2 * Copyright (c) 2000-2016 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995 NeXT Computer, Inc. All Rights Reserved */
30 * Copyright (c) 1994 Christopher G. Demetriou
31 * Copyright (c) 1982, 1986, 1989, 1993
32 * The Regents of the University of California. All rights reserved.
33 * (c) UNIX System Laboratories, Inc.
34 * All or some portions of this file are derived from material licensed
35 * to the University of California by American Telephone and Telegraph
36 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
37 * the permission of UNIX System Laboratories, Inc.
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by the University of
50 * California, Berkeley and its contributors.
51 * 4. Neither the name of the University nor the names of its contributors
52 * may be used to endorse or promote products derived from this software
53 * without specific prior written permission.
55 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
56 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
67 * @(#)vfs_bio.c 8.6 (Berkeley) 1/11/94
72 * Bach: The Design of the UNIX Operating System (Prentice Hall, 1986)
73 * Leffler, et al.: The Design and Implementation of the 4.3BSD
74 * UNIX Operating System (Addison Welley, 1989)
77 #include <sys/param.h>
78 #include <sys/systm.h>
79 #include <sys/proc_internal.h>
80 #include <sys/buf_internal.h>
81 #include <sys/vnode_internal.h>
82 #include <sys/mount_internal.h>
83 #include <sys/trace.h>
84 #include <sys/malloc.h>
85 #include <sys/resourcevar.h>
86 #include <miscfs/specfs/specdev.h>
88 #include <sys/kauth.h>
90 #include <kern/assert.h>
91 #endif /* DIAGNOSTIC */
92 #include <kern/task.h>
93 #include <kern/zalloc.h>
94 #include <kern/locks.h>
95 #include <kern/thread.h>
97 #include <sys/fslog.h> /* fslog_io_error() */
98 #include <sys/disk.h> /* dk_error_description_t */
100 #include <mach/mach_types.h>
101 #include <mach/memory_object_types.h>
102 #include <kern/sched_prim.h> /* thread_block() */
104 #include <vm/vm_kern.h>
105 #include <vm/vm_pageout.h>
107 #include <sys/kdebug.h>
109 #include <libkern/OSAtomic.h>
110 #include <libkern/OSDebug.h>
111 #include <sys/ubc_internal.h>
115 int bcleanbuf(buf_t bp
, boolean_t discard
);
116 static int brecover_data(buf_t bp
);
117 static boolean_t
incore(vnode_t vp
, daddr64_t blkno
);
118 /* timeout is in msecs */
119 static buf_t
getnewbuf(int slpflag
, int slptimeo
, int *queue
);
120 static void bremfree_locked(buf_t bp
);
121 static void buf_reassign(buf_t bp
, vnode_t newvp
);
122 static errno_t
buf_acquire_locked(buf_t bp
, int flags
, int slpflag
, int slptimeo
);
123 static int buf_iterprepare(vnode_t vp
, struct buflists
*, int flags
);
124 static void buf_itercomplete(vnode_t vp
, struct buflists
*, int flags
);
125 static boolean_t
buffer_cache_gc(int);
126 static buf_t
buf_brelse_shadow(buf_t bp
);
127 static void buf_free_meta_store(buf_t bp
);
129 static buf_t
buf_create_shadow_internal(buf_t bp
, boolean_t force_copy
,
130 uintptr_t external_storage
, void (*iodone
)(buf_t
, void *), void *arg
, int priv
);
133 int bdwrite_internal(buf_t
, int);
135 extern void disk_conditioner_delay(buf_t
, int, int, uint64_t);
137 /* zone allocated buffer headers */
138 static void bufzoneinit(void);
139 static void bcleanbuf_thread_init(void);
140 static void bcleanbuf_thread(void);
142 static zone_t buf_hdr_zone
;
143 static int buf_hdr_count
;
147 * Definitions for the buffer hash lists.
149 #define BUFHASH(dvp, lbn) \
150 (&bufhashtbl[((long)(dvp) / sizeof(*(dvp)) + (int)(lbn)) & bufhash])
151 LIST_HEAD(bufhashhdr
, buf
) *bufhashtbl
, invalhash
;
154 static buf_t
incore_locked(vnode_t vp
, daddr64_t blkno
, struct bufhashhdr
*dp
);
156 /* Definitions for the buffer stats. */
157 struct bufstats bufstats
;
159 /* Number of delayed write buffers */
162 static int boot_nbuf_headers
= 0;
164 static TAILQ_HEAD(delayqueue
, buf
) delaybufqueue
;
166 static TAILQ_HEAD(ioqueue
, buf
) iobufqueue
;
167 static TAILQ_HEAD(bqueues
, buf
) bufqueues
[BQUEUES
];
168 static int needbuffer
;
169 static int need_iobuffer
;
171 static lck_grp_t
*buf_mtx_grp
;
172 static lck_attr_t
*buf_mtx_attr
;
173 static lck_grp_attr_t
*buf_mtx_grp_attr
;
174 static lck_mtx_t
*iobuffer_mtxp
;
175 static lck_mtx_t
*buf_mtxp
;
176 static lck_mtx_t
*buf_gc_callout
;
178 static int buf_busycount
;
180 #define FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE 16
182 void (* callout
)(int, void *);
184 } fs_buffer_cache_gc_callout_t
;
186 fs_buffer_cache_gc_callout_t fs_callouts
[FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE
] = { {NULL
, NULL
} };
188 static __inline__
int
197 * Insq/Remq for the buffer free lists.
199 #define binsheadfree(bp, dp, whichq) do { \
200 TAILQ_INSERT_HEAD(dp, bp, b_freelist); \
203 #define binstailfree(bp, dp, whichq) do { \
204 TAILQ_INSERT_TAIL(dp, bp, b_freelist); \
207 #define BHASHENTCHECK(bp) \
208 if ((bp)->b_hash.le_prev != (struct buf **)0xdeadbeef) \
209 panic("%p: b_hash.le_prev is not deadbeef", (bp));
211 #define BLISTNONE(bp) \
212 (bp)->b_hash.le_next = (struct buf *)0; \
213 (bp)->b_hash.le_prev = (struct buf **)0xdeadbeef;
216 * Insq/Remq for the vnode usage lists.
218 #define bufinsvn(bp, dp) LIST_INSERT_HEAD(dp, bp, b_vnbufs)
219 #define bufremvn(bp) { \
220 LIST_REMOVE(bp, b_vnbufs); \
221 (bp)->b_vnbufs.le_next = NOLIST; \
225 * Time in seconds before a buffer on a list is
226 * considered as a stale buffer
228 #define LRU_IS_STALE 120 /* default value for the LRU */
229 #define AGE_IS_STALE 60 /* default value for the AGE */
230 #define META_IS_STALE 180 /* default value for the BQ_META */
232 int lru_is_stale
= LRU_IS_STALE
;
233 int age_is_stale
= AGE_IS_STALE
;
234 int meta_is_stale
= META_IS_STALE
;
236 #define MAXLAUNDRY 10
238 /* LIST_INSERT_HEAD() with assertions */
239 static __inline__
void
240 blistenterhead(struct bufhashhdr
* head
, buf_t bp
)
242 if ((bp
->b_hash
.le_next
= (head
)->lh_first
) != NULL
)
243 (head
)->lh_first
->b_hash
.le_prev
= &(bp
)->b_hash
.le_next
;
244 (head
)->lh_first
= bp
;
245 bp
->b_hash
.le_prev
= &(head
)->lh_first
;
246 if (bp
->b_hash
.le_prev
== (struct buf
**)0xdeadbeef)
247 panic("blistenterhead: le_prev is deadbeef");
250 static __inline__
void
251 binshash(buf_t bp
, struct bufhashhdr
*dp
)
255 #endif /* DIAGNOSTIC */
261 for(; nbp
!= NULL
; nbp
= nbp
->b_hash
.le_next
) {
263 panic("buf already in hashlist");
265 #endif /* DIAGNOSTIC */
267 blistenterhead(dp
, bp
);
270 static __inline__
void
273 if (bp
->b_hash
.le_prev
== (struct buf
**)0xdeadbeef)
274 panic("bremhash le_prev is deadbeef");
275 if (bp
->b_hash
.le_next
== bp
)
276 panic("bremhash: next points to self");
278 if (bp
->b_hash
.le_next
!= NULL
)
279 bp
->b_hash
.le_next
->b_hash
.le_prev
= bp
->b_hash
.le_prev
;
280 *bp
->b_hash
.le_prev
= (bp
)->b_hash
.le_next
;
286 static __inline__
void
287 bmovelaundry(buf_t bp
)
289 bp
->b_whichq
= BQ_LAUNDRY
;
290 bp
->b_timestamp
= buf_timestamp();
291 binstailfree(bp
, &bufqueues
[BQ_LAUNDRY
], BQ_LAUNDRY
);
295 static __inline__
void
296 buf_release_credentials(buf_t bp
)
298 if (IS_VALID_CRED(bp
->b_rcred
)) {
299 kauth_cred_unref(&bp
->b_rcred
);
301 if (IS_VALID_CRED(bp
->b_wcred
)) {
302 kauth_cred_unref(&bp
->b_wcred
);
308 buf_valid(buf_t bp
) {
310 if ( (bp
->b_flags
& (B_DONE
| B_DELWRI
)) )
316 buf_fromcache(buf_t bp
) {
318 if ( (bp
->b_flags
& B_CACHE
) )
324 buf_markinvalid(buf_t bp
) {
326 SET(bp
->b_flags
, B_INVAL
);
330 buf_markdelayed(buf_t bp
) {
332 if (!ISSET(bp
->b_flags
, B_DELWRI
)) {
333 SET(bp
->b_flags
, B_DELWRI
);
335 OSAddAtomicLong(1, &nbdwrite
);
336 buf_reassign(bp
, bp
->b_vp
);
338 SET(bp
->b_flags
, B_DONE
);
342 buf_markclean(buf_t bp
) {
344 if (ISSET(bp
->b_flags
, B_DELWRI
)) {
345 CLR(bp
->b_flags
, B_DELWRI
);
347 OSAddAtomicLong(-1, &nbdwrite
);
348 buf_reassign(bp
, bp
->b_vp
);
353 buf_markeintr(buf_t bp
) {
355 SET(bp
->b_flags
, B_EINTR
);
360 buf_markaged(buf_t bp
) {
362 SET(bp
->b_flags
, B_AGE
);
368 if ((bp
->b_flags
& B_FUA
) == B_FUA
)
374 buf_markfua(buf_t bp
) {
376 SET(bp
->b_flags
, B_FUA
);
380 cpx_t
bufattr_cpx(bufattr_t bap
)
385 void bufattr_setcpx(bufattr_t bap
, cpx_t cpx
)
391 buf_setcpoff (buf_t bp
, uint64_t foffset
) {
392 bp
->b_attr
.ba_cp_file_off
= foffset
;
396 bufattr_cpoff(bufattr_t bap
) {
397 return bap
->ba_cp_file_off
;
401 bufattr_setcpoff(bufattr_t bap
, uint64_t foffset
) {
402 bap
->ba_cp_file_off
= foffset
;
405 #else // !CONTECT_PROTECT
408 bufattr_cpoff(bufattr_t bap __unused
) {
413 bufattr_setcpoff(__unused bufattr_t bap
, __unused
uint64_t foffset
) {
417 struct cpx
*bufattr_cpx(__unused bufattr_t bap
)
422 void bufattr_setcpx(__unused bufattr_t bap
, __unused
struct cpx
*cpx
)
426 #endif /* !CONFIG_PROTECT */
431 MALLOC(bap
, bufattr_t
, sizeof(struct bufattr
), M_TEMP
, M_WAITOK
);
435 bzero(bap
, sizeof(struct bufattr
));
440 bufattr_free(bufattr_t bap
) {
446 bufattr_dup(bufattr_t bap
) {
447 bufattr_t new_bufattr
;
448 MALLOC(new_bufattr
, bufattr_t
, sizeof(struct bufattr
), M_TEMP
, M_WAITOK
);
449 if (new_bufattr
== NULL
)
452 /* Copy the provided one into the new copy */
453 memcpy (new_bufattr
, bap
, sizeof(struct bufattr
));
458 bufattr_rawencrypted(bufattr_t bap
) {
459 if ( (bap
->ba_flags
& BA_RAW_ENCRYPTED_IO
) )
465 bufattr_throttled(bufattr_t bap
) {
466 return (GET_BUFATTR_IO_TIER(bap
));
470 bufattr_passive(bufattr_t bap
) {
471 if ( (bap
->ba_flags
& BA_PASSIVE
) )
477 bufattr_nocache(bufattr_t bap
) {
478 if ( (bap
->ba_flags
& BA_NOCACHE
) )
484 bufattr_meta(bufattr_t bap
) {
485 if ( (bap
->ba_flags
& BA_META
) )
491 bufattr_markmeta(bufattr_t bap
) {
492 SET(bap
->ba_flags
, BA_META
);
497 bufattr_delayidlesleep(bufattr_t bap
)
498 #else /* !CONFIG_EMBEDDED */
499 bufattr_delayidlesleep(__unused bufattr_t bap
)
500 #endif /* !CONFIG_EMBEDDED */
503 if ( (bap
->ba_flags
& BA_DELAYIDLESLEEP
) )
505 #endif /* !CONFIG_EMBEDDED */
515 buf_markstatic(buf_t bp __unused
) {
516 SET(bp
->b_flags
, B_STATICCONTENT
);
520 buf_static(buf_t bp
) {
521 if ( (bp
->b_flags
& B_STATICCONTENT
) )
527 bufattr_markgreedymode(bufattr_t bap
) {
528 SET(bap
->ba_flags
, BA_GREEDY_MODE
);
532 bufattr_greedymode(bufattr_t bap
) {
533 if ( (bap
->ba_flags
& BA_GREEDY_MODE
) )
539 bufattr_markisochronous(bufattr_t bap
) {
540 SET(bap
->ba_flags
, BA_ISOCHRONOUS
);
544 bufattr_isochronous(bufattr_t bap
) {
545 if ( (bap
->ba_flags
& BA_ISOCHRONOUS
) )
551 bufattr_markquickcomplete(bufattr_t bap
) {
552 SET(bap
->ba_flags
, BA_QUICK_COMPLETE
);
556 bufattr_quickcomplete(bufattr_t bap
) {
557 if ( (bap
->ba_flags
& BA_QUICK_COMPLETE
) )
563 buf_error(buf_t bp
) {
565 return (bp
->b_error
);
569 buf_seterror(buf_t bp
, errno_t error
) {
571 if ((bp
->b_error
= error
))
572 SET(bp
->b_flags
, B_ERROR
);
574 CLR(bp
->b_flags
, B_ERROR
);
578 buf_setflags(buf_t bp
, int32_t flags
) {
580 SET(bp
->b_flags
, (flags
& BUF_X_WRFLAGS
));
584 buf_clearflags(buf_t bp
, int32_t flags
) {
586 CLR(bp
->b_flags
, (flags
& BUF_X_WRFLAGS
));
590 buf_flags(buf_t bp
) {
592 return ((bp
->b_flags
& BUF_X_RDFLAGS
));
596 buf_reset(buf_t bp
, int32_t io_flags
) {
598 CLR(bp
->b_flags
, (B_READ
| B_WRITE
| B_ERROR
| B_DONE
| B_INVAL
| B_ASYNC
| B_NOCACHE
| B_FUA
));
599 SET(bp
->b_flags
, (io_flags
& (B_ASYNC
| B_READ
| B_WRITE
| B_NOCACHE
)));
605 buf_count(buf_t bp
) {
607 return (bp
->b_bcount
);
611 buf_setcount(buf_t bp
, uint32_t bcount
) {
613 bp
->b_bcount
= bcount
;
619 return (bp
->b_bufsize
);
623 buf_setsize(buf_t bp
, uint32_t bufsize
) {
625 bp
->b_bufsize
= bufsize
;
629 buf_resid(buf_t bp
) {
631 return (bp
->b_resid
);
635 buf_setresid(buf_t bp
, uint32_t resid
) {
641 buf_dirtyoff(buf_t bp
) {
643 return (bp
->b_dirtyoff
);
647 buf_dirtyend(buf_t bp
) {
649 return (bp
->b_dirtyend
);
653 buf_setdirtyoff(buf_t bp
, uint32_t dirtyoff
) {
655 bp
->b_dirtyoff
= dirtyoff
;
659 buf_setdirtyend(buf_t bp
, uint32_t dirtyend
) {
661 bp
->b_dirtyend
= dirtyend
;
665 buf_dataptr(buf_t bp
) {
667 return (bp
->b_datap
);
671 buf_setdataptr(buf_t bp
, uintptr_t data
) {
677 buf_vnode(buf_t bp
) {
683 buf_setvnode(buf_t bp
, vnode_t vp
) {
690 buf_callback(buf_t bp
)
692 if ( !(bp
->b_flags
& B_CALL
) )
693 return ((void *) NULL
);
695 return ((void *)bp
->b_iodone
);
700 buf_setcallback(buf_t bp
, void (*callback
)(buf_t
, void *), void *transaction
)
702 assert(!ISSET(bp
->b_flags
, B_FILTER
) && ISSET(bp
->b_lflags
, BL_BUSY
));
705 bp
->b_flags
|= (B_CALL
| B_ASYNC
);
707 bp
->b_flags
&= ~B_CALL
;
708 bp
->b_transaction
= transaction
;
709 bp
->b_iodone
