;
1241 s
->bits_sent
+= (ulg
)len
<<3;
1244 put_byte(s
, *buf
++);