]> git.saurik.com Git - apple/xnu.git/blob - iokit/IOKit/IOMemoryDescriptor.h
xnu-792.13.8.tar.gz
[apple/xnu.git] / iokit / IOKit / IOMemoryDescriptor.h
1 /*
2 * Copyright (c) 1998-2000 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_OSREFERENCE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the
10 * License may not be used to create, or enable the creation or
11 * redistribution of, unlawful or unlicensed copies of an Apple operating
12 * system, or to circumvent, violate, or enable the circumvention or
13 * violation of, any terms of an Apple operating system software license
14 * agreement.
15 *
16 * Please obtain a copy of the License at
17 * http://www.opensource.apple.com/apsl/ and read it before using this
18 * file.
19 *
20 * The Original Code and all software distributed under the License are
21 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
22 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
23 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
25 * Please see the License for the specific language governing rights and
26 * limitations under the License.
27 *
28 * @APPLE_LICENSE_OSREFERENCE_HEADER_END@
29 */
30 #ifndef _IOMEMORYDESCRIPTOR_H
31 #define _IOMEMORYDESCRIPTOR_H
32
33 #include <sys/cdefs.h>
34
35 #include <IOKit/IOTypes.h>
36 #include <libkern/c++/OSContainers.h>
37
38 __BEGIN_DECLS
39 #include <mach/memory_object_types.h>
40 __END_DECLS
41
42 struct IOPhysicalRange
43 {
44 IOPhysicalAddress address;
45 IOByteCount length;
46 };
47
48 class IOMemoryMap;
49 class IOMapper;
50
51 /*
52 * Direction of transfer, with respect to the described memory.
53 */
54 enum IODirection
55 {
56 kIODirectionNone = 0x0, // same as VM_PROT_NONE
57 kIODirectionIn = 0x1, // User land 'read', same as VM_PROT_READ
58 kIODirectionOut = 0x2, // User land 'write', same as VM_PROT_WRITE
59 kIODirectionOutIn = kIODirectionOut | kIODirectionIn,
60 kIODirectionInOut = kIODirectionIn | kIODirectionOut
61 };
62
63 /*
64 * IOOptionBits used in the withOptions variant
65 */
66 enum {
67 kIOMemoryDirectionMask = 0x00000007,
68 kIOMemoryAutoPrepare = 0x00000008, // Shared with Buffer MD
69
70 kIOMemoryTypeVirtual = 0x00000010,
71 kIOMemoryTypePhysical = 0x00000020,
72 kIOMemoryTypeUPL = 0x00000030,
73 kIOMemoryTypePersistentMD = 0x00000040, // Persistent Memory Descriptor
74 kIOMemoryTypeUIO = 0x00000050,
75 kIOMemoryTypeVirtual64 = 0x00000060,
76 kIOMemoryTypePhysical64 = 0x00000070,
77 kIOMemoryTypeMask = 0x000000f0,
78
79 kIOMemoryAsReference = 0x00000100,
80 kIOMemoryBufferPageable = 0x00000400,
81 kIOMemoryDontMap = 0x00000800,
82 kIOMemoryPersistent = 0x00010000
83 };
84
85 #define kIOMapperNone ((IOMapper *) -1)
86 #define kIOMapperSystem ((IOMapper *) 0)
87
88 enum
89 {
90 kIOMemoryPurgeableKeepCurrent = 1,
91 kIOMemoryPurgeableNonVolatile = 2,
92 kIOMemoryPurgeableVolatile = 3,
93 kIOMemoryPurgeableEmpty = 4
94 };
95 enum
96 {
97 kIOMemoryIncoherentIOFlush = 1,
98 kIOMemoryIncoherentIOStore = 2,
99 };
100
101 #define IOMEMORYDESCRIPTOR_SUPPORTS_DMACOMMAND 1
102
103
104 /*! @class IOMemoryDescriptor : public OSObject
105 @abstract An abstract base class defining common methods for describing physical or virtual memory.
106 @discussion The IOMemoryDescriptor object represents a buffer or range of memory, specified as one or more physical or virtual address ranges. It contains methods to return the memory's physically contiguous segments (fragments), for use with the IOMemoryCursor, and methods to map the memory into any address space with caching and placed mapping options. */
107
108 class IOMemoryDescriptor : public OSObject
109 {
110 friend class _IOMemoryMap;
111 friend class IOSubMemoryDescriptor;
112
113 OSDeclareDefaultStructors(IOMemoryDescriptor);
114
115 protected:
116 /*! @struct ExpansionData
117 @discussion This structure will be used to expand the capablilties of this class in the future.
118 */
119 struct ExpansionData {
120 void * devicePager;
121 unsigned int pagerContig:1;
122 unsigned int unused:31;
123 IOMemoryDescriptor * memory;
124 };
125
126 /*! @var reserved
127 Reserved for future use. (Internal use only) */
128 ExpansionData * reserved;
129
130 protected:
131 OSSet * _mappings;
132 IOOptionBits _flags;
133 void * _memEntry;
134
135 IODirection _direction; /* DEPRECATED: use _flags instead. direction of transfer */
136 IOByteCount _length; /* length of all ranges */
137 IOOptionBits _tag;
138
139 public:
140 typedef IOOptionBits DMACommandOps;
141 virtual IOPhysicalAddress getSourceSegment( IOByteCount offset,
142 IOByteCount * length );
143 OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 0);
144
145 /*! @function initWithOptions
146 @abstract Master initialiser for all variants of memory descriptors. For a more complete description see IOMemoryDescriptor::withOptions.
147 @discussion Note this function can be used to re-init a previously created memory descriptor.
148 @result true on success, false on failure. */
149 virtual bool initWithOptions(void * buffers,
150 UInt32 count,
151 UInt32 offset,
152 task_t task,
153 IOOptionBits options,
154 IOMapper * mapper = kIOMapperSystem);
155 OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 1);
156
157 virtual addr64_t getPhysicalSegment64( IOByteCount offset,
158 IOByteCount * length );
159 OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 2);
160
161
162 /*! @function setPurgeable
163 @abstract Control the purgeable status of a memory descriptors memory.
