2 * Copyright (c) 2000 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_OSREFERENCE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the
10 * License may not be used to create, or enable the creation or
11 * redistribution of, unlawful or unlicensed copies of an Apple operating
12 * system, or to circumvent, violate, or enable the circumvention or
13 * violation of, any terms of an Apple operating system software license
16 * Please obtain a copy of the License at
17 * http://www.opensource.apple.com/apsl/ and read it before using this
20 * The Original Code and all software distributed under the License are
21 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
22 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
23 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
24 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
25 * Please see the License for the specific language governing rights and
26 * limitations under the License.
28 * @APPLE_LICENSE_OSREFERENCE_HEADER_END@
31 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
32 * The Regents of the University of California. All rights reserved.
34 * Redistribution and use in source and binary forms, with or without
35 * modification, are permitted provided that the following conditions
37 * 1. Redistributions of source code must retain the above copyright
38 * notice, this list of conditions and the following disclaimer.
39 * 2. Redistributions in binary form must reproduce the above copyright
40 * notice, this list of conditions and the following disclaimer in the
41 * documentation and/or other materials provided with the distribution.
42 * 3. All advertising materials mentioning features or use of this software
43 * must display the following acknowledgement:
44 * This product includes software developed by the University of
45 * California, Berkeley and its contributors.
46 * 4. Neither the name of the University nor the names of its contributors
47 * may be used to endorse or promote products derived from this software
48 * without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
62 * @(#)tcp_subr.c 8.2 (Berkeley) 5/24/95
63 * $FreeBSD: src/sys/netinet/tcp_subr.c,v 1.73.2.22 2001/08/22 00:59:12 silby Exp $
67 #include <sys/param.h>
68 #include <sys/systm.h>
69 #include <sys/callout.h>
70 #include <sys/kernel.h>
71 #include <sys/sysctl.h>
72 #include <sys/malloc.h>
75 #include <sys/domain.h>
78 #include <sys/kauth.h>
79 #include <sys/socket.h>
80 #include <sys/socketvar.h>
81 #include <sys/protosw.h>
82 #include <sys/random.h>
83 #include <sys/syslog.h>
84 #include <kern/locks.h>
88 #include <net/route.h>
92 #include <netinet/in.h>
93 #include <netinet/in_systm.h>
94 #include <netinet/ip.h>
96 #include <netinet/ip6.h>
98 #include <netinet/in_pcb.h>
100 #include <netinet6/in6_pcb.h>
102 #include <netinet/in_var.h>
103 #include <netinet/ip_var.h>
105 #include <netinet6/ip6_var.h>
107 #include <netinet/tcp.h>
108 #include <netinet/tcp_fsm.h>
109 #include <netinet/tcp_seq.h>
110 #include <netinet/tcp_timer.h>
111 #include <netinet/tcp_var.h>
113 #include <netinet6/tcp6_var.h>
115 #include <netinet/tcpip.h>
117 #include <netinet/tcp_debug.h>
119 #include <netinet6/ip6protosw.h>
122 #include <netinet6/ipsec.h>
124 #include <netinet6/ipsec6.h>
129 #include <sys/kdebug.h>
131 #define DBG_FNC_TCP_CLOSE NETDBG_CODE(DBG_NETTCP, ((5 << 8) | 2))
133 extern int tcp_lq_overflow
;
135 /* temporary: for testing */
137 extern int ipsec_bypass
;
138 extern lck_mtx_t
*sadb_mutex
;
141 int tcp_mssdflt
= TCP_MSS
;
142 SYSCTL_INT(_net_inet_tcp
, TCPCTL_MSSDFLT
, mssdflt
, CTLFLAG_RW
,
143 &tcp_mssdflt
, 0, "Default TCP Maximum Segment Size");
146 int tcp_v6mssdflt
= TCP6_MSS
;
147 SYSCTL_INT(_net_inet_tcp
, TCPCTL_V6MSSDFLT
, v6mssdflt
,
148 CTLFLAG_RW
, &tcp_v6mssdflt
, 0,
149 "Default TCP Maximum Segment Size for IPv6");
153 * Minimum MSS we accept and use. This prevents DoS attacks where
154 * we are forced to a ridiculous low MSS like 20 and send hundreds
155 * of packets instead of one. The effect scales with the available
156 * bandwidth and quickly saturates the CPU and network interface
157 * with packet generation and sending. Set to zero to disable MINMSS
158 * checking. This setting prevents us from sending too small packets.
160 int tcp_minmss
= TCP_MINMSS
;
161 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, minmss
, CTLFLAG_RW
,
162 &tcp_minmss
, 0, "Minmum TCP Maximum Segment Size");
165 * Number of TCP segments per second we accept from remote host
166 * before we start to calculate average segment size. If average
167 * segment size drops below the minimum TCP MSS we assume a DoS
168 * attack and reset+drop the connection. Care has to be taken not to
169 * set this value too small to not kill interactive type connections
170 * (telnet, SSH) which send many small packets.
172 #ifdef FIX_WORKAROUND_FOR_3894301
173 __private_extern__
int tcp_minmssoverload
= TCP_MINMSSOVERLOAD
;
175 __private_extern__
int tcp_minmssoverload
= 0;
177 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, minmssoverload
, CTLFLAG_RW
,
178 &tcp_minmssoverload
, 0, "Number of TCP Segments per Second allowed to"
179 "be under the MINMSS Size");
181 static int tcp_do_rfc1323
= 1;
182 SYSCTL_INT(_net_inet_tcp
, TCPCTL_DO_RFC1323
, rfc1323
, CTLFLAG_RW
,
183 &tcp_do_rfc1323
, 0, "Enable rfc1323 (high performance TCP) extensions");
185 static int tcp_do_rfc1644
= 0;
186 SYSCTL_INT(_net_inet_tcp
, TCPCTL_DO_RFC1644
, rfc1644
, CTLFLAG_RW
,
187 &tcp_do_rfc1644
, 0, "Enable rfc1644 (TTCP) extensions");
189 static int tcp_tcbhashsize
= 0;
190 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, tcbhashsize
, CTLFLAG_RD
,
191 &tcp_tcbhashsize
, 0, "Size of TCP control-block hashtable");
193 static int do_tcpdrain
= 0;
194 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, do_tcpdrain
, CTLFLAG_RW
, &do_tcpdrain
, 0,
195 "Enable tcp_drain routine for extra help when low on mbufs");
197 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, pcbcount
, CTLFLAG_RD
,
198 &tcbinfo
.ipi_count
, 0, "Number of active PCBs");
200 static int icmp_may_rst
= 1;
201 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, icmp_may_rst
, CTLFLAG_RW
, &icmp_may_rst
, 0,
202 "Certain ICMP unreachable messages may abort connections in SYN_SENT");
204 static int tcp_strict_rfc1948
= 0;
205 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, strict_rfc1948
, CTLFLAG_RW
,
206 &tcp_strict_rfc1948
, 0, "Determines if RFC1948 is followed exactly");
208 static int tcp_isn_reseed_interval
= 0;
209 SYSCTL_INT(_net_inet_tcp
, OID_AUTO
, isn_reseed_interval
, CTLFLAG_RW
,
210 &tcp_isn_reseed_interval
, 0, "Seconds between reseeding of ISN secret");
212 static void tcp_cleartaocache(void);
213 static void tcp_notify(struct inpcb
*, int);
214 struct zone
*sack_hole_zone
;
217 * Target size of TCP PCB hash tables. Must be a power of two.
