2 * Copyright (c) 2012-2013 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 #include <mach/host_priv.h>
29 #include <mach/host_special_ports.h>
30 #include <mach/mach_types.h>
31 #include <mach/telemetry_notification_server.h>
33 #include <kern/assert.h>
34 #include <kern/clock.h>
35 #include <kern/debug.h>
36 #include <kern/host.h>
37 #include <kern/kalloc.h>
38 #include <kern/kern_types.h>
39 #include <kern/locks.h>
40 #include <kern/misc_protos.h>
41 #include <kern/sched.h>
42 #include <kern/sched_prim.h>
43 #include <kern/telemetry.h>
44 #include <kern/timer_call.h>
45 #include <kern/policy_internal.h>
46 #include <kern/kcdata.h>
48 #include <pexpert/pexpert.h>
50 #include <vm/vm_kern.h>
51 #include <vm/vm_shared_region.h>
53 #include <kperf/callstack.h>
54 #include <kern/backtrace.h>
56 #include <sys/kdebug.h>
57 #include <uuid/uuid.h>
58 #include <kdp/kdp_dyld.h>
60 #define TELEMETRY_DEBUG 0
62 extern int proc_pid(void *);
63 extern char *proc_name_address(void *p
);
64 extern uint64_t proc_uniqueid(void *p
);
65 extern uint64_t proc_was_throttled(void *p
);
66 extern uint64_t proc_did_throttle(void *p
);
67 extern int proc_selfpid(void);
68 extern boolean_t
task_did_exec(task_t task
);
69 extern boolean_t
task_is_exec_copy(task_t task
);
71 struct micro_snapshot_buffer
{
74 uint32_t current_position
;
78 void telemetry_take_sample(thread_t thread
, uint8_t microsnapshot_flags
, struct micro_snapshot_buffer
* current_buffer
);
79 int telemetry_buffer_gather(user_addr_t buffer
, uint32_t *length
, boolean_t mark
, struct micro_snapshot_buffer
* current_buffer
);
81 #define TELEMETRY_DEFAULT_SAMPLE_RATE (1) /* 1 sample every 1 second */
82 #define TELEMETRY_DEFAULT_BUFFER_SIZE (16*1024)
83 #define TELEMETRY_MAX_BUFFER_SIZE (64*1024)
85 #define TELEMETRY_DEFAULT_NOTIFY_LEEWAY (4*1024) // Userland gets 4k of leeway to collect data after notification
86 #define TELEMETRY_MAX_UUID_COUNT (128) // Max of 128 non-shared-cache UUIDs to log for symbolication
88 uint32_t telemetry_sample_rate
= 0;
89 volatile boolean_t telemetry_needs_record
= FALSE
;
90 volatile boolean_t telemetry_needs_timer_arming_record
= FALSE
;
93 * If TRUE, record micro-stackshot samples for all tasks.
94 * If FALSE, only sample tasks which are marked for telemetry.
96 boolean_t telemetry_sample_all_tasks
= FALSE
;
97 uint32_t telemetry_active_tasks
= 0; // Number of tasks opted into telemetry
99 uint32_t telemetry_timestamp
= 0;
102 * The telemetry_buffer is responsible
103 * for timer samples and interrupt samples that are driven by
104 * compute_averages(). It will notify its client (if one
105 * exists) when it has enough data to be worth flushing.
107 struct micro_snapshot_buffer telemetry_buffer
= {0, 0, 0, 0};
109 int telemetry_bytes_since_last_mark
= -1; // How much data since buf was last marked?
110 int telemetry_buffer_notify_at
= 0;
112 lck_grp_t telemetry_lck_grp
;
113 lck_mtx_t telemetry_mtx
;
115 #define TELEMETRY_LOCK() do { lck_mtx_lock(&telemetry_mtx); } while(0)
116 #define TELEMETRY_TRY_SPIN_LOCK() lck_mtx_try_lock_spin(&telemetry_mtx)
117 #define TELEMETRY_UNLOCK() do { lck_mtx_unlock(&telemetry_mtx); } while(0)
119 void telemetry_init(void)
122 uint32_t telemetry_notification_leeway
;
124 lck_grp_init(&telemetry_lck_grp
, "telemetry group", LCK_GRP_ATTR_NULL
);
125 lck_mtx_init(&telemetry_mtx
, &telemetry_lck_grp
, LCK_ATTR_NULL
);
127 if (!PE_parse_boot_argn("telemetry_buffer_size", &telemetry_buffer
.size
, sizeof(telemetry_buffer
.size
))) {
128 telemetry_buffer
.size
= TELEMETRY_DEFAULT_BUFFER_SIZE
;
131 if (telemetry_buffer
.size
> TELEMETRY_MAX_BUFFER_SIZE
)
132 telemetry_buffer
.size
= TELEMETRY_MAX_BUFFER_SIZE
;
134 ret
= kmem_alloc(kernel_map
, &telemetry_buffer
.buffer
, telemetry_buffer
.size
, VM_KERN_MEMORY_DIAG
);
135 if (ret
!= KERN_SUCCESS
) {
136 kprintf("Telemetry: Allocation failed: %d\n", ret
);
139 bzero((void *) telemetry_buffer
.buffer
, telemetry_buffer
.size
);
141 if (!PE_parse_boot_argn("telemetry_notification_leeway", &telemetry_notification_leeway
, sizeof(telemetry_notification_leeway
))) {
143 * By default, notify the user to collect the buffer when there is this much space left in the buffer.