164 @discussion Buffers may be allocated with the ability to have their purgeable status changed - IOBufferMemoryDescriptor with the kIOMemoryPurgeable option, VM_FLAGS_PURGEABLE may be passed to vm_allocate() in user space to allocate such buffers. The purgeable status of such a buffer may be controlled with setPurgeable(). The process of making a purgeable memory descriptor non-volatile and determining its previous state is atomic - if a purgeable memory descriptor is made nonvolatile and the old state is returned as kIOMemoryPurgeableVolatile, then the memory's previous contents are completely intact and will remain so until the memory is made volatile again. If the old state is returned as kIOMemoryPurgeableEmpty then the memory was reclaimed while it was in a volatile state and its previous contents have been lost.
165 @param newState - the desired new purgeable state of the memory:<br>
166 kIOMemoryPurgeableKeepCurrent - make no changes to the memory's purgeable state.<br>
167 kIOMemoryPurgeableVolatile - make the memory volatile - the memory may be reclaimed by the VM system without saving its contents to backing store.<br>
168 kIOMemoryPurgeableNonVolatile - make the memory nonvolatile - the memory is treated as with usual allocations and must be saved to backing store if paged.<br>
169 kIOMemoryPurgeableEmpty - make the memory volatile, and discard any pages allocated to it.
170 @param oldState - if non-NULL, the previous purgeable state of the memory is returned here:<br>
171 kIOMemoryPurgeableNonVolatile - the memory was nonvolatile.<br>
172 kIOMemoryPurgeableVolatile - the memory was volatile but its content has not been discarded by the VM system.<br>
173 kIOMemoryPurgeableEmpty - the memory was volatile and has been discarded by the VM system.<br>
174 @result An IOReturn code. */
175
176 virtual IOReturn setPurgeable( IOOptionBits newState,
177 IOOptionBits * oldState );
178 OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 3);
179
180 /*! @function performOperation
181 @abstract Perform an operation on the memory descriptor's memory.
182 @discussion This method performs some operation on a range of the memory descriptor's memory. When a memory descriptor's memory is not mapped, it should be more efficient to use this method than mapping the memory to perform the operation virtually.
183 @param options The operation to perform on the memory:<br>
184 kIOMemoryIncoherentIOFlush - pass this option to store to memory and flush any data in the processor cache for the memory range, with synchronization to ensure the data has passed through all levels of processor cache. It may not be supported on all architectures. This type of flush may be used for non-coherent I/O such as AGP - it is NOT required for PCI coherent operations. The memory descriptor must have been previously prepared.<br>
185 kIOMemoryIncoherentIOStore - pass this option to store to memory any data in the processor cache for the memory range, with synchronization to ensure the data has passed through all levels of processor cache. It may not be supported on all architectures. This type of flush may be used for non-coherent I/O such as AGP - it is NOT required for PCI coherent operations. The memory descriptor must have been previously prepared.
186 @param offset A byte offset into the memory descriptor's memory.
187 @param length The length of the data range.
188 @result An IOReturn code. */
189
190 virtual IOReturn performOperation( IOOptionBits options,
191 IOByteCount offset, IOByteCount length );
192 OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 4);
193
194 #if !(defined(__ppc__) && defined(KPI_10_4_0_PPC_COMPAT))
195 // Used for dedicated communications for IODMACommand
196 virtual IOReturn dmaCommandOperation(DMACommandOps op, void *vData, UInt dataSize) const;
197 OSMetaClassDeclareReservedUsed(IOMemoryDescriptor, 5);
198 #endif
199
200 private:
201 #if (defined(__ppc__) && defined(KPI_10_4_0_PPC_COMPAT))
202 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 5);
203 #endif
204 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 6);
205 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 7);
206 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 8);
207 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 9);
208 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 10);
209 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 11);
210 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 12);
211 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 13);
212 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 14);
213 OSMetaClassDeclareReservedUnused(IOMemoryDescriptor, 15);
214
215 protected:
216 virtual void free();
217 public:
218 static void initialize( void );
219
220 public:
221 /*! @function withAddress
222 @abstract Create an IOMemoryDescriptor to describe one virtual range of the kernel task.
223 @discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of a single virtual memory range mapped into the kernel map.
224 @param address The virtual address of the first byte in the memory.
225 @param withLength The length of memory.
226 @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
227 @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
228
229 static IOMemoryDescriptor * withAddress(void * address,
230 IOByteCount withLength,
231 IODirection withDirection);
232
233 /*! @function withAddress
234 @abstract Create an IOMemoryDescriptor to describe one virtual range of the specified map.
235 @discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of a single virtual memory range mapped into the specified map.
236 @param address The virtual address of the first byte in the memory.
237 @param withLength The length of memory.
238 @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
239 @param withTask The task the virtual ranges are mapped into.
240 @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
241
242 static IOMemoryDescriptor * withAddress(vm_address_t address,
243 IOByteCount withLength,
244 IODirection withDirection,
245 task_t withTask);
246
247 /*! @function withPhysicalAddress
248 @abstract Create an IOMemoryDescriptor to describe one physical range.
249 @discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of a single physical memory range.
250 @param address The physical address of the first byte in the memory.
251 @param withLength The length of memory.
252 @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
253 @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
254
255 static IOMemoryDescriptor * withPhysicalAddress(
256 IOPhysicalAddress address,
257 IOByteCount withLength,
258 IODirection withDirection );
259
260 /*! @function withRanges
261 @abstract Create an IOMemoryDescriptor to describe one or more virtual ranges.
262 @discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of an array of virtual memory ranges each mapped into a specified source task.
263 @param ranges An array of IOVirtualRange structures which specify the virtual ranges in the specified map which make up the memory to be described.
264 @param withCount The member count of the ranges array.
265 @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
266 @param withTask The task each of the virtual ranges are mapped into.