= callback
;
715 buf_setupl(buf_t bp
, upl_t upl
, uint32_t offset
)
718 if ( !(bp
->b_lflags
& BL_IOBUF
) )
722 bp
->b_flags
|= B_CLUSTER
;
724 bp
->b_flags
&= ~B_CLUSTER
;
726 bp
->b_uploffset
= offset
;
732 buf_clone(buf_t bp
, int io_offset
, int io_size
, void (*iodone
)(buf_t
, void *), void *arg
)
736 if (io_offset
< 0 || io_size
< 0)
739 if ((unsigned)(io_offset
+ io_size
) > (unsigned)bp
->b_bcount
)
742 if (bp
->b_flags
& B_CLUSTER
) {
743 if (io_offset
&& ((bp
->b_uploffset
+ io_offset
) & PAGE_MASK
))
746 if (((bp
->b_uploffset
+ io_offset
+ io_size
) & PAGE_MASK
) && ((io_offset
+ io_size
) < bp
->b_bcount
))
749 io_bp
= alloc_io_buf(bp
->b_vp
, 0);
751 io_bp
->b_flags
= bp
->b_flags
& (B_COMMIT_UPL
| B_META
| B_PAGEIO
| B_CLUSTER
| B_PHYS
| B_RAW
| B_ASYNC
| B_READ
| B_FUA
);
754 io_bp
->b_transaction
= arg
;
755 io_bp
->b_iodone
= iodone
;
756 io_bp
->b_flags
|= B_CALL
;
758 if (bp
->b_flags
& B_CLUSTER
) {
759 io_bp
->b_upl
= bp
->b_upl
;
760 io_bp
->b_uploffset
= bp
->b_uploffset
+ io_offset
;
762 io_bp
->b_datap
= (uintptr_t)(((char *)bp
->b_datap
) + io_offset
);
764 io_bp
->b_bcount
= io_size
;
773 if (bp
->b_lflags
& BL_SHADOW
)
780 buf_create_shadow_priv(buf_t bp
, boolean_t force_copy
, uintptr_t external_storage
, void (*iodone
)(buf_t
, void *), void *arg
)
782 return (buf_create_shadow_internal(bp
, force_copy
, external_storage
, iodone
, arg
, 1));
786 buf_create_shadow(buf_t bp
, boolean_t force_copy
, uintptr_t external_storage
, void (*iodone
)(buf_t
, void *), void *arg
)
788 return (buf_create_shadow_internal(bp
, force_copy
, external_storage
, iodone
, arg
, 0));
793 buf_create_shadow_internal(buf_t bp
, boolean_t force_copy
, uintptr_t external_storage
, void (*iodone
)(buf_t
, void *), void *arg
, int priv
)
797 KERNEL_DEBUG(0xbbbbc000 | DBG_FUNC_START
, bp
, 0, 0, 0, 0);
799 if ( !(bp
->b_flags
& B_META
) || (bp
->b_lflags
& BL_IOBUF
)) {
801 KERNEL_DEBUG(0xbbbbc000 | DBG_FUNC_END
, bp
, 0, 0, 0, 0);
804 #ifdef BUF_MAKE_PRIVATE
805 if (bp
->b_shadow_ref
&& bp
->b_data_ref
== 0 && external_storage
== 0)
806 panic("buf_create_shadow: %p is in the private state (%d, %d)", bp
, bp
->b_shadow_ref
, bp
->b_data_ref
);
808 io_bp
= alloc_io_buf(bp
->b_vp
, priv
);
810 io_bp
->b_flags
= bp
->b_flags
& (B_META
| B_ZALLOC
| B_ASYNC
| B_READ
| B_FUA
);
811 io_bp
->b_blkno
= bp
->b_blkno
;
812 io_bp
->b_lblkno
= bp
->b_lblkno
;
815 io_bp
->b_transaction
= arg
;
816 io_bp
->b_iodone
= iodone
;
817 io_bp
->b_flags
|= B_CALL
;
819 if (force_copy
== FALSE
) {
820 io_bp
->b_bcount
= bp
->b_bcount
;
821 io_bp
->b_bufsize
= bp
->b_bufsize
;
823 if (external_storage
) {
824 io_bp
->b_datap
= external_storage
;
825 #ifdef BUF_MAKE_PRIVATE
826 io_bp
->b_data_store
= NULL
;
829 io_bp
->b_datap
= bp
->b_datap
;
830 #ifdef BUF_MAKE_PRIVATE
831 io_bp
->b_data_store
= bp
;
834 *(buf_t
*)(&io_bp
->b_orig
) = bp
;
836 lck_mtx_lock_spin(buf_mtxp
);
838 io_bp
->b_lflags
|= BL_SHADOW
;
839 io_bp
->b_shadow
= bp
->b_shadow
;
840 bp
->b_shadow
= io_bp
;
843 #ifdef BUF_MAKE_PRIVATE
844 if (external_storage
)
845 io_bp
->b_lflags
|= BL_EXTERNAL
;
849 lck_mtx_unlock(buf_mtxp
);
851 if (external_storage
) {
852 #ifdef BUF_MAKE_PRIVATE
853 io_bp
->b_lflags
|= BL_EXTERNAL
;
855 io_bp
->b_bcount
= bp
->b_bcount
;
856 io_bp
->b_bufsize
= bp
->b_bufsize
;
857 io_bp
->b_datap
= external_storage
;
859 allocbuf(io_bp
, bp
->b_bcount
);
861 io_bp
->b_lflags
|= BL_IOBUF_ALLOC
;
863 bcopy((caddr_t
)bp
->b_datap
, (caddr_t
)io_bp
->b_datap
, bp
->b_bcount
);
865 #ifdef BUF_MAKE_PRIVATE
866 io_bp
->b_data_store
= NULL
;
869 KERNEL_DEBUG(0xbbbbc000 | DBG_FUNC_END
, bp
, bp
->b_shadow_ref
, 0, io_bp
, 0);
875 #ifdef BUF_MAKE_PRIVATE
877 buf_make_private(buf_t bp
)
883 KERNEL_DEBUG(0xbbbbc004 | DBG_FUNC_START
, bp
, bp
->b_shadow_ref
, 0, 0, 0);
885 if (bp
->b_shadow_ref
== 0 || bp
->b_data_ref
== 0 || ISSET(bp
->b_lflags
, BL_SHADOW
)) {
887 KERNEL_DEBUG(0xbbbbc004 | DBG_FUNC_END
, bp
, bp
->b_shadow_ref
, 0, EINVAL
, 0);
890 my_buf
.b_flags
= B_META
;
891 my_buf
.b_datap
= (uintptr_t)NULL
;
892 allocbuf(&my_buf
, bp
->b_bcount
);
894 bcopy((caddr_t
)bp
->b_datap
, (caddr_t
)my_buf
.b_datap
, bp
->b_bcount
);
896 lck_mtx_lock_spin(buf_mtxp
);
898 for (t_bp
= bp
->b_shadow
; t_bp
; t_bp
= t_bp
->b_shadow
) {
899 if ( !ISSET(bp
->b_lflags
, BL_EXTERNAL
))
904 if (ds_bp
== NULL
&& bp
->b_data_ref
)
905 panic("buf_make_private: b_data_ref != 0 && ds_bp == NULL");
907 if (ds_bp
&& (bp
->b_data_ref
== 0 || bp
->b_shadow_ref
== 0))
908 panic("buf_make_private: ref_count == 0 && ds_bp != NULL");
911 lck_mtx_unlock(buf_mtxp
);
913 buf_free_meta_store(&my_buf
);
915 KERNEL_DEBUG(0xbbbbc004 | DBG_FUNC_END
, bp
, bp
->b_shadow_ref
, 0, EINVAL
, 0);
918 for (t_bp
= bp
->b_shadow
; t_bp
; t_bp
= t_bp
->b_shadow
) {
919 if ( !ISSET(t_bp
->b_lflags
, BL_EXTERNAL
))
920 t_bp
->b_data_store
= ds_bp
;
922 ds_bp
->b_data_ref
= bp
->b_data_ref
;
925 bp
->b_datap
= my_buf
.b_datap
;
927 lck_mtx_unlock(buf_mtxp
);
929 KERNEL_DEBUG(0xbbbbc004 | DBG_FUNC_END
, bp
, bp
->b_shadow_ref
, 0, 0, 0);
936 buf_setfilter(buf_t bp
, void (*filter
)(buf_t
, void *), void *transaction
,
937 void (**old_iodone
)(buf_t
, void *), void **old_transaction
)
939 assert(ISSET(bp
->b_lflags
, BL_BUSY
));
942 *old_iodone
= bp
->b_iodone
;
944 *old_transaction
= bp
->b_transaction
;
946 bp
->b_transaction
= transaction
;
947 bp
->b_iodone
= filter
;
949 bp
->b_flags
|= B_FILTER
;
951 bp
->b_flags
&= ~B_FILTER
;
956 buf_blkno(buf_t bp
) {
958 return (bp
->b_blkno
);
962 buf_lblkno(buf_t bp
) {
964 return (bp
->b_lblkno
);
968 buf_setblkno(buf_t bp
, daddr64_t blkno
) {
974 buf_setlblkno(buf_t bp
, daddr64_t lblkno
) {
976 bp
->b_lblkno
= lblkno
;
980 buf_device(buf_t bp
) {
986 buf_setdevice(buf_t bp
, vnode_t vp
) {
988 if ((vp
->v_type
!= VBLK
) && (vp
->v_type
!= VCHR
))
990 bp
->b_dev
= vp
->v_rdev
;
997 buf_drvdata(buf_t bp
) {
999 return (bp
->b_drvdata
);
1003 buf_setdrvdata(buf_t bp
, void *drvdata
) {
1005 bp
->b_drvdata
= drvdata
;
1009 buf_fsprivate(buf_t bp
) {
1011 return (bp
->b_fsprivate
);
1015 buf_setfsprivate(buf_t bp
, void *fsprivate
) {
1017 bp
->b_fsprivate
= fsprivate
;
1021 buf_rcred(buf_t bp
) {
1023 return (bp
->b_rcred
);
1027 buf_wcred(buf_t bp
) {
1029 return (bp
->b_wcred
);
1039 buf_uploffset(buf_t bp
) {
1041 return ((uint32_t)(bp
->b_uploffset
));
1045 buf_proc(buf_t bp
) {
1047 return (bp
->b_proc
);
1052 buf_map(buf_t bp
, caddr_t
*io_addr
)
1058 if ( !(bp
->b_flags
& B_CLUSTER
)) {
1059 *io_addr
= (caddr_t
)bp
->b_datap
;
1062 real_bp
= (buf_t
)(bp
->b_real_bp
);
1064 if (real_bp
&& real_bp
->b_datap
) {
1066 * b_real_bp is only valid if B_CLUSTER is SET
1067 * if it's non-zero, than someone did a cluster_bp call
1068 * if the backing physical pages were already mapped
1069 * in before the call to cluster_bp (non-zero b_datap),
1070 * than we just use that mapping
1072 *io_addr
= (caddr_t
)real_bp
->b_datap
;
1075 kret
= ubc_upl_map(bp
->b_upl
, &vaddr
); /* Map it in */
1077 if (kret
!= KERN_SUCCESS
) {
1082 vaddr
+= bp
->b_uploffset
;
1084 *io_addr
= (caddr_t
)vaddr
;
1095 if ( !(bp
->b_flags
& B_CLUSTER
))
1098 * see buf_map for the explanation
1100 real_bp
= (buf_t
)(bp
->b_real_bp
);
1102 if (real_bp
&& real_bp
->b_datap
)
1105 if ((bp
->b_lflags
& BL_IOBUF
) &&
1106 ((bp
->b_flags
& (B_PAGEIO
| B_READ
)) != (B_PAGEIO
| B_READ
))) {
1108 * ignore pageins... the 'right' thing will
1109 * happen due to the way we handle speculative
1112 * when we commit these pages, we'll hit
1113 * it with UPL_COMMIT_INACTIVE which
1114 * will clear the reference bit that got
1115 * turned on when we touched the mapping
1117 bp
->b_flags
|= B_AGE
;
1119 kret
= ubc_upl_unmap(bp
->b_upl
);
1121 if (kret
!= KERN_SUCCESS
)
1128 buf_clear(buf_t bp
) {
1131 if (buf_map(bp
, &baddr
) == 0) {
1132 bzero(baddr
, bp
->b_bcount
);
1139 * Read or write a buffer that is not contiguous on disk.
1140 * buffer is marked done/error at the conclusion
1143 buf_strategy_fragmented(vnode_t devvp
, buf_t bp
, off_t f_offset
, size_t contig_bytes
)
1145 vnode_t vp
= buf_vnode(bp
);
1146 buf_t io_bp
; /* For reading or writing a single block */
1149 size_t io_contig_bytes
;
1155 * save our starting point... the bp was already mapped
1156 * in buf_strategy before we got called
1157 * no sense doing it again.
1159 io_blkno
= bp
->b_blkno
;
1161 * Make sure we redo this mapping for the next I/O
1162 * i.e. this can never be a 'permanent' mapping
1164 bp
->b_blkno
= bp
->b_lblkno
;
1167 * Get an io buffer to do the deblocking
1169 io_bp
= alloc_io_buf(devvp
, 0);
1171 io_bp
->b_lblkno
= bp
->b_lblkno
;
1172 io_bp
->b_datap
= bp
->b_datap
;
1173 io_resid
= bp
->b_bcount
;
1174 io_direction
= bp
->b_flags
& B_READ
;
1175 io_contig_bytes
= contig_bytes
;
1177 if (bp
->b_flags
& B_READ
)
1178 bmap_flags
= VNODE_READ
;
1180 bmap_flags
= VNODE_WRITE
;
1185 * this is unexepected, but we'll allow for it
1187 bzero((caddr_t
)io_bp
->b_datap
, (int)io_contig_bytes
);
1189 io_bp
->b_bcount
= io_contig_bytes
;
1190 io_bp
->b_bufsize
= io_contig_bytes
;
1191 io_bp
->b_resid
= io_contig_bytes
;
1192 io_bp
->b_blkno
= io_blkno
;
1194 buf_reset(io_bp
, io_direction
);
1197 * Call the device to do the I/O and wait for it. Make sure the appropriate party is charged for write
1200 if (!ISSET(bp
->b_flags
, B_READ
))
1201 OSAddAtomic(1, &devvp
->v_numoutput
);
1203 if ((error
= VNOP_STRATEGY(io_bp
)))
1205 if ((error
= (int)buf_biowait(io_bp
)))
1207 if (io_bp
->b_resid
) {
1208 io_resid
-= (io_contig_bytes
- io_bp
->b_resid
);
1212 if ((io_resid
-= io_contig_bytes
) == 0)
1214 f_offset
+= io_contig_bytes
;
1215 io_bp
->b_datap
+= io_contig_bytes
;
1218 * Map the current position to a physical block number
1220 if ((error
= VNOP_BLOCKMAP(vp
, f_offset
, io_resid
, &io_blkno
, &io_contig_bytes
, NULL
, bmap_flags
, NULL
)))
1226 buf_seterror(bp
, error
);
1227 bp
->b_resid
= io_resid
;
1229 * This I/O is now complete
1238 * struct vnop_strategy_args {
1243 buf_strategy(vnode_t devvp
, void *ap
)
1245 buf_t bp
= ((struct vnop_strategy_args
*)ap
)->a_bp
;
1246 vnode_t vp
= bp
->b_vp
;
1250 int dtrace_io_start_flag
= 0; /* We only want to trip the io:::start
1251 * probe once, with the true physical
1252 * block in place (b_blkno)
1257 if (vp
== NULL
|| vp
->v_type
== VCHR
|| vp
->v_type
== VBLK
)
1258 panic("buf_strategy: b_vp == NULL || vtype == VCHR | VBLK\n");
1260 * associate the physical device with
1261 * with this buf_t even if we don't
1262 * end up issuing the I/O...
1264 bp
->b_dev
= devvp
->v_rdev
;
1266 if (bp
->b_flags
& B_READ
)
1267 bmap_flags
= VNODE_READ
;
1269 bmap_flags
= VNODE_WRITE
;
1271 if ( !(bp
->b_flags
& B_CLUSTER
)) {
1273 if ( (bp
->b_upl
) ) {
1275 * we have a UPL associated with this bp
1276 * go through cluster_bp which knows how
1277 * to deal with filesystem block sizes
1278 * that aren't equal to the page size
1280 DTRACE_IO1(start
, buf_t
, bp
);
1281 return (cluster_bp(bp
));
1283 if (bp
->b_blkno
== bp
->b_lblkno
) {
1285 size_t contig_bytes
;
1287 if ((error
= VNOP_BLKTOOFF(vp
, bp
->b_lblkno
, &f_offset
))) {
1288 DTRACE_IO1(start
, buf_t
, bp
);
1289 buf_seterror(bp
, error
);
1295 if ((error
= VNOP_BLOCKMAP(vp
, f_offset
, bp
->b_bcount
, &bp
->b_blkno
, &contig_bytes
, NULL
, bmap_flags
, NULL
))) {
1296 DTRACE_IO1(start
, buf_t
, bp
);
1297 buf_seterror(bp
, error
);
1303 DTRACE_IO1(start
, buf_t
, bp
);
1305 dtrace_io_start_flag
= 1;
1306 #endif /* CONFIG_DTRACE */
1308 if ((bp
->b_blkno
== -1) || (contig_bytes
== 0)) {
1309 /* Set block number to force biodone later */
1313 else if ((long)contig_bytes
< bp
->b_bcount
) {
1314 return (buf_strategy_fragmented(devvp
, bp
, f_offset
, contig_bytes
));
1319 if (dtrace_io_start_flag
== 0) {
1320 DTRACE_IO1(start
, buf_t
, bp
);
1321 dtrace_io_start_flag
= 1;
1323 #endif /* CONFIG_DTRACE */
1325 if (bp
->b_blkno
== -1) {
1332 if (dtrace_io_start_flag
== 0)
1333 DTRACE_IO1(start
, buf_t
, bp
);
1334 #endif /* CONFIG_DTRACE */
1337 /* Capture f_offset in the bufattr*/
1338 cpx_t cpx
= bufattr_cpx(buf_attr(bp
));
1340 /* No need to go here for older EAs */
1341 if(cpx_use_offset_for_iv(cpx
) && !cpx_synthetic_offset_for_iv(cpx
)) {
1343 if ((error
= VNOP_BLKTOOFF(bp
->b_vp
, bp
->b_lblkno
, &f_offset
)))
1347 * Attach the file offset to this buffer. The
1348 * bufattr attributes will be passed down the stack
1349 * until they reach the storage driver (whether
1350 * IOFlashStorage, ASP, or IONVMe). The driver
1351 * will retain the offset in a local variable when it
1352 * issues its I/Os to the NAND controller.