145 telemetry_notification_leeway
= TELEMETRY_DEFAULT_NOTIFY_LEEWAY
;
147 if (telemetry_notification_leeway
>= telemetry_buffer
.size
) {
148 printf("telemetry: nonsensical telemetry_notification_leeway boot-arg %d changed to %d\n",
149 telemetry_notification_leeway
, TELEMETRY_DEFAULT_NOTIFY_LEEWAY
);
150 telemetry_notification_leeway
= TELEMETRY_DEFAULT_NOTIFY_LEEWAY
;
152 telemetry_buffer_notify_at
= telemetry_buffer
.size
- telemetry_notification_leeway
;
154 if (!PE_parse_boot_argn("telemetry_sample_rate", &telemetry_sample_rate
, sizeof(telemetry_sample_rate
))) {
155 telemetry_sample_rate
= TELEMETRY_DEFAULT_SAMPLE_RATE
;
159 * To enable telemetry for all tasks, include "telemetry_sample_all_tasks=1" in boot-args.
161 if (!PE_parse_boot_argn("telemetry_sample_all_tasks", &telemetry_sample_all_tasks
, sizeof(telemetry_sample_all_tasks
))) {
163 #if CONFIG_EMBEDDED && !(DEVELOPMENT || DEBUG)
164 telemetry_sample_all_tasks
= FALSE
;
166 telemetry_sample_all_tasks
= TRUE
;
167 #endif /* CONFIG_EMBEDDED && !(DEVELOPMENT || DEBUG) */
171 kprintf("Telemetry: Sampling %stasks once per %u second%s\n",
172 (telemetry_sample_all_tasks
) ? "all " : "",
173 telemetry_sample_rate
, telemetry_sample_rate
== 1 ? "" : "s");
177 * Enable or disable global microstackshots (ie telemetry_sample_all_tasks).
179 * enable_disable == 1: turn it on
180 * enable_disable == 0: turn it off
183 telemetry_global_ctl(int enable_disable
)
185 if (enable_disable
== 1) {
186 telemetry_sample_all_tasks
= TRUE
;
188 telemetry_sample_all_tasks
= FALSE
;
193 * Opt the given task into or out of the telemetry stream.
195 * Supported reasons (callers may use any or all of):
199 * enable_disable == 1: turn it on
200 * enable_disable == 0: turn it off
203 telemetry_task_ctl(task_t task
, uint32_t reasons
, int enable_disable
)
206 telemetry_task_ctl_locked(task
, reasons
, enable_disable
);
211 telemetry_task_ctl_locked(task_t task
, uint32_t reasons
, int enable_disable
)
215 assert((reasons
!= 0) && ((reasons
| TF_TELEMETRY
) == TF_TELEMETRY
));
217 task_lock_assert_owned(task
);
219 origflags
= task
->t_flags
;
221 if (enable_disable
== 1) {
222 task
->t_flags
|= reasons
;
223 if ((origflags
& TF_TELEMETRY
) == 0) {
224 OSIncrementAtomic(&telemetry_active_tasks
);
226 printf("%s: telemetry OFF -> ON (%d active)\n", proc_name_address(task
->bsd_info
), telemetry_active_tasks
);
230 task
->t_flags
&= ~reasons
;
231 if (((origflags
& TF_TELEMETRY
) != 0) && ((task
->t_flags
& TF_TELEMETRY
) == 0)) {
233 * If this task went from having at least one telemetry bit to having none,
234 * the net change was to disable telemetry for the task.
236 OSDecrementAtomic(&telemetry_active_tasks
);
238 printf("%s: telemetry ON -> OFF (%d active)\n", proc_name_address(task
->bsd_info
), telemetry_active_tasks
);
245 * Determine if the current thread is eligible for telemetry:
247 * telemetry_sample_all_tasks: All threads are eligible. This takes precedence.
248 * telemetry_active_tasks: Count of tasks opted in.
249 * task->t_flags & TF_TELEMETRY: This task is opted in.
252 telemetry_is_active(thread_t thread
)
254 task_t task
= thread
->task
;
256 if (task
== kernel_task
) {
257 /* Kernel threads never return to an AST boundary, and are ineligible */
261 if (telemetry_sample_all_tasks
== TRUE
) {
265 if ((telemetry_active_tasks
> 0) && ((thread
->task
->t_flags
& TF_TELEMETRY
) != 0)) {
273 * Userland is arming a timer. If we are eligible for such a record,
274 * sample now. No need to do this one at the AST because we're already at
275 * a safe place in this system call.
277 int telemetry_timer_event(__unused
uint64_t deadline
, __unused
uint64_t interval
, __unused
uint64_t leeway
)
279 if (telemetry_needs_timer_arming_record
== TRUE
) {
280 telemetry_needs_timer_arming_record
= FALSE
;
281 telemetry_take_sample(current_thread(), kTimerArmingRecord
| kUserMode
, &telemetry_buffer
);
288 * Mark the current thread for an interrupt-based
289 * telemetry record, to be sampled at the next AST boundary.
291 void telemetry_mark_curthread(boolean_t interrupted_userspace
)
293 uint32_t ast_bits
= 0;
294 thread_t thread
= current_thread();
297 * If telemetry isn't active for this thread, return and try
300 if (telemetry_is_active(thread
) == FALSE
) {
304 ast_bits
|= (interrupted_userspace
? AST_TELEMETRY_USER
: AST_TELEMETRY_KERNEL
);
306 telemetry_needs_record
= FALSE
;
307 thread_ast_set(thread
, ast_bits
);
308 ast_propagate(thread
);
311 void compute_telemetry(void *arg __unused
)
313 if (telemetry_sample_all_tasks
|| (telemetry_active_tasks
> 0)) {
314 if ((++telemetry_timestamp
) % telemetry_sample_rate
== 0) {
315 telemetry_needs_record
= TRUE
;
316 telemetry_needs_timer_arming_record
= TRUE
;
322 * If userland has registered a port for telemetry notifications, send one now.