267 @param asReference If false, the IOMemoryDescriptor object will make a copy of the ranges array, otherwise, the array will be used in situ, avoiding an extra allocation.
268 @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
269
270 static IOMemoryDescriptor * withRanges(IOVirtualRange * ranges,
271 UInt32 withCount,
272 IODirection withDirection,
273 task_t withTask,
274 bool asReference = false);
275
276 #if !(defined(__ppc__) && defined(KPI_10_4_0_PPC_COMPAT))
277 /*! @function withAddressRange
278 @abstract Create an IOMemoryDescriptor to describe one virtual range of the specified map.
279 @discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of a single virtual memory range mapped into the specified map.
280 @param address The virtual address of the first byte in the memory.
281 @param withLength The length of memory.
282 @param options
283 kIOMemoryDirectionMask (options:direction) This nibble indicates the I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
284 kIOMemoryNoAutoPrepare Indicates that the temporary AutoPrepare of kernel_task memory should not be performed.
285 @param task The task the virtual ranges are mapped into.
286 @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
287
288 static IOMemoryDescriptor * withAddressRange(
289 mach_vm_address_t address,
290 mach_vm_size_t length,
291 IOOptionBits options,
292 task_t task);
293
294 /*! @function withAddressRanges
295 @abstract Create an IOMemoryDescriptor to describe one or more virtual ranges.
296 @discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of an array of virtual memory ranges each mapped into a specified source task.
297 @param ranges An array of IOAddressRange structures which specify the virtual ranges in the specified map which make up the memory to be described. IOAddressRange is the 64bit version of IOVirtualRange.
298 @param rangeCount The member count of the ranges array.
299 @param options
300 kIOMemoryDirectionMask (options:direction) This nibble indicates the I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
301 kIOMemoryAsReference For options:type = Virtual or Physical this indicate that the memory descriptor need not copy the ranges array into local memory. This is an optimisation to try to minimise unnecessary allocations.
302 kIOMemoryNoAutoPrepare Indicates that the temporary AutoPrepare of kernel_task memory should not be performed.
303 @param task The task each of the virtual ranges are mapped into.
304 @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
305
306 static IOMemoryDescriptor * withAddressRanges(
307 IOAddressRange * ranges,
308 UInt32 rangeCount,
309 IOOptionBits options,
310 task_t withTask);
311 #endif
312
313 /*! @function withOptions
314 @abstract Master initialiser for all variants of memory descriptors.
315 @discussion This method creates and initializes an IOMemoryDescriptor for memory it has three main variants: Virtual, Physical & mach UPL. These variants are selected with the options parameter, see below. This memory descriptor needs to be prepared before it can be used to extract data from the memory described. However we temporarily have setup a mechanism that automatically prepares kernel_task memory descriptors at creation time.
316
317
318 @param buffers A pointer to an array of IOVirtualRanges or IOPhysicalRanges if the options:type is Virtual or Physical. For type UPL it is a upl_t returned by the mach/memory_object_types.h apis, primarily used internally by the UBC.
319
320 @param count options:type = Virtual or Physical count contains a count of the number of entires in the buffers array. For options:type = UPL this field contains a total length.
321
322 @param offset Only used when options:type = UPL, in which case this field contains an offset for the memory within the buffers upl.
323
324 @param task Only used options:type = Virtual, The task each of the virtual ranges are mapped into.
325
326 @param options
327 kIOMemoryDirectionMask (options:direction) This nibble indicates the I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
328 kIOMemoryTypeMask (options:type) kIOMemoryTypeVirtual, kIOMemoryTypePhysical, kIOMemoryTypeUPL Indicates that what type of memory basic memory descriptor to use. This sub-field also controls the interpretation of the buffers, count, offset & task parameters.
329 kIOMemoryAsReference For options:type = Virtual or Physical this indicate that the memory descriptor need not copy the ranges array into local memory. This is an optimisation to try to minimise unnecessary allocations.
330 kIOMemoryBufferPageable Only used by the IOBufferMemoryDescriptor as an indication that the kernel virtual memory is in fact pageable and we need to use the kernel pageable submap rather than the default map.
331 kIOMemoryNoAutoPrepare Indicates that the temporary AutoPrepare of kernel_task memory should not be performed.
332
333 @param mapper Which IOMapper should be used to map the in-memory physical addresses into I/O space addresses. Defaults to 0 which indicates that the system mapper is to be used, if present.
334
335 @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
336
337 static IOMemoryDescriptor *withOptions(void * buffers,
338 UInt32 count,
339 UInt32 offset,
340 task_t task,
341 IOOptionBits options,
342 IOMapper * mapper = kIOMapperSystem);
343
344 /*! @function withPhysicalRanges
345 @abstract Create an IOMemoryDescriptor to describe one or more physical ranges.
346 @discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of an array of physical memory ranges.
347 @param ranges An array of IOPhysicalRange structures which specify the physical ranges which make up the memory to be described.
348 @param withCount The member count of the ranges array.
349 @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
350 @param asReference If false, the IOMemoryDescriptor object will make a copy of the ranges array, otherwise, the array will be used in situ, avoiding an extra allocation.
351 @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
352
353 static IOMemoryDescriptor * withPhysicalRanges(
354 IOPhysicalRange * ranges,
355 UInt32 withCount,
356 IODirection withDirection,
357 bool asReference = false);
358
359 /*! @function withSubRange
360 @abstract Create an IOMemoryDescriptor to describe a subrange of an existing descriptor.
361 @discussion This method creates and initializes an IOMemoryDescriptor for memory consisting of a subrange of the specified memory descriptor. The parent memory descriptor is retained by the new descriptor.
362 @param of The parent IOMemoryDescriptor of which a subrange is to be used for the new descriptor, which will be retained by the subrange IOMemoryDescriptor.
363 @param offset A byte offset into the parent memory descriptor's memory.
364 @param length The length of the subrange.