219 * Note that this can be overridden by the kernel environment
220 * variable net.inet.tcp.tcbhashsize
223 #define TCBHASHSIZE 4096
227 * This is the actual shape of what we allocate using the zone
228 * allocator. Doing it this way allows us to protect both structures
229 * using the same generation count, and also eliminates the overhead
230 * of allocating tcpcbs separately. By hiding the structure here,
231 * we avoid changing most of the rest of the code (although it needs
232 * to be changed, eventually, for greater efficiency).
235 #define ALIGNM1 (ALIGNMENT - 1)
239 char align
[(sizeof(struct inpcb
) + ALIGNM1
) & ~ALIGNM1
];
246 static struct tcpcb dummy_tcb
;
249 extern struct inpcbhead time_wait_slots
[];
250 extern int cur_tw_slot
;
251 extern u_long
*delack_bitmask
;
252 extern u_long route_generation
;
255 int get_inpcb_str_size()
257 return sizeof(struct inpcb
);
261 int get_tcp_str_size()
263 return sizeof(struct tcpcb
);
266 int tcp_freeq(struct tcpcb
*tp
);
275 int hashsize
= TCBHASHSIZE
;
278 struct inpcbinfo
*pcbinfo
;
283 tcp_delacktime
= TCPTV_DELACK
;
284 tcp_keepinit
= TCPTV_KEEP_INIT
;
285 tcp_keepidle
= TCPTV_KEEP_IDLE
;
286 tcp_keepintvl
= TCPTV_KEEPINTVL
;
287 tcp_maxpersistidle
= TCPTV_KEEP_IDLE
;
289 read_random(&tcp_now
, sizeof(tcp_now
));
290 tcp_now
= tcp_now
& 0x7fffffff; /* Starts tcp internal 500ms clock at a random value */
294 tcbinfo
.listhead
= &tcb
;
296 if (!powerof2(hashsize
)) {
297 printf("WARNING: TCB hash size not a power of 2\n");
298 hashsize
= 512; /* safe default */
300 tcp_tcbhashsize
= hashsize
;
301 tcbinfo
.hashsize
= hashsize
;
302 tcbinfo
.hashbase
= hashinit(hashsize
, M_PCB
, &tcbinfo
.hashmask
);
303 tcbinfo
.porthashbase
= hashinit(hashsize
, M_PCB
,
304 &tcbinfo
.porthashmask
);
305 str_size
= (vm_size_t
) sizeof(struct inp_tp
);
306 tcbinfo
.ipi_zone
= (void *) zinit(str_size
, 120000*str_size
, 8192, "tcpcb");
307 sack_hole_zone
= zinit(str_size
, 120000*str_size
, 8192, "sack_hole zone");
308 tcp_reass_maxseg
= nmbclusters
/ 16;
311 #define TCP_MINPROTOHDR (sizeof(struct ip6_hdr) + sizeof(struct tcphdr))
313 #define TCP_MINPROTOHDR (sizeof(struct tcpiphdr))
315 if (max_protohdr
< TCP_MINPROTOHDR
)
316 max_protohdr
= TCP_MINPROTOHDR
;
317 if (max_linkhdr
+ TCP_MINPROTOHDR
> MHLEN
)
319 #undef TCP_MINPROTOHDR
320 dummy_tcb
.t_state
= TCP_NSTATES
;
321 dummy_tcb
.t_flags
= 0;
322 tcbinfo
.dummy_cb
= (caddr_t
) &dummy_tcb
;
325 * allocate lock group attribute and group for tcp pcb mutexes
327 pcbinfo
->mtx_grp_attr
= lck_grp_attr_alloc_init();
328 pcbinfo
->mtx_grp
= lck_grp_alloc_init("tcppcb", pcbinfo
->mtx_grp_attr
);
331 * allocate the lock attribute for tcp pcb mutexes
333 pcbinfo
->mtx_attr
= lck_attr_alloc_init();
335 if ((pcbinfo
->mtx
= lck_rw_alloc_init(pcbinfo
->mtx_grp
, pcbinfo
->mtx_attr
)) == NULL
) {
336 printf("tcp_init: mutex not alloced!\n");
337 return; /* pretty much dead if this fails... */
341 in_pcb_nat_init(&tcbinfo
, AF_INET
, IPPROTO_TCP
, SOCK_STREAM
);
343 delack_bitmask
= _MALLOC((4 * hashsize
)/32, M_PCB
, M_WAITOK
);
344 if (delack_bitmask
== 0)
345 panic("Delack Memory");
347 for (i
=0; i
< (tcbinfo
.hashsize
/ 32); i
++)
348 delack_bitmask
[i
] = 0;
350 for (i
=0; i
< N_TIME_WAIT_SLOTS
; i
++) {
351 LIST_INIT(&time_wait_slots
[i
]);
356 * Fill in the IP and TCP headers for an outgoing packet, given the tcpcb.
357 * tcp_template used to store this data in mbufs, but we now recopy it out
358 * of the tcpcb each time to conserve mbufs.
361 tcp_fillheaders(tp
, ip_ptr
, tcp_ptr
)
366 struct inpcb
*inp
= tp
->t_inpcb
;
367 struct tcphdr
*tcp_hdr
= (struct tcphdr
*)tcp_ptr
;
370 if ((inp
->inp_vflag
& INP_IPV6
) != 0) {
373 ip6
= (struct ip6_hdr
*)ip_ptr
;
374 ip6
->ip6_flow
= (ip6
->ip6_flow
& ~IPV6_FLOWINFO_MASK
) |
375 (inp
->in6p_flowinfo
& IPV6_FLOWINFO_MASK
);
376 ip6
->ip6_vfc
= (ip6
->ip6_vfc
& ~IPV6_VERSION_MASK
) |
377 (IPV6_VERSION
& IPV6_VERSION_MASK
);
378 ip6
->ip6_nxt
= IPPROTO_TCP
;
379 ip6
->ip6_plen
= sizeof(struct tcphdr
);
380 ip6
->ip6_src
= inp
->in6p_laddr
;
381 ip6
->ip6_dst
= inp
->in6p_faddr
;
386 struct ip
*ip
= (struct ip
*) ip_ptr
;
388 ip
->ip_vhl
= IP_VHL_BORING
;
395 ip
->ip_p
= IPPROTO_TCP
;
396 ip
->ip_src
= inp
->inp_laddr
;
397 ip
->ip_dst
= inp
->inp_faddr
;
398 tcp_hdr
->th_sum
= in_pseudo(ip
->ip_src
.s_addr
, ip
->ip_dst
.s_addr
,
399 htons(sizeof(struct tcphdr
) + IPPROTO_TCP
));
402 tcp_hdr
->th_sport
= inp
->inp_lport
;
403 tcp_hdr
->th_dport
= inp
->inp_fport
;
408 tcp_hdr
->th_flags
= 0;
414 * Create template to be used to send tcp packets on a connection.