325 telemetry_notify_user(void)
327 mach_port_t user_port
;
331 error
= host_get_telemetry_port(host_priv_self(), &user_port
);
332 if ((error
!= KERN_SUCCESS
) || !IPC_PORT_VALID(user_port
)) {
336 telemetry_notification(user_port
, flags
);
337 ipc_port_release_send(user_port
);
340 void telemetry_ast(thread_t thread
, ast_t reasons
)
342 assert((reasons
& AST_TELEMETRY_ALL
) != AST_TELEMETRY_ALL
); /* only one is valid at a time */
344 boolean_t io_telemetry
= (reasons
& AST_TELEMETRY_IO
) ? TRUE
: FALSE
;
345 boolean_t interrupted_userspace
= (reasons
& AST_TELEMETRY_USER
) ? TRUE
: FALSE
;
347 uint8_t microsnapshot_flags
= kInterruptRecord
;
349 if (io_telemetry
== TRUE
)
350 microsnapshot_flags
= kIORecord
;
352 if (interrupted_userspace
)
353 microsnapshot_flags
|= kUserMode
;
355 telemetry_take_sample(thread
, microsnapshot_flags
, &telemetry_buffer
);
358 void telemetry_take_sample(thread_t thread
, uint8_t microsnapshot_flags
, struct micro_snapshot_buffer
* current_buffer
)
362 uint32_t btcount
= 0, bti
;
363 struct micro_snapshot
*msnap
;
364 struct task_snapshot
*tsnap
;
365 struct thread_snapshot
*thsnap
;
369 uint32_t current_record_start
;
371 boolean_t notify
= FALSE
;
373 if (thread
== THREAD_NULL
)
377 if ((task
== TASK_NULL
) || (task
== kernel_task
) || task_did_exec(task
) || task_is_exec_copy(task
))
381 * To avoid overloading the system with telemetry requests, make
382 * sure we don't add more requests while existing ones are
383 * in-flight. Attempt this by checking if we can grab the lock.
385 * This concerns me a little; this working as intended is
386 * contingent on the workload being done in the context of the
387 * telemetry lock being the expensive part of telemetry. This
388 * includes populating the buffer and the client gathering it,
389 * but excludes the copyin overhead.
391 if (!TELEMETRY_TRY_SPIN_LOCK())
396 /* telemetry_XXX accessed outside of lock for instrumentation only */
398 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_STACKSHOT
, MICROSTACKSHOT_RECORD
) | DBG_FUNC_START
, microsnapshot_flags
, telemetry_bytes_since_last_mark
, 0, 0, (&telemetry_buffer
!= current_buffer
));
400 p
= get_bsdtask_info(task
);
403 * Gather up the data we'll need for this sample. The sample is written into the kernel
404 * buffer with the global telemetry lock held -- so we must do our (possibly faulting)
405 * copies from userland here, before taking the lock.
407 uintptr_t frames
[MAX_CALLSTACK_FRAMES
] = {};
409 int backtrace_error
= backtrace_user(frames
, MAX_CALLSTACK_FRAMES
, &btcount
, &user64
);
410 if (backtrace_error
) {
415 * Find the actual [slid] address of the shared cache's UUID, and copy it in from userland.
417 int shared_cache_uuid_valid
= 0;
418 uint64_t shared_cache_base_address
;
419 struct _dyld_cache_header shared_cache_header
;
420 uint64_t shared_cache_slide
;
423 * Don't copy in the entire shared cache header; we only need the UUID. Calculate the
424 * offset of that one field.
426 int sc_header_uuid_offset
= (char *)&shared_cache_header
.uuid
- (char *)&shared_cache_header
;
427 vm_shared_region_t sr
= vm_shared_region_get(task
);
429 if ((vm_shared_region_start_address(sr
, &shared_cache_base_address
) == KERN_SUCCESS
) &&
430 (copyin(shared_cache_base_address
+ sc_header_uuid_offset
, (char *)&shared_cache_header
.uuid
,
431 sizeof (shared_cache_header
.uuid
)) == 0)) {
432 shared_cache_uuid_valid
= 1;
433 shared_cache_slide
= vm_shared_region_get_slide(sr
);
435 // vm_shared_region_get() gave us a reference on the shared region.
436 vm_shared_region_deallocate(sr
);
440 * Retrieve the array of UUID's for binaries used by this task.
441 * We reach down into DYLD's data structures to find the array.
443 * XXX - make this common with kdp?
445 uint32_t uuid_info_count
= 0;
446 mach_vm_address_t uuid_info_addr
= 0;
447 if (task_has_64BitAddr(task
)) {
448 struct user64_dyld_all_image_infos task_image_infos
;
449 if (copyin(task
->all_image_info_addr
, (char *)&task_image_infos
, sizeof(task_image_infos
)) == 0) {
450 uuid_info_count
= (uint32_t)task_image_infos
.uuidArrayCount
;
451 uuid_info_addr
= task_image_infos
.uuidArray
;
454 struct user32_dyld_all_image_infos task_image_infos
;
455 if (copyin(task
->all_image_info_addr
, (char *)&task_image_infos
, sizeof(task_image_infos
)) == 0) {
456 uuid_info_count
= task_image_infos
.uuidArrayCount
;
457 uuid_info_addr
= task_image_infos
.uuidArray
;
462 * If we get a NULL uuid_info_addr (which can happen when we catch dyld in the middle of updating
463 * this data structure), we zero the uuid_info_count so that we won't even try to save load info
466 if (!uuid_info_addr
) {
471 * Don't copy in an unbounded amount of memory. The main binary and interesting
472 * non-shared-cache libraries should be in the first few images.