365 @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures. This is used over the direction of the parent descriptor.
366 @result The created IOMemoryDescriptor on success, to be released by the caller, or zero on failure. */
367
368 static IOMemoryDescriptor * withSubRange(IOMemoryDescriptor *of,
369 IOByteCount offset,
370 IOByteCount length,
371 IODirection withDirection);
372
373 /*! @function withPersistentMemoryDescriptor
374 @abstract Copy constructor that generates a new memory descriptor if the backing memory for the same task's virtual address and length has changed.
375 @discussion If the original memory descriptor's address and length is still backed by the same real memory, i.e. the user hasn't deallocated and the reallocated memory at the same address then the original memory descriptor is returned with a additional reference. Otherwise we build a totally new memory descriptor with the same characteristics as the previous one but with a new view of the vm. Note not legal to call this function with anything except an IOGeneralMemoryDescriptor that was created with the kIOMemoryPersistent option.
376 @param originalMD The memory descriptor to be duplicated.
377 @result Either the original memory descriptor with an additional retain or a new memory descriptor, 0 for a bad original memory descriptor or some other resource shortage. */
378 static IOMemoryDescriptor *
379 withPersistentMemoryDescriptor(IOMemoryDescriptor *originalMD);
380
381 /*! @function initWithAddress
382 @abstract Initialize or reinitialize an IOMemoryDescriptor to describe one virtual range of the kernel task.
383 @discussion This method initializes an IOMemoryDescriptor for memory consisting of a single virtual memory range mapped into the kernel map. An IOMemoryDescriptor can be re-used by calling initWithAddress or initWithRanges again on an existing instance -- note this behavior is not commonly supported in other IOKit classes, although it is supported here.
384 @param address The virtual address of the first byte in the memory.
385 @param withLength The length of memory.
386 @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
387 @result true on success, false on failure. */
388
389 virtual bool initWithAddress(void * address,
390 IOByteCount withLength,
391 IODirection withDirection) = 0;
392
393 /*! @function initWithAddress
394 @abstract Initialize or reinitialize an IOMemoryDescriptor to describe one virtual range of the specified map.
395 @discussion This method initializes an IOMemoryDescriptor for memory consisting of a single virtual memory range mapped into the specified map. An IOMemoryDescriptor can be re-used by calling initWithAddress or initWithRanges again on an existing instance -- note this behavior is not commonly supported in other IOKit classes, although it is supported here.
396 @param address The virtual address of the first byte in the memory.
397 @param withLength The length of memory.
398 @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
399 @param withTask The task the virtual ranges are mapped into.
400 @result true on success, false on failure. */
401
402 virtual bool initWithAddress(vm_address_t address,
403 IOByteCount withLength,
404 IODirection withDirection,
405 task_t withTask) = 0;
406
407 /*! @function initWithPhysicalAddress
408 @abstract Initialize or reinitialize an IOMemoryDescriptor to describe one physical range.
409 @discussion This method initializes an IOMemoryDescriptor for memory consisting of a single physical memory range. An IOMemoryDescriptor can be re-used by calling initWithAddress or initWithRanges again on an existing instance -- note this behavior is not commonly supported in other IOKit classes, although it is supported here.
410 @param address The physical address of the first byte in the memory.
411 @param withLength The length of memory.
412 @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
413 @result true on success, false on failure. */
414
415 virtual bool initWithPhysicalAddress(
416 IOPhysicalAddress address,
417 IOByteCount withLength,
418 IODirection withDirection ) = 0;
419
420 /*! @function initWithRanges
421 @abstract Initialize or reinitialize an IOMemoryDescriptor to describe one or more virtual ranges.
422 @discussion This method initializes an IOMemoryDescriptor for memory consisting of an array of virtual memory ranges each mapped into a specified source task. An IOMemoryDescriptor can be re-used by calling initWithAddress or initWithRanges again on an existing instance -- note this behavior is not commonly supported in other IOKit classes, although it is supported here.
423 @param ranges An array of IOVirtualRange structures which specify the virtual ranges in the specified map which make up the memory to be described.
424 @param withCount The member count of the ranges array.
425 @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
426 @param withTask The task each of the virtual ranges are mapped into.
427 @param asReference If false, the IOMemoryDescriptor object will make a copy of the ranges array, otherwise, the array will be used in situ, avoiding an extra allocation.
428 @result true on success, false on failure. */
429
430 virtual bool initWithRanges(IOVirtualRange * ranges,
431 UInt32 withCount,
432 IODirection withDirection,
433 task_t withTask,
434 bool asReference = false) = 0;
435
436 /*! @function initWithPhysicalRanges
437 @abstract Initialize or reinitialize an IOMemoryDescriptor to describe one or more physical ranges.
438 @discussion This method initializes an IOMemoryDescriptor for memory consisting of an array of physical memory ranges. An IOMemoryDescriptor can be re-used by calling initWithAddress or initWithRanges again on an existing instance -- note this behavior is not commonly supported in other IOKit classes, although it is supported here.
439 @param ranges An array of IOPhysicalRange structures which specify the physical ranges which make up the memory to be described.
440 @param withCount The member count of the ranges array.
441 @param withDirection An I/O direction to be associated with the descriptor, which may affect the operation of the prepare and complete methods on some architectures.
442 @param asReference If false, the IOMemoryDescriptor object will make a copy of the ranges array, otherwise, the array will be used in situ, avoiding an extra allocation.
443 @result true on success, false on failure. */
444
445 virtual bool initWithPhysicalRanges(IOPhysicalRange * ranges,
446 UInt32 withCount,
447 IODirection withDirection,
448 bool asReference = false) = 0;
449
450 /*! @function getDirection
451 @abstract Accessor to get the direction the memory descriptor was created with.
452 @discussion This method returns the direction the memory descriptor was created with.
453 @result The direction. */
454
455 virtual IODirection getDirection() const;
456
457 /*! @function getLength
458 @abstract Accessor to get the length of the memory descriptor (over all its ranges).