415 * Allocates an mbuf and fills in a skeletal tcp/ip header. The only
416 * use for this function is in keepalives, which use tcp_respond.
425 m
= m_get(M_DONTWAIT
, MT_HEADER
);
428 m
->m_len
= sizeof(struct tcptemp
);
429 n
= mtod(m
, struct tcptemp
*);
431 tcp_fillheaders(tp
, (void *)&n
->tt_ipgen
, (void *)&n
->tt_t
);
436 * Send a single message to the TCP at address specified by
437 * the given TCP/IP header. If m == 0, then we make a copy
438 * of the tcpiphdr at ti and send directly to the addressed host.
439 * This is used to force keep alive messages out using the TCP
440 * template for a connection. If flags are given then we send
441 * a message back to the TCP which originated the * segment ti,
442 * and discard the mbuf containing it and any other attached mbufs.
444 * In any case the ack and sequence number of the transmitted
445 * segment are as specified by the parameters.
447 * NOTE: If m != NULL, then ti must point to *inside* the mbuf.
450 tcp_respond(tp
, ipgen
, th
, m
, ack
, seq
, flags
)
453 register struct tcphdr
*th
;
454 register struct mbuf
*m
;
460 struct route
*ro
= 0;
465 struct route_in6
*ro6
= 0;
466 struct route_in6 sro6
;
473 isipv6
= IP_VHL_V(((struct ip
*)ipgen
)->ip_vhl
) == 6;
479 if (!(flags
& TH_RST
)) {
480 win
= sbspace(&tp
->t_inpcb
->inp_socket
->so_rcv
);
481 if (win
> (long)TCP_MAXWIN
<< tp
->rcv_scale
)
482 win
= (long)TCP_MAXWIN
<< tp
->rcv_scale
;
486 ro6
= &tp
->t_inpcb
->in6p_route
;
489 ro
= &tp
->t_inpcb
->inp_route
;
494 bzero(ro6
, sizeof *ro6
);
499 bzero(ro
, sizeof *ro
);
503 m
= m_gethdr(M_DONTWAIT
, MT_HEADER
);
507 m
->m_data
+= max_linkhdr
;
510 bcopy((caddr_t
)ip6
, mtod(m
, caddr_t
),
511 sizeof(struct ip6_hdr
));
512 ip6
= mtod(m
, struct ip6_hdr
*);
513 nth
= (struct tcphdr
*)(ip6
+ 1);
517 bcopy((caddr_t
)ip
, mtod(m
, caddr_t
), sizeof(struct ip
));
518 ip
= mtod(m
, struct ip
*);
519 nth
= (struct tcphdr
*)(ip
+ 1);
521 bcopy((caddr_t
)th
, (caddr_t
)nth
, sizeof(struct tcphdr
));
526 m
->m_data
= (caddr_t
)ipgen
;
527 /* m_len is set later */
529 #define xchg(a,b,type) { type t; t=a; a=b; b=t; }
532 xchg(ip6
->ip6_dst
, ip6
->ip6_src
, struct in6_addr
);
533 nth
= (struct tcphdr
*)(ip6
+ 1);
537 xchg(ip
->ip_dst
.s_addr
, ip
->ip_src
.s_addr
, n_long
);
538 nth
= (struct tcphdr
*)(ip
+ 1);
542 * this is usually a case when an extension header
543 * exists between the IPv6 header and the
546 nth
->th_sport
= th
->th_sport
;
547 nth
->th_dport
= th
->th_dport
;
549 xchg(nth
->th_dport
, nth
->th_sport
, n_short
);
554 ip6
->ip6_plen
= htons((u_short
)(sizeof (struct tcphdr
) +
556 tlen
+= sizeof (struct ip6_hdr
) + sizeof (struct tcphdr
);
560 tlen
+= sizeof (struct tcpiphdr
);
562 ip
->ip_ttl
= ip_defttl
;
565 m
->m_pkthdr
.len
= tlen
;
566 m
->m_pkthdr
.rcvif
= 0;
567 nth
->th_seq
= htonl(seq
);
568 nth
->th_ack
= htonl(ack
);
570 nth
->th_off
= sizeof (struct tcphdr
) >> 2;
571 nth
->th_flags
= flags
;
573 nth
->th_win
= htons((u_short
) (win
>> tp
->rcv_scale
));
575 nth
->th_win
= htons((u_short
)win
);
580 nth
->th_sum
= in6_cksum(m
, IPPROTO_TCP
,
581 sizeof(struct ip6_hdr
),
582 tlen
- sizeof(struct ip6_hdr
));
583 ip6
->ip6_hlim
= in6_selecthlim(tp
? tp
->t_inpcb
: NULL
,
590 nth
->th_sum
= in_pseudo(ip
->ip_src
.s_addr
, ip
->ip_dst
.s_addr
,
591 htons((u_short
)(tlen
- sizeof(struct ip
) + ip
->ip_p
)));
592 m
->m_pkthdr
.csum_flags
= CSUM_TCP
;
593 m
->m_pkthdr
.csum_data
= offsetof(struct tcphdr
, th_sum
);
596 if (tp
== NULL
|| (tp
->t_inpcb
->inp_socket
->so_options
& SO_DEBUG
))
597 tcp_trace(TA_OUTPUT
, 0, tp
, mtod(m
, void *), th
, 0);
600 if (ipsec_bypass
== 0 && ipsec_setsocket(m
, tp
? tp
->t_inpcb
->inp_socket
: NULL
) != 0) {
607 (void)ip6_output(m
, NULL
, ro6
, ipflags
, NULL
, NULL
, 0);
608 if (ro6
== &sro6
&& ro6
->ro_rt
) {
615 (void) ip_output_list(m
, 0, NULL
, ro
, ipflags
, NULL
);
616 if (ro
== &sro
&& ro
->ro_rt
) {
624 * Create a new TCP control block, making an
625 * empty reassembly queue and hooking it to the argument
626 * protocol control block. The `inp' parameter must have
627 * come from the zone allocator set up in tcp_init().
634 register struct tcpcb
*tp
;
635 register struct socket
*so
= inp
->inp_socket
;
637 int isipv6
= (inp
->inp_vflag
& INP_IPV6
) != 0;
640 if (so
->cached_in_sock_layer
== 0) {
641 it
= (struct inp_tp
*)inp
;
645 tp
= (struct tcpcb
*) inp
->inp_saved_ppcb
;
647 bzero((char *) tp
, sizeof(struct tcpcb
));
648 LIST_INIT(&tp
->t_segq
);
649 tp
->t_maxseg
= tp
->t_maxopd
=
651 isipv6
? tcp_v6mssdflt
:
656 tp
->t_flags
= (TF_REQ_SCALE
|TF_REQ_TSTMP
);
657 tp
->sack_enable
= tcp_do_sack
;
658 TAILQ_INIT(&tp
->snd_holes
);
659 tp
->t_inpcb
= inp
; /* XXX */
661 * Init srtt to TCPTV_SRTTBASE (0), so we can tell that we have no
662 * rtt estimate. Set rttvar so that srtt + 4 * rttvar gives
663 * reasonable initial retransmit time.