474 if (uuid_info_count
> TELEMETRY_MAX_UUID_COUNT
) {
475 uuid_info_count
= TELEMETRY_MAX_UUID_COUNT
;
478 uint32_t uuid_info_size
= (uint32_t)(task_has_64BitAddr(thread
->task
) ? sizeof(struct user64_dyld_uuid_info
) : sizeof(struct user32_dyld_uuid_info
));
479 uint32_t uuid_info_array_size
= uuid_info_count
* uuid_info_size
;
480 char *uuid_info_array
= NULL
;
482 if (uuid_info_count
> 0) {
483 if ((uuid_info_array
= (char *)kalloc(uuid_info_array_size
)) == NULL
) {
488 * Copy in the UUID info array.
489 * It may be nonresident, in which case just fix up nloadinfos to 0 in the task snapshot.
491 if (copyin(uuid_info_addr
, uuid_info_array
, uuid_info_array_size
) != 0) {
492 kfree(uuid_info_array
, uuid_info_array_size
);
493 uuid_info_array
= NULL
;
494 uuid_info_array_size
= 0;
499 * Look for a dispatch queue serial number, and copy it in from userland if present.
501 uint64_t dqserialnum
= 0;
502 int dqserialnum_valid
= 0;
504 uint64_t dqkeyaddr
= thread_dispatchqaddr(thread
);
505 if (dqkeyaddr
!= 0) {
507 uint64_t dq_serialno_offset
= get_task_dispatchqueue_serialno_offset(task
);
508 if ((copyin(dqkeyaddr
, (char *)&dqaddr
, (task_has_64BitAddr(task
) ? 8 : 4)) == 0) &&
509 (dqaddr
!= 0) && (dq_serialno_offset
!= 0)) {
510 uint64_t dqserialnumaddr
= dqaddr
+ dq_serialno_offset
;
511 if (copyin(dqserialnumaddr
, (char *)&dqserialnum
, (task_has_64BitAddr(task
) ? 8 : 4)) == 0) {
512 dqserialnum_valid
= 1;
517 clock_get_calendar_microtime(&secs
, &usecs
);
522 * If our buffer is not backed by anything,
523 * then we cannot take the sample. Meant to allow us to deallocate the window
524 * buffer if it is disabled.
526 if (!current_buffer
->buffer
)
530 * We do the bulk of the operation under the telemetry lock, on assumption that
531 * any page faults during execution will not cause another AST_TELEMETRY_ALL
532 * to deadlock; they will just block until we finish. This makes it easier
533 * to copy into the buffer directly. As soon as we unlock, userspace can copy
539 current_record_start
= current_buffer
->current_position
;
541 if ((current_buffer
->size
- current_buffer
->current_position
) < sizeof(struct micro_snapshot
)) {
543 * We can't fit a record in the space available, so wrap around to the beginning.
544 * Save the current position as the known end point of valid data.
546 current_buffer
->end_point
= current_record_start
;
547 current_buffer
->current_position
= 0;
548 if (current_record_start
== 0) {
549 /* This sample is too large to fit in the buffer even when we started at 0, so skip it */
555 msnap
= (struct micro_snapshot
*)(uintptr_t)(current_buffer
->buffer
+ current_buffer
->current_position
);
556 msnap
->snapshot_magic
= STACKSHOT_MICRO_SNAPSHOT_MAGIC
;
557 msnap
->ms_flags
= microsnapshot_flags
;
558 msnap
->ms_opaque_flags
= 0; /* namespace managed by userspace */
559 msnap
->ms_cpu
= 0; /* XXX - does this field make sense for a micro-stackshot? */
560 msnap
->ms_time
= secs
;
561 msnap
->ms_time_microsecs
= usecs
;
563 current_buffer
->current_position
+= sizeof(struct micro_snapshot
);
565 if ((current_buffer
->size
- current_buffer
->current_position
) < sizeof(struct task_snapshot
)) {
566 current_buffer
->end_point
= current_record_start
;
567 current_buffer
->current_position
= 0;
568 if (current_record_start
== 0) {
569 /* This sample is too large to fit in the buffer even when we started at 0, so skip it */
575 tsnap
= (struct task_snapshot
*)(uintptr_t)(current_buffer
->buffer
+ current_buffer
->current_position
);
576 bzero(tsnap
, sizeof(*tsnap
));
577 tsnap
->snapshot_magic
= STACKSHOT_TASK_SNAPSHOT_MAGIC
;
578 tsnap
->pid
= proc_pid(p
);
579 tsnap
->uniqueid
= proc_uniqueid(p
);
580 tsnap
->user_time_in_terminated_threads
= task
->total_user_time
;
581 tsnap
->system_time_in_terminated_threads
= task
->total_system_time
;
582 tsnap
->suspend_count
= task
->suspend_count
;
583 tsnap
->task_size
= pmap_resident_count(task
->map
->pmap
);
584 tsnap
->faults
= task
->faults
;
585 tsnap
->pageins
= task
->pageins
;
586 tsnap
->cow_faults
= task
->cow_faults
;
588 * The throttling counters are maintained as 64-bit counters in the proc
589 * structure. However, we reserve 32-bits (each) for them in the task_snapshot
590 * struct to save space and since we do not expect them to overflow 32-bits. If we
591 * find these values overflowing in the future, the fix would be to simply
592 * upgrade these counters to 64-bit in the task_snapshot struct