459 @discussion This method returns the total length of the memory described by the descriptor, ie. the sum of its ranges' lengths.
460 @result The byte count. */
461
462 virtual IOByteCount getLength() const;
463
464 /*! @function setTag
465 @abstract Set the tag for the memory descriptor.
466 @discussion This method sets the tag for the memory descriptor. Tag bits are not interpreted by IOMemoryDescriptor.
467 @param tag The tag. */
468
469 virtual void setTag( IOOptionBits tag );
470
471 /*! @function getTag
472 @abstract Accessor to the retrieve the tag for the memory descriptor.
473 @discussion This method returns the tag for the memory descriptor. Tag bits are not interpreted by IOMemoryDescriptor.
474 @result The tag. */
475
476 virtual IOOptionBits getTag( void );
477
478 /*! @function readBytes
479 @abstract Copy data from the memory descriptor's buffer to the specified buffer.
480 @discussion This method copies data from the memory descriptor's memory at the given offset, to the caller's buffer.
481 @param offset A byte offset into the memory descriptor's memory.
482 @param bytes The caller supplied buffer to copy the data to.
483 @param withLength The length of the data to copy.
484 @result The number of bytes copied, zero will be returned if the specified offset is beyond the length of the descriptor. */
485
486 virtual IOByteCount readBytes(IOByteCount offset,
487 void * bytes, IOByteCount withLength);
488
489 /*! @function writeBytes
490 @abstract Copy data to the memory descriptor's buffer from the specified buffer.
491 @discussion This method copies data to the memory descriptor's memory at the given offset, from the caller's buffer.
492 @param offset A byte offset into the memory descriptor's memory.
493 @param bytes The caller supplied buffer to copy the data from.
494 @param withLength The length of the data to copy.
495 @result The number of bytes copied, zero will be returned if the specified offset is beyond the length of the descriptor. */
496
497 virtual IOByteCount writeBytes(IOByteCount offset,
498 const void * bytes, IOByteCount withLength);
499
500 /*! @function getPhysicalSegment
501 @abstract Break a memory descriptor into its physically contiguous segments.
502 @discussion This method returns the physical address of the byte at the given offset into the memory, and optionally the length of the physically contiguous segment from that offset.
503 @param offset A byte offset into the memory whose physical address to return.
504 @param length If non-zero, getPhysicalSegment will store here the length of the physically contiguous segement at the given offset.
505 @result A physical address, or zero if the offset is beyond the length of the memory. */
506
507 virtual IOPhysicalAddress getPhysicalSegment(IOByteCount offset,
508 IOByteCount * length) = 0;
509
510 /*! @function getPhysicalAddress
511 @abstract Return the physical address of the first byte in the memory.
512 @discussion This method returns the physical address of the first byte in the memory. It is most useful on memory known to be physically contiguous.
513 @result A physical address. */
514
515 /* inline */ IOPhysicalAddress getPhysicalAddress();
516 /* { return( getPhysicalSegment( 0, 0 )); } */
517
518 /* DEPRECATED */ /* USE INSTEAD: map(), readBytes(), writeBytes() */
519 /* DEPRECATED */ virtual void * getVirtualSegment(IOByteCount offset,
520 /* DEPRECATED */ IOByteCount * length) = 0;
521 /* DEPRECATED */ /* USE INSTEAD: map(), readBytes(), writeBytes() */
522
523 /*! @function prepare
524 @abstract Prepare the memory for an I/O transfer.
525 @discussion This involves paging in the memory, if necessary, and wiring it down for the duration of the transfer. The complete() method completes the processing of the memory after the I/O transfer finishes. Note that the prepare call is not thread safe and it is expected that the client will more easily be able to guarantee single threading a particular memory descriptor.
526 @param forDirection The direction of the I/O just completed, or kIODirectionNone for the direction specified by the memory descriptor.
527 @result An IOReturn code. */
528
529 virtual IOReturn prepare(IODirection forDirection = kIODirectionNone) = 0;
530
531 /*! @function complete
532 @abstract Complete processing of the memory after an I/O transfer finishes.
533 @discussion This method should not be called unless a prepare was previously issued; the prepare() and complete() must occur in pairs, before and after an I/O transfer involving pageable memory. In 10.3 or greater systems the direction argument to complete is not longer respected. The direction is totally determined at prepare() time.
534 @param forDirection DEPRECATED The direction of the I/O just completed, or kIODirectionNone for the direction specified by the memory descriptor.
535 @result An IOReturn code. */
536
537 virtual IOReturn complete(IODirection forDirection = kIODirectionNone) = 0;
538
539 /*
540 * Mapping functions.
541 */
542
543 /*! @function map
544 @abstract Maps a IOMemoryDescriptor into a task.
545 @discussion This is the general purpose method to map all or part of the memory described by a memory descriptor into a task at any available address, or at a fixed address if possible. Caching & read-only options may be set for the mapping. The mapping is represented as a returned reference to a IOMemoryMap object, which may be shared if the mapping is compatible with an existing mapping of the IOMemoryDescriptor. The IOMemoryMap object returned should be released only when the caller has finished accessing the mapping, as freeing the object destroys the mapping.
546 @param intoTask Sets the target task for the mapping. Pass kernel_task for the kernel address space.
547 @param atAddress If a placed mapping is requested, atAddress specifies its address, and the kIOMapAnywhere should not be set. Otherwise, atAddress is ignored.
548 @param options Mapping options are defined in IOTypes.h,<br>
549 kIOMapAnywhere should be passed if the mapping can be created anywhere. If not set, the atAddress parameter sets the location of the mapping, if it is available in the target map.<br>
550 kIOMapDefaultCache to inhibit the cache in I/O areas, kIOMapCopybackCache in general purpose RAM.<br>
551 kIOMapInhibitCache, kIOMapWriteThruCache, kIOMapCopybackCache to set the appropriate caching.<br>
552 kIOMapReadOnly to allow only read only accesses to the memory - writes will cause and access fault.<br>
553 kIOMapReference will only succeed if the mapping already exists, and the IOMemoryMap object is just an extra reference, ie. no new mapping will be created.<br>
554 kIOMapUnique allows a special kind of mapping to be created that may be used with the IOMemoryMap::redirect() API. These mappings will not be shared as is the default - there will always be a unique mapping created for the caller, not an existing mapping with an extra reference.<br>
555 @param offset Is a beginning offset into the IOMemoryDescriptor's memory where the mapping starts. Zero is the default to map all the memory.