665 tp
->t_srtt
= TCPTV_SRTTBASE
;
666 tp
->t_rttvar
= ((TCPTV_RTOBASE
- TCPTV_SRTTBASE
) << TCP_RTTVAR_SHIFT
) / 4;
667 tp
->t_rttmin
= TCPTV_MIN
;
668 tp
->t_rxtcur
= TCPTV_RTOBASE
;
669 tp
->snd_cwnd
= TCP_MAXWIN
<< TCP_MAX_WINSHIFT
;
670 tp
->snd_ssthresh
= TCP_MAXWIN
<< TCP_MAX_WINSHIFT
;
673 * IPv4 TTL initialization is necessary for an IPv6 socket as well,
674 * because the socket may be bound to an IPv6 wildcard address,
675 * which may match an IPv4-mapped IPv6 address.
677 inp
->inp_ip_ttl
= ip_defttl
;
678 inp
->inp_ppcb
= (caddr_t
)tp
;
679 return (tp
); /* XXX */
683 * Drop a TCP connection, reporting
684 * the specified error. If connection is synchronized,
685 * then send a RST to peer.
689 register struct tcpcb
*tp
;
692 struct socket
*so
= tp
->t_inpcb
->inp_socket
;
694 if (TCPS_HAVERCVDSYN(tp
->t_state
)) {
695 tp
->t_state
= TCPS_CLOSED
;
696 (void) tcp_output(tp
);
697 tcpstat
.tcps_drops
++;
699 tcpstat
.tcps_conndrops
++;
700 if (errno
== ETIMEDOUT
&& tp
->t_softerror
)
701 errno
= tp
->t_softerror
;
702 so
->so_error
= errno
;
703 return (tcp_close(tp
));
707 * Close a TCP control block:
708 * discard all space held by the tcp
709 * discard internet protocol block
710 * wake up any sleepers
714 register struct tcpcb
*tp
;
716 struct inpcb
*inp
= tp
->t_inpcb
;
717 struct socket
*so
= inp
->inp_socket
;
719 int isipv6
= (inp
->inp_vflag
& INP_IPV6
) != 0;
721 register struct rtentry
*rt
;
724 if ( inp
->inp_ppcb
== NULL
) /* tcp_close was called previously, bail */
727 /* Clear the timers before we delete the PCB. */
730 for (i
= 0; i
< TCPT_NTIMERS
; i
++) {
735 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE
| DBG_FUNC_START
, tp
,0,0,0,0);
738 case TCPS_ESTABLISHED
:
739 case TCPS_FIN_WAIT_1
:
741 case TCPS_CLOSE_WAIT
:
748 * If we got enough samples through the srtt filter,
749 * save the rtt and rttvar in the routing entry.
750 * 'Enough' is arbitrarily defined as the 16 samples.
751 * 16 samples is enough for the srtt filter to converge
752 * to within 5% of the correct value; fewer samples and
753 * we could save a very bogus rtt.
755 * Don't update the default route's characteristics and don't
756 * update anything that the user "locked".
758 if (tp
->t_rttupdated
>= 16) {
759 register u_long i
= 0;
762 struct sockaddr_in6
*sin6
;
764 if ((rt
= inp
->in6p_route
.ro_rt
) == NULL
)
766 sin6
= (struct sockaddr_in6
*)rt_key(rt
);
767 if (IN6_IS_ADDR_UNSPECIFIED(&sin6
->sin6_addr
))
772 rt
= inp
->inp_route
.ro_rt
;
774 ((struct sockaddr_in
*)rt_key(rt
))->sin_addr
.s_addr
775 == INADDR_ANY
|| rt
->generation_id
!= route_generation
) {
776 if (tp
->t_state
>= TCPS_CLOSE_WAIT
)
777 tp
->t_state
= TCPS_CLOSING
;
782 if ((rt
->rt_rmx
.rmx_locks
& RTV_RTT
) == 0) {
784 (RTM_RTTUNIT
/ (PR_SLOWHZ
* TCP_RTT_SCALE
));
785 if (rt
->rt_rmx
.rmx_rtt
&& i
)
787 * filter this update to half the old & half
788 * the new values, converting scale.
789 * See route.h and tcp_var.h for a
790 * description of the scaling constants.
793 (rt
->rt_rmx
.rmx_rtt
+ i
) / 2;
795 rt
->rt_rmx
.rmx_rtt
= i
;
796 tcpstat
.tcps_cachedrtt
++;
798 if ((rt
->rt_rmx
.rmx_locks
& RTV_RTTVAR
) == 0) {
800 (RTM_RTTUNIT
/ (PR_SLOWHZ
* TCP_RTTVAR_SCALE
));
801 if (rt
->rt_rmx
.rmx_rttvar
&& i
)
802 rt
->rt_rmx
.rmx_rttvar
=
803 (rt
->rt_rmx
.rmx_rttvar
+ i
) / 2;
805 rt
->rt_rmx
.rmx_rttvar
= i
;
806 tcpstat
.tcps_cachedrttvar
++;
809 * The old comment here said:
810 * update the pipelimit (ssthresh) if it has been updated
811 * already or if a pipesize was specified & the threshhold
812 * got below half the pipesize. I.e., wait for bad news
813 * before we start updating, then update on both good
816 * But we want to save the ssthresh even if no pipesize is
817 * specified explicitly in the route, because such
818 * connections still have an implicit pipesize specified
819 * by the global tcp_sendspace. In the absence of a reliable
820 * way to calculate the pipesize, it will have to do.
822 i
= tp
->snd_ssthresh
;
823 if (rt
->rt_rmx
.rmx_sendpipe
!= 0)
824 dosavessthresh
= (i
< rt
->rt_rmx
.rmx_sendpipe
/ 2);
826 dosavessthresh
= (i
< so
->so_snd
.sb_hiwat
/ 2);
827 if (((rt
->rt_rmx
.rmx_locks
& RTV_SSTHRESH
) == 0 &&
828 i
!= 0 && rt
->rt_rmx
.rmx_ssthresh
!= 0)
831 * convert the limit from user data bytes to
832 * packets then to packet data bytes.