1354 * Note that LwVM may end up splitting this I/O
1355 * into sub-I/Os if it crosses a chunk boundary. In this
1356 * case, LwVM will update this field when it dispatches
1357 * each I/O to IOFlashStorage. But from our perspective
1358 * we have only issued a single I/O.
1360 * In the case of APFS we do not bounce through another
1361 * intermediate layer (such as CoreStorage). APFS will
1362 * issue the I/Os directly to the block device / IOMedia
1363 * via buf_strategy on the specfs node.
1365 buf_setcpoff(bp
, f_offset
);
1366 CP_DEBUG((CPDBG_OFFSET_IO
| DBG_FUNC_NONE
), (uint32_t) f_offset
, (uint32_t) bp
->b_lblkno
, (uint32_t) bp
->b_blkno
, (uint32_t) bp
->b_bcount
, 0);
1372 * we can issue the I/O because...
1373 * either B_CLUSTER is set which
1374 * means that the I/O is properly set
1375 * up to be a multiple of the page size, or
1376 * we were able to successfully set up the
1377 * physical block mapping
1379 error
= VOCALL(devvp
->v_op
, VOFFSET(vnop_strategy
), ap
);
1380 DTRACE_FSINFO(strategy
, vnode_t
, vp
);
1387 buf_alloc(vnode_t vp
)
1389 return(alloc_io_buf(vp
, is_vm_privileged()));
1393 buf_free(buf_t bp
) {
1400 * iterate buffers for the specified vp.
1401 * if BUF_SCAN_DIRTY is set, do the dirty list
1402 * if BUF_SCAN_CLEAN is set, do the clean list
1403 * if neither flag is set, default to BUF_SCAN_DIRTY
1404 * if BUF_NOTIFY_BUSY is set, call the callout function using a NULL bp for busy pages
1407 struct buf_iterate_info_t
{
1409 struct buflists
*listhead
;
1413 buf_iterate(vnode_t vp
, int (*callout
)(buf_t
, void *), int flags
, void *arg
)
1417 struct buflists local_iterblkhd
;
1418 int lock_flags
= BAC_NOWAIT
| BAC_REMOVE
;
1419 int notify_busy
= flags
& BUF_NOTIFY_BUSY
;
1420 struct buf_iterate_info_t list
[2];
1423 if (flags
& BUF_SKIP_LOCKED
)
1424 lock_flags
|= BAC_SKIP_LOCKED
;
1425 if (flags
& BUF_SKIP_NONLOCKED
)
1426 lock_flags
|= BAC_SKIP_NONLOCKED
;
1428 if ( !(flags
& (BUF_SCAN_DIRTY
| BUF_SCAN_CLEAN
)))
1429 flags
|= BUF_SCAN_DIRTY
;
1433 if (flags
& BUF_SCAN_DIRTY
) {
1434 list
[num_lists
].flag
= VBI_DIRTY
;
1435 list
[num_lists
].listhead
= &vp
->v_dirtyblkhd
;
1438 if (flags
& BUF_SCAN_CLEAN
) {
1439 list
[num_lists
].flag
= VBI_CLEAN
;
1440 list
[num_lists
].listhead
= &vp
->v_cleanblkhd
;
1444 for (i
= 0; i
< num_lists
; i
++) {
1445 lck_mtx_lock(buf_mtxp
);
1447 if (buf_iterprepare(vp
, &local_iterblkhd
, list
[i
].flag
)) {
1448 lck_mtx_unlock(buf_mtxp
);
1451 while (!LIST_EMPTY(&local_iterblkhd
)) {
1452 bp
= LIST_FIRST(&local_iterblkhd
);
1453 LIST_REMOVE(bp
, b_vnbufs
);
1454 LIST_INSERT_HEAD(list
[i
].listhead
, bp
, b_vnbufs
);
1456 if (buf_acquire_locked(bp
, lock_flags
, 0, 0)) {
1464 lck_mtx_unlock(buf_mtxp
);
1466 retval
= callout(bp
, arg
);
1475 case BUF_RETURNED_DONE
:
1478 lck_mtx_lock(buf_mtxp
);
1480 case BUF_CLAIMED_DONE
:
1481 lck_mtx_lock(buf_mtxp
);
1484 lck_mtx_lock(buf_mtxp
);
1485 } /* while list has more nodes */
1487 buf_itercomplete(vp
, &local_iterblkhd
, list
[i
].flag
);
1488 lck_mtx_unlock(buf_mtxp
);
1489 } /* for each list */
1494 * Flush out and invalidate all buffers associated with a vnode.
1497 buf_invalidateblks(vnode_t vp
, int flags
, int slpflag
, int slptimeo
)
1502 int must_rescan
= 1;
1503 struct buflists local_iterblkhd
;
1506 if (LIST_EMPTY(&vp
->v_cleanblkhd
) && LIST_EMPTY(&vp
->v_dirtyblkhd
))
1509 lck_mtx_lock(buf_mtxp
);
1512 if (must_rescan
== 0)
1514 * the lists may not be empty, but all that's left at this
1515 * point are metadata or B_LOCKED buffers which are being
1516 * skipped... we know this because we made it through both
1517 * the clean and dirty lists without dropping buf_mtxp...
1518 * each time we drop buf_mtxp we bump "must_rescan"
1521 if (LIST_EMPTY(&vp
->v_cleanblkhd
) && LIST_EMPTY(&vp
->v_dirtyblkhd
))
1525 * iterate the clean list
1527 if (buf_iterprepare(vp
, &local_iterblkhd
, VBI_CLEAN
)) {
1528 goto try_dirty_list
;
1530 while (!LIST_EMPTY(&local_iterblkhd
)) {
1532 bp
= LIST_FIRST(&local_iterblkhd
);
1534 LIST_REMOVE(bp
, b_vnbufs
);
1535 LIST_INSERT_HEAD(&vp
->v_cleanblkhd
, bp
, b_vnbufs
);
1538 * some filesystems distinguish meta data blocks with a negative logical block #
1540 if ((flags
& BUF_SKIP_META
) && (bp
->b_lblkno
< 0 || ISSET(bp
->b_flags
, B_META
)))
1543 aflags
= BAC_REMOVE
;
1545 if ( !(flags
& BUF_INVALIDATE_LOCKED
) )
1546 aflags
|= BAC_SKIP_LOCKED
;
1548 if ( (error
= (int)buf_acquire_locked(bp
, aflags
, slpflag
, slptimeo
)) ) {
1549 if (error
== EDEADLK
)
1551 * this buffer was marked B_LOCKED...
1552 * we didn't drop buf_mtxp, so we
1553 * we don't need to rescan
1556 if (error
== EAGAIN
) {
1558 * found a busy buffer... we blocked and
1559 * dropped buf_mtxp, so we're going to
1560 * need to rescan after this pass is completed
1566 * got some kind of 'real' error out of the msleep
1567 * in buf_acquire_locked, terminate the scan and return the error
1569 buf_itercomplete(vp
, &local_iterblkhd
, VBI_CLEAN
);
1571 lck_mtx_unlock(buf_mtxp
);
1574 lck_mtx_unlock(buf_mtxp
);
1576 if (bp
->b_flags
& B_LOCKED
)
1577 KERNEL_DEBUG(0xbbbbc038, bp
, 0, 0, 0, 0);
1579 CLR(bp
->b_flags
, B_LOCKED
);
1580 SET(bp
->b_flags
, B_INVAL
);
1583 lck_mtx_lock(buf_mtxp
);
1586 * by dropping buf_mtxp, we allow new
1587 * buffers to be added to the vnode list(s)
1588 * we'll have to rescan at least once more
1589 * if the queues aren't empty
1593 buf_itercomplete(vp
, &local_iterblkhd
, VBI_CLEAN
);
1597 * Now iterate on dirty blks
1599 if (buf_iterprepare(vp
, &local_iterblkhd
, VBI_DIRTY
)) {
1602 while (!LIST_EMPTY(&local_iterblkhd
)) {
1603 bp
= LIST_FIRST(&local_iterblkhd
);
1605 LIST_REMOVE(bp
, b_vnbufs
);
1606 LIST_INSERT_HEAD(&vp
->v_dirtyblkhd
, bp
, b_vnbufs
);
1609 * some filesystems distinguish meta data blocks with a negative logical block #
1611 if ((flags
& BUF_SKIP_META
) && (bp
->b_lblkno
< 0 || ISSET(bp
->b_flags
, B_META
)))
1614 aflags
= BAC_REMOVE
;
1616 if ( !(flags
& BUF_INVALIDATE_LOCKED
) )
1617 aflags
|= BAC_SKIP_LOCKED
;
1619 if ( (error
= (int)buf_acquire_locked(bp
, aflags
, slpflag
, slptimeo
)) ) {
1620 if (error
== EDEADLK
)
1622 * this buffer was marked B_LOCKED...
1623 * we didn't drop buf_mtxp, so we
1624 * we don't need to rescan
1627 if (error
== EAGAIN
) {
1629 * found a busy buffer... we blocked and
1630 * dropped buf_mtxp, so we're going to
1631 * need to rescan after this pass is completed
1637 * got some kind of 'real' error out of the msleep
1638 * in buf_acquire_locked, terminate the scan and return the error
1640 buf_itercomplete(vp
, &local_iterblkhd
, VBI_DIRTY
);
1642 lck_mtx_unlock(buf_mtxp
);
1645 lck_mtx_unlock(buf_mtxp
);
1647 if (bp
->b_flags
& B_LOCKED
)
1648 KERNEL_DEBUG(0xbbbbc038, bp
, 0, 0, 1, 0);
1650 CLR(bp
->b_flags
, B_LOCKED
);
1651 SET(bp
->b_flags
, B_INVAL
);
1653 if (ISSET(bp
->b_flags
, B_DELWRI
) && (flags
& BUF_WRITE_DATA
))
1654 (void) VNOP_BWRITE(bp
);
1658 lck_mtx_lock(buf_mtxp
);
1660 * by dropping buf_mtxp, we allow new
1661 * buffers to be added to the vnode list(s)
1662 * we'll have to rescan at least once more
1663 * if the queues aren't empty
1667 buf_itercomplete(vp
, &local_iterblkhd
, VBI_DIRTY
);
1669 lck_mtx_unlock(buf_mtxp
);
1675 buf_flushdirtyblks(vnode_t vp
, int wait
, int flags
, const char *msg
) {
1677 (void) buf_flushdirtyblks_skipinfo(vp
, wait
, flags
, msg
);
1682 buf_flushdirtyblks_skipinfo(vnode_t vp
, int wait
, int flags
, const char *msg
) {
1684 int writes_issued
= 0;
1687 struct buflists local_iterblkhd
;
1688 int lock_flags
= BAC_NOWAIT
| BAC_REMOVE
;
1691 if (flags
& BUF_SKIP_LOCKED
)
1692 lock_flags
|= BAC_SKIP_LOCKED
;
1693 if (flags
& BUF_SKIP_NONLOCKED
)
1694 lock_flags
|= BAC_SKIP_NONLOCKED
;
1696 lck_mtx_lock(buf_mtxp
);
1698 if (buf_iterprepare(vp
, &local_iterblkhd
, VBI_DIRTY
) == 0) {
1699 while (!LIST_EMPTY(&local_iterblkhd
)) {
1700 bp
= LIST_FIRST(&local_iterblkhd
);
1701 LIST_REMOVE(bp
, b_vnbufs
);
1702 LIST_INSERT_HEAD(&vp
->v_dirtyblkhd
, bp
, b_vnbufs
);
1704 if ((error
= buf_acquire_locked(bp
, lock_flags
, 0, 0)) == EBUSY
) {
1709 * If we passed in BUF_SKIP_LOCKED or BUF_SKIP_NONLOCKED,
1710 * we may want to do somethign differently if a locked or unlocked
1711 * buffer was encountered (depending on the arg specified).
1712 * In this case, we know that one of those two was set, and the
1713 * buf acquisition failed above.
1715 * If it failed with EDEADLK, then save state which can be emitted
1716 * later on to the caller. Most callers should not care.
1718 if (error
== EDEADLK
) {
1723 lck_mtx_unlock(buf_mtxp
);
1725 bp
->b_flags
&= ~B_LOCKED
;
1728 * Wait for I/O associated with indirect blocks to complete,
1729 * since there is no way to quickly wait for them below.
1731 if ((bp
->b_vp
== vp
) || (wait
== 0))
1732 (void) buf_bawrite(bp
);
1734 (void) VNOP_BWRITE(bp
);
1737 lck_mtx_lock(buf_mtxp
);
1739 buf_itercomplete(vp
, &local_iterblkhd
, VBI_DIRTY
);
1741 lck_mtx_unlock(buf_mtxp
);
1744 (void)vnode_waitforwrites(vp
, 0, 0, 0, msg
);
1746 if (vp
->v_dirtyblkhd
.lh_first
&& busy
) {
1748 * we had one or more BUSY buffers on
1749 * the dirtyblock list... most likely
1750 * these are due to delayed writes that
1751 * were moved to the bclean queue but
1752 * have not yet been 'written'.
1753 * if we issued some writes on the
1754 * previous pass, we try again immediately
1755 * if we didn't, we'll sleep for some time
1756 * to allow the state to change...
1758 if (writes_issued
== 0) {
1759 (void)tsleep((caddr_t
)&vp
->v_numoutput
,
1760 PRIBIO
+ 1, "vnode_flushdirtyblks", hz
/20);
1774 * called with buf_mtxp held...
1775 * this lock protects the queue manipulation
1778 buf_iterprepare(vnode_t vp
, struct buflists
*iterheadp
, int flags
)
1780 struct buflists
* listheadp
;
1782 if (flags
& VBI_DIRTY
)
1783 listheadp
= &vp
->v_dirtyblkhd
;
1785 listheadp
= &vp
->v_cleanblkhd
;
1787 while (vp
->v_iterblkflags
& VBI_ITER
) {
1788 vp
->v_iterblkflags
|= VBI_ITERWANT
;
1789 msleep(&vp
->v_iterblkflags
, buf_mtxp
, 0, "buf_iterprepare", NULL
);
1791 if (LIST_EMPTY(listheadp
)) {
1792 LIST_INIT(iterheadp
);
1795 vp
->v_iterblkflags
|= VBI_ITER
;
1797 iterheadp
->lh_first
= listheadp
->lh_first
;
1798 listheadp
->lh_first
->b_vnbufs
.le_prev
= &iterheadp
->lh_first
;
1799 LIST_INIT(listheadp
);
1805 * called with buf_mtxp held...
1806 * this lock protects the queue manipulation
1809 buf_itercomplete(vnode_t vp
, struct buflists
*iterheadp
, int flags
)
1811 struct buflists
* listheadp
;
1814 if (flags
& VBI_DIRTY
)
1815 listheadp
= &vp
->v_dirtyblkhd
;
1817 listheadp
= &vp
->v_cleanblkhd
;
1819 while (!LIST_EMPTY(iterheadp
)) {
1820 bp
= LIST_FIRST(iterheadp
);
1821 LIST_REMOVE(bp
, b_vnbufs
);
1822 LIST_INSERT_HEAD(listheadp
, bp
, b_vnbufs
);
1824 vp
->v_iterblkflags
&= ~VBI_ITER
;
1826 if (vp
->v_iterblkflags
& VBI_ITERWANT
) {
1827 vp
->v_iterblkflags
&= ~VBI_ITERWANT
;
1828 wakeup(&vp
->v_iterblkflags
);
1834 bremfree_locked(buf_t bp
)
1836 struct bqueues
*dp
= NULL
;
1839 whichq
= bp
->b_whichq
;
1842 if (bp
->b_shadow_ref
== 0)
1843 panic("bremfree_locked: %p not on freelist", bp
);
1845 * there are clones pointing to 'bp'...
1846 * therefore, it was not put on a freelist
1847 * when buf_brelse was last called on 'bp'
1852 * We only calculate the head of the freelist when removing
1853 * the last element of the list as that is the only time that
1854 * it is needed (e.g. to reset the tail pointer).
1856 * NB: This makes an assumption about how tailq's are implemented.
1858 if (bp
->b_freelist
.tqe_next
== NULL
) {
1859 dp
= &bufqueues
[whichq
];
1861 if (dp
->tqh_last
!= &bp
->b_freelist
.tqe_next
)
1862 panic("bremfree: lost tail");
1864 TAILQ_REMOVE(dp
, bp
, b_freelist
);
1866 if (whichq
== BQ_LAUNDRY
)
1870 bp
->b_timestamp
= 0;
1875 * Associate a buffer with a vnode.