556 @param length Is the length of the mapping requested for a subset of the IOMemoryDescriptor. Zero is the default to map all the memory.
557 @result A reference to an IOMemoryMap object representing the mapping, which can supply the virtual address of the mapping and other information. The mapping may be shared with multiple callers - multiple maps are avoided if a compatible one exists. The IOMemoryMap object returned should be released only when the caller has finished accessing the mapping, as freeing the object destroys the mapping. The IOMemoryMap instance also retains the IOMemoryDescriptor it maps while it exists. */
558
559 virtual IOMemoryMap * map(
560 task_t intoTask,
561 IOVirtualAddress atAddress,
562 IOOptionBits options,
563 IOByteCount offset = 0,
564 IOByteCount length = 0 );
565
566 /*! @function map
567 @abstract Maps a IOMemoryDescriptor into the kernel map.
568 @discussion This is a shortcut method to map all the memory described by a memory descriptor into the kernel map at any available address. See the full version of the map method for further details.
569 @param options Mapping options as in the full version of the map method, with kIOMapAnywhere assumed.
570 @result See the full version of the map method. */
571
572 virtual IOMemoryMap * map(
573 IOOptionBits options = 0 );
574
575 /*! @function setMapping
576 @abstract Establishes an already existing mapping.
577 @discussion This method tells the IOMemoryDescriptor about a mapping that exists, but was created elsewhere. It allows later callers of the map method to share this externally created mapping. The IOMemoryMap object returned is created to represent it. This method is not commonly needed.
578 @param task Address space in which the mapping exists.
579 @param mapAddress Virtual address of the mapping.
580 @param options Caching and read-only attributes of the mapping.
581 @result A IOMemoryMap object created to represent the mapping. */
582
583 virtual IOMemoryMap * setMapping(
584 task_t task,
585 IOVirtualAddress mapAddress,
586 IOOptionBits options = 0 );
587
588 // Following methods are private implementation
589
590 // make virtual
591 IOReturn redirect( task_t safeTask, bool redirect );
592
593 IOReturn handleFault(
594 void * pager,
595 vm_map_t addressMap,
596 IOVirtualAddress address,
597 IOByteCount sourceOffset,
598 IOByteCount length,
599 IOOptionBits options );
600
601 protected:
602 virtual IOMemoryMap * makeMapping(
603 IOMemoryDescriptor * owner,
604 task_t intoTask,
605 IOVirtualAddress atAddress,
606 IOOptionBits options,
607 IOByteCount offset,
608 IOByteCount length );
609
610 virtual void addMapping(
611 IOMemoryMap * mapping );
612
613 virtual void removeMapping(
614 IOMemoryMap * mapping );
615
616 virtual IOReturn doMap(
617 vm_map_t addressMap,
618 IOVirtualAddress * atAddress,
619 IOOptionBits options,
620 IOByteCount sourceOffset = 0,
621 IOByteCount length = 0 );
622
623 virtual IOReturn doUnmap(
624 vm_map_t addressMap,
625 IOVirtualAddress logical,
626 IOByteCount length );
627 };
628
629 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
630
631 /*! @class IOMemoryMap : public OSObject
632 @abstract An abstract base class defining common methods for describing a memory mapping.
633 @discussion The IOMemoryMap object represents a mapped range of memory, described by a IOMemoryDescriptor. The mapping may be in the kernel or a non-kernel task and has processor cache mode attributes. IOMemoryMap instances are created by IOMemoryDescriptor when it creates mappings in its map method, and returned to the caller. */
634
635 class IOMemoryMap : public OSObject
636 {
637 OSDeclareAbstractStructors(IOMemoryMap)
638
639 public:
640 /*! @function getVirtualAddress
641 @abstract Accessor to the virtual address of the first byte in the mapping.
642 @discussion This method returns the virtual address of the first byte in the mapping.
643 @result A virtual address. */
644
645 virtual IOVirtualAddress getVirtualAddress() = 0;
646
647 /*! @function getPhysicalSegment
648 @abstract Break a mapping into its physically contiguous segments.
649 @discussion This method returns the physical address of the byte at the given offset into the mapping, and optionally the length of the physically contiguous segment from that offset. It functions similarly to IOMemoryDescriptor::getPhysicalSegment.
650 @param offset A byte offset into the mapping whose physical address to return.
651 @param length If non-zero, getPhysicalSegment will store here the length of the physically contiguous segement at the given offset.
652 @result A physical address, or zero if the offset is beyond the length of the mapping. */
653
654 virtual IOPhysicalAddress getPhysicalSegment(IOByteCount offset,
655 IOByteCount * length) = 0;
656
657 /*! @function getPhysicalAddress
658 @abstract Return the physical address of the first byte in the mapping.
659 @discussion This method returns the physical address of the first byte in the mapping. It is most useful on mappings known to be physically contiguous.
660 @result A physical address. */
661
662 /* inline */ IOPhysicalAddress getPhysicalAddress();
663 /* { return( getPhysicalSegment( 0, 0 )); } */
664
665 /*! @function getLength
666 @abstract Accessor to the length of the mapping.
667 @discussion This method returns the length of the mapping.
668 @result A byte count. */
669
670 virtual IOByteCount getLength() = 0;
671
672 /*! @function getAddressTask
673 @abstract Accessor to the task of the mapping.
674 @discussion This method returns the mach task the mapping exists in.