594 tsnap
->was_throttled
= (uint32_t) proc_was_throttled(p
);
595 tsnap
->did_throttle
= (uint32_t) proc_did_throttle(p
);
597 if (task
->t_flags
& TF_TELEMETRY
) {
598 tsnap
->ss_flags
|= kTaskRsrcFlagged
;
601 if (proc_get_effective_task_policy(task
, TASK_POLICY_DARWIN_BG
)) {
602 tsnap
->ss_flags
|= kTaskDarwinBG
;
605 proc_get_darwinbgstate(task
, &tmp
);
607 if (proc_get_effective_task_policy(task
, TASK_POLICY_ROLE
) == TASK_FOREGROUND_APPLICATION
) {
608 tsnap
->ss_flags
|= kTaskIsForeground
;
611 if (tmp
& PROC_FLAG_ADAPTIVE_IMPORTANT
) {
612 tsnap
->ss_flags
|= kTaskIsBoosted
;
615 if (tmp
& PROC_FLAG_SUPPRESSED
) {
616 tsnap
->ss_flags
|= kTaskIsSuppressed
;
619 tsnap
->latency_qos
= task_grab_latency_qos(task
);
621 strlcpy(tsnap
->p_comm
, proc_name_address(p
), sizeof(tsnap
->p_comm
));
622 if (task_has_64BitAddr(thread
->task
)) {
623 tsnap
->ss_flags
|= kUser64_p
;
626 if (shared_cache_uuid_valid
) {
627 tsnap
->shared_cache_slide
= shared_cache_slide
;
628 bcopy(shared_cache_header
.uuid
, tsnap
->shared_cache_identifier
, sizeof (shared_cache_header
.uuid
));
631 current_buffer
->current_position
+= sizeof(struct task_snapshot
);
634 * Directly after the task snapshot, place the array of UUID's corresponding to the binaries
637 if ((current_buffer
->size
- current_buffer
->current_position
) < uuid_info_array_size
) {
638 current_buffer
->end_point
= current_record_start
;
639 current_buffer
->current_position
= 0;
640 if (current_record_start
== 0) {
641 /* This sample is too large to fit in the buffer even when we started at 0, so skip it */
648 * Copy the UUID info array into our sample.
650 if (uuid_info_array_size
> 0) {
651 bcopy(uuid_info_array
, (char *)(current_buffer
->buffer
+ current_buffer
->current_position
), uuid_info_array_size
);
652 tsnap
->nloadinfos
= uuid_info_count
;
655 current_buffer
->current_position
+= uuid_info_array_size
;
658 * After the task snapshot & list of binary UUIDs, we place a thread snapshot.
661 if ((current_buffer
->size
- current_buffer
->current_position
) < sizeof(struct thread_snapshot
)) {
662 /* wrap and overwrite */
663 current_buffer
->end_point
= current_record_start
;
664 current_buffer
->current_position
= 0;
665 if (current_record_start
== 0) {
666 /* This sample is too large to fit in the buffer even when we started at 0, so skip it */
672 thsnap
= (struct thread_snapshot
*)(uintptr_t)(current_buffer
->buffer
+ current_buffer
->current_position
);
673 bzero(thsnap
, sizeof(*thsnap
));
675 thsnap
->snapshot_magic
= STACKSHOT_THREAD_SNAPSHOT_MAGIC
;
676 thsnap
->thread_id
= thread_tid(thread
);
677 thsnap
->state
= thread
->state
;
678 thsnap
->priority
= thread
->base_pri
;
679 thsnap
->sched_pri
= thread
->sched_pri
;
680 thsnap
->sched_flags
= thread
->sched_flags
;
681 thsnap
->ss_flags
|= kStacksPCOnly
;
682 thsnap
->ts_qos
= thread
->effective_policy
.thep_qos
;
683 thsnap
->ts_rqos
= thread
->requested_policy
.thrp_qos
;
684 thsnap
->ts_rqos_override
= thread
->requested_policy
.thrp_qos_override
;
686 if (proc_get_effective_thread_policy(thread
, TASK_POLICY_DARWIN_BG
)) {
687 thsnap
->ss_flags
|= kThreadDarwinBG
;
690 thsnap
->user_time
= timer_grab(&thread
->user_timer
);
692 uint64_t tval
= timer_grab(&thread
->system_timer
);
694 if (thread
->precise_user_kernel_time
) {
695 thsnap
->system_time
= tval
;
697 thsnap
->user_time
+= tval
;
698 thsnap
->system_time
= 0;
701 current_buffer
->current_position
+= sizeof(struct thread_snapshot
);
704 * If this thread has a dispatch queue serial number, include it here.
706 if (dqserialnum_valid
) {
707 if ((current_buffer
->size
- current_buffer
->current_position
) < sizeof(dqserialnum
)) {
708 /* wrap and overwrite */
709 current_buffer
->end_point
= current_record_start
;
710 current_buffer
->current_position
= 0;
711 if (current_record_start
== 0) {
712 /* This sample is too large to fit in the buffer even when we started at 0, so skip it */
718 thsnap
->ss_flags
|= kHasDispatchSerial
;
719 bcopy(&dqserialnum
, (char *)current_buffer
->buffer
+ current_buffer
->current_position
, sizeof (dqserialnum
));
720 current_buffer
->current_position
+= sizeof (dqserialnum
);
723 if (task_has_64BitAddr(task
)) {
725 thsnap
->ss_flags
|= kUser64_p
;
731 * If we can't fit this entire stacktrace then cancel this record, wrap to the beginning,
732 * and start again there so that we always store a full record.
734 if ((current_buffer
->size
- current_buffer
->current_position
)/framesize
< btcount
) {
735 current_buffer
->end_point
= current_record_start
;
736 current_buffer
->current_position
= 0;
737 if (current_record_start
== 0) {
738 /* This sample is too large to fit in the buffer even when we started at 0, so skip it */
744 for (bti
=0; bti
< btcount
; bti
++, current_buffer
->current_position
+= framesize
) {
745 if (framesize
== 8) {
746 *(uint64_t *)(uintptr_t)(current_buffer
->buffer
+ current_buffer
->current_position
) = frames
[bti
];
748 *(uint32_t *)(uintptr_t)(current_buffer
->buffer
+ current_buffer
->current_position
) = (uint32_t)frames
[bti
];
752 if (current_buffer
->end_point
< current_buffer
->current_position
) {
754 * Each time the cursor wraps around to the beginning, we leave a
755 * differing amount of unused space at the end of the buffer. Make
756 * sure the cursor pushes the end point in case we're making use of
757 * more of the buffer than we did the last time we wrapped.
759 current_buffer
->end_point
= current_buffer
->current_position
;
762 thsnap
->nuser_frames
= btcount
;
765 * Now THIS is a hack.
767 if (current_buffer
== &telemetry_buffer
) {
768 telemetry_bytes_since_last_mark
+= (current_buffer
->current_position
- current_record_start
);
769 if (telemetry_bytes_since_last_mark
> telemetry_buffer_notify_at
) {
779 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_STACKSHOT
, MICROSTACKSHOT_RECORD
) | DBG_FUNC_END
, notify
, telemetry_bytes_since_last_mark
, current_buffer
->current_position
, current_buffer
->end_point
, (&telemetry_buffer
!= current_buffer
));
782 telemetry_notify_user();
785 if (uuid_info_array
!= NULL
) {
786 kfree(uuid_info_array
, uuid_info_array_size
);
792 log_telemetry_output(vm_offset_t buf
, uint32_t pos
, uint32_t sz
)
794 struct micro_snapshot
*p
;
797 printf("Copying out %d bytes of telemetry at offset %d\n", sz
, pos
);
802 * Find and log each timestamp in this chunk of buffer.
804 for (offset
= 0; offset
< sz
; offset
++) {
805 p
= (struct micro_snapshot
*)(buf
+ offset
);
806 if (p
->snapshot_magic
== STACKSHOT_MICRO_SNAPSHOT_MAGIC
) {
807 printf("telemetry timestamp: %lld\n", p
->ms_time
);
813 int telemetry_gather(user_addr_t buffer
, uint32_t *length
, boolean_t mark
)
815 return telemetry_buffer_gather(buffer
, length
, mark
, &telemetry_buffer
);
818 int telemetry_buffer_gather(user_addr_t buffer
, uint32_t *length
, boolean_t mark
, struct micro_snapshot_buffer
* current_buffer
)
821 uint32_t oldest_record_offset
;
824 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_STACKSHOT
, MICROSTACKSHOT_GATHER
) | DBG_FUNC_START
, mark
, telemetry_bytes_since_last_mark
, 0, 0, (&telemetry_buffer
!= current_buffer
));
828 if (current_buffer
->buffer
== 0) {
833 if (*length
< current_buffer
->size
) {
834 result
= KERN_NO_SPACE
;
839 * Copy the ring buffer out to userland in order sorted by time: least recent to most recent.
840 * First, we need to search forward from the cursor to find the oldest record in our buffer.
842 oldest_record_offset
= current_buffer
->current_position
;
844 if (((oldest_record_offset
+ sizeof(uint32_t)) > current_buffer
->size
) ||
845 ((oldest_record_offset
+ sizeof(uint32_t)) > current_buffer
->end_point
)) {
847 if (*(uint32_t *)(uintptr_t)(current_buffer
->buffer
) == 0) {
849 * There is no magic number at the start of the buffer, which means
850 * it's empty; nothing to see here yet.
856 * We've looked through the end of the active buffer without finding a valid
857 * record; that means all valid records are in a single chunk, beginning at
858 * the very start of the buffer.
861 oldest_record_offset
= 0;
862 assert(*(uint32_t *)(uintptr_t)(current_buffer
->buffer
) == STACKSHOT_MICRO_SNAPSHOT_MAGIC
);
866 if (*(uint32_t *)(uintptr_t)(current_buffer
->buffer
+ oldest_record_offset
) == STACKSHOT_MICRO_SNAPSHOT_MAGIC
)
870 * There are no alignment guarantees for micro-stackshot records, so we must search at each
873 oldest_record_offset
++;
874 } while (oldest_record_offset
!= current_buffer
->current_position
);
877 * If needed, copyout in two chunks: from the oldest record to the end of the buffer, and then
878 * from the beginning of the buffer up to the current position.
880 if (oldest_record_offset
!= 0) {
882 log_telemetry_output(current_buffer
->buffer
, oldest_record_offset
,
883 current_buffer
->end_point
- oldest_record_offset
);
885 if ((result
= copyout((void *)(current_buffer
->buffer
+ oldest_record_offset
), buffer
,
886 current_buffer
->end_point
- oldest_record_offset
)) != 0) {
890 *length
= current_buffer
->end_point
- oldest_record_offset
;
896 log_telemetry_output(current_buffer
->buffer
, 0, current_buffer
->current_position
);
898 if ((result
= copyout((void *)current_buffer
->buffer
, buffer
+ *length
,
899 current_buffer
->current_position
)) != 0) {
903 *length
+= (uint32_t)current_buffer
->current_position
;
907 if (mark
&& (*length
> 0)) {
908 telemetry_bytes_since_last_mark
= 0;
913 KERNEL_DEBUG_CONSTANT(MACHDBG_CODE(DBG_MACH_STACKSHOT
, MICROSTACKSHOT_GATHER
) | DBG_FUNC_END
, current_buffer
->current_position
, *length
, current_buffer
->end_point
, 0, (&telemetry_buffer
!= current_buffer
));
918 /************************/
919 /* BOOT PROFILE SUPPORT */
920 /************************/
924 * The boot-profiling support is a mechanism to sample activity happening on the
925 * system during boot. This mechanism sets up a periodic timer and on every timer fire,
926 * captures a full backtrace into the boot profiling buffer. This buffer can be pulled
927 * out and analyzed from user-space. It is turned on using the following boot-args:
928 * "bootprofile_buffer_size" specifies the size of the boot profile buffer
929 * "bootprofile_interval_ms" specifies the interval for the profiling timer
931 * Process Specific Boot Profiling
933 * The boot-arg "bootprofile_proc_name" can be used to specify a certain
934 * process that needs to profiled during boot. Setting this boot-arg changes
935 * the way stackshots are captured. At every timer fire, the code looks at the
936 * currently running process and takes a stackshot only if the requested process
937 * is on-core (which makes it unsuitable for MP systems).
941 * The boot-arg "bootprofile_type=boot" starts the timer during early boot. Using
942 * "wake" starts the timer at AP wake from suspend-to-RAM.
945 #define BOOTPROFILE_MAX_BUFFER_SIZE (64*1024*1024) /* see also COPYSIZELIMIT_PANIC */
947 vm_offset_t bootprofile_buffer
= 0;
948 uint32_t bootprofile_buffer_size
= 0;
949 uint32_t bootprofile_buffer_current_position
= 0;
950 uint32_t bootprofile_interval_ms
= 0;
951 uint32_t bootprofile_stackshot_flags
= 0;
952 uint64_t bootprofile_interval_abs
= 0;
953 uint64_t bootprofile_next_deadline
= 0;
954 uint32_t bootprofile_all_procs
= 0;
955 char bootprofile_proc_name
[17];
956 uint64_t bootprofile_delta_since_timestamp
= 0;
957 lck_grp_t bootprofile_lck_grp
;
958 lck_mtx_t bootprofile_mtx
;
962 kBootProfileDisabled
= 0,
963 kBootProfileStartTimerAtBoot
,
964 kBootProfileStartTimerAtWake
965 } bootprofile_type
= kBootProfileDisabled
;
968 static timer_call_data_t bootprofile_timer_call_entry
;
970 #define BOOTPROFILE_LOCK() do { lck_mtx_lock(&bootprofile_mtx); } while(0)
971 #define BOOTPROFILE_TRY_SPIN_LOCK() lck_mtx_try_lock_spin(&bootprofile_mtx)
972 #define BOOTPROFILE_UNLOCK() do { lck_mtx_unlock(&bootprofile_mtx); } while(0)
974 static void bootprofile_timer_call(
975 timer_call_param_t param0
,
976 timer_call_param_t param1
);
978 void bootprofile_init(void)
983 lck_grp_init(&bootprofile_lck_grp
, "bootprofile group", LCK_GRP_ATTR_NULL
);
984 lck_mtx_init(&bootprofile_mtx
, &bootprofile_lck_grp
, LCK_ATTR_NULL
);
986 if (!PE_parse_boot_argn("bootprofile_buffer_size", &bootprofile_buffer_size
, sizeof(bootprofile_buffer_size
))) {
987 bootprofile_buffer_size
= 0;
990 if (bootprofile_buffer_size
> BOOTPROFILE_MAX_BUFFER_SIZE
)
991 bootprofile_buffer_size
= BOOTPROFILE_MAX_BUFFER_SIZE
;
993 if (!PE_parse_boot_argn("bootprofile_interval_ms", &bootprofile_interval_ms
, sizeof(bootprofile_interval_ms
))) {
994 bootprofile_interval_ms
= 0;
997 if (!PE_parse_boot_argn("bootprofile_stackshot_flags", &bootprofile_stackshot_flags
, sizeof(bootprofile_stackshot_flags
))) {
998 bootprofile_stackshot_flags
= 0;
1001 if (!PE_parse_boot_argn("bootprofile_proc_name", &bootprofile_proc_name
, sizeof(bootprofile_proc_name
))) {
1002 bootprofile_all_procs
= 1;
1003 bootprofile_proc_name
[0] = '\0';
1006 if (PE_parse_boot_argn("bootprofile_type", type
, sizeof(type
))) {
1007 if (0 == strcmp(type
, "boot")) {
1008 bootprofile_type
= kBootProfileStartTimerAtBoot
;
1009 } else if (0 == strcmp(type
, "wake")) {
1010 bootprofile_type
= kBootProfileStartTimerAtWake
;
1012 bootprofile_type
= kBootProfileDisabled
;
1015 bootprofile_type
= kBootProfileDisabled
;
1018 clock_interval_to_absolutetime_interval(bootprofile_interval_ms
, NSEC_PER_MSEC
, &bootprofile_interval_abs
);
1020 /* Both boot args must be set to enable */
1021 if ((bootprofile_type
== kBootProfileDisabled
) || (bootprofile_buffer_size
== 0) || (bootprofile_interval_abs
== 0)) {
1025 ret
= kmem_alloc(kernel_map
, &bootprofile_buffer
, bootprofile_buffer_size
, VM_KERN_MEMORY_DIAG
);
1026 if (ret
!= KERN_SUCCESS
) {
1027 kprintf("Boot profile: Allocation failed: %d\n", ret
);
1030 bzero((void *) bootprofile_buffer
, bootprofile_buffer_size
);
1032 kprintf("Boot profile: Sampling %s once per %u ms at %s\n", bootprofile_all_procs
? "all procs" : bootprofile_proc_name
, bootprofile_interval_ms
,
1033 bootprofile_type
== kBootProfileStartTimerAtBoot
? "boot" : (bootprofile_type
== kBootProfileStartTimerAtWake
? "wake" : "unknown"));
1035 timer_call_setup(&bootprofile_timer_call_entry
,
1036 bootprofile_timer_call
,
1039 if (bootprofile_type
== kBootProfileStartTimerAtBoot
) {
1040 bootprofile_next_deadline
= mach_absolute_time() + bootprofile_interval_abs
;
1041 timer_call_enter_with_leeway(&bootprofile_timer_call_entry
,
1043 bootprofile_next_deadline
,
1045 TIMER_CALL_SYS_NORMAL
,
1051 bootprofile_wake_from_sleep(void)
1053 if (bootprofile_type
== kBootProfileStartTimerAtWake
) {
1054 bootprofile_next_deadline
= mach_absolute_time() + bootprofile_interval_abs
;
1055 timer_call_enter_with_leeway(&bootprofile_timer_call_entry
,
1057 bootprofile_next_deadline
,
1059 TIMER_CALL_SYS_NORMAL
,
1066 bootprofile_timer_call(
1067 timer_call_param_t param0 __unused
,
1068 timer_call_param_t param1 __unused
)
1070 unsigned retbytes
= 0;
1071 int pid_to_profile
= -1;
1073 if (!BOOTPROFILE_TRY_SPIN_LOCK()) {
1077 /* Check if process-specific boot profiling is turned on */
1078 if (!bootprofile_all_procs
) {
1080 * Since boot profiling initializes really early in boot, it is
1081 * possible that at this point, the task/proc is not initialized.
1082 * Nothing to do in that case.
1085 if ((current_task() != NULL
) && (current_task()->bsd_info
!= NULL
) &&
1086 (0 == strncmp(bootprofile_proc_name
, proc_name_address(current_task()->bsd_info
), 17))) {
1087 pid_to_profile
= proc_selfpid();
1091 * Process-specific boot profiling requested but the on-core process is
1092 * something else. Nothing to do here.
1094 BOOTPROFILE_UNLOCK();
1099 /* initiate a stackshot with whatever portion of the buffer is left */
1100 if (bootprofile_buffer_current_position
< bootprofile_buffer_size
) {
1102 uint32_t flags
= STACKSHOT_KCDATA_FORMAT
| STACKSHOT_TRYLOCK
| STACKSHOT_SAVE_LOADINFO
1103 | STACKSHOT_GET_GLOBAL_MEM_STATS
;
1105 flags
|= STACKSHOT_SAVE_KEXT_LOADINFO
;
1106 #endif /* __x86_64__ */
1109 /* OR on flags specified in boot-args */
1110 flags
|= bootprofile_stackshot_flags
;
1111 if ((flags
& STACKSHOT_COLLECT_DELTA_SNAPSHOT
) && (bootprofile_delta_since_timestamp
== 0)) {
1112 /* Can't take deltas until the first one */
1113 flags
&= ~ STACKSHOT_COLLECT_DELTA_SNAPSHOT
;
1116 uint64_t timestamp
= 0;
1117 if (bootprofile_stackshot_flags
& STACKSHOT_COLLECT_DELTA_SNAPSHOT
) {
1118 timestamp
= mach_absolute_time();
1121 kern_return_t r
= stack_snapshot_from_kernel(
1122 pid_to_profile
, (void *)(bootprofile_buffer
+ bootprofile_buffer_current_position
),
1123 bootprofile_buffer_size
- bootprofile_buffer_current_position
,
1124 flags
, bootprofile_delta_since_timestamp
, &retbytes
);
1127 * We call with STACKSHOT_TRYLOCK because the stackshot lock is coarser
1128 * than the bootprofile lock. If someone else has the lock we'll just
1132 if (r
== KERN_LOCK_OWNED
) {
1133 BOOTPROFILE_UNLOCK();
1137 if (bootprofile_stackshot_flags
& STACKSHOT_COLLECT_DELTA_SNAPSHOT
&&
1138 r
== KERN_SUCCESS
) {
1139 bootprofile_delta_since_timestamp
= timestamp
;
1142 bootprofile_buffer_current_position
+= retbytes
;
1145 BOOTPROFILE_UNLOCK();
1147 /* If we didn't get any data or have run out of buffer space, stop profiling */
1148 if ((retbytes
== 0) || (bootprofile_buffer_current_position
== bootprofile_buffer_size
)) {
1154 /* If the user gathered the buffer, no need to keep profiling */
1155 if (bootprofile_interval_abs
== 0) {
1159 clock_deadline_for_periodic_event(bootprofile_interval_abs
,
1160 mach_absolute_time(),
1161 &bootprofile_next_deadline
);
1162 timer_call_enter_with_leeway(&bootprofile_timer_call_entry
,
1164 bootprofile_next_deadline
,
1166 TIMER_CALL_SYS_NORMAL
,
1170 void bootprofile_get(void **buffer
, uint32_t *length
)
1173 *buffer
= (void*) bootprofile_buffer
;
1174 *length
= bootprofile_buffer_current_position
;
1175 BOOTPROFILE_UNLOCK();
1178 int bootprofile_gather(user_addr_t buffer
, uint32_t *length
)
1184 if (bootprofile_buffer
== 0) {
1189 if (*length
< bootprofile_buffer_current_position
) {
1190 result
= KERN_NO_SPACE
;
1194 if ((result
= copyout((void *)bootprofile_buffer
, buffer
,
1195 bootprofile_buffer_current_position
)) != 0) {
1199 *length
= bootprofile_buffer_current_position
;
1201 /* cancel future timers */
1202 bootprofile_interval_abs
= 0;
1206 BOOTPROFILE_UNLOCK();