1876 * buf_mtxp must be locked on entry
1879 bgetvp_locked(vnode_t vp
, buf_t bp
)
1883 panic("bgetvp_locked: not free");
1885 if (vp
->v_type
== VBLK
|| vp
->v_type
== VCHR
)
1886 bp
->b_dev
= vp
->v_rdev
;
1890 * Insert onto list for new vnode.
1892 bufinsvn(bp
, &vp
->v_cleanblkhd
);
1896 * Disassociate a buffer from a vnode.
1897 * buf_mtxp must be locked on entry
1900 brelvp_locked(buf_t bp
)
1903 * Delete from old vnode list, if on one.
1905 if (bp
->b_vnbufs
.le_next
!= NOLIST
)
1908 bp
->b_vp
= (vnode_t
)NULL
;
1912 * Reassign a buffer from one vnode to another.
1913 * Used to assign file specific control information
1914 * (indirect blocks) to the vnode to which they belong.
1917 buf_reassign(buf_t bp
, vnode_t newvp
)
1919 struct buflists
*listheadp
;
1921 if (newvp
== NULL
) {
1922 printf("buf_reassign: NULL");
1925 lck_mtx_lock_spin(buf_mtxp
);
1928 * Delete from old vnode list, if on one.
1930 if (bp
->b_vnbufs
.le_next
!= NOLIST
)
1933 * If dirty, put on list of dirty buffers;
1934 * otherwise insert onto list of clean buffers.
1936 if (ISSET(bp
->b_flags
, B_DELWRI
))
1937 listheadp
= &newvp
->v_dirtyblkhd
;
1939 listheadp
= &newvp
->v_cleanblkhd
;
1940 bufinsvn(bp
, listheadp
);
1942 lck_mtx_unlock(buf_mtxp
);
1945 static __inline__
void
1946 bufhdrinit(buf_t bp
)
1948 bzero((char *)bp
, sizeof *bp
);
1950 bp
->b_rcred
= NOCRED
;
1951 bp
->b_wcred
= NOCRED
;
1952 bp
->b_vnbufs
.le_next
= NOLIST
;
1953 bp
->b_flags
= B_INVAL
;
1959 * Initialize buffers and hash links for buffers.
1961 __private_extern__
void
1969 /* Initialize the buffer queues ('freelists') and the hash table */
1970 for (dp
= bufqueues
; dp
< &bufqueues
[BQUEUES
]; dp
++)
1972 bufhashtbl
= hashinit(nbuf_hashelements
, M_CACHE
, &bufhash
);
1976 /* Initialize the buffer headers */
1977 for (i
= 0; i
< max_nbuf_headers
; i
++) {
1979 bp
= &buf_headers
[i
];
1983 dp
= &bufqueues
[BQ_EMPTY
];
1984 bp
->b_whichq
= BQ_EMPTY
;
1985 bp
->b_timestamp
= buf_timestamp();
1986 binsheadfree(bp
, dp
, BQ_EMPTY
);
1987 binshash(bp
, &invalhash
);
1989 boot_nbuf_headers
= nbuf_headers
;
1991 TAILQ_INIT(&iobufqueue
);
1992 TAILQ_INIT(&delaybufqueue
);
1994 for (; i
< nbuf_headers
+ niobuf_headers
; i
++) {
1995 bp
= &buf_headers
[i
];
1998 binsheadfree(bp
, &iobufqueue
, -1);
2002 * allocate lock group attribute and group
2004 buf_mtx_grp_attr
= lck_grp_attr_alloc_init();
2005 buf_mtx_grp
= lck_grp_alloc_init("buffer cache", buf_mtx_grp_attr
);
2008 * allocate the lock attribute
2010 buf_mtx_attr
= lck_attr_alloc_init();
2013 * allocate and initialize mutex's for the buffer and iobuffer pools
2015 buf_mtxp
= lck_mtx_alloc_init(buf_mtx_grp
, buf_mtx_attr
);
2016 iobuffer_mtxp
= lck_mtx_alloc_init(buf_mtx_grp
, buf_mtx_attr
);
2017 buf_gc_callout
= lck_mtx_alloc_init(buf_mtx_grp
, buf_mtx_attr
);
2019 if (iobuffer_mtxp
== NULL
)
2020 panic("couldn't create iobuffer mutex");
2022 if (buf_mtxp
== NULL
)
2023 panic("couldn't create buf mutex");
2025 if (buf_gc_callout
== NULL
)
2026 panic("couldn't create buf_gc_callout mutex");
2029 * allocate and initialize cluster specific global locks...
2033 printf("using %d buffer headers and %d cluster IO buffer headers\n",
2034 nbuf_headers
, niobuf_headers
);
2036 /* Set up zones used by the buffer cache */
2039 /* start the bcleanbuf() thread */
2040 bcleanbuf_thread_init();
2042 /* Register a callout for relieving vm pressure */
2043 if (vm_set_buffer_cleanup_callout(buffer_cache_gc
) != KERN_SUCCESS
) {
2044 panic("Couldn't register buffer cache callout for vm pressure!\n");
2050 * Zones for the meta data buffers
2054 #define MAXMETA 16384
2056 struct meta_zone_entry
{
2060 const char *mz_name
;
2063 struct meta_zone_entry meta_zones
[] = {
2064 {NULL
, (MINMETA
* 1), 128 * (MINMETA
* 1), "buf.512" },
2065 {NULL
, (MINMETA
* 2), 64 * (MINMETA
* 2), "buf.1024" },
2066 {NULL
, (MINMETA
* 4), 16 * (MINMETA
* 4), "buf.2048" },
2067 {NULL
, (MINMETA
* 8), 512 * (MINMETA
* 8), "buf.4096" },
2068 {NULL
, (MINMETA
* 16), 512 * (MINMETA
* 16), "buf.8192" },
2069 {NULL
, (MINMETA
* 32), 512 * (MINMETA
* 32), "buf.16384" },
2070 {NULL
, 0, 0, "" } /* End */
2074 * Initialize the meta data zones
2081 for (i
= 0; meta_zones
[i
].mz_size
!= 0; i
++) {
2082 meta_zones
[i
].mz_zone
=
2083 zinit(meta_zones
[i
].mz_size
,
2084 meta_zones
[i
].mz_max
,
2086 meta_zones
[i
].mz_name
);
2087 zone_change(meta_zones
[i
].mz_zone
, Z_CALLERACCT
, FALSE
);
2089 buf_hdr_zone
= zinit(sizeof(struct buf
), 32, PAGE_SIZE
, "buf headers");
2090 zone_change(buf_hdr_zone
, Z_CALLERACCT
, FALSE
);
2093 static __inline__ zone_t
2094 getbufzone(size_t size
)
2098 if ((size
% 512) || (size
< MINMETA
) || (size
> MAXMETA
))
2099 panic("getbufzone: incorect size = %lu", size
);
2101 for (i
= 0; meta_zones
[i
].mz_size
!= 0; i
++) {
2102 if (meta_zones
[i
].mz_size
>= size
)
2106 return (meta_zones
[i
].mz_zone
);
2112 bio_doread(vnode_t vp
, daddr64_t blkno
, int size
, kauth_cred_t cred
, int async
, int queuetype
)
2116 bp
= buf_getblk(vp
, blkno
, size
, 0, 0, queuetype
);
2119 * If buffer does not have data valid, start a read.
2120 * Note that if buffer is B_INVAL, buf_getblk() won't return it.
2121 * Therefore, it's valid if it's I/O has completed or been delayed.
2123 if (!ISSET(bp
->b_flags
, (B_DONE
| B_DELWRI
))) {
2128 /* Start I/O for the buffer (keeping credentials). */
2129 SET(bp
->b_flags
, B_READ
| async
);
2130 if (IS_VALID_CRED(cred
) && !IS_VALID_CRED(bp
->b_rcred
)) {
2131 kauth_cred_ref(cred
);
2137 trace(TR_BREADMISS
, pack(vp
, size
), blkno
);
2139 /* Pay for the read. */
2140 if (p
&& p
->p_stats
) {
2141 OSIncrementAtomicLong(&p
->p_stats
->p_ru
.ru_inblock
); /* XXX */
2146 * since we asked for an ASYNC I/O
2147 * the biodone will do the brelse
2148 * we don't want to pass back a bp
2149 * that we don't 'own'
2158 trace(TR_BREADHIT
, pack(vp
, size
), blkno
);
2164 * Perform the reads for buf_breadn() and buf_meta_breadn().
2165 * Trivial modification to the breada algorithm presented in Bach (p.55).
2168 do_breadn_for_type(vnode_t vp
, daddr64_t blkno
, int size
, daddr64_t
*rablks
, int *rasizes
,
2169 int nrablks
, kauth_cred_t cred
, buf_t
*bpp
, int queuetype
)
2174 bp
= *bpp
= bio_doread(vp
, blkno
, size
, cred
, 0, queuetype
);
2177 * For each of the read-ahead blocks, start a read, if necessary.
2179 for (i
= 0; i
< nrablks
; i
++) {
2180 /* If it's in the cache, just go on to next one. */
2181 if (incore(vp
, rablks
[i
]))
2184 /* Get a buffer for the read-ahead block */
2185 (void) bio_doread(vp
, rablks
[i
], rasizes
[i
], cred
, B_ASYNC
, queuetype
);
2188 /* Otherwise, we had to start a read for it; wait until it's valid. */
2189 return (buf_biowait(bp
));
2194 * Read a disk block.
2195 * This algorithm described in Bach (p.54).
2198 buf_bread(vnode_t vp
, daddr64_t blkno
, int size
, kauth_cred_t cred
, buf_t
*bpp
)
2202 /* Get buffer for block. */
2203 bp
= *bpp
= bio_doread(vp
, blkno
, size
, cred
, 0, BLK_READ
);
2205 /* Wait for the read to complete, and return result. */
2206 return (buf_biowait(bp
));
2210 * Read a disk block. [bread() for meta-data]
2211 * This algorithm described in Bach (p.54).
2214 buf_meta_bread(vnode_t vp
, daddr64_t blkno
, int size
, kauth_cred_t cred
, buf_t
*bpp
)
2218 /* Get buffer for block. */
2219 bp
= *bpp
= bio_doread(vp
, blkno
, size
, cred
, 0, BLK_META
);
2221 /* Wait for the read to complete, and return result. */
2222 return (buf_biowait(bp
));
2226 * Read-ahead multiple disk blocks. The first is sync, the rest async.
2229 buf_breadn(vnode_t vp
, daddr64_t blkno
, int size
, daddr64_t
*rablks
, int *rasizes
, int nrablks
, kauth_cred_t cred
, buf_t
*bpp
)
2231 return (do_breadn_for_type(vp
, blkno
, size
, rablks
, rasizes
, nrablks
, cred
, bpp
, BLK_READ
));
2235 * Read-ahead multiple disk blocks. The first is sync, the rest async.
2236 * [buf_breadn() for meta-data]
2239 buf_meta_breadn(vnode_t vp
, daddr64_t blkno
, int size
, daddr64_t
*rablks
, int *rasizes
, int nrablks
, kauth_cred_t cred
, buf_t
*bpp
)
2241 return (do_breadn_for_type(vp
, blkno
, size
, rablks
, rasizes
, nrablks
, cred
, bpp
, BLK_META
));
2245 * Block write. Described in Bach (p.56)
2248 buf_bwrite(buf_t bp
)
2250 int sync
, wasdelayed
;
2252 proc_t p
= current_proc();
2253 vnode_t vp
= bp
->b_vp
;
2255 if (bp
->b_datap
== 0) {
2256 if (brecover_data(bp
) == 0)
2259 /* Remember buffer type, to switch on it later. */
2260 sync
= !ISSET(bp
->b_flags
, B_ASYNC
);
2261 wasdelayed
= ISSET(bp
->b_flags
, B_DELWRI
);
2262 CLR(bp
->b_flags
, (B_READ
| B_DONE
| B_ERROR
| B_DELWRI
));
2265 OSAddAtomicLong(-1, &nbdwrite
);
2269 * If not synchronous, pay for the I/O operation and make
2270 * sure the buf is on the correct vnode queue. We have
2271 * to do this now, because if we don't, the vnode may not
2272 * be properly notified that its I/O has completed.
2275 buf_reassign(bp
, vp
);
2277 if (p
&& p
->p_stats
) {
2278 OSIncrementAtomicLong(&p
->p_stats
->p_ru
.ru_oublock
); /* XXX */
2281 trace(TR_BUFWRITE
, pack(vp
, bp
->b_bcount
), bp
->b_lblkno
);
2283 /* Initiate disk write. Make sure the appropriate party is charged. */
2285 OSAddAtomic(1, &vp
->v_numoutput
);
2291 * If I/O was synchronous, wait for it to complete.
2293 rv
= buf_biowait(bp
);
2296 * Pay for the I/O operation, if it's not been paid for, and
2297 * make sure it's on the correct vnode queue. (async operatings
2298 * were payed for above.)
2301 buf_reassign(bp
, vp
);
2303 if (p
&& p
->p_stats
) {
2304 OSIncrementAtomicLong(&p
->p_stats
->p_ru
.ru_oublock
); /* XXX */
2307 /* Release the buffer. */
2317 vn_bwrite(struct vnop_bwrite_args
*ap
)
2319 return (buf_bwrite(ap
->a_bp
));
2325 * The buffer is marked dirty, but is not queued for I/O.
2326 * This routine should be used when the buffer is expected
2327 * to be modified again soon, typically a small write that
2328 * partially fills a buffer.
2330 * NB: magnetic tapes cannot be delayed; they must be
2331 * written in the order that the writes are requested.
2333 * Described in Leffler, et al. (pp. 208-213).
2335 * Note: With the ability to allocate additional buffer
2336 * headers, we can get in to the situation where "too" many
2337 * buf_bdwrite()s can create situation where the kernel can create
2338 * buffers faster than the disks can service. Doing a buf_bawrite() in
2339 * cases where we have "too many" outstanding buf_bdwrite()s avoids that.
2342 bdwrite_internal(buf_t bp
, int return_error
)
2344 proc_t p
= current_proc();
2345 vnode_t vp
= bp
->b_vp
;
2348 * If the block hasn't been seen before:
2349 * (1) Mark it as having been seen,
2350 * (2) Charge for the write.
2351 * (3) Make sure it's on its vnode's correct block list,
2353 if (!ISSET(bp
->b_flags
, B_DELWRI
)) {
2354 SET(bp
->b_flags
, B_DELWRI
);
2355 if (p
&& p
->p_stats
) {
2356 OSIncrementAtomicLong(&p
->p_stats
->p_ru
.ru_oublock
); /* XXX */
2358 OSAddAtomicLong(1, &nbdwrite
);
2359 buf_reassign(bp
, vp
);
2363 * if we're not LOCKED, but the total number of delayed writes
2364 * has climbed above 75% of the total buffers in the system
2365 * return an error if the caller has indicated that it can
2366 * handle one in this case, otherwise schedule the I/O now
2367 * this is done to prevent us from allocating tons of extra
2368 * buffers when dealing with virtual disks (i.e. DiskImages),
2369 * because additional buffers are dynamically allocated to prevent
2370 * deadlocks from occurring
2372 * however, can't do a buf_bawrite() if the LOCKED bit is set because the
2373 * buffer is part of a transaction and can't go to disk until
2374 * the LOCKED bit is cleared.
2376 if (!ISSET(bp
->b_flags
, B_LOCKED
) && nbdwrite
> ((nbuf_headers
/4)*3)) {
2380 * If the vnode has "too many" write operations in progress
2381 * wait for them to finish the IO
2383 (void)vnode_waitforwrites(vp
, VNODE_ASYNC_THROTTLE
, 0, 0, "buf_bdwrite");
2385 return (buf_bawrite(bp
));
2388 /* Otherwise, the "write" is done, so mark and release the buffer. */
2389 SET(bp
->b_flags
, B_DONE
);
2395 buf_bdwrite(buf_t bp
)
2397 return (bdwrite_internal(bp
, 0));
2402 * Asynchronous block write; just an asynchronous buf_bwrite().
2404 * Note: With the abilitty to allocate additional buffer
2405 * headers, we can get in to the situation where "too" many
2406 * buf_bawrite()s can create situation where the kernel can create
2407 * buffers faster than the disks can service.