675 @result A mach task_t. */
676
677 virtual task_t getAddressTask() = 0;
678
679 /*! @function getMemoryDescriptor
680 @abstract Accessor to the IOMemoryDescriptor the mapping was created from.
681 @discussion This method returns the IOMemoryDescriptor the mapping was created from.
682 @result An IOMemoryDescriptor reference, which is valid while the IOMemoryMap object is retained. It should not be released by the caller. */
683
684 virtual IOMemoryDescriptor * getMemoryDescriptor() = 0;
685
686 /*! @function getMapOptions
687 @abstract Accessor to the options the mapping was created with.
688 @discussion This method returns the options to IOMemoryDescriptor::map the mapping was created with.
689 @result Options for the mapping, including cache settings. */
690
691 virtual IOOptionBits getMapOptions() = 0;
692
693 /*! @function unmap
694 @abstract Force the IOMemoryMap to unmap, without destroying the object.
695 @discussion IOMemoryMap instances will unmap themselves upon free, ie. when the last client with a reference calls release. This method forces the IOMemoryMap to destroy the mapping it represents, regardless of the number of clients. It is not generally used.
696 @result An IOReturn code. */
697
698 virtual IOReturn unmap() = 0;
699
700 virtual void taskDied() = 0;
701
702 /*! @function redirect
703 @abstract Replace the memory mapped in a process with new backing memory.
704 @discussion An IOMemoryMap created with the kIOMapUnique option to IOMemoryDescriptor::map() can remapped to a new IOMemoryDescriptor backing object. If the new IOMemoryDescriptor is specified as NULL, client access to the memory map is blocked until a new backing object has been set. By blocking access and copying data, the caller can create atomic copies of the memory while the client is potentially reading or writing the memory.
705 @param newBackingMemory The IOMemoryDescriptor that represents the physical memory that is to be now mapped in the virtual range the IOMemoryMap represents. If newBackingMemory is NULL, any access to the mapping will hang (in vm_fault()) until access has been restored by a new call to redirect() with non-NULL newBackingMemory argument.
706 @param options Mapping options are defined in IOTypes.h, and are documented in IOMemoryDescriptor::map()
707 @param offset As with IOMemoryDescriptor::map(), a beginning offset into the IOMemoryDescriptor's memory where the mapping starts. Zero is the default.
708 @result An IOReturn code. */
709
710 virtual IOReturn redirect(IOMemoryDescriptor * newBackingMemory,
711 IOOptionBits options,
712 IOByteCount offset = 0) = 0;
713 };
714
715 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
716
717 // The following classes are private implementation of IOMemoryDescriptor - they
718 // should not be referenced directly, just through the public API's in the
719 // IOMemoryDescriptor class. For example, an IOGeneralMemoryDescriptor instance
720 // might be created by IOMemoryDescriptor::withAddress(), but there should be
721 // no need to reference as anything but a generic IOMemoryDescriptor *.
722
723 // Also these flags should not overlap with the options to
724 // IOMemoryDescriptor::initWithRanges(... IOOptionsBits options);
725
726 enum {
727 kIOMemoryPreparedReadOnly = 0x00008000,
728 };
729
730 class IOGeneralMemoryDescriptor : public IOMemoryDescriptor
731 {
732 OSDeclareDefaultStructors(IOGeneralMemoryDescriptor);
733
734 public:
735 union Ranges {
736 IOVirtualRange *v;
737 IOAddressRange *v64;
738 IOPhysicalRange *p;
739 void *uio;
740 };
741 protected:
742 Ranges _ranges;
743 unsigned _rangesCount; /* number of address ranges in list */
744 bool _rangesIsAllocated; /* is list allocated by us? */
745
746 task_t _task; /* task where all ranges are mapped to */
747
748 union {
749 IOVirtualRange v;
750 IOPhysicalRange p;
751 } _singleRange; /* storage space for a single range */
752
753 unsigned _wireCount; /* number of outstanding wires */
754
755 /* DEPRECATED */ vm_address_t _cachedVirtualAddress; /* a cached virtual-to-physical */
756
757 /* DEPRECATED */ IOPhysicalAddress _cachedPhysicalAddress;
758
759 bool _initialized; /* has superclass been initialized? */
760
761 virtual void free();
762
763 #if !(defined(__ppc__) && defined(KPI_10_4_0_PPC_COMPAT))
764 virtual IOReturn dmaCommandOperation(DMACommandOps op, void *vData, UInt dataSize) const;
765 #endif
766
767 private:
768
769 /* DEPRECATED */ virtual void setPosition(IOByteCount position);
770 /* DEPRECATED */ virtual void mapIntoKernel(unsigned rangeIndex);
771 /* DEPRECATED */ virtual void unmapFromKernel();
772
773 // Internal APIs may be made virtual at some time in the future.