834 i
= (i
+ tp
->t_maxseg
/ 2) / tp
->t_maxseg
;
837 i
*= (u_long
)(tp
->t_maxseg
+
839 (isipv6
? sizeof (struct ip6_hdr
) +
840 sizeof (struct tcphdr
) :
842 sizeof (struct tcpiphdr
)
847 if (rt
->rt_rmx
.rmx_ssthresh
)
848 rt
->rt_rmx
.rmx_ssthresh
=
849 (rt
->rt_rmx
.rmx_ssthresh
+ i
) / 2;
851 rt
->rt_rmx
.rmx_ssthresh
= i
;
852 tcpstat
.tcps_cachedssthresh
++;
855 rt
= inp
->inp_route
.ro_rt
;
858 * mark route for deletion if no information is
861 if ((tp
->t_flags
& TF_LQ_OVERFLOW
) && tcp_lq_overflow
&&
862 ((rt
->rt_rmx
.rmx_locks
& RTV_RTT
) == 0)){
863 if (rt
->rt_rmx
.rmx_rtt
== 0)
864 rt
->rt_flags
|= RTF_DELCLONE
;
868 /* free the reassembly queue, if any */
869 (void) tcp_freeq(tp
);
871 tcp_free_sackholes(tp
);
874 if (so
->cached_in_sock_layer
)
875 inp
->inp_saved_ppcb
= (caddr_t
) tp
;
878 soisdisconnected(so
);
880 if (INP_CHECK_SOCKAF(so
, AF_INET6
))
885 tcpstat
.tcps_closed
++;
886 KERNEL_DEBUG(DBG_FNC_TCP_CLOSE
| DBG_FUNC_END
, tcpstat
.tcps_closed
,0,0,0,0);
887 return ((struct tcpcb
*)0);
895 register struct tseg_qent
*q
;
898 while((q
= LIST_FIRST(&tp
->t_segq
)) != NULL
) {
899 LIST_REMOVE(q
, tqe_q
);
912 * ###LD 05/19/04 locking issue, tcpdrain is disabled, deadlock situation with tcbinfo.mtx
918 struct tseg_qent
*te
;
921 * Walk the tcpbs, if existing, and flush the reassembly queue,
923 * XXX: The "Net/3" implementation doesn't imply that the TCP
924 * reassembly queue should be flushed, but in a situation
925 * where we're really low on mbufs, this is potentially
928 lck_rw_lock_exclusive(tcbinfo
.mtx
);
929 for (inpb
= LIST_FIRST(tcbinfo
.listhead
); inpb
;
930 inpb
= LIST_NEXT(inpb
, inp_list
)) {
931 if ((tcpb
= intotcpcb(inpb
))) {
932 while ((te
= LIST_FIRST(&tcpb
->t_segq
))
934 LIST_REMOVE(te
, tqe_q
);
941 lck_rw_done(tcbinfo
.mtx
);
947 * Notify a tcp user of an asynchronous error;
948 * store error as soft error, but wake up user
949 * (for now, won't do anything until can select for soft error).
951 * Do not wake up user since there currently is no mechanism for
952 * reporting soft errors (yet - a kqueue filter may be added).
955 tcp_notify(inp
, error
)
961 if (inp
== NULL
|| (inp
->inp_state
== INPCB_STATE_DEAD
))
962 return; /* pcb is gone already */
964 tp
= (struct tcpcb
*)inp
->inp_ppcb
;
967 * Ignore some errors if we are hooked up.
968 * If connection hasn't completed, has retransmitted several times,
969 * and receives a second error, give up now. This is better
970 * than waiting a long time to establish a connection that
971 * can never complete.
973 if (tp
->t_state
== TCPS_ESTABLISHED
&&
974 (error
== EHOSTUNREACH
|| error
== ENETUNREACH
||
975 error
== EHOSTDOWN
)) {
977 } else if (tp
->t_state
< TCPS_ESTABLISHED
&& tp
->t_rxtshift
> 3 &&
981 tp
->t_softerror
= error
;
983 wakeup((caddr_t
) &so
->so_timeo
);
990 tcp_pcblist SYSCTL_HANDLER_ARGS
993 struct inpcb
*inp
, **inp_list
;
998 * The process of preparing the TCB list is too time-consuming and
999 * resource-intensive to repeat twice on every request.
1001 lck_rw_lock_shared(tcbinfo
.mtx
);
1002 if (req
->oldptr
== USER_ADDR_NULL
) {
1003 n
= tcbinfo
.ipi_count
;
1004 req
->oldidx
= 2 * (sizeof xig
)
1005 + (n
+ n
/8) * sizeof(struct xtcpcb
);
1006 lck_rw_done(tcbinfo
.mtx
);
1010 if (req
->newptr
!= USER_ADDR_NULL
) {
1011 lck_rw_done(tcbinfo
.mtx
);
1016 * OK, now we're committed to doing something.
1018 gencnt
= tcbinfo
.ipi_gencnt
;
1019 n
= tcbinfo
.ipi_count
;
1021 bzero(&xig
, sizeof(xig
));
1022 xig
.xig_len
= sizeof xig
;
1024 xig
.xig_gen
= gencnt
;
1025 xig
.xig_sogen
= so_gencnt
;
1026 error
= SYSCTL_OUT(req
, &xig
, sizeof xig
);
1028 lck_rw_done(tcbinfo
.mtx
);
1032 * We are done if there is no pcb
1035 lck_rw_done(tcbinfo
.mtx
);
1039 inp_list
= _MALLOC(n
* sizeof *inp_list
, M_TEMP
, M_WAITOK
);
1040 if (inp_list
== 0) {
1041 lck_rw_done(tcbinfo
.mtx
);
1045 for (inp
= LIST_FIRST(tcbinfo
.listhead
), i
= 0; inp
&& i
< n
;
1046 inp
= LIST_NEXT(inp
, inp_list
)) {
1048 if (inp
->inp_gencnt
<= gencnt
&& inp
->inp_state
!= INPCB_STATE_DEAD
)
1050 if (inp
->inp_gencnt
<= gencnt
&& !prison_xinpcb(req
->p
, inp
))
1052 inp_list
[i
++] = inp
;
1057 for (i
= 0; i
< n
; i
++) {
1059 if (inp
->inp_gencnt
<= gencnt
&& inp
->inp_state
!= INPCB_STATE_DEAD
) {
1063 bzero(&xt
, sizeof(xt
));
1064 xt
.xt_len
= sizeof xt
;
1065 /* XXX should avoid extra copy */
1066 inpcb_to_compat(inp
, &xt
.xt_inp
);
1067 inp_ppcb
= inp
->inp_ppcb
;
1068 if (inp_ppcb
!= NULL
) {
1069 bcopy(inp_ppcb
, &xt
.xt_tp
, sizeof xt
.xt_tp
);
1072 bzero((char *) &xt
.xt_tp
, sizeof xt
.xt_tp
);
1073 if (inp
->inp_socket
)
1074 sotoxsocket(inp
->inp_socket
, &xt
.xt_socket
);
1075 error
= SYSCTL_OUT(req
, &xt
, sizeof xt
);
1080 * Give the user an updated idea of our state.
1081 * If the generation differs from what we told
1082 * her before, she knows that something happened
1083 * while we were processing this request, and it
1084 * might be necessary to retry.
1086 bzero(&xig
, sizeof(xig
));
1087 xig
.xig_len
= sizeof xig
;
1088 xig
.xig_gen
= tcbinfo
.ipi_gencnt
;
1089 xig
.xig_sogen
= so_gencnt
;
1090 xig
.xig_count
= tcbinfo
.ipi_count
;
1091 error
= SYSCTL_OUT(req
, &xig
, sizeof xig
);
1093 FREE(inp_list
, M_TEMP
);
1094 lck_rw_done(tcbinfo
.mtx
);
1098 SYSCTL_PROC(_net_inet_tcp
, TCPCTL_PCBLIST
, pcblist
, CTLFLAG_RD
, 0, 0,
1099 tcp_pcblist
, "S,xtcpcb", "List of active TCP connections");
1103 tcp_getcred(SYSCTL_HANDLER_ARGS
)
1105 struct sockaddr_in addrs
[2];
1109 error
= suser(req
->p
);
1112 error
= SYSCTL_IN(req
, addrs
, sizeof(addrs
));
1116 inp
= in_pcblookup_hash(&tcbinfo
, addrs
[1].sin_addr
, addrs
[1].sin_port
,
1117 addrs
[0].sin_addr
, addrs
[0].sin_port
, 0, NULL
);
1118 if (inp
== NULL
|| inp
->inp_socket
== NULL
) {
1122 error
= SYSCTL_OUT(req
, inp
->inp_socket
->so_cred
, sizeof(*(kauth_cred_t
)0);
1128 SYSCTL_PROC(_net_inet_tcp
, OID_AUTO
, getcred
, CTLTYPE_OPAQUE
|CTLFLAG_RW
,
1129 0, 0, tcp_getcred
, "S,ucred", "Get the ucred of a TCP connection");
1133 tcp6_getcred(SYSCTL_HANDLER_ARGS
)
1135 struct sockaddr_in6 addrs
[2];
1137 int error
, s
, mapped
= 0;
1139 error
= suser(req
->p
);
1142 error
= SYSCTL_IN(req
, addrs
, sizeof(addrs
));
1145 if (IN6_IS_ADDR_V4MAPPED(&addrs
[0].sin6_addr
)) {
1146 if (IN6_IS_ADDR_V4MAPPED(&addrs
[1].sin6_addr
))
1153 inp
= in_pcblookup_hash(&tcbinfo
,
1154 *(struct in_addr
*)&addrs
[1].sin6_addr
.s6_addr
[12],
1156 *(struct in_addr
*)&addrs
[0].sin6_addr
.s6_addr
[12],
1160 inp
= in6_pcblookup_hash(&tcbinfo
, &addrs
[1].sin6_addr
,
1162 &addrs
[0].sin6_addr
, addrs
[0].sin6_port
,
1164 if (inp
== NULL
|| inp
->inp_socket
== NULL
) {
1168 error
= SYSCTL_OUT(req
, inp
->inp_socket
->so_cred
,
1169 sizeof(*(kauth_cred_t
)0);
1175 SYSCTL_PROC(_net_inet6_tcp6
, OID_AUTO
, getcred
, CTLTYPE_OPAQUE
|CTLFLAG_RW
,
1177 tcp6_getcred
, "S,ucred", "Get the ucred of a TCP6 connection");
1179 #endif /* __APPLE__*/
1182 tcp_ctlinput(cmd
, sa
, vip
)
1184 struct sockaddr
*sa
;
1187 struct ip
*ip
= vip
;
1189 struct in_addr faddr
;
1192 void (*notify
)(struct inpcb
*, int) = tcp_notify
;
1195 faddr
= ((struct sockaddr_in
*)sa
)->sin_addr
;
1196 if (sa
->sa_family
!= AF_INET
|| faddr
.s_addr
== INADDR_ANY
)
1199 if (cmd
== PRC_QUENCH
)
1200 notify
= tcp_quench
;
1201 else if (icmp_may_rst
&& (cmd
== PRC_UNREACH_ADMIN_PROHIB
||
1202 cmd
== PRC_UNREACH_PORT
) && ip
)
1203 notify
= tcp_drop_syn_sent
;
1204 else if (cmd
== PRC_MSGSIZE
)
1205 notify
= tcp_mtudisc
;
1206 else if (PRC_IS_REDIRECT(cmd
)) {
1208 notify
= in_rtchange
;
1209 } else if (cmd
== PRC_HOSTDEAD
)
1211 else if ((unsigned)cmd
> PRC_NCMDS
|| inetctlerrmap
[cmd
] == 0)
1214 th
= (struct tcphdr
*)((caddr_t
)ip
1215 + (IP_VHL_HL(ip
->ip_vhl
) << 2));
1216 inp
= in_pcblookup_hash(&tcbinfo
, faddr
, th
->th_dport
,
1217 ip
->ip_src
, th
->th_sport
, 0, NULL
);
1218 if (inp
!= NULL
&& inp
->inp_socket
!= NULL
) {
1219 tcp_lock(inp
->inp_socket
, 1, 0);
1220 if (in_pcb_checkstate(inp
, WNT_RELEASE
, 1) == WNT_STOPUSING
) {
1221 tcp_unlock(inp
->inp_socket
, 1, 0);
1224 icmp_seq
= htonl(th
->th_seq
);
1225 tp
= intotcpcb(inp
);
1226 if (SEQ_GEQ(icmp_seq
, tp
->snd_una
) &&
1227 SEQ_LT(icmp_seq
, tp
->snd_max
))
1228 (*notify
)(inp
, inetctlerrmap
[cmd
]);
1229 tcp_unlock(inp
->inp_socket
, 1, 0);
1232 in_pcbnotifyall(&tcbinfo
, faddr
, inetctlerrmap
[cmd
], notify
);
1237 tcp6_ctlinput(cmd
, sa
, d
)
1239 struct sockaddr
*sa
;
1243 void (*notify
)(struct inpcb
*, int) = tcp_notify
;
1244 struct ip6_hdr
*ip6
;
1246 struct ip6ctlparam
*ip6cp
= NULL
;
1247 const struct sockaddr_in6
*sa6_src
= NULL
;
1249 struct tcp_portonly
{
1254 if (sa
->sa_family
!= AF_INET6
||
1255 sa
->sa_len
!= sizeof(struct sockaddr_in6
))
1258 if (cmd
== PRC_QUENCH
)
1259 notify
= tcp_quench
;
1260 else if (cmd
== PRC_MSGSIZE
)
1261 notify
= tcp_mtudisc
;
1262 else if (!PRC_IS_REDIRECT(cmd
) &&
1263 ((unsigned)cmd
> PRC_NCMDS
|| inet6ctlerrmap
[cmd
] == 0))
1266 /* if the parameter is from icmp6, decode it. */
1268 ip6cp
= (struct ip6ctlparam
*)d
;
1270 ip6
= ip6cp
->ip6c_ip6
;
1271 off
= ip6cp
->ip6c_off
;
1272 sa6_src
= ip6cp
->ip6c_src
;
1276 off
= 0; /* fool gcc */
1282 * XXX: We assume that when IPV6 is non NULL,
1283 * M and OFF are valid.
1286 /* check if we can safely examine src and dst ports */
1287 if (m
->m_pkthdr
.len
< off
+ sizeof(*thp
))
1290 bzero(&th
, sizeof(th
));
1291 m_copydata(m
, off
, sizeof(*thp
), (caddr_t
)&th
);
1293 in6_pcbnotify(&tcbinfo
, sa
, th
.th_dport
,
1294 (struct sockaddr
*)ip6cp
->ip6c_src
,
1295 th
.th_sport
, cmd
, notify
);
1297 in6_pcbnotify(&tcbinfo
, sa
, 0, (struct sockaddr
*)sa6_src
,
1304 * Following is where TCP initial sequence number generation occurs.
1306 * There are two places where we must use initial sequence numbers:
1307 * 1. In SYN-ACK packets.
1308 * 2. In SYN packets.
1310 * The ISNs in SYN-ACK packets have no monotonicity requirement,
1311 * and should be as unpredictable as possible to avoid the possibility
1312 * of spoofing and/or connection hijacking. To satisfy this
1313 * requirement, SYN-ACK ISNs are generated via the arc4random()
1314 * function. If exact RFC 1948 compliance is requested via sysctl,
1315 * these ISNs will be generated just like those in SYN packets.
1317 * The ISNs in SYN packets must be monotonic; TIME_WAIT recycling
1318 * depends on this property. In addition, these ISNs should be
1319 * unguessable so as to prevent connection hijacking. To satisfy
1320 * the requirements of this situation, the algorithm outlined in
1321 * RFC 1948 is used to generate sequence numbers.
1323 * For more information on the theory of operation, please see
1326 * Implementation details:
1328 * Time is based off the system timer, and is corrected so that it
1329 * increases by one megabyte per second. This allows for proper
1330 * recycling on high speed LANs while still leaving over an hour
1333 * Two sysctls control the generation of ISNs:
1335 * net.inet.tcp.isn_reseed_interval controls the number of seconds
1336 * between seeding of isn_secret. This is normally set to zero,
1337 * as reseeding should not be necessary.
1339 * net.inet.tcp.strict_rfc1948 controls whether RFC 1948 is followed
1340 * strictly. When strict compliance is requested, reseeding is
1341 * disabled and SYN-ACKs will be generated in the same manner as
1342 * SYNs. Strict mode is disabled by default.
1346 #define ISN_BYTES_PER_SECOND 1048576
1348 u_char isn_secret
[32];
1349 int isn_last_reseed
;
1356 u_int32_t md5_buffer
[4];
1358 struct timeval timenow
;
1360 /* Use arc4random for SYN-ACKs when not in exact RFC1948 mode. */
1361 if (((tp
->t_state
== TCPS_LISTEN
) || (tp
->t_state
== TCPS_TIME_WAIT
))
1362 && tcp_strict_rfc1948
== 0)
1366 return arc4random();
1368 getmicrotime(&timenow
);
1370 /* Seed if this is the first use, reseed if requested. */
1371 if ((isn_last_reseed
== 0) ||
1372 ((tcp_strict_rfc1948
== 0) && (tcp_isn_reseed_interval
> 0) &&
1373 (((u_int
)isn_last_reseed
+ (u_int
)tcp_isn_reseed_interval
*hz
)
1374 < (u_int
)timenow
.tv_sec
))) {
1376 read_random(&isn_secret
, sizeof(isn_secret
));
1378 read_random_unlimited(&isn_secret
, sizeof(isn_secret
));
1380 isn_last_reseed
= timenow
.tv_sec
;
1383 /* Compute the md5 hash and return the ISN. */
1385 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_fport
, sizeof(u_short
));
1386 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_lport
, sizeof(u_short
));
1388 if ((tp
->t_inpcb
->inp_vflag
& INP_IPV6
) != 0) {
1389 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->in6p_faddr
,
1390 sizeof(struct in6_addr
));
1391 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->in6p_laddr
,
1392 sizeof(struct in6_addr
));
1396 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_faddr
,
1397 sizeof(struct in_addr
));
1398 MD5Update(&isn_ctx
, (u_char
*) &tp
->t_inpcb
->inp_laddr
,
1399 sizeof(struct in_addr
));
1401 MD5Update(&isn_ctx
, (u_char
*) &isn_secret
, sizeof(isn_secret
));
1402 MD5Final((u_char
*) &md5_buffer
, &isn_ctx
);
1403 new_isn
= (tcp_seq
) md5_buffer
[0];
1404 new_isn
+= timenow
.tv_sec
* (ISN_BYTES_PER_SECOND
/ hz
);
1409 * When a source quench is received, close congestion window
1410 * to one segment. We will gradually open it again as we proceed.
1418 struct tcpcb
*tp
= intotcpcb(inp
);
1421 tp
->snd_cwnd
= tp
->t_maxseg
;
1425 * When a specific ICMP unreachable message is received and the
1426 * connection state is SYN-SENT, drop the connection. This behavior
1427 * is controlled by the icmp_may_rst sysctl.
1430 tcp_drop_syn_sent(inp
, errno
)
1434 struct tcpcb
*tp
= intotcpcb(inp
);
1436 if (tp
&& tp
->t_state
== TCPS_SYN_SENT
)
1437 tcp_drop(tp
, errno
);
1441 * When `need fragmentation' ICMP is received, update our idea of the MSS
1442 * based on the new value in the route. Also nudge TCP to send something,
1443 * since we know the packet we just sent was dropped.
1444 * This duplicates some code in the tcp_mss() function in tcp_input.c.
1452 struct tcpcb
*tp
= intotcpcb(inp
);
1454 struct rmxp_tao
*taop
;
1455 struct socket
*so
= inp
->inp_socket
;
1459 int isipv6
= (tp
->t_inpcb
->inp_vflag
& INP_IPV6
) != 0;
1465 rt
= tcp_rtlookup6(inp
);
1468 rt
= tcp_rtlookup(inp
);
1469 if (!rt
|| !rt
->rt_rmx
.rmx_mtu
) {
1470 tp
->t_maxopd
= tp
->t_maxseg
=
1472 isipv6
? tcp_v6mssdflt
:
1477 taop
= rmx_taop(rt
->rt_rmx
);
1478 offered
= taop
->tao_mssopt
;
1479 mss
= rt
->rt_rmx
.rmx_mtu
-
1482 sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
) :
1484 sizeof(struct tcpiphdr
)
1491 mss
= min(mss
, offered
);
1493 * XXX - The above conditional probably violates the TCP
1494 * spec. The problem is that, since we don't know the
1495 * other end's MSS, we are supposed to use a conservative
1496 * default. But, if we do that, then MTU discovery will
1497 * never actually take place, because the conservative
1498 * default is much less than the MTUs typically seen
1499 * on the Internet today. For the moment, we'll sweep
1500 * this under the carpet.
1502 * The conservative default might not actually be a problem
1503 * if the only case this occurs is when sending an initial
1504 * SYN with options and data to a host we've never talked
1505 * to before. Then, they will reply with an MSS value which
1506 * will get recorded and the new parameters should get
1507 * recomputed. For Further Study.
1509 if (tp
->t_maxopd
<= mss
)
1513 if ((tp
->t_flags
& (TF_REQ_TSTMP
|TF_NOOPT
)) == TF_REQ_TSTMP
&&
1514 (tp
->t_flags
& TF_RCVD_TSTMP
) == TF_RCVD_TSTMP
)
1515 mss
-= TCPOLEN_TSTAMP_APPA
;
1517 if (so
->so_snd
.sb_hiwat
< mss
)
1518 mss
= so
->so_snd
.sb_hiwat
;
1522 tcpstat
.tcps_mturesent
++;
1524 tp
->snd_nxt
= tp
->snd_una
;
1530 * Look-up the routing entry to the peer of this inpcb. If no route
1531 * is found and it cannot be allocated the return NULL. This routine
1532 * is called by TCP routines that access the rmx structure and by tcp_mss
1533 * to get the interface MTU.
1542 ro
= &inp
->inp_route
;
1546 if (rt
== NULL
|| !(rt
->rt_flags
& RTF_UP
) || rt
->generation_id
!= route_generation
) {
1547 /* No route yet, so try to acquire one */
1548 if (inp
->inp_faddr
.s_addr
!= INADDR_ANY
) {
1549 ro
->ro_dst
.sa_family
= AF_INET
;
1550 ro
->ro_dst
.sa_len
= sizeof(struct sockaddr_in
);
1551 ((struct sockaddr_in
*) &ro
->ro_dst
)->sin_addr
=
1565 struct route_in6
*ro6
;
1568 ro6
= &inp
->in6p_route
;
1570 if (rt
== NULL
|| !(rt
->rt_flags
& RTF_UP
)) {
1571 /* No route yet, so try to acquire one */
1572 if (!IN6_IS_ADDR_UNSPECIFIED(&inp
->in6p_faddr
)) {
1573 struct sockaddr_in6
*dst6
;
1575 dst6
= (struct sockaddr_in6
*)&ro6
->ro_dst
;
1576 dst6
->sin6_family
= AF_INET6
;
1577 dst6
->sin6_len
= sizeof(*dst6
);
1578 dst6
->sin6_addr
= inp
->in6p_faddr
;
1579 rtalloc((struct route
*)ro6
);
1588 /* compute ESP/AH header size for TCP, including outer IP header. */
1590 ipsec_hdrsiz_tcp(tp
)
1598 struct ip6_hdr
*ip6
= NULL
;
1602 if ((tp
== NULL
) || ((inp
= tp
->t_inpcb
) == NULL
))
1604 MGETHDR(m
, M_DONTWAIT
, MT_DATA
);
1608 lck_mtx_lock(sadb_mutex
);
1610 if ((inp
->inp_vflag
& INP_IPV6
) != 0) {
1611 ip6
= mtod(m
, struct ip6_hdr
*);
1612 th
= (struct tcphdr
*)(ip6
+ 1);
1613 m
->m_pkthdr
.len
= m
->m_len
=
1614 sizeof(struct ip6_hdr
) + sizeof(struct tcphdr
);
1615 tcp_fillheaders(tp
, ip6
, th
);
1616 hdrsiz
= ipsec6_hdrsiz(m
, IPSEC_DIR_OUTBOUND
, inp
);
1620 ip
= mtod(m
, struct ip
*);
1621 th
= (struct tcphdr
*)(ip
+ 1);
1622 m
->m_pkthdr
.len
= m
->m_len
= sizeof(struct tcpiphdr
);
1623 tcp_fillheaders(tp
, ip
, th
);
1624 hdrsiz
= ipsec4_hdrsiz(m
, IPSEC_DIR_OUTBOUND
, inp
);
1626 lck_mtx_unlock(sadb_mutex
);
1633 * Return a pointer to the cached information about the remote host.
1634 * The cached information is stored in the protocol specific part of
1635 * the route metrics.
1638 tcp_gettaocache(inp
)
1644 if ((inp
->inp_vflag
& INP_IPV6
) != 0)
1645 rt
= tcp_rtlookup6(inp
);
1648 rt
= tcp_rtlookup(inp
);
1650 /* Make sure this is a host route and is up. */
1652 (rt
->rt_flags
& (RTF_UP
|RTF_HOST
)) != (RTF_UP
|RTF_HOST
))
1655 return rmx_taop(rt
->rt_rmx
);
1659 * Clear all the TAO cache entries, called from tcp_init.
1662 * This routine is just an empty one, because we assume that the routing
1663 * routing tables are initialized at the same time when TCP, so there is
1664 * nothing in the cache left over.
1672 tcp_lock(so
, refcount
, lr
)
1679 lr_saved
= (unsigned int) __builtin_return_address(0);
1683 lck_mtx_lock(((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
);
1686 panic("tcp_lock: so=%x NO PCB! lr=%x\n", so
, lr_saved
);
1687 lck_mtx_lock(so
->so_proto
->pr_domain
->dom_mtx
);
1690 if (so
->so_usecount
< 0)
1691 panic("tcp_lock: so=%x so_pcb=%x lr=%x ref=%x\n",
1692 so
, so
->so_pcb
, lr_saved
, so
->so_usecount
);
1696 so
->lock_lr
[so
->next_lock_lr
] = (u_int32_t
*)lr_saved
;
1697 so
->next_lock_lr
= (so
->next_lock_lr
+1) % SO_LCKDBG_MAX
;
1702 tcp_unlock(so
, refcount
, lr
)
1709 lr_saved
= (unsigned int) __builtin_return_address(0);
1712 #ifdef MORE_TCPLOCK_DEBUG
1713 printf("tcp_unlock: so=%x sopcb=%x lock=%x ref=%x lr=%x\n",
1714 so
, so
->so_pcb
, ((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
, so
->so_usecount
, lr_saved
);
1719 if (so
->so_usecount
< 0)
1720 panic("tcp_unlock: so=%x usecount=%x\n", so
, so
->so_usecount
);
1721 if (so
->so_pcb
== NULL
)
1722 panic("tcp_unlock: so=%x NO PCB usecount=%x lr=%x\n", so
, so
->so_usecount
, lr_saved
);
1724 lck_mtx_assert(((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
, LCK_MTX_ASSERT_OWNED
);
1725 so
->unlock_lr
[so
->next_unlock_lr
] = (u_int
*)lr_saved
;
1726 so
->next_unlock_lr
= (so
->next_unlock_lr
+1) % SO_LCKDBG_MAX
;
1727 lck_mtx_unlock(((struct inpcb
*)so
->so_pcb
)->inpcb_mtx
);
1733 tcp_getlock(so
, locktype
)
1737 struct inpcb
*inp
= sotoinpcb(so
);
1740 if (so
->so_usecount
< 0)
1741 panic("tcp_getlock: so=%x usecount=%x\n", so
, so
->so_usecount
);
1742 return(inp
->inpcb_mtx
);
1745 panic("tcp_getlock: so=%x NULL so_pcb\n", so
);
1746 return (so
->so_proto
->pr_domain
->dom_mtx
);