2408 * We limit the number of "in flight" writes a vnode can have to
2412 bawrite_internal(buf_t bp
, int throttle
)
2414 vnode_t vp
= bp
->b_vp
;
2419 * If the vnode has "too many" write operations in progress
2420 * wait for them to finish the IO
2422 (void)vnode_waitforwrites(vp
, VNODE_ASYNC_THROTTLE
, 0, 0, (const char *)"buf_bawrite");
2423 else if (vp
->v_numoutput
>= VNODE_ASYNC_THROTTLE
)
2425 * return to the caller and
2426 * let him decide what to do
2428 return (EWOULDBLOCK
);
2430 SET(bp
->b_flags
, B_ASYNC
);
2432 return (VNOP_BWRITE(bp
));
2436 buf_bawrite(buf_t bp
)
2438 return (bawrite_internal(bp
, 1));
2444 buf_free_meta_store(buf_t bp
)
2446 if (bp
->b_bufsize
) {
2447 if (ISSET(bp
->b_flags
, B_ZALLOC
)) {
2450 z
= getbufzone(bp
->b_bufsize
);
2451 zfree(z
, (void *)bp
->b_datap
);
2453 kmem_free(kernel_map
, bp
->b_datap
, bp
->b_bufsize
);
2455 bp
->b_datap
= (uintptr_t)NULL
;
2462 buf_brelse_shadow(buf_t bp
)
2466 buf_t bp_return
= NULL
;
2467 #ifdef BUF_MAKE_PRIVATE
2471 int need_wakeup
= 0;
2473 lck_mtx_lock_spin(buf_mtxp
);
2475 __IGNORE_WCASTALIGN(bp_head
= (buf_t
)bp
->b_orig
);
2477 if (bp_head
->b_whichq
!= -1)
2478 panic("buf_brelse_shadow: bp_head on freelist %d\n", bp_head
->b_whichq
);
2480 #ifdef BUF_MAKE_PRIVATE
2481 if (bp_data
= bp
->b_data_store
) {
2482 bp_data
->b_data_ref
--;
2484 * snapshot the ref count so that we can check it
2485 * outside of the lock... we only want the guy going
2486 * from 1 -> 0 to try and release the storage
2488 data_ref
= bp_data
->b_data_ref
;
2491 KERNEL_DEBUG(0xbbbbc008 | DBG_FUNC_START
, bp
, bp_head
, bp_head
->b_shadow_ref
, 0, 0);
2493 bp_head
->b_shadow_ref
--;
2495 for (bp_temp
= bp_head
; bp_temp
&& bp
!= bp_temp
->b_shadow
; bp_temp
= bp_temp
->b_shadow
);
2497 if (bp_temp
== NULL
)
2498 panic("buf_brelse_shadow: bp not on list %p", bp_head
);
2500 bp_temp
->b_shadow
= bp_temp
->b_shadow
->b_shadow
;
2502 #ifdef BUF_MAKE_PRIVATE
2504 * we're about to free the current 'owner' of the data buffer and
2505 * there is at least one other shadow buf_t still pointing at it
2506 * so transfer it to the first shadow buf left in the chain
2508 if (bp
== bp_data
&& data_ref
) {
2509 if ((bp_data
= bp_head
->b_shadow
) == NULL
)
2510 panic("buf_brelse_shadow: data_ref mismatch bp(%p)", bp
);
2512 for (bp_temp
= bp_data
; bp_temp
; bp_temp
= bp_temp
->b_shadow
)
2513 bp_temp
->b_data_store
= bp_data
;
2514 bp_data
->b_data_ref
= data_ref
;
2517 if (bp_head
->b_shadow_ref
== 0 && bp_head
->b_shadow
)
2518 panic("buf_relse_shadow: b_shadow != NULL && b_shadow_ref == 0 bp(%p)", bp
);
2519 if (bp_head
->b_shadow_ref
&& bp_head
->b_shadow
== 0)
2520 panic("buf_relse_shadow: b_shadow == NULL && b_shadow_ref != 0 bp(%p)", bp
);
2522 if (bp_head
->b_shadow_ref
== 0) {
2523 if (!ISSET(bp_head
->b_lflags
, BL_BUSY
)) {
2525 CLR(bp_head
->b_flags
, B_AGE
);
2526 bp_head
->b_timestamp
= buf_timestamp();
2528 if (ISSET(bp_head
->b_flags
, B_LOCKED
)) {
2529 bp_head
->b_whichq
= BQ_LOCKED
;
2530 binstailfree(bp_head
, &bufqueues
[BQ_LOCKED
], BQ_LOCKED
);
2532 bp_head
->b_whichq
= BQ_META
;
2533 binstailfree(bp_head
, &bufqueues
[BQ_META
], BQ_META
);
2535 } else if (ISSET(bp_head
->b_lflags
, BL_WAITSHADOW
)) {
2536 CLR(bp_head
->b_lflags
, BL_WAITSHADOW
);
2538 bp_return
= bp_head
;
2540 if (ISSET(bp_head
->b_lflags
, BL_WANTED_REF
)) {
2541 CLR(bp_head
->b_lflags
, BL_WANTED_REF
);
2545 lck_mtx_unlock(buf_mtxp
);
2550 #ifdef BUF_MAKE_PRIVATE
2551 if (bp
== bp_data
&& data_ref
== 0)
2552 buf_free_meta_store(bp
);
2554 bp
->b_data_store
= NULL
;
2556 KERNEL_DEBUG(0xbbbbc008 | DBG_FUNC_END
, bp
, 0, 0, 0, 0);
2563 * Release a buffer on to the free lists.
2564 * Described in Bach (p. 46).
2567 buf_brelse(buf_t bp
)
2569 struct bqueues
*bufq
;
2572 int need_wakeup
= 0;
2573 int need_bp_wakeup
= 0;
2576 if (bp
->b_whichq
!= -1 || !(bp
->b_lflags
& BL_BUSY
))
2577 panic("buf_brelse: bad buffer = %p\n", bp
);
2580 (void) OSBacktrace(&bp
->b_stackbrelse
[0], 6);
2582 bp
->b_lastbrelse
= current_thread();
2585 if (bp
->b_lflags
& BL_IOBUF
) {
2586 buf_t shadow_master_bp
= NULL
;
2588 if (ISSET(bp
->b_lflags
, BL_SHADOW
))
2589 shadow_master_bp
= buf_brelse_shadow(bp
);
2590 else if (ISSET(bp
->b_lflags
, BL_IOBUF_ALLOC
))
2591 buf_free_meta_store(bp
);
2594 if (shadow_master_bp
) {
2595 bp
= shadow_master_bp
;
2596 goto finish_shadow_master
;
2601 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 388)) | DBG_FUNC_START
,
2602 bp
->b_lblkno
* PAGE_SIZE
, bp
, bp
->b_datap
,
2605 trace(TR_BRELSE
, pack(bp
->b_vp
, bp
->b_bufsize
), bp
->b_lblkno
);
2608 * if we're invalidating a buffer that has the B_FILTER bit
2609 * set then call the b_iodone function so it gets cleaned
2612 * the HFS journal code depends on this
2614 if (ISSET(bp
->b_flags
, B_META
) && ISSET(bp
->b_flags
, B_INVAL
)) {
2615 if (ISSET(bp
->b_flags
, B_FILTER
)) { /* if necessary, call out */
2616 void (*iodone_func
)(struct buf
*, void *) = bp
->b_iodone
;
2617 void *arg
= bp
->b_transaction
;
2619 CLR(bp
->b_flags
, B_FILTER
); /* but note callout done */
2620 bp
->b_iodone
= NULL
;
2621 bp
->b_transaction
= NULL
;
2623 if (iodone_func
== NULL
) {
2624 panic("brelse: bp @ %p has NULL b_iodone!\n", bp
);
2626 (*iodone_func
)(bp
, arg
);
2630 * I/O is done. Cleanup the UPL state
2634 if ( !ISSET(bp
->b_flags
, B_META
) && UBCINFOEXISTS(bp
->b_vp
) && bp
->b_bufsize
) {
2639 if ( !ISSET(bp
->b_flags
, B_INVAL
)) {
2640 kret
= ubc_create_upl_kernel(bp
->b_vp
,
2641 ubc_blktooff(bp
->b_vp
, bp
->b_lblkno
),
2646 VM_KERN_MEMORY_FILE
);
2648 if (kret
!= KERN_SUCCESS
)
2649 panic("brelse: Failed to create UPL");
2651 upl_ubc_alias_set(upl
, (uintptr_t) bp
, (uintptr_t) 5);
2652 #endif /* UPL_DEBUG */
2656 kret
= ubc_upl_unmap(upl
);
2658 if (kret
!= KERN_SUCCESS
)
2659 panic("ubc_upl_unmap failed");
2660 bp
->b_datap
= (uintptr_t)NULL
;
2664 if (bp
->b_flags
& (B_ERROR
| B_INVAL
)) {
2665 if (bp
->b_flags
& (B_READ
| B_INVAL
))
2666 upl_flags
= UPL_ABORT_DUMP_PAGES
;
2670 ubc_upl_abort(upl
, upl_flags
);
2672 if (ISSET(bp
->b_flags
, B_DELWRI
| B_WASDIRTY
))
2673 upl_flags
= UPL_COMMIT_SET_DIRTY
;
2675 upl_flags
= UPL_COMMIT_CLEAR_DIRTY
;
2677 ubc_upl_commit_range(upl
, 0, bp
->b_bufsize
, upl_flags
|
2678 UPL_COMMIT_INACTIVATE
| UPL_COMMIT_FREE_ON_EMPTY
);
2684 panic("brelse: UPL set for non VREG; vp=%p", bp
->b_vp
);
2688 * If it's locked, don't report an error; try again later.
2690 if (ISSET(bp
->b_flags
, (B_LOCKED
|B_ERROR
)) == (B_LOCKED
|B_ERROR
))
2691 CLR(bp
->b_flags
, B_ERROR
);
2693 * If it's not cacheable, or an error, mark it invalid.
2695 if (ISSET(bp
->b_flags
, (B_NOCACHE
|B_ERROR
)))
2696 SET(bp
->b_flags
, B_INVAL
);
2698 if ((bp
->b_bufsize
<= 0) ||
2699 ISSET(bp
->b_flags
, B_INVAL
) ||
2700 (ISSET(bp
->b_lflags
, BL_WANTDEALLOC
) && !ISSET(bp
->b_flags
, B_DELWRI
))) {
2702 boolean_t delayed_buf_free_meta_store
= FALSE
;
2705 * If it's invalid or empty, dissociate it from its vnode,
2706 * release its storage if B_META, and
2707 * clean it up a bit and put it on the EMPTY queue
2709 if (ISSET(bp
->b_flags
, B_DELWRI
))
2710 OSAddAtomicLong(-1, &nbdwrite
);
2712 if (ISSET(bp
->b_flags
, B_META
)) {
2713 if (bp
->b_shadow_ref
)
2714 delayed_buf_free_meta_store
= TRUE
;
2716 buf_free_meta_store(bp
);
2719 * nuke any credentials we were holding
2721 buf_release_credentials(bp
);
2723 lck_mtx_lock_spin(buf_mtxp
);
2725 if (bp
->b_shadow_ref
) {
2726 SET(bp
->b_lflags
, BL_WAITSHADOW
);
2728 lck_mtx_unlock(buf_mtxp
);
2732 if (delayed_buf_free_meta_store
== TRUE
) {
2734 lck_mtx_unlock(buf_mtxp
);
2735 finish_shadow_master
:
2736 buf_free_meta_store(bp
);
2738 lck_mtx_lock_spin(buf_mtxp
);
2740 CLR(bp
->b_flags
, (B_META
| B_ZALLOC
| B_DELWRI
| B_LOCKED
| B_AGE
| B_ASYNC
| B_NOCACHE
| B_FUA
));
2747 binshash(bp
, &invalhash
);
2749 bp
->b_whichq
= BQ_EMPTY
;
2750 binsheadfree(bp
, &bufqueues
[BQ_EMPTY
], BQ_EMPTY
);
2754 * It has valid data. Put it on the end of the appropriate
2755 * queue, so that it'll stick around for as long as possible.
2757 if (ISSET(bp
->b_flags
, B_LOCKED
))
2758 whichq
= BQ_LOCKED
; /* locked in core */
2759 else if (ISSET(bp
->b_flags
, B_META
))
2760 whichq
= BQ_META
; /* meta-data */
2761 else if (ISSET(bp
->b_flags
, B_AGE
))
2762 whichq
= BQ_AGE
; /* stale but valid data */
2764 whichq
= BQ_LRU
; /* valid data */
2765 bufq
= &bufqueues
[whichq
];
2767 bp
->b_timestamp
= buf_timestamp();
2769 lck_mtx_lock_spin(buf_mtxp
);
2772 * the buf_brelse_shadow routine doesn't take 'ownership'
2773 * of the parent buf_t... it updates state that is protected by
2774 * the buf_mtxp, and checks for BL_BUSY to determine whether to
2775 * put the buf_t back on a free list. b_shadow_ref is protected
2776 * by the lock, and since we have not yet cleared B_BUSY, we need
2777 * to check it while holding the lock to insure that one of us
2778 * puts this buf_t back on a free list when it is safe to do so
2780 if (bp
->b_shadow_ref
== 0) {
2781 CLR(bp
->b_flags
, (B_AGE
| B_ASYNC
| B_NOCACHE
));
2782 bp
->b_whichq
= whichq
;
2783 binstailfree(bp
, bufq
, whichq
);
2786 * there are still cloned buf_t's pointing
2787 * at this guy... need to keep it off the
2788 * freelists until a buf_brelse is done on
2791 CLR(bp
->b_flags
, (B_ASYNC
| B_NOCACHE
));
2796 * needbuffer is a global
2797 * we're currently using buf_mtxp to protect it
2798 * delay doing the actual wakeup until after
2804 if (ISSET(bp
->b_lflags
, BL_WANTED
)) {
2806 * delay the actual wakeup until after we
2807 * clear BL_BUSY and we've dropped buf_mtxp
2812 * Unlock the buffer.
2814 CLR(bp
->b_lflags
, (BL_BUSY
| BL_WANTED
));
2817 lck_mtx_unlock(buf_mtxp
);
2821 * Wake up any processes waiting for any buffer to become free.
2823 wakeup(&needbuffer
);
2825 if (need_bp_wakeup
) {
2827 * Wake up any proceeses waiting for _this_ buffer to become free.
2831 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 388)) | DBG_FUNC_END
,
2832 bp
, bp
->b_datap
, bp
->b_flags
, 0, 0);
2836 * Determine if a block is in the cache.
2837 * Just look on what would be its hash chain. If it's there, return
2838 * a pointer to it, unless it's marked invalid. If it's marked invalid,
2839 * we normally don't return the buffer, unless the caller explicitly
2843 incore(vnode_t vp
, daddr64_t blkno
)
2846 struct bufhashhdr
*dp
;
2848 dp
= BUFHASH(vp
, blkno
);
2850 lck_mtx_lock_spin(buf_mtxp
);
2852 if (incore_locked(vp
, blkno
, dp
))
2856 lck_mtx_unlock(buf_mtxp
);
2863 incore_locked(vnode_t vp
, daddr64_t blkno
, struct bufhashhdr
*dp
)
2867 /* Search hash chain */
2868 for (bp
= dp
->lh_first
; bp
!= NULL
; bp
= bp
->b_hash
.le_next
) {
2869 if (bp
->b_lblkno
== blkno
&& bp
->b_vp
== vp
&&
2870 !ISSET(bp
->b_flags
, B_INVAL
)) {
2879 buf_wait_for_shadow_io(vnode_t vp
, daddr64_t blkno
)
2882 struct bufhashhdr
*dp
;
2884 dp
= BUFHASH(vp
, blkno
);
2886 lck_mtx_lock_spin(buf_mtxp
);
2889 if ((bp
= incore_locked(vp
, blkno
, dp
)) == NULL
)
2892 if (bp
->b_shadow_ref
== 0)
2895 SET(bp
->b_lflags
, BL_WANTED_REF
);
2897 (void) msleep(bp
, buf_mtxp
, PSPIN
| (PRIBIO
+1), "buf_wait_for_shadow", NULL
);
2899 lck_mtx_unlock(buf_mtxp
);
2902 /* XXX FIXME -- Update the comment to reflect the UBC changes (please) -- */
2904 * Get a block of requested size that is associated with
2905 * a given vnode and block offset. If it is found in the
2906 * block cache, mark it as having been found, make it busy
2907 * and return it. Otherwise, return an empty block of the
2908 * correct size. It is up to the caller to insure that the
2909 * cached blocks be of the correct size.
2912 buf_getblk(vnode_t vp
, daddr64_t blkno
, int size
, int slpflag
, int slptimeo
, int operation
)
2917 upl_page_info_t
*pl
;
2922 struct bufhashhdr
*dp
;
2924 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 386)) | DBG_FUNC_START
,
2925 (uintptr_t)(blkno
* PAGE_SIZE
), size
, operation
, 0, 0);
2927 ret_only_valid
= operation
& BLK_ONLYVALID
;
2928 operation
&= ~BLK_ONLYVALID
;
2929 dp
= BUFHASH(vp
, blkno
);
2931 lck_mtx_lock_spin(buf_mtxp
);
2933 if ((bp
= incore_locked(vp
, blkno
, dp
))) {
2935 * Found in the Buffer Cache
2937 if (ISSET(bp
->b_lflags
, BL_BUSY
)) {
2941 switch (operation
) {
2945 SET(bp
->b_lflags
, BL_WANTED
);
2946 bufstats
.bufs_busyincore
++;
2949 * don't retake the mutex after being awakened...
2950 * the time out is in msecs
2952 ts
.tv_sec
= (slptimeo
/1000);
2953 ts
.tv_nsec
= (slptimeo
% 1000) * 10 * NSEC_PER_USEC
* 1000;
2955 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 396)) | DBG_FUNC_NONE
,
2956 (uintptr_t)blkno
, size
, operation
, 0, 0);
2958 err
= msleep(bp
, buf_mtxp
, slpflag
| PDROP
| (PRIBIO
+ 1), "buf_getblk", &ts
);
2961 * Callers who call with PCATCH or timeout are
2962 * willing to deal with the NULL pointer
2964 if (err
&& ((slpflag
& PCATCH
) || ((err
== EWOULDBLOCK
) && slptimeo
)))
2971 * unknown operation requested
2973 panic("getblk: paging or unknown operation for incore busy buffer - %x\n", operation
);
2981 * buffer in core and not busy
2983 SET(bp
->b_lflags
, BL_BUSY
);
2984 SET(bp
->b_flags
, B_CACHE
);
2987 bremfree_locked(bp
);
2988 bufstats
.bufs_incore
++;
2990 lck_mtx_unlock(buf_mtxp
);
2992 bp
->b_owner
= current_thread();
2996 panic("buffer has UPL, but not marked BUSY: %p", bp
);
2998 clear_bdone
= FALSE
;
2999 if (!ret_only_valid
) {
3001 * If the number bytes that are valid is going
3002 * to increase (even if we end up not doing a
3003 * reallocation through allocbuf) we have to read
3004 * the new size first.
3006 * This is required in cases where we doing a read
3007 * modify write of a already valid data on disk but
3008 * in cases where the data on disk beyond (blkno + b_bcount)
3009 * is invalid, we may end up doing extra I/O.
3011 if (operation
== BLK_META
&& bp
->b_bcount
< size
) {
3013 * Since we are going to read in the whole size first
3014 * we first have to ensure that any pending delayed write
3015 * is flushed to disk first.
3017 if (ISSET(bp
->b_flags
, B_DELWRI
)) {
3018 CLR(bp
->b_flags
, B_CACHE
);
3023 * clear B_DONE before returning from
3024 * this function so that the caller can
3025 * can issue a read for the new size.
3030 if (bp
->b_bufsize
!= size
)
3035 switch (operation
) {
3038 * "write" operation: let the UPL subsystem
3039 * know that we intend to modify the buffer
3040 * cache pages we're gathering.
3042 upl_flags
|= UPL_WILL_MODIFY
;
3044 upl_flags
|= UPL_PRECIOUS
;
3045 if (UBCINFOEXISTS(bp
->b_vp
) && bp
->b_bufsize
) {
3046 kret
= ubc_create_upl_kernel(vp
,
3047 ubc_blktooff(vp
, bp
->b_lblkno
),
3052 VM_KERN_MEMORY_FILE
);
3053 if (kret
!= KERN_SUCCESS
)
3054 panic("Failed to create UPL");
3058 if (upl_valid_page(pl
, 0)) {
3059 if (upl_dirty_page(pl
, 0))
3060 SET(bp
->b_flags
, B_WASDIRTY
);
3062 CLR(bp
->b_flags
, B_WASDIRTY
);
3064 CLR(bp
->b_flags
, (B_DONE
| B_CACHE
| B_WASDIRTY
| B_DELWRI
));
3066 kret
= ubc_upl_map(upl
, (vm_offset_t
*)&(bp
->b_datap
));
3068 if (kret
!= KERN_SUCCESS
)
3069 panic("getblk: ubc_upl_map() failed with (%d)", kret
);
3075 * VM is not involved in IO for the meta data
3076 * buffer already has valid data
3081 panic("getblk: paging or unknown operation for incore buffer- %d\n", operation
);
3087 CLR(bp
->b_flags
, B_DONE
);
3089 } else { /* not incore() */
3090 int queue
= BQ_EMPTY
; /* Start with no preference */
3092 if (ret_only_valid
) {
3093 lck_mtx_unlock(buf_mtxp
);
3096 if ((vnode_isreg(vp
) == 0) || (UBCINFOEXISTS(vp
) == 0) /*|| (vnode_issystem(vp) == 1)*/)
3097 operation
= BLK_META
;
3099 if ((bp
= getnewbuf(slpflag
, slptimeo
, &queue
)) == NULL
)
3103 * getnewbuf may block for a number of different reasons...
3104 * if it does, it's then possible for someone else to
3105 * create a buffer for the same block and insert it into
3106 * the hash... if we see it incore at this point we dump
3107 * the buffer we were working on and start over
3109 if (incore_locked(vp
, blkno
, dp
)) {
3110 SET(bp
->b_flags
, B_INVAL
);
3111 binshash(bp
, &invalhash
);
3113 lck_mtx_unlock(buf_mtxp
);
3119 * NOTE: YOU CAN NOT BLOCK UNTIL binshash() HAS BEEN
3120 * CALLED! BE CAREFUL.
3124 * mark the buffer as B_META if indicated
3125 * so that when buffer is released it will goto META queue
3127 if (operation
== BLK_META
)
3128 SET(bp
->b_flags
, B_META
);
3130 bp
->b_blkno
= bp
->b_lblkno
= blkno
;
3134 * Insert in the hash so that incore() can find it
3136 binshash(bp
, BUFHASH(vp
, blkno
));
3138 bgetvp_locked(vp
, bp
);
3140 lck_mtx_unlock(buf_mtxp
);
3145 switch (operation
) {
3148 * buffer data is invalid...
3150 * I don't want to have to retake buf_mtxp,
3151 * so the miss and vmhits counters are done
3152 * with Atomic updates... all other counters
3153 * in bufstats are protected with either
3154 * buf_mtxp or iobuffer_mtxp
3156 OSAddAtomicLong(1, &bufstats
.bufs_miss
);
3161 * "write" operation: let the UPL subsystem know
3162 * that we intend to modify the buffer cache pages
3165 upl_flags
|= UPL_WILL_MODIFY
;
3168 size_t contig_bytes
;
3171 #if DEVELOPMENT || DEBUG
3173 * Apple implemented file systems use UBC excludively; they should
3174 * not call in here."
3176 const char* excldfs
[] = {"hfs", "afpfs", "smbfs", "acfs",
3177 "exfat", "msdos", "webdav", NULL
};
3179 for (int i
= 0; excldfs
[i
] != NULL
; i
++) {
3181 !strcmp(vp
->v_mount
->mnt_vfsstat
.f_fstypename
,
3183 panic("%s %s calls buf_getblk",
3185 operation
== BLK_READ
? "BLK_READ" : "BLK_WRITE");
3191 panic("bp already has UPL: %p",bp
);
3193 f_offset
= ubc_blktooff(vp
, blkno
);
3195 upl_flags
|= UPL_PRECIOUS
;
3196 kret
= ubc_create_upl_kernel(vp
,
3202 VM_KERN_MEMORY_FILE
);
3204 if (kret
!= KERN_SUCCESS
)
3205 panic("Failed to create UPL");
3207 upl_ubc_alias_set(upl
, (uintptr_t) bp
, (uintptr_t) 4);
3208 #endif /* UPL_DEBUG */
3211 if (upl_valid_page(pl
, 0)) {
3213 if (operation
== BLK_READ
)
3214 bmap_flags
= VNODE_READ
;
3216 bmap_flags
= VNODE_WRITE
;
3218 SET(bp
->b_flags
, B_CACHE
| B_DONE
);
3220 OSAddAtomicLong(1, &bufstats
.bufs_vmhits
);
3225 if (upl_dirty_page(pl
, 0)) {
3227 SET(bp
->b_flags
, B_WASDIRTY
);
3229 bp
->b_validend
= bp
->b_bcount
;
3230 bp
->b_dirtyend
= bp
->b_bcount
;
3233 bp
->b_validend
= bp
->b_bcount
;
3237 * try to recreate the physical block number associated with
3240 if (VNOP_BLOCKMAP(vp
, f_offset
, bp
->b_bcount
, &bp
->b_blkno
, &contig_bytes
, NULL
, bmap_flags
, NULL
))
3241 panic("getblk: VNOP_BLOCKMAP failed");
3243 * if the extent represented by this buffer
3244 * is not completely physically contiguous on
3245 * disk, than we can't cache the physical mapping
3246 * in the buffer header
3248 if ((long)contig_bytes
< bp
->b_bcount
)
3249 bp
->b_blkno
= bp
->b_lblkno
;
3251 OSAddAtomicLong(1, &bufstats
.bufs_miss
);
3253 kret
= ubc_upl_map(upl
, (vm_offset_t
*)&(bp
->b_datap
));
3255 if (kret
!= KERN_SUCCESS
)
3256 panic("getblk: ubc_upl_map() failed with (%d)", kret
);
3260 panic("getblk: paging or unknown operation - %x", operation
);
3265 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 386)) | DBG_FUNC_END
,
3266 bp
, bp
->b_datap
, bp
->b_flags
, 3, 0);
3269 (void) OSBacktrace(&bp
->b_stackgetblk
[0], 6);
3275 * Get an empty, disassociated buffer of given size.
3278 buf_geteblk(int size
)
3281 int queue
= BQ_EMPTY
;
3284 lck_mtx_lock_spin(buf_mtxp
);
3286 bp
= getnewbuf(0, 0, &queue
);
3287 } while (bp
== NULL
);
3289 SET(bp
->b_flags
, (B_META
|B_INVAL
));
3292 assert(queue
== BQ_EMPTY
);
3293 #endif /* DIAGNOSTIC */
3294 /* XXX need to implement logic to deal with other queues */
3296 binshash(bp
, &invalhash
);
3297 bufstats
.bufs_eblk
++;
3299 lck_mtx_unlock(buf_mtxp
);
3307 buf_redundancy_flags(buf_t bp
)
3309 return bp
->b_redundancy_flags
;
3313 buf_set_redundancy_flags(buf_t bp
, uint32_t flags
)
3315 SET(bp
->b_redundancy_flags
, flags
);
3319 buf_clear_redundancy_flags(buf_t bp
, uint32_t flags
)
3321 CLR(bp
->b_redundancy_flags
, flags
);
3327 recycle_buf_from_pool(int nsize
)
3332 lck_mtx_lock_spin(buf_mtxp
);
3334 TAILQ_FOREACH(bp
, &bufqueues
[BQ_META
], b_freelist
) {
3335 if (ISSET(bp
->b_flags
, B_DELWRI
) || bp
->b_bufsize
!= nsize
)
3337 ptr
= (void *)bp
->b_datap
;
3340 bcleanbuf(bp
, TRUE
);
3343 lck_mtx_unlock(buf_mtxp
);
3350 int zalloc_nopagewait_failed
= 0;
3351 int recycle_buf_failed
= 0;
3354 grab_memory_for_meta_buf(int nsize
)
3358 boolean_t was_vmpriv
;
3360 z
= getbufzone(nsize
);
3363 * make sure we're NOT priviliged so that
3364 * if a vm_page_grab is needed, it won't
3365 * block if we're out of free pages... if
3366 * it blocks, then we can't honor the
3367 * nopagewait request
3369 was_vmpriv
= set_vm_privilege(FALSE
);
3371 ptr
= zalloc_nopagewait(z
);
3373 if (was_vmpriv
== TRUE
)
3374 set_vm_privilege(TRUE
);
3378 zalloc_nopagewait_failed
++;
3380 ptr
= recycle_buf_from_pool(nsize
);
3384 recycle_buf_failed
++;
3386 if (was_vmpriv
== FALSE
)
3387 set_vm_privilege(TRUE
);
3391 if (was_vmpriv
== FALSE
)
3392 set_vm_privilege(FALSE
);
3399 * With UBC, there is no need to expand / shrink the file data
3400 * buffer. The VM uses the same pages, hence no waste.
3401 * All the file data buffers can have one size.
3402 * In fact expand / shrink would be an expensive operation.
3404 * Only exception to this is meta-data buffers. Most of the
3405 * meta data operations are smaller than PAGE_SIZE. Having the
3406 * meta-data buffers grow and shrink as needed, optimizes use
3407 * of the kernel wired memory.
3411 allocbuf(buf_t bp
, int size
)
3413 vm_size_t desired_size
;
3415 desired_size
= roundup(size
, CLBYTES
);
3417 if (desired_size
< PAGE_SIZE
)
3418 desired_size
= PAGE_SIZE
;
3419 if (desired_size
> MAXBSIZE
)
3420 panic("allocbuf: buffer larger than MAXBSIZE requested");
3422 if (ISSET(bp
->b_flags
, B_META
)) {
3423 int nsize
= roundup(size
, MINMETA
);
3426 vm_offset_t elem
= (vm_offset_t
)bp
->b_datap
;
3428 if (ISSET(bp
->b_flags
, B_ZALLOC
)) {
3429 if (bp
->b_bufsize
< nsize
) {
3432 /* reallocate to a bigger size */
3434 zprev
= getbufzone(bp
->b_bufsize
);
3435 if (nsize
<= MAXMETA
) {
3436 desired_size
= nsize
;
3438 /* b_datap not really a ptr */
3439 *(void **)(&bp
->b_datap
) = grab_memory_for_meta_buf(nsize
);
3441 bp
->b_datap
= (uintptr_t)NULL
;
3442 kmem_alloc_kobject(kernel_map
, (vm_offset_t
*)&bp
->b_datap
, desired_size
, VM_KERN_MEMORY_FILE
);
3443 CLR(bp
->b_flags
, B_ZALLOC
);
3445 bcopy((void *)elem
, (caddr_t
)bp
->b_datap
, bp
->b_bufsize
);
3446 zfree(zprev
, (void *)elem
);
3448 desired_size
= bp
->b_bufsize
;
3452 if ((vm_size_t
)bp
->b_bufsize
< desired_size
) {
3453 /* reallocate to a bigger size */
3454 bp
->b_datap
= (uintptr_t)NULL
;
3455 kmem_alloc_kobject(kernel_map
, (vm_offset_t
*)&bp
->b_datap
, desired_size
, VM_KERN_MEMORY_FILE
);
3456 bcopy((const void *)elem
, (caddr_t
)bp
->b_datap
, bp
->b_bufsize
);
3457 kmem_free(kernel_map
, elem
, bp
->b_bufsize
);
3459 desired_size
= bp
->b_bufsize
;
3463 /* new allocation */
3464 if (nsize
<= MAXMETA
) {
3465 desired_size
= nsize
;
3467 /* b_datap not really a ptr */
3468 *(void **)(&bp
->b_datap
) = grab_memory_for_meta_buf(nsize
);
3469 SET(bp
->b_flags
, B_ZALLOC
);
3471 kmem_alloc_kobject(kernel_map
, (vm_offset_t
*)&bp
->b_datap
, desired_size
, VM_KERN_MEMORY_FILE
);
3474 if (bp
->b_datap
== 0)
3475 panic("allocbuf: NULL b_datap");
3477 bp
->b_bufsize
= desired_size
;
3478 bp
->b_bcount
= size
;
3484 * Get a new buffer from one of the free lists.
3486 * Request for a queue is passes in. The queue from which the buffer was taken
3487 * from is returned. Out of range queue requests get BQ_EMPTY. Request for
3488 * BQUEUE means no preference. Use heuristics in that case.
3489 * Heuristics is as follows:
3490 * Try BQ_AGE, BQ_LRU, BQ_EMPTY, BQ_META in that order.
3491 * If none available block till one is made available.
3492 * If buffers available on both BQ_AGE and BQ_LRU, check the timestamps.
3493 * Pick the most stale buffer.
3494 * If found buffer was marked delayed write, start the async. write
3495 * and restart the search.
3496 * Initialize the fields and disassociate the buffer from the vnode.
3497 * Remove the buffer from the hash. Return the buffer and the queue
3498 * on which it was found.
3500 * buf_mtxp is held upon entry
3501 * returns with buf_mtxp locked if new buf available
3502 * returns with buf_mtxp UNlocked if new buf NOT available
3506 getnewbuf(int slpflag
, int slptimeo
, int * queue
)
3512 int age_time
, lru_time
, bp_time
, meta_time
;
3513 int req
= *queue
; /* save it for restarts */
3518 * invalid request gets empty queue
3520 if ((*queue
>= BQUEUES
) || (*queue
< 0)
3521 || (*queue
== BQ_LAUNDRY
) || (*queue
== BQ_LOCKED
))
3525 if (*queue
== BQ_EMPTY
&& (bp
= bufqueues
[*queue
].tqh_first
))
3529 * need to grow number of bufs, add another one rather than recycling
3531 if (nbuf_headers
< max_nbuf_headers
) {
3533 * Increment count now as lock
3534 * is dropped for allocation.
3535 * That avoids over commits
3540 /* Try for the requested queue first */
3541 bp
= bufqueues
[*queue
].tqh_first
;
3545 /* Unable to use requested queue */
3546 age_bp
= bufqueues
[BQ_AGE
].tqh_first
;
3547 lru_bp
= bufqueues
[BQ_LRU
].tqh_first
;
3548 meta_bp
= bufqueues
[BQ_META
].tqh_first
;
3550 if (!age_bp
&& !lru_bp
&& !meta_bp
) {
3552 * Unavailble on AGE or LRU or META queues
3553 * Try the empty list first
3555 bp
= bufqueues
[BQ_EMPTY
].tqh_first
;
3561 * We have seen is this is hard to trigger.
3562 * This is an overcommit of nbufs but needed
3563 * in some scenarios with diskiamges
3567 lck_mtx_unlock(buf_mtxp
);
3569 /* Create a new temporary buffer header */
3570 bp
= (struct buf
*)zalloc(buf_hdr_zone
);
3574 bp
->b_whichq
= BQ_EMPTY
;
3575 bp
->b_timestamp
= buf_timestamp();
3577 SET(bp
->b_flags
, B_HDRALLOC
);
3580 lck_mtx_lock_spin(buf_mtxp
);
3583 binshash(bp
, &invalhash
);
3584 binsheadfree(bp
, &bufqueues
[BQ_EMPTY
], BQ_EMPTY
);
3588 /* subtract already accounted bufcount */
3591 bufstats
.bufs_sleeps
++;
3593 /* wait for a free buffer of any kind */
3595 /* hz value is 100 */
3596 ts
.tv_sec
= (slptimeo
/1000);
3597 /* the hz value is 100; which leads to 10ms */
3598 ts
.tv_nsec
= (slptimeo
% 1000) * NSEC_PER_USEC
* 1000 * 10;
3600 msleep(&needbuffer
, buf_mtxp
, slpflag
| PDROP
| (PRIBIO
+1), "getnewbuf", &ts
);
3604 /* Buffer available either on AGE or LRU or META */
3608 /* Buffer available either on AGE or LRU */
3612 } else if (!lru_bp
) {
3615 } else { /* buffer available on both AGE and LRU */
3616 int t
= buf_timestamp();
3618 age_time
= t
- age_bp
->b_timestamp
;
3619 lru_time
= t
- lru_bp
->b_timestamp
;
3620 if ((age_time
< 0) || (lru_time
< 0)) { /* time set backwards */
3624 * we should probably re-timestamp eveything in the
3625 * queues at this point with the current time
3628 if ((lru_time
>= lru_is_stale
) && (age_time
< age_is_stale
)) {
3638 if (!bp
) { /* Neither on AGE nor on LRU */
3641 } else if (meta_bp
) {
3642 int t
= buf_timestamp();
3644 bp_time
= t
- bp
->b_timestamp
;
3645 meta_time
= t
- meta_bp
->b_timestamp
;
3647 if (!(bp_time
< 0) && !(meta_time
< 0)) {
3648 /* time not set backwards */
3650 bp_is_stale
= (*queue
== BQ_LRU
) ?
3651 lru_is_stale
: age_is_stale
;
3653 if ((meta_time
>= meta_is_stale
) &&
3654 (bp_time
< bp_is_stale
)) {
3661 if (ISSET(bp
->b_flags
, B_LOCKED
) || ISSET(bp
->b_lflags
, BL_BUSY
))
3662 panic("getnewbuf: bp @ %p is LOCKED or BUSY! (flags 0x%x)\n", bp
, bp
->b_flags
);
3665 if (bcleanbuf(bp
, FALSE
)) {
3667 * moved to the laundry thread, buffer not ready
3678 * Returns 0 if buffer is ready to use,
3679 * Returns 1 if issued a buf_bawrite() to indicate
3680 * that the buffer is not ready.
3682 * buf_mtxp is held upon entry
3683 * returns with buf_mtxp locked
3686 bcleanbuf(buf_t bp
, boolean_t discard
)
3688 /* Remove from the queue */
3689 bremfree_locked(bp
);
3692 bp
->b_owner
= current_thread();
3696 * If buffer was a delayed write, start the IO by queuing
3697 * it on the LAUNDRY queue, and return 1
3699 if (ISSET(bp
->b_flags
, B_DELWRI
)) {
3701 SET(bp
->b_lflags
, BL_WANTDEALLOC
);
3706 lck_mtx_unlock(buf_mtxp
);
3708 wakeup(&bufqueues
[BQ_LAUNDRY
]);
3710 * and give it a chance to run
3712 (void)thread_block(THREAD_CONTINUE_NULL
);
3714 lck_mtx_lock_spin(buf_mtxp
);
3719 bp
->b_owner
= current_thread();
3723 * Buffer is no longer on any free list... we own it
3725 SET(bp
->b_lflags
, BL_BUSY
);
3731 * disassociate us from our vnode, if we had one...
3736 lck_mtx_unlock(buf_mtxp
);
3740 if (ISSET(bp
->b_flags
, B_META
))
3741 buf_free_meta_store(bp
);
3743 trace(TR_BRELSE
, pack(bp
->b_vp
, bp
->b_bufsize
), bp
->b_lblkno
);
3745 buf_release_credentials(bp
);
3747 /* If discarding, just move to the empty queue */
3749 lck_mtx_lock_spin(buf_mtxp
);
3750 CLR(bp
->b_flags
, (B_META
| B_ZALLOC
| B_DELWRI
| B_LOCKED
| B_AGE
| B_ASYNC
| B_NOCACHE
| B_FUA
));
3751 bp
->b_whichq
= BQ_EMPTY
;
3752 binshash(bp
, &invalhash
);
3753 binsheadfree(bp
, &bufqueues
[BQ_EMPTY
], BQ_EMPTY
);
3754 CLR(bp
->b_lflags
, BL_BUSY
);
3757 /* Not discarding: clean up and prepare for reuse */
3759 bp
->b_datap
= (uintptr_t)NULL
;
3760 bp
->b_upl
= (void *)NULL
;
3761 bp
->b_fsprivate
= (void *)NULL
;
3763 * preserve the state of whether this buffer
3764 * was allocated on the fly or not...
3765 * the only other flag that should be set at
3766 * this point is BL_BUSY...
3769 bp
->b_owner
= current_thread();
3772 bp
->b_lflags
= BL_BUSY
;
3773 bp
->b_flags
= (bp
->b_flags
& B_HDRALLOC
);
3774 bp
->b_redundancy_flags
= 0;
3776 bp
->b_blkno
= bp
->b_lblkno
= 0;
3777 bp
->b_iodone
= NULL
;
3781 bp
->b_dirtyoff
= bp
->b_dirtyend
= 0;
3782 bp
->b_validoff
= bp
->b_validend
= 0;
3783 bzero(&bp
->b_attr
, sizeof(struct bufattr
));
3785 lck_mtx_lock_spin(buf_mtxp
);
3793 buf_invalblkno(vnode_t vp
, daddr64_t lblkno
, int flags
)
3797 struct bufhashhdr
*dp
;
3799 dp
= BUFHASH(vp
, lblkno
);
3802 lck_mtx_lock_spin(buf_mtxp
);
3804 if ((bp
= incore_locked(vp
, lblkno
, dp
)) == (struct buf
*)0) {
3805 lck_mtx_unlock(buf_mtxp
);
3808 if (ISSET(bp
->b_lflags
, BL_BUSY
)) {
3809 if ( !ISSET(flags
, BUF_WAIT
)) {
3810 lck_mtx_unlock(buf_mtxp
);
3813 SET(bp
->b_lflags
, BL_WANTED
);
3815 error
= msleep((caddr_t
)bp
, buf_mtxp
, PDROP
| (PRIBIO
+ 1), "buf_invalblkno", NULL
);
3822 bremfree_locked(bp
);
3823 SET(bp
->b_lflags
, BL_BUSY
);
3824 SET(bp
->b_flags
, B_INVAL
);
3827 bp
->b_owner
= current_thread();
3830 lck_mtx_unlock(buf_mtxp
);
3840 int need_wakeup
= 0;
3842 lck_mtx_lock_spin(buf_mtxp
);
3844 if (ISSET(bp
->b_lflags
, BL_WANTED
)) {
3846 * delay the actual wakeup until after we
3847 * clear BL_BUSY and we've dropped buf_mtxp
3852 bp
->b_owner
= current_thread();
3856 * Unlock the buffer.
3858 CLR(bp
->b_lflags
, (BL_BUSY
| BL_WANTED
));
3861 lck_mtx_unlock(buf_mtxp
);
3865 * Wake up any proceeses waiting for _this_ buffer to become free.
3873 buf_acquire(buf_t bp
, int flags
, int slpflag
, int slptimeo
) {
3876 lck_mtx_lock_spin(buf_mtxp
);
3878 error
= buf_acquire_locked(bp
, flags
, slpflag
, slptimeo
);
3880 lck_mtx_unlock(buf_mtxp
);
3887 buf_acquire_locked(buf_t bp
, int flags
, int slpflag
, int slptimeo
)
3892 if (ISSET(bp
->b_flags
, B_LOCKED
)) {
3893 if ((flags
& BAC_SKIP_LOCKED
))
3896 if ((flags
& BAC_SKIP_NONLOCKED
))
3899 if (ISSET(bp
->b_lflags
, BL_BUSY
)) {
3901 * since the lck_mtx_lock may block, the buffer
3902 * may become BUSY, so we need to
3903 * recheck for a NOWAIT request
3905 if (flags
& BAC_NOWAIT
)
3907 SET(bp
->b_lflags
, BL_WANTED
);
3909 /* the hz value is 100; which leads to 10ms */
3910 ts
.tv_sec
= (slptimeo
/100);
3911 ts
.tv_nsec
= (slptimeo
% 100) * 10 * NSEC_PER_USEC
* 1000;
3912 error
= msleep((caddr_t
)bp
, buf_mtxp
, slpflag
| (PRIBIO
+ 1), "buf_acquire", &ts
);
3918 if (flags
& BAC_REMOVE
)
3919 bremfree_locked(bp
);
3920 SET(bp
->b_lflags
, BL_BUSY
);
3924 bp
->b_owner
= current_thread();
3932 * Wait for operations on the buffer to complete.
3933 * When they do, extract and return the I/O's error value.
3936 buf_biowait(buf_t bp
)
3938 while (!ISSET(bp
->b_flags
, B_DONE
)) {
3940 lck_mtx_lock_spin(buf_mtxp
);
3942 if (!ISSET(bp
->b_flags
, B_DONE
)) {
3943 DTRACE_IO1(wait__start
, buf_t
, bp
);
3944 (void) msleep(bp
, buf_mtxp
, PDROP
| (PRIBIO
+1), "buf_biowait", NULL
);
3945 DTRACE_IO1(wait__done
, buf_t
, bp
);
3947 lck_mtx_unlock(buf_mtxp
);
3949 /* check for interruption of I/O (e.g. via NFS), then errors. */
3950 if (ISSET(bp
->b_flags
, B_EINTR
)) {
3951 CLR(bp
->b_flags
, B_EINTR
);
3953 } else if (ISSET(bp
->b_flags
, B_ERROR
))
3954 return (bp
->b_error
? bp
->b_error
: EIO
);
3961 * Mark I/O complete on a buffer.
3963 * If a callback has been requested, e.g. the pageout
3964 * daemon, do so. Otherwise, awaken waiting processes.
3966 * [ Leffler, et al., says on p.247:
3967 * "This routine wakes up the blocked process, frees the buffer
3968 * for an asynchronous write, or, for a request by the pagedaemon
3969 * process, invokes a procedure specified in the buffer structure" ]
3971 * In real life, the pagedaemon (or other system processes) wants
3972 * to do async stuff to, and doesn't want the buffer buf_brelse()'d.
3973 * (for swap pager, that puts swap buffers on the free lists (!!!),
3974 * for the vn device, that puts malloc'd buffers on the free lists!)
3978 buf_biodone(buf_t bp
)
3981 struct bufattr
*bap
;
3982 struct timeval real_elapsed
;
3983 uint64_t real_elapsed_usec
= 0;
3985 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 387)) | DBG_FUNC_START
,
3986 bp
, bp
->b_datap
, bp
->b_flags
, 0, 0);
3988 if (ISSET(bp
->b_flags
, B_DONE
))
3989 panic("biodone already");
3993 if (bp
->b_vp
&& bp
->b_vp
->v_mount
) {
3994 mp
= bp
->b_vp
->v_mount
;
3999 if (ISSET(bp
->b_flags
, B_ERROR
)) {
4000 if (mp
&& (MNT_ROOTFS
& mp
->mnt_flag
)) {
4001 dk_error_description_t desc
;
4002 bzero(&desc
, sizeof(desc
));
4003 desc
.description
= panic_disk_error_description
;
4004 desc
.description_size
= panic_disk_error_description_size
;
4005 VNOP_IOCTL(mp
->mnt_devvp
, DKIOCGETERRORDESCRIPTION
, (caddr_t
)&desc
, 0, vfs_context_kernel());
4009 if (mp
&& (bp
->b_flags
& B_READ
) == 0) {
4010 update_last_io_time(mp
);
4011 INCR_PENDING_IO(-(pending_io_t
)buf_count(bp
), mp
->mnt_pending_write_size
);
4013 INCR_PENDING_IO(-(pending_io_t
)buf_count(bp
), mp
->mnt_pending_read_size
);
4016 throttle_info_end_io(bp
);
4018 if (kdebug_enable
) {
4019 int code
= DKIO_DONE
;
4020 int io_tier
= GET_BUFATTR_IO_TIER(bap
);
4022 if (bp
->b_flags
& B_READ
)
4024 if (bp
->b_flags
& B_ASYNC
)
4027 if (bp
->b_flags
& B_META
)
4029 else if (bp
->b_flags
& B_PAGEIO
)
4030 code
|= DKIO_PAGING
;
4033 code
|= DKIO_THROTTLE
;
4035 code
|= ((io_tier
<< DKIO_TIER_SHIFT
) & DKIO_TIER_MASK
);
4037 if (bp
->b_flags
& B_PASSIVE
)
4038 code
|= DKIO_PASSIVE
;
4040 if (bap
->ba_flags
& BA_NOCACHE
)
4041 code
|= DKIO_NOCACHE
;
4043 if (bap
->ba_flags
& BA_IO_TIER_UPGRADE
) {
4044 code
|= DKIO_TIER_UPGRADE
;
4047 KERNEL_DEBUG_CONSTANT_IST(KDEBUG_COMMON
, FSDBG_CODE(DBG_DKRW
, code
) | DBG_FUNC_NONE
,
4048 buf_kernel_addrperm_addr(bp
), (uintptr_t)VM_KERNEL_ADDRPERM(bp
->b_vp
), bp
->b_resid
, bp
->b_error
, 0);
4051 microuptime(&real_elapsed
);
4052 timevalsub(&real_elapsed
, &bp
->b_timestamp_tv
);
4053 real_elapsed_usec
= real_elapsed
.tv_sec
* USEC_PER_SEC
+ real_elapsed
.tv_usec
;
4054 disk_conditioner_delay(bp
, 1, bp
->b_bcount
, real_elapsed_usec
);
4057 * I/O was done, so don't believe
4058 * the DIRTY state from VM anymore...
4059 * and we need to reset the THROTTLED/PASSIVE
4062 CLR(bp
->b_flags
, (B_WASDIRTY
| B_PASSIVE
));
4063 CLR(bap
->ba_flags
, (BA_META
| BA_NOCACHE
| BA_DELAYIDLESLEEP
| BA_IO_TIER_UPGRADE
));
4065 SET_BUFATTR_IO_TIER(bap
, 0);
4067 DTRACE_IO1(done
, buf_t
, bp
);
4069 if (!ISSET(bp
->b_flags
, B_READ
) && !ISSET(bp
->b_flags
, B_RAW
))
4071 * wake up any writer's blocked
4072 * on throttle or waiting for I/O
4075 vnode_writedone(bp
->b_vp
);
4077 if (ISSET(bp
->b_flags
, (B_CALL
| B_FILTER
))) { /* if necessary, call out */
4078 void (*iodone_func
)(struct buf
*, void *) = bp
->b_iodone
;
4079 void *arg
= bp
->b_transaction
;
4080 int callout
= ISSET(bp
->b_flags
, B_CALL
);
4082 if (iodone_func
== NULL
)
4083 panic("biodone: bp @ %p has NULL b_iodone!\n", bp
);
4085 CLR(bp
->b_flags
, (B_CALL
| B_FILTER
)); /* filters and callouts are one-shot */
4086 bp
->b_iodone
= NULL
;
4087 bp
->b_transaction
= NULL
;
4090 SET(bp
->b_flags
, B_DONE
); /* note that it's done */
4092 (*iodone_func
)(bp
, arg
);
4096 * assumes that the callback function takes
4097 * ownership of the bp and deals with releasing it if necessary
4102 * in this case the call back function is acting
4103 * strictly as a filter... it does not take
4104 * ownership of the bp and is expecting us
4105 * to finish cleaning up... this is currently used
4106 * by the HFS journaling code
4109 if (ISSET(bp
->b_flags
, B_ASYNC
)) { /* if async, release it */
4110 SET(bp
->b_flags
, B_DONE
); /* note that it's done */
4113 } else { /* or just wakeup the buffer */
4115 * by taking the mutex, we serialize
4116 * the buf owner calling buf_biowait so that we'll
4117 * only see him in one of 2 states...
4118 * state 1: B_DONE wasn't set and he's
4120 * state 2: he's blocked trying to take the
4121 * mutex before looking at B_DONE
4122 * BL_WANTED is cleared in case anyone else
4123 * is blocked waiting for the buffer... note
4124 * that we haven't cleared B_BUSY yet, so if
4125 * they do get to run, their going to re-set
4126 * BL_WANTED and go back to sleep
4128 lck_mtx_lock_spin(buf_mtxp
);
4130 CLR(bp
->b_lflags
, BL_WANTED
);
4131 SET(bp
->b_flags
, B_DONE
); /* note that it's done */
4133 lck_mtx_unlock(buf_mtxp
);
4138 KERNEL_DEBUG((FSDBG_CODE(DBG_FSRW
, 387)) | DBG_FUNC_END
,
4139 (uintptr_t)bp
, (uintptr_t)bp
->b_datap
, bp
->b_flags
, 0, 0);
4143 * Obfuscate buf pointers.
4146 buf_kernel_addrperm_addr(void * addr
)
4148 if ((vm_offset_t
)addr
== 0)
4151 return ((vm_offset_t
)addr
+ buf_kernel_addrperm
);
4155 * Return a count of buffers on the "locked" queue.
4158 count_lock_queue(void)
4163 lck_mtx_lock_spin(buf_mtxp
);
4165 for (bp
= bufqueues
[BQ_LOCKED
].tqh_first
; bp
;
4166 bp
= bp
->b_freelist
.tqe_next
)
4168 lck_mtx_unlock(buf_mtxp
);
4174 * Return a count of 'busy' buffers. Used at the time of shutdown.
4175 * note: This is also called from the mach side in debug context in kdp.c
4178 count_busy_buffers(void)
4180 return buf_busycount
+ bufstats
.bufs_iobufinuse
;
4185 * Print out statistics on the current allocation of the buffer pool.
4186 * Can be enabled to print out on every ``sync'' by setting "syncprt"
4187 * in vfs_syscalls.c using sysctl.
4195 int counts
[MAXBSIZE
/CLBYTES
+1];
4196 static char *bname
[BQUEUES
] =
4197 { "LOCKED", "LRU", "AGE", "EMPTY", "META", "LAUNDRY" };
4199 for (dp
= bufqueues
, i
= 0; dp
< &bufqueues
[BQUEUES
]; dp
++, i
++) {
4201 for (j
= 0; j
<= MAXBSIZE
/CLBYTES
; j
++)
4204 lck_mtx_lock(buf_mtxp
);
4206 for (bp
= dp
->tqh_first
; bp
; bp
= bp
->b_freelist
.tqe_next
) {
4207 counts
[bp
->b_bufsize
/CLBYTES
]++;
4210 lck_mtx_unlock(buf_mtxp
);
4212 printf("%s: total-%d", bname
[i
], count
);
4213 for (j
= 0; j
<= MAXBSIZE
/CLBYTES
; j
++)
4215 printf(", %d-%d", j
* CLBYTES
, counts
[j
]);
4219 #endif /* DIAGNOSTIC */
4221 #define NRESERVEDIOBUFS 128
4223 #define MNT_VIRTUALDEV_MAX_IOBUFS 16
4224 #define VIRTUALDEV_MAX_IOBUFS ((40*niobuf_headers)/100)
4227 alloc_io_buf(vnode_t vp
, int priv
)
4231 int alloc_for_virtualdev
= FALSE
;
4233 lck_mtx_lock_spin(iobuffer_mtxp
);
4236 * We subject iobuf requests for diskimages to additional restrictions.
4238 * a) A single diskimage mount cannot use up more than
4239 * MNT_VIRTUALDEV_MAX_IOBUFS. However,vm privileged (pageout) requests
4240 * are not subject to this restriction.
4241 * b) iobuf headers used by all diskimage headers by all mount
4242 * points cannot exceed VIRTUALDEV_MAX_IOBUFS.
4244 if (vp
&& ((mp
= vp
->v_mount
)) && mp
!= dead_mountp
&&
4245 mp
->mnt_kern_flag
& MNTK_VIRTUALDEV
) {
4246 alloc_for_virtualdev
= TRUE
;
4247 while ((!priv
&& mp
->mnt_iobufinuse
> MNT_VIRTUALDEV_MAX_IOBUFS
) ||
4248 bufstats
.bufs_iobufinuse_vdev
> VIRTUALDEV_MAX_IOBUFS
) {
4249 bufstats
.bufs_iobufsleeps
++;
4252 (void)msleep(&need_iobuffer
, iobuffer_mtxp
,
4253 PSPIN
| (PRIBIO
+1), (const char *)"alloc_io_buf (1)",
4258 while (((niobuf_headers
- NRESERVEDIOBUFS
< bufstats
.bufs_iobufinuse
) && !priv
) ||
4259 (bp
= iobufqueue
.tqh_first
) == NULL
) {
4260 bufstats
.bufs_iobufsleeps
++;
4263 (void)msleep(&need_iobuffer
, iobuffer_mtxp
, PSPIN
| (PRIBIO
+1),
4264 (const char *)"alloc_io_buf (2)", NULL
);
4266 TAILQ_REMOVE(&iobufqueue
, bp
, b_freelist
);
4268 bufstats
.bufs_iobufinuse
++;
4269 if (bufstats
.bufs_iobufinuse
> bufstats
.bufs_iobufmax
)
4270 bufstats
.bufs_iobufmax
= bufstats
.bufs_iobufinuse
;
4272 if (alloc_for_virtualdev
) {
4273 mp
->mnt_iobufinuse
++;
4274 bufstats
.bufs_iobufinuse_vdev
++;
4277 lck_mtx_unlock(iobuffer_mtxp
);
4280 * initialize various fields
4281 * we don't need to hold the mutex since the buffer
4282 * is now private... the vp should have a reference
4283 * on it and is not protected by this mutex in any event
4285 bp
->b_timestamp
= 0;
4290 bp
->b_lflags
= BL_BUSY
| BL_IOBUF
;
4291 if (alloc_for_virtualdev
)
4292 bp
->b_lflags
|= BL_IOBUF_VDEV
;
4293 bp
->b_redundancy_flags
= 0;
4294 bp
->b_blkno
= bp
->b_lblkno
= 0;
4296 bp
->b_owner
= current_thread();
4299 bp
->b_iodone
= NULL
;
4305 bp
->b_fsprivate
= (void *)NULL
;
4307 bzero(&bp
->b_attr
, sizeof(struct bufattr
));
4309 if (vp
&& (vp
->v_type
== VBLK
|| vp
->v_type
== VCHR
))
4310 bp
->b_dev
= vp
->v_rdev
;
4319 free_io_buf(buf_t bp
)
4321 int need_wakeup
= 0;
4322 int free_for_virtualdev
= FALSE
;
4325 /* Was this iobuf for a diskimage ? */
4326 if (bp
->b_lflags
& BL_IOBUF_VDEV
) {
4327 free_for_virtualdev
= TRUE
;
4329 mp
= bp
->b_vp
->v_mount
;
4333 * put buffer back on the head of the iobufqueue
4336 bp
->b_flags
= B_INVAL
;
4338 /* Zero out the bufattr and its flags before relinquishing this iobuf */
4339 bzero (&bp
->b_attr
, sizeof(struct bufattr
));
4341 lck_mtx_lock_spin(iobuffer_mtxp
);
4343 binsheadfree(bp
, &iobufqueue
, -1);
4345 if (need_iobuffer
) {
4347 * Wake up any processes waiting because they need an io buffer
4349 * do the wakeup after we drop the mutex... it's possible that the
4350 * wakeup will be superfluous if need_iobuffer gets set again and
4351 * another thread runs this path, but it's highly unlikely, doesn't
4352 * hurt, and it means we don't hold up I/O progress if the wakeup blocks
4353 * trying to grab a task related lock...
4358 if (bufstats
.bufs_iobufinuse
<= 0)
4359 panic("free_io_buf: bp(%p) - bufstats.bufs_iobufinuse < 0", bp
);
4361 bufstats
.bufs_iobufinuse
--;
4363 if (free_for_virtualdev
) {
4364 bufstats
.bufs_iobufinuse_vdev
--;
4365 if (mp
&& mp
!= dead_mountp
)
4366 mp
->mnt_iobufinuse
--;
4369 lck_mtx_unlock(iobuffer_mtxp
);
4372 wakeup(&need_iobuffer
);
4379 lck_mtx_lock_spin(buf_mtxp
);
4383 buf_list_unlock(void)
4385 lck_mtx_unlock(buf_mtxp
);
4389 * If getnewbuf() calls bcleanbuf() on the same thread
4390 * there is a potential for stack overrun and deadlocks.
4391 * So we always handoff the work to a worker thread for completion
4396 bcleanbuf_thread_init(void)
4398 thread_t thread
= THREAD_NULL
;
4400 /* create worker thread */
4401 kernel_thread_start((thread_continue_t
)bcleanbuf_thread
, NULL
, &thread
);
4402 thread_deallocate(thread
);
4405 typedef int (*bcleanbufcontinuation
)(int);
4407 __attribute__((noreturn
))
4409 bcleanbuf_thread(void)
4416 lck_mtx_lock_spin(buf_mtxp
);
4418 while ( (bp
= TAILQ_FIRST(&bufqueues
[BQ_LAUNDRY
])) == NULL
) {
4419 (void)msleep0(&bufqueues
[BQ_LAUNDRY
], buf_mtxp
, PRIBIO
|PDROP
, "blaundry", 0, (bcleanbufcontinuation
)bcleanbuf_thread
);
4423 * Remove from the queue
4425 bremfree_locked(bp
);
4428 * Buffer is no longer on any free list
4430 SET(bp
->b_lflags
, BL_BUSY
);
4434 bp
->b_owner
= current_thread();
4438 lck_mtx_unlock(buf_mtxp
);
4442 error
= bawrite_internal(bp
, 0);
4445 bp
->b_whichq
= BQ_LAUNDRY
;
4446 bp
->b_timestamp
= buf_timestamp();
4448 lck_mtx_lock_spin(buf_mtxp
);
4450 binstailfree(bp
, &bufqueues
[BQ_LAUNDRY
], BQ_LAUNDRY
);
4453 /* we never leave a busy page on the laundry queue */
4454 CLR(bp
->b_lflags
, BL_BUSY
);
4457 bp
->b_owner
= current_thread();
4461 lck_mtx_unlock(buf_mtxp
);
4463 if (loopcnt
> MAXLAUNDRY
) {
4465 * bawrite_internal() can return errors if we're throttled. If we've
4466 * done several I/Os and failed, give the system some time to unthrottle
4469 (void)tsleep((void *)&bufqueues
[BQ_LAUNDRY
], PRIBIO
, "blaundry", 1);
4472 /* give other threads a chance to run */
4473 (void)thread_block(THREAD_CONTINUE_NULL
);
4482 brecover_data(buf_t bp
)
4486 upl_page_info_t
*pl
;
4488 vnode_t vp
= bp
->b_vp
;
4492 if ( !UBCINFOEXISTS(vp
) || bp
->b_bufsize
== 0)
4495 upl_flags
= UPL_PRECIOUS
;
4496 if (! (buf_flags(bp
) & B_READ
)) {
4498 * "write" operation: let the UPL subsystem know
4499 * that we intend to modify the buffer cache pages we're
4502 upl_flags
|= UPL_WILL_MODIFY
;
4505 kret
= ubc_create_upl_kernel(vp
,
4506 ubc_blktooff(vp
, bp
->b_lblkno
),
4511 VM_KERN_MEMORY_FILE
);
4512 if (kret
!= KERN_SUCCESS
)
4513 panic("Failed to create UPL");
4515 for (upl_offset
= 0; upl_offset
< bp
->b_bufsize
; upl_offset
+= PAGE_SIZE
) {
4517 if (!upl_valid_page(pl
, upl_offset
/ PAGE_SIZE
) || !upl_dirty_page(pl
, upl_offset
/ PAGE_SIZE
)) {
4518 ubc_upl_abort(upl
, 0);
4524 kret
= ubc_upl_map(upl
, (vm_offset_t
*)&(bp
->b_datap
));
4526 if (kret
!= KERN_SUCCESS
)
4527 panic("getblk: ubc_upl_map() failed with (%d)", kret
);
4532 SET(bp
->b_flags
, B_INVAL
);
4539 fs_buffer_cache_gc_register(void (* callout
)(int, void *), void *context
)
4541 lck_mtx_lock(buf_gc_callout
);
4542 for (int i
= 0; i
< FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE
; i
++) {
4543 if (fs_callouts
[i
].callout
== NULL
) {
4544 fs_callouts
[i
].callout
= callout
;
4545 fs_callouts
[i
].context
= context
;
4546 lck_mtx_unlock(buf_gc_callout
);
4551 lck_mtx_unlock(buf_gc_callout
);
4556 fs_buffer_cache_gc_unregister(void (* callout
)(int, void *), void *context
)
4558 lck_mtx_lock(buf_gc_callout
);
4559 for (int i
= 0; i
< FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE
; i
++) {
4560 if (fs_callouts
[i
].callout
== callout
&&
4561 fs_callouts
[i
].context
== context
) {
4562 fs_callouts
[i
].callout
= NULL
;
4563 fs_callouts
[i
].context
= NULL
;
4566 lck_mtx_unlock(buf_gc_callout
);
4571 fs_buffer_cache_gc_dispatch_callouts(int all
)
4573 lck_mtx_lock(buf_gc_callout
);
4574 for(int i
= 0; i
< FS_BUFFER_CACHE_GC_CALLOUTS_MAX_SIZE
; i
++) {
4575 if (fs_callouts
[i
].callout
!= NULL
) {
4576 fs_callouts
[i
].callout(all
, fs_callouts
[i
].context
);
4579 lck_mtx_unlock(buf_gc_callout
);
4583 buffer_cache_gc(int all
)
4586 boolean_t did_large_zfree
= FALSE
;
4587 boolean_t need_wakeup
= FALSE
;
4588 int now
= buf_timestamp();
4590 struct bqueues privq
;
4591 int thresh_hold
= BUF_STALE_THRESHHOLD
;
4596 * We only care about metadata (incore storage comes from zalloc()).
4597 * Unless "all" is set (used to evict meta data buffers in preparation
4598 * for deep sleep), we only evict up to BUF_MAX_GC_BATCH_SIZE buffers
4599 * that have not been accessed in the last BUF_STALE_THRESHOLD seconds.
4600 * BUF_MAX_GC_BATCH_SIZE controls both the hold time of the global lock
4601 * "buf_mtxp" and the length of time we spend compute bound in the GC
4602 * thread which calls this function
4604 lck_mtx_lock(buf_mtxp
);
4609 need_wakeup
= FALSE
;
4611 while (((bp
= TAILQ_FIRST(&bufqueues
[BQ_META
]))) &&
4612 (now
> bp
->b_timestamp
) &&
4613 (now
- bp
->b_timestamp
> thresh_hold
) &&
4614 (found
< BUF_MAX_GC_BATCH_SIZE
)) {
4616 /* Remove from free list */
4617 bremfree_locked(bp
);
4621 bp
->b_owner
= current_thread();
4625 /* If dirty, move to laundry queue and remember to do wakeup */
4626 if (ISSET(bp
->b_flags
, B_DELWRI
)) {
4627 SET(bp
->b_lflags
, BL_WANTDEALLOC
);
4636 * Mark busy and put on private list. We could technically get
4637 * away without setting BL_BUSY here.
4639 SET(bp
->b_lflags
, BL_BUSY
);
4643 * Remove from hash and dissociate from vp.
4650 TAILQ_INSERT_TAIL(&privq
, bp
, b_freelist
);
4657 /* Drop lock for batch processing */
4658 lck_mtx_unlock(buf_mtxp
);
4660 /* Wakeup and yield for laundry if need be */
4662 wakeup(&bufqueues
[BQ_LAUNDRY
]);
4663 (void)thread_block(THREAD_CONTINUE_NULL
);
4666 /* Clean up every buffer on private list */
4667 TAILQ_FOREACH(bp
, &privq
, b_freelist
) {
4668 /* Take note if we've definitely freed at least a page to a zone */
4669 if ((ISSET(bp
->b_flags
, B_ZALLOC
)) && (buf_size(bp
) >= PAGE_SIZE
)) {
4670 did_large_zfree
= TRUE
;
4673 trace(TR_BRELSE
, pack(bp
->b_vp
, bp
->b_bufsize
), bp
->b_lblkno
);
4676 buf_free_meta_store(bp
);
4678 /* Release credentials */
4679 buf_release_credentials(bp
);
4681 /* Prepare for moving to empty queue */
4682 CLR(bp
->b_flags
, (B_META
| B_ZALLOC
| B_DELWRI
| B_LOCKED
4683 | B_AGE
| B_ASYNC
| B_NOCACHE
| B_FUA
));
4684 bp
->b_whichq
= BQ_EMPTY
;
4687 lck_mtx_lock(buf_mtxp
);
4689 /* Back under lock, move them all to invalid hash and clear busy */
4690 TAILQ_FOREACH(bp
, &privq
, b_freelist
) {
4691 binshash(bp
, &invalhash
);
4692 CLR(bp
->b_lflags
, BL_BUSY
);
4696 if (bp
->b_owner
!= current_thread()) {
4697 panic("Buffer stolen from buffer_cache_gc()");
4699 bp
->b_owner
= current_thread();
4704 /* And do a big bulk move to the empty queue */
4705 TAILQ_CONCAT(&bufqueues
[BQ_EMPTY
], &privq
, b_freelist
);
4707 } while (all
&& (found
== BUF_MAX_GC_BATCH_SIZE
));
4709 lck_mtx_unlock(buf_mtxp
);
4711 fs_buffer_cache_gc_dispatch_callouts(all
);
4713 return did_large_zfree
;
4726 bp_cmp(void *a
, void *b
)
4728 buf_t
*bp_a
= *(buf_t
**)a
,
4729 *bp_b
= *(buf_t
**)b
;
4732 // don't have to worry about negative block
4733 // numbers so this is ok to do.
4735 res
= (bp_a
->b_blkno
- bp_b
->b_blkno
);
4742 bflushq(int whichq
, mount_t mp
)
4746 int total_writes
= 0;
4747 static buf_t flush_table
[NFLUSH
];
4749 if (whichq
< 0 || whichq
>= BQUEUES
) {
4754 lck_mtx_lock(buf_mtxp
);
4756 bp
= TAILQ_FIRST(&bufqueues
[whichq
]);
4758 for (buf_count
= 0; bp
; bp
= next
) {
4759 next
= bp
->b_freelist
.tqe_next
;
4761 if (bp
->b_vp
== NULL
|| bp
->b_vp
->v_mount
!= mp
) {
4765 if (ISSET(bp
->b_flags
, B_DELWRI
) && !ISSET(bp
->b_lflags
, BL_BUSY
)) {
4767 bremfree_locked(bp
);
4769 bp
->b_owner
= current_thread();
4772 SET(bp
->b_lflags
, BL_BUSY
);
4775 flush_table
[buf_count
] = bp
;
4779 if (buf_count
>= NFLUSH
) {
4780 lck_mtx_unlock(buf_mtxp
);
4782 qsort(flush_table
, buf_count
, sizeof(struct buf
*), bp_cmp
);
4784 for (i
= 0; i
< buf_count
; i
++) {
4785 buf_bawrite(flush_table
[i
]);
4791 lck_mtx_unlock(buf_mtxp
);
4793 if (buf_count
> 0) {
4794 qsort(flush_table
, buf_count
, sizeof(struct buf
*), bp_cmp
);
4796 for (i
= 0; i
< buf_count
; i
++) {
4797 buf_bawrite(flush_table
[i
]);
4801 return (total_writes
);