774 IOReturn wireVirtual(IODirection forDirection);
775 void *createNamedEntry();
776
777 // Internal
778 OSData * _memoryEntries;
779 unsigned int _pages;
780 ppnum_t _highestPage;
781 uint32_t __iomd_reservedA;
782 uint32_t __iomd_reservedB;
783 uint32_t __iomd_reservedC;
784
785 public:
786 /*
787 * IOMemoryDescriptor required methods
788 */
789
790 // Master initaliser
791 virtual bool initWithOptions(void * buffers,
792 UInt32 count,
793 UInt32 offset,
794 task_t task,
795 IOOptionBits options,
796 IOMapper * mapper = kIOMapperSystem);
797
798 // Secondary initialisers
799 virtual bool initWithAddress(void * address,
800 IOByteCount withLength,
801 IODirection withDirection);
802
803 virtual bool initWithAddress(vm_address_t address,
804 IOByteCount withLength,
805 IODirection withDirection,
806 task_t withTask);
807
808 virtual bool initWithPhysicalAddress(
809 IOPhysicalAddress address,
810 IOByteCount withLength,
811 IODirection withDirection );
812
813 virtual bool initWithRanges( IOVirtualRange * ranges,
814 UInt32 withCount,
815 IODirection withDirection,
816 task_t withTask,
817 bool asReference = false);
818
819 virtual bool initWithPhysicalRanges(IOPhysicalRange * ranges,
820 UInt32 withCount,
821 IODirection withDirection,
822 bool asReference = false);
823
824 #if !(defined(__ppc__) && defined(KPI_10_4_0_PPC_COMPAT))
825 virtual addr64_t getPhysicalSegment64( IOByteCount offset,
826 IOByteCount * length );
827 #endif
828
829 virtual IOPhysicalAddress getPhysicalSegment(IOByteCount offset,
830 IOByteCount * length);
831
832 virtual IOPhysicalAddress getSourceSegment(IOByteCount offset,
833 IOByteCount * length);
834
835 /* DEPRECATED */ virtual void * getVirtualSegment(IOByteCount offset,
836 /* DEPRECATED */ IOByteCount * length);
837
838 virtual IOReturn prepare(IODirection forDirection = kIODirectionNone);
839
840 virtual IOReturn complete(IODirection forDirection = kIODirectionNone);
841
842 virtual IOReturn doMap(
843 vm_map_t addressMap,
844 IOVirtualAddress * atAddress,
845 IOOptionBits options,
846 IOByteCount sourceOffset = 0,
847 IOByteCount length = 0 );
848
849 virtual IOReturn doUnmap(
850 vm_map_t addressMap,
851 IOVirtualAddress logical,
852 IOByteCount length );
853 virtual bool serialize(OSSerialize *s) const;
854
855 // Factory method for cloning a persistent IOMD, see IOMemoryDescriptor
856 static IOMemoryDescriptor *
857 withPersistentMemoryDescriptor(IOGeneralMemoryDescriptor *originalMD);
858 };
859
860 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
861
862 class IOSubMemoryDescriptor : public IOMemoryDescriptor
863 {
864 friend class IOMemoryDescriptor;
865
866 OSDeclareDefaultStructors(IOSubMemoryDescriptor);
867
868 protected:
869 IOMemoryDescriptor * _parent;
870 IOByteCount _start;
871
872 virtual void free();
873
874 virtual bool initWithAddress(void * address,
875 IOByteCount withLength,
876 IODirection withDirection);
877
878 virtual bool initWithAddress(vm_address_t address,
879 IOByteCount withLength,
880 IODirection withDirection,
881 task_t withTask);
882
883 virtual bool initWithPhysicalAddress(
884 IOPhysicalAddress address,
885 IOByteCount withLength,
886 IODirection withDirection );
887
888 virtual bool initWithRanges( IOVirtualRange * ranges,
889 UInt32 withCount,
890 IODirection withDirection,
891 task_t withTask,
892 bool asReference = false);
893
894 virtual bool initWithPhysicalRanges(IOPhysicalRange * ranges,
895 UInt32 withCount,
896 IODirection withDirection,
897 bool asReference = false);
898
899 IOMemoryDescriptor::withAddress;
900 IOMemoryDescriptor::withPhysicalAddress;
901 IOMemoryDescriptor::withPhysicalRanges;
902 IOMemoryDescriptor::withRanges;
903 IOMemoryDescriptor::withSubRange;
904
905 #if !(defined(__ppc__) && defined(KPI_10_4_0_PPC_COMPAT))
906 // used by IODMACommand
907 virtual IOReturn dmaCommandOperation(DMACommandOps op, void *vData, UInt dataSize) const;
908 #endif
909
910 public:
911 /*
912 * Initialize or reinitialize an IOSubMemoryDescriptor to describe
913 * a subrange of an existing descriptor.
914 *
915 * An IOSubMemoryDescriptor can be re-used by calling initSubRange
916 * again on an existing instance -- note that this behavior is not
917 * commonly supported in other IOKit classes, although it is here.
918 */
919 virtual bool initSubRange( IOMemoryDescriptor * parent,
920 IOByteCount offset, IOByteCount length,
921 IODirection withDirection );
922
923 /*
924 * IOMemoryDescriptor required methods
925 */
926
927 #if !(defined(__ppc__) && defined(KPI_10_4_0_PPC_COMPAT))
928 virtual addr64_t getPhysicalSegment64( IOByteCount offset,
929 IOByteCount * length );
930 #endif
931
932 virtual IOPhysicalAddress getPhysicalSegment(IOByteCount offset,
933 IOByteCount * length);
934
935 virtual IOPhysicalAddress getSourceSegment(IOByteCount offset,
936 IOByteCount * length);
937
938 virtual IOByteCount readBytes(IOByteCount offset,
939 void * bytes, IOByteCount withLength);
940
941 virtual IOByteCount writeBytes(IOByteCount offset,
942 const void * bytes, IOByteCount withLength);
943
944 virtual void * getVirtualSegment(IOByteCount offset,
945 IOByteCount * length);
946
947 virtual IOReturn prepare(IODirection forDirection = kIODirectionNone);
948
949 virtual IOReturn complete(IODirection forDirection = kIODirectionNone);
950
951 // make virtual
952 IOReturn redirect( task_t safeTask, bool redirect );
953
954 virtual bool serialize(OSSerialize *s) const;
955
956 virtual IOReturn setPurgeable( IOOptionBits newState,
957 IOOptionBits * oldState );
958 virtual IOReturn performOperation( IOOptionBits options,
959 IOByteCount offset, IOByteCount length );
960
961 protected:
962 virtual IOMemoryMap * makeMapping(
963 IOMemoryDescriptor * owner,
964 task_t intoTask,
965 IOVirtualAddress atAddress,
966 IOOptionBits options,
967 IOByteCount offset,
968 IOByteCount length );
969
970 virtual IOReturn doMap(
971 vm_map_t addressMap,
972 IOVirtualAddress * atAddress,
973 IOOptionBits options,
974 IOByteCount sourceOffset = 0,
975 IOByteCount length = 0 );
976 };
977
978 /* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
979
980 #endif /* !_IOMEMORYDESCRIPTOR